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Computational Methods for Optimization of Biological Organisms 

Abstract 

Computational methods play an irreplaceable role for optimization of biological organisms in the 

era of high-resolution omics, genetic engineering, and high-performance computing. A general 

overview of computational methods for optimization of biological organisms is presented in 

Chapter 1 with a focus on three main challenges relating to data scarcity and heterogeneity, model 

interpretability, and the large number of factors that can affect an organisms’ phenotype.  Recent 

advances are discussed in Chapter 2 with a forward-looking view on the application of 

computational methods for microbiome-based diet and health optimization. In Chapter 3, existing 

computational methods are applied for microbiome-based diet optimization in irritable bowel 

syndrome (IBS). The integrated data analysis results argue that there are two types of patients 

distinguishable by their fecal samples, those with high colonic methane and SCFA production, 

who will respond well on a low-FODMAP diet, and all others, who would benefit a dietary 

supplementation containing butyrate and propionate, as well as probiotics with SCFA-producing 

bacteria, such as lactobacillus. In Chapter 4, a novel artificial neural network (ANN) architecture 

called genetic neural network (GNN) is presented that captures the dependencies and non-linear 

dynamics that exist in gene networks into the GNN architecture. The results argue for 40% more 

accuracy of GNNs compared to several common ANNs in predicting genome-wide gene 

expression given gene knockouts and master regulator perturbations in bacterium E. coli. In 

Chapter 5, a novel group testing method called algorithmic lifestyle optimization (ALO) is 

presented for rapid identification of effective lifestyle interventions in individuals. ALO is robust 

to noise, data size and data heterogeneity, is between 58.9% and 68.4% more efficient compared 

to standard elimination diet for identification of food items that exacerbate IBS symptoms and 
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allergic reactions, and better than alternative state of the art group testing method for this 

application. The conclusions and future directions are discussed at the end of each chapter and 

summarized in the final chapter. Chapters 2, 3 and 4 are published (1–3). 
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Chapter 1: Introduction 

Biological organisms are naturally optimized through evolution by acquiring the characteristics 

that maximize their fitness when subjected to environmental constrains. Although evolution is a 

major method used by nature for optimization of biological organisms, it has several limitations. 

First, it does not optimize an individual organism during its lifetime. Second, it is relatively slow 

as it requires real experimentations that often take the lifetime of several generations until an 

environmentally fit generation of the organism is achieved. Third, it is mainly used for selection 

of organism characteristics given the environment, and not vice versa. Humans have attempted to 

address these limitations throughout history in medicine and agriculture using various 

methodologies based on intuition, logic, discovery of common principals, animal/plant breeding 

and more (4–6). Our civilization across the globe, is now intertwined with such methodologies that 

form the basis of our daily lives, from agricultural products to nutrition and medical practices. 

With the advent of computers, computational methods have emerged as new powerful tools for 

optimizing biological organisms and play a key role in tackling outstanding health and 

environmental challenges, some of which are self-inflicted (7–10). These computational methods 

are reviewed with a future-looking perspective in Chapter 2, in the context of human microbiome, 

diet and health. Computational optimization of biological organisms often involves two major 

steps (Figure 1.1 A). The first step is to model the biological organism as a system with measurable 

inputs and outputs, as well as the target phenotype[s]. Such a model may correspond to a single 

organism, or a population of organisms. The second step is to optimize the modelled system for 

identifying a set of perturbations that will move it towards a state that corresponds to desired 

phenotypes. 
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Figure 1.1 Computational modeling and optimization of biological organisms, with relevant 

challenges to address.1 

Notable progress is made in development of computational methods for optimizing biological 

organisms with applications in nutrition, medicine, agriculture  and biotechnology (1), while 

several challenges remain to be addressed sufficiently (Figure 1.1 B). 

First-challenge. The disconnect between heterogenous datasets that are generated for optimizing 

the same condition in a given organism, and the appropriate computational methods, is an 

impediment towards realizing their full potential especially when the number of individual datasets 

and the size of each is small. This challenge is addressed in Chapter 3, for identification of irritable 

bowel syndrome patients that benefit from a low-FODMAP diet. 

Second-challenge. Machine learning models can be used to predict the behavior of an organism 

given genetic and environmental perturbations; however, they are often incapable of incorporating 

the domain knowledge to enhance their accuracy and interpretability. Such models, are important 

for optimizing a given characteristic of an organism (e.g., minimizing adverse gastrointestinal 

 
1 The Escherichia coli icon is from Database Center for Life Science (DBCLS), CC BY 3.0 

<https://creativecommons.org/licenses/by/3.0>, sourced via Wikimedia Commons. The human icon is made by 

Mikael Häggström, sourced via Wikimedia Commons. 
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symptoms in humans or maximizing the synthesis of target proteins in bacterium Escherichia coli), 

but their utility is substantially diminished if their accuracy is low, cannot incorporate domain 

knowledge, and are not interpretable. This challenge is addressed in Chapter 4, for prediction of 

gene expression in bacterium Escherichia coli using a novel machine learning method that 

incorporates gene regulatory relationships into its architecture leading into a more accurate and 

interpretable model compared to other machine learning methods. 

Third-challenge. Optimal behavior of an organism depends on a large number of factors that can 

be hard or impossible to examine one-by-one due to time limitations. In cases where different 

factors have independent effects on a given binary target behavior of the organism (e.g., 

healthy/unhealthy state), they can be examined simultaneously in groups to minimize the time 

spent for identifying the effect of each factor. This challenge is addressed in Chapter 5, for rapid 

identification of effective lifestyle interventions amongst a large number of candidate lifestyle 

interventions, using a novel group testing method called algorithmic lifestyle optimization, and 

showcased for identifying food intolerances in irritable bowel syndrome and food allergies. 

The following dissertation chapters that address the above challenges, have been published 

independently (1–3), or under consideration for peer review. 
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Chapter 2: Microbiome and diet-aware 

computational methods for health 

optimization 

2.1 Abstract 

Food and human health are inextricably linked. As such, revolutionary impacts on health have 

been derived from advances in production and distribution of food relating to food safety and 

fortification with micronutrients. During the past two decades, it has become apparent that the 

human microbiome has the potential to modulate health, including in ways that may be related to 

diet and the composition of specific foods. Despite the excitement and potential surrounding this 

area, the complexity of the gut microbiome, the chemical composition of food, and their interplay 

in situ remains a daunting task to be fully understood. However, recent advances in high-

throughput sequencing, metabolomics profiling, compositional analysis of food, and the 

emergence of electronic health records, provide new sources of data that can contribute to 

addressing this challenge. Computational science will play an essential role in this effort as it will 

provide the foundation to integrate these data layers and derive insights capable of revealing and 

understanding the complex interactions between diet, gut microbiome, and health. Here, we review 

the current knowledge on diet-health-gut microbiota, relevant data sources, bioinformatics tools, 

machine learning capabilities as well as the intellectual property and legislative regulatory 

landscape. We provide guidance on employing machine learning and data analytics, identify gaps 
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in current methods and describe new scenarios to be unlocked in the next few years in the context 

of the current knowledge. 

2.2 Introduction 

During the past two decades, the human microbiome has emerged as a biological system with the 

potential to significantly influence health and disease (11). Despite our limited understanding 

regarding its intricate relationship with the host and its environment (12), recent discoveries related 

to the human microbiome have opened new horizons in food science (13), precision medicine (14), 

and biotechnology (15) among others. In parallel, advances in genomics and bioinformatics have 

provided inexpensive tools to acquire biological and clinical data, as well as the tools to translate 

the data into knowledge (16–24). Given these advances, the integration of diet, gut microbiome, 

and human health (DGMH) data has the potential to drive a paradigm shift in the way wellness 

states are measured, diseases are treated, products are designed, and health interventions are 

administered. To realize this potential, advances in knowledge are required in order to optimize 

the composition and metabolic dynamics of microbial communities in relation to desired health 

and performance outcomes; from dietary interventions and bioengineered products to lifestyle 

changes and the environment (Figure 2.1). 
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Figure 2.1 The vision for the next nutrition revolution involves microbiome-aware dietary 

planning and manufacturing. First, DGMH data is collected, homogenized and stored, with any 

new user data integrated as part of a cohesive compendium. Then, DGMH data are analyzed (Data 

Analytics) to identify the functional characteristics and target microbiota, personalized to the 

individual and the desired phenotype. This includes data processing followed by supervised and 

unsupervised learning using user profiles compendium. Bioinformatic tools are used during data 

processing to extract meaningful information from raw high-throughput data such as metagenomic 

sequence reads. Then, the recommendation System provides dietary recommendations to help 

achieve target microbiota. This includes the integration of user profiles in a compendium along 

with nutrition DB proceeded by data processing then content-based and collaborative filtering. 

Finally, Diet Engineering is performed to create dietary products for the user. This includes the 

design of prebiotics, probiotics, synbiotics, manufactured food, and detailed dietary planning. In 

practice, taste and flavor of dietary products is very important to help users commit to any given 

diet, therefore sensory analysis should inform all dietary engineering efforts. 

In this article, we summarize the research that has been done related to DGMH, with a focus on 

DGMH data and computational methods. We begin with a brief overview of key areas of current 
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knowledge regarding the interaction between diet, health and the gut microbiome. We then proceed 

to more extensively review the available data sources and the computational methods currently 

used, an investigation into the role that machine learning and artificial intelligence (AI) can play 

in this area, and a summary of the intellectual property (IP) and legislative regulatory landscape. 

We conclude with recommendations to accelerate research and development efforts through better 

integration of research resources and tools, especially in the context of computational science and 

data analytics. A glossary of terms is provided in Table 2.6. 

In general, the most recent articles reviewing the computational tools for microbiome data focusing 

on metagenomic data processing methods provide limited guidance on employing machine 

learning, data analytics and recommendation in the context of DGMH data. The purpose of this 

manuscript is to help fill this gap by considering relevant literature, describing key challenges and 

potential solutions, and proposing a framework to improve the potential for research initiatives to 

accelerate progress in this exciting, and potentially revolutionary, field. 

2.2.1 Current Knowledge: Gut microbiota and human health 

Emerging evidence suggests that the intestinal microbiota plays a significant role in modulating 

human health and behavior (see comprehensive reviews (25–27)). Several studies have 

demonstrated that the human intestinal microbiota is seeded before birth (28), and the mode of 

delivery influences the composition of the gut microbiota (29,30). The gut of a vaginally born 

newborn is enriched primarily with the vaginal microbiota from the mother, while a cesarean 

procedure results in the newborn’s gut microbiota being dominated by the microbiota of the 

mother’s skin as well as points of contact at the hospital (31). Microbial diversity is very dynamic 

during the infancy and increases and converges to an adult-type microbiota by 3 to 5 years of age 

(32). Evidence is also building suggesting that diet plays a key role in shaping the composition of 
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microbial communities in the infant’s gut. For example, species of beneficial bacteria such as 

Lactobacillus and Bifidobacterium have been found to be dominant in breastfed infants while 

species of harmful bacteria such as Clostridium, Granulicatella, Citrobacter, Enterobacter, and 

Bilophila have been found to be dominant in formula-fed infants (33). In addition, breastfed babies 

have higher gut microbial diversity compared to formula-fed babies, and several studies indicate 

that the diversity of bacteria is directly connected to health (33,34). An unbalanced composition 

of the infant’s gut microbiota has been linked to several childhood diseases including atopic 

dermatitis (AD) (35,36) obesity (37) and asthma (38). 

The composition of the gut microbiota of an adult human is relatively stable (39), but several 

factors can influence it, including antibiotic treatment, long-term change in diet, microbial 

infections, and lifestyle (26,40–42). Several health conditions were linked to the changes in a stable 

and established gut microbiota such as Crohn’s disease (43), psoriatic arthritis (44), type 1 diabetes 

(45), atopic eczema (34), coeliac disease (46), obesity (47), type 2 diabetes (48) and arterial 

stiffness (49). However, it is important to note that further research is required to establish direct 

links between these conditions and the composition of microbial communities in the gut. Several 

methods, such as oral administration of probiotics and prebiotics and fecal transplant, are being 

tried out to achieve a healthy gut microbiota and remediate several health-related issues. 

Occasionally, these methods have reduced the severity of some diseases such as diarrhea, acute 

upper respiratory tract infections, eczema, Crohn’s disease, and ulcerative colitis (50–55). See 

Figure 2.2 for illustration of factors affecting the gut microbiota. 
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Figure 2.2 Factors affecting the gut microbiota. A summary of human gut microbiome 

taxonomy at the family level and the corresponding modulating factors. 

 

2.2.2 Data 

The increase in size and heterogeneity of information gathered by microbiome studies present 

great opportunities and serious data analysis challenges (56), with many tools developed to address 

them (57,58). These bioinformatics tools, quantify low dimensional biological variables such as 

the relative abundance of microbial species and metabolites, using high dimensional data such as 

DNA sequence reads and mass spectrometry (MS) signatures as illustrated in Figure 2.3. 

Depending on data quality, sample size and research hypothesis, different information 

dimensionalities are used. For example, in type1 diabetes research, (59) included gene-level 
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information while (60) mainly focused on gene functional groups. Different types of data can be 

grouped based on their sources as described next. 

Gut Microbiota Data. Functional characteristics of microbial communities can be revealed using 

high-throughput meta-metabolomics (61) and meta-proteomics (62,63) using MS technologies. 

Metagenomic and meta-transcriptomic content of gut microbiota (which give rise to the functional 

characteristics), can be quantified using DNA sequencing. The most widely used approach for gut 

microbiota profiling is marker gene sequencing which relies on sequencing counts of the 

hypervariable 16S genes to calculate Operational Taxonomic Units (OTUs) (64). Searching OTUs 

against reference databases such as Greengenes (65) and SILVA (66), allows inferring relative 

taxa abundances in a microbiome sample (67). Whole-genome metagenomics (i.e. untargeted 

shotgun metagenomics) (58) is another technique that is both more expensive and of higher 

resolution, as it not only reveals the microbial community structure, but it can also quantify relative 

abundances of genes, taxa, conserved functional groups or over-represented pathways. Within-

sample (alpha) and cross-sample (beta) diversity of microbiome can be calculated with respect to 

genetic, taxonomic, functional or metabolic pathway profile of samples (68–73). Shannon index, 

Chao1 and Abundance-based Coverage Estimator (ACE) are used to measure alpha diversity while 

UniFrac, weighted UniFrac, and Bray-Curtis calculate beta diversity. In longitudinal studies, the 

same measures of diversity, or more sophisticated eigenvalue based analyses, can quantify the 

microbiota stability across timepoints (70,74–76). Jackknifing and bootstrapping are used to 

estimate the bias in diversity estimates, particularly when estimating the number of species (i.e. 

species richness) in samples (77). Some of the most significant publicly available microbiome 

datasets are listed in Table 2.1. 
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Figure 2.3 Illustration of data processing, data analytics, and recommendation system. Data 

processing generates diverse types of information with different levels of resolution and 

dimensionality. Such information needs to be transformed and integrated across all users for 

building a compendium. Next, data analytics methods are used to discover the characteristics of 

target microbiota prescribed for individuals to achieve their health objectives. Finally, 

recommendation system methods use the compendium to find the dietary recommendations for 

helping individuals achieve the target microbiota. 
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Human Microbiome Project (HMP1) 300 nasal passages, oral cavity, skin, 

gastrointestinal tract, and urogenital tract 

N Y (78) 

Integrative Human Microbiome Project 

(iHMP): pregnancy and preterm birth 

(MOMS-PI) 

~2000 mouth, skin, vagina, and rectum Y Y (79) 

Integrative Human Microbiome Project 

(iHMP):onset of IBD (IBDMDB) 

~90 stool, blood Y Y (79) 

Integrative Human Microbiome Project 

(iHMP): onset of type 2 diabetes (T2D) 

~100 fecal, nasal, blood, serum, and urine Y Y (79) 

American Gut Project (AGP) >3000 stool, swabs from skin/ mouth B Y (80) 

Personal Genome Project microbiota 

component (PGP) 

>5000 skin/oral/fecal ? Y (81) 

TwinsUK >11000 multiple ? C (82) 

Global Gut project (GG) 531 fecal N Y (83) 

Project CARDIOBIOME >4000 ? ? N (84) 

Pediatric Metabolism and Microbiome 

Repository (PMMR) 

~350 human microbial cell lines, stool, and/or 

DNA and RNA 

Y N (85) 

Lung HIV Microbiome Project (LHMP) 162 lung, nasal, and/or oropharyngeal cavities Y Y (86) 

The Study of the Impact of Long-Term 

Space Travel on the Astronauts' Microbiome 

(Microbiome) 

9 saliva and gastrointestinal N N (87) 

Michigan Microbiome Project (MMP) ? ? ? N (88) 

uBiome ? gut, mouth, nose, genitals, and skin B C (89) 

Human Oral Microbiome Database 

(eHOMD) 

? upper digestive and upper respiratory tracts, 

oral cavity, pharynx, nasal passages, sinuses, 

and esophagus 

? Y (90) 

Human Pan-Microbe Communities (HPMC) >1800 gastrointestinal B Y (91) 

Curated Metagenomic Data >5000 multiple B Y (92) 

European Nucleotide Archive ? ? ? Y (93) 

EBI-metagenomics portal samples >20000 multiple B Y (94) 

MG-RAST >10000 multiple B Y (95) 

Table 2.1 Publicly available data from gut microbiota studies 
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Diet Data. Various types of dietary information are collected in gut microbiome studies. This 

includes fine-grain information such as mass spectrometry (MS) signatures and metagenomic 

reads (96) or coarse grain information such as dietary style (e.g. Western vs. Mediterranean diet 

(97)) from study participants. Diet data collection is often questionnaire-based either through self-

reporting or done by a trained interviewer. For self-reporting, food frequency questionnaire (FFQ) 

and 24-hour dietary recall (24HR) can be used where participants report their dietary intake either 

every 24-hours or over a longer period through a checklist of food items (98). Dietary record (DR) 

can also be used where data collection is done when food is consumed (e.g. using smartphones) 

hence can minimize reliance on participant’s memory. After data collection, the intake amount of 

macronutrients (fat, carbohydrates, protein), micronutrients (vitamins and minerals) and food 

metabolites can be estimated by querying the food items against food composition databases such 

as USDA food composition database (99) and the Canadian nutrient file (100). It is also important 

to consider the usage of drugs, antibiotics, and nutritional supplements in the diet which can be 

collected through patient health records or as part of the questioners. Note that microbiota of 

dietary intake can be characterized using metagenomic sequencing as reviewed previously, 

although it becomes unnecessary when such information is readily available (e.g. probiotics with 

predefined strains (101)). Some studies perform metabolic characterization of dietary intake 

directly (96) while others rely on a pre-characterized metabolic profiles (102). Researchers should 

note that food composition databases characterize only 0.5 % of known nutritional compounds 

(103). Therefore studies that rely on these databases will not be able to identify health impacts 

associated with more than 99% of biochemical compounds in food (103). 

Host Data. Profiled host information types can be very high dimensional (e.g. high throughput 

genome sequences (104)) or low dimensional (e.g. obese vs. non-obese (105,106)). Host genotype 
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data can come from whole-exome sequencing (WES) (107) or genome-wide association study 

(GWAS) (108,109). It can also be extended by predicting the whole-genome sequence for each 

individual through genotype imputation software (110) as done in several studies (109,111,112). 

Host transcriptomic profiles can be assessed directly using microarrays (113,114) and RNA-Seq 

(115,116), or imputed using tools such as PrediXcan (117) with GWAS data. The genetic and 

transcriptomic profiles can be summarized into informative lower-dimensional features through 

gene ontology categories and metabolic pathways using databases such as MetaCyc (118), KEGG 

(119), Reactome (120) or GO (121). Today, limited microbiome studies perform such analysis 

(122–124). Other important information such as age, gender, ethnicity, body weight, blood 

pressure, dietary restrictions and diseases of a host organism can be extracted from medical 

records, surveys, and interviews. 

2.3 Computational Analysis 

There have been various reviews concerning microbiome data processing and analysis 

(16,57,58,125,126). Here we focus on data analytics, machine learning, and AI-based 

recommendation system methods that enable microbiome-aware systems involving diet and 

wellness. We provide readers insight into important methods, challenges that arise, suggested 

solutions as well as blueprints of example scenarios to be used in their research. See (127–129) for 

further explanation and examples of machine learning methods discussed here. 

2.3.1 Microbiome data processing tools 

There are a substantial number of microbiome data processing methods and pipelines publicly 

available that can generate the various types of data discussed. Table 2.2 provides a representative 

summary of such methods and pipelines. QIIME (130) and MOTHUR (131) provide a wider range 
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of options for the user compared to UPARSE (132) but all are popular pipelines. QIIME 2 (133), 

is now emerging as a powerful replacement to its predecessors partly due to its extensibility and 

support. Depending on project aims, some of the steps mentioned in Table 2.2 can be avoided. 

The focus of most popular data processing methods is on marker gene sequencing data. For whole 

metagenomic sequencing, however, methods such as Kraken (134), MEGAN (135), MetaPhlAn2 

(136) and HUMAnN (137) are used. Such methods are expected to gain more popularity as whole 

metagenomic sequencing makes its way to become the standard practice with access to more 

powerful computational hardware and software tools. 

Challenges in microbiome data processing. Growth in the variety and complexity of data 

processing tools presents opportunities but also significant challenges for new investigators. First, 

although best practices have been suggested (16), tools are still far from a fully automated user 

experience that would lead to reliable results. Second, microbial genomes with different 

abundances are sequenced together making metagenomic assembly much more challenging 

compared to single genome assembly where the sequence coverage is approximately uniform. 

