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This thesis focuses on the domain of multi-instrumental music generation using

deep learning. In particular, this thesis focuses on the application of the attention-

based Transformer neural network architecture in the aforementioned domain,

along with exploring different music representations, and the application of transfer

learning in the context of music generation.
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Chapter 1

1.1 Introduction

This chapter discusses extending recent results for natural language processing

[DYY+19] to the domain of symbolic multi-instrumental music generation. Based

on previous work in the attention mechanism [VSP+17], the Transformer-XL model

is an advancement in addressing the model’s ability to learn long-term contexts

from training sequences, thus resulting in improved ability to predict results in the

domain of human languages. We explore the possibility of applying this model to

the context of multi-instrumental music generation.

Music generation models have struggled to capture two basic elements of mu-

sical form: long-term structure and repetition. In their work on Music Trans-

former, Huang et al. [HVU+19] demonstrated that powerful neural network lan-

guage models, i.e., models which assign likelihoods to sequences of discrete tokens,

could be used to model—and subsequently generate—classical piano music with

long-term structure. To adapt this method to our multi-instrumental setting, we

encode intrumental specific information directly into our language-like symbolic

music representation. However, given the scarcity of large multi-instrumental mu-

sic dataset, this method alone may not be sufficient for generating high-quality

multi-instrumental music, since the results of Music Transformer also depended on

large quantities of symbolic piano music.

In order to address the concern on data availability, we focus on the Nintendo

Entertainment System Music Database (NES-MDB) [DMM18], an unusually large

multi-instrumental music dataset, which contains 46 hours of chiptune music, music
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written for the Nintendo Entertainment System sound chip. In addition to its large

size, this dataset is also appealing to music generation tasks for its homogeneity,

since all of its music are composed for the exact same four-instrument ensemble. It

is, however, still significantly smaller than the MAESTRO dataset [HSR+19] the

Music Transformer is trained on.

The largest available multi-instrumental music dataset is the Lakh MIDI dataset

[Raf16], which contains over 9000 hours of multi-instrumental music. This dataset

is structrually heterogeneous, however, as instrumentation varies depending on

pieces. However, intuition suggests that we might be able to benefit from the mu-

sical knowledge ingrained in this dataset to improve our performance on chiptune

generation. Accordingly, we propose a procedure to map the Lakh dataset en-

semble to the NES ensemble used in the NES-MDB. We then pre-train our model

on the modified Lakh dataset before fine-tuning on the NES-MDB. Such transfer

learning methods are common practice in other domains of deep learning tasks,

and more importantly in natural language processing [DCLT18, RWC+19].

We refer to the generative model pre-trained on the Lakh dataset and fine-tuned

on the NES-MDB as LakhNES. In addition to strong quantitative performance, we

also conduct user studies that shows its strong qualitative performance compared

to other models for music generation. LakhNES is capable of generating chip-

tunes from scratch, continuing human-composed material, and producing melodic

material corresponding to human-specified rhythms.

1.2 Related Work

Music generation has been an active area of research for decades. Most early

work involved manually encoding musical rules into generative systems or rear-

ranging fragments of human-composed music; see [Nie09] for an extensive overview.

Recent research has favored machine learning systems which automatically extract

patterns from corpora of human-composed music.

Many early machine learning-based systems focused on modeling simple mono-

phonic melodies, i.e., music where only one note can be sounding at any given
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point in time [Tod89, Moz94, ES02]. More recently, research has focused on poly-

phonic music as a piano roll—a sparse binary matrix of time and pitch—and

seeks to generate sequences of individual piano roll timesteps [BLBV12, Joh17]

or chunks of timesteps [YCY17]. Other work favors an event-based representa-

tion of music, where the music is flattened into a list of musically-salient events

[SO17, MSC18, HVU+19]. None of these methods allow for the generation of

multi-instrumental music.

Other research focuses on the multi-instrumental setting and seeks to provide

systems which can harmonize with human-composed material [AW05, HCR+17,

HP17, YLVD18]. Unlike the system we develop here, these approaches all require

complex inference procedures to generate music without human input. Recent

work [DY18] attempts multi-instrumental music generation from scratch, but these

methods are limited to generating fixed lengths, unlike our method which can

generate arbitrarily-long sequences. There is also music generation research that

operates on the audio domain [AM18, DMP18, DvdOS18], though this work is

largely unrelated to symbolic domain methods.

