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below the grown Ṁ per area. This prevents the disk from transitioning
to the 2nd and 3rd regimes, as TW Hydra and DR Tau do. The magenta
line shows the disk’s current estimated age. . . . . . . . . . . . . . . . . 54
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Abstract

The Births of Planets and Deaths of Stars

by

Tyler Takaro

This thesis studies the formation of planets and the destruction of stars that

explode as supernovae. To understand planet formation and recreate the diversity of

exoplanets that we see in our galaxy, we need a better understanding of protoplanetary

disks. We develop a time-evolving model for the solid particles in these disks, tracking

maximum particle size and surface density in their outer regions. This time dependent

particle modeling shows us that disks pass through several regimes as more particles

drift inwards, lowering maximum particle sizes and surface densities. By combining

this model with our model for pebble accretion, we are able to estimate growth rates

for injected protoplanetary cores. Applying our models to a sample of seven disks,

we find that planetesimals should grow rapidly, particularly early in the disk’s lifetime

before it has drained too much. To reproduce observed planetary masses, we find that

protoplanetary cores must reach planetesimal sizes before the ages of typically observed

disks.

Turning our attention to smaller particles, we develop a new model for pebble

accretion to explore the growth of lower mass protoplanetary cores. We apply full gas

effects to the dynamics of small cores, finding that their new velocities play a crucial

role in understanding their growth. Additionally, we model full probability distributions

for the relative velocities of interacting particles, rather than simply studying the mean

xvi



velocity. As we extend the model down to cm scales, we find that gas interactions

play the dominant role in setting relative velocities for inter-particle collisions. At these

small scales especially, particles in the low velocity tail of the velocity distribution can

be accreted particularly rapidly, enhancing growth. In examining these rare growth

interactions, our model suggests a path for solid body growth across the meter-scale

barrier, up to planetesimal masses.

Finally, I also present my work statistically modeling the ages of Type Iax

supernova progenitor stars. In this study, we use Hubble Space Telescope photometry

of the stellar regions around Type Iax supernovae explosion sites to estimate ages for

these regions. This is performed by statistically rigorous fitting of theoretical stellar

models to our multi-band photometry. We are ultimately able to generate probability

distributions for the ages of each supernova we consider, generating strong constraints

on the formation channel for these events.
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Chapter 1

Introduction

In most astronomers’ understanding, planets form in the disks surrounding

young stars, also known as protoplanetary disks. These disks are made up of both small

solid bodies (which we’ll call dust, or pebbles), and a significant gaseous component.

The interactions between these solid bodies and the gas in which they are embedded

are key to understanding how planets form and grow. In this thesis, I develop models

to understand both the dynamics and the evolution of protoplanetary disks and the

planets which form within them.

In order to understand protoplanetary disks, we carefully model the growth

and dynamics of the (mostly) small solid particles which compose the disks alongside

their surrounding gas. The interactions between small particles (from initial ISM sizes

of 10−5 cm (Mathis et al. 1977; Zubko et al. 2004) up to about ∼ 10 cm) and the gas

that surround them allow these particles to rapidly collide and grow up to these many

cm scales.
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The problem of growing solid bodies from initial dust sizes up to solid plan-

etsimals can be broken into three components. First, we consider how a particle can

grow from initial dust sizes up to ∼ 10 cm. Next, one must explain the growth from

these many cm scales up to small planetesimal scales (∼ 107 cm). This is a difficult

stage of growth, in part because particles at this size rapidly drift inwards towards the

star before they can grow to larger sizes, a problem known as the “meter-scale barrier”

(Weidenschilling 1977). Lastly, we have the stage of growth from planetesimal scales to

final core masses. Pebble accretion has classically been used for this last stage of growth,

as planetesimals are able to rapidly accrete small particles and reach final core masses.

In this thesis, we expand this application, examining how gas and particle dynamics

affect particle growth at all scales.

In addition to drift, particles also must reckon with fragmentation. If particles

collide at high enough velocities, rather than sticking and growing, they may instead

fragment, destroying one or both particles (Brauer et al. 2008; Zsom et al. 2010). In this

way, fragmentation acts as another barrier to particle growth. For this thesis, we assume

a certain collision velocity at which particles will fragment, and use this to model the

limits that fragmentation puts on particle growth.

Pebble accretion (or gas-assisted growth) is able to explain the rapid growth of

planetesimals to core masses by enhancing the cross-section for growth and decreasing

the relative velocity between interacting particles. This is a result of the interactions

between solid particles and the surrounding gas. An outward pressure gradient in proto-

planetary disks causes the gas to rotate at a sub-Keplerian rate. The embedded particles
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thus feel a headwind from the gas, slowing the particles and increasing the opportunities

for favorable interaction between particles, increasing growth rates. The very same gas

effect which causes a “meter-scale barrier” also allows larger planetesimals to grow at

extremely rapid rates. Because pebble accretion has the potential to play a critical role

in planet formation, the process has been studied extensively (e.g. Ormel & Klahr 2010;

Perets & Murray-Clay 2011; Lambrechts & Johansen 2012; Ormel & Kobayashi 2012;

Guillot et al. 2014; Lambrechts & Johansen 2014; Levison et al. 2015; Morbidelli et al.

2015; Ida et al. 2016; Visser & Ormel 2016; Chambers 2016; Johansen & Lambrechts

2017; Xu et al. 2017; Rosenthal et al. 2018; Rosenthal & Murray-Clay 2018; Bitsch et al.

2019).

1.1 Disk Model

Drawing on the work of Birnstiel et al. (2012), Lambrechts & Johansen (2014),

and Powell et al. (2017), we examine these drift and fragmentation limited particle

sizes in protoplanetary disks as they evolve. Modeling the particles’ growth up to the

minimum size at which they begin to drift, we track the progression of a pebble front

outward through the disk. This pebble front is the location in the disk where particles

are just now beginning to drift. Initially, particles are so small that they largely move

with the gas flow orbiting the young star. Only once they grow large enough to maintain

their own momentum independently from the gas do their velocities diverge from the

gas flow, and they feel gas drag, causing them to drift inwards. As the disk evolves, the

pebble front moves outward in the disk, as particles further out in the disk grow large
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enough to begin to drift.

This point in time, when the maximum particle size changes defines a boundary

between the two primary regimes that define a disk’s era of planetary formation. As

the maximum particle size evolves in these disks, so too does the overall solid surface

density. Over time, more and more solids drift into the central star, steadily draining

the disk of solid material from which to form planets. Understanding this evolving

surface density allows us to predict when and where in the disk we expect growth to be

the most effective.

While pebble accretion is remarkably efficient at rapidly forming planets, under

certain conditions it can be too rapid to match with observations. As such, a need arises

for a natural mass scale where pebble accretion halts. One such mass scale that has

previously been suggested is the “pebble isolation” mass (Morbidelli & Nesvorny 2012;

Lambrechts et al. 2014; Bitsch et al. 2018). This mass is defined as the point where

a protoplanetary core becomes large enough that it generates a pressure bump which

traps pebbles from drifting into the core’s region of influence. An alternative mass scale,

dubbed the “flow isolation” mass by Rosenthal & Murray-Clay (2020), occurs when the

largest pebbles available in the disk are small enough that they couple to the gas flow

around the core, preventing gas drag from further aiding core growth. This process

isolates the core from the pebbles which it could use to grow, ending pebble accretion.

In the outer disk, this “flow isolation” mass is smaller than the “pebble isolation” mass

under nearly all reasonable disk conditions, meaning that flow isolation mass nearly

always sets the limiting mass scale for pebble accretion in our model.
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In order for a protoplanetary core to become flow-isolated, there must be a

process which limits the maximum particle size in the protoplanetary disk. There are

several different processes which can lead to this maximum particle size limit (Kusaka

et al. 1970; Weidenschilling 1984; Beckwith et al. 2000; Testi et al. 2014). In this study,

we focus on particle drift and fragmentation as the potential causes of this maximum

particle size. The same headwind which decreases the relative velocity between particles

and forms the foundation of pebble accretion theory also naturally limits particle size due

to particle drift. Assuming that all particles are small enough (St < 1; see Section ??),

the larger a particle grows, the faster it drifts. As total growth times lengthen for larger

particles, at a certain particle size, the growth time exceeds the drift time, and particles

drift into the star before they can grow. This sets a “drift limited” maximum particle

size. Additionally, as particles grow they become more susceptible to fragmentation. As

detailed in Birnstiel et al. (2012), this process limits particles from growing larger than a

“fragmentation limited” size, as any particles which are larger than this size are quickly

ground down due to fragmentary collisions. Whether from drift or fragmentation, we

expect the particles in protoplanetary disks to be largely limited to some maximum size,

which allows the flow isolation paradigm to apply.

In this thesis, we apply this protoplanetary disk modeling to a sample of seven

disks, studying the growth of potential planetesimals in these disks. We generate maxi-

mum particle size and surface density estimates, modeling how these evolve as the disk

ages. We also use our pebble accretion model to generate predicted growth times for

planetesimals injected into these disks, finding that growing early in the disks’ lives is
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key to planetesimals reaching typical planet masses.

1.2 Pebble Accretion Model

We modify and apply our pebble accretion model, first introduced in Rosenthal

et al. (2018), and later expanded upon in Rosenthal & Murray-Clay (2018). This is an

order-of-magnitude model, by which we mean that any approximations or neglected

physics are such that all results are expected to be accurate to within an order-of-

magnitude. In our model, we consider the system of two interacting bodies orbitting a

central star. We call the larger of these two bodies the protoplanetary core, while we

denote the smaller as the accreted particle. In contrast to Rosenthal et al. (2018), we

allow both bodies to experience drag from the gaseous component of the protoplanetary

disk. This, combined with the application of three different regimes of gas drag on the

protoplanetary core, allow us to consider an extremely wide range of orbitting body

sizes, from the sub-mm in radius up to many thousands of km.

The extent to which a solid particle is coupled to protoplanetary disk gas

is typically parameterized in terms of the Stokes number. The Stokes number is a

measure of the time it will take a particle to stop due to the gas drag it encounters,

roughly in units of the particle’s orbital period. For this reason, it is also known as

the dimensionless stopping time. It can be calculated as St = mvrelΩ
FD

, where FD is the

drag force experienced by the particle. One can also think of the Stokes number as a

dimensionless measure of particle size, which better encapsulates the dynamic behavior

of the particle under the influence of gas drag. Stokes numbers ≪ 1 indicate small
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particles which simply follow the local flow of gas, while Stokes numbers ≫ 1 indicate

large particles which are completely decoupled from the gas.

The full details of how the pebble accretion model operates can be found

in Rosenthal et al. (2018); Rosenthal & Murray-Clay (2018), but we provide a brief

summary here. To calculate a growth time for a protoplanetary core, we apply the

approximation: tgrow ∼ m
ρσv , where m is the mass of the core, ρ is the density of

particles available for accretion, σ is the cross section for accretion in core-particle

interactions, and v is the encounter velocity. Of these terms, both the cross section

and the encounter velocity can take very different forms depending on the regime under

consideration. The cross section in particular is largely determined by a comparison of

the relative magnitude of Rstab (the minimum orbital radius for a particle to orbit about

the core), and RBondi (the approximate scale height of core’s budding atmosphere). We

define and compare these radii in order to define the key regimes in which we model

pebble accretion.

This atmospheric length scale, RBondi, can be approximated as the point at

which the sound speed within the atmosphere equals the escape velocity from the plan-

etesimal core. This radius is the point at which the thermal energy in the gaseous

atmosphere is sufficient to liberate particles from being gravitationally bound to the

planetesimal.

RB =
GMp

cs2
(1.1)

where Mp is the mass of the planetesimal, and cs is the sound speed of the gas.
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The innermost stable orbital radius, Rstab, is the scale at which the gas drag

force on an orbiting particle matches the gravitational force from the core acting on the

particle. That is,

Rstab =

√

GMpm

FD
(1.2)

where m is the mass of the smaller body, and FD is the gas drag force on the small

body.

When Rstab > RBondi, particles can orbit the core without entering the more

dense proto-atmosphere. On these particles’ orbits, the gas slows the particle until

its relative kinetic energy falls below the “capture energy” of the core, allowing for

accretion. To be accreted, the particle must move slowly enough that the work done by

gas drag in an in-falling orbit exceeds the relative kinetic energy of the particle. If the

work done by the gas during this interaction is insufficient to remove all relative kinetic

energy from the particle, the particle will escape from the core unaccreted.

On the other hand, if Rstab < RBondi, the situation is reversed. The gas flow

dominates the dynamics of a particle orbitting at Rstab, complicating the picture. If the

work done on a particle by gas drag is greater than the relative kinetic energy of the

particle, the particle comes to rest with respect to the gas. This causes the particle to

follow the gas flow, never entering the planetesimal’s atmosphere, and avoiding accre-

tion. On the other hand, if the work done by the gas is less than the relative kinetic

energy of the particle, the particle maintains a velocity relative to the gas. This allows

the particle to maintain a collision trajectory, being accreted even though it is never
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fully stopped by the gas surrounding the core.

By covering both of these accretionary regimes, our model calculates collision

cross sections, relative velocities, and growth times for a wide range of both orbiting

particle and planetesimal core sizes. We apply this pebble accretion model, alongside our

disk evolution model to understand each aspect of planetary formation in the first two

chapters of this thesis. Just as pebble accretion allows us to model the supply of small

particles to planetesimals, flow and pebble isolation help us model the final masses which

solid planetesimals may reach by the time that their gaseous disks evaporate, halting

the potential for future growth through pebble isolation.

1.3 Supernova Study

In addition to studying the earliest moments of a planet’s life, I also study the

final moments of a star’s. Depending on a stars final mass, it may end as a supernova.

Type Iax supernovae are a particular subclass of supernova, similar to the very common

Type Ia supernova (Wang et al. 2013; Jha 2017). I designed, built, and used a statistical

model to estimate the ages of several stars which would go on to explode as Type

Iax supernovae. Using this model, I fit multi-band Hubble Space Telescope (HST)

observations to theoretical models of stars of known ages. Because stars are thought

to generally form in clusters from large clouds of gas, they tend to have similar ages

to their neighbors. This age similarity allows one to estimate the ages of the group of

stars in the local region in order to generate a statistical estimate for the age of the

star when it exploded as a supernova. By performing this procedure for 9 supernovae
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observed with HST, my co-authors and I define a probability distribution for age of a

Type Iax progenitor star. This allows us to make statistically informed statements about

the formation channel for these supernovae, giving strong evidence for one particular

model.

1.4 Outline of this work

In Chapter 2, we present our disk evolution model, which we use to understand

the growth of small particles in protoplanetary disks, as well as the growth of planetes-

imals via these small particles. Chapter 3 continues by applying the pebble accretion

model to new parameter ranges, to explore the role that gas can play in speeding up

the growth of solids up to and beyond the meter-scale-barrier. Finally, in Chapter 4, we

present an earlier work which focuses instead on the deaths of stars though supernovae.

We develop and use a statistical model to estimate the final ages of stars which go on

to explode as Type Iax supernovae.
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Chapter 2

Pebble Accretion in Drift

Dominated Disks

2.1 Introduction

In this chapter, we apply both our state-of-the-art pebble accretion model

and the flow isolation mass scale with our model for drift-dominated disks to make

predictions for planetary demographics in the outer disk. We will determine the limiting

solid planet masses that can be produced by rapid pebble accretion in the drift-limited

outer regions of protoplanetary disks as a function of stellar mass, stellocentric distance,

and the level of nebular turbulence. We will evaluate the sensitivity of these results to

the initial sizes of seed planetesimals, showing typical growth times for a wide range

of planetesimal sizes. In section 2.2, we go over the models which we use for pebble

accretion, flow isolation, and to evolve our drift-dominated protoplanetary disk. In
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section 2.2.2, we combine our models for flow isolation and the drift-limited maximum

particle size in a protoplanetary disk to derive the maximum size for solid planets

as a function of basic disk parameters. In section 2.3, we apply our framework to

seven example disks to show typical growth times for planetesimals within these disks.

Additionally, we explore the dependence of the isolation mass and growth times on

various key disk parameters. Lastly, in section 2.4, we summarize our results, present

our conclusions, and discuss pathways for future work.

2.2 Pebble Accretion in Drift Dominated Disks

2.2.1 Flow Isolation Mass

The various pebble accretion studies (e.g. Ormel & Klahr 2010; Lambrechts &

Johansen 2012; Rosenthal et al. 2018) generally agree on at least one conclusion: that

protoplanets can accrete pebbles on extremely rapid timescales. Once cores reach masses

≳ 10−3M⊕, their cross section for accretion balloons, allowing pebbles to be accreted at

impact parameters up to a body’s Hill radius, given by RH = a(Mp/3M∗)
1/3, where a is

the semi-major axis of the protoplanet. Growth by pebble accretion is thus substantially

faster than “traditional” growth processes, which rely solely on gravitational interactions

to increase the cross section of a growing planet past its physical radius.

As described in Rosenthal & Murray-Clay (2020), proto-planetary growth via

pebble accretion is so rapid that, without another process to shut off growth, all planets

which reach the minimum mass to grow through pebble accretion (around 10−4M⊕)

could be expected to grow to gas giants (an issue also highlighted by Lee & Chiang 2016).
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Demographic studies of exoplanets do not find this ubiquity of gas giants. Rather, many

studies (e.g. Borucki et al. 2010; Batalha et al. 2013; Fressin et al. 2013; Petigura et al.

2013; Zhu et al. 2018) find that Super-Earths and Sub-Neptunes are the most common

class of observed exoplanets (at least in the regions where current detection methods are

sensitive to small planets). If pebble accretion is as effective at growing planets as prior

works have indiciated, we must appeal to a natural mass scale at which growth shuts

off, leaving a majority of proto-planetary cores small enough to form Super-Earths.

One example of a limiting mass scale for pebble accretion is the “flow isolation”

mass outlined in Rosenthal & Murray-Clay (2020). The dynamical interactions between

a proto-atmosphere and the protoplanetary disk can cause the gaseous component of

the disk to flow around the proto-atmosphere, rather than penetrating into it (Ormel &

Kobayashi 2012). As explained in Section 1.2, particles which are completely coupled

to the gas (St ≪ 1) will follow the local gas flow (Picogna et al. 2018). Thus, the same

interactions which cause the gaseous disk to flow around a proto-atmosphere will also

cause strongly coupled particles to flow around the proto-atmosphere. If the largest

particles which are available for pebble accretion (i.e. not other planetesimals in the

disk) are all small enough that they are strongly coupled to the gas and flow around a

planetesimal, the planetesimal will halt growth from accreting pebbles.