Third, the amount of uncharacterized microbes (known as microbial dark matter) exacerbates 

problems associated with unaligned and misaligned sequence reads. Fourth, evaluation of 

methodology and findings from different studies is difficult since each study may use a different 

method or a different implementation of the same method in their data processing pipeline. Fifth, 

data collection and integration of microbiome data from different studies is difficult due to many 

factors including differences in wet-lab library preparation (e.g. primers used), differences in 

sequencing devices and their settings (e.g. coverage) and non-uniform methods of formatting and 

storage for microbiome data and metadata. See (58) for further discussion concerning microbiome 

data processing challenges. 
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Steps 
Sub-step 

Descriptions 

Highlighted Methods 

& Their Availability in Popular Pipelines 

(QIIME, MOTHUR, UPARSE) 

1. Quality 

Control 

Chimera removal & 

Noise mitigation 

Trimmomatic(Q) (138), AmpliconNoise(Q, M) (139), 

UNOISE(M, U) (140), UCHIME(Q, M, U) (141), Deblur(Q, M) (142) 

and DADA2(Q) (143) 

Remove host DNA 

contaminant reads 

Bowtie2(Q) (144), BMTagger (145) and DeconSeq (146) 

2. Sequence 

Assembly 

De novo read 

assembly 

MEGAHIT(147), MAFFT(Q, M) (148), UCLUST(Q, U) (149) 

and metaSPAdes(Q, M) (150) 

Read alignment to 

annotated database 

DIAMOND(151), NAST(Q, M) (152), USEARCH(Q, U) (149) 

and VSEARCH(Q, M) (153) 

3. OTU 

Analysis 

Assignment of reads 

to OTUs 

UPARSE-OTU(U) (132), Kraken (134), MetaPhlAn2(Q) 

(136) and DOTUR(M) (154) 

4. Functional 

Profiling 

Functional profiling 

and prediction. 

MEGAN (135), HUMAnN (137), MetaCLADE, MOCAT 

(155) and PICRUSt (67) 

5. Diversity 

Analysis 

Diversity, evenness 

and richness metrics 

Alpha (e.g. Chao1(Q, M, U)) and Beta (e.g. Jaccard(Q, M, U)) 

Table 2.2 A summary of highlighted methods and pipelines for microbiome data processing. 

2.3.2 Data Analytics and Machine Learning 

Data analytics and data processing are closely related. In this review, data processing is considered 

to be the steps necessary for converting the raw data such as metagenomics sequence reads, into 

biologically meaningful representations such as OTU counts using bioinformatics tools, some of 

which are done in the sequencing device itself. Data analytics, however, often starts after the 

integration of processed sample data from various information sources (i.e., microbiota, diet, and 

host) as illustrated in Figure 2.3. In most cases, all samples are from a single study which helps 

ensure consistency with respect to the experimental settings and data processing protocols used. 

Furthermore, limited resources force the researchers to narrow their data collection to particular 

information types in order to have sufficient statistical power for hypothesis testing. A recent 
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increase in the number of microbiome studies with publicly available data has enabled cross-study 

data integration (156–161). In such cases, extra precautions are necessary to minimize biases 

introduced by inconsistencies among datasets during data collection, sample preparation, 

sequencing and data processing. 

Challenges in microbiome data analysis. A number of challenges arise when analyzing 

microbiome data as summarized in Table 2.3. The first challenge is due to compositional 

quantities in microbiome data. Quantities such as the number of reads assigned to a given species, 

which can only be interpreted as proportions, are called compositional. These quantities cannot be 

compared directly across multiple samples. Conclusions should not be made based on the number 

of reads assigned to individual sample features (e.g. OTUs, genes and functional groups) since 

they do not represent absolute abundances due to instrumental limitations (162). Instead, the 

assigned number of reads should be converted to relative abundances and analyzed with that in 

mind. Some studies perform rarefaction to adjust for differences in library size due to unexhaustive 

metagenomic sampling. Although several pipelines provide this functionality, it has been found 

inadmissible for metagenomics microbiome studies as it discards many reads leading to decreased 

sensitivity in differential abundance testing (163), and biased estimates for alpha diversity (164). 

The second challenge is due to the high dimensionality associated with OMICS data. Datasets in 

which items are characterized by a high number of features while the number of items is limited 

are called high dimensional. In microbiome studies, a limited number of individuals are 

characterized using many host, diet, and microbiome features leading to high dimensional datasets 

(165). Dimensionality can be reduced by grouping OTUs into phylogenetic variables, 

regularization or unsupervised dimensionality reduction (explained below). The third challenge is 

about testing multiple hypotheses in exploratory analysis. It relates to the fact that, as the number 
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of hypotheses increases, the chance of false discoveries also increases. This can be addressed by 

increasing sample size and p-value adjustment (explained below). The fourth challenge relates to 

hierarchical relationships amongst bacterial species due to their shared ancestors. Assumptions 

such as independence among samples may not hold which leads to wrong estimations of 

correlation (166) and phylogeny-aware methods to address the issue. The fifth challenge is about 

missing quantities in sampled data. For example, when marker gene sequencing is used, quantities 

relating to the amounts of functional genes in the microbiome are not directly available (i.e. 

missing). Identifying functions of microbial organisms is important for understanding the gut 

microbiota. Such information can be estimated using meta-transcriptomics data which is often not 

available. Data imputation tools such as PICRUSt (67), help to mitigate this through gene 

imputation based on annotated databases. 

Next, we review methods for identifying microbiota characteristics associated with host 

phenotypes of interest. They can be categorized into two main groups: supervised learning and 

unsupervised learning. Supervised learning methods require labeled data while unsupervised 

learning methods can be used when records are not labeled. More advanced methods such as semi-

supervised learning (167); which can take advantage of both labeled and unlabeled data and 

transfer learning (168); which can transfer knowledge learned from one task to another are not 

discussed here. 
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Challenges in Microbiome Data 

Analysis 
Examples & Solutions 

1. Compositional quantities:  

Metagenomic data processing provides 

read counts for discovered entities such 

as genes, species, and OTUs from a 

given sample. These read counts are only 

meaningful within a sample. 

Example: Metagenomic analysis of feces samples tells us that Person A has 

five reads mapped to bacterium E. coli while person B has ten. Can we conclude 

that this bacterium is more populated in the gut of person B compared to person 

A? Answer: No, read counts cannot be compared across samples. 

Solutions: (I) Convert read counts to relative abundances before comparison. 

(II) If an optimization problem is defined using read counts, add constraint for 

total counts per sample. 

2. High dimensionality:  

Metagenomic data processing results in 

many entities such as genes and species 

discovered for each sample which may 

not be shared amongst multiple samples. 

During data aggregation, one dimension 

is associated to each entity resulting in a 

high number of dimensions compared to 

the number of samples. 

Example: Metagenomic data processing of feces samples from twenty 

individuals results in relative abundances for ten microbial families per sample. 

Can we use classical linear regression to predict an individual’s age using 

relative abundances from aggregated data? Answer: No, aggregating twenty 

samples results in more than twenty microbial families. 

Solutions: (I) Use dimensionality reduction such as PCA prior to regression. 

(II) Use regularized linear regression such as Lasso. (III) Use microbial 

abundances of higher-order taxonomic ranks such as phylum instead of family. 

3. Multiple hypotheses:  

The high-dimensional nature of 

metagenomic data allows the researcher 

to generate a large number of hypotheses 

which leads to seeing patterns that 

simply occur due to random chance. This 

is sometimes called “the high probability 

of low probability events”. 

Example: Metagenomic data processing provides relative microbial 

abundances at species level using feces samples of two hundred individuals, 

half of which are diagnosed with Crohn’s disease and the rest are healthy. 

Performing a t-test identifies that the relative abundance of 40 species (amongst 

1000) are significantly different between microbiota of sick and healthy 

individuals (p-value < 0.05). Is this result correct? Answer: No, the standard 

threshold of 0.05 for p-value is only acceptable when a single hypothesis is 

involved while the t-test is performed 1000 times leading to many false 

discoveries. 

Solution: Calculate FDR adjusted p-value (i.e. q-value) of 0.05 to control the 

false discovery rate. 

4. Hierarchical relationships:  

Assumptions of independence do not 

hold in microbiome data since taxonomic 

variables (e.g. species and OTUs) have 

known hierarchical relationships due to 

genetic and phenotypic similarities. 

Therefore common statistical techniques 

that assume independence between 

variables are problematic.  

Example: Beta-diversity can be used to calculate the similarity between groups 

of microbiome samples. Can we simply calculate the Beta-diversity using 

standard Euclidean distance between relative abundances at a given taxonomic 

order? Answer: No, Euclidean distance doesn’t take into account the similarity 

between species. 

Solution: Use phylogeny-aware metrics such as UniFrac distance instead which 

takes into account the phylogenetic tree when calculating distances. 

5. Missing quantities:  

Metagenomic data often lacks 

information about the functions of the 

microbial communities which can only 

be estimated using meta-transcriptomics 

or meta-proteomics. However,  

deciphering microbiota’s function is a 

major goal in microbiome studies. 

Example: In one case, metagenomic data processing from marker-gene data 

has provided us use with relative abundances at the genus level but we do not 

know the possible functions of the microbiota in terms of proteins that it can 

produce. Should we abandon further analysis? Answer: No, although we don’t 

have direct information about proteins, we can infer. 

Solution: Databases such as Greengenes contain the whole-genome sequence 

of identified species at various taxonomic orders which can be used for gene 

and protein inference. 

Table 2.3 Key challenges that arise in microbiome data analysis with examples and suggested 

solutions. 
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2.3.3 Supervised Learning 

2.3.3.1 Hypothesis Testing and Variation Analysis. 

Analysis of variation may involve single or multiple variables. For a single variable hypothesis, 

the Student’s t-test or non-parametric tests such as Wilcoxon rank-sum or Kruskal-Wallis can be 

used. For example, the t-test is used to show that patients with ADHD have a lower alpha-diversity 

index of gut microbiota compared to healthy controls (169). Investigators should ensure that 

underlying assumptions of t-test (i.e. normal distribution) are supported by data particularly when 

the sample size is small. Non-parametric tests are good alternatives when such assumptions do not 

hold. For example, the Wilcoxon rank-sum test is used on predicted pathway data suggesting that 

enzymes in the “Glycan Biosynthesis and Degradation” pathway increase in summer compared to 

winter (170). In cases where a statistical test is repeated with different hypotheses (i.e. multiple 

hypothesis testing), the statistical significance should be adjusted by methods such as FDR 

adjustment (i.e. q-value) (171) or Holm’s procedure (172). 

When our hypothesis corresponds to multiple variables, MANOVA (173) or non-parametric 

alternatives such as PERMANOVA (174) or ANOSIM (175) can be used. The samples are first 

assigned to multiple groups (e.g. based on some feature values). The goal is to quantify how much 

this grouping can explain the distribution of values in a given sample feature (response variable). 

The simplest case is the popular method called analysis of variance (ANOVA) considering a single 

response variable with a normal distribution. In one study, two bacterial phyla (Bacteroidetes and 

Firmicutes) are identified using ANOVA with different relative abundance in microbiota of 

children living in a rural African village compared to European children (176). ANOVA can be 

generalized to multivariate analysis of variance (MANOVA) when we can have multiple response 

variables. For example, it is used to investigate the overall difference in composition between the 
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microbiota of children with Prader–Willi syndrome and children with simple obesity, before and 

after treatment (177). In many cases, normal distribution assumptions do not hold hence non-

parametric methods are used. In one study, PERMANOVA is used to detect taxonomic differences 

in the microbiota of patients with Crohn’s disease when compared to healthy controls (178). 

2.3.3.2 Regression and Correlation Analysis.  

A general understanding of the extent of association among pairs of variables can be achieved 

using correlation analysis. Correlation metrics measure different types of relationships. For 

example, Bray–Curtis measures abundance similarities (179), Pearson correlation coefficient 

quantifies linear relationships and Spearman correlation coefficient quantifies rank relationships 

(180). In (181), the authors perform a simulation-based comparison on a range of correlation 

metrics for microbiome data. Metrics such as SparCC (182) and LSA (183) perform particularly 

better as they are designed to capture complex relationships in compositional microbiome data. 

For example, SparCC is used for analyzing the TwinUK dataset to identify bacterial taxa whose 

abundances are influenced by host genetics (184). This was done by creating a correlation network 

between microbial families based on their intraclass correlation. More recently, the phylogenetic 

isometric log-ratio (PhILR) transform has been introduced (185) to transform compositional data 

into non-compositional space where standard data analytic techniques are applicable. Usage of 

such transformations should be limited to features that are compositional and phylogenetic in 

nature. 

Regression methods aim to predict the change in one continuous variable using other variables. 

Correlation analysis can be considered a special case of regression with a single input variable. 

Standard linear regression can be used for various DGMH predictive tasks. However, when 

variables relate to OTU abundances, the typical assumptions of a linear relationship, normal 
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distribution and dependence do not hold. For example, when the goal is to predict the composition 

of OTUs (normalized for summing up to one (126))), zero-inflated continuous distributions are 

used. Often a two-part regression model is used where part I is a logistical model to calculate the 

probability that the given OTU is present. Part II is a generalized linear regression using beta 

distribution to predict relative abundance assuming the presence of OTU in the sample (186–188). 

Phylogenetic comparative methods (PCMs) such as phylogenetic generalized least squares (PGLS) 

are used to control for dependence among observations given the phylogenetic hierarchies (189). 

Ignoring the phylogenetic ancestry of microbial species can increase the chance of false discovery 

in regression models (166). PCMs are not widely used in microbiome studies today which may be 

one reason for a high number of false positives that can be alleviated using them (190).  

To investigate the correlation between two groups of variables (e.g. abundances of microbiome 

OTUs and metabolites), canonical correlation analysis (CCA), can be used (191). CCA finds linear 

transformation pairs that are maximally correlated when applied to data while ensuring 

orthogonality for different transformation pairs. The original CCA, however, fails for high 

dimensional microbiome data when the number of variables exceeds the number of samples. This 

can be addressed using regularization giving rise to sparse CCA methods (192). For example, a 

sparse CCA is applied to investigate correlations between the gut microbiome and metabolome 

features in type 1 diabetes (193). 

2.3.3.3 Classification.  

In supervised classification, the goal is to build a predictive model (classifier) using labeled 

training data. The labels can have binary or categorical values (in contrast to regression where 

labels are continuous and numerical). In one study a classifier was built to predict the geographical 

origin of sample donors using relative OTU abundances estimated from 16s rRNA gut samples 
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(83). This was done using the method called Random Forests (RF) which constructs an ensemble 

of decision trees (194). In a different study, the classification task was to identify healthy vs. 

unhealthy donors given relative OTU abundance data (including species level) coming from 

shotgun metagenomics sequencing of gut (as well as other body sites) (158). In addition to RF, 

they used the support vector machine (SVM) classifier which is a powerful method for building 

generalizable and interpretable models and is mathematically well understood (195). In their study, 

RF classifiers performed better than SVM except in a few datasets. Both RF and SVM have built-

in capability to deal with overfitting issues that arise in high-dimensional datasets. RF achieves 

this using an ensemble-based technique where the prediction is made based on predictions from 

many trained classifiers. In SVM, parameters of the predictive model are constrained based on a 

priori defined criteria. Note that constraining the model parameters is often mathematically 

equivalent to regularization (196). In both cases, the objective is to minimize the value of a loss 

function that calculates the overall error in model predictions. When regularization is used, the 

loss function not only depends on prediction errors but also on the magnitude of model parameters. 

For example in L1 regularization, the absolute values of model parameters are scaled and added 

to the loss function. Therefore, when two models have a similar error, the model with smaller 

parameter values will be selected during training. L1 regularization is commonly used for feature 

selection by picking only the non-zero features of the trained model because such a model achieves 

a low prediction error while using a subset of features. 

Artificial neural networks (ANN) can also be used for classification and shown to outperform other 

techniques in many areas of biology (3,197–199) as well as computer vision and natural language 

processing to name a few (200). Recently, a new ANN-based method called Regularization of 

Learning Networks (RLN) is designed and evaluated on microbiome data. RLN provides an 
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efficient way for tuning regularization parameters of a neural network when a different 

regularization coefficient is assigned for each parameter (201). They use RLN to predict human 

traits (e.g. BMI, Cholesterol) from estimated relative OTU abundances and gene abundances. We 

expect the development of new classification methods that can deal with the aforementioned 

challenges arising in DGMH data by considering the biological phenomenon, properties of 

measurement instruments and upstream data processing pipelines. 

2.3.4 Unsupervised Learning 

2.3.4.1 Dimensionality Reduction 

High-dimensional datasets can provide a high resolution and multifaceted view of a phenomenon 

such as gut microbiota. Predictive performance in data analytics can increase significantly given 

such data. Many data analytics methods, however, fall short when presented with high-dimensional 

data which necessitates using dimensionality reduction (DR). Once dimensionality is reduced, data 

visualization and analytics become more accessible. Principal component analysis (PCA), is one 

of the most widely used DR methods. It replaces the original features with a few uncorrelated 

features called principal components (PCs) which are linear combinations of the original features 

and preserve most of the variance within the data. In one study, PCA was applied to predicted 

abundances of about 10 million genes from the gut microbiota of donors (202). Reducing 

dimensionality from 10 million to two dimensions only, enabled visualization of data on standard 

two-dimensional scatter-plot (i.e. PCA plot) showing a clear distinction between the microbiota of 

Danish and Chinese donors. In another study, the top five PCs of individual bacteria’s genome 

(sequenced from infant fecal samples) were used to create a classifier for predicting antibiotic 

resistance (203). 
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The relationships amongst features in a microbiome study can be used in DR giving rise to various 

factor analysis (FA) methods as we review here briefly. Multiple factor analysis (MFA) is an 

extension of PCA that considers predefined grouping of features during DR to ensure equal 

representation for all groups of features in derived PCs (204). In one study (205), MFA is used for 

simultaneous 2D visualization of host and microbiome features (see (206,207) for other examples). 

Exploratory factor analysis (EFA) is used to identify unobserved latent features called factors to 

explain the correlations amongst observed features (208). Factors that are identified by EFA are 

uncorrelated to each other similar to PCs in PCA; however, PCs are used to explain overall 

variance instead of correlations. EFA has been used in a recent study to extract four factors 

explaining the correlations amongst 25 top taxa for studying the association of microbiome with 

early childhood Neurodevelopmental outcome in 309 infants (209). Confirmatory factor analysis 

(CFA) and structural equation modeling (SEM) can be used to examine the extent to which a 

hypothesized model of latent features and their relationships with observed variables, are 

supported by the data (210). In a recent study, a theoretical framework is proposed and examined 

using CFA to model the influence of maternal and infant factors on the milk microbiota (211). The 

R packages lavaan (212) and FactoMineR (213), as well as the IBM SPSS software (214), are 

widely used for factor analysis. 

Another related method is principal coordinate analysis (PCoA) also called multidimensional 

scaling (MDS) (215) which is commonly employed for 2-3 dimensional visualization of beta 

diversity. It can deal with situations where distances between individual feature vectors from 

samples cannot be used directly (e.g. due to significant sparsity and phylogenetic relationships). 

PCoA takes a matrix of distances between samples (e.g. UniFrac distance between OTU 

abundances of a pair of sample donors) as input. It then assigns new coordinates such as PC1 and 
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PC2 to each sample such that the Euclidean distances in the new coordinate are similar to the ones 

in the matrix. For example, PCoA was applied given UniFrac distances between OTU abundances 

(from 16S rRNA samples) from the gut microbiota of donors (83). Two-dimensional visualization 

using PC1 and PC2 showed that the gut microbiota of donors who lived in the US is distinct from 

the ones from Amerindian and Malawian villages. 

Linear discriminant analysis (LDA), is also a DR technique although supervised and closely 

related to regression and ANOVA. Unlike PCA and PCoA, it requires class labels. It generates 

new features that are linear combinations of the original ones while separating samples with 

respect to their class labels. In one study, LDA was used to distinguish gut microbiota samples 

based on diet but not for dimensionality reduction (216). Successful usage of LDA for high 

dimensional microbiome data may require regularization to account for overfitting as similarly 

used for high-dimensional microarray (217). 

The optimal amount of reduction in dimensionality (e.g. the number of principal components) 

varies given the data and the task downstream. For data visualization tasks, it is largely constrained 

by the limitations of human visual perception (three dimensional). For downstream supervised 

learning tasks, we are often interested in the maximum amount of dimensionality reduction without 

a significant decrease in predictive power. This is showcased in (218) where the impact of the 

amount of dimensionality reduction on classification performance is evaluated for gene expression 

data. 

2.3.4.2 Cluster Analysis.  

Similar microbial communities are expected to exhibit analogous effects on the host organism 

(219). Once a similarity measure is defined, various cluster analysis methods can be used to find 

groups of samples with similar microbiota. In one study, three robust microbiota clusters (called 
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enterotypes) were identified using cluster analysis from 16s rRNA data of fecal samples (220). It 

was later shown that such clustering results are not only sensitive to data, but also to choices made 

during analysis (221). We enumerate four important choices impacting cluster analysis results 

(other than upstream data processing). First, is the distance measure. Standard distance metrics 

such as the Euclidean and Manhattan distance are simple, well understood and supported in many 

clustering libraries. Applicability of such metrics depends on prior compositionality aware 

transformations such as ILR. Beta-diversity metrics such as weighted and unweighted UniFrac 

distances are designed for microbiome analysis considering compositionality and phylogenetic 

dependencies of microbiome data. Researchers should pay attention to the properties of the 

distance metric used in order to better understand the clustering results. Second, is the clustering 

algorithm. Algorithms such as Partition Around Medoids (222) and Hierarchical Clustering (223) 

can employ various distance metrics. Others such as k-means are tied to a single distance measure 

but computationally less demanding. Third, is the number of clusters. Clustering algorithms often 

require the number of clusters to be provided as input. When unknown, the number that provides 

higher cluster scoring is picked. Prediction strength (224), silhouette index (225) and Calinski-

Harabasz (226) are popular cluster scoring metrics. Fourth, is the method used to identify the 

robustness of clustering results. Often a cluster scoring metric that is not used to identify the 

number of clusters, is used as a robustness measure. Recent studies consider the effect of the above 

choices during cluster analysis to better understand how results can be generalized (227,228). 

The integration of data from disparate omics data types (also called integrative omics) and other 

heterogeneous metadata enables a more comprehensive look into the underlying biology (229). 

Integrative omics data analysis methods have been categorized into three types (230). First is data-

to-data, where disparate data types are analyzed together. For example, CCA can be used to 
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investigate the correlations between metagenomics and metabolomics data as discussed before. 

Second is data-to-knowledge, where the knowledge gained from analyzing some data types are 

used to inform analysis of other data types. For example, a metagenomics analysis of Colon cancer 

patients can lead to candidate genes to be investigated further using targeted proteomics analysis. 

Third is knowledge-to-knowledge, where the data types are initially analyzed separately but the 

acquired knowledge is integrated together afterward to either identify hypotheses that are 

supported by multiple data types or create a more complete view of a given phenomenon. For 

example, differentially expressed genes, and differentially abundant metabolites in the digestive 

tract of patients with Crohn's disease can be used together for narrowing down pathways involved 

in disease etiology. See (229–232) for comprehensive reviews. 