1.3 Dataset

The NES-MDB dataset is a multi-instrumental chiptune music dataset consist-

ing of synthesized music taken from the Nintendo Entertainment System (NES)

in MIDI format [DMM18]. Each MIDI file contains four instrumental parts with

dynamics information. There are 5, 278 songs by 296 different composers, with

a total note count of 2, 325, 636 and total length of 46.1 hours. The advantage

of this dataset for the purpose of training multi-instrumental music composition

lies within its large corpus size, a uniform instrumental ensemble that they are

composed for, and its symbolic representation in MIDI format.

1.3.1 MIDI format

All chiptunes in NES-MDB are stored as a MIDI file. A MIDI file describes

a piece of music by storing events such as “note on” and “note off” for a specific

3



Table 1.1: Schematic for our event-based representation of NES-MDB, reminiscent
of the one used in Performance RNN [SO17]. The 631 events in our representation
are distributed among time-shift (∆T ) events (which allow for nuanced timing),
and note off/on events for individual instruments (as in typical MIDI).

Event description Event ID(s)

Start or end of sequence 0
∆T for 1–100 ticks (short) 1–100
∆T for 100–1000 ticks (medium) 101–190
∆T for > 10000 ticks (long) 191–370
P1 Note Off/On 371–447
P2 Note Off/On 448–524
TR Note Off/On 525–613
NO Note Off/On 614–630

note, change timbre in a specific instrument, change volume (or “velocity” in MIDI

terminology), or skip in time by a certain amount.

1.3.2 NES-MDB Ensemble

The NES music ensemble consists of four monophonic instruments: two pulse

waveform generators (P1 and P2), one triangle waveform generator (TR), and one

noise generator (NO). The pulse and triangle waveform generators are melodic

voices, and the noise generator is typically used as percussion. The noise channel

is capable of producing 16 distinct sounds, and each voice channel has a range

of different dynamics and timbre. We choose to leave these performance-related

attributes out to better focus on modeling composition only, since expressiveness

can be estimated separately from the score as proven in [DMM18].

1.4 Methodology

We encode music in the NES-MDB in an event-based representation. In or-

der to model these event sequences, we adopt a language modeling factorization.

We factorize the joint probability of a musical sequence consisting of N events
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(E1, . . . , EN) into a product of conditionals:

P (E1) · P (E2 | E1) · . . . · P (EN | E1, . . . , EN−1). (1.1)

This factorization is convenient because it allows for a simple left-to-right algorithm

for generating music: sampling from the distribution estimated by the model at

each timestep (conditioned on previous outputs). The goal of our optimization

procedure is to find a model configuration which maximizes the likelihood of the

real event sequences.

1.4.1 Event-based Data Representation

In the original work on NES-MDB [DMM18], a piano-roll representation of the

data was used, where musical notes are represented along a discretized time axis

(top of Figure 1.1). The authors used a discretization sample rate of 24 timesteps

per second in order for the musical representation to be sufficiently accurate. How-

ever, this method leads to significant information redundancy depending on sample

rate, since each musical note is represented across multiple time steps. This method

thus presents a challenge for learning long-term dependencies within the musical

context. To address this issue, we use an event-based representation (bottom of

Figure 1.1).

By encoding the files from NES-MDB dataset into text strings, we turned the

said problem into a language modeling problem. The events in a MIDI file are

turned into unique “characters” or “words” in the newly-defined language. We

refer to these as “tokens”. Time is represented implicitly, where all events are

sorted in chronological order, and a “wait” event is used to forward time to the

next time stamp. In reality, this wait command may be represented by numerous

wait tokens, and is only approximated. This is because the amount of time that

can be specified in a MIDI file is continuous, whereas we have to use a discrete set

of wait tokens to represent them.