Another example of a limiting mass scale for pebble accretion is the “Pebble

Isolation” mass (Bitsch et al. 2018). Much like the flow isolation mass, the pebble

isolation mass relies on gas dynamics in the disk to isolate planetesimals from the pebble

which they would otherwise utilize to rapidly grow. However, where flow isolation relies
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on the creation of an over-density in the gas surrounding the planetesimal (a proto-

atmosphere), the pebble isolation model instead relies on these planetesimals inducing

a pressure bump in the gaseous disk, trapping sufficiently small particles, and preventing

them from reaching the planetary core (Kanagawa et al. 2018). In Rosenthal & Murray-

Clay (2020), the authors demonstrate that the flow isolation mass is of order the pebble

isolation mass, but that the flow isolation mass is nearly always smaller than the pebble

isolation mass. For this reason, in this study we will focus on the flow isolation mass as

our limiting mass scale.

We would naturally expect a protoplanetary disk to have a maximum particle

size available, either from drift, fragmentation, erosion, or elsewise (Kusaka et al. 1970;

Weidenschilling 1984; Beckwith et al. 2000; Testi et al. 2014). When this maximum

particle size is sufficiently small (St ≪ 1), gas dynamics in the disk will flow isolate the

planetesimals, shutting off growth with pebble accretion. Flow isolation occurs because

small particles are so strongly slowed by gas drag that they quickly lose their entire

kinetic energy relative to the gas. These particles, which are at rest relative to the gas,

will follow the gas flow through the disk.

As a planetesimal grows by colliding with solids in the disk, it will also accrete

a proto-atmosphere from the gaseous component of the disk (Piso & Youdin 2014), as

mentioned in Chapter 1. Within this proto-atmosphere, the gas is essentially stationary

with respect to the planetesimal. This static atmosphere causes the nebular gas to

flow around the planetesimal and atmosphere. As small particles (St ≪ 1) follow the

flows of the nebular gas, this can prevent these particles from penetrating the budding
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atmosphere, halting pebble accretion. Typically with pebble accretion, we think of gas

interactions as aiding the growth of planetesimals, primarily by increasing cross sections

for interactions with small particles. However, in this case the gas drag actually slows

accretion, by preventing particles from getting close enough to be accreted.

To estimate this flow isolation mass, we find the core mass for which RBondi =

Rstab for the largest particles in the disk. This tells us the maximum mass a planetesimal

core can reach before the largest particles it can accrete from the disk are too small to

maintain their momentum relative to the gas. If this maximum impact parameter

(Rstab) is smaller than the scale height of the proto-atmosphere (RBondi), we say that

the planetesimal is flow isolated. Assuming a maximum dimensionless particle size

Stmax, and examining each regime for Rstab, we find the following expression for the

flow isolation mass (equation 30 from Rosenthal & Murray-Clay 2020):

Mflow = M∗

(

H

a

)3

min

[

cs
vgas

Stmax,
√

Stmax,
1√
3

]

(2.1)

where M∗ is the stellar mass, H is the scale height of the gas disk, a is the

orbital distance of the planetesimal, and vgas is the RMS velocity of the gas relative

to the local Keplerian velocity. The three regimes shown here are when the minimum

orbital radius is set by the wind-shearing radius (Perets & Murray-Clay 2011), the

orbital shearing radius, and the Hill radius respectively.

As we see in equation 2.1, the flow isolation mass strongly depends on the

maximum particle size (parameterized as Stmax) available in the disk. To determine

this maximum particle size, we carefully model the growth and dynamics of the solid
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particles in these disks as they evolve.

2.2.2 Disk Evolution

As the disk evolves, it passes through several different phases as the particles

grow and drift. Particles drift in protoplanetary disks due to the same physics which

makes pebble accretion possible. The sub-Keplerian rotation rate of the gaseous com-

ponent of the disk imparts a headwind on the embedded particles. This headwind from

the gas robs the particles of their angular momentum, and causes them to drift radially

inward. Particles with a Stokes number of unity are the fastest drifters (Weidenschilling

1977) and, for the particle sizes probed by observations of the outer regions of protoplan-

etary disks, large particles drift inwards faster than smaller particles. Particles that are

sufficiently small have their momentum so rapidly dissipated that they are essentially

always at rest with respect to the gas. This prevents the particles from drifting inwards

towards the host star, as the gas is no longer able to slow the particles, and decrease

their angular momentum (Brauer et al. 2007; Morbidelli & Nesvorny 2012). Thus, the

smallest particles must first grow before they are able to drift inwards .

We develop our disk evolution modeling by extending the work of Lambrechts

& Johansen (2014) and Powell et al. (2019). Each of these studies model the growth and

dynamics of solid bodies in protoplanetary disks, estimating the solid surface density

in disks for a given solid particle size. They then can apply a particle size distribution,

to model the full solid particle surface density. While these two works share a common

goal, they differ somewhat in how they get there. Each calculates a maximum particle

size in the disk, then uses this information to generate the solid surface density. They
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also share the assumption that the maximum sized particles are those for which the

growth and drift times are equal. Below this maximum size, particles grow more rapidly

than they drift, growing to larger sizes before they are destroyed, while above this size,

particles drift more rapidly than they grow, being destroyed before they can finish

growing. Where these two models differ is in their final assumption. In Lambrechts &

Johansen (2014), the authors assume that the largest particles are supplied by drift,

thus requiring mass continuity across disk annuli. The authors of Powell et al. (2019)

on the other hand, assume that these largest particles are instead supplied by local

growth. This assumption manifests as a requirement that the drift and growth times

not only match each other, but that they also match the current age of the disk. These

two different final assumptions give different results for maximum particle sizes and

solid surface densities. In this chapter, we expand upon and combine the two models,

showing that disks can transition smoothly from one to the other as they evolve.

Both Lambrechts & Johansen (2014) and Powell et al. (2019) describe the time

that a particle spends growing to a size at which it begins to drift. Each of these studies

implicitly assume that the particles in a protoplanetary disk are initially smaller than

the minimum size for drift. Thus, there is a delay time during which the particles grow

from their initially small size to the size at which drift begins. Powell et al. (2019) calls

this the “early growth time” (see their Appendix B). Lambrechts & Johansen (2014)

instead discuss a “pebble front”, which moves outward from the star to the outer edge

of the disk over time. The pebble front describes the point at which particles have had

long enough to grow that they are just now large enough to begin drifting. We employ
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the pebble front framework in this chapter, as a useful way to delineate the relevant

regimes of the disk’s evolution.

Using this pebble front location information, we identify three relevant time-

scales. First, we have the time at which the pebble front passes a particle’s current

location in the disk, which we call tPF(a). At this time particle drift dominates solid

body growth, and pebble accretion becomes efficient. This peak in efficiency occurs

because the largest particles see their peak in size at this time, giving quick growth

times and high flow isolation masses. This efficient growth is contingent on having large

enough planetesimal cores, which may be the result of rare favorable growth, or of cores

being scattered from other parts of the disk. This efficient growth period continues as

the pebble front moves outwards, keeping the particle supply drift dominated, allowing

the disk to be well modeled with a constant Ṁ .

Next, we have the time at which the locally grown pebbles exceed the supply

of pebbles drifted in from the pebble front. To determine this time, we compare these

mass fluxes throughout the disk, normalized for the growth annulus area. When the

local, growth supplied Ṁ/Area first exceeds the global, drift supplied Ṁ/Area, the disk

begins to transition from the regime described by Lambrechts & Johansen (2014) to the

regime described by Powell et al. (2019). We call this time tTransition. The location of

the pebble front at this time defines a sort of disk edge, from which the pebble front

“bounces back” inwards. The bouncing back pebble front’s inner edge is defined as

the location to which a maximally sized particle drifts from the disk edge in the time

since tTransition. The final important timescale is when the pebble front bounces back
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Figure 2.1: A diagram describing the surface density evolution through the three disk
regimes.

from the outer edge of the disk and arrives at the inner edge of the disk, which we

will call tPFBB. From this, we see 3 growth regimes in our protoplanetary disks: when

tPF(a) < tdisk < tTransition, when tTransition) < tdisk < tPFBB, and when tdisk > tPFBB.

Each of these disk regimes is illustrated in Figure 2.2.2.

Before the beginning of the first regime, particles throughout the disk are too

small to drift (Dominik et al. 2007). During this time, particles grow due to collisions

induced by random thermal motion. This is a much slower type of growth than the

growth via pebble accretion, as particles are only able to collide with their nearby

neighbors. For the purpose of this study, we think of this as a sort of “burn in” period,

during which no major planetary growth occurs.

Once the pebble front passes the particle’s location in the disk at time tPF(a),

our first disk regime begins (shown in the first panel of Figure 2.2.2). As the pebble
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front is now exterior to the particle’s location in the disk, new particles are constantly

drifting inwards past our particle’s location. In this window of time, we mostly apply

the method from Lambrechts & Johansen (2014), though we expand their work to apply

to a larger range of turbulence levels and disk ages. We analytically solve for the surface

density, maximum particle size, and maximum stokes number in the Epstein drag law

regimes, for both a low turbulence (laminar dominated relative velocity) and a high

turbulence (turbulent dominated relative velocity) regime. These formulae come to us

by combining two constraints: the requirement that the maximally sized particle have

equal growth and drift times, and the requirement of disk surface density continuity

(equation 15 in Lambrechts & Johansen (2014)). First, we present the low turbulence

regime. The maximum particle size smax is

smax =

√

π

8

(

3Λϵpfd
8δ

)2 Σg

αηρint

Stmax =
π

4

(

3Λϵpfd
8δ

)2 1

αη

Σd =

(

8

3Λπ

)2 δαṀΩ

(ϵfdvk)2

(2.2)

where Σd is the solid surface density, α is a measure of the turbulence strength (Shakura

& Sunyaev 1973), ρint is the internal particle density, and Σg is the gaseous surface

density.
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Now, we have the high turbulence regime:

smax =

(

3Λϵp
8δ2

)2/5( 1

2π7

)1/10 Σ
3/5
g Ṁ2/5Ω2/5

ρint

(

vk
c2s

)4/5

Stmax =

√

π

2

(

3Λϵp
8δ2

)2/5( 1

2π7

)1/10
(

ṀΩ

Σg

)2/5
(

vk
c2s

)4/5

Σd =

(

8δ

3ϵp

)2/5( 1

32π4

)1/5
(

ṀΩ
)3/5

(

Σg

csv2k

)2/5

(2.3)

where vkep is the core’s Keplerian velocity, cs is the sound speed in the gas, λmfp is the

mean free path in the gas, and Ω is the core’s orbital frequency.

Now, plugging in Ṁ (equation 14 from Lambrechts & Johansen 2014), we

calculate the surface density as:

Σd =
2√
3

(

2

3

)1/3

π−1/4

√

Σg

vkepa
(GM∗)

1/6
√

Σgϵ
1/3
d f

5/6
d t−1/6

≈ 0.75

√

Σg

vkepa
(GM∗)

1/6
√

Σgϵ
1/3
d f

5/6
d t−1/6

(2.4)

whereM∗ is the solar mass, ϵd is a dimensionless constant defining the sticking efficiency,

here set to 0.5, and fd is the initial dust to gas ratio, which we set as 10−2 for the extent

of this thesis.

Next, the 2nd regime begins when the local growth of pebbles exceeds the

supply of pebbles drifted from the pebble front. This is when tTransition) < tdisk < tPFBB

(shown in the 2nd panel of Figure 2.2.2). The largest particles are now grown locally

rather than drifted in, giving us a new particle size and surface density in the outer

regions of the disk. In these regions, the model presented in Powell et al. (2017) applies.
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This transition is not immediate throughout the disk, as it takes time for the inner

regions of the disk to feel this change that begins at the pebble front. We model this

transition between particle regimes by tracking the drifting position of the maximally

sized particle at the edge of the disk when tdisk = tPF(amax) (see the 3rd panel of

Figure 2.2.2). We use this particle’s radial position in the disk to demarcate the barrier

outside of which the maximum particle size has further decreased. Inside of this barrier,

the maximum particle size is determined by the model based on Lambrechts & Johansen

(2014), while outside of the it, the particle size is set by the model of Powell et al. (2017).

When this particle arrives at the inner edge of the disk, we say that the pebble front

has “bounced back”, and a smaller maximum particle size (determined by the model

in Powell et al. (2017)) is present throughout the disk. This marks the end of the 2nd

regime.

The 3rd regime begins when the “bouncing back” pebble front reaches the

inner edge of the protoplanetary disk, when tdisk > tPFBB (illustrated in the 4th panel

of Figure 2.2.2). At this time, the particles throughout the disk which drift by our

growing planetary seed originate in the outer edges of the protoplanetary disk. In this

regime, the model presented in Powell et al. (2017) is valid, and we can use the order-of-

magnitude assumption that tdrift = tgrowth = tdisk throughout the disk. In figure 2.2.2,

we present another cartoon to illustrate when and where each disk regime is active.

The specifics of which regime is the dominant phase of planet formation de-

pends on the time at which plantesimals large enough to undergo pebble accretion form

in the disk, the radial extent of the protoplanetary disk which we are considering, and
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Figure 2.2: Another diagram of the three disk regimes, and when they apply. The disk
transitions from the first regime (shown in blue) to the second regime (shown in orange
and red) when the locally grown particle supply exceeds the particle supply drifted in
from the pebble front. The third regime (shown in red) begins when the pebble front
fully “bounces back” from the edge of the disk.
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lastly the overall solid surface density of the disk. The question of when planetesimals

form is certainly a challenging one, and one which we do not aim to answer with this

study (though there are some paths forward here, including the rare occurences of rapid

growth described in Chapter 3, and the streaming instability (e.g. Youdin & Goodman

2005; Johansen et al. 2007)). Instead, we will treat this time, tplanetesimal as a free pa-

rameter in our model. By and large, we would expect planets to grow in the 1st regime

for disks with large radial extent, and in the 2nd or 3rd regime for small disks. This

occurs because the radial extent of the disk determines how long it spends in the 1st

regime, as opposed to the 2nd and the 3rd. For this reason, we will present the results

of this study for the 1st, 2nd and 3rd regimes, to remain agnostic as to the specific

conditions which govern planetary growth.

As the disk evolves, and more and more pebbles are able to grow large enough

to drift inwards, the disk slowly loses solid mass, thanks to particles drifting into the

host star. By the end of the 1st regime, when tdisk = tPF(amax), the disk’s solid surface

density has already significantly decreased from its initial value, particularly in the

inner disk. The protoplanetary disk TW Hydra’s evolving surface density is shown in

figure 2.2.2. The solid surface density continues to rapidly decrease in the 2nd and 3rd

regimes, leading to significantly longer growth times for planetesimals, as compared to

the 1st regime.

We model the transition between these disk regimes by tracking the relative

growth rates of particles when they grow via interactions with particles drifting inwards

from the pebble front, as compared to when they grow from interactions with particles
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Figure 2.3: The surface density of the disk TW Hydra as a function of time. The gaseous
surface density is shown as a solid black line, and the initial solid surface density is shown
as a dashed red line. The evolved solid surface density is then plotted for several times
as the solid colored lines. As the disk ages, it passes from the 1st regime (as described
in Lambrechts & Johansen 2014) to the 2nd and eventually 3rd regimes (as described
in Powell et al. 2017).
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grown in their local region. To make this comparison, we examine the growth rate per

area in the evolving disk, noting where and when locally grown particles first exceed

the supply of drifting particles. This is shown in figure 2.2.2. We also present the TW

Hydra surface density, zoomed in on the ages and locations nearest the disk transition,

to highlight the changing surface density across the transition, in Figure 2.2.2.

We present this comparison between growth rates across regimes in another

way below, by defining a “growth efficiency”. To accomplish this, we determine a typical

time for a planetesimal to grow from the minimum mass necessary for pebble accretion

to the flow isolation mass. We measure this time in each regime, then compare these

characteristic timescales to the lifetime of each regime. The lifetimes of each regime can

be described as t1ndRegime = tPF(amax) − tPF(a), t2ndRegime = tPFBB − tPF(amax), and

t3rdRegime = tDiskLifetime − tPFBB). We then divide each regime’s lifetime by the typical

planetesimal growth time in that regime, so that we can compare this “growth efficiency”

between disk regimes. We present the results of this calculation in figure 2.2.2.

This growth efficiency peaks in the disk’s first regime, though it steadily de-

clines over time. Once the 2nd regime begins, the efficiency rapidly falls in the outer

regions, as the Powell et al. (2019) regime takes over. The pebble front eventually

hits the inner edge, and the disk transitions to the 3rd regime, with efficiency falling

throughout the disk.

2.2.3 Pebble front evolution

To better understand how our disks’ surface densities evolve, we examine the

evolution of the pebble front. We compare the timescale on which the pebble front
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Figure 2.4: The Ṁ per area of the disk TW Hydra as a function of time. As the disk
ages, the locally grown Ṁ per area increases, until it eventually exceeds the particle
supply drifting inwards from the pebble front. At this point, the disk transitions from
the 1st regime (as described in Lambrechts & Johansen 2014) to the 2nd and eventually
3rd regimes (as described in Powell et al. 2017). In this figure, we can see this as the
dashed and dotted yellow line exceeding the solid yellow line. Remember that this
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vertical dashed lines.
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Figure 2.5: The surface density of the disk TW Hydra, again as a function of time.
Here, we zoom in on a few disk ages, near the transition time between disk regimes,
in order to focus on the behavior of the pebble front during this time. The first two
disk ages show the disk in the 1st regime, as the pebble front drifts outward. The third
age shows the disk in the 2nd regime, with the Powell et al. 2017 model applying from
the inner region out towards the location of the inward drifting pebble front, and the
Lambrechts & Johansen 2014 model applying from this inner edge, out to the location
of the outer pebble front at the time of the transition. Lastly, the fourth age shows the
disk in the 3rd regime, where the Powell et al. 2017 model applies to the entire region
shown.
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evolves, tPF,evo, to the drift time for the maximally sized particles in the disk, tdrift.

First, we evaluate the evolution of the pebble front. Lambrechts & Johansen (2014)

present the pebble front location in their equation 10, which they calculate by equating

the time a particle needs to grow before it can drift to the age of the disk. In this

calculation, they assume an Epstein drag law, while we allow for a variety of drag laws

in order to cover a wide range of particle sizes. While increased complexity allows for

an exact calculation of the pebble front location, it makes an analytic form impossible.