2.3.5 Recommendation systems and artificial intelligence 

The human microbiome is referred to as “our second genome” and has a major influence on our 

health (233). Although it is known for its resilience (70,75), unlike the human genome it has 

considerable plasticity hence providing ample opportunities in the design of new types of food, 

medical interventions and dietary recommendations (234). Despite recent progress in microbiome 

research, switching from population-wide dietary recommendations to microbiome-aware 

recommendations is not yet realized. Once a personalized healthy target microbiome is identified 

using data analytics methods, a recommendation system (RS) can utilize this information to 

suggest the path towards establishing it in the host and ensuring the health benefits. One approach 

is to use a knowledge-based RS where recommendations are made using a limited number of 

approved drugs and dietary prescriptions. Although this would be a good starting point, such a 

system would be limiting in its ability to provide precise and personalized recommendations, that 

usually need a platform that can create new products or processes on a case-by-case basis. Recent 
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studies simulate a virtual gut microbiome by integrating known metabolic pathways of microbial 

species with the individual’s microbiome and diet (24,21–23). Such mechanistic modeling is very 

promising however it is currently hindered by numerous challenges such as incomplete 

characterization of individual’s gut and metabolic pathways of their microbiome. There is 

considerable research on AI-based RS related to food, drug design and health (235,236) but its 

application with microbiome data is in its early stages (18,20,19). Commercial investments in this 

area have already started, with companies such as UBiome and DayTwo, using 16S rRNA 

technology to provide insights into our personal microbiota and suggest dietary recommendations. 

Recommendation system is defined as “any system that guides a user in a personalized way to 

interesting or useful objects in a large space of possible options or that produces such objects as 

output” (237). Microbiome-aware diet recommendations can be generated from knowledge-based, 

content-based or collaborative filtering as described next. 

2.3.5.1 Knowledge-based Recommendation System 

An ideal knowledge-based RS would be based on in silico model that can correctly simulate an 

individual’s gut. It requires proper characterization of the gut microbiome, human intestinal cells, 

intestinal and dietary metabolite concentrations, their interactions through metabolic pathways and 

realistic objective functions for modeling such complex dynamics. Such knowledge-based RS is 

devised in a recent study involving 28 patients with Crohn’s disease and 26 healthy individuals 

(21). They integrate genome-scale metabolomic reconstructions (GENREs) of 818 microbes from 

http://vmh.life (238) with the individual’s microbiome abundances after metagenomic data 

processing in the R package BacArena (239). Their in silico simulations provide personalized 

metabolic supplements for improving patient’s SCFA levels. Earlier studies have created a 

metabolic model of gut microbiome on a smaller scale (24). See (240) for a comprehensive review. 

http://vmh.life/
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Despite the promise, there are several challenges for the application of such knowledge-based RS. 

The first challenge, is the limited availability and accuracy of GENREs for gut microbes. A recent 

study has identified 1,520 unique microbes in the human gut (241) while the number of microbes 

that have GENREs is only 818 (238). In one study (242) 75% of the GENREs required updates 

(from previously constructed GENREs (243)) so that in silico simulations can recapitulate growth 

on new media. This suggests that in silico GENREs of the gut microbiome are far from complete 

however progress is being made towards closing this gap. The second challenge is the metabolic 

characterization of the media inside the intestine on which gut microbes grow. This includes 

identifying the dietary metabolites available to microbes at different sites in the gut which 

necessitates meticulous dietary data processing. The third challenge relates to the computational 

complexity of in silico simulations which increases as host and microbial GENREs become more 

comprehensive. Although more challenges can be enumerated is would beyond the scope of this 

article. 

2.3.5.2 Content-based Recommendation System 

In content-based RS, the recommendations are made based on the item’s content (often 

characterized using item features). This is in contrast to collaborative filtering RS where 

recommendations are based on preferences of other users for each item. In one landmark study 

(18), authors use content-based RS for meal recommendations with the goal of improving post-

meal glucose levels. Each meal is first characterized based on its nutritional profile (macronutrients 

and micronutrients). Then a regression model is trained to predict post-meal glucose level based 

on the meal’s nutritional profile, individual’s microbiome features, and other personal information. 

For each new user and meal, post-meal glucose levels are predicted by the model and the meal 

with minimum post-meal glucose level is recommended to the user. The same methodology is 
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used in a later study using only microbiome features of individuals to predict post-meal glucose 

levels in a bread-type recommendation system (19). Several challenges arise when building 

content-based RS. The first challenge is variable data quality and compatibility. When a group of 

users (or items) are overrepresented in the data, the predictive model tends to be biased towards 

their favorite items. As a result, the quality of recommendations will be highly variable. Stratified 

sampling can be used to alleviate this issue. The second challenge is the difficulty to generalize 

and personalize recommendations particularly when feature vectors are not informative for 

predictions (also relevant to the “missing quantities” challenge mentioned in Table 3). This is in 

contrast to collaborative filtering RS, where latent features are learned instead of being defined a 

priori. Hybrid RS methods are designed to take advantage of collaborative filtering RS to address 

such inherent challenges in context-based RS (and vice versa) (237). For an extensive review of 

context-based RS, methods see (244). 

2.3.5.3 Collaborative Filtering Recommendation System 

In collaborative filtering RS, each user is characterized by the items (foods or ingredients here) 

they have previously rated, bought or generally acted upon. Recommendations are given based on 

the idea that users who assign the same rating to existing items are expected to have a similar rating 

profile for all items. Matrix completion is one of the most popular collaborative filtering methods 

(245,246). User assigned scores are first organized in a sparse matrix where columns correspond 

to all different items and rows to various users. In cases where most users only have evaluated a 

few items, most of the matrix remains empty. Matrix completion fills the rest of the matrix through 

the similarities discovered amongst users and items. See (245,246) for comprehensive review. 

Collaborative filtering RS has not been used for microbiome-aware food recommendations. We 

describe an example here to showcase how it can be used. Consider a matrix where each column 
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corresponds to a dietary plan and each row to a person, a specific value can represent gut 

microbiome alpha diversity during the time which the user followed a particular dietary plan. 

Assuming that each person has only tried a few dietary plans, most of the matrix will be empty. 

Here we can use matrix completion to fill the matrix with predicted alpha diversities to have a 

complete matrix. This can be used to recommend dietary plans for a person with the goal of 

maximizing gut microbiota diversity. Several challenges arise in collaborative filtering RS. The 

first challenge is the lack of data for new users (“cold-start”). Note that the recommendations rely 

on similarities amongst users while new users have not tried any of the items available in the 

database. The second challenge is the curse of dimensionality. As the number of items increases, 

the chance of having user scores for the same item combinations decreases hence items and users 

become equally dissimilar (also relevant to the “high dimensionality” challenge in Table 2.3). In 

such cases, hybrid RS can be used. Next, we bring up a few example scenarios. 

2.3.6 Example Scenarios 

We discussed various data analytics and recommendation system methods for microbiome 

discovery and diet engineering as illustrated in Figure 2.1 and Figure 2.3. Applicability of each 

method depends on research objectives and data availability. Here we explain particular scenarios 

illustrated in Figure 2.4 as blueprints for integrating relevant techniques in a single pipeline. In 

scenario A, the goal is to identify metabolic pathways that are enriched in the gut microbiome of 

healthy adults using 16S rRNA data (see (159–161) for similar works). In scenario B, the goal is 

to provide recommended probiotic intake for supporting a healthy gut microbiome. First, the study 

participants would be profiled based on the probiotic products they consume (each containing 

specific OTUs) as well as their gut microbiome. Next, microbiome scores will be calculated for 

each participant based on the distance between enriched pathways of their microbiome and the 
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target healthy microbiome. Then a regression model is trained to predict microbiome scores based 

on OTU intakes. Finally, the OTU intake concentration that is predicted to have an optimal 

microbiome score, would be used as the recommended probiotic intake. In scenario C, the goal is 

to identify optimal diets for health, performance, and disease. A compendium needs to be built 

following a consistent data collection and processing pipeline for study participants. The 

compendium serves the training data necessary for building machine learning models to predict 

health metrics such as post-meal glucose level (18,19) or post-dieting weight regain (20). The 

predictive models can then be used as the key part of a recommendation system by identifying the 

expected impact of a given diet on health for new individuals. In scenario D, the goal is to 

recommend metabolic supplements needed by an individual's microbiota to secrete vital 

compounds. First, OTU abundances of each individual are identified using a metagenomic data 

processing pipeline. Then individual gut metabolic pathways are reconstructed using online 

resources such as Virtual Metabolic Human database (238). Finally, constraint-based 

reconstruction and analysis (COBRA) tools (22,239) are used to perform in silico simulation of 

GENREs to identify metabolic intake requirements to secrete vital compounds of interest. This 

mechanistically sound approach is used in a few recent studies (24,21). 
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Figure 2.4 Examples of microbiome-aware diet recommendation pipelines. 

 

Study Description Dietary 

Variables 
Metagenomic 

Technology 
Ref 

Personalized meal recommendation system uses personal, microbiome and 

dietary features to select an optimal meal for lowering post-meal glucose 

levels in patients with type II diabetes. 

Micro and 

macronutrients 
16S rRNA & 

whole 

metagenomics 

(18) 

Microbiome features enable accurate prediction of an individual’s glycemic 

response to different bread types. 
Bread type 16S rRNA & 

whole 

metagenomics 

(19) 

Accurate prediction of weight regain given normal vs. high-fat diet in mice is 

enabled using a microbiome-based predictor.  
Dietary fat 16S rRNA (20) 

Personalized metabolite supplement recommendations for Crohn’s disease 

are made using in silico simulation of reconstructed metabolic pathways from 

gut microbiome (773 microbes). 

 Metabolic 

supplements 
whole 

metagenomics 
(21) 

Fecal amino acid levels are predicted given dietary macronutrients through in 

silico simulation of metabolic pathways from gut microbiome (four microbes) 

and host cells. 

Macronutrients 16S rRNA (24) 

Table 2.4 Highlighted microbiome-aware diet recommendation studies. 
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2.4 Intellectual property development 

The potential application impact generated by research on the relationship between the gut 

microbiome and diet can be visualized by the abundant number of patent applications on the topic, 

as well as more generally in the field of microbiome and health research. A search for “gut 

microbiome” and “diet” returns over 2,500 patents on Google, deposited by universities, institutes 

and companies such as MicroBiome, Microbiome Therapeutics, Gutguide, Whole Biome Inc., 

UBiome and others, from as early as 2004. However, it is important to note that most of these hits 

are less than a decade old, demonstrating the relatively early stages in which this area still resides. 

The exponential growth in patent applications related to the microbiome since 2007 correlates to 

a similar curve for the academic publications in the same period (247). 

One of the earliest patent applications (US20050239706A1) available related to the topic of the 

microbiome and nutrition describes methods to regulate weight by manipulating the gut 

microbiome. Additional patents also aim to use the gut microbiome as a therapeutic target, 

monitoring and altering the composition with the goal of manipulating the host phenotype such as 

weight gain/loss and obesity. In general, weight management with the manipulation of the gut 

microbiome (US20110123501A1, US20100172874A1) appears as a favored theme for early 

patent applications in the area of microbiome and diet. Several patents describe novel probiotics 

and their uses (WO2007136553A2), often relating them to specific target phenotypes such as 

weight loss (EP2178543B1, US9371510B2, US9113641B2, EP2216036A1, EP2296489A1, 

WO2010091991A1). Multiple applications for probiotics focused on weight loss were deposited 

by Nestec SA, which offers research and consulting services to the food company Nestlé S.A.  
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Patent number Name Owner 

Y
e
a
r 

US20100172874A1 Gut microbiome as a biomarker and therapeutic target for treating 

obesity or an obesity related disorder  

Washington 

University in St 

Louis 

06 

WO2007136553A2 Bacterial strains, compositions includig same and probiotic use thereof  Benson et al. 06 

US20110123501A1 Gut flora and weight management Nestec SA  07 

EP2178543B1 Lactobacillus rhamnosus and weight control  Nestec SA  07 

US9371510B2 Probiotic compositions and methods for inducing and supporting weight 

loss  

Brenda E. Moore 07 

US9113641B2 Probiotic bacteria and regulation of fat storage  Arla Foods amba  07 

EP2296489A1 Lactobacillus paracasei and weight control  Nestec SA  08 

EP2216036A1 Lactobacillus rhamnosus NCC4007, a probiotic mixture and weight 

control  

Nestec SA  09 

WO2010091991A1 Lactobacillus helveticus cncm i-4095 and weight control  Arigoni et al. 09 

US20100331641A1 Devices for continual monitoring and introduction of gastrointestinal 

microbes  

Gearbox LLC 09 

US20160074505A1 Method and System for Targeting the Microbiome to Promote Health 

and Treat Allergic and Inflammatory Diseases  

Kovarik et al. 09 

US20120058094A1 Compositions and methods for treating obesity and related disorders by 

characterizing and restoring mammalian bacterial microbiota  

New York 

University  

Dow Global 

Technologies LLC  

10 

US9040101B2 Method to treat diabetes utilizing a gastrointestinal microbiome 

modulating composition  

MicroBiome 

Therapeutics LLC  

11 

US20170348359A1 Method and System for Treating Cancer and Other Age-Related 

Diseases by Extending the Health span of a Human  

Kovarik et al. 11 

US20170281091A1 Capsule device and methodology for discovery of gut microbe roles in 

diseases with origin in gut  

Lowell Zane Shuck 12 

US20170372027A1 Method and system for microbiome-derived diagnostics and 

therapeutics for locomotor system conditions  

uBiome Inc  14 

US20170286620A1 Method and system for microbiome-derived diagnostics and 

therapeutics  

uBiome Inc  14 

US20190030095A1 Methods and compositions relating to microbial treatment and diagnosis 

of disorders  

Whole Biome Inc  14 

WO2017216820A1 Metagenomic method for in vitro diagnosis of gut dysbiosis  Putignani et al.  16 

WO2017171563A1 Beta-caseins and cognitive function  Clarke et al. 16 

WO2017160711A1 Modulation of the gut microbiome to treat mental disorders or diseases 

of the central nervous system  

Strandwitz et al.  17 

US20180318323A1 Compositions and methods for improving gut health  Plexus Worldwide 

LLC  

17 

Table 2.5 Highlighted patents relating to diet, gut microbiome, and human health. 
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With the development of computational techniques to analyze larger datasets, and more research 

on the relationship of the microbiome and the host homeostasis and disease, patent applications 

related to gut microbiome and diet have subsequently extended to other health conditions beyond 

obesity and weight control. Among the newest patent applications related to the gut microbiome 

and diet is a patent describing the characterization, diagnostics, and treatment of a locomotor 

system condition based on microbiome data (US20170372027A1). Other applications include 

metagenomic methods specific for the comparison of healthy individuals and those with gut 

dysbiosis (WO2017216820A1), diagnostic tools for Crohn's disease, inflammatory bowel disease, 

irritable bowel syndrome, ulcerative colitis, and celiac disease using microbiome and other types 

of data (US20170286620A1), and devices such as capsules to acquire and monitor microbiome 

and metabolites in the gut (US20170281091A1). Research on the Gut-Brain axis relationship also 

resulted in several applications aiming at monitoring and manipulating the gut microbiome to 

enhance cognition or treat mental-health conditions (WO2017171563A1, WO2017160711A1). A 

recent and thorough review of patents related to the microbiome identified cancer diagnosis and 

treatment and CRISPR technology as recent trends in the field (247). Table 2.5 shows a summary 

of highlighted patents relating to DGMH. 

Even though there is already a considerable number of patent applications for technologies aiming 

to manipulate the gut microbiome for multiple health conditions, regulatory legislation has not yet 

become specific to deal with the new scientific advances in the field. In Europe, the European 

Food Safety Authority (EFSA) is responsible for regulating and approving food products with 

health claims, including probiotics, while in the U.S., the Food and Drug Administration (FDA) 

assumes a similar role. Legislation and regulatory aspects are changing in an attempt to keep up 

with the ever-evolving field. Recently, the FDA has released a statement (FDA 2018) clarifying 
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existing regulations and announcing the intention to work closely with the US National Institutes 

of Health to ensure public safety. Currently, there is no probiotic approved to be marketed in the 

US as a live biotherapeutic product, defined by the agency as a “biological product other than a 

vaccine that contains live organisms used to prevent or treat a disease or condition in humans” 

(FDA 2016, FDA 2018). This means that, even though probiotics are legally available as dietary 

supplements or food ingredients, they cannot yet have claims to cure, treat, or prevent any diseases 

per current regulation (FDA 2018), since those claims are reserved for drugs. Classification of 

food ingredients targeting the microbiome, but not composed of living organisms, microbiota-

directed foods or MDFs, prebiotics and dietary fiber, is also challenging based on the available 

legislation. Depending on the health claims, such products can fall under the categories of drugs 

or dietary supplements, which have different requirements for approval (248) 

2.5 Conclusion 

Significant advances in microbiology, genomics, analytical chemistry, computational science, 

bioinformatics, and other critical disciplines have begun to converge such that it is possible to 

foresee a new era of health and nutrition research enabling the design of food products capable of 

optimizing health via predictable interactions with the gut microbiome. Despite the exciting 

potential in this context demonstrated by pioneering research efforts of many investigators, 

including those cited in this brief review, the complexity of the microbiome, the chemical 

composition of food, and their interplay in situ remains as a daunting challenge in the context of 

achieving needed breakthroughs. However, recent advances in high-throughput sequencing and 

metabolomics profiling, compositional analysis of food, and the emergence of electronic health 

records as an opportunity to integrate health information provide new sources of data that can 
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contribute to addressing this challenge. Indeed, it is now clear that computational science will play 

an essential role in this effort as it will provide the foundation to integrate these data layers and 

derive insights capable of revealing and understanding the complex interactions between diet, 

microbiome, and health. 

The human microbiome is exceptionally plastic, which presents both challenges and opportunities 

(234). Due to its temporal and inter-individual variability, it is difficult to discover statistically 

significant signatures that unambiguously constitute a healthy versus non-healthy microbiota. At 

the same time, its potential for adaptation to diet and other environmental factors makes the gut 

microbiome an excellent target for diet-related interventions to improve health. In this article, we 

presented a brief overview of the current state of knowledge and potential avenues for research at 

the interface of diet, gut microbiome, and human health, with particular emphasis on the role that 

computational science and data analytics can play in accelerating this research. Using these tools, 

we envision a future in which diets, as well as food and dietary supplement products, can be better 

designed for specific populations; and in some cases for individuals; in order to optimize gut 

microbiota and health via a platform integrating two distinct systems. The first system will be 

responsible for identifying the optimal target microbiota (discovery) given the desired target, 

individual and environment, while the second will provide recommendations for achieving that 

target microbiota (engineering). Recognizing this distinction and the requirement for seamless 

interaction between the two can reinforce collaborative research in this evolving field where some 

teams focus on microbiota discovery and others on diet engineering. 

Microbiome research has attracted much interest in the past few years and given rise to various 

software tools and pipelines for metagenomic data processing and analysis. Many of these tools 

address similar problems and researchers may choose a variety of tools depending on the context. 
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Interestingly, recent research has shown that synthetic datasets can be used to assess the 

performance of competing tools given a project’s assumptions and hence provide useful 

benchmarks (249,250). We believe further progress in simulation-based studies, can give rise to 

new data processing and analytics pipelines customized for each project based on factors such as 

sequencing technology, data availability, dimensionality and variability. This can help to build 

standard protocols for addressing challenges like the ones mentioned in Table 2.3 and Table 2.4. 

Our current knowledge about the relationship between diet, gut microbiome, and human health is 

evolving fast. Many data analysis methods exist for discovering characteristics that can define a 

healthy microbiota and the factors influencing it. We believe that proper integration of 

recommendation systems with existing research developments will have an unprecedented impact 

on our way of life. Given the accelerated pace of advances in sequencing and computational tools, 

we expect the next decade to be the era of computational nutrition that will revolutionize our 

relationship with food and diet. 
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Alpha Diversity. A measure that represents the diversity of 

species at a particular site (e.g. human intestine). 

Beta Diversity. A measure that represents the difference in 

community composition between sites (e.g. healthy vs. 

malignant intestine). 

Classification. Supervised learning tasks in which the 

dependent variables are categorical. 

Cluster analysis. Unsupervised learning methodology to 

identify groups of similar data-points automatically. 

Collaborative filtering. Recommendation system 

methodology in which relies on similarities amongst user 

preferences for new recommendations. 

Compositional quantities. Quantities that are described as 

proportions or probabilities with constant or irrelevant sum. 

Content-based filtering. Recommendation system 

methodology in which recommendations are made based on 

item’s content (often characterized using item features) and 

user features. 

Curse of dimensionality. Attributed to the phenomena that 

increase in data dimensionality exacerbates data analysis 

challenges such as overfitting, the required number of 

samples, memory, and runtime. 

Data imputation. The process of replacing missing data 

with substituted values. 

Diversity metric. Quantitative measure that represents the 

number of unique entity types (e.g. species) in a community 

and evenness in their relative population. 

Dimensionality. Number of attributes available for each 

sample in a given dataset. A dataset with relatively few 

attributes is considered low-dimensional while a dataset with 

many attributes is referred to as high-dimensional. 

Labeled/unlabeled samples. Samples that have been 

tagged using particular labels describing the value of a 

dependent variable are called labeled. This is in contrast to 

unlabeled samples for which such labels are unavailable. 

Note that labels many categorical or numerical. 

Marker gene sequencing. Primer-based strategy (such as 

16S rRNA) that targets a specific region of a gene of interest 

to characterize microbial phylogenies of a sample. 

Multiple-hypothesis testing. A problem that arises in tests 

of statistical significance when applied multiple times using 

different hypotheses. 

Overfitting. A problem that arises in machine learning 

where parameter values of a model are too closely fit for 

training data and therefore not useful in practice. 

Rarefaction. A bias correction technique used to enable 

comparison of diversity measures between communities 

with unequal sample sizes. 

Recommendation system. “Any system that guides a user 

in a personalized way to interesting or useful objects in a 

large space of possible options or that produces such objects 

as output” (267) 

Regression. Supervised learning tasks in which the 

dependent variables are numerical. 

Regularization. Machine learning technique that dampens 

variability of model parameters leading to a more smooth 

model. It is usually used to mitigate overfitting. 

Stability metric. Quantitative measure to assess whether 

properties of a community (e.g. gut microbes) are preserved 

over time. 