There is a trade off between sequence length and vocabulary size when encoding

MIDI files in this way. We can choose to encode notes of different pitches and

volumes by encoding all possible combinations as unique tokens, or to encode these
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Figure 1.1: Comparison between the piano roll representation (top) and our event-
based representation (bottom). In the piano roll representation, most musical in-
formation is repeated across multiple timesteps. In the event-based representation,
however, each symbol represents a musically meaningful event.

as tokens independent specific notes. The former method drastically increases

vocabulary size, but the latter has a longer sequence length. Since it is generally

better to have a larger vocabulary size than to have longer sequence lengths, it

may be a reasonable trade off in problems like this. However, in this specific case,

we choose to encode timbre and volume as separate tokens, mainly because volume

does not only change at note on events, resulting in the large-vocabulary encoding

not very effective in terms of decreasing sequence length.

1.4.2 Transformer Architecture

The Transformer [VSP+17] is an attention-based neural network model. It

utilizes a weighted attention mechanism to learn weighing on subsets of a given

context, on which its prediction is conditioned, thus generating more accurate

predictions. The original Transformer is an encoder-decoder architecture, and is

fed with fixed-sized segment of the sequential data it is trained on. Its ability

to learn long-term dependencies is thus greatly limited by the segment length
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it is fed with, even though this model does come with the advantage of easier

parallelization.

Our work uses the Transformer-XL [DYY+19], a recurrent model based on the

original Transformer. Transformer-XL is capable of capturing information that

came before the current training segment by caching the hidden states of the past

training segment, and concatenating them to the current training segment, thus

being able to learn as if it is contextualized with a longer training segment.

1.4.3 Pre-training

One of the greatest obstacles in the music domain of deep learning is the lack

of large and homogeneous dataset. For example, the Bach chorale dataset [AW05]

have four voices in each chrale throughout the entire dataset, but is very smallwith

only 306 chrales in total. In contrast, the Lakh MIDI dataset [Raf16] consists

of 175k songs, but is structurally heterogeneous, since each song has a different

instrumentation and even different number of voices. The NES-MDB is a middle

ground, which is structurally homogeneous, but is also fairly large. However, it

is still dwarfed by larger datasets like the Lakh dataset (46 hours vs. over 9000

hours).

In order to potentially improve the performance of our model, we propose

a two-step process to pre-train it on the larger Lakh dataset. First, we map

each Lakh MIDI file into a structurally homogeneous one that can be performed

by the NES-MDB synthesizer. Then, we pre-train a Transformer-XL model on

this modified Lakh dataset before fine tuning it on the NES-MDB. Such transfer

learning method is common in other research domains such as computer vision and

natural language processing. However, it remains mostly unexplored in the domain

of music generation, possibly due to the difficulty in mapping instrumentations

between different datasets.

To map a Lakh MIDI file to one that is playable by the NES ensemble, we

choose all monophonic melodic instruments, filter out those that fall outside of

the NES ensemble range, and randomly assign them with one of the three melodic

instruments from the NES ensemble (P1/P2/TR). Each percussion instrument is

7



P1 P2 TR NO

Figure 1.2: Schematic of the mapping from the NES-MDB to the Lakh MIDI
dataset. We first identify monophonic melodic instruments in a Lakh MIDI file,
then randomly assign to P1, P2 or TR from the NES ensemble. Percussion instru-
ments are mapped to NO. Instruments out side of the NES ensemble range are
excluded.

then randomly assigned to one of the 16 noise types availble in the NES ensemble.

Since there are often multiple instruments in each Lakh MIDI file, we can generate

more than one combination of instrumentation mapping from a single Lakh MIDI

file. From the 175k MIDI files in Lakh, we are able to produce 775k examples that

can be performed by the NES ensemble.

1.4.4 Data augmentation

Data augmentation methods standard in the music domain are also applied in

order to improve the performance of our model.

• Transpose melodic voices by a random number of semitones between -6 and

5 (inclusive).

• Adjust the speed of piece by a random factor between ±5%.

In addition, we devise data augmentation methods specifically for the multi-

instrumental settings.

• Half of the time, remove a random number of instruments from the ensemble

(with at least one left).