Fortunately, for the disks and times presented in this study, the analytic approximate

form from Lambrechts & Johansen (2014) is accurate to about 1% (Garaud 2007). For

this reason, we can use the approximate version of the pebble front location for this

calculation of the pebble front evolution:

aPF =

(

3

16

)1/3

(GM∗)
1/3(ϵdfd)

2/3t
2/3
disk

ȧPF =
2

3

aPF

tdisk

(2.5)

where aPF is the pebble front location, and tdisk is the disk age.

We define the timescale on which the pebble front evolves, tPF,evolution as the

ratio between the pebble front location and the speed at which the pebble front evolves

outwards in the disk.

tPF,evolution ≈ aPF
˙aPF

≈ 3

2
tdisk

(2.6)
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This shows us that the pebble front evolves on roughly the same timescale as the age

of the protoplanetary disk.

Next, we estimate the drift time for maximally sized particles, as in Powell

et al. (2017) and Chiang & Youdin (2010). Here, we calculate this drift time for the

largest particles with stokes number Stmax.

tdrift ≈
a

ȧ

≈ a

2ηvkep

1 + St2max

Stmax

≈ a

2ηvkepStmax

(2.7)

where tdrift is the drift time, and η is a dimensionless measure of the pressure profile of

the disk.

Now, employing the disk’s maximum particle size in the 1st regime (when the

pebble front has not yet reached the outer edge of the disk):

smax ≈ 3
√
2Σd

16ηρint
(2.8)

This maximum particle size is then used to calculate the associated maximum stokes

number. If we assume that the maximum particle size is in the Epstein drag regime,

we can derive the following analytic form for the maximum stokes number, as in equa-
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tion ??.

Stmax ≈ 3
√
πϵpΣd

16ηΣg
(2.9)

where ϵp is a dimensionless measure of the coagulation efficiency of pebbles. We can

then plug this approximate maximum stokes number into our equation for the drift

time:

tdrift ≈
a

2ηvkep

16ηΣg

3
√
2ϵpΣd

tdrift ≈
(

21/231/4

ϵ
1/2
p

)

f
1/2
d

√

tdisk
Ω

(2.10)

Finally, we compare this drift time to the pebble front evolution time:

tdrift
tPF,evolution

≈
(

21/231/4

ϵ
1/2
p

)

f
1/2
d

√

tdisk
Ω

2

3tdisk

≈
√

2ϵd
3ϵp

tdrift
tPF,evolution

≈ 0.26

(2.11)

Using reasonable assumptions about our disk parameters (ϵd = 0.05, and ϵp =

0.5), we find that the pebble front evolves on the same timescale as the largest particles

drift. This is as expected, as the pebble front is the location where particles first grow

large enough to drift. It is not surprising then, that this front evolves at the same rate

as the drifting particles.
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In the first disk regime, where the method modeled after Lambrechts & Jo-

hansen (2014) applies, it is assumed that the dust mass in a given annulus is set by

drift from the annulus exterior. This assumption, of a “drift driven disk”, is borne out

by our calculation above. By demonstrating that the pebble front evolves on the same

time-scale as the particles drift, we show that particles drifting from the pebble front

can drive the disk’s solid surface density, as long as the Ṁdrift exceeds the Ṁgrowth.

2.2.4 Model of Drift Dominated Outer Disk

In the drift-dominated regime, the outer-most locations of particles in disks

can be constrained with multiwavelength observations of protoplanetary disks. These

observations of disks in the millimeter can probe particle drift, and thus be used to infer

the aerodynamic properties of the particles present in the disk. Using these observations,

Powell et al. (2017, 2019) created a new method of determining the surface densities of

protoplanetary disks, without assuming a tracer-to-H2 ratio. This method allows one

to empirically infer many fundamental disk parameters, including the Stokes number of

the maximum particle size as a function of disk semi-major axis. The model has already

been applied to 7 disks thus far and has been able to reconcile the theory of particle

evolution in protoplanetary disks with observations (Powell et al. 2019).

In order to determine the locations within disks, and the disk parameters

which will lead to drift domination in protoplanetary disks, we apply the following

method. First, as in both Lambrechts & Johansen (2014) and Powell et al. (2017), we

set tdrift = tgrow, to determine the maximum size to which particles can grow before

they drift. We then compare this maximum particle size to the particle size limit
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from fragmentation processes, as described in Birnstiel et al. (2012), equation 8. If our

maximum particle size exceeds the size limit from fragmentation, then we say that these

particles are fragmentation limited, rather than drift limited.

This size limit from fragmentation in Birnstiel et al. (2012) is parameterized

in terms of a fragmentation velocity, the velocity limit above which particle collisions

lead to fragmentation rather than growth. The specifics of particle fragmentation are

still uncertain, but there is general agreement that this particle fragmentation velocity

is in the range of 1m
s to 50m

s , depending on the particle size, density, composition, and

other factors (e.g. Housen & Holsapple 1990, 1999; Stewart & Leinhardt 2009; Beitz

et al. 2011).

In figure 2.2.4, we model drift and fragmentation in the disk DR Tau to find

the region over which the disk is drift-dominated, and hence our model is applicable.

To accomplish this, we calculate the maximum particle size in the disk as set by drift

by finding the particle size which drift into the star at the same rate that it grows.

We then compare this particle size to the particle size limit imposed by fragmentation,

using the same methods as Birnstiel et al. (2012). When the drift limited size exceeds

the fragmentation limited size, we call the disk “drift-dominated”, and can confidently

apply our model. For this figure, we use four different assumed fragmentation velocities,

vfrag = 1m
s (blue dotted line), vfrag = 3m

s (green solid line), vfrag = 10m
s (purple dotted

line), and vfrag = 30m
s (turquoise dotted line) which give us the inner boundaries of our

drift dominated disk at approximately 167 AU, 22 AU, 3.5 AU, and 0.7 AU respectively.

Note however, that this thesis focuses on the outer disk, so we don’t consider inwards
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Figure 2.7: The maximum particle size in the protoplanetary disk TW Hydra as set
by both fragmentation, and by particle drift. When the fragmentation limited size is
greater than the drift limited size, we say that the disk is drift dominated, and our
models are applicable. For this figure, we show our results for fragmentation velocities
of 1m

s (blue dotted line), 3m
s (green solid line), 10m

s (purple dotted line), and 30m
s

(turquoise dotted line).

of a few AU anyway.

2.2.5 Special Case of flow isolation

Here, we take our maximum particle size, previously presented in Section 2.2.2,

and apply it to our formula for the flow isolation mass, to find the limiting mass scale,

based only on disk parameters.

In the 1st regime described in Section 2.2.2, we assume only that tdrift = tgrow
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to find the maximum particle size due to drift. Lambrechts & Johansen (2014) calculate

this dominant particle size (see equation 20 of Lambrechts & Johansen 2014) to be:

St ≈
√
3

8

ϵp
η

Σp

Σg
(2.12)

where ϵp is an order unity factor which describes the coagulation efficiency for pebbles.

For this study, we assume ϵp = 0.5. Plugging this maximum particle size into our

expression for the flow isolation mass (Equation 2.1), we find:

Mflow = M∗

(

H

a

)3

min

[√
3

8

ϵpcsΣp

ηv0Σg
,
31/4

2
√
2

√

ϵpΣp

ηΣg
,
1√
3

]

(2.13)

This formula for the flow isolation mass applies both in the 1st regime, and in

the inner disk portion of the 2nd regime (where the pebble front has not yet bounced

back).

If we are instead in the 3rd regime described in Section 2.2.2, we assume

that the time that a particle has to drift is the same as the age of the disk. That is,

tdisk = tdrift ≡ |a/ȧ|. Following the reasoning of Powell et al. (2017), we calculate the

radial particle drift velocity as

ȧ ≈ −2ηΩa

(

St

1 + St2

)

≈ −2ηvk

(

St

1 + St2

)

(2.14)

In a passively irradiated disk, v0 = ηvk, where v0 is the maximum particle drift velocity.
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Our expression thus becomes

ȧ ≈ −2v0

(

St

1 + St2

)

≈ −2v0St

(2.15)

where we assume St ≪ 1 for the final line.

Finally, we apply the assumption that tdisk = tdrift ≡ |a/ȧ|. Combining this

expression with equation 2.15 for ȧ yields

St =
a

2tdiskv0
(2.16)

This equation and equation 2.12 give the maximum particle size (parameterized by

Stokes number) in a drift-dominated disk as a function of semi-major axis, disk age,

dust-to-gas ratio, and sub-Keplerian velocity. With this prescription, we know which

particles are available for pebble accretion. Combining the maximum particle size from

equation 2.16 with the flow isolation mass model of Rosenthal & Murray-Clay (2020)

allows for the simple derivation of the maximum mass to which a solid planetesimal

core can grow through pebble accretion:

Mflow = M∗

(

H

a

)3

min

[

csa

2tdiskv
2
0

,

√

a

2tdiskv0
,
1√
3

]

(2.17)

The 2nd regime described in Section 2.2.2 features each of these maximum

particle sizes present in the disk simultaneously, with the particles exterior to the peb-

ble front bouncing back to the inner disk being described by equation 2.16, while the
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particles inside the returning pebble front are still set by equation 2.12.

2.3 Example Applications

2.3.1 Modeling real disks: 1st regime

Having introduced our method for determining maximum particle size in a

protoplanetary disk, and the associated flow isolation mass to which we would expect

planets to grow, we now step through the analysis process for several real disks. In this

study, we examine the disks TW Hydra, Dr Tau, FT Tau, AS 209, HD 163296, CY

Tau, and DoAr 25, all of which have multi-wavelength observations which we use to

constrain the maximum particle size in these disks. Some important properties of the

stars are listed in table 2.1.

For each disk in our sample, we model the time evolving solid surface density,

along with the initial gas surface density. This information is presented in Figures

2.2.2, 2.3.1, 2.3.1, 2.3.1, 2.3.1, 2.3.1, and 2.3.1. We then apply our maximum particle

size information (2.2.2 and ??) to our pebble accretion code and flow isolation modeling

to determine growth rates for potential planetesimals embeded in these disks. For each

Object Stellar Mass (M⊙) Age (Myrs) T0 (K) References

TW Hydra 0.8 5 82 Rhee et al. (2007), Qi et al. (2013)
DR Tau 0.8 1 121 Ricci et al. (2010), McClure (2019)
FT Tau 0.55 1.6 89 Ricci et al. (2010), McClure (2019)
AS 209 0.9 1.6 131 Herbig & Bell (1988)

HD 163296 2.3 5 284 Natta et al. (2004)
CY Tau 0.48 1 98 Bertout et al. (2007), McClure (2019)
DoAr 25 1 2 123 Andrews et al. (2008)

Table 2.1: The stellar properties of this chapters’ sample.
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disk, we present the growth times across planetesimal mass and semi-major axis for six

different disk ages, to show the disk’s evolution (Figures 2.3.1, 2.3.1, 2.3.1, 2.3.1, 2.3.1,

2.3.1, 2.3.1). In each of these disks, the growth times are so rapid in the 1st disk regime

that we predict planetesimals to rapidly grow to their flow isolation masses as soon as

they reach a minimum mass for traditional pebble accretion.

Of the seven disks in our sample, only two (TW Hydra and DR Tau) transition

from the 1st disk regime to the 2nd and 3rd in the times tested in this chapter. We also

present the growth and drift Ṁ/Area for each disk (Figures 2.2.2, 2.3.1, 2.3.1, 2.3.1,

2.3.1, 2.3.1, 2.3.1), to illustrate when and how certain disks transition, while others do

not. The disks which do not transition maintain the possibility of efficiently growing

planetesimals to their flow isolation mass throughout their lifetimes.

2.3.2 Model Parameters

1. Controlling parameters in flow isolation mass

The parameters which enter into our equations for flow isolation mass (equa-

tions 2.13 and 2.17) can be reduced to the following: stellar mass M∗, disk tem-

perature T , initial dust-to-gas ratio fd, and of course the semi-major axis of our

planetesimal (a) and the time since the disk’s formation (tdisk). Other parameters

appear in our equations, but can be reduced down to these constituent pieces, in-

cluding H = cs
Ω , η ≈ c2s

2v2
k

, cs =
√

kBT
µ , v0 = ηvk, and vk =

√

GM∗

a , where H is the

scale height of the disk, kB is the Boltzmann constant, and v0 is the gas velocity.

These fundamental parameters are listed for each object in our sample in Ta-

ble 2.1. This chapter maintains an initial dust-to-gas ratio of 10−2, as the authors
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Figure 2.8: The surface density of the disk DR Tau as a function of time. As with TW
Hydra, the gaseous surface density is shown as a solid black line, and the initial solid
surface density is shown as a dashed red line. The evolved solid surface density is then
plotted for several times as the solid colored lines. As the disk ages, it passes from the
1st regime (as described in Lambrechts & Johansen 2014) to the 2nd and eventually
3rd regimes (as described in Powell et al. 2017). For this disk, we find tTransition = 2.15
Myr (shown in magenta).
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Figure 2.9: The surface density of the disk AS 209 as a function of time. The lines are
the same as in other figures of the surface density. As the disk ages, the pebble front
moves outward, but it does not transition from from the 1st regime (as described in
Lambrechts & Johansen 2014) to the 2nd and eventually 3rd regimes. The magenta line
shows the disk’s current estimated age. This disks is one of the largest in our sample,
maintaining a high surface density out to several hundred AU.
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Figure 2.10: The surface density of the disk HD 163296 as a function of time. This
figure uses the same line definitions as the other surface density plots, including the
magenta line to show the disk’s current estimated age. As with AS 209, this disk does
not transition out of the 1st regime to the 2nd and 3rd regimes, as the drift driven
particle supply continues to exceed the growth driven throughout the disk’s lifetime.
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Figure 2.11: The surface density of the disk FT Tau as a function of time. This figure
uses the same line definitions as the other surface density plots, including the magenta
line to show the disk’s current estimated age. This disk also does not transition out of
the 1st regime to the 2nd and 3rd regimes, as the drift driven particle supply continues
to exceed the growth driven throughout the disk’s lifetime.
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Figure 2.12: The surface density of the disk CY Tau as a function of time. This figure
uses the same line definitions as the other surface density plots, including the magenta
line to show the disk’s current estimated age. As the disk ages, the pebble front moves
outward, but it does not transition from from the 1st regime (as described in Lambrechts
& Johansen 2014) to the 2nd and eventually 3rd regimes.
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Figure 2.13: The surface density of the disk DoAR 25 as a function of time. The gaseous
surface density is shown as a solid black line, and the initial solid surface density is shown
as a dashed red line. The evolved solid surface density is then plotted for several times as
the solid colored lines, including the magenta line to show the disk’s current estimated
age. This disk does not transition within the time-span tested, out to 4 Myr.
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Figure 2.14: The particle growth time is shown as a function of both semi-major axis
and core mass for the disk TW Hydra at six different times through the disk’s lifetime
(100,000 years, 250,000 years, 630,000 years, 1.6 Myrs, 4 Myrs, and 10 Myrs from top left
to bottom right). The shaded region shows where the disk is fragmentation dominated,
and our maximum particle size prescription does not apply. The bottom edge of this
growth region is defined as the minimum mass where traditional pebble accretion is
active, while the top edge is set as the flow isolation mass for these protoplanetary
cores.
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Figure 2.15: The particle growth time is shown as a function of both semi-major axis and
core mass for the disk DR Tau at six different times through the disk’s lifetime (100,000
years, 200,000 years, 400,000 years, 800,000 years, 1.6 Myrs, and 3.1 Myrs from top
left to bottom right). As with the other growth time figures, the shaded region shows
where the disk is fragmentation dominated, and our maximum particle size prescription
does not apply. Notice how much the growth time extends in the fifth and sixth panels,
where the disk has transitioned to the 2nd and then 3rd regime.
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Figure 2.16: The particle growth time is shown as a function of both semi-major axis and
core mass for the disk AS 209 at six different times through the disk’s lifetime (100,000
years, 200,000 years, 400,000 years, 800,000 years, 1.6 Myrs, and 3.1 Myrs from top left
to bottom right). The shaded region shows where the disk is fragmentation dominated,
and our maximum particle size prescription does not apply. Because this disk does not
transition out of the 1st regime, it maintains the potential for growing planetesimals to
their flow isolation mass throughout its lifetime.
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Figure 2.17: The particle growth time is shown as a function of both semi-major axis and
core mass for the disk FT Tau at six different times through the disk’s lifetime (100,000
years, 200,000 years, 400,000 years, 800,000 years, 1.6 Myrs, and 3.1 Myrs from top left
to bottom right). The shaded region shows where the disk is fragmentation dominated,
and our maximum particle size prescription does not apply. As with the other disks
which stay in the 1st regime, FT Tau can grow planetesimals to their flow isolation mass
throughout its lifetime. However, in practice the solid surface density falls considerably
in the disk’s later years, making growing planetesimals to their flow isolation masses
rather unlikely.
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Figure 2.18: The particle growth time is shown as a function of both semi-major axis
and core mass for the disk HD 163296 at six different times through the disk’s lifetime
(100,000 years, 220,000 years, 480,000 years, 1 Myr, 2.3 Myrs, and 5 Myrs from top left
to bottom right). The shaded region shows where the disk is fragmentation dominated,
and our maximum particle size prescription does not apply. Though this disk never
leaves the 1st regime, its solid surface density does eventually fall to the point that
growing additional planetesimals to their flow isolation masses is quite unlikely (see the
fifth and sixth panels).
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Figure 2.19: The particle growth time is shown as a function of both semi-major axis and
core mass for the disk CY Tau at six different times through the disk’s lifetime (100,000
years, 200,000 years, 400,000 years, 800,000 years, 1.6 Myrs, and 3.1 Myrs from top left
to bottom right). The shaded region shows where the disk is fragmentation dominated,
and our maximum particle size prescription does not apply. As with several other of the
disks in this sample, this disk never leaves the 1st regime, but it does see a significant
falloff in solid surface density, particularly in the sixth panel shown here. This makes it
hard to imagine planetesimals continuing to grow their flow isolation mass 3 Myrs into
the disk’s lifetime.
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Figure 2.20: The particle growth time is shown as a function of both semi-major axis and
core mass for the disk DoAr 25 at six different times through the disk’s lifetime (100,000
years, 200,000 years, 400,000 years, 800,000 years, 1.6 Myrs, and 3.1 Myrs from top left
to bottom right). The shaded region shows where the disk is fragmentation dominated,
and our maximum particle size prescription does not apply. This disk does not transition
out of the 1st regime, and also maintains a high enough solid surface density for several
Myrs that it is possible that some planetesimals may grow to their flow isolation masses
even late in the disk’s lifetime.