Supervised learning. Learning tasks that require labeled 

data. They involve learning a function to predict the correct 

label for a new sample given input attributes. 

Unsupervised learning. Learning tasks that do not rely on 

labeled data. They involve learning hidden structures, 

features or patterns within the data. 

Variation analysis. Statistical methods such as analysis of 

variance (ANOVA) used to identify the amount of variance 

in a dependent variable which can be explained using 

independent variables. 

Whole metagenomic sequencing. Sequencing the whole 

genome of all microbial species within a sample. This is also 

called shotgun metagenomics. 

Table 2.6 Glossary of terms. 
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Chapter 3: Microbiome-based diet 

optimization for irritable bowel syndrome 

3.1 Abstract 

Objective. Identification of microbiota-based biomarkers as predictors of low-FODMAP diet 

response and design of a diet recommendation strategy for IBS patients. 

Design. We created a compendium of gut microbiome and disease severity data before and after a 

low-FODMAP diet treatment from published studies followed by unified data processing, 

statistical analysis and predictive modeling. We employed data-driven methods that solely rely on 

the compendium data, as well as hypothesis-driven methods that focus on methane and short chain 

fatty acid (SCFA) metabolism pathways that were implicated in the disease etiology. 

Results. The patient’s response to a low-FODMAP diet was predictable using their pre-diet fecal 

samples with F1 accuracy scores of 0.750 and 0.875 achieved through data-driven and hypothesis-

driven predictors, respectively. The fecal microbiome of patients with high response had higher 

abundance of methane and SCFA metabolism pathways compared to patients with no response (p-

values < 610-3). The genera Ruminococcus 1, Ruminococcaceae UCG-002 and Anaerostipes can 

be used as predictive biomarkers of diet response. Furthermore, the low-FODMAP diet followers 

were identifiable given their microbiome data (F1-score of 0.656). 

Conclusion. Our integrated data analysis results argue that there are two types of patients, those 

with high colonic methane and SCFA production, who will respond well on a low-FODMAP diet, 

and all others, who would benefit a dietary supplementation containing butyrate and propionate, 
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as well as probiotics with SCFA-producing bacteria, such as lactobacillus. This work demonstrates 

how data integration can lead to novel discoveries and paves the way towards personalized diet 

recommendations for IBS. 

3.2 Introduction 

Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder that is prevalent in 

approximately 11% of adult population (251). It is associated with abdominal pain and changes in 

stool form and frequency of bowel movements (251,252). One of the emerging treatments for IBS 

is to reduce the amount of fermentable oligosaccharides, disaccharides, monosaccharides and 

polyols (FODMAPs) in the diet, also called the low-FODMAP diet, as recommended by the 

American College of Gastroenterology (253) and the Canadian Association of Gastroenterology 

(254). The low-FODMAP diet has been effective for 50%-80% of IBS patients (255), however the 

patients who will benefit from this diet cannot be accurately identified beforehand. Several studies 

have attempted to create predictors for the efficacy of this diet in IBS using pre-treatment samples 

(256–258), however there is no evidence to show the utility of such a predictor across multiple 

studies. Furthermore, there is no common theory to explain the reason why the low-FODMAP diet 

is only effective for some patients in terms of disease etiology that is supported by data form 

multiple studies. It is believed that a low-FODMAP diet works by reducing the amount of 

carbohydrates that are not digested by the small intestine hence reach the colon to be  used in gas 

producing microbial fermentation (259). 

Here, we investigate whether the efficacy of low-FODMAP diets on IBS patients can be predicted 

by analysis of easy to obtain biomarkers. Towards this goal, we created a compendium of 

microbiota metagenomics, by integrating data from 6 sources and fecal metagenomics samples 
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from 152 unique IBS patients and 37 healthy adults. In addition, we investigated whether the 

amount of FODMAPs in an individual’s diet, can be predicted using their gut microbiome data, 

showcasing the potential utility of microbiome data for assessing dietary adherence. 

3.3 Materials and methods 

3.3.1 Data curation 

We searched PubMed for studies that have collected gut microbiome data before and after a period 

of low-FODMAP dietary treatment in humans. We found nine such studies and only six of them 

provided us with both the gut microbiome data as well as the corresponding metadata that is needed 

for this meta-analysis (Table 3.1). In all studies, the microbiome data came from fecal samples, 

characterized by 16S rRNA, or by the GA-map™ microbiome profiling (260). In GA-map™ 

microbiome profiling, each fecal sample is characterized by 54 numbers each representing the 

signal intensity of a DNA probe. The probes were designed for detection of bacterial taxonomies 

for distinguishing between IBS patients and healthy controls given fecal samples. The 16S rRNA 

and GA-map™ were analyzed independently. 
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Id Reference Microbiome Technology Access 

1 (261) 16s rRNA N/A 

2 (262) 16s rRNA N/A 

3 (263) 16s rRNA Granted 

4 (264) 16s rRNA Granted 

5 (265) 16s rRNA N/A 

6 (256) GA-map™ Granted 

7 (266) 16s rRNA Granted 

8 (267) 16s rRNA Granted 

9 (268) GA-map™ Granted 

Table 3.1. Studies with gut microbiome data involving low-FODMAP dietary treatment. N/A: 

Authors did not grant access to metadata and/or raw microbiome data. 

3.3.2 Metadata processing 

In all studies, the severity of IBS was quantified using IBS-SSS (IBS symptom severity scale) 

which is a number between zero and 500 representing the overall severity of IBS symptoms in a 

patient. We evaluated the patient’s response to the diet based on the improvement in their IBS-

SSS score (IBS-SSS = IBS-SSSbefore - IBS-SSSafter) after a period of following the low-FODMAP 

and labeled the patient’s response as “High” (i.e. IBS-SSS ≥ 150), “Low” (i.e. 22 < IBS-SSS < 150), 

or “No” (i.e. IBS-SSS ≤ 22). The high threshold of 150 is reasonable since the reported mean plus 

standard deviation of IBS-SSS for a placebo treatment can range from 124 to 162 (269,270), and 

therefore a “High” response is unlikely to be associated with a placebo effect. The low threshold 

of 22 was chosen to create a balance between the “No” and “High” response groups. 

3.3.3 Preprocessing of 16S rRNA microbiome data 

We analyzed 16s rRNA data separately for each study before integration. We used DADA2 (271) 

version 1.10.1 implemented in R version 3.5.2 following the package’s online tutorial 

(benjjneb.github.io/dada2/bigdata.html). First, primer and adapter sequences were removed from 

each read and quality control was performed by removing 16S rRNA reads that were chimeric, 

https://benjjneb.github.io/dada2/bigdata.html
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shorter than 260 bp, or had at least two expected errors. In addition, longer reads were truncated 

at 260 bp since read qualities decreased sharply afterward. For one dataset (264), the reverse reads 

were truncated at 160 bp instead due to the decrease of read qualities at lower base pairs compared 

to the forward reads. Next, we performed de novo sequence assembly to identify operational 

taxonomic units (OTUs). Then SILVA database (272) version 32 was used to identify bacterial 

taxonomies associated with 16S rRNA assembled sequences. Taxa that were only observed in a 

single sample were filtered out. 

3.3.4 Functional profiling from 16S rRNA microbiome data 

We imported OTU read counts of the DADA2 analysis into qiime2, searched against Greengenes 

(273) and filtered out OTUs that could not be matched at the 97% identity threshold as needed for 

PICRUSt (67). Samples with no remaining OTUs were removed if any, and predictive 

metagenome profiling and KEGG pathway enrichment analysis (for level L3) were performed 

using PICRUSt. Finally, we converted the read counts to relative abundances and transformed 

using centered log-ratio transform (CLR) to account for the compositionality of microbiome data 

(274). In the case of zero relative abundances of a given pathway, we used the minimum amongst 

CLR transformed values of non-zero read counts, subtracted by 10% of their standard deviations. 

Given that reported KEGG pathways from PICRUSt did not include specific pathway for SCFAs, 

we relied on fatty-acid pathway abundances instead. 

3.3.5 GA-map™ microbiome data processing 

We normalized the signal intensities of 54 probes from each study separately to have zero-mean 

and unit-variance for a given probe before integration. To estimate the relative enrichment of 

methane metabolism in gut microbiome, we used the AG0581 probe (designed for detection of 

genus Dorea). The genus Dorea has been shown previously to be negatively associated with breath 
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methane levels (see (275), Table 3). To estimate the enrichment of SCFA metabolism pathways in 

gut microbiome, we used two pairs of probes AG0686,  AG1099 (designed for genus 

Parabacteroides) and AG1225, AG1226 (designed for genus Alistipes) as their corresponding 

genus have been shown to be negatively associated with fecal SCFA levels (see (266), Table S5). 

3.3.6 Differential analysis and statistical validation 

We used unpaired non-parametric Wilcoxon rank-sum test for identifying pathways and taxa that 

are differentially abundant between IBS patients with high (n=8), low (n=29), or no (n=9) response 

to low-FODMAP diet where degrees of freedom is equal to the number of samples used minus 

two (e.g. degrees of freedom for high versus no response was 8+9-2=15). The calculated p-values 

were one sided for hypothesis-driven statistical validations and two sided for data-driven 

differential analysis. We also calculate FDR-corrected p-values (i.e. q-values) in data-driven 

differential analysis to account for multiple hypothesis testing given the number of KEGG 

pathways (n=237) and genus taxa used (n=217), with thresholds of 0.15 or lower. 

3.3.7 Diet response prediction 

We first integrated data from multiple studies and performed dimensionality reduction using sparse 

principal component analysis (276,277) reducing the number of microbiome features (microbial 

taxa, enriched pathways or GA-map probes) to 30% of the number of profiles in the dataset. Then 

for a given pair of classification labels, we created random forest (RF) classifier and evaluated 

using leave-one-out cross-validation. We also evaluated the classification performance by iterative 

removal of the feature that is identified as least important by the RF classifier until only one feature 

remained. In all cases the areas under the precision-recall (PR) and receiver operating 

characteristic (ROC) curves, as well as the F1 score (the harmonic mean of precision and recall) 

were calculated. 



 

 

48 

3.4 Results 

Figure 3.1 illustrates our data analysis methodology. A consistent data processing pipeline was 

applied to the curated metagenomics data enabling downstream analysis (hypothesis-driven and 

data-driven). The hypothesis-driven analysis was informed from the illustrated literature-based 

hypotheses: (a) the methane gas can inhibit intestinal motility hence contributing to stool 

abnormality in the form of constipation or bloating (278), (b) methanogenesis requires hydrogen 

and carbon dioxide that can be generated by anaerobic fermentation of undigested carbohydrates 

in colon (279), and (c) short-chain fatty acids (SCFAs) such as formate can also induce 

methanogenesis independently or in tandem with hydrogen (259,280). Therefore, in hypothesis-

driven analysis we only used methane and fatty acid metabolism pathway abundances as input 

while in data-driven analysis all pathways and taxa (at genus level) were used for differential 

abundance analysis and predictive modelling. 

3.4.1 Comparison of high/low response to Low-FODMAP diet reveals 

structural differences in the microbiota 

Pre-diet fecal metagenomes of IBS patients were integrated and processed from five studies along 

with disease severity scores (IBS-SSS) ranging from zero to 500 before and after following a low-

FODMAP for a total of 152 patients (Figure 3.2 A). For differential analysis, we focused on the 

patients with most extreme responses (high versus no response) that had 16S rRNA metagenomic 

profiles (n=17). Top 5 KEGG pathways were differentially abundant with q-values < 0.11 with 

fatty acid metabolism being the most differentially expressed. However, there was no differentially 

abundant genus taxa when a q-value significance threshold of 0.15 is used (Figure 3.2 B-C). Three 

genera (Ruminococcaceae UCG-002, Ruminococcus 1 and Anaerostipes) were identified amongst 

the top 5 to be positively associated with stool SCFA levels based on other studies.(266,281) 
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Therefore a 3-genus microbiome biomarker was designed by adding their CLR-transformed 

abundances providing higher values for patients with a high response versus low response (p-value 

= 1.0 10-10) or no response (p-value = 2.5 10-4) following the diet. Note that the microbiome 

profiles of patients with low response were never used in the discovery of top five genera reported 

in Figure 3.2 C. A data-driven predictor of high/no response was built given all KEGG pathway 

abundances providing an F1 score of 0.750, AUROC of 0.708 (baseline: 0.5) and AUPR of 0.629 

(baseline: 0.471). 

 

Figure 3.1. Overview of low-FODMAP diet response prediction for irritable bowel syndrome 

(IBS): The response of IBS patients to a low-FODMAP diet and their pre-diet fecal metagenomes 

were integrated and analyzed from five independent studies. Consistent data processing pipeline 

was applied on raw metagenome data to infer the relative pathway and taxa (at genus level) 

abundances for individual gut microbiomes. In a data-driven analysis, differentially abundant taxa 

and pathways were identified for patients with high versus no response to the low-FODMAP die. 

Diet response predictors were built to identify whether an IBS patient will benefit from a low-

FODMAP diet given their pre-diet fecal metagenome. Furthermore, a hypothesis-driven analysis 

was performed given the hypothesized relationships between FODMAPs, methane metabolism, 

fatty acid metabolism and illustrated colon functions base on literature. Although similar to the 

data-driven analysis, only the pathway abundances relating to methane and fatty acid metabolism 

were used for statistical validation, model training and the final diet response predictor. 

We also created predictor for high versus low or no response for patients with 16S rRNA 

metagenome profiles (Figure 3.3 A, B, D and D). Using pathway abundances as input provides an 
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F1 score of 0.625, AUROC of 0.850 (baseline: 0.5) and AUPR of 0.693 (baseline: 0.174) while 

with genus taxa abundances as input an F1 score of 0.533, AUROC of 0.873 (baseline: 0.5) and 

AUPR of 0.425 (baseline: 0.174) was achieved. For patients with GA-map data (Figure 3.3 C and 

F) an F1 score of 0.581, AUROC of 0.625 (baseline: 0.5) and AUPR of 0.530 (baseline: 0.462) 

was achieved. 

 

Figure 3.2. Pre-diet microbial differential abundances for IBS patients with high versus no 

response to the low-FODMAP diet: (A) IBS patient records from five studies are sorted into 

three groups based on their response to the low-FODMAP diet (High/Low/No) given the amount 

of improvement in IBS symptom severity after following the diet. (B) Top 5 pre-diet gut 

microbiome KEGG pathways that are differentially abundant (following a clr-transformation of 

their relative abundances) amongst High versus No response patient groups (q-values < 0.11; Fatty 

acid metabolism p-value = 1.510-3; Nucleotide excision repair p-value = 3.710-3; Phenylalanine, 

tyrosine and tryptophan biosynthesis p-value = 3.710-3; RNA polymerase p-value = 3.710-3; 

Thiamine metabolism p-value = 3.710-3). (C) Similar to (B) for differentially abundant genus 

taxa (genus related q-values are not significant using a threshold of 0.15; Ruminococcaceae UCG-

002 p-value = 3.110-3; Ruminococcus 1 p-value = 1.310-2; Victivallis p-value = 2.310-2; 

Anaerostipes p-value = 3.010-2; Turicibacter p-value = 6.010-2). 
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Figure 3.3 Prediction of response to low-FODMAP diet given pre-diet microbiome data: (A-

C) ROC and PR curves for prediction of response to low-FODMAP diet using pathway 

abundances, genus taxa abundances and GA-map probe signals of pre-diet gut microbiome. The 

star relates to the threshold used for calculating the F1 scores. (D-F) The F1 scores relating to 

predictive models when the least important feature (pathway, taxa or GA-map probe) is 

incrementally removed until only a single feature remains in the predictive model. The stars 

highlight the best F1 score achieved and each corresponds to a pair of ROC and PR pair curves on 

the top (i.e. A&D, B&E and C&F correspond respectively). 

3.4.2 IBS patients with methanogenic fecal microbiome respond better to 

Low-FODMAP diets 

Low intestinal motility of IBS patients has been associated with intestinal production of methane 

(278) due to methane producing microbes (methanogens) in the gut (266,282), which use 

undigested carbohydrates for their metabolism (259). Therefore, we hypothesized that response to 

low-FODMAP diet is associated with gut microbiome methane metabolism capability. To validate 

this hypothesis, we performed meta-analysis on 46 patients; integrated from three studies 

(263,264,267) that rely on 16S rRNA data. In agreement with our hypothesis, the high response 

group of patients had a significantly higher enrichment in methane metabolism pathway of their 



 

 

52 

pre-treatment microbiome samples compared to low response (p-value =1.310-2) and no response 

(p-value = 5.610-3) groups (Figure 3.4 A). We then used GA-map microbiome data from a 

separate study (256) with 31 IBS patients, using only the probe associated with methane 

production. The analysis of GA-map data also supports our hypothesis with high response patients 

having higher abundance in methane production associated taxa when compared to the no response 

patients (p-value = 7.410-3). 

 

Figure 3.4. Prediction of response to low-FODMAP diet given pre-diet microbial abundances 

for methane and fatty acid metabolism pathways. (A&B) Methane and fatty acid metabolism 

pathway enrichment of pre-treatment gut microbiome for patients with High, Low or No response 

to low-FODMAP diet. (C&D) ROC and PR curves for predicting High vs. No response to low-

FODMAP diet using methane and fatty acid metabolism pathway abundances (CLR-transformed) 

in gut microbiome. (E&F) ROC and PR curves for predicting High vs. Low or No response to low-

FODMAP diet using methane and fatty acid metabolism pathway abundances (CLR-transformed) 

in gut microbiome. 



 

 

53 

3.4.3 The efficacy of Low-FODMAP diet can be accurately predicted by 

methane and short-chain fatty acid metabolic pathways 

 Short-chain fatty acids (SCFAs) are key products of microbial fermentation in human intestine 

and important for health of epithelial cells (283). Therefore, we also analyzed the enrichment of 

fatty-acid metabolism pathway in 16S rRNA fecal microbiome data of IBS patients. Our analysis 

shows higher enrichment in fatty-acid metabolism for high versus no response patients (p-value = 

7.810-4) (Figure 3.4 B). Next, we created a classifier to predict the patient’s response (high versus 

no response) based on methane and fatty acid metabolism in 16s rRNA data. Our random forest 

(RF) classifier achieved 0.89 and 0.84 for area under the curve (AUC) of ROC and PR curves, 

respectively (Figure 3.4 C-D). We also performed analysis for GA-map probe data using taxa 

probes that have been associated with SCFA levels in fecal samples, but did not find a significant 

difference between the “High-response” and “Low-response” IBS patients. 

3.4.4 Predicting diets from their effect on the microbiome 

Diet is considered to be an important factor for modulating intestinal microbiota (284), however it 

is not clear whether a low-FODMAP diet leads into common changes in gut microbiome across 

different individuals. To investigate this, we used 188 16S rRNA fecal microbiome profiles from 

IBS patients and healthy individuals before (n=95) and after (n=93) low-FODMAP dietary 

intervention. Microbiome samples were characterized by their KEGG pathway and genus taxa 

abundances. We used random forest classifier to predict whether the microbiome sample is taken 

before, or after the low-FODMAP dietary intervention (Figure 3.5 A). When pathway abundances 

were used as input the classifier achieved F1 score of 0.656, AUROC of 0.687 (baseline: 0.5) and 

AUPR of 0.663 (baseline: 0.495) (Figure 3.5 B). Only three pathways were needed to achieve an 

F1 score of 0.66 (Figure 3.5 D). Using taxa abundances at genus level for classification provided 
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F1 score of 0.602, AUROC of 0.608 (baseline: 0.5) and AUPR of 0.597 (baseline: 0.495) (Figure 

3.5 C). 
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Figure 3.5. Prediction of diet (low-FODMAP vs. other) given microbiome data: (A) Fecal 

metagenomes were integrated from four studies along with the dietary regimen that was followed 

prior to sampling. Consistent data processing pipeline was applied on raw metagenome data to 

infer the relative pathway and taxa (at genus level) abundances for each sample. Diet predictors 

were built to identify the individual’s diet given their fecal metagenome. (B &C) ROC and PR 

curves for diet prediction using pathway and genus taxa abundances in gut microbiome. The star 

relates to the threshold used for calculating the F1 scores. (D-E) The F1 scores relating to 

predictive models when the least important feature (pathway or taxa) is incrementally removed 

until only a single feature remains in the predictive model. The stars highlight the best F1 score 

achieved and each corresponds to a pair of ROC and PR pair curves on the top (i.e. B&D and C&E 

correspond respectively). 
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3.5 Discussion 

While several studies have confirmed the efficacy of low-FODMAP diet for symptom 

management in IBS, between 55%-66% of IBS patients have a response that is similar to a placebo 

treatment. We hypothesized that the patient’s response level (high/low/no) to a low-FODMAP diet 

can be predicted using their fecal microbiome samples. Although this hypothesis had been 

validated to an extent by individual studies, there is no predictor that (a) works across multiple 

studies and (b) comes with a mechanistic explanation of the patient’s response based on their 

microbiomes. To this end we integrated data from five distinct studies and performed a meta-

analysis showing that the patient’s response to low-FODMAP diet is predictable given their fecal 

microbiome. We also formed a literature-based hypothesis supported by the integrated data that a 

high response to low-FODMAP diet is associated with higher abundance of methane and SCFA 

metabolism pathways in gut microbiome. Our mechanistic explanation is that a low-FODMAP 

diet works by lowering the amount of colonic methane that is shown to slow down intestinal 

motility (278), a precursor to constipation and/or bloating. Therefore, patients with highest 

response have a colonic microbiome with substantial methane production capability due to (a) 

methane metabolism pathways, and (b) SCFA metabolism pathways that promote methanogenesis, 

both of which rely on microbial digestion of carbohydrates. Gut microbes can also use formate or 

hydrogen to produce acetate (285), an SCFA with anti-inflammatory properties (286), which may 

inhibit their availability for methanogenesis and decrease bloating. The microbiome SCFA 

pathways can have positive or negative impact on microbial secretion and absorption of gases, 

which necessitates more in-depth investigation of their role in IBS dietary treatments (e.g. low-

FODMAP diet and probiotics).  Additionally, we showed that gut microbiome data can be used to 

predict whether a patient is following a low-FODMAP diet, suggesting that this diet modulates gut 
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microbiome and leaves identifiable traces which can be used for assessing dietary compliance. 

This work showcases the utility of integrated meta-analysis using raw data from individual studies 

with a consistent methodology to arrive at new insights. Although there were several differences 

amongst the low-FODMAP studies that can create risks for data analysis, we found no significant 

change in the amount of improvement of IBS-SSS score after following a low-FODMAP diet 

amongst the studies despite their differences. In addition, when it comes to microbiome data 

processing and analysis, we minimized the impact of such differences by applying the same 

standard pipeline starting from the raw microbiome data of each study. We acknowledge that the 

other differences (e.g. stool sample handling and metagenomic sequencing) can also be 

problematic in revealing any signal, however once such pattern is discovered, these differences 

increase the robustness and reproducibility of the analysis, as it becomes less sensitive to the 

specific details of the techniques used. 

Prior studies show that lower abundance of microorganisms that produce butyrate (an important 

SCFA) is associated with irritable bowel syndrome (287), Lactobacillus based probiotics promote 

production of SCFAs in the gut (288) and improve disease symptoms in IBS (289). Consistent 

with our meta-analysis results, we suggest a biomarker-based diet recommendation system where 

a low-FODMAP diet is recommended to patients with high colonic methane and SCFA 

production, and a probiotic supplementation with SCFA producing microbes is recommended to 

patients with low colonic methane and SCFA production. Such a personalized recommendation 

system will be inline with dietary recommendations from the American College of 

Gastroenterology  and the Canadian Association of Gastroenterology for IBS which consider both 

dietary treatments as beneficial (253,254), while expected to decrease the array of treatments that 

patients need to try before finding the treatment that works for them. Clinical trials will be 
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necessary to identify best biomarkers, probiotic species and dosages and evaluate the patient’s 

response compared to alternative treatments. A comprehensive array of tests including gas analysis 

of breath samples, shotgun metagenomics, qPCR with primers that can detect SCFA producing 

microbiomes and methanogenic microorganisms that are archaeal, and gas chromatography–mass 

spectrometry (GC/MS) for detecting SCFA levels from microbiome samples (fecal or through 

colonic biopsy), will be necessary to provide more accurate insight into the microbiome pathways 

discussed. Given the advent of low-cost breath testing and accessibility of primer-based qPCR 

testing of fecal samples, gut microbiome methane and SCFA metabolism levels can be readily 

assessed in the clinic in order to provide more effective dietary recommendations for IBS patients. 

Intestinal bacterial infections are commonly diagnosed through low-cost qPCR testing of stool 

samples for detection of known pathogens given target-specific primers (290). Intestinal 

malabsorption of carbohydrates is also diagnosed in the clinic using hydrogen and methane breath 

testing although with variable repeatability (291). Upon development of a qPCR kit for gut 

microbiome SCFA metabolism estimation (e.g. by detection of Ruminococcus 1, 

Ruminococcaceae UCG-002 and Anaerostipes genera levels), a personalized IBS diet can be 

employed in the clinic where SCFA supplementation (prebiotic or postbiotic) is recommended 

when SCFA microbiome metabolism is low, and a low-FODMAP diet is recommended when 

SCFA and methane metabolism of the gut microbiome are above a calibrated threshold. We 

believe that the recent advances in high resolution omics and computational methods across diet, 

microbiome, and health (1), as well as novel ways of food representation that rely on artificial 

intelligence (292,293), will give rise to more personalized dietary treatments potentially 

revolutionizing clinical nutrition. 
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It is important to note that, the analyzed data here included microbiome profiles from IBS patients 

with diarrhea, constipation, or both symptoms, however, we did not perform a separate analysis 

based on the IBS type since multiple studies did not provide the IBS type information per patient. 

Further studies will be necessary to validate the hypothesized mode of action for this diet in 

reducing constipation and bloating symptoms of IBS, and to understand the possibly different 

modes of action in reducing diarrhea. 
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Chapter 4: Genetic neural networks for 

modeling biological systems 

4.1 Abstract 

Motivation: Gene expression prediction is one of the grand challenges in computational biology. 

The availability of transcriptomics data combined with recent advances in artificial neural 

networks provide an unprecedented opportunity to create predictive models of gene expression 

with far reaching applications. 

Results: We present the Genetic Neural Network (GNN), an artificial neural network for 

predicting genome-wide gene expression given gene knockouts and master regulator 

perturbations. In its core, the GNN maps existing gene regulatory information in its architecture, 

and it uses cell nodes that have been specifically designed to capture the dependencies and non-

linear dynamics that exist in gene networks. These two key features make the GNN architecture 

capable to capture complex relationships without the need of large training datasets. As a result, 

GNNs were 40% more accurate on average than competing architectures (MLP, RNN, BiRNN) 

when compared on hundreds of curated and inferred transcription modules. Our results argue that 

GNNs can become the architecture of choice when building predictors of gene expression from 

exponentially growing corpus of genome-wide transcriptomics data. 

Availability and implementation: https://github.com/IBPA/GNN 
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4.2 Introduction 

Prediction of cellular state in novel environments presents a need and an opportunity in systems 

biology (294–296). Surge in the availability of data, advances in computational techniques and 

exponential increase of computing power have led to the adoption of omics analysis and predictive 

modeling in a variety of fields, including food safety, drug discovery, biofuel development and 

precision medicine (297–300). The key role of gene expression (GE) in cellular machinery (294) 

and the cost-effective nature of high-throughput transcriptomics have renewed interest in 

predictors of gene expression as a proxy of the cellular state (301,302). If successful, an accurate 

predictive GE model can be useful in basic research on understanding how gene expression 

changes based on environmental stimuli, and in industrial biotechnology by guiding wetlab 

experimentation to those settings that are more likely to produce the desired results, from 

recombinant protein expression (303,304) to strain engineering (305) and drug production (306). 

When it comes to prediction, artificial neural networks (ANN) outperform other methods in areas 

such as computer vision and machine translation (307). Despite their success in complex prediction 

tasks (308,309), their application for steady state GE prediction has been quite limited (310). 

Instead most researchers rely on methods based on linear models, molecular thermodynamics, 

differential equations, logical circuits and Bayesian networks (302,311). The idea of using ANNs 

for GE prediction is not novel (312) but its adoption has remained stale due to lack of data and 

limited predictive power of the algorithms so far. Recently, ground-breaking ideas around deep 

neural networks (DNN) accompanied with the availability of vast transcriptomics repositories have 

created an unprecedented opportunity to create accurate predictors for genome-wide expression 

(313). For example, a recurrent neural network (RNN) was employed as part of a genome-scale 
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model trained on twenty million data points for steady state GE prediction in novel conditions for 

bacterium Escherichia coli (295). In another study, A 3-layer feedforward neural network (FNN) 

was used for GE prediction when the expression of landmark genes were given (314). More 

recently, a convolutional neural network (CNN) called DeepChrome was used to predict GE from 

histone modifications (315) and a similar tool, DeepPep was developed for predicting protein 

occurrence in proteomics samples (316). 

There are several technical challenges to overcome when building an ANN GE model. First, one 

has to optimize the ANN hyper-parameters that determine the underlying ANN architecture. 

Although general architectures can be trained, architectures that are tailored to incorporate the key 

properties of a given problem tend to be substantially more accurate. For example CNNs are 

designed to excel in image tasks (317) based on the idea that high level features in an image can 

be identified by hierarchical combination of local features (e.g. for a face to be identified, two 

eyes, nose and mouth would be identified nearby each other). Recently, a new type of ANN called 

visual interaction network is developed to capture dynamics of physical objects (e.g. billiard balls) 

from video frames in order to predict object’s physical trajectory (318). Schema networks take this 

idea further by capturing causalities between object dynamics as well to enhance prediction in 

transfer learning (319). Currently, there is no ANN architecture that maps well to the gene 

regulatory dynamics and the complex expression signatures they produce within cells. To address 

this challenge, we developed a novel feed-forward architecture, coined Genetic Neural 

Network(GNN), that is founded on the observation that gene expression in prokaryotic systems is 

influenced, at least partially, by the expression level of its transcription factors (TF) (320,321). 

The fundamental building block of the GNN is the GNN layer or cell, a type of node that has been 

designed to capture the dynamics that govern gene regulation. 
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A second challenge in training ANNs is to produce sufficient data to avoid over-fitting. DNNs are 

notorious for their need of large datasets: for instance, ImageNet that is used to train computer 

vision DNNs contains 14 million images (322). In contrast, for the most widely studied bacterium, 

Escherichia coli, there are only 4,389 GE profiles, each with the expression of its approximately 

4,500 genes, across 649 conditions (295). One of the common approaches for mitigating the data 

gap in ML is constrained optimization. In the GNN architecture that we introduce here, we achieve 

that by constraining the connectivity of the GNN layers based on the transcriptional regulatory 

network of the organism, which is (partially) known from public databases. These two features, 

namely the introduction of a new node type and an architecture that have been designed to mimic 

gene regulatory and expression dynamics, are the key innovations behind the superior performance 

of GNNs and the main contributions of this paper. 
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Figure 4.1 The proposed Genetic Neural Network (GNN) architecture, is evaluated against various 

ANN architectures and ANN types (MLPs, RNNs, BiRNNs) in its ability to predict gene 

expression levels given master regulator expression and knockout information. In Step 1, a 

compendium of normalized expression levels over a wide spectrum of conditions is created, 

together with the contextual gene regulatory network information (Chemotaxis pathway here, 

retrieved from (323)). Stratified datasets of various sizes are generated after normalization to drive 

Step 2, where ANN models are constructed and trained. When applicable, the model architecture 

is informed by known regulatory relationships. In Step 3, the methods are evaluated through 5-

fold cross validation on their predictive performance on gene expression. 

In this article, we focus on steady state GE prediction for small to medium size transcriptional 

network modules (between 2 to 1000 genes) and with the assumption that the expression of master 

regulator (MR) genes are known. Since MR genes sit on top of the regulatory hierarchy, they play 

a key role in transcriptional regulation. Given the causal role of MR genes on the GE profile, 

models that accurately predict the impact of their perturbation are important. In section 2, we 

describe how we define, construct and train the GNN model. In section 3 we introduce competing 

methods that we compare against and in section 4 we describe the results of these performance 

review. The overall methodology is summarized in Figure 4.1. 



 

 

65 

4.3 Method 

4.3.1 GNN Architecture 

The input layer of a GNN consists of the expression level of MR genes and gene knockout 

information (referred to as "𝑎" and "𝐾𝑂" in Figure 4.2). The output layer of GNN consists of the 

predicted gene expression levels. Each intermediate layer in GNN predicts expression of a single 

gene, for instance, 𝐿1, 𝐿2 and 𝐿3 predict the expression of gene a, b and c, respectively (Figure 

4.2). This architecture is built under the assumption that expression of a gene with 𝑑 regulators, 

can be estimated using the activation function 𝑓𝛉(𝐱) where 𝐱 ∈ ℝ≥0
𝑑  represents the expression level 

of regulator genes. Therefore inputs of the activation function 𝑓𝛉 for each gene, are made available 

by ensuring a topological order. For example, in Figure 4.2 A, the expression of gene 𝑐 is regulated 

by gene 𝑏. Therefore designated layer of 𝑏 (i.e. the 𝐿1 cell) comes before designated layer of 𝑐 (i.e. 

the 𝐿2 cell) as in Figure 4.2 B. Note that topological order is not unique for cyclic graphs. 

Therefore, when a cycle is detected (here by using depth-first-search), we remove the feedback 

edges before generating the topological gene ordering. 

The activation function 𝑓𝛉 is based on the generalized logistic function that recapitulates the non-

linear dynamics that govern gene expression, usually modeled through the Hill function (324). 

More specifically, 𝑓𝛉 is given by: 

 
𝑓𝜃(𝐱) =

𝑡0 + ∑ 𝑡𝑘
𝑑
𝑘=1 𝑒𝑝𝑘𝑥𝑘

1 + ∑ 𝑏𝑘
𝑑
𝑘=1 𝑒𝑝𝑘𝑥𝑘

 (4.1) 

where 𝜃 is the set of function parameters including the input weight vector 𝐩 ∈ ℝ𝑑, numerator 

weight vector 𝐭 ∈ ℝ≥0
𝑑 , denominator weight vector 𝐛 ∈ ℝ≥0

𝑑  and bias 𝑡0 ∈ ℝ≥0. Assuming 𝜃 is 
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known for all layers, one forward pass results in predicted expression levels �̂� for all genes. The 

final predictions are clamped into a valid range [𝑦𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥]. This will be [0,1] if data is 

normalized to this range. Otherwise 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥 are the minimum and maximum values 

observed for each gene in the whole dataset. Layer-wise GNN training for 𝜃 estimation is 

explained in the next section. 
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Figure 4.2 Genetic Neural Network architecture schematic for a regulatory network example. The 

aim is to predict gene expression levels given the expression of master regulator[s] (MR) and 

knockout information (𝐾𝑂) for other genes. (A) An example gene regulatory network, consisting 

of a single MR "𝑎" and three other genes 𝑏, 𝑐 and 𝑑 in topological order. Each arrow indicates a 

direct regulatory relationship. (B) The Genetic Neural Network topology that would map the 

regulatory relationships of the example gene regulatory network. The input consists of the MR 

expression level 𝑎 and the knockout vector 𝐾𝑂. Each layer corresponds to a single gene (i.e. 

𝐿1, 𝐿2, 𝐿3 correspond to 𝑏, 𝑐, 𝑑, respectively). Prediction of non-MR gene expression is achieved 

by a forward-pass, from first layer (𝐿1) to last (𝐿3). This order ensures that for each layer the 

expression levels of the regulator[s] are available for the layer’s forward pass. (C) A dissection of 

a layer (i.e. GNN node). It consists of the the MR gene expression levels 𝑥, the activation function 

𝑓, knockout information (e.g. 𝐾𝑂𝑑) and finally the output vector by appending the predicted 

expression (e.g. �̂�) to the initial inputs of current layer when needed by subsequent layer[s]. 

Although only 𝐿3 is illustrated in detail, the general form of layers are the same while the inputs 

and weights vary depending on regulators and training data. 

4.3.2 Layer-wise Training 

A separate regression problem is defined in each layer (i.e., for each gene). For the layer 

corresponding to a particular gene, a corresponding dataset 𝐶 = {𝑋,y} that consists of regulator 

gene expression levels 𝑋 and expression levels of the current gene y is created: 
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𝑋 = [

𝐱(1)

𝐱(2)

⋮
𝐱(𝑚)

] , 𝐲 =

[
 
 
 
𝑦(1)

𝑦(2)

⋮
𝑦(𝑚)]

 
 
 

 (4.2) 

To predict �̂�(𝑖) = 𝑓𝜃(𝐱(𝐢)), ∀𝑖 = 1… 𝑚, we devise a loss function: 

 
𝑙𝑜𝑠𝑠(𝐶, 𝛉) = ∑[𝑓𝜃(𝐱(𝑖)) − 𝑦(𝑖)]

2
𝑚

𝑖=1

 (4.3) 

Hence optimal 𝛉 can be determined by minimizing 𝑙𝑜𝑠𝑠(𝐶, 𝛉): 

 
𝛉∗ = 𝑜𝑏𝑗1(𝐶) = 𝐴𝑟𝑔𝑀𝑖𝑛

𝛉
 𝑙𝑜𝑠𝑠(𝐶, 𝛉) (4.4) 

In order to solve Equation (4.4) first we show that for a given parameter vector 𝐩, the parameters 

𝐰∗ = [𝑡0
∗|𝐭∗|𝐛∗] can be uniquely determined using a linear program. To see this, let us assume 𝐰∗ 

is determined. Hence we have: 

 
𝛉+ = {𝑡0

∗, 𝐭∗, 𝐛∗, 𝐩} (4.5) 

where 𝛉+, is the set of parameters for 𝑓 where 𝑡0
∗, 𝐭∗, 𝐛∗ minimize the 𝑙𝑜𝑠𝑠 for a given 𝐩. Therefore, 

predicted expression of each gene �̂�(𝑖) can be calculated given the corresponding TF expressions 

𝐱(𝑖) for 𝑖 = 1…𝑚: 

 
𝑓𝜃+(𝐱(𝑖)) =

𝑡0
∗ + ∑ 𝑡𝑘

∗𝑑
𝑘=1 ℎ𝑘

(𝑖)

1 + ∑ 𝑏𝑘
∗𝑑

𝑘=1 ℎ𝑘
(𝑖)

= �̂�(𝑖),  ℎ𝑘
(𝑖)

= 𝑒𝑝𝑘𝑥𝑘
(𝑖)

 (4.6) 
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Assuming 𝐛∗ ≽ 0, the denominator above will be non-zero hence we can rewrite as: 

 
𝑡0
∗ + ∑ 𝑡𝑘

∗

𝑑

𝑘=1

ℎ𝑘
(𝑖) − �̂�(𝑖) ∑ 𝑏𝑘

∗

𝑑

𝑘=1

ℎ𝑘
(𝑖) = �̂�(𝑖) (4.7) 

Considering �̂�(𝑖) ≈ 𝑦(𝑖), we have: 

 
𝑡0
∗ + ∑ 𝑡𝑘

∗

𝑑

𝑘=1

ℎ𝑘
(𝑖) − 𝑦(𝑖) ∑ 𝑏𝑘

∗

𝑑

𝑘=1

ℎ𝑘
(𝑖) ≈ 𝑦(𝑖) (4.8) 

To convert this into matrix form, we define vector 𝐰∗ and matrices 𝐻, 𝑌𝑒 and 𝐴. 

 
𝐰∗ = [𝑡0

∗, 𝑡1
∗, 𝑡2

∗, … , 𝑡𝑑
∗ , 𝑏1

∗, 𝑏2
∗, … , 𝑏𝑑

∗ ]𝑇 (4.9) 

Matrix 𝐻 consists of ℎ𝑘
(𝑖)

 values (constant for given 𝐩 and X): 

 
𝐻 =

[
 
 
 
 ℎ1

(1)
ℎ2

(1)
… ℎ𝑑

(1)

ℎ1
(2)

ℎ2
(2)

… ℎ𝑑
(2)

⋮ ⋮ ⋱ ⋮

ℎ1
(𝑚)

ℎ2
(𝑚)

… ℎ𝑑
(𝑚)

]
 
 
 
 

𝑚×𝑑

 (4.10) 

Matrix 𝑌𝑒 consists of expression levels 𝑦(𝑖) repeated 𝑑 times in columns (constant for given 𝐲): 

 
𝑌𝑒 =

[
 
 
 
𝑦(1) 𝑦(1) … 𝑦(1)

𝑦(2) 𝑦(2) … 𝑦(2)

⋮ ⋮ ⋱ ⋮
𝑦(𝑚) 𝑦(𝑚) … 𝑦(𝑚)]

 
 
 

𝑚×𝑑

 (4.11) 
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Matrix 𝐴 is calculated using 𝐻 and 𝑌𝑒 where "⊙" represents entry-wise multiplication and "|" 

represents column-wise matrix concatenation: 

 
𝐴 = [𝟏|𝐻|(−𝑌𝑒 ⊙ 𝐻)]𝑚×(2𝑑+1) (4.12) 

Therefore Equation (4.8) can be represented in matrix form: 

 
𝐴.𝐰∗ ≈ 𝐲 (4.13) 

To see this, note that for each 𝑖: (I) the inner product of 𝐰 with 𝑖th row of 𝐴 corresponds to the 

terms on the left side of Equation (4.8) and (II) the 𝑖th element of 𝐲 corresponds to the term on right 

side of Equation (4.8). 

To convert the approximation in Equation (4.13) to equality, we add 𝛜𝑙 , 𝛜𝐫 ∈ ℝ≥0
𝑚  to both sides: 

 
𝐴.𝐰∗ + 𝛜𝑙 = 𝐲 + 𝛜𝑟  (4.14) 

Therefore, the desirable 𝐰∗ should minimize approximation error ∑ 𝛜𝑙
(𝑖)𝑚

𝑖=1 + 𝛜𝑟
(𝑖)

. To find 𝐰∗, we 

devised 𝑜𝑏𝑗2: 

 

𝐰∗ = 𝑜𝑏𝑗2(𝐶, 𝑝) = 𝐴𝑟𝑔𝑀𝑖𝑛
𝑤

𝟏𝑇𝛜𝑙 + 𝟏𝑇𝛜𝑟

subject to 𝐴.𝐰∗ + 𝛜𝑙 − 𝛜𝑟 = 𝐲

𝛜𝑙 ≽ 0, 𝛜𝑟 ≽ 0,𝐛 ≽ 0, 𝐭 ≽ 0

 (4.15) 

This can be transformed into standard linear programming (LP) form: 
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𝐰∗ = 𝐴𝑟𝑔𝑀𝑖𝑛
𝐳

𝐚𝑇 . 𝐳

subject to 𝐺. 𝐳 = 𝐲

𝐳 ≥ 𝐥

 (4.16) 

where 

 

𝐳 =

[
 
 
 
 
𝑡0
𝐭
𝐛
𝛜𝑙

𝛜𝑟]
 
 
 
 

, 𝐚 =

[
 
 
 
 

0
𝟎𝑑×1

𝟎𝑑×1

𝟏𝑚×1

𝟏𝑚×1]
 
 
 
 

, 𝐥 =

[
 
 
 
 

0
𝟎𝑑×1

𝟎𝑑×1

𝟎𝑚×1

𝟎𝑚×1]
 
 
 
 

,

𝐺 = [𝐴𝑚×(2𝑑+1)|𝐼𝑚×𝑚| − 𝐼𝑚×𝑚]

 (4.17) 

Therefore, for a given input coefficient 𝐩 and gene expression values 𝐶 = {𝑋, 𝐲}, the optimal 𝐰∗ 

can be estimated by solving 𝑜𝑏𝑗2(𝐶, 𝐩) using the linear program in Equation (4.16). With this 

insight, we can solve 𝑜𝑏𝑗1(𝐶) (Equation (4.4)) using an iterative algorithm starting from an initial 

𝐩 vector. In each iteration, first 𝐰∗ is estimated using 𝑜𝑏𝑗2(𝐶, 𝐩). Then 𝑙𝑜𝑠𝑠(𝐶, [𝐰∗|𝐩]) and its 

gradient w.r.t 𝐩 are calculated. Finally, a new 𝐩 is generated using the calculated 𝑙𝑜𝑠𝑠 and its 

gradient. Although various gradient based optimization methods can be used for this iterative 

procedure, we used the conjugate gradient method (325). This is described in Algorithm 1. Line 

6 refers to the first step. Lines 7 and 8 refer to second step. The last step is done by the 

𝐶𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 function in each iteration. 

In practice we run the algorithm 10 times with different initial random values for 𝐩 and use the 

one which gives the best fit (i.e. lowest value for 𝑙𝑜𝑠𝑠 in Equation (4.3)). The complexity of layer-

wise training algorithm is 𝑂(𝑚5.5). 
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Note that, there are two choices for matrix 𝑋 values. First is to use the actual GE values from the 

training dataset. Second is to replace actual GE values with corresponding predicted ones when 

calculated from a previous layer. In our experiments the second choice provided slightly better 

predictive power (hence used for the presented results of section 4.5). 

4.4 Competing Methods 

We compare the GNN method against LASSO, a linear model with ℓ1 regularization (326), a 

Multi-layered Perceptron (MLP) (327), a recurrent neural network (RNN) (328), a bi-directional 

neural network (BiRNN) (329) and a linear version of our GNN network (LinGNN). Recall that 

in our prediction task, the input vector consists of the expression level of the master regulator (MR) 

genes and the knockout information vector. Here, we use the vector 𝐯 as the concatenation of all 

inputs, the vector 𝐲 as the expression level of non-MR genes, and �̂� referring to their predicted 

values. Unlike GNN, the common ANN architectures have hyper-parameters that need to be first 

optimized. For our comparison, we use the hyper-parameters that correspond to the best-

performing architecture (i.e. the architecture with minimum MAE) by using a traditional search 

method (330). 
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Algorithm 1. Layer-wise training algorithm to estimate activation function parameter vector 𝜽 =
[𝒘|𝒑] where p and w consist of input and exponential coefficients, respectively (see Equation 

(4.1)). The gene expression dataset 𝐶 related to a gene, consists of 𝑋 and 𝒚 . The matrix 𝑋 contains 

observed TF expression levels (i.e., inputs to the activation function). The vector 𝒚 contains 

corresponding observed GE values for this gene (i.e., activation function outputs). 

Inputs: gene expression dataset 𝐶 = {𝑋, 𝒚} 
Outputs: activation function estimated parameter vector 𝜽∗ = [𝒘|𝒑] 

1: 

2: 

3: 

4: 

 

5: 

6: 

7: 

8: 

9: 

 

10: 

 

 

 

 

11: 

𝒘 ← 𝟎 (Note: 𝒘 is a global variable) 

𝒑 ←  random initial vector 

𝒑 ← 𝐶𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝐺𝑒𝑡𝐿𝑜𝑠𝑠𝑃,𝒑,𝐶) 

return [𝒘|𝒑] 

 

Function 𝐺𝑒𝑡𝐿𝑜𝑠𝑠𝑃(𝒑,𝐶): 

  𝒘 ←  𝑜𝑏𝑗2(𝐶, 𝒑) // solve LP from Equation (4.16) 

  𝒍𝒐𝒔𝒔_𝒑 ← 𝑙𝑜𝑠𝑠(𝐶, [𝒘 ∣ 𝒑]) // Equation (4.3) 

  𝒍𝒐𝒔𝒔_𝒑_𝒈𝒓𝒂𝒅 ←
∇loss(C,[𝐰∣𝐩])

∇𝐩
 

return 𝒍𝒐𝒔𝒔_𝒑, 𝒍𝒐𝒔𝒔_𝒑_𝒈𝒓𝒂𝒅 

 

Function 𝐶𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑓, 𝒙, 𝐶): 

  /* 𝑓: cost function takes variables 𝒙 and 𝐶 as input and returns 

        the cost and the gradient with respect to 𝒙. */ 

  /* *** Conjugate Gradient Implementation 

  *** */ 

return 𝒙∗ 

Multi-layer Perceptron (MLP): MLP is used by (314) for GE prediction when expression of 

landmark genes are known. An MLP instance here takes an input vector 𝐯 and calculates the output 

vector �̂�. To identify the hyper-parameters, we examine architectures with 0 to 3 hidden layers, 5 

to 50 hidden nodes per layer with ℓ2 regularization coefficient between 0.0 to 0.5. 

Recurrent Neural Network (RNN): RNN is used by (316) for GE prediction when genetic and 

environmental perturbations are characterized as input. Similar to an RNN used by (316), a fully 

connected RNN instance here, takes a sequence of input vectors (331). The same vector 𝐯 is 
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repeated multiple times (depending on the depth hyper-parameter 𝑡) as input. The output vector 

of RNN �̂� corresponds to the output of the last rollout of the RNN (only). For hyper-parameters, 

we examine architectures with depth 𝑡 between 1 and 20 and ℓ2 regularization coefficients between 

0.0 to 0.5. 

Bidirectional Recurrent Neural Network (BiRNN): Our BiRNN instances are set-up exactly 

same as our simple RNN ones except that they are bidirectional. 

LASSO: Linear regression with ℓ1 regularization (i.e. LASSO) is a widely-used regression method 

that improves the generalization power of the linear model by reducing the number of features 

through an ℓ1 penalty in the objective function (326). In our setting, it is equivalent to an MLP 

with no hidden layers, identity activation function and ℓ1 regularization. For hyper-parameter 

optimization, we examined regularization coefficient from 0.0 to 5.0. 

For training competing ANN architectures and Lasso, we used RMSProp (332). The loss function 

used in RMSProp here is the mean squared error (MSE) plus regularization of model weights 𝐰 

as in Equation (4.18). We run RMSProp with learning rate of 0.001 until convergence. The training 

is stopped whenever MSE has less than 0.0001 improvement in the last 100 epochs. 

 
𝑙𝑜𝑠𝑠𝑤 =

1

𝑚
∑(𝑦𝑖 − �̂�𝑖)

2

𝑚

𝑖=1

+ 𝜆1 ∥ 𝐰 ∥ +𝜆2 ∥ 𝐰 ∥2
2 (4.18) 

Linear GNN (LinGNN): Regulatory network connections can be incorporated into a linear model 

for GE prediction, given TF expression level as it has demonstrated in previous models (333,334). 

To evaluate the performance of a linear model with the proposed architecture, we developed 

LinGNN, which has the same GNN framework, but a linear function in Equation (4.19) is used for 
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node activation, instead of the nonlinear activation in Equation (4.1). Here 𝑏 ∈ ℝ is the bias term, 

𝐚 ∈ ℝ𝑑 vector consists of additive coefficients and 𝑀 ∈ ℝ𝑑×𝑑 consists of multiplicative 

coefficients. 

 
𝑓𝑏,𝐚,𝑀(𝐱) = 𝑏 + ∑(𝑎𝑖𝑥𝑖 + ∑𝑀𝑖,𝑗

𝑑

𝑗=1

𝑥𝑖𝑥𝑗)

𝑑

𝑖=1

 (4.19) 

For training the LinGNN, the same layer-wise training strategy is used. However, given the linear 

function, we used the OLS for parameter fitting to solve Equation (4.4) (instead of Algorithm 1.). 

4.4.1  Evaluation Metrics 

To evaluate the model performance given observed GE values 𝐲 and corresponding predicted GE 

values �̂�, we use the Pearson Correlation Coefficient (PCC) and Mean Absolute Error (MAE) 

(335). 

4.5 Empirical Results 

We designed two sets of experiments to assess the impact of network complexity and data 

availability (second and third aforementioned challenges) on predictive power. 

4.5.1 Network complexity impact 

First, we constructed the full TRN of E. coli curated by RegulonDB v9.4 (323). Second, from this 

full TRN, we extracted 33 network modules each containing between 10 to 1000 genes. This was 

done using the greedy module extraction method in GeneNetWeaver software (336) also used in 

number of DREAM challenges (337,338). Third, for each extracted TRN module, we identified 

the MR genes by selecting genes that are not regulated by any other gene within that network. 
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Fourth, for each TRN module, we performed thousands of steady state thermodynamic simulation 

experiments using GeneNetWeaver with added microarray noise. Each simulation run requires 

kinetic parameters for each gene which are randomly initialized by the simulation software (and 

unknown to GNN and other predictive models). These in silico experiments consist of random 

multi-factorial perturbations for MR genes and single gene knockouts for other genes giving rise 

to GE dataset with thousands GE profiles. Fifth, for each GE dataset we identified 10 dissimilar 

GE profiles . To identify these dissimilar GE profiles in a dataset, we performed hierarchical 

clustering (339) with cluster size of 10 and selected one GE profile from each cluster randomly. 

Finally, we performed 5-fold cross-validation (CR) for the task of GE prediction given MR 

expression levels and knockout information in each dataset. Results in Figure 4.3 A, C, show that 

GNN method outperforms other methods on datasets with network sizes ranging between 10 and 

1000 when compared based on MAE and PCC metrics in 5-fold CR setting. Our results show that 

the GNN has a smaller error (average MAE 0.09 ± 0.01; PCC 0.86 ± 0.03) than LinGNN 

(average MAE 0.11 ± 0.01; PCC 0.80 ± 0.05), Lasso (average MAE 0.19 ± 0.04; PCC 0.55 ±

0.09), MLP (average MAE 0.15 ± 0.03; PCC 0.63 ± 0.10), RNN (average MAE 0.15 ± 0.03; 

PCC 0.63 ± 0.08) and BiRNN (average MAE 0.15 ± 0.03; PCC 0.65 ± 0.08). Figure 4.3 B 

depicts the overall performance on all datasets. 



 

 

77 

 

Figure 4.3 5-fold cross validation performance evaluation using data acquired through 

thermodynamic simulation. A, B, C show performance of all methods given randomly selected 

network modules for E. coli transcription network. Better performance of GNN can be seen in all 

cases. The BiRNN architecture outperforms other conventional ANN architectures in some cases. 

D, E, F show the prediction performance for TRN module of chemotaxis (61 genes) in E. coli. 

Results suggest that GNN performs in call cases particularly on smaller datasets. 

 

4.5.2 Effect of data availability 

In order to assess predictive power of various architectures based on data availability, we picked 

the transcription network of chemotaxis since it is one of the most well-studied signaling pathways 

(340). 

First, we constructed the TRN of chemotaxis. To do so, we used KEGG (341) to get list of 57 

genes involved in chemotaxis signal transduction pathway of bacterium E. coli. We then added to 

this list, the genes directly involved in transcription of chemotaxis genes. We then removed genes 
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that are not involved in any transcriptional regulation (i.e. genes that have no reported TF listed) 

hence 61 genes with 84 TF-Gene relationships remained. For TF-Gene relationships we used all 

regulatory relationships that are based on experimental evidence curated in RegulonDB v9.4. 

Second, we identify MR genes in the chemotaxis TRN as the list of genes with no TF within the 

chemotaxis TRN. Third, we performed thermodynamic simulations (with same method mentioned 

in 4.5.1) 100 times. Each time we used different set of network parameters (TF binding affinities, 

degradation rates, etc.) for the chemotaxis network using GeneNetWeaver. This gave us 100 

different datasets each with thousands of GE profiles and their corresponding knockout 

information. Fourth, from each GE dataset we extract 10 stratified datasets with varying sizes (10 

to 100 GE profiles each). To generate a stratified dataset of size 𝐾, we perform hierarchical 

clustering (339) with number of clusters set to 𝐾 and randomly pick one profile from each cluster. 

Finally, to evaluate performance of GNN and competing methods we perform 5-fold CR validation 

for the task of GE prediction given expression level of MR genes and knockout information. 

Results in Figure 4.3 D, F, show that GNN method outperforms other methods on stratified 

datasets with sizes ranging between 10 and 100 profiles each when compared based on MAE and 

PCC metrics in 5-fold CR setting. Figure 4.3 E shows the overall performance on all datasets. 

Note that the gap between GNN and other methods is larger on smaller dataset sizes. 

4.5.3 In vivo experiments 

For in vivo evaluation, we used Affymetrix gene expression data set of bacterium E. coli (compiled 

and made available by (338) also known as DREAM5 challenge data). The dataset had been 

normalized already using Robust Multichip Averaging (RMA) (342). The compendium’s GE data 

corresponds to genetic and environmental perturbation experiments on various strains. We only 

used profiles from the wild-type strain (MG1655) for our evaluations. There are 427 wild type GE 
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profiles. For replicates, we use the mean GE value resulting in 227 GE profiles corresponding to 

unique experimental settings. 

4.5.3.1 Transcription Network 

To identify transcription network, we used GENIE3 (343) which performed best for transcription 

network inference in DREAM5 challenge (338). The network inference method GENIE3 takes 

GE data as input and produces a list of TF-Gene relationships ordered based on confidence level 

we call 𝑒𝑑𝑔𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠. 

4.5.3.2 Master Regulators 

The set of transcription factors on top of the regulatory hierarchy are referred to as master 

regulators (344). To define this more concretely, we use directional graph 𝐺 = {𝑉, 𝐸} to represent 

a TRN where gene 𝑥 is represented by vertex 𝑣𝑥 ∈ 𝑉. An edge (𝑣𝑦 , 𝑣𝑥) ∈ 𝐸 represents 

transcriptional regulation of gene 𝑥 by the product of gene 𝑦. The estimated confidence for edges 

are stored in matrix 𝑊 where 𝑊𝑥,𝑦 ∈ ℝ≥0 represents the reported confidence from network 

inference for edge (𝑣𝑦 , 𝑣𝑥) ∈ 𝐸. Note that 𝑊𝑥,𝑦 = 0 if there is no edge between vertices 𝑣𝑥 , 𝑣𝑦. 

Here an MR gene is considered to be a TF gene that is not regulated by any other TF. Additionally, 

in cases where genes inside a regulatory cycle are non-reachable using any MR gene, the gene 

inside the cycle with maximum 𝑖𝑚𝑝𝑎𝑐𝑡 will be selected as MR among them. The 𝑖𝑚𝑝𝑎𝑐𝑡(𝑥) for 

given gene 𝑥 is calculated as in Equation (4.20) where 𝑑𝑥 is the number of genes regulated by the 

product of gene 𝑥: 

 
𝑖𝑚𝑝𝑎𝑐𝑡(𝑥) =

1

𝑑𝑥
∑𝑊𝑥,𝑗

𝑗∈𝑉

 (4.20) 
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4.5.3.3 In vivo evaluation pipeline and results 

Sub-sampling and network inference: We generate 10 datasets using stratified sampling (each 

containing 11 GE profiles). For each of the 10 datasets, we perform network inference using the 

remaining samples by GENIE3. This provides 10 networks, each with a dataset that was not used 

to infer the network. From each network, we extract 11 TRN modules with number of genes 

ranging from 10 to 1000 generating 110 TRN modules in total. To extract a module with 𝑁 number 

of genes, we start with an empty network 𝐺 = {𝑉, 𝐸}. First, we add edges to this network starting 

from highest confidence (from 𝑒𝑑𝑔𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 list produced by GENIE3), until |𝑉| = 𝑁. 

Second we add 20% more edges from 𝑒𝑑𝑔𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠. Finally we run the greedy module 

extraction method using GeneNetWeaver (336) with the desired network size 𝑁 to extract a TRN 

network module. 

Dataset construction: For each network module, MR genes are identified using method explained 

in 4.5.3.2. Module’s corresponding dataset (which consist of GE profiles not used in inferring the 

parent network) is then partitioned into input (GE of MR genes) and output (GE of non-MR genes). 

Stratified sampling and 5-fold cross validation is performed same as explained in 4.5.1. 

The role of TRN information: We performed a separate experiment to evaluate the role of TRN 

information on predictive performance of methods. In this experiment, we randomly shuffle the 

gene names in the GE output data after the network inference step (this is same shuffling the node 

names in the network while preserving MR gene names). We then perform same 5-fold cross 

validation as explained before. This simulates a situation where the network information used by 

the model is random. Corresponding results are reported as GNN-rnd and LinGNN-rnd in Figure 

4.4 using dashed lines. 
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Figure 4.4 summarizes the results indicating better overall prediction performance for GNN 

(average MAE 0.58 ± 0.02; PCC 0.81 ± 0.04) compared to LinGNN (average MAE 0.60 ±

0.01; PCC 0.79 ± 0.02), Lasso (average MAE 0.81 ± 0.04; PCC 0.70 ± 0.02), MLP (average 

MAE 0.78 ± 0.06; PCC 0.75 ± 0.06), RNN (average MAE 0.93 ± 0.12; PCC 0.68 ± 0.07) and 

BiRNN (average MAE 0.81 ± 0.03; PCC 0.74 ± 0.04). Note that in vivo GE values range from 

3 to 15 while in silico GE values are normalized between 0 and one. 

 

Figure 4.4 5-fold cross validation performance evaluation using in vivo microarray data. A, B, C 

show performance of all methods on 110 randomly selected network modules on inferred 

transcription network of E. coli. GNN shows better overall performance. GNN-rnd and LinGNN-

rnd show the performance of TRN based methods when inferred TRN is randomized. 

4.5.4 Runtime Comparison 

For runtime comparison of methods, we used a dataset with size 10 for a network of 1000 genes 

and evaluated the training time. As in Table 4.1, GNN is lacking in terms of runtime compared to 

other methods. LinGNN performs best due to fast OLS operations on small datasets. Other 

methods require hyper-parameter optimization adding to their runtime (e.g., BiRNN is slower than 

when 50 hyper-parameter combinations are used). Note that the training procedure (described in 

section 4.3.2) is inherently parallel. Therefore, a parallel implementation can make the training 

approximately 𝑛 times faster where 𝑛 is the number of cores used. 
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Architecture GNN LinGNN Lasso MLP RNN BiRNN 

Runtime (min:sec) 24:26 0:01 0:12 0:15 0:27 1:16 

Table 4.1 Training time for dataset with 1000 genes and 10 GE profiles. 

4.6 Conclusion 

We presented GNN, an artificial neural network that incorporates gene regulatory network into 

it’s architecture to predict GE in novel conditions given minimal training data. A trained GNN 

takes the expression level of MR genes and information about knockout experiments and predicts 

the expression of the rest of genes in the given transcription network. We compared GNN with 

three common neural network architectures, linear regression with ℓ1 regularization and a network 

based linear model. Our comparison benchmarks include in vivo micro array data and 

thermodynamic simulation data for real biological network (e.g., chemotaxis). In our evaluations 

GNN showed considerably higher prediction performance when tested on hundreds of real TRNs 

extracted from E. coli’s full TRN. This was in spite of the fact that GNN did not enjoy the hyper-

parameter optimization used for competing methods. The prediction performance gap was 

particularly higher on smaller data sets. Although this is not the first time ANNs were employed 

for GE prediction, this is a novel architecture with a custom designed node that is tailored for gene 

expression prediction. Concomitantly, to best of our knowledge, this is the first time that TRN, 

expression of MR genes and gene knockout information are used together for this task. 

One limitation of the GNN architecture that we described in this paper is that our implementation 

cannot take into account feedback loops, as it is based on a feed-forward network. Given the 

prevalence of cycles in biological networks (345), such limitation is expected to negatively impact 

predictive power. A natural extension would be to apply the GNN cell to recurrent neural networks 

(RNNs), which have the capacity to connect through time multiple instances of acyclic network 
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maps, by feeding to the hidden layer of the next time slice, the hidden layer output of the previous 

time slice. Although individual GNN models are acyclic, together they have potential to model 

dynamics that arise in biological cycles. It would be also good to test the performance of this 

method in larger networks with tens of thousands of nodes. For that to happen with the non-linear 

GNNs, we need to take advantage of parallelism for the training algorithm, as training time is a 

consideration (Table 4.1). It would also help if the activation function is modified to one that can 

formulate a convex problem and its optimization in layer-wise training. Given that the linear GNN 

is performing quite well, despite its simplicity and more than an order of magnitude faster 

performance, a system that runs the LinGNN for very large networks (>5000 nodes) and non-linear 

GNN otherwise, would score high in prediction, runtime performance and scalability. 

Extensions to this work include the integration of contextual information, such as gene sequence, 

experimental settings and metabolic pathways. More thorough validation in large compendia (e.g. 

see (295)) and multiple pathways may further pinpoint the limitations of this approach. Although 

our focus here is bacterial regulation, this work can be extended to organisms of higher complexity, 

albeit with modifications that would rectify the large discrepancy in the number of genes (from 

182 in bacterium Carsonella ruddii (346) to more than 20,000 in humans) and more complex 

modes of regulation. 
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Chapter 5: Algorithmic lifestyle optimization 

5.1 Abstract 

Motivation. A vast amount of medical and nutrition research is focused on identifying the most 

effective treatment for adverse health conditions. In some chronic health conditions however, the 

effectiveness of several lifestyle interventions is identified one at the time for a given individual, 

which can be exhaustive when the number of candidate lifestyle interventions is high. For example, 

in irritable bowel syndrome (IBS), and in food allergies, the standard elimination diet (SED) is 

used where the effectiveness of removing individual foods from the diet for symptom relief is 

identified 1-by-1. 

Results. We have developed algorithmic lifestyle optimization (ALO), for rapid identification of 

effective lifestyle interventions (LIs) in individuals, using a novel group testing algorithm called 

constrained adaptive group testing (CAGT). CAGT works by determining the lack of efficacy for 

multiple LIs in a group by following them simultaneously (instead of 1-by-1). The group of LIs 

that CAGT suggests for the next round is informed by the individual’s response to the groups of 

LIs that have been followed by the individual in prior rounds, as well as the minimum and 

maximum number of effective LIs in a given group estimated by ALO. ALO has three modules 

where in the first two modules, the configuration in which CAGT achieves its optimal performance 

for a given set of candidate LIs and their effectiveness probabilities are identified, and in the third 

module CAGT is used to identify the effectiveness (i.e., 0|1 potency) of LIs in each individual. 

Our evaluations on synthetic and real data shows that ALO is robust to noise, data size and data 

heterogeneity, is between 58.9% to 68.4% more efficient compared to SED for identification of 
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effective LIs in IBS and food allergies, and better than alternative state of the art group testing 

method for this application. ALO provides a novel approach for rapid discovery of effective 

interventions in nutrition and medicine, and can lead into substantial improvements in the status 

que. 

5.2 Introduction 

The variance of responses to lifestyle interventions (LI) has been a major challenge in the fields of 

nutrition and medicine throughout history (347,348). Typical LI include changes in diet (348), 

exercise (349), administrating drugs (350), stress management  (351), smoking cessation (352), 

assisted sleep methods (353), and fasting (354), among others. It has been shown that biomarkers 

can be used to predict an individual’s response to a given lifestyle intervention (LI) (2,355,356), 

however, such biomarkers are often difficult to acquire and carry limited information when in 

isolation (357,358). Therefore, trial-and-error remains as the main alternative in which target 

health metrics are evaluated following an LI regimen to determine an individual’s response hence 

labeling each LI as “potent” or “impotent” (359,360). 

Previous studies have proposed and measured the adoption of systematic strategies for particular 

interventions including diet and physical activity. The standard elimination diet (SED) is used for 

identification of food allergies in serous otitis (361), atopic dermatitis (eczema) (359), as well as 

food intolerances in irritable bowel syndrome (362), esophagitis (363), and ADHD (364) among 

others. In SED, series of oral food challenges are used in which target symptoms are evaluated 

following dietary elimination and subsequent introduction of each food for 2-3 days at the time. 

More recently, N-of-1 trials have emerged for systematic personalization of medical treatments in 

cases were the individualized potency of alternative treatment strategies need to be determined 
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(360). They involve trial periods during which alternative treatments are followed one after the 

other and treatment outcomes are measured in order identify the treatment with the best statistical 

support. N-of-1 trials are used for dietary intervention in inflammatory bowel disease (365), 

determining the impact of dietary macronutrients on postprandial glucose response (366), and 

personalized goal setting strategies to increase physical activity (367) among others. These trial-

and-error approaches commonly involve a single LI at a time which is not time efficient when 

there is a large number of non-interacting candidate LIs, many of which are impotent for most 

people. Therefore, the number of candidate LIs that can be evaluated by an individual will be 

limited given the time that they can spend for determining LI responses. 

To address this issue in a faster, less invasive, and more efficient way, we propose a systematic 

approach that we call “algorithmic lifestyle optimization (ALO)”, a heuristic approach for 

identifying the individualized binary labels (i.e. potent or impotent) of the candidate LIs, based on 

heterogeneous data, including biomarker information. In ALO, the required time for discovering 

candidate LI potencies in an individual is minimized using a group testing strategy. In its core, 

ALO uses an adaptive group testing strategy and involves multiple rounds of LIs for each 

individual. In each round, a set of LIs are provided to the individual to follow. These LIs are chosen 

by ALO based on (a) the individual’s health score (0|1) in response to each set of LIs in prior 

rounds, and (b) the probability of a positive health score for each LI in a population. These 

probabilities may also be calibrated based on a biomarker when available. In ALO, we strive to 

identify the individual’s response to each LI in minimal number of rounds and provide guarantees 

for both average and worst-case scenarios. The ALO methodology is fully described under the 

Methods section and illustrated in Figure 5.1. 
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Figure 5.1 Algorithmic Lifestyle Optimization (ALO). ALO is designed to guide individuals in 

rapid discovery of lifestyle interventions (LIs) that are effective (potent) for them amongst many 

candidate LIs, for achieving a target health outcome. First, it builds the constrained adaptive group 

testing (CAGT) catalog, which is a lookup table for finding the maximum number of rounds 

needed by the CAGT algorithm for identifying between 𝑙 and ℎ number of potent LIs amongst 𝑛 

candidate LIs. Second, it partitions the LIs into disjoint sets given the potency probability of each 

LI, and determines whether the first step of the CAGT algorithm involves following all the LIs in 

a given set. These probabilities can be estimated from population wide studies that report the 

percentage of individuals that achieve the target health outcome following each LI. Third, the 

suggested LIs by the CAGT algorithm is followed by the individual in subsequent rounds. The 

CAGT algorithm stops once the potency of the LIs in each set is identified. 

5.3 Methods 

5.3.1 Main Algorithm 

ALO has three major modules, all of which rely on the constrained adaptive group testing (CAGT) 

method that we have developed. Briefly in adaptive group testing (368), groups of available objects 
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are selected in sequential rounds for testing, with the goal of discovering the target objects (e.g. 

defective light bulbs, SARS-CoV-2 positive nasal swabs, or the potent LIs that we discuss here) 

amongst many, in minimum number of rounds. Group testing is applicable in cases where objects 

are noninteracting. This means that if multiple objects are tested together in a group, a positive test 

result is indicative of one or more target objects in the group (e.g. at least one defective light bulb 

in the group), while a negative test result indicates that the group is void of any target object (e.g. 

no defective light bulbs in the group). Note that, in this article, a “potent LI” corresponds to a 

“target object” that is subject to group testing while in the literature the “defective lightbulb” 

terminology is commonly used. 

ALO is applicable in cases where (a) the individual is concerned about a single binary target health 

score such as having a symptom-free digestive state (0|1), (b) each LI is binary such as drinking 

coffee in the morning (yes/no), (c) it takes the same amount of time (e.g. 3-days) to see the impact 

of each LI on health score, (d) multiple LIs are independent hence can be followed together 

simultaneously, and (e) multiple LIs are noninteracting. Noninteracting here means that if a set of 

LIs together are determined to be “impotent” (i.e., not leading to a positive health score), we can 

conclude that each LI is also “impotent”. However, when a given LI is “potent” (i.e., leading to a 

positive health score), it will remain as “potent” when combined with other LIs. 

Constrained adaptive group testing (CAGT). ALO, in its core, relies on the CAGT algorithm 

that aims to identify the minimal number of adaptive group testing rounds needed to identify the 

potent LIs amongst the candidate LIs (𝐿𝐼) for a given individual, by solving the optimization 

problem in Equation (5.1). Here 𝑅𝑖 ⊆ 𝐿𝐼 represents the group of LIs that will be followed 

simultaneously by the individual in round 𝑖 during which the potency of 𝑅𝑖 will be determined as 

represented by 𝑟𝑖 ∈ {0:impotent, 1:potent}. 𝑉1 and 𝑉0 represent the sets of potent LIs and 
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impotent LIs respectively which can be fully identified by a function 𝑓 given 𝐿𝐼, 𝑅, 𝒓 as well as 

the 𝑙:low and ℎ:high bounds for the number of potent LIs. 

 R∗ =
 

 𝐚𝐫𝐠𝐦𝐢𝐧 
𝑅

 |𝑅| (5.1) 

  subject to 𝑅 = [𝑅1 …𝑅|𝑅|], 𝑅𝑖 ⊆ 𝐿𝐼, 𝑖 = 1,… , |𝑅|  

   𝒓 = [𝑟1 …𝑟|𝑅|], 𝑟𝑖 ∈ {0, 1}, 𝑖 = 1, … , |𝑅|  

   [𝑉0, 𝑉1] = 𝑓(𝐿𝐼, 𝑅, 𝒓, 𝑙, ℎ)  

   𝑉0 ∪ 𝑉1 = 𝐿𝐼  

   𝑙 ≤ |𝑉1| ≤ ℎ  

In CAGT, we solve Equation (5.1) following Algorithm 1. with three major steps in each round, 

using the 𝐶𝐴𝐺𝑇_𝑀𝑜𝑑𝑒𝑙 that captures 𝑙 and ℎ bounds for subsets of LIs that are generated in each 

round. In step1, a non-nested subset of LIs (𝑅𝑖) that is expected to minimize the final  

|𝑅| is identified given the model. In step2, the potency 𝑟𝑖 of 𝑅𝑖 is determined by the individual. In 

step3, the model is updated (given 𝑅𝑖 and 𝑟𝑖), and the sets of impotent and potent LIs (𝑉0 and 𝑉1) 

that can be determined using the updated model are identified. These three steps are repeated until 

the potency of all LIs are identified. See Appendix Section A.1 that describes the 𝐶𝐴𝐺𝑇_𝑀𝑜𝑑𝑒𝑙 

and its relevant functions in detail. 
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Algorithm 1. Solve the optimization problem in Equation (5.1) using the CAGT algorithm. 

Inputs: The set of candidate LIs (𝐿𝐼). The low and high thresholds (𝑙 and ℎ) that bound the number 

of potent LIs. 

Outputs: The set of impotent LIs 𝑉0 and potent LIs 𝑉1 identified by the algorithm. 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

𝑉0 ← {};𝑉1 ← {} 

𝑚𝑜𝑑𝑒𝑙 ← 𝐶𝐴𝐺𝑇_𝑀𝑜𝑑𝑒𝑙(𝐿𝐼, 𝑙, ℎ) 
do: 

  𝑅𝑖 ← 𝑚𝑜𝑑𝑒𝑙. 𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑() // step1 

  𝑟𝑖 ← 𝑔𝑒𝑡_𝑝𝑜𝑡𝑒𝑛𝑐𝑦(𝑅𝑖)    // step2 

  (𝑉0, 𝑉1) ← 𝑚𝑜𝑑𝑒𝑙. 𝑓(𝑅𝑖 , 𝑟𝑖) // step3 

while |𝐿𝐼 ∖ 𝑉0 ∖ 𝑉1| > 0 

return (𝑉0, 𝑉1) 

 

ALO Module-1 (build the CAGT catalog). In the first module, we build the CAGT catalog which 

is a lookup table that the step1 of Algorithm 1. relies on. This lookup table determines the tuple 

(𝑠, 𝑤) for a given tuple (𝑛, 𝑙, ℎ) where 𝑤 is the maximum number of rounds that the algorithm needs 

for identifying the potencies of 𝑛 LIs when there are between 𝑙 and ℎ potent LIs amongst them. 

The value of 𝑠, determines the number of LIs to be used in the first round of Algorithm 1. in order 

to achieve 𝑤 for the given (𝑛, 𝑙, ℎ) tuple. A dynamic programming strategy is used for building the 

CAGT catalog based on the fact that in each round of Algorithm 1., the 𝐶𝐴𝐺𝑇_𝑀𝑜𝑑𝑒𝑙 gets updated 

and existing LI subsets within the model are split into smaller subsets. Therefore, in this module, 

we populate the catalog starting from tuples with 𝑛 = 1 for which the optimal (𝑠, 𝑤) are known, 

and iteratively populate the catalog by tuples with larger 𝑛 values given the catalog itself. See 

Appendix Section A.2.1 for further details. 

ALO Module-2 (create optimal LI sets). In this module, we use the LI potency probabilities 

(estimated apriori) to create an optimal LI partition (i.e., disjoint LI sets), such that the expected 

total number of rounds needed for identifying LI potencies is minimized while the maximum total 
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number of rounds is kept at bay. This is done by (a) ordering the LIs by their potency probabilities, 

(b) estimating “ℎ” for a given LI set, from the corresponding potency probabilities, the Poisson 

binomial distribution, and a confidence threshold 𝑡, (c) using the CAGT catalog to determine “𝑤” 

for a given set of LIs with an estimated “ℎ”, and (d) allowing “𝑒𝑥” more rounds compared to the 

maximum total rounds needed, for decreasing the expected  total rounds needed by introducing 

rounds that involve all LIs in a set. This module, as described in Appendix Section A.2.2, provides 

the LI sets that are used in separate runs of Algorithm 1. for the next module and identifies the 

runs that start will an initial round that involve all LIs. 

ALO Module-3 (follow CAGT rounds for LI sets). Lastly for each individual, we perform 

independent runs of the Algorithm 1. where in each run a disjoint set of LIs (determined by 

Module-2) is used which leads into determining the potency of each LI after all runs are completed. 

See Appendix Section A.2.3 for further details. 

5.3.2 Evaluation 

5.3.2.1 Datasets 

In our evaluations, we relied on synthetic data for robustness and sensitivity analysis, and on real 

data for food intolerance and allergy identification applications. 

Synthetic data. We initiated the data generation from three sets of LI potency probabilities each 

with 50 values that follow beta distributions with three different shapes (Dataset-1: α=0.5, β=5.0, 

Dataset-2: α=2.0, β=6.0, and Dataset-3: α=0.1, β=0.1). Next, we generated 200 values for each LI 

potency probability of the prior step following Bernoulli distributions parametrized by each 

probability value. This provided us with three datasets that each consists of a 200x50 matrix that 

represent the LI potencies for 200 individuals, along with the set of LI potency probabilities that 

were used to generate each. Finally, for each set of LI potency probabilities in a dataset, we 
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generated nine sets of noisy LI potency probabilities by adding different levels of white noise with 

standard deviation (SD) values that ranged from 0.05 to 0.5. These noisy LI potency probabilities 

were clamped in the 0-1 range (i.e., set to 0 if less than 0, and set to 1 if greater than 1). 

Real data. We defined two sets of LIs, one for management of food intolerances in IBS and 

another for management of allergic food reactions. In both LI sets, an LI corresponds to the 

elimination of a particular food from the patient’s diet, and the LI’s potency probability 

corresponds to the percentage of individuals in which a given food triggers adverse symptoms. 

First, we extracted the LIs and their potency probabilities from published studies of IBS (369) and 

food allergies (370) separately. Second, we used the Poisson distribution parametrized by the 

average number of potent LIs from each study (reported as 7 in the IBS study and estimated as 

1.43 for the food allergy study given their reported statistics), in order to generate one-thousand 

integers for each study, where each integer corresponds to the number potent LIs in a given 

individual. Finally, we randomly assigned individual potency values (0|1) for the LIs in each 

patient given the number of potent LIs in each, and the potency probability of each LI that was 

extracted from the corresponding study. This provided us with an IBS dataset with 56 LIs, and a 

food allergy dataset with 19 LIs, each with the corresponding potency probabilities, and one 

thousand LI potency profiles that adhere to the reported summary statistics. 

5.3.2.2 Evaluation metrics 

We used the average and median number of rounds needed for identifying the LI potencies 

individuals for our method evaluations. For each dataset, we first identified the optimal hyper-

parameters using grid search on half of the dataset, then performed our evaluations on the 

remaining records. In each case, a maximum of fifty pair of hyper-parameter values were examined 

for 𝑒𝑥 and 𝑡 in the ALO method, while for the SPIV method, a maximum of hundred hyper-

parameter value pairs were examined for its epsilon, and 𝑡 parameters. 
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5.4 Results 

5.4.1 Robustness and sensitivity analysis 

We generated three datasets with various levels of homogeneity (Figure 5.2 A, D & G), in order 

to evaluate the sensitivity of each method to the number of LIs (Figure 5.2 B, E & H), and to the 

noise in LI potency probabilities (Figure 5.2 C, F & I). In all cases the average rounds needed for 

identifying the LI potencies increased linearly while the ALO method had the lowest increase, 

followed by SPIV, and the baseline (Figure 5.2 B, E & H). The largest reduction in average rounds 

needed for ALO compared to the baseline was observed for Dataset-1 and Dataset-3 in which a 

large portion of LIs have low potency probabilities (Figure 2. B & E). This reduction was much 

lower for Dataset-2 in which a lower proportion of LIs have low potency probabilities (Figure 5.2 

E). The addition of white noise to LI potency probabilities increased the average rounds needed 

by each method (see Figure 5.2 C, F & I where methods were evaluated on all 50 LIs while white 

noise with varying standard deviations (SD) were added to the LI potency probabilities). For 

example, white noise with SD of 0.5 increased the average rounds needed in Dataset-1 by ALO 

from 18.2 to 26.5 (45.6%), and by SPIV from 26.9 to 34.7 (29.0%) (Figure 5.2 C). 

5.4.2 Rapid food intolerance and allergy identification with ALO 

The gold standard method used in the clinic for identifying foods that cause intolerance or allergic 

reactions, is the standard elimination diet (SED) during which food challenges are performed. A 

food challenge is a lifestyle intervention (LI) during which target health symptoms are monitored 

while a given food item is introduced to the individual’s diet for 3 days, then subsequently removed 

from the diet for another 3 days (the number of days may vary). We compared ALO with SED as 

well as a state of the art group testing method called spatial inference vertex cover (SPIV) (371) 

for identification of food intolerances and food allergies as described next. 
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Figure 5.2 Robustness and Sensitivity analysis. Three synthetic datasets of potency probabilities 

relating to fifty (50) LIs were sampled independently from heterogenous beta distributions A, D 

& G, and subsequently used to generate synthetic datasets 1-3 each representing the LI potencies 

(0|1) for a hundred (100) individuals. B, E & H (relating to datasets 1-3) illustrate the average 

number of rounds needed by each method to identify the potent LIs in hundred individuals for LI 

subsets having 5 to 50 LIs each. C, F & I (relating to datasets 1-3) illustrate the method’s robustness 

to the standard deviation (SD) of the added white noise that was added to LI potency probabilities. 

The error bars represent the standard error.  

Food Intolerance in IBS Case Study. IBS is a chronic gastrointestinal disease with 11% 

prevalence in adults (251). One of the most effective symptom management strategies of IBS is to 

identify their food intolerances (i.e., food items that exacerbate IBS symptoms such as bloating, 

constipation, diarrhea and abdominal pain) and eliminate them from the patient’s diet. We used 

ALO for discovery of food intolerances based on realistic synthetic data of 500 IBS patients given 

self-reported intolerance statistics of 56 food items (369) and compared the performance of ALO 
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with the standard elimination diet (SED) involving a constant 56 of LI rounds. The results are 

shown in Figure 5.3 A where ALO reduced the median number of LI rounds by 58.9% (33/56), 

while the SPIV method reduced the number of LI rounds by 32.1% (18/56). Our results suggest 

that both ALO and SPIV can replace the SED method in the clinic, however our novel ALO 

method showed 26.8% advantage compared to the SPIV. 

 

Figure 5.3 Rapid IBS food intolerance and allergy identification. Various methods were used 

for discovery of food intolerances in IBS and food allergies (A&B). (A) ALO and SPIV methods 

lead into 58.9% and 32.1% reduction in median number of lifestyle intervention (LI) rounds 

needed compared to SED, for discovering the foods that exacerbate IBS symptoms amongst 56 

foods in 500 IBS patients. (B) The median number of LI rounds needed compared to SED was 

reduced by 68.4% using ALO, and by 52.6% using SPIV, for identifying the foods that trigger 

food allergies in 500 patients.  

Food Allergy Case Study. Food allergy is an immune response from food exposure, and has a 

prevalence between 5.3% to 9.1% in the United States’ adults (370). Food allergy can be managed 

by strict avoidance of trigger foods that can be identified using SED. We simulated ALO for food 

trigger identification based on realistic synthetic data from 500 individuals given medical doctor 

diagnosed food trigger statistics of 19 foods (370), and compared the performance of ALO with 

SED and SPIV. The results are illustrated in Figure 5.3 B where ALO reduced the median number 
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of LI rounds by 68.4% (13/19), while the SPIV method resulted in 52.6% (10/19) reduction 

compared to SED. Both ALO and SPIV showed considerable performance advantage over SED 

while ALO method was 15.8% more efficient than SPIV. 

5.5 Discussion 

We developed algorithmic lifestyle optimization (ALO) for rapid identification of lifestyle 

interventions (LIs) that a given individual needs for achieving a target health goal such as a 

symptom-free digestive state. ALO relies on estimated LI potency probabilities that can come from 

population wide studies that report the percentage of population in which a given LI is potent for 

achieving the target health goal. ALO uses a group testing method that we have developed called 

constrained adaptive group testing (CAGT) for identifying the group of LIs that a given individual 

needs to include in their lifestyle in each round, given their health state (0|1) in response to LI 

groups followed in prior rounds, as well as the minimum and maximum number of potent LIs in 

the set of candidate LIs. The first ALO module builds a lookup table named “CAGT catalog” that 

CAGT relies on for optimal performance. The second ALO module, create an optimal LI partition 

(disjoint sets of LIs) that leads to minimum total rounds when CAGT is followed on each set 

separately. The third ALO module involves LIs that are suggested by the CAGT algorithm given 

each LI set until the potency of all LIs are determined. 

We evaluated ALO, for rapid food intolerance and allergy identification, and compared to the 

standard elimination diet (SED) method that is commonly used (Figure 5.3). Our results indicate 

between 58.9% and 68.4% reduction in number of LI rounds needed by ALO when compared to 

SED. The ALO method is robust to noise and works for different sets of LIs with varying 

homogeneity properties (Figure 5.2). This is the first time that a group testing is suggested for this 
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application. Furthermore, our experiments show that our newly developed method is better than a 

state of the art group testing method called SPIV (371) for this application. 

Future research should focus on evaluating group testing methods such as ALO in practice for 

personalized lifestyle intervention, in order to improve the efficiency of existing methods such as 

SED and N-of-1 trials and identify application specific considerations that need to be made in the 

group testing method to minimize the associated risks and maximize its practical efficiency. We 

anticipate that future algorithmic improvements using active machine learning, and optimal 

experimental design that are shown to speedup biological discoveries (372), will lead into further 

performance improvements, and guide us into a new era of personalized nutrition. 
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Chapter 6: Conclusion 

Computation is a major resource for enhancing our ability to optimize a given biological organism 

for achieving a desired phenotype which is the fundamental goal in many areas of science 

including medicine, nutrition and agriculture. Despite the progress in development of 

computational methods for optimizing biological organisms (Chapter 2), several challenges 

remain to be addressed sufficiently: (i) data heterogeneity and disconnect between the available 

data and existing computational methods, (ii) integration of domain knowledge into 

uninterpretable data-driven models, and  (iii) the plethora of factors that can perturb a biological 

phenotype, and limited time to examine each. These challenges are addressed in Chapter 3, Chapter 

4 and Chapter 5 for several important applications. The first application is the development of a 

microbiome-based optimal dietary strategy for management of IBS as presented in Chapter 3. The 

second application is the prediction of genome-wide transcriptome given gene knockouts and 

master regulator perturbations in bacterium E. coli. The third application is the rapid identification 

of effective lifestyle interventions in individuals, such as dietary food eliminations for management 

of IBS and food allergies. 

The presented computational methods can be adopted for many applications. The data integration, 

and data analysis methods that are used in Chapter 3, can be applied for identifying the biomarkers 

of response to various treatment strategies. The genetic neural network architecture presented in 

Chapter 4, can be leveraged in product yield maximization of bacteria, genetic engineering of 

crops, and multi-target drug discovery in animal and human diseases. The algorithmic lifestyle 

optimization method presented in Chapter 5 can be used to improve the efficiency of N-of-1 trials 

in animal and human diseases. 
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In conclusion, three strategies are presented here for addressing aforementioned challenges in 

development of computational methods for optimizing biological systems. First, is to gather and 

homogenize heterogenous biological datasets and analyze them through careful application of 

existing computational methods. Second, is to integrate the domain knowledge (such as gene 

regulatory relationships) into data-driven predictive models in order to improve their accuracy with 

minimum amount of data and make them interpretable. Third, is to use constrained adaptive group 

testing for evaluating the effect of multiple factors simultaneously on a given phenotype, using 

minimum number of experiments. The developed methods that employ these strategies can be 

advanced further as described at the end of each chapter. The presented results here show that each 

strategy leads into substantial performance improvements compared to the status quo.  

Furthermore, combining these strategies together, as well as with active learning and 

reinforcement learning strategies, can give rise to novel methods that will enhance our ability to 

optimize biological organisms by several orders of magnitude. Provided with sufficient resources 

and commitment in the relevant research, we can see a future in which biological organisms are 

healthier and more capable towards higher peace and prosperity. 
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Appendix A 

A.1. Constrained Adaptive Group Testing 

The core of the CAGT algorithm which is implemented by the CAGT model, is illustrated by an 

example in Figure A.1, and fully described in Algorithm A.1 The CAGT model, is encoded by a 

binary tree connecting a set of nodes denoted by 𝑔𝑖 . Each 𝑔𝑖 , represents a set of LIs with unknown 

potency, as well as 𝑙 and ℎ integers that bound the number of potent LIs in the set. The tree 

represents nested sets of LIs where the LIs of a non-leaf node are comprised of the LIs of its 

children, and sibling nodes are disjoint (i.e. have no shared LI). In step1, the 𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑 function 

iterates through the leaf nodes and simulates the next round using each node leading into 

alternative trees. The leaf node 𝑔 that leads into tree pairs (two trees per 𝑔 due to two possible 

potencies) with best potential (i.e. minimum |𝑅|), is chosen for the next round. The optimal number 

of LIs for next round (|𝑅𝑖|) is then identified using the CAGT catalog given |𝑔| and the 

corresponding 𝑙 and ℎ from 𝑔. Any subset of size |𝑅𝑖| from 𝑔 can be selected as 𝑅𝑖 for the next 

round, however we used the first |𝑅𝑖| LIs in 𝑔 for simplicity. In step2, the potency of 𝑅𝑖 is 

determined as 𝑟𝑖 by the individual. In step3, the 𝑓 function uses 𝑅𝑖 and 𝑟𝑖 to split the 𝑔 node and 

subsequently revise the tree which can lead into updated 𝑉0 and 𝑉1. Revisions are made in the tree 

using Table A.1, as long as there is a node that meets a revision criterion. Revising one node, can 

trigger revisions across the tree using the “trigger revision” column of Table A.1, which names 

the nodes that should be subsequently verified against the criteria enabling an efficient method for 

finding all the nodes that need verification (See 𝑟𝑒𝑣𝑖𝑠𝑒_𝑡𝑟𝑒𝑒 function in Algorithm A.1). 

 



 

 

130 

Algorithm A.1 The CAGT model and functions. 

Inputs: The CAGT model is initialized by the set of candidate LIs (𝐿𝐼), the low and high 

thresholds (𝑙 and ℎ) that bound the number of potent LIs. The model also relies on a prebuilt 

CAGT catalog. The 𝑓 function takes 𝑅𝑖 ⊆ 𝐿𝐼 that represent the LIs followed by the individual in 

the last round, and 𝑟𝑖 ∈ {0,1} that represent the corresponding potency. 

Outputs: The 𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑 function returns 𝑅𝑖 ⊆ 𝐿𝐼 to be followed by the individual. The 𝑓 

function returns set of impotent LIs 𝑉0 and potent LIs 𝑉1 identified by the Algorithm A.o far. 
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16: 

17: 

 

18: 

19: 

class 𝑁𝐺𝑟𝑜𝑢𝑝  

// A node 𝑔 in the CAGT model tree which contains: 

//   𝑉: a set of LIs, 𝑙: minimum number of potent LIs,  

//   ℎ: maximum number of potent LIs, 𝑝𝑎𝑟𝑒𝑛𝑡: an 𝑁𝐺𝑟𝑜𝑢𝑝, and 

//   𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛: a set of 𝑁𝐺𝑟𝑜𝑢𝑝 

  function 𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑(𝑔): 

    𝑜𝑝𝑡𝑖𝑚_𝐿𝐼_𝑐𝑜𝑢𝑛𝑡 ← 𝐶𝐴𝑇𝐴𝐿𝑂𝐺. 𝑜𝑝𝑡𝑖𝑚_𝑠𝑖𝑧𝑒(|𝑔. 𝑉|, 𝑔. 𝑙, 𝑔. ℎ) 

    return 𝑔. 𝑉[1: 𝑜𝑝𝑡𝑖𝑚_𝐿𝐼_𝑐𝑜𝑢𝑛𝑡] 

 

  function 𝑚𝑎𝑥_𝑟𝑜𝑢𝑛𝑑𝑠(𝑔): 

    return 𝐶𝐴𝑇𝐴𝐿𝑂𝐺. 𝑚𝑎𝑥_𝑟𝑜𝑢𝑛𝑑𝑠(|𝑔. 𝑉|, 𝑔. 𝑙, 𝑔. ℎ) 

 

class 𝐶𝐴𝐺𝑇_𝑀𝑜𝑑𝑒𝑙: 

  function __𝑖𝑛𝑖𝑡__(𝑚𝑜𝑑𝑒𝑙, 𝐿𝐼, 𝑙, ℎ): 

    𝑚𝑜𝑑𝑒𝑙. 𝑟𝑜𝑜𝑡 ← 𝑁𝐺𝑟𝑜𝑢𝑝(𝐿𝐼, 𝑙, ℎ) 

    𝑉0 ← {}; 𝑉1 ← {}; 

 

  function 𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑(𝑚𝑜𝑑𝑒𝑙): 

    𝑏𝑒𝑠𝑡_𝑔 ← None 

    for 𝑔 in 𝑚𝑜𝑑𝑒𝑙. 𝑙𝑒𝑎𝑣𝑒𝑠(): 

      if 𝑚𝑜𝑑𝑒𝑙.𝑚𝑎𝑥_𝑟𝑜𝑢𝑛𝑑𝑠_𝑖𝑓(𝑔) < 𝑚𝑜𝑑𝑒𝑙. 𝑚𝑎𝑥_𝑟𝑜𝑢𝑛𝑑𝑠_𝑖𝑓(𝑏𝑒𝑠𝑡_𝑔): 

        𝑏𝑒𝑠𝑡_𝑔 ←  𝑔 

    𝑚𝑜𝑑𝑒𝑙. 𝑙𝑎𝑠𝑡_𝑔 ←  𝑏𝑒𝑠𝑡_𝑔 

    return 𝑏𝑒𝑠𝑡_𝑔. 𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑() 

 

  function 𝑓(𝑚𝑜𝑑𝑒𝑙, 𝑅𝑖, 𝑟𝑖): 

    𝑚𝑜𝑑𝑒𝑙. 𝑠𝑝𝑙𝑖𝑡_𝑔(𝑅𝑖 , 𝑟𝑖 , 𝑚𝑜𝑑𝑒𝑙. 𝑙𝑎𝑠𝑡_𝑔) 
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20: 

21: 

 

22: 

23: 

24: 

25: 

26: 

27: 

28: 

29: 

30: 

31: 

32: 

33: 

34: 

35: 

36: 

37: 

38: 

 

39: 

40: 

41: 

42: 

 

43: 

 

 

 

44: 

45: 

46: 

47: 

 

    𝑚𝑜𝑑𝑒𝑙. 𝑟𝑒𝑣𝑖𝑠𝑒_𝑡𝑟𝑒𝑒() 

    return [𝑚𝑜𝑑𝑒𝑙. 𝑉0, 𝑚𝑜𝑑𝑒𝑙. 𝑉1] 

 

  function 𝑠𝑝𝑙𝑖𝑡_𝑔(𝑚𝑜𝑑𝑒𝑙, 𝑅𝑖 , 𝑟𝑖 , 𝑔): 

    if 𝑟𝑖 is 0: 

      𝑚𝑜𝑑𝑒𝑙. 𝑉0  ← 𝑚𝑜𝑑𝑒𝑙. 𝑉0 ∪ 𝑅𝑖 

      // Update 𝑔: 

      𝑔. 𝑉 ← 𝑔. 𝑉 ∖ 𝑅𝑖 

      𝑔. ℎ ← 𝑚𝑖𝑛(|𝑔. 𝑉|, 𝑔. 𝑉. ℎ) 

      𝑔. 𝑙 ← 𝑚𝑖𝑛(𝑔. 𝑙, 𝑔. ℎ) 

    else: 

      // Create new 𝑁𝐺𝑟𝑜𝑢𝑝s under 𝑔𝑙: 

      𝑔1 ←  𝑁𝐺𝑟𝑜𝑢𝑝(𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑔, 𝑉 ← 𝑅𝑖) 

      𝑔2 ←  𝑁𝐺𝑟𝑜𝑢𝑝(𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑔, 𝑉 ← 𝑔. 𝑉 ∖ 𝑅𝑖) 

      𝑔. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← [𝑔1 , 𝑔2] 

      // Update bounds: 

      𝑔1. ℎ ← min(𝑔. ℎ, |𝑅𝑖|) 

      𝑔1. 𝑙 ← min (|𝑔1. 𝑉|, max (1,𝑔. 𝑙 − |𝑔2. 𝑉|)) 

      𝑔2. ℎ ← 𝑔. ℎ − 𝑔1. 𝑙 

      𝑔2. 𝑙 ← min (|𝑔2. 𝑉|, max (0,𝑔. 𝑙 − 𝑔1. ℎ)) 

 

  function 𝑚𝑎𝑥_𝑟𝑜𝑢𝑛𝑑𝑠_𝑖𝑓(𝑚𝑜𝑑𝑒𝑙, 𝑔): 

    𝑛_𝑖𝑓_𝑝𝑜𝑡𝑒𝑛𝑡 ← 𝑚𝑜𝑑𝑒𝑙.𝑚𝑎𝑥_𝑟𝑜𝑢𝑛𝑑𝑠_ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑡𝑖𝑐𝑎𝑙(𝑔, 1) 

    𝑛_𝑖𝑓_𝑖𝑚𝑝𝑜𝑡𝑒𝑛𝑡 ← 𝑚𝑜𝑑𝑒𝑙.𝑚𝑎𝑥_𝑟𝑜𝑢𝑛𝑑𝑠_ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑡𝑖𝑐𝑎𝑙(𝑔, 0) 

    return 𝑚𝑎𝑥(𝑛_𝑖𝑓_𝑝𝑜𝑡𝑒𝑛𝑡, 𝑛_𝑖𝑓_𝑖𝑚𝑝𝑜𝑡𝑒𝑛𝑡) 

 

  function 𝑚𝑎𝑥_𝑟𝑜𝑢𝑛𝑑𝑠_ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑡𝑖𝑐𝑎𝑙(𝑚𝑜𝑑𝑒𝑙, 𝑔, 𝑝𝑜𝑡𝑒𝑛𝑐𝑦): 

    // Calculate the maximum number of rounds assuming 𝑔 

    // is used in the next round and the potency is 

    // determined. 

    ℎ_𝑚𝑜𝑑𝑒𝑙 ←  𝑑𝑒𝑒𝑝𝑐𝑜𝑝𝑦(𝑚𝑜𝑑𝑒𝑙) 

    ℎ_𝑚𝑜𝑑𝑒𝑙. 𝑙𝑎𝑠𝑡_𝑔 ←  𝑔 

    ℎ_𝑚𝑜𝑑𝑒𝑙. 𝑓(𝑔. 𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑(), 𝑝𝑜𝑡𝑒𝑛𝑐𝑦) 

    return ℎ_𝑚𝑜𝑑𝑒𝑙.𝑚𝑎𝑥_𝑟𝑜𝑢𝑛𝑑𝑠() 
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48: 

49: 

50: 

 

51: 

52: 

53: 

54: 

55: 

56: 

 

57: 

58: 

59: 

60: 

61: 

62: 

63: 

 

64: 

  function 𝑚𝑎𝑥_𝑟𝑜𝑢𝑛𝑑𝑠(𝑚𝑜𝑑𝑒𝑙): 

    T ←  𝑚𝑜𝑑𝑒𝑙. 𝑙𝑒𝑎𝑣𝑒𝑠() 

    return ∑
𝑔∈𝑇

𝑔.𝑚𝑎𝑥_𝑟𝑜𝑢𝑛𝑑𝑠()  

   

  function 𝑟𝑒𝑣𝑖𝑠𝑒_𝑡𝑟𝑒𝑒(𝑚𝑜𝑑𝑒𝑙): 

    𝐺𝑟𝑒𝑣𝑖𝑠𝑒 ← {𝑚𝑜𝑑𝑒𝑙. 𝑙𝑎𝑠𝑡_𝑔} 

    do: // Revise while still needed 

      𝑔 ← 𝑝𝑜𝑝(𝐺𝑟𝑒𝑣𝑖𝑠𝑒) 

      𝐺𝑟𝑒𝑣𝑖𝑠𝑒 ← 𝐺𝑟𝑒𝑣𝑖𝑠𝑒 ∪ 𝑚𝑜𝑑𝑒𝑙. 𝑟𝑒𝑣𝑖𝑠𝑒_𝑔(𝑔) 

    while |𝐺𝑟𝑒𝑣𝑖𝑠𝑒|>0 

 

  function 𝑟𝑒𝑣𝑖𝑠𝑒_𝑔(𝑚𝑜𝑑𝑒𝑙, 𝑔): 

    𝐺𝑟𝑒𝑣𝑖𝑠𝑒 ← {} 

    𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 ←  𝑚𝑜𝑑𝑒𝑙. 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦_𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛(𝑔) 

    while 𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛: 

      𝐺𝑟𝑒𝑣𝑖𝑠𝑒 ← 𝐺𝑟𝑒𝑣𝑖𝑠𝑒 ∪  𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛. 𝑎𝑝𝑝𝑙𝑦() 

      𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 ←  𝑚𝑜𝑑𝑒𝑙. 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦_𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛(𝑔) 

    return 𝐺𝑟𝑒𝑣𝑖𝑠𝑒 

 

  function 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦_𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛(𝑚𝑜𝑑𝑒𝑙, 𝑔): 

  // Identify a revision for g from the revision table (Table 

A.1). 
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Table A.1 Criteria used to revise the CAGT tree in each round. Once a node 𝑔 satisfies a 

revision “criteria”, the corresponding “revision[s]” are applied on 𝑔, also leading into revising the 

“trigger revision” nodes. The LIs under node g are represented by 𝑔. 𝑉, the number of potent LIs 

in 𝑔.𝑉 is bounded by 𝑔. 𝑙 and 𝑔. ℎ. 

# criteria revision[s] trigger revision 

1 𝑔. 𝑙 = |𝑔. 𝑉| 𝑉1 ← 𝑉1 ∪ 𝑔.𝑉 
𝑚𝑜𝑑𝑒𝑙. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑔) 

𝑔. 𝑝𝑎𝑟𝑒𝑛𝑡 

2 𝑔. ℎ = 0 𝑉0 ← 𝑉0 ∪ 𝑔. 𝑉 
𝑟𝑒𝑚𝑜𝑣𝑒(𝑔) 

𝑔. 𝑝𝑎𝑟𝑒𝑛𝑡 

3 𝑔. ℎ ≠ 0 & 

𝑔. 𝑝𝑎𝑟𝑒𝑛𝑡 ≠ 𝑁𝑜𝑛𝑒 & 
𝑔. 𝑝𝑎𝑟𝑒𝑛𝑡. ℎ = 𝑔. 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(). 𝑙 

𝑔. 𝑙 ← 0 
𝑔. ℎ ← 0 

𝑔 

4 𝑔. 𝑙 < ∑ 𝑐. 𝑙

𝑐∈𝑔.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛

 𝑔. 𝑙 ← ∑ 𝑐. 𝑙

𝑐∈𝑔.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛

 𝑔 

 

A.2. ALO Modules 

A.2.1. ALO Module-1: Build the CAGT catalog 

The CAGT catalog acts as a lookup table that takes (𝑛, 𝑙, ℎ) as input and provides (𝑠,𝑤) as the 

output (see Figure A.2 C). A dynamic programming strategy is used to build the CAGT catalog 

based on the fact that in each round of CAGT, either the number of LIs in individual leaf nodes 

decreases, or their corresponding bounds (𝑙 and ℎ) tighten. Therefore, to find the optimal (𝑠𝑦 , 𝑤𝑦) 

of new catalog record 𝑦: (𝑛𝑦 , 𝑙𝑦 , ℎ𝑦), if the catalog is built to contain (𝑠𝑥, 𝑤𝑥) for all the records 

𝑥:(𝑛𝑥, 𝑙𝑥, ℎ𝑥) where 𝑛𝑥 ≤ 𝑛𝑦 and (𝑙𝑥, ℎ𝑥) are tighter than (𝑙𝑦 , ℎ𝑦), then we can run simulations of 

the CAGT algorithm using all valid 𝑠𝑦 values for the initial 𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑 of a CAGT run in order 

to find the 𝑠𝑦 that minimizes 𝑤𝑦 (see Algorithm A.2). Note that during each simulation, the 𝑠𝑦 

value is only used for the initial “𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑” call when only the root node exists. All the other 

catalog lookups rely on optimal (𝑠𝑥, 𝑤𝑥) values calculated beforehand. For the base cases of this 

dynamic programming algorithm, we rely on known optimal (𝑠, 𝑤) values. When 0 ≤ 𝑙 & ℎ ≤ 1 
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the binary splitting algorithm is optimal using 𝑠 = 2⌊log2 max (𝑛−1,1)⌋ leading into 𝑤 =

⌈log2(𝑛 + 1 − 𝑙)⌉, while for ℎ ≥ 1 +
𝑛

2
 using 𝑠 = 1 is optimal which leads into 𝑤 = 𝑛. 

Algorithm A.2 Build the CAGT catalog that acts as a lookup table. The catalog takes the triplet 

(𝑛: #of LIs, 𝑙: min #of potent LIs, ℎ: max #of potent LIs) as input and provides the tuple (𝑠: 

optimal #of LIs for the next round, 𝑤: maximum #of rounds) as the output. 

Input: 𝑀𝐴𝑋_𝑁 representing the maximum value of 𝑛 in the catalog records. 

Output: The 𝐶𝐴𝑇𝐴𝐿𝑂𝐺 that contains records in the form of “(𝑛, 𝑙, ℎ): (𝑠, 𝑤)”. 

1: 

2: 

3: 

4: 

5: 

6: 

 

 

7: 

8: 

9: 

 

 

 

 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

 

for 𝑛 ← 2 to 𝑀𝐴𝑋_𝑁: 

  for ℎ ← 2 to 𝑛/2: 

    for 𝑙 ← ℎ to 0: 

      (𝑠,𝑤) ← 𝑜𝑝𝑡𝑖𝑚_𝑠𝑤(𝑛, 𝑙, ℎ) 

      𝐶𝐴𝑇𝐴𝐿𝑂𝐺[(𝑛, 𝑙, ℎ)] ← (𝑠,𝑤) 

return 𝐶𝐴𝑇𝐴𝐿𝑂𝐺 

 

// Identify the optimal (𝑠, 𝑤) given (𝑛, 𝑙, ℎ) 

function 𝑜𝑝𝑡𝑖𝑚_𝑠𝑤(𝑛, 𝑙, ℎ): 

  (𝑠_𝑜𝑝𝑡𝑖𝑚,𝑤_𝑜𝑝𝑡𝑖𝑚) ← (1, 𝑛) 

  for s← 2 to 2⌊log2 max (𝑛−1,1)⌋: 

    // The value of 𝑤 won’t matter for the catalog here since it 

    // is used in the initial ‘𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑’ call of the CAGT  

    // Algorithm 1. only and will be replaced once 

    // (𝑠_𝑜𝑝𝑡𝑖𝑚,𝑤_𝑜𝑝𝑡𝑖𝑚) is identified. 

    𝑤 ← −1 

    𝐶𝐴𝑇𝐴𝐿𝑂𝐺[(𝑛, 𝑙, ℎ)] ← (𝑠,𝑤) 

    for 𝑛𝑢𝑚_𝑝𝑜𝑡𝑒𝑛𝑡 ← 𝑙 to ℎ: 

      for 𝐿𝐼_𝑝𝑜𝑡𝑒𝑛𝑐𝑖𝑒𝑠 in 𝑎𝑙𝑙_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠(𝑛, 𝑛𝑢𝑚_𝑝𝑜𝑡𝑒𝑛𝑡): 

        𝑛𝑢𝑚_𝑟𝑜𝑢𝑛𝑑𝑠 ← 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1(𝐿𝐼_𝑝𝑜𝑡𝑒𝑛𝑐𝑖𝑒𝑠) 

        𝑤 ← max (𝑤, 𝑛𝑢𝑚_𝑟𝑜𝑢𝑛𝑑𝑠) 

    if 𝑤 ≤  𝑤_𝑜𝑝𝑡𝑖𝑚: 

      (𝑠_𝑜𝑝𝑡𝑖𝑚,𝑤_𝑜𝑝𝑡𝑖𝑚) ← (𝑠,𝑤) 

  return (𝑠_𝑜𝑝𝑡𝑖𝑚, 𝑤_𝑜𝑝𝑡𝑖𝑚) 
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19: 

 

 

 

20: 

 

 

function 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1(𝐿𝐼_𝑝𝑜𝑡𝑒𝑛𝑐𝑖𝑒𝑠): 

  // Simulate Algorithm 1. given the binary vector of 

  // 𝐿𝐼_𝑝𝑜𝑡𝑒𝑛𝑐𝑖𝑒𝑠 and return the number of CAGT rounds. 

 

function 𝑎𝑙𝑙_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠(𝑛, 𝑛𝑢𝑚_𝑝𝑜𝑡𝑒𝑛𝑡): 

  // Return a list of all binary vectors that have length 𝑛 and 

  // ‘𝑛𝑢𝑚_𝑝𝑜𝑡𝑒𝑛𝑡’ number of 1s (i.e., 𝑛 − 𝑛𝑢𝑚_𝑝𝑜𝑡𝑒𝑛𝑡 0s). 

 

A.2.2. ADO Module-2 (A&B): Create optimal LI sets given their potency 

probabilities 

We use the potency probability of LIs, and the CAGT catalog, in order to create an optimal LI 

partition (disjoint sets of LIs) to minimize the expected number of CAGT rounds needed while the 

maximum number of CAGT rounds is also bounded. This is done in two steps (A&B). In step A 

of this module, the optimal LI partition is created only to minimize the maximum number of CAGT 

rounds needed given the LI potency probabilities and CAGT catalog. In step B, a new optimal LI 

partition is created in order to minimize the expected number of CAGT rounds while the maximum 

number of rounds used remains bounded bellow a user defined threshold. 

ALO Module-2.A: Identify the maximum CAGT rounds needed 

When the prevalence of potent LIs is high, individual testing will be more efficient than group 

testing (368). More generally, to achieