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Unleashing the potential of CD39-targeted cancer therapy: Breaking new ground and
future prospects
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A B S T R A C T

The review article titled CD39 Transforming Cancer Therapy by Modulating Tumor Microenvironment published
in June 2024 in Cancer Letters provides a comprehensive overview of CD39’s multifaceted roles in cancer,
particularly its influence on immunoregulation, angiogenesis, and metabolic reprogramming within the tumor
microenvironment (TME). This commentary builds on that foundation by incorporating recent advancements in
CD39 research, highlighting unresolved issues, and proposing future research directions. We delve into the
therapeutic potential of targeting CD39, addressing clinical translation challenges, and exploring the integration
of CD39-based strategies into precision oncology.

1. Introduction

The tumor microenvironment (TME) is crucial in cancer progression
and therapeutic resistance [1–4]. CD39, an ectonucleotidase, has
emerged as a significant player by modulating immune responses,
angiogenesis, and metabolic processes [5–7]. The original review by Xu
et al. [8] provides a foundational understanding of CD39’s functions and
therapeutic potential. This commentary aims to expand upon these in-
sights by discussing recent updates, analyzing current debates, and
suggesting pathways for future research.

2. Recent advances in CD39 research

2.1. Immunoregulation and tumor immune evasion

CD39’s role in immunoregulation is well-documented, particularly
its ability to convert ATP to immunosuppressive adenosine, thereby
facilitating tumor immune evasion [8,9]. Recent studies have further
elucidated the mechanisms through which CD39 modulates the TME,
influencing the activity of various immune cells, including T cells, nat-
ural killer (NK) cells, and myeloid-derived suppressor cells (MDSCs)
[10–12]. These insights have paved the way for novel therapeutic stra-
tegies targeting CD39 to enhance anti-tumor immunity. To better un-
derstand these complex interactions and their therapeutic implications,
Fig. 1 illustrates the CD39 mechanism in immunoregulation and its
impact on different immune cells within the TME.

This figure illustrates the role of CD39 in modulating the immune
response within the TME. CD39, an ectonucleotidase expressed on the
cell membrane, converts extracellular ATP to ADP and subsequently to
adenosine. Adenosine, the final product of this hydrolysis, exerts several
immunosuppressive effects: it suppresses the activity of effector T cells,

enhances the function of regulatory T cells, inhibits the cytotoxic ac-
tivity of NK cells, promotes the expansion and suppressive function of
MDSCs, and impairs the antigen-presenting function of dendritic cells.
These interactions collectively contribute to an immunosuppressive
TME, supporting tumor growth and progression.

2.2. Angiogenesis and metabolic reprogramming

Beyond immunoregulation, CD39 significantly impacts angiogenesis
and metabolic reprogramming within the TME. Recent research has
highlighted the enzyme’s role in promoting vascular endothelial growth
factor (VEGF) secretion, thus supporting tumor vascularization [6,7,13].
Additionally, CD39’s influence on metabolic pathways, such as the
AMP-activated protein kinase (AMPK) and mammalian target of rapa-
mycin (mTOR) pathways, underscores its importance in maintaining
tumor cell survival under adverse conditions [14–16].

3. Current therapeutic strategies and clinical translation

3.1. CD39 inhibitors and monoclonal antibodies

Developing CD39 inhibitors, such as sodium metatungstate and
monoclonal antibodies like TTX-030 and SRF617, represents a prom-
ising therapeutic avenue [17,18]. These agents block CD39’s enzymatic
activity, reducing adenosine production and enhancing anti-tumor im-
mune responses. Clinical trials investigating these inhibitors have shown
encouraging preliminary results, although challenges related to speci-
ficity, resistance, and side effects persist [19,20].

Abbreviations: AMPK, AMP-Activated Protein Kinase; ATP, Adenosine Triphosphate; CD39, Cluster of Differentiation 39; DCs, Dendritic Cells; MDSCs, Myeloid-
Derived Suppressor Cells; MTOR, Mammalian Target of Rapamycin; NK Cells, Natural Killer Cells; TME, Tumor Microenvironment; Tregs, Regulatory T Cells; VEGF,
Vascular Endothelial Growth Factor.
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3.2. Gene therapy and immuno-metabolic modulators

Gene therapy approaches targeting CD39, including CRISPR-based
techniques, offer another innovative strategy [21,22]. By directly
altering CD39 expression, these therapies could disrupt the tumor’s
immunosuppressive environment. Additionally, immuno-metabolic
modulators that target the CD39-adenosine pathway are being
explored to exploit tumors’ metabolic vulnerabilities [5,23,24].

4. Challenges and future directions

4.1. Addressing therapeutic resistance

One of the primary challenges in CD39-targeted therapy is the po-
tential for therapeutic resistance [18,19]. Tumors may develop resis-
tance mechanisms, such as genetic variations affecting CD39 expression
or activity, necessitating combinatorial approaches to overcome these
hurdles [8,25].

4.2. Personalized medicine and patient stratification

The variability in CD39 expression across different cancers high-
lights the need for personalized therapeutic strategies [8,26,27]. Inte-
grating CD39 expression data into clinical workflows can help tailor
treatments to individual patients, improving efficacy and minimizing
adverse effects [8,28,29]. Developing comprehensive biomarker panels
and employing sophisticated patient profiling techniques are essential
for optimizing CD39-targeted therapies.

4.3. Ethical considerations and accessibility

Further research is needed to confirm the effectiveness of treatment
targeting CD39 and related biomarkers. When discussing ethics, it’s
important to ensure that a wide range of patients are included in future
studies to thoroughly examine how well these treatments work and how
accessible they are. It’s key to address any biases in how clinical trials
are set up and ensure that groups who aren’t often represented are part
of research efforts. Also, we should think about how affordable and
available these treatments will be to avoid access once they’re proven
effective and approved. To create strategies that work well for everyone,

Fig. 1. CD39 Mechanism in Immunoregulation.
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involving patients’ input and engaging with the community during the
research process is crucial.

5. Conclusion

CD39’s diverse roles within the TME make it a promising target for
cancer therapy [8,18]. While significant progress has been made in
understanding its functions and developing therapeutic strategies, many
challenges remain [30,31]. Future research should focus on elucidating
the complex interactions between CD39 and the TME, overcoming
therapeutic resistance, and integrating CD39-based strategies into pre-
cision oncology. By addressing these issues, we can unlock the full
therapeutic potential of CD39 and improve outcomes for cancer pa-
tients. Successful validation and implementation of CD39-targeted
therapies could significantly enhance personalized treatment ap-
proaches and lead to better clinical outcomes for patients suffering from
various cancers.
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