52



10 1 100 101 102 103

a [AU]
10 23

10 21

10 19

10 17

10 15

10 13

10 11

M
/A
re
a 

[g
/s

cm
2 ]

Local M_dot/Area at t = 1.0e-02 Myr
Global M_dot/Area at t = 1.0e-02 Myr
Local M_dot/Area at t = 1.0e-01 Myr
Global M_dot/Area at t = 1.0e-01 Myr
Local M_dot/Area at t = 3.0e-01 Myr
Global M_dot/Area at t = 3.0e-01 Myr
Local M_dot/Area at t = 1.0e+00 Myr
Global M_dot/Area at t = 1.0e+00 Myr
Local M_dot/Area at t = 2.1e+00 Myr
Global M_dot/Area at t = 2.1e+00 Myr
Local M_dot/Area at t = 3.0e+00 Myr
Global M_dot/Area at t = 3.0e+00 Myr

Figure 2.21: The Ṁ per area of the disk DR Tau as a function of time. As the disk
ages, the drifted Ṁ per area decreases, eventually allowing the disk to transition, here
at 2.15 Myr. This disk’s age estimates vary from 0.1 to 3 Myr, but we estimate the age
as 1 Myr, shown in magenta. This would imply that the disk has not yet transitioned,
but will soon.
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Figure 2.22: The Ṁ per area of the disk AS 209 as a function of time. As the disk ages,
the drifted Ṁ per area decreases, but not quickly enough to fall below the grown Ṁ
per area. This prevents the disk from transitioning to the 2nd and 3rd regimes, as TW
Hydra and DR Tau do. The magenta line shows the disk’s current estimated age.
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Figure 2.23: The Ṁ per area of the disk HD 163296 as a function of time. As the disk
ages, the drifted Ṁ per area decreases, but not quickly enough to fall below the grown
Ṁ per area. This prevents the disk from transitioning to the 2nd and 3rd regimes, as
TW Hydra and DR Tau do. The magenta line shows the disk’s current estimated age.

54



10 1 100 101 102 103

a [AU]
10 19

10 17

10 15

10 13

10 11
M

/A
re
a 

[g
/s

cm
2 ] Local M_dot/area at t = 1.0e-02 Myr

Global M_dot/area at t = 1.0e-02 Myr
Local M_dot/area at t = 5.0e-02 Myr
Global M_dot/area at t = 5.0e-02 Myr
Local M_dot/area at t = 1.0e-01 Myr
Global M_dot/area at t = 1.0e-01 Myr
Local M_dot/area at t = 2.0e-01 Myr
Global M_dot/area at t = 2.0e-01 Myr
Local M_dot/area at t = 7.0e-01 Myr
Global M_dot/area at t = 7.0e-01 Myr
Local M_dot/area at t = 1.0e+00 Myr
Global M_dot/area at t = 1.0e+00 Myr

Figure 2.24: The Ṁ per area of the disk FT Tau as a function of time. As the disk
ages, the drifted Ṁ per area decreases, but not quickly enough to fall below the grown
Ṁ per area. This prevents the disk from transitioning to the 2nd and 3rd regimes, as
TW Hydra and DR Tau do. The magenta line shows the disk’s current estimated age.
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Figure 2.25: The Ṁ per area of the disk CY Tau as a function of time. As the disk
ages, the drifted Ṁ per area decreases, but not quickly enough to fall below the grown
Ṁ per area. This prevents the disk from transitioning to the 2nd and 3rd regimes, as
TW Hydra and DR Tau do. The magenta line shows the disk’s current estimated age.
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Figure 2.26: The Ṁ per area of the disk DoAr 25 as a function of time. As the disk
ages, the drifted Ṁ per area decreases, but not quickly enough to fall below the grown
Ṁ per area. This prevents the disk from transitioning to the 2nd and 3rd regimes, as
TW Hydra and DR Tau do. The magenta line shows the disk’s current estimated age.

see little evidence for variation in this parameter. Note that the flow isolation

mass is interestingly independent of the overall surface density normalization.

To show the strength of the flow isolation mass’s dependence on disk temperature

and location in the disk, we plot each in Figures 1 and 1. For each of these figures,

we use values of the disk DR Tau as fiducial, with M∗ = 0.8M⊙, T0 = 121K, and

tdisk = 1Myr.

2. Parameters which affect growth time

The overall disk mass in solid particles is the parameter which has the largest

effect on overall normalization for planetary growth times in our pebble accretion

model. The more mass that is available in dust or other solid particles, the shorter

planetary growth times become. As one can see in our plot of tgrow for each disk,
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Figure 2.27: This is a plot of flow isolation mass versus semi-major axis, for both the
maximum particle sizes.
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Figure 2.28: This is a plot of flow isolation mass versus temperature normalization,
for both the maximum particle sizes. We assume a semi-major axis of 10 AU for this
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as the disk ages, its solid surface density falls, extending the growth times for

planetesimals of all masses. We previously noted the fall in surface density and

rise in growth time when a disk moves from the 1st regime to the 2nd and 3rd, but

this change is present even within a given disk regime as well. This is especially

apparent in the tgrow plots for disks which do not transition from this 1st disk

regime (every disk in the sample except TW Hydra and DR Tau).

This falling growth efficiency means that, for disks which do transition from the

1st to 2nd and 3rd regimes, essentially all solid body planet formation must occur

before this transition occurs. This tTransition can serve then as a sort of last call

for forming solid planetary cores. After a protoplanetary disk transitions, one can

expect its existing planetesimals to grow significantly only via gas accretion.

2.4 Discussion and Conclusions

2.4.1 Primary Result and Implications

By combining careful modeling of particle drift and growth in protoplanetary

disks and flow isolation, we have derived a simple prescription for the expected final solid

mass of planets formed in these disks. Dependent only on a few parameters, including

the age of the disk, the initial dust-to-gas ratio, and the semi-major axis of our budding

planet, this model carefully tracks the surface density and maximum particle size in

these disks, translating it into a final planet mass. We implement two different models

for maximum particle size in our disks, based on Lambrechts & Johansen (2014) and

Powell et al. (2017). We expect disks to transition between these two models as the
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disks evolve, and the particle supply for the largest particles changes.

We describe the important role that the pebble front plays in setting how a

protoplanetary disk evolves, and the particles within it grow. Using this understanding

along with our modeling of the small particle supply, both drifted and grown, we define

three regimes which a disk may pass through. In the 1st regime, the largest solid

particles are largely drifted in from the pebble front, and overall surface density is

initially high. Over time, as the solid surface density decreases, and the pebble front

moves outward, the supply of solid particles from the pebble front falls such that it

overtaken by solid particles grown relatively in situ. At this time, the disk transitions

to the 2nd regime, and the solid particles sizes are modeled in a new way. This occurs

first near the pebble front, drifting inwards, as the pebble front “bounces back” and the

disk is further drained of solids. Lastly, the disk transitions to the 3rd regime when the

pebble front hits the inner edge of the disk and the entire disk is modeled in a manner

based on Powell et al. (2017).

To estimate the relative efficiency of planetary growth via pebble accretion

in each of these three regimes, we compare the disk lifetime to the growth times for

planetesimals in Figure 2.2.2. The growth efficiency is much higher in the 1st and 2nd

regime than the 3rd, thanks to the reduced solid surface density in the 3rd regime as

dust drifts into the star. For this reason, we can use the time of transition from the 1st

regime (tTransition) as a rough end of the era of planetesimal formation. Planetesimals

which exist at the start of the 2nd regime may continue to grow as long as the disk

sticks around, but new planetary scale cores are unlikely to form after this point.
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We apply our disk and pebble accretion models to a sample of seven pro-

toplanetary disks, generating surface densities, maximum particle sizes and estimated

planetesimal growth times for each. Of the seven disks we examine, just two (TW Hydra

and DR Tau) ever transition from the 1st disk regime (where Lambrechts & Johansen

(2014) largely applies) to the 2nd and 3rd disk regimes (where Powell et al. (2017)

are dominant). In every disk however, the solid body surface density falls with time,

making it increasingly difficult to grow planetesimals via pebble accretion. For each

protoplanetary disk we examine, are relatively poorly constrained. For this reason, we

present our results for each disk across a wide range of possible ages.

2.4.2 Estimates in the model

One aspect of the disk on which our model depends relatively strongly is the

pressure profile of the disk, as expressed through the parameter η. As a reminder,

η = ∂ logP
∂ log a , and can often be approximated as η ≈ c2s

2v2
kep

, which we use for the entirety of

this study. This measure of the pressure profile is especially important as it determines

the maximum particle size when the Epstein drag law applies in the 1st disk regime.

Additionally, η also determines the surface density in the 1st disk regime when the

maximum particle size is in the Stokes drag law.

A follow-up study may examine the role of η more closely, and see whether a

numerical approach to more exactly calculate η has an appreciable effect on the particle

sizes and surface densities to significantly affect the results of this study.
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2.4.3 Conclusions

In this chapter, we model the dynamics and growth of small solids throughout

protoplanetary disks, to learn about how, when and where planets form. By model-

ing the drift and growth of these small solids, we determine the overall solid surface

density for each protoplanetary disk along with the maximum particle size through the

disk’s evolution. We use this information to generate pebble accretion growth rates for

injected planetesimals in each of these disks, finding regions and times of particularly

rapid growth. Two of these disks which we examine transition from a disk regime in

which their largest particles are supplied by drift to one in which the largest particles

are instead primarily grown in situ. After transitioning, these disks show much lower

solid surface densities, making it very difficult to see these disks continuing to grow

planetesimals.

In our work throughout this chapter, we have focused on a singular drag law

to define the dynamics of our pebbles, the Epstein drag regime. In future works, one

could expand this model to include the Stokes and Ram drag regimes as well, which

generally apply to larger particles. Additionally, one could link the disk and pebble

accretion modeling presented in this chapter to numerical simulations of protoplanetary

disks, such as those performed by Birnstiel et al. (2012) and collaborators. This could

supply us with checks on our maximum particle sizes and surface densities, allowing

us to make more informed statements about exactly what size and type of planets we

expect to form in observed protoplanetary disks.
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Chapter 3

Gas Assisted Growth of Small

Planetesimals

3.1 Introduction

In the prior chapter, we introduce and describe our disk evolution and pebble

accretion models. We use these models to examine planetary growth conditions in a

sample of disks, learning how early planetesimals need to form to create the exoplanetary

demographics which we observe. In this chapter, we apply the same models to a new

regime of parameter space to understand the effects of gas-particle interactions on the

smallest solids in a disk. In comparison to classical accretion, pebble accretion typically

has the largest increase in growth efficiency thanks to the expansion of the cross section

for growth. This expanded cross section decreases as you lower the mass of the larger

solid body in the interaction, until it eventually falls to the physical cross section of
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the solid. This is traditionally thought of as a lower mass limit for pebble accretion.

However, as explained in the previous chapter, pebble accretion also determines the

relative velocity during particle collisions, thanks to the gas-particle interactions. This

effect on the relative velocity continues even below the masses at which the cross section

for interaction becomes simply the physical cross section. In this chapter, we examine

this effect to learn how gas drag affects growth rates for solid particles, down to very

small particle sizes.

First, we present our existing model, and the changes which we made to expand

the region of applicability. These are presented in Section 3.2. We then apply this model

with our disk model to estimate growth times for a wide variety of solid particle sizes

in Section 3.3, just as we did in the prior chapter. Here, however, rather than focusing

on a planetesimal core mass, we examine particle pairs down to the cm-scale. We find

several interesting regions for rapid growth, each of which we examine and explain. For

these small particle interactions, the relative velocity of collision between particle pairs

is the determining factor in whether growth, bouncing, or fragmentation occur. For

this reason, we model the relative velocity using a Maxwellian probability distribution,

and examine the behavior not only at the average velocity, but also at the bottom 10%

level. In this way, we can learn about growth events which are relatively rare, but still

common enough to impact the final solid particle masses in the disk. Final thoughts

and suggestions for future work are found in Section 3.4.
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3.2 Pebble Accretion Model

3.2.1 Review of Model from Rosenthal et al. 2018

As in Rosenthal et al. (2018), Rosenthal & Murray-Clay (2018), and Chapter 2,

we employ an order of magnitude model in which we consider two bodies in our disk.

The larger of these, the planetesimal or “core” has traditionally been large enough that

its orbital velocity is unaffected by the gas, keeping the orbit Keplerian. In this chapter

we will modify that assumption, allowing the large body to also experience gas drag.

The 2nd party in this interaction is the so called pebble. So named because of

their small size, in this chapter we instead allow them to vary by more than 14 orders

of magnitude. These smaller bodies are generally more affected by gas drag than their

larger counterparts, and, because of this velocity difference, come into frequent growth

encounters with their larger brethren. Because the sizes of each body are so important

to the gas interactions, we perform every calculation for an individual particle size, even

though a variety of particle sizes are likely present in the disk.

Gas has a variety of impacts on a particle accreting onto a larger body. The

drag from the gas may slow the small particle relative to the large, allowing for a more

gentle collision, more favorable for growth. However, depending on the particle sizes,

involved, it may instead inhibit growth, by preventing the two particles from colliding

at all. To determine which of these occurs, we need to first define a few relevant radii.

The stability radius Rstab is the smallest radius at which a particle may stably orbit a

larger body. Outside of this radius, a particle will be sheared away from the larger body

by interactions with the gas or the star, while inside, it will inspiral into the larger body.
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We calculate this radius by matching the force from gas drag on the smaller particle with

the gravitational force from the larger body, shown in Equation 3.2.1. The Bondi radius,

RBondi, on the other hand, is an approximate estimate of the size of proto-atmosphere

around a larger body. It is calculated as the point at which the sound speed of the gas

matches the escape velocity of the larger body, shown in Equation 3.2.1.

Rstab =

√

GMm

FD
(3.1)

RBondi =
GM

cs2
(3.2)

where M is the mass of the larger body, m is the mass of the smaller particle,

FD is the drag force on the smaller particle, and cs is the sound speed in the gas.

By comparing these two radii, we can determine which of the two gas effect may

be occurring. If the stability radius exceeds the Bondi radius, particles can orbit without

entering the larger body’s proto-atmosphere. This allows these particles to continually

feel gas drag, losing kinetic energy relative to the larger body until eventually it falls

below larger body’s capture energy. The gas drag then causes the smaller body to fall

into the larger. We determine when this occurs by comparing the work done by gas

drag on a particle during an interaction to its relative kinetic energy. When the work

exceeds the energy, the particle is accreted, but when it falls short, the particle escapes.
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If the Bondi radius is instead the larger quantity of the two, the gas dynamics

inside the proto-atmosphere are now crucial to understanding the smaller particle’s

trajectory. Because the proto-atmosphere is roughly at rest relative to the larger body

which it surrounds, gas drag on the smaller particle can now prevent accretion. We

again compare the work done by gas drag to the particle’s relative kinetic energy, but

now have the opposite result. Here, if the work exceeds the energy the particle comes to

rest relative to the gas, following the flow of gas around the larger body, escaping. Only

if the energy exceeds the work done by gas drag can the smaller particle plow through

the proto-atmosphere and still collide with the larger body.

We calculate growth times in our model using Equations 3.2.1 and 3.2.1. This

nicely breaks the problem into three parts, to which we can apply our disk and small

particle models. We define growth time as

tgrow ≈ m

ṁ
(3.3)

where m is the mass of the larger body, and where the mass accretion rate ṁ is defined

as

ṁ ≈ ρsolidsσvrel (3.4)

where ρsolids is the disk’s density in solids, σ is the cross section for interactions, and

vrel is the relative velocity between interacting particles.

To determine the density of small particles encountered, we find ρsolids using
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our disk model presented in Chapter 2. This model allows us to calculate the surface

density in solids, which we employ here, in Equation 3.2.1.

ρsolids =
Σd

Hd
(3.5)

=
Σd

Hgas

√

α

St
(3.6)

=
ΣdΩ

cs

√

α

St
(3.7)

where Σd is the solid surface density, Hd is the scale height for solid particles, Hgas is

the scale height for gas, and St is the Stokes number for maximum particle size.

The cross section for particle interactions is dependent on the sizes of the Bondi

and stability radii, as well as the various scale heights of the disk. The full details of this

calculation can be found in Rosenthal et al. (2018), but we provide a short summary

here. The accretion cross section is split into two parts, accretion radius (size along

r-axis) and accretion scale height (size along z-axis). We present rough formulae for

each in Equations 3.2.1 and 3.2.1.

RAcc = max(Rstab, RBondi) (3.8)

where RAcc is the accretion radius, Rstab is the stability radius, and RBondi is the Bondi

radius. The accretion scale height HAcc is then calculated as
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HAcc = min(RAcc, Hp) (3.9)

Hp = max(

√

α

St
Hg, HKH) (3.10)

HKH =
Hg

2

a
min(1, St−1/2) (3.11)

where Hg is the gas scale height, and a is the orbital distance to the star. A

full explanation for these expressions can be found in Rosenthal et al. (2018), which we

will not reproduce here.

Lastly, we calculate the relative velocity between particles following Youdin &

Lithwick (2007) and Ormel & Cuzzi (2007). This method uses only the two particles’

sizes (as their Stokes numbers) and the gas properties to determine their relative velocity.

Here, we reproduce equations 16 and 21(d) from Ormel & Cuzzi (2007), as we use these

to calculate our relative velocity

vrel = vgas

(

[

tk +
t1

2

1 + tk

]t∗
12

tη

+
t2 − t1
t1 + t2

[

t1
2

1 + tk

]tL

t∗12

+

[

tk +
t2

2

1 + tk

]t∗
12

tη

+
t1 − t2
t1 + t2

[

t2
2

1 + tk

]tL

t∗12

)1/2

(3.12)

2

3

t∗12
ts

(
t∗12
ts

− 1)2 − 1

1 + t∗12
ts

= − 1

1 + tL
ts

(3.13)
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where tk is the integrated variable, t1 and t2 are the Stokes numbers of the

larger and smaller particles respectively, tL is the largest eddy turnover time (set to 1
Ω),

tη is the smallest eddy turnover time (set to tL√
Re

), Re is the Reynolds number, and ts

is the stopping time of the largest particle.

3.2.2 Changes to the model

Here, we present the changes to the pebble accretion model since the last

published work presenting it, Rosenthal et al. (2018). The changes to the model can be

divided into three types of changes: those focused on the planetesimal core’s dynamics,

adjustments to the surface density (following 2), and changes to allow the code to

utilize a distribution of velocities.

First, we modify our code to allow for planetesimals to move on non-keplerian

orbits. Particles move at sub-keplerian velocities thanks to gas drag, but sufficiently

large particles have enough momentum that they are nearly unaffected by this drag.

To demonstrate this velocity deviation from Keplerian, we plot it against particle mass

in Figure 3.2.2. This deviation becomes significant enough to matter for cores with a

core mass of 10−15M⊕ (Rcore ≈ 100 m) or less. We also adjust our calculation of the

Wind Shearing radius (Perets & Murray-Clay 2011) to include the drag force on both

the larger and smaller particle involved in an accretion event.

Next, we update the way that our solid surface density is calculated. As

explained in Chapter 2, we follow the work of Powell et al. (2017) and Lambrechts et al.

(2014), to calculate the maximum particle size and solid surface density. Our disks

naturally shift from the regime described in Lambrechts et al. (2014) to the regime
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Figure 3.1: The velocity deviation from Keplerian, at a = 10 AU. For the smallest
masses, this deviation can be significant.
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described in Powell et al. (2017). In each of these two regimes, we use two assumptions

to derive the maximum particle size and solid surface density. First, the assumption

that the largest particles in the disk have equal drift and growth times is common across

the disk regimes. In the regime where we follow the method of Lambrechts et al. (2014),

our additional constraint comes from requiring disk continuity, as the surface density

in this regime is forced by the particles drifting in from the outer edges of the disk. In

the regime which follows the method of Powell et al. (2017), in contrast, the additional

constraint comes from setting the drift and growth times equal to the age of the disk.

See Chapter 2 for a more detailed explanation of these disk regimes and the transition

between them.

Lastly, we implement a probability distribution for the relative velocities be-

tween colliding particles. This change is important for a number of reasons. First, the

mean relative velocity for these interactions is often quite close to the velocity required

to fragment the particles interacting. By using a full probability distribution for the

velocities of these particles, we are able to capture interactions with a large probability

of growth, which would instead lead to fragmentation if we only use the mean of the

distribution. Additionally, the velocity distribution allows a small fraction of particles

which are ordinarily moving too quickly to liberate their kinetic energy through gas

interactions to still be accreted, thanks to the slower tail of the velocity distribution.

By making these three big changes to our model, we expand the parameter space where

our model applies, allowing us to examine the effects of gas on particle down to below

the meter-scale.
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3.3 Rapid Growth Regions

3.3.1 Small planetesimal cores

Having modified and expanded our model to work with smaller planetary cores,

we now apply the model, and examine the growth times and flow isolation masses which

we predict. After evolving the model presented first in Rosenthal et al. (2018) with

the changes described in Section 3.2.2, we can now change the lower radius limit of

applicability from around 107 cm to below the meter-scale barrier of 103 cm. At these

new scales, we find that gas-assisted growth can still aid in the growth of budding

planetesimals, though in different ways than they do for larger planetesimals. Whereas

gas assists in planetesimal growth for higher mass planetesimals (above 107 cm) by

increasing the cross-section for accretion, at smaller scales it instead contributes to

growth by slowing particles so that they can collide without fragmenting. This is true

with the exception of a small stip of parameter space, where similarly sized particles

are rapidly accreted, thanks to a gas enhanced collision cross-section.

Small cores seem to grow most easily (collide without fragmenting) from like

sized particles. This is because the dominant source of relative velocity for particle pairs

is usually the Keplerian shear, caused by the different orbital velocities of two particles

which interact with the gaseous disk differently (Ormel & Cuzzi 2007). Assuming a

Dohnyani size distribution (Dohnanyi 1969), the vast majority (around 95%) of the

solid disk mass will be in particles that are roughly the same size. In Figure 3.3.1, we

use our model to estimate growth times for pairs of particles. This figure nicely breaks

down into regions, which we explain below. Figure 3.3.1 gives a graphical representation
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of each of these regions.

For each figure where we predict growth times for planetesimals, we have used

the disk TW Hydra as our fiducial disk, to give us both gas and solid surface densities.

This disk has a stellar mass of M∗ = 0.8M⊙, a temperature normalization of T0 = 82K,

and a gas surface density normalization of Σg,0 = 175 g
cm2 . We have presented these

growth times assuming that a disk age of tdisk = 0.8Myr.

The primary effect of varying turbulence levels which we see in Figure 3.3.1

is to change the regions of parameter space where pebble accretion is active. Growth

times only change by very small amounts, but increasing the level of turbulence cause the

parameter space on the upper right of the figure (smaller protoplanetary cores accreting

increasingly like-sized neighbors) to shrink, removing this channel for particle growth.

Whereas varying the turbulence levels in our test disks has little effect on the

growth times for particle pairs, the same cannot be said for varying the orbital location

in the disk. As particle pairs move further out in the disk, the growth times extend,

making it increasingly difficult to rapidly grow planetesimals.

Having presented the growth times for a wide size range of particle pairs, we

now explain the different regions of the figure, and the types of growth occuring in

each. First, we have the triangle in the top left of the figure, which represents the

traditional pebble accretion regime. Here we have large particles (planetesimal sized)

rapidly accreting much smaller particles (down to size ratios of 10−12). This region’s

barriers are defined on the bottom left by the location where RBondi = Rstab, and on

the bottom right by the location where the smaller particle’s relative kinetic energy is

74



101

103

105

107

r c
or
e [

cm
]

10 12 10 10 10 8 10 6 10 4 10 2 100

Size ratio
101

103

105

107

r c
or
e [

cm
]

10 12 10 10 10 8 10 6 10 4 10 2 100

Size ratio
102

103

104

105

106

107

108

109

1010

t g
ro
w
 [Y

ea
rs

]

a = 10 AU, varying turbulence strength

Figure 3.2: The growth times for planetesimals in a sample disk, as a function of particle
pair sizes. The y-axis is the planetary core radius, while the x-axis is the size ratio, which
is the ratio of the smaller particle radius to the larger particle radius. The four panels
(top left to bottom right) show a laminar disk, low turbulence (α = 10−5), middling
turbulence (α = 10−4), and high turbulence turbulence (α = 10−5). The region which
is greyed out represents growth via particles smaller than the initial ISM grain sizes of
10−5 cm, and so we ignore it. Notice how the tail of particularly rapid growth is eaten
away by increasingly high levels of turbulence. For each of the growth time plots in
this chapter, the assumption is that the entire disk surface density is contained in the
particle size under consideration.
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Figure 3.3: The growth times for planetesimals in a sample disk, as a function particle
pair sizes. The four panels (top left to bottom right) show a disk at 5, 10, 30, and 50 AU
respectively. As with the other growth plots, the greyed out region represents particles
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Figure 3.4: The regions of growth for the growth time figures included in this chapter.
Blue indicates where traditional pebble accretion is active, and green indicates where
pebbles are accreted, but not through the traditional pebble accretion methods. That
is, in this region the gas-particle interactions only modify the relative velocity of in-
teractions, while leaving the cross section unchanged. Red indicates where all growth
is forbidden by the flow isolation mass, while orange indicates where pebble accretion
is forbidden due to energy considerations but traditional gas free core accretion is still
possible.
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matched by the work done by gas drag on that particle. To the left of this triangle

(where the figure is white), particles have less kinetic energy than work done, and

Rstab < RBondi. These particles come to rest with respect to the gas, but the gas flows

around the outside of the proto-atmosphere, letting them escape accretion, which is

known as flow isolation. To the bottom-right of this triangle, pebble accretion is also

off, as here particles have more kinetic energy than the work done by gas drag they

experience, and the larger bodies have Rstab > RBondi. Here, the particles do not lose

enough energy from gas drag to fall in sufficiently close to hit the larger body. In this

case however, the gas does prevent all types of accretion, still allowing traditional gas

free core accretion to occur.

Next, let’s focus on the region of extremely rapid growth in the top right of

this figure. This strip of very rapid growth which traces from the top-center to the

lower-right shows a parameter space where pebble accretion is able to massively reduce

the growth times for particle pairs. This is especially true for like-sized particles at lower

sizes, where particles can be rapidly grown from just above meter scales to planetesimal

sizes extremely rapidly. As mentioned in Figure 3.3.1, this region is largest in the fully

laminar disk, and increasingly high levels of turbulence cause this region to less and less

important.

Last, there’s the triangle at the bottom of the figure. Here, the large bodies

have Rstab < RBondi, and the small particles’ kinetic energies exceed the work done

by gas drag during their encounter. Here, particles are able to plow through the gas

into the larger body’s proto-atmosphere until it can inspiral and collide. This region,
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extending down to very small particles, shows how we can extend our modeling of

growth via pebbles to new scales. As mentioned in Figure 3.3.1, in this regime, the

gas interactions modify the inter-particle velocities, but leave the cross sections for

interactions unchanged.

3.3.2 The effect of velocity dispersion and gas turbulence

These regions of rapid growth, combined with the reality of a sea of particles

with a wide distribution of relative velocities, slowed by their interactions with the

gaseous disk, should allow enough large solids to collide with their like-sized partners

at favorable velocities, growing past the meter-scale barrier. We model the effect of this

distribution of relative velocities by drawing our velocities from a Maxwell-Boltzmann

distribution, with its mean set by the combined laminar and turbulent velocities of each

pair of particles. In figure 3.3.2, we show the relative velocities for a wide range of

particle size, assuming the mean velocity. In figure 3.3.2, in contrast, we present the

lowest 10% of these velocities, demonstrating that particles down to the meter scale

can occasionally collide with relative velocities slower even than our most conservative

estimate for their fragmentation velocity of 1m
s .

To further illustrate the benefits of this velocity distribution, we remake Fig-

ures 3.3.1 and 3.3.1, now instead using the bottom 10% velocity. This allows us to see

the benefits of this lower velocity, particularly on expanding the parameter space of

possible growth. In Figure 3.3.2, we see how this lower velocity expands the parameter

space over which the strip of rapid growth is viable. This suggests a path towards rare

solid particle growth through interactions with similarly sized particles. In Figure 3.3.2,
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Figure 3.5: The relative velocity for planetesimal growth, divided by a fragmentation
velocity of vfrag = 10m

s , at a = 10 AU. Note that this fragmentation velocity is only
truly applicable for relatively similarly sized particles. The four panels (top left to
bottom right) show a laminar disk, low turbulence (α = 10−5), middling turbulence
(α = 10−4), and high turbulence turbulence (α = 10−5), and the greyed out region
represents growth by particles smaller than the initial dust sizes which we assume (10−5
cm). This figure shows that the similarly sized particle pair interactions are unlikely to
lead to fragmentation.
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Figure 3.6: The 10% lowest relative velocity planetesimal growth (assuming a
Maxwellian velocity distribution), at a = 10 AU. As with the other relative velocity
figure, the four panels (top left to bottom right) show a laminar disk, low turbulence
(α = 10−5), middling turbulence (α = 10−4), and high turbulence (α = 10−3), and the
greyed out region represents growth by particles smaller than the initial dust sizes which
we assume (10−5 cm). With these lower velocities, it is clear that particle collisions of
any size ratio should lead to growth rather than fragmentation.

we see the effect of this lower velocity particularly in the outer disk. Whereas previ-

ously moving outwards in the disk only slowed growth, here we see how it maintains

the possibility of growth through similar sized particles all the way out to 50 AU. For

each of these plots using the bottom 10% relative velocity, we reduce our solid surface

surface density by a factor of 10 (increasing our growth time by a factor of 10), as only

1 in 10 interactions will have this favorable low velocity.
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Figure 3.7: The growth times for planetesimals, at a = 10 AU as function of particle
pair sizes. Unlike the first two growth time figures, this one uses the 10% lowest relative
velocities, drawn from a Maxwellian velocity distribution. As before, the four panels
(top left to bottom right) show a laminar disk, low turbulence (α = 10−5), middling
turbulence (α = 10−4), and high turbulence turbulence (α = 10−5), and the greyed
out region represents growth by particles smaller than the initial dust sizes which we
assume (10−5 cm). Note how the lower velocity significantly expands the parameter
space where the strip of rapid growth is active.
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Figure 3.8: The growth times for planetesimals, where α = 10−5 as a function of
particle pair sizes. Just as with the figure above, this figure uses the 10% lowest relative
velocities, drawn from a probability distribution. The four panels (top left to bottom
right) show a disk at 5, 10, 30, and 50 AU respectively, and the greyed out region
represents growth by particles smaller than the initial dust sizes which we assume (10−5
cm). The lower velocity has a dramatic impact here, maintaining the viability of the
strip of rapid growth all the way out to 50 AU.
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Figure 3.9: The growth times for planetesimals, at a = 10 AU as a function of particle
pair sizes. Unlike the other growth time figures, in this figure we include growth time
estimates for gas free core accretion, where it allowed by the model. The four panels
(top left to bottom right) show a laminar disk, low turbulence (α = 10−5), middling
turbulence (α = 10−4), and high turbulence turbulence (α = 10−5), and the greyed out
region represents growth by particles smaller than the initial dust sizes which we assume
(10−5 cm).

Finally, we add in our estimated growth times for classical gas-less core accre-

tion where it is allowed, in Figure 3.3.2. We fill in the regions which were indicated in

orange in Figure 3.3.1 with this classical core accretion.
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3.4 Results and Conclusions

In this chapter, we have applied our model to a new range of particle sizes, ex-

tending our considerations of pebble accretion to new ranges. At these smaller sizes, the

gas interactions always will modify the relative velocity of particles during interactions,

but it will not always expand the collision cross sections. For the large growth region

we identify in green in Figure 3.3.1, the collision cross section collapses to the physical

size of the particle. Only in the small strip of favorable accretion in the top right of that

figure will gas interactions also expand the cross section for accretion, giving extremely

rapid growth. We also demonstrate how the use of a velocity distribution can ensure

that growth is possible even with particle size pairs which would otherwise not result in

growth. These results suggest that pebble accretion needs to continue to be explored

down to the smallest scales available in protoplanetary disks.

Taken together, these results indicate that the particles in the low velocity

tail of the probability distribution might allow larger particles to grow past the meter-

scale barrier. In this case, we would expect planetesimal cores to grow in a layered

manner, with particles in only a small range of sizes being accreted at a time, and

the core accreting larger particles as it grows. This prediction is consistent with recent

experimental results analyzing particle sizes on the surface of asteroids (e.g. Hayabusa2).

3.4.1 Future work

As we suggested in the previous chapter, this work would benefit greatly from

coupling to a more advance particle evolution code. With a particle evolution code to
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supply us with particle sizes, we could use this work to predict growth rates, which could

then be verified with the numerical model. Additionally, a more thorough examination

of the role of turbulence, beyond the Kolmogorov model, could provide more insight

into growth at these small scales.

In order to validate the prediction that we may grow past the meter-scale

barrier with rare favorable accretion events, we would also want to repeat this study

with more precision. This chapter and the last rely on order of magnitude models, but

this prediction merits a more exact approach in the future, to both verify and refine the

prediction.
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Chapter 4

Constraining Type Iax Supernova

Progenitor Systems with Stellar

Population Age-dating

4.1 Introduction

Type Iax supernovae (SNe Iax) are a class of peculiar SNe which share some

characteristics with Type Ia SNe, but appear to be physically distinct (Foley et al. 2013).

SNe Iax are also known as SN 2002cx-like SNe, after the prototypical object of the class

(Li et al. 2003; Jha et al. 2006; Jha 2017). These SNe are principally characterized

by their low luminosities (as compared to SNe Ia), low photospheric velocities, a lack

of a secondary maximum in near-IR bands (Li et al. 2003), and their unique late-time

spectra (e.g., Jha et al. 2006; Foley et al. 2016). In contrast to SNe Ia, SNe Iax reach
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their peak brightness in optical bands before they do in the near-IR.

SNe Iax are the most common type of peculiar SN, occurring at roughly 30%

the rate of SNe Ia (Foley et al. 2013; Miller et al. 2017). This, along with their ob-

servational similarities with SNe Ia, means that investigating the physical properties of

these supernovae is extremely helpful to understanding SNe Ia. The comparably low

photospheric velocities of SNe Iax makes line identification easier, allowing for precise

measurements of the explosion in these events, which can help us to understand the

physics involved in both SNe Iax and Ia. This will be crucial as we look to improve

our knowledge of SNe Ia in order to continue to perform precision cosmology. Despite

decades of study of SNe Ia, the identity of the binary companion to the SN Ia progenitor

is still unknown. By first learning about the progenitor system for SNe Iax, we may be

able to shed some light on this long-standing problem.

As compared to typical SNe Ia, SNe Iax are also inferred to have much lower

explosion energies (Branch et al. 2004), and lower ejecta masses (Foley et al. 2013)

(though this has been debated for some members of the class, e.g., Sahu et al. 2008,

Stritzinger et al. 2015, Yamanaka et al. 2015). Additionally, SNe Iax tend to have a

layered structure in their ejecta, similar to SNe Ia. In contrast to SNe Ia, however,

there is evidence of Ni mixing in at least two SNe Iax, further from the center than in

standard SNe Ia (Jha et al. 2006; Phillips et al. 2007; Stritzinger et al. 2015). Finally, at

least six SNe Iax show cobalt in their near-IR spectra (Kromer et al. 2013; Stritzinger

et al. 2014, 2015; Tomasella et al. 2016). Taken together, these properties suggest that

SNe Iax may be the result of the partial deflagration of a white dwarf (WD) (e.g. Foley
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et al. 2010a; Kromer et al. 2013; Fink et al. 2014; Magee et al. 2016).

SNe Iax host galaxies are also markedly different from SNe Ia host galaxies.

While the SNe are nearly always found in late-type galaxies, there is one example

(SN 2008ge) of a SN Iax in an S0 galaxy (Foley et al. 2010b). Lyman et al. (2013)

and Lyman et al. (2018) find evidence of star forming regions near the sites of most

SNe Iax, suggesting a young progenitor age at the time of explosion for these events.

Additionally, SNe Iax seem to preferentially occur in metal-poor regions of their host

galaxies (Lyman et al. 2018). This is quite different from the metallicity of the explosion

sites for SNe Ia, instead matching quite closely with the sites of SNe Ib, Ic, II, and IIb.

Though the metallicities of the explosion sites for SNe Iax and core-collapse SNe are

similar, they appear quite different from those of low-redshift long gamma-ray bursts

(LGRBs; Levesque et al. 2010). This is particularly interesting, as the most popular

core collapse model for SNe Iax is the “fallback SN” model (Valenti et al. 2009; Moriya

et al. 2010), which are theorized to occur alongside LGRBs (Heger et al. 2003; Della

Valle et al. 2006). Thus the divergent metallicity distributions of SNe Iax and LGRBs

suggest that SNe Iax may not be “fallback” core-collapse SNe.

The physical origin of SNe Iax is still uncertain, but the leading models suggest

that they are the result of binary interactions between a carbon-oxygen WD and a He-

star companion (Foley et al. 2013; Jha 2017). These interactions seem to result in

an incomplete deflagration (sub-sonic nuclear burning, Phillips et al. 2007) of the WD

which may not completely unbind the star (e.g., Jordan et al. 2012; Kromer et al.

2013; Fink et al. 2014; Long et al. 2014; Magee et al. 2016). The low luminosities,
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velocities, and ejecta masses measured from these events together give strong indirect

evidence for a WD progenitor system (Foley et al. 2009, 2010a). Additionally, the Ni

mixing observed in some SNe Iax ejecta can be most easily explained by a turbulent

deflagration in a WD (Röpke 2005). Despite the mounting evidence for this model,

there remain several unresolved issues. Specifically, the incomplete deflagration model

struggles to reproduce the observed lower luminosity SNe Iax, such as SNe 2008ha and

2010ae (Kromer et al. 2013; Fink et al. 2014) It has also been argued (Kromer et al. 2015)

that SN 2008ha spectra are indicative of poorly mixed ejecta, in contrast to brighter

SNe Iax. Well-mixed ejecta are a hallmark of partial deflagration models, making SN

2008ha particularly confusing. Additionally, at least two SNe Iax (SNe 2004cs and

2007J) have He lines in their spectra, which is difficult to reproduce with the WD and

He-star binary model (Fink et al. 2014).

For the WD He-star binary progenitor model for SNe Iax, it is expected that

the circumstellar environment will be enriched by pre-SN mass loss, either from winds

from the He donor star, or from non-conservative mass transfer. Once the WD explodes,

the interaction between the blast wave and the circumstellar material should power X-

ray and radio emission (Chevalier & Fransson 2006; Immler et al. 2006; Russell & Immler

2012; Margutti et al. 2012, 2014). Though X-ray emission has not yet been detected

from any SNe Iax, Liu et al. (2015) use X-ray upper limits from seven SNe Iax (Russell

& Immler 2012) to constrain their pre-SN mass loss rates. In comparing theoretical

pre-SN mass loss rates to the observed X-ray upper limits, they find broad agreement

between these upper limits and single degenerate models for SNe Iax, across a variety of
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models for the X-ray emission. However, using only these upper limits, they are unable

to distinguish between a WD He-star binary progenitor and a WD main sequence star

binary.

The WD He-star binary model for SNe Iax has also been tested with pre-

explosion Hubble Space Telescope (HST ) imaging of the locations of SN 2008ge (Foley

et al. 2010b), SN 2008ha (Foley et al. 2014), SN 2012Z (McCully et al. 2014a), and SN

2014dt (Foley et al. 2015). These works use precision astrometry to align pre-explosion

images with ground-based images of the SN. The authors then perform photometry on

the pre-explosion images at the site of the explosion to probe the progenitor system

just before explosion. In doing so, they find an upper bound on the progenitor mass

for SN 2008ge (assuming a massive star progenitor), find an upper bound on the age

of the SN 2008ha progenitor system, and resolve the likely progenitor system of SN

2012Z. Foley et al. (2015) find no progenitor system for SN 2014dt down to quite deep

limits (3 − σ limits of MF438W > −5.0 mag and MF814W > −5.9 mag), making the

interpretation of SN 2014dt as a core-collapse event less likely. While these limits rule

out most Wolf-Rayet star models, there are some Wolf-Rayet star models which remain

below the detection limits. In all four cases, the results show consistency with the WD

and He-star model, though the large photometric errors involved prevent them from

ruling out other models with high certainty.

The likelihood of observing aWD progenitor in pre-explosion imaging of SN Iax

explosion sites is quite low, due to the inherent low luminosity of WDs as compared

to their mass donor companion. However, analyzing the host environments of SNe (in
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pre or post-explosion imaging) has been quite successful in extracting information on

the progenitors of Type Ib, Type Ic, and Type II SNe (e.g., Máız-Apellániz et al. 2004;

Badenes et al. 2009; Kuncarayakti et al. 2013a,b). One such method uses resolved stellar

populations near the SNe to constrain the age of the SN progenitor (or SN remnant)

(e.g., Gogarten et al. 2009; Murphy et al. 2011; Jennings et al. 2012; Williams et al.

2014; Jennings et al. 2014). In this method, it is assumed that the resolved stellar

population and the progenitor itself formed nearly simultaneously, in a single burst of

star formation. This method of aging stellar populations to measure time between star

formation and explosion – known as the delay-time – for SNe has only been effective for

SNe with relatively short delay times, as typical open cluster velocity dispersions are

large enough that stellar positions are no longer correlated after a few hundred million

years (Bastian & Goodwin 2006; Lada 2010). Every model for SNe Iax predicts a delay-

time distribution (DTD) with non-zero probability down to below 100 Myrs, so it is

reasonable to apply this method to measure SNe Iax delay times.

In the WD progenitor model for SNe Iax, explosions occur at the Chan-

drasekhar mass, and the quickest binary channel for a carbon/oxygen (C/O) WD is

to accrete helium from a He star companion (Hachisu et al. 1999; Postnov & Yungel-

son 2014). The stable mass transfer rate can be high for helium accretion, and Claeys

et al. (2014) show that this channel dominates the thermonuclear SN rate between 40

Myr and 200 Myr (above which traditional SNe Ia dominate). This has been observed

in several binary population synthesis studies (Ruiter et al. 2009, 2011; Wang et al.

2009a,b; Meng & Yang 2010; Piersanti et al. 2014; Liu et al. 2015). Liu et al. (2010)
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present a model (originally intended to explain a different kind of system) that begins

with a 7 M⊙ + 4 M⊙ binary system that undergoes two phases of mass transfer and

common envelope evolution, before resulting in a 1 M⊙ C/O WD + 2 M⊙ He star. As

the He star evolves, it again fills its Roche lobe and begins stable mass transfer onto

the white dwarf that could lead to the SN Iax. The high accretion rate involved in this

process mean that total delay time is dominated by the stellar evolution timescale of

the secondary, giving short expected delay times for these models.

In this work, we employ Bayesian Monte Carlo methods to fit isochrones to

the stellar populations around SNe Iax, in order to accurately measure the DTD of this

class of SNe. With a sample of nine SNe Iax, we constrain the ages of these systems at

the time of explosion.

Li et al. (2018) examine the location of SNe Iax in their host galaxies, and

find that they tend to occur at much larger projected radii as compared to SNe Ia. The

authors perform a Kolmogorov-Smirnov test to compare the fractional host galaxy fluxes

at the explosion sites for SNe Iax, SNe Ia, and SNe Ib/Ic. They find strong evidence

that SNe Ia and SNe Iax are drawn from different populations, while also finding that

they cannot reject the hypothesis that SNe Iax and SNe Ib/Ic are drawn from the same

fractional host galaxy flux distribution. Taken together with the metallicity information,

this suggests that the delay-time for SNe Iax might be much more similar to those of

core-collapse SNe than the delay-times measured for SNe Ia.

This chapter is structured in the following way. In Section 4.2, we describe the

observations used in this study, and the methods to extract photometry of the stellar
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populations near each SN. In Section 4.3, we detail the Bayesian Monte Carlo methods

used to probabilistically determine the ages of these stellar populations. We discuss the

particulars of each SN individually in Section 4.4, describing the priors used in the fit

and the resulting posterior distributions. In Section 4.5, we discuss the overall properties

of the measured DTDs for this sample of SNe Iax, and describe how our results compare

to theoretical models for this class of SN.

4.2 Observations and Data Reduction

4.2.1 Sample Selection

Our sample is composed of all SNe Iax with HST imaging of their host galaxies

that can sufficiently constrain the age of the stellar population at the SN position. Four

SNe in the sample (SNe 2008ge, Pignata et al. 2008; 2008ha, Foley et al. 2009; 2010ae,

Pignata et al. 2010; and 2010el, Monard 2010) were specifically targeted for this purpose

as part of HST program GO-12999. At the time of that program, these were the four

closest SNe Iax (all withD ≲ 20 Mpc) where we expected to be able to resolve individual

stars in the images. These four objects were observed with the Advanced Camera

for Surveys Wide Field Channel (ACS/WFC), with the F435W, F555W, F625W, and

F814W filters. These bands were chosen because they provide good colors for observing

broad spectral types, and their spectral range enables one to correct for extinction due

to dust in the local environment.

In the time since 2013, we have searched the HST archive for other SNe Iax

with high quality data (wide spectral range and long exposures) of their stellar neigh-
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borhoods. This search added SNe 2008A (GO-11590: Jha, S.), 2011ay (GO-15166:

Filippenko, A.), 2012Z (GO-10497: Riess, A.; GO-10711: Noll, K.; GO-10802: Riess,

A.; and GO-13757: Jha, S.), 2014ck (GO-13029: Filippenko, A.), and 2014dt (GO-

13683: Van Dyk, S.; GO-14779: Graham, M.) to our sample. Two of these objects

have ACS/WFC imaging, with SN 2012Z imaged in the F435W, F555W, and F814W

bands, and SN 2008A imaged in the F555W, F625W, and F775W bands. SN 2011ay

and SN 2014ck each have Wide Field Camera 3 (WFC3) imaging, in the F555W and

F814W bands, and the F625W and F814W bands, respectively. Additional imaging

of SNe 2010el was added in this search (GO-13364: Calzetti, D.; GO-13816: Bentz,

M.; GO-14668: Filippenko, A.; and GO-15133: Erwin, P.). Finally, our 2015 follow-up

HST program for SN 2008ha (GO-14244: Foley, R.) provided additional imaging in the

F435W and F814W filters.

Our complete sample of SNe Iax contains all observed SNe Iax within 35 Mpc,

for which HST host galaxy imaging is deep enough to find strong constraints on pro-

genitor age. In addition, two more distant SNe (2008A and 2011ay) are included in

the sample, thanks to the abundance of HST imaging of their host galaxies. In these

cases, the images are generally deeper and the SNe are isolated, allowing us to apply

our analysis method to these data. SNe 2008A, 2008ge, 2008ha, 2010ae, 2010el, 2011ay,

2012Z, 2014ck, 2014dt compose our sample. The complete list of data can be found in

Table 4.1. Of these, previous works have found constraints on the progenitors of SNe

2008ge, 2008ha, and 2012Z. These constraints were achieved through pre-explosion HST

imaging of the sites of SNe 2008ge (Foley et al. 2010b) and 2012Z (McCully et al. 2014a),
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and post-explosion imaging of the site of SN 2008ha (Foley et al. 2014), with claims of

detections of either the remnant, or the probable donor star for both SN 2008ha and

SN 2012Z.

Note that for host galaxy distances which are measured using redshift, we

assume H0 = 73.24 ± 1.74 km Mpc−1 s−1 (Riess et al. 2016). The distances to each

object, as well as the methods with which these distance were measured, can be found in

Section 4.4. Additionally, the Milky Way reddening is assumed to follow the extinction

maps of Schlafly & Finkbeiner (2011), using Rv = 3.1 (Cardelli et al. 1989). This

reddening is applied to all simulated data to match the observations.

4.2.2 Data Reduction

To build catalogs from the HST observations, we use a custom pipeline written

primarily in Python1. The pipeline initially registers the astrometry to a ground-based

image which has a wider field of view than the HST images. The World Coordinate

System (WCS) from the ground-based image is considered to be the global astrometric

solution. This stage typically produces a precision of ∼ 0.05′′ which corresponds to

roughly one HST pixel for ACS.

Ground Based Data

We use ground based images for astrometric alignment of the HST images

of SNe 2010ae, 2010el, and 2011ay. The HST images of SN 2011ay are aligned to

photometry from the 1.2 m telescope at the F. L. Whipple Observatory (Foley et al.

1https://github.com/cmccully/snhst
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2013). Images of SNe 2010ae and 2010el were obtained on 2011 March 6 UT with the

IMACS spectrograph (Dressler et al. 2011) on the Magellan Baade 6.5 m telescope,

roughly 1 year after discovery for each SN. For SN 2010ae, we obtained two 120-second

dithered pairs of 1×1-binning images in griz. SN 2010el had similar observations, except

we obtained three images in irz.

The images were reduced using the photpipe data-reduction pipeline (Rest

et al. 2005, 2014). All CCD images are de-biased, trimmed, and masking was applied

to bad pixels and columns. The mask is propagated through all subsequent reduction

stages. All science images are flat-field-corrected using dome flats. The transformation

between the local image pixel coordinate system and the FK5 World Coordinate System

is dominated by optical distortions that are well described by a low-order polynomial

in radius from the field center. We determined these polynomial terms from images

of dense field using the IRAF task msctpeak. The distortion terms were then used in

combination with the IRAF task msccmatch to derive a WCS solution for each image,

with 2MASS as the reference catalog. Finally, we used the astrometric solution and

the SWarp (Bertin et al. 2002) package to re-sample each image to a common pixel

coordinate system using a flux-conserving, Lanczos-windowed sinc kernel. The fully

reduced images were then used as the astrometric reference for the HST images. These

astrometric solutions yield a precision of ⪅ 0.15′′.

HST Data

In this study, we align to other HST images for SN 2008A (McCully et al.

2014a), SN 2008ge (Foley et al. 2010a), SN 2008ha (Foley et al. 2009), SN 2012Z (Mc-
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Cully et al. 2014b), SN 2014ck (Tomasella et al. 2016), and SN 2014dt (Foley et al.

2015). For these objects, the precision is better than 0.05′′ (one HST pixel).

After solving for the global WCS, we refine the registration between individual

exposures, starting from the flat-fielded frames from the MAST archive2. For ACS and

WFC3, we use the FLC frames that have been corrected for charge-transfer inefficiency

(CTI) using the pixel-based method (Anderson & Bedin 2010). Cosmic rays are re-

jected from the individual frames using Astro-SCRAPPY3 before the registration process

to alleviate false positives in the catalog matches. After doing a coarse registration

between HST visits by hand, the pipeline uses TweakShifts from Drizzlepac4 (STSCI

Development Team 2012) to refine the offsets between frames.

Once the registration is completed, we combine the exposures using Astrodrizzle

adopting standard values for the parameters4. We include the cosmic-ray step in

Astrodrizzle to do final cosmic-ray rejection. For cases that we have more than 4

individual exposures in the same filter for a target, we subsample the pixel grid and

decrease the drizzle pixel coverage fraction to 0.8.

To build the final catalogs, we run DOLPHOT, a modified version of HSTPhot

(Dolphin 2000), using the drizzled image as a coordinate reference. DOLPHOT runs on

the individual flat fielded frames and stacks the photometry to produce the final cat-

alog, including all point sources across the entirety of each image. We again use the

CTI-corrected FLC frames for ACS and WFC3/UVIS. For WFPC2, we use the CTI

correction built into DOLPHOT. DOLPHOT includes its own image registration stage which

2https://archive.stsci.edu/
3https://github.com/astropy/astroscrappy
4https://drizzlepac.stsci.edu
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generally produces a scatter of ∼ 0.01.′′ Finally, we inject artificial stars using DOLPHOT

to estimate the brightness limit of our images.

4.2.3 Star Selection

Using the DOLPHOT output from the image combined across filters, we apply the

recommended cuts in sharpness (¡0.3), roundness (¡1), and crowding (¡0.1), along with a

minimum signal-to-noise ratio of 3.5. Though this removes most non-stellar detections,

there remain a number of clusters and bright clumps of gas which are selected as stars

by DOLPHOT. As such, for each region surrounding a SN, every detected source within

the region is checked by eye to ensure that it has a point spread function indicative of

a single stellar source. This allows us to remove gas clumps from our catalogues.

As the human eye struggles to distinguish distant clusters from stars in the

galaxy under examination, another method is used to make this distinction. Aperture

photometry is performed using IRAF in order to determine a concentration parameter

for each source (Chandar et al. 2010). The concentration parameter gives the difference

in measured F555W (or a similar band) magnitude between when a 3 pixel aperture

is used, and when a .5 pixel aperture is used. By separating on this concentration

parameter, as detailed in Chandar et al. (2010), we remove the extended sources from

our sample, leaving us with only sources that have a high likelihood of being stars.

In order to check that this cut on the concentration parameter does not bias the

results of this study, the full analysis is performed without computing the concentration

parameter. While this new analysis does give slightly different values of delay-time for an

individual SN, the delay-time distribution for all of the objects together is qualitatively
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similar to that of the standard analysis. This indicates that the concentration cut is not

biasing our results, so we follow the literature, and use the analysis with a concentration

cut for the remainder of this study.

4.3 Isochrone Fitting Method

In order to determine the age of a supernova progenitor in in post-explosion

host galaxy images, we assume a star formation history (SFH) characterized by a dom-

inant star formation event for the region in which the progenitor system formed. We

also assume a typical scale within which we can reasonably expect nearly every star

examined to have a shared SFH. Past work has indicated that this radius is anywhere

from 50 pc to 200 pc (Bastian & Goodwin 2006; Eldridge et al. 2011; Williams et al.

2014; Foley et al. 2014; Maund & Ramirez-Ruiz 2016; Maund 2017, 2018). To account

for this uncertainty, we consider all stars within a 200 pc projected on-sky radius of the

SN position, weighting the stars according to their probability of being associated with

the SN.

To estimate the probability of association as a function of on-sky distance, we

build a probability distribution as follows. We first assume a flat initial distribution of

stars within 100 pc of the SN, to represent the cluster at the time of formation. We then

assume a velocity dispersion of 0.65 km/s (Geller et al. 2009), multiplied by the age of

the cluster (in this case the delay-time being tested), to model the cluster spreading out

over time. To “apply” this spreading effect to the initial flat distribution, we convolve the

two distributions. This convolution of the two distributions gives us a rough probability
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of association with the SN as a function of projected physical distance. This probability

function is used to weight the stars within 200 pc, with the higher probability stars

receiving a higher weight in the fitting scheme. We fit a single stellar population model

to each of these populations.

Geller et al. (2009) quotes a velocity dispersion for clusters of 0.65±0.10 km/s.

To account for this uncertainty, we run our complete analysis using dispersions of 0.55

km/s, 0.65 km/s, and 0.75 km/s. Each of these choices ultimately leaves the final PDF

in delay time largely unchanged. For this reason, we use the median value of 0.65 km/s

in all the analyses that follow.

Maund (2017) uses a similar technique to age the stellar population around

the positions of 12 Type IIP SNe. In that chapter, however, they fit to multiple stellar

populations for each SN, allowing for multiple bursts of star formation in the SFH. In

this study, we choose to only fit a single stellar population around each SN, as the errors

in magnitude and color for our detected stars are large enough that fitting to multiple

populations would result in overfitting.

4.3.1 Color Magnitude Diagrams

To date the regions around the SNe, we use the magnitudes and colors derived

using DOLPHOT to place each star on a color magnitude diagram (CMD). We then overplot

the MIST synthetic photometry isochrones (Paxton et al. 2011, 2013, 2015; Dotter 2016;

Choi et al. 2016), corrected for distance, metallicity, and extinction. We test isochrones

in the age range 106.5 to 108.5 years. These isochrones assume single stellar evolution,

and standard rotation ( v
vcrit

= 0.4). For metallicity and extinction, we test the 2-σ range
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from our priors. One sigma errors in distance and internal (host galaxy) reddening are

propagated through to color and magnitude, added in the appropriate way and displayed

in CMDs as shaded regions.

One limitation of our method is that we use isochrones for single stellar mod-

els, even though we expect that the stellar populations which we are examining will

feature both single and binary stellar systems. To resolve this, one could perform a

similar analysis to ours, using binary stellar models, such as those presented by the

Binary Population and Spectral Synthesis (BPASS) group (Eldridge et al. 2017). This

is unlikely to have a major effect on the results of this study, as we focus on the bright-

est stars in the region surrounding a SN. These brightest stars see minimal differences

between single and binary stellar models, with the primary differences arising from color

changes, rather than overall luminosity. As magnitude plays a larger role than color in

our fitting procedure, this should have only a minor effect on our results.

4.3.2 Isochrones

In order to fit the synthetic photometry isochrones to the detected stars ac-

curately and with well understood errors, a hierarchical Bayesian framework is used

to create a new statistic to measure the goodness of fit5 between the isochrones and

the detected stars. Monte Carlo methods are then used to translate this statistic into a

probability that the stellar population was drawn from the isochrone. This is performed

for each isochrone, generating a probability distribution for the data as a function of

system age, metallicity, host galaxy extinction, and distance to host galaxy. The re-

5https://github.com/TTakaro/Type-Iax-HST
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sulting probability distributions are then marginalized over three of these variables, to

obtain a one dimensional probability distribution as a function of stellar population age.
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Table 4.1: The list of observations used in this study. The data can be found here: http://dx.doi.org/10.17909/t9-qr61-xb59

SN Host Distance Instrument Filters Exposures Total Exposure Observation Date
Name Galaxy (Mpc) per Filter Lengths (sec) (UTC)

2008A NGC 624 51.5± 11.0 ACS/WFC F555W, F625W, F775W 6, 6, 4 3750, 3530, 2484 08/18/2009

” ” ” WFC3/IR F110W 12 8336 08/18/2009

2008ge NGC 1527 17.37± 0.96 ACS/WFC F435W, F555W 2 1168, 768 10/26/2012

” ” ” ” F625W, F814W 2 844, 1244 ”

2008ha UGC 12682 21.3± 1.5 ACS/WFC F435W, F555W 2 9068, 764 01/2013, 12/2015

” ” ” ” F625W, F814W 2 840, 12058 ”

2010ae ESO 162.17 11.09± 1.02 ACS/WFC F435W, F555W 2 1402, 1002 05/23/2014

” ” ” ” F625W, F814W 2 1078, 1478 ”

2010el NGC 1566 5.63± 1.12 ACS/WFC F435W, F555W 2 1168, 768 05/23/2013

” ” ” ” F625W, F814W 2 844, 1244 ”

” ” ” WFC3/UVIS F275W, F336W, F438W 3, 3, 3 2382, 1119, 965 09/2013, 07/2015

” ” ” ” F555W, F814W 5, 5 1853, 1769 08/2017

2011ay NGC 2315 87.4± 6.4 WFC3/UVIS F555W, F814W 2 780, 780 01/20/2018

2012Z NGC 1309 31.92± 0.88 ACS/WFC F435W, F555W, F814W 8, 10, 10 9624, 12642, 12868 09/2006

2014ck UGC 12182 24.32± 1.69 WFC3/UVIS F625W, F814W 2 510, 680 02/22/2013

2014dt Messier 61 19.3± 0.6 WFC3/UVIS F275W, F438W 2, 20 858, 400 02/2017, 11/2014
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In analogy to a Chi-squared fit, this statistic (which we will hereafter call IGoF

for “Isochrone Goodness of Fit”) measures the minimized magnitude difference in each

filter between the stars detected and the isochrone under consideration. The magnitude

difference in each filter is then summed in quadrature. Summing over each detected star,

IGoF gives a total distance from the stars to the isochrone in n-dimensional magnitude

space, where n is the number of filters. As described in the previous section, each star

is weighted in IGoF according to its projected physical distance from the SN, and thus

its likelihood of forming simultaneously with the SN progenitor system. This statistic

was selected in part because of its qualitative similarity to a Chi-squared fit, allowing

for relatively intuitive analysis.

The equation for IGoF is shown below.

IGoF =

√
∑

i PhysDisti ·min(
∑

k(mik −mIso.,k)2)
∑

i PhysDisti
, (4.1)

PhysDist = U(min = 0pc,max = 100pc)⊛ (4.2)

N(µ = 0, σ = 0.65
km

s
·Age),

where i specifies a given star, k specifies a given filter, mik is the magnitude of a given

star in a filter, mIso,jk is the magnitude drawn from the isochrone, adjusted for distance,

milky way reddening, and host galaxy reddening. PhysDisti is the weight given to the

star i according to its physical distance from the SN. As detailed in section 4.3, this
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weight is the convolution of a flat distribution, and a normal distribution, evaluated

at the on-sky distance measured between star i and the SN. Because a cluster of stars

disperse as the cluster ages, this weighting function will have a different shape at different

ages. Thus, PhysDisti is a function of two variables – the distance of the star from the

SN (a measured constant) and the age of the cluster (a fit parameter).

To translate the measured value of IGoF for an isochrone into a relative proba-

bility that the observed stars match the isochrone, careful forward modeling is required.

A set of artificial stars equal in number to the detected stars are generated from each

isochrone, drawn from normal distributions in flux space using the characteristic flux

error from the detected stars in the host galaxy image. These stars are given radial

distances on the sky generated from the expected radial distribution of stars in a cluster

of a given age. This is the same radial distribution used to weight the observed stars in

the IGoF, and is solely dependent on the cluster age parameter (the isochrone age). An

IGoF value is then measured for the set of artificial stars. This process is repeated 5000

times for each isochrone, until the histogram of IGoF values converges to a probability

distribution. This probability density function (PDF) gives a probability of measuring

a value of IGoF, given the chosen age, metallicity, and host galaxy reddening associated

with the isochrone. Using this isochrone PDF, the values of IGoF measured from the

data are translated into values of relative probability for each isochrone. These relative

probabilities are then normalized to determine a relative probability distribution in age,

metallicity and host galaxy extinction for each SN. We then marginalize over metallicity

and host galaxy extinction in order to extract the one dimensional age distributions for
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each object.

Further details of our method, including the likelihood function used in the

isochrone fitting scheme are shown in Appendix 4.7.1.

4.3.3 False Star Tests and Photometric Completeness

To determine the completeness of our photometry, we perform false star recov-

ery tests using the false star tool in DOLPHOT. For host galaxy image, we insert 50,000

stars with magnitudes covering the whole range of measured magnitudes, and with x-y

positions covering the entirety of the region around the SN. Using the results of the

false star runs in DOLPHOT and binning with 0.1 mag resolution, we calculate a recovery

fraction as a function of magnitude for each host galaxy image. We then apply this

recovery fraction to the artificial stars generated while calculating IGoF in the process

mentioned above.

In several of the imaged SN host galaxies, no stars are detected within 200 pc

of the SN position. In order to get an upper bound on the age of the progenitor star

for these SNe, we use the recovery fraction calculated using false star testing. From

this recovery fraction function, we determine a limiting magnitude of detection in the

image, by requiring that 90% of inserted stars be recovered for each magnitude bin

above our limiting magnitude. We then simulate the effects of a 50M⊙ open cluster

(Lada 2010 find 50M⊙ to be the most common open cluster mass) at the position of

the SN under consideration, drawing stars from a Kroupa Initial Mass Function (IMF)

(Kroupa 2001) until we reach the total cluster mass. If any of these drawn stars have

brightnesses above our limiting magnitude given the isochrone we are considering, we
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rule out the associated age, metallicity, and reddening combination for this SN. By

repeatedly performing this analysis for each isochrone, we establish a 3−σ lower bound

on the age of each SN progenitor system for which we detect no nearby stars (SNe

2008A, 2008ge, and 2011ay).

4.4 Analysis of Individual Objects

The objects in our sample and the associated data used for this study are listed

in Table 4.1.

4.4.1 SN 2008A

SN 2008A was discovered in NGC 624 (Nakano et al. 2008), at an estimated

Tully-Fisher distance of 51.5 ± 11.0 Mpc (Theureau et al. 2007). For this object, we

assume no host galaxy extinction, as the SN is located on the fringes of it’s host galaxy

(Lyman et al. 2018). The metallicity for this object is difficult to measure (Lyman et al.

2018), so we use solar metallicity as our prior (Asplund et al. 2009). For additional

analysis of SN 2008A, see e.g., Milne et al. (2010), Hicken et al. (2012), McCully et al.

(2014b), and Foley et al. (2016).

In our photometric analysis, we find no stars within 200 parsecs of the SN

position. As such, we use the false stars method of DOLPHOT to set a lower limit on the

delay time for this object. This analysis measures a minimum delay time for SN 2008A

of Age08A ≥ 6 Myr.
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4.4.2 SN 2008ge

SN 2008ge was discovered in NGC 1527 (Pignata et al. 2008), at an estimated

Tully-Fisher distance of 17.37±0.96 Mpc (Tully et al. 2013). We assume no host galaxy

extinction for this object (Foley et al. 2010b). For this object, we also use a solar

metallicity prior (Jorgensen 1997).

In our photometric analysis, we find no stars within 200 parsecs of the SN

position. As with SN 2008A, we use the false stars method of DOLPHOT to set a lower

limit on the delay time for this object. From this analysis, we find Age08ge ≥ 18 Myr.

4.4.3 SN 2008ha

SN 2008ha was discovered in UGC 12682 (Puckett et al. 2008), which has an

redshift-derived distance of 21.3 ± 1.5 Mpc (Foley et al. 2014). Lyman et al. (2018)

report a metallicity of [Fe/H] = −0.78 ± 0.09 in the region directly around the SN.

Additionally, Foley et al. (2014) report no indication of host extinction in the region

around the supernova. For more information on SN 2008ha, see e.g., Valenti et al.

(2009), Foley et al. (2009), Pumo et al. (2009), Fryer et al. (2009), Foley et al. (2010a),

Stritzinger et al. (2014), and Foley et al. (2016). Our analysis uses 16 stars in the

vicinity of SN 2008ha to perform the isochrone fitting.

Using the measurement from Lyman et al. (2018) as a prior, metallicity is

allowed to float between [Fe/H] = −0.50 and −1.00. Our fitting algorithm returns a

metallicity posterior which is slightly skewed towards solar metallicity, as compared

to the prior. Our fits show no preference for any host galaxy reddening for the stars
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around the SN, consistent with the literature (Foley et al. 2014). Finally, the posterior

distribution for distance from observer to host galaxy nicely matches the prior distribu-

tion. This is true for all of the SN fit in this sample, and is thus not mentioned again.

Marginalizing over metallicity, we measure the delay time for SN 2008ha of 52+13
−9 Myr.

The full probability distribution in delay time is shown in Figure 4.1.

4.4.4 SN 2010ae

SN 2010ae was discovered in ESO 162-17 (Pignata et al. 2010), which is de-

termined using the Tully-Fisher relation to be 11.09 ± 1.02 Mpc away (Tully et al.

2013). Lyman et al. (2018) report a metallicity of [Fe/H] = −0.43 ± 0.06 in the re-

gion directly around the SN. A high (though uncertain) upper limit on host extinction

of E(B − V )host = 0.50 ± 0.42 mag is reported in the region around the supernova

(Stritzinger et al. 2014). Additional information on SN 2010ae can be found in e.g.,

Foley (2013) and Foley et al. (2016). We find 11 stars in the vicinity of SN 2010ae,

which we use for our isochrone fitting.

We use Gaussian priors for both metallicity and host-galaxy extinction. The

posterior distribution in extinction is skewed towards low extinction values, with a strong

preference for E(B − V )host ≤ 0.36 mag. The posterior distribution in metallicity on

the other hand is completely consistent with the prior distribution. Marginalizing over

both metallicity and host-galaxy extinction, we find a delay time of 117+19
−29 Myr for

SN 2010ae. The full probability distribution for the age of the progenitor is shown in

Figure 4.2. The measured probability distribution in age has two peaks, one at 9 Myrs,

the other at 110 Myrs. This is likely indicative of two separate stellar populations at
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Figure 4.1: From left to right and top to bottom: a) UGC 12682 with a box with side
lengths of 400 pc centered on SN 2008ha. b) The 200 pc radius around SN 2008ha,
with the stars used in this study circled. Stars in red are closest to the SN position,
followed by those in green, then those in blue. c) A color-magnitude diagram with each
of the stars plotted, along with the isochrone for 50 Myr. Error bars are not shown for
the blue stars, to avoid overcrowding the diagram. The reddening vector in the upper
left shows the direction in which the isochrone would move if there were non-negligible
host galaxy extinction. d) The probability distribution for the age of the SN 2008ha
progenitor.

111



the explosion site of SN 2010ae, either of which may have been associated with the

SN. Providing further evidence for two separate stellar population in the area is the

preferred host galaxy extinction values for the isochrone fit. The younger peak favors

high values for extinction, while the older peak favors lower values, indicating that the

younger population is in the background as compared to the older, as its light passed

through more dust. Additionally, the metallicity prior for this population likely slightly

skews our analysis towards lower ages, as the prior comes from strong emission line

ratios. This could serve to overstate the probability of the younger peak as compared

to the older peak in our final PDF.

The probability distribution in delay time that we measure for this object is

particularly illuminating, as it demonstrates that our method is able to recover the

short delay times that we would expect from a WR progenitor scenario. The young

stars around SN 2010ae are likely a stellar population that is unrelated to the SN

progenitor, but our detection of this population indicates that our analysis pipeline is

working correctly.

4.4.5 SN 2010el

SN 2010el was discovered in NGC 1566 (Monard 2010), at a Tully-Fisher dis-

tance of 5.63 ± 1.12 Mpc (Tully et al. 2013). Lyman et al. (2018) report a metallicity

of [Fe/H] = 0.16 ± 0.07 at the site of the SN. No precise measurement is available of

the host galaxy extinction in the region around the SN, though a measurement of the

extinction of the galaxy at large has been measured to be E(B − V )host = 0.205 mag

(Gouliermis et al. 2017). We use 46 stars in the vicinity of SN 2010el to perform our
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Figure 4.2: From left to right and top to bottom: a) ESO 162-17 with a box with side
lengths of 400 pc centered on SN 2010ae. b) The 200 pc radius around SN 2010ae, with
the stars used in this study circled. c) A color-magnitude diagram with each of the
stars plotted, along with the median age isochrone of 116 Myr. Stars in red are closest
to the SN position, followed by those in green, then those in blue. d) The probability
distribution in age for the SN 2010ae progenitor.

113



isochrone fitting.

Though we analyse both ACS/WFC data and WFC3/UVIS data for this ob-

ject, DOLPHOT is better able to identify stars in the ACS/WFC data. As such, our

ACS/WFC data is far more discernining than the WFC3/UVIS data which we analyze.

For this reason, the PDF in age for this object is determined from the ACS/WFC data.

All of the analysis for SN 2010el that follows is based on this ACS/WFC data.

We use the metallicity estimate for the SN as a prior, while assuming a flat

prior of 0 ≤ E(B − V )host ≤ 0.205 mag for the extinction. Our posterior in metallicity

is consistent with the prior, showing a slight preference towards higher metallicity. Our

posterior in host galaxy extinction shows a strong preference for non-zero extinction,

with the preferred value of E(B − V )host = 0.205 mag. When we marginalize over

metallicity and host-galaxy extinction, we find a delay time of 53+5
−6 Myr for SN 2010el.

The age probability distribution is shown in Figure 4.3.

4.4.6 SN 2011ay

SN 2011ay was discovered in NGC 2315 (Blanchard et al. 2011), to which we

measure a distance of 87.4±6.4 Mpc, derived from the galaxy’s redshift (Miller & Owen

2001). Using the measured metallicity gradient for NGC 2315, we infer a metallicity of

[O/H] = −0.19± 0.20 (Lyman et al. 2018). The SN has a relatively large offset from its

host galaxy, with the SN occurring in a rather empty environment. As such, we assume

no host extinction as our prior. For more detailed analysis of SN 2011ay, see White

et al. (2015), Szalai et al. (2015), Foley et al. (2016), and Barna et al. (2017).

As with SN 2008A and SN 2008ge, in our photometry of NGC 2315, we find
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Figure 4.3: From left to right and top to bottom: a) NGC 1566 with a box with side
lengths of 400 pc centered on SN 2010el. b) The 200 pc radius around SN 2010el, with
the stars used in this study circled. c) A color-magnitude diagram with each of the
stars plotted, along with the best fitting isochrone for 53 Myr. Stars in red are closest
to the SN position, followed by those in green, then those in blue. d) The probability
distribution in age for the SN 2010el progenitor.
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no stars within 200 parsecs of the SN location. We perform the same false star tests as

with these two objects, in the hope of getting a lower limit on the delay time. However,

because of the great distance to NGC 2315, our method cannot rule out any of the

isochrones considered in this study.

4.4.7 SN 2012Z

SN 2012Z was discovered in NGC 1309 (Cenko et al. 2012), which is determined

to be 31.92 ± 0.88 Mpc away (Riess et al. 2016), using the Cepheid distance method.

Lyman et al. (2018) report a metallicity of [Fe/H] = −0.43 ± 0.08 at the site of the

SN, in agreement with metallicity gradient that they measure. Host galaxy reddening is

estimated to be E(B−V )host = 0.07±0.03 mag using Na I and K I doublets (Stritzinger

et al. 2015). More information on SN 2012Z can be found in e.g., McCully et al. (2014a),

Yamanaka et al. (2015), and Foley et al. (2016). We use 10 stars in the vicinity of SN

2012Z to perform our isochrone fitting.

Using these measurements as Gaussian priors, we fit for both metallicity and

host galaxy extinction. In each case, the calculated posterior is consistent with the

prior, showing a slight preference for metallicity and host reddening on the upper end

of the ranges given in the literature. Marginalizing over metallicity and extinction, we

measure a delay time of 61+13
−11 Myr for SN 2012Z. The full probability distribution in

age is shown in Figure 4.4.
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Figure 4.4: From left to right and top to bottom: a) NGC 1309 with a box with side
lengths of 400 pc centered on SN 2012Z. b) The 400 pc box around SN 2012Z, with the
stars used in this study circled. c) A color-magnitude diagram with each of the stars
plotted, along with the isochrone for 56 Myr. Stars in red are closest to the SN position,
followed by those in green, then those in blue. d) The probability distribution in age
for the SN 2012Z progenitor.
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Figure 4.5: From left to right and top to bottom: a) UGC 12182 with a box with side
lengths of 400 pc centered on SN 2014ck. b) The 200 pc radius around SN 2014ck, with
the stars used in this study circled. c) A color-magnitude diagram with each of the
stars plotted, along with the isochrone for 113 Myr, corresponding to the median of the
distribution. Stars in red are closest to the SN position, followed by those in green, then
those in blue. d) The probability distribution in age for the SN 2014ck progenitor.
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4.4.8 SN 2014ck

SN 2014ck was discovered in UGC 12182 (Masi et al. 2014), which is determined

to be 24.32±1.69 Mpc away (Tomasella et al. 2016), based on its redshift. Taddia et al.

(2015) report a metallicity of [Fe/H] = −0.51 ± 0.26 at the site of SN 2006fp, which

is also located in UGC 12182, at roughly the same projected distance from the galaxy

nucleus. The host galaxy extinction is estimated to be E(B − V )host ≤ 0.05 mag,

determined using the Na I absorption line (Tomasella et al. 2016). We use 20 stars in

the vicinity of SN 2014ck to perform our isochrone fitting.

These measurements are used as priors, with the metallicity and host galaxy

extinction then fit and the posterior in metallicity and extinction measured. Our poste-

rior in metallicity is peaked around the same value as the prior, though with noticeably

thinner tails, indicating that our data show a strong preference for [Fe/H] = −0.51.

Our data also indicate no preference for higher extinction, showing consistency with

E(B−V )host = 0 mag. Marginalizing over both metallicity and extinction, we measure

a delay time of 113+21
−25 Myr for SN 2014ck. The full age probability distribution is shown

in Figure 4.5.

4.4.9 SN 2014dt

SN 2014dt was discovered in Messier 61 (Ochner et al. 2014) at a distance of

19.3±0.6 Mpc (Rodŕıguez et al. 2014) from our Milky Way galaxy. Lyman et al. (2018)

report a metallicity of [Fe/H] = 0.16± 0.07 at the explosion site of SN 2014dt, in rough

agreement with the metallicity of [Fe/H] = −0.01 reported in Foley et al. (2015). Foley
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et al. (2015) also report no indications of host-galaxy reddening at the site of the SN.

We adopt these as priors for our fit.

Our method finds no likely stars within 200 pc of the SN. Performing the false

star analysis described in Section 3.3, we are unable to confidently rule out any ages

that we test.

4.5 Discussion

4.5.1 Summary of Data Used in Analysis

Our final analysis relies on seven SNe, including five with full probability dis-

tributions in delay-time. These five SNe are SN 2008ha, SN 2010ae, SN 2010el, SN

2012Z, and SN 2014ck. To find the populations around these SNe, we use 16, 11, 46,

10, and 20 stars respectively. The two SNe for which we have useful lower limits on

delay-time are SN 2008A and SN 2008ge.

4.5.2 Verification of Fitting Method

As mentioned earlier, the probable progenitor star for SN 2012Z has previously

been detected (McCully et al. 2014a), while a progenitor search for SN 2008ha has

yielded strong limits on the delay time for this object (Foley et al. 2014). In Foley

et al. (2014), the authors also fit Padova isochrones to the stars directly surrounding

the probable remnant of SN 2008ha, to measure an approximate delay-time for the SN.

They find a 1-σ confidence interval on the age of the system of 55+13
−10 Myr. Using our

isochrone fitting method, we find a 1-σ confidence interval of 52+13
−9 Myr, in excellent
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agreement with the literature. In McCully et al. (2014a), the authors similarly fit

isochrones by eye to the stars surrounding the possible progenitor of SN 2012Z, deriving

a best fitting age range of 10 - 42 Myrs. With our analysis, we find a 1-σ confidence

internal of 61.0+13
−11 Myr. This disagreement is only at the ∼ 1σ level and likely comes

from the fact that McCully et al. (2014a) used several sources in close proximity to the

SN in their fit, which our analysis rejects as being too extended to confidently classify

as stars. Our fit instead relies on sources which are further from the SN, but which are

more likely to truly be stars. This new preference for higher ages now strongly suggests

that SN 2012Z is not consistent with a WR progenitor system.

4.5.3 Comparisons Between Objects

We check for correlations between delay time and peak luminosity, and between

delay time and metallicity (as (Liu et al. 2015) suggest). Our peak luminosities are taken

from the Open Supernova Catalog (Guillochon et al. 2017), while our metallicities are

the priors used for our fitting (citations listed above). For this check, we perform

Pearson r-tests to measure the strength of a correlation (or anti-correlation) between

our measured delay time and either metallicity or peak luminosity. We find r values

very close to zero in each case, indicating no statistically significant correlations.

Though SN 2008ge is unique in its host galaxy characteristics, it does not

appear to stand out in this study. Instead, we find that the lower limit which we

measure from SN 2008ge is completely consistent with the measured DTDs of all but

one of the SN in our study. The DTD for SN 2010ae is double peaked, showing two

stellar populations. The older of these two populations is consistent with the lower
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bound from SN 2008ge, though the younger population is not. Because of this broad

agreement between SN 2008ge and the sample at large, for the purposes of this study

SN 2008ge appears to belong to the class of “standard” SNe Iax. SN 2014ck has also

been called an outlier among SNe Iax due to its observed properties (Tomasella et al.

2016). However our analysis does not find that its delay time in significantly different

from the delay times of the rest of our sample.

4.5.4 SN 2014dt Progenitor Mass Limit

The false star tests that we perform for SN 2014dt give us a 3− σ magnitude

limit of 24 mag in the F438W filter. Though this is not sufficient to rule out any

isochrones that we test, it is sufficient to rule out single stars more massive than 19.5M⊙

at the distance of the host galaxy of SN 2014dt. Using MESA single stellar evolution

models of the appropriate metallicity, this roughly corresponds to a lower limit on the

delay time for this particular object of 10 Myrs. Because this limit is not derived using

the same methods as the rest of the study, we do not include the limit in the rest of the

analysis.

4.5.5 Empirical Measurements

If we assume that all SNe Iax that we consider in this study share a progenitor

channel, we can make strong statistical statements about the delay-time distribution

of SNe Iax at large. The probability density function (PDF) for each SN, and the

summed PDF (unnormalized for clarity in the figure) are shown in Figure 4.6. Taking

only the SNe for which a full DTD can be measured (ignoring lower limits), we find a
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Figure 4.6: The probability density functions (PDFs) for each SN considered in this
study. The “Summed Probability” is the sum of the PDF for each object in the study.
As such, it is normalized to 5 (the number of objects in the sample with defined PDFs).
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median delay time and 1−σ confidence interval of 63+58
−15 Myrs. The data show a strong

preference for a delay time peaked near 55 Myrs, with the PDFs for three SNe peaking

within 6 Myrs of 55 Myrs. SN 2014ck and SN 2010ae on the other hand, represent the

long tail of the distribution to higher ages, with the medians of their DTDs at 113 Myr

and 117 Myr respectively.

If we then draw groups of 5 SNe (the number of SNe Iax in the summed PDF)

from our summed PDF and fit power-law decay models to the result in an MCMC

fashion, we find the posterior distribution in Figure 4.7. This is done using emcee

(Foreman-Mackey et al. 2013) with a flat prior on the cutoff age (0 to 100 Myr) and an

inverse-gamma prior with a peak at -1 for the decay exponent. The resulting form of

this power-law decay is then described by Equation 2.

p(t) =















0 t < a Myrs,

t−b t >= a Myrs.

(4.3)

The distributions of the cutoff age (labeled a) and the decay power (labeled

b) are shown in Figure 4.7. The 1-sigma confidence intervals for each parameter are

40.83+7.85
−13.38 Myrs and 2.52+1.18

−0.81 respectively.

As seen in Figure 4.7, the distribution in cut-off age (a) is double peaked.

This double peaked distribution is due to the double peaked measured DTD for SN

2010ae. The less probable, younger peak in a is due to the fit occasionally drawing an

age from the younger peak of the SN 2010ae DTD, and trying to fit this alongside the
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older ages from the other SNe. This could just be the result of a 2nd stellar population

forming near the explosion site of SN 2010ae by chance, or it could be indicative of a

heterogeneity in SNe formation channels. Repeating this study with a larger sample of

SNe Iax – for instance, once many more are discovered by the Large Synoptic Survey

Telescope (LSST) – would allow for one to answer this question one way or another.

4.5.6 Model Comparisons

In Valenti et al. (2009), Moriya et al. (2010), and Pumo et al. (2009), the

authors suggest a core-collapse origin for at least some SNe Iax. These models predict

a maximum delay time for SNe Iax of 6 to 10 Myrs (Fryer 1999; Heger et al. 2003). If

we ignore the events with no nearby stars detected, we find just a 2% probability of at

least one SN in our sample having a delay time of 10 Myr or less, strongly suggesting

a long-lived progenitor channel for SNe Iax. Using only the analysis of SN 2008ge, we

find a 3 − σ minimum age of 18 Myrs, giving us strong evidence that SNe Iax are not

produced by short-lived progenitors.

The WD He-star binary model for the progenitor systems of SNe Iax instead

predicts a delay-time of roughly 30 Myrs and up, with an expected peak in probability

at the lower bound delay-time, and a long tail up to much higher ages (Wang et al.

2014; Liu et al. 2015). The power law decay which we fit to the summed PDF above is

a good parameterization of this expected DTD. The best-fit lower limit on delay-time

for our data is 40.82+7.85
−13.38 Myrs, in excellent agreement with the model predictions.
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Figure 4.7: The distributions in each parameter used in the power law fit. Parameter a
is the cutoff age, while parameter b is the decay power.
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4.6 Conclusions

We have developed a new method to fit simulated photometry of stellar popula-

tions generated from MIST isochrones to broadband photometric measurements, weighted

by distance from a cluster center. We then use this method to fit the stellar neighbor-

hoods of nine SNe Iax. We employ Bayesian methods to generate probability distribu-

tions for the delay times for these nine objects. The probability distributions are shown

in Figure 4.6. We find a 68% confidence interval for the delay time of our sample of

63+58
−15 Myrs. When fitting a power law to the overall probability distribution, we find a

68% confidence interval on the lower bound on the delay time of 40.83+7.85
−13.38 Myrs.

Taken together, this sample of SNe Iax provides the most precise measurement

of the DTD for SNe Iax to date. The data strongly disfavor a fallback core-collapse origin

for SNe Iax, instead showing consistency with a WD-He star binary progenitor model.
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4.7 Appendices

4.7.1 Additional Information on Isochrone Fitting

The likelihood function which we use in our isochrone fitting scheme is shown

below.

Like(Data, D,R|Iso.) =
∏

i

p(stari, D,R|Iso.), (4.4)

=
∏

i

Li, (4.5)

Li = max(Lij), (4.6)

Lij =
∏

k

1
√

2πσ2
ik

e
− 1

2σ2

ik

(mik−mIso,jk)
2

, (4.7)

where D is distance from the observer to the host galaxy, R is host galaxy reddening,

i specifies a given star, j specifies a given stellar mass in the isochrone, k specifies a

given filter, mik is the magnitude of a given star in a filter, and σik is the corresponding

uncertainty. Additionally, mIso,jk is the magnitude drawn from an isochrone in a given

filter for a given mass and adjusted for distance, Milky Way reddening, and host galaxy

reddening. Our priors for host reddening (R) and distance (D) are normal distributions

defined by measured values and uncertainties from the literature and described for each

SN in Section 4.4.
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The posterior distribution for an isochrone given a stellar population is then:

p(Iso.|Data) =

∫∫

p(Iso.|Data, D,R) · p(D) · p(R)dDdR, (4.8)

p(Iso.|Data, D,R) ∝ Like(Data|Iso., D,R) · p(Iso.), (4.9)

p(Iso.) = p(Age) · p(Metallicity).

Here p(Age) and p(Metallicity) are the prior distributions in age and metallicity. Our

prior in age is a log-flat distribution between 106.5 and 108.5 years. Our metallicity priors

are normal distributions based on previous measurements in the literature, described

in detail for each SN in section 4.4. sochrones are calculated for a grid of parameter

values spanning the prior ranges and are fit to each stellar population. The posterior

distribution for an isochrone is the relative probability that the stellar population being

considered has a specific age, metallicity, distance from the observer (D), and host

galaxy reddening (R), given the stellar data.

Our measured DTD for each SN is this posterior distribution, marginalized

over metallicity.

p(Age|Data) =

∫

p(Isochrone|Data)p(Z)dZ, (4.10)

where Z is metallicity.

4.7.2 Example of Isochrone Fitting

We will now walk through the process of fitting a set of isochrones to a data set

of stars around a supernova. For this example, we will use SN 2008ha. As mentioned in
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Figure 4.8: From left to right: a) The artificial stars drawn from the 107.45 year isochrone
with no errors. b) The artificial stars, with a distance error applied. c) The artificial
stars, with both the distance error and the magnitude errors applied. d) The real stars
for SN 2008ha, indicating general position in Color/Magnitude space.

Section 2, we run DOLPHOT on a set of HST images of the host-galaxy of SN 2008ha.

We apply the recommended list of cuts on the data output in order to get a list of point

sources in the image. This list is restricted to include only those stars which are within

200 pc projected on-sky distance from the SN, assuming a distance to the host-galaxy

of 21.3 ± 1.5 Mpc. Clusters are removed using the method detailed in Section 2.3 in

order to get our final list of stars which we will use for isochrone fitting.

The library of isochrones used in this study are logarithmically spaced in age,

using 0.05 dex increments from 106.5 to 108.5 years. These isochrones are drawn using

the median, 1−σ, 2−σ metallicities of our prior, and adjusted for the internal reddening

of the host-galaxy. We then construct a distribution to measure probability of a star

forming with the SN progenitor, as explained at the beginning of Section 3. Now for

each star in our data, we apply the weighting distribution evaluated at the distance of

the star. We then find the minimum of the square root of the distance from the star to

each isochrone, summed across all of the filters in the data. This process is completed for
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each star in the data, summing the values measured for each star in quadrature. These

values (different for each age, metallicity, and extinction) are our measured Isochrone

Goodness of Fit (IGoF) values.

To convert the measured IGoF values to probability distributions in age, metal-

licity and host-galaxy reddening, we perform careful forward modelling. Stars are drawn

from a Kroupa IMF, using the isochrone under consideration to convert the mass to a

magnitude in each filter in our data, keeping each star if its associated magnitudes are

above our observational limit. Once there are the same number of synthetic stars as

real stars in the data, we apply a distance error to all of the synthetic stars together by

drawing from a normal distribution with parameters determined by our distance prior.

These stars are shown in the second panel of Figure 4.8. Magnitude errors are applied

by drawing from a normal distribution for each star and filter, using the measured mag-

nitude uncertainties as a function of magnitude which are derived from the data. These

stars appear in the third panel of Figure 4.8. We now measure a value of IGoF, and

repeat this process 5000 times for each isochrone, in order to get a probability distri-

bution in IGoF for each isochrone. This PDF is used to relate our measured value of

IGoF for the isochrone to a relative probability associated with the age, metallicity, and

reddening of the isochrone.

The fourth panel of Figure 4.8 shows the real stars detected in the vicinity of

SN 2008ha, to compare to the artificial stars which we draw from the isochrone. Note

that the real data has higher dispersion than the artificial data because the real data

likely features stars which were not born in the same star forming event as the SN

132



progenitor. These stars would have been drawn from isochrones of a different age, and

hence would look like a bad fit for the isochrone we plot, whereas every artificial star is

drawn from the same isochrone that is plotted.

In order to further verify our method, we generate false stars from our isochrone,

applying characteristic errors to the stars and our observational sensitivities, and em-

ploy our method to recover the age and metallicity of the isochrone. The results of this

effort are shown in Figure 4.9, Figure 4.10, and Figure 4.11. These figures have injected

metallicities that correspond to the median from our prior ([Fe/H] = −0.78), while the

injected ages are 107.45, 107, and 107.8 years. These tests are successful, as we recover

the correct age as the approximate peak in each distribution. Note that each of these

tests is performed with 15 stars, in order to match the data for SN 2008ha. For SNe

around which we detect more stars (as in SN 2010el, for example), our method recovers

the correct age with even higher precision.
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Figure 4.9: The probability distribution recovered from an injected age of 107.45 years.
The injected age is labeled with the vertical red line. The dotted lines show the recovered
distributions for a variety of assumed metallicities, while the solid black line shows the
distribution from marginalizing over the prior in metallicity.
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Figure 4.10: The probability distribution recovered from an injected age of 107 years.
The injected age is labeled with the vertical red line. The dotted lines show the recovered
distributions for a variety of assumed metallicities, while the solid black line shows the
distribution from marginalizing over the prior in metallicity.
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Figure 4.11: The probability distribution recovered from an injected age of 107.8 years.
The injected age is labeled with the vertical red line. The dotted lines show the recovered
distributions for a variety of assumed metallicities, while the solid black line shows the
distribution from marginalizing over the prior in metallicity.
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