• Half of the time, shuffle instrumentation of a piece among the three melodic

instruments (e.g. use P2 to perform P1’s part).
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1.4.5 Generation Procedure

Since at each time step, Transformer-XL takes in an entire sub-sequence as

input and outputs a sequence of the same length, it does not intrinsically support

generation a token at a time. Furthermore, the model in the original Transformer-

XL paper is not trained with fully-zero-padded sequence, which means that the

first sub-sequence fed into the model always contain some information about the

training sample. This creates difficulties for sampling unconditionally from the

learned distribution, in which case we want to model to generate outputs without

any “prompt”.

We address these two problems by slightly differing the generation procedure

from training and evaluation. Take the sub-sequence fed into the model as a sliding

window on the entire sequence. Instead of moving the window with a stride of the

window size, we move the window by only one token at a time. In fact, the model

allows sub-sequences of arbitrary size to be fed in. This leads to the solution where

we only provide a single token to the model, for it to output only one token at

each iteration, while keeping the cache from previous iterations to preserve context

during generation.

We show in Section 1.5 that the difference between training method and gen-

eration method does not affect sampling correctness, as the evaluation results

produced by both methods are the same.

1.5 Experiments

We first conduct an experiment to train Transformer-XL [DYY+19] on our

event representation of NES-MDB. We train the model on excerpts from the train-

ing data of 512 events; each excerpt represents around 9 seconds of music on

average. Because of the recurrent attention mechanism in Transformer-XL, the

model effectively has access to twice this length in its history.

We use the smaller configuration of Transformer-XL which has 12 attention

layers each with 8 heads (full details of our model can be found in our code which

will be released upon publication). The learning rate 2e−4 used to train this model
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on text was found to be too high for our musical application, so we lowered it to

2e−5. Training was stopped when the performance of the model on the validation

data stopped improving. We trained the model using four NVIDIA Titan X GPUs

with minibatches of size 30, and it reached its early stopping criteria in less than

a day.

Finally, we experimented with pre-training our model on the Lakh MIDI dataset

mapped to the NES ensemble. To conduct this experiment, we first split the

Lakh dataset into training and validation sets. We then trained the model for a

week on the training set with data augmentation and monitored performance on

the validation set. Because of the extreme size of the dataset, the model only

completed four epochs of training. Even after a week, the model was underfitting

the training data, as validation performance was still improving. We then fine-

tuned this pre-trained model on the NES-MDB training data, again performing

early stopping based on the validation performance.

1.5.1 Baseline

Some baseline models are included for performance comparison on NESMDB.

The two simplest models are N -gram models, namely statistical calculations of

how often a sequence of length N appears in training data. In particular, we

use a unigram (1-gram) model and a 5-gram model. We also include an LSTM

model as baseline, which is configured to have approximately the same number of

parameters as our Transformer-XL model.

1.5.2 Quantitative Analysis

We use perplexity (PPL) as a quantitative measurement for how well our model

predicts unseen data distribution. Perplexity of a discrete probabilistic model is

defined as e−
1
N

∑N

i=1
log q(xi), where q(xi) is the likelihood assigned by the model q

to the test event xi. The better the model is trained, the higher q(xi) tends to be

assigned, thus the lower the perplexity becomes (i.e. the model is less surprised

by the outcome).

10



Table 1.2: Quantitative performance of various models trained on the event-based
representation (631 event types) of NES-MDB. Params indicates the number of
parameters of each model. Epochs is the number of data epochs the model ob-
served before early stopping based on the validation data. Test PPL represents
the perplexity of the model on the test data, i.e., the exponentiation of its average
negative log-likelihood on the test data. A lower perplexity indicates that the
model better fits this unseen data.

Model Params Epochs Test PPL

Random 0 0 631.00
Unigram 631 1 198.14
5-gram 9M 1 37.25
LSTM [HS97] 40M 18 14.11

+Data augmentation 35 12.64
Transformer-XL [DYY+19] 41M 76 3.50

+Data augmentation 350 2.74
+Pre-train (LakhNES) 250 2.46

The Transformer-XL model drastically outperforms the baseline models on

the unmodified NES-MDB (most noticeably LSTM’s PPL of 14.11 compared to

Transformer-XL’s PPL of 3.50). With data augmentation, Transformer-XL im-

proves its performance from PPL of 3.50 to 2.74. The LakhNES Transformer

model (pre-trained with the Lakh dataset) further improves its PPL to 2.46. The

detailed results are reported in Table 1.2.

We also conduct experiments on the effects of different levels of pre-training

on Lakh dataset before fine-tuning on the NES-MDB. We do so by monitoring

performance on our model after 1, 2 and 4 epochs of pre-training on Lakh dataset.

We show the results as a plot of test PPL against the number of pre-trainig epochs

in Figure 1.3. The result agrees with our assumption that pre-training on the Lakh

MIDI dataset helps improve PPL performance of our Transformer model.

1.6 User Studies

Although perplexity is a good metric that gives statistical insights to model

performance, it does not directly imply human perception. In order to evaluate
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Figure 1.3: Performance, shown in PPL, of the same model pre-trained on the
Lakh dataset with 0, 1, 2 and 4 epochs, respectively. This result shows that
pre-training on Lakh dataset before fine-tuning on NES-MDB improves PPL per-
formance, though with diminishing returns.

how convincing the generated music is to human, we conducted two sets of user

studies on Amazon Mechanical Turk. We compare four models in both of our user

studies: 5-gram model, LSTM with data augmentation, TransformerXL with data

augmentation, and TransformerXL with data augmentation and pre-training on

Lakh Dataset.

1.6.1 Turing Test

This user study aims to determine how well can human distinguish a human-

composed piece of chiptune music from a computer-generated one, thus indicating

how well the model learns to mimic human composition. The testee is presented

with 2 pieces of chiptune music and is informed that one of them is human-

composed while the other is computer-generated. The testee is then asked to

identify the human-composed piece. Given the noisy nature of Amazon Mechan-

ical Turk studies, we included a control group made of random noises, which are

generated by selecting events uniformly at random. These samples are then pre-

sented as computer-generated tunes.

Each human judge is asked to work on 800 batches of 10 randomly ordered

pairs of tunes, 2 of which have the “fake” data coming from random noises, while

the other 8 have the “fake” data coming from the other 4 models we picked. The
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Figure 1.4: This figure shows human accuracy at identifying computer-generated
music from human-composed music. Error bar shows the standard error. Each
testee is presented with a pair of pieces, one human-composed, one computer-
generated (as listed in the figure), and is asked to identify which one is human-
composed.

testee is required to answer at least 3 batches and achieve 100% accurasy on all

6 control sets from these batches in order for their answer to be included in our

result. Random answers thus have only 1.6% probability to be included.

In this study, lower accuracy indicates that the model learns human com-

position better, and can therefore “fool” human judges more often. We find

that LakhNes is more often misidentified as human than all of the other models

(LSTM, Transformer without pre-training, and 5-gram), although the difference

pre-training brings is not statistically significant (p = .32).

The results suggest that there is still a significant gap between computer-

generated and human-composed music.

1.6.2 Preference Test

Since human-ness does not directly reflect human preferences, we also conduct

a preference-based user study, where human judges are presented with pairs of

chiptune sample selected randomly from the four aforementioned groups, in ad-

dition to a control group consisting of random noise. Similar to the Turing Test

method, these pairs of chiptunes come in batches, and in order for an answer to

be included in the results, the testee must not choose to prefer any random noise
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Figure 1.5: This figure shows the percentage of human that preferred the model as
listed in figure compared to another randomly chosen model. Error bar shows the
standard error. Each testee is presented with a pair of pieces generated by ran-
domly selected models, and is asked which they preferred. Higher score indicates
that human prefer music generated by this model more often than others.

in any of the pairs.

1.7 Conclusion

In this study, we show that Transformer models can be used to learn multi-

instrumental chiptune music, and can arguably be generalized to any domain of

multi-instrumental music with a similar structural complexity and number of in-

struments, given the voice channels used here can be replaced by any arbitrary

instruments. With our proposed method to pre-train on cross-domain datasets,

it is also shown that such a task can be further improved by pre-training on a

larger dataset. We also developed an event-based representation suitable for multi-

instrumental music.

1.8 Contribution

The author of this thesis is one of the primary authors of this work. The

author contributed to methodological exploration in the early stages of this work,

implementing and training models including the experiments that involves training

the Transformer-XL model on the unmodified NES-MDB dataset.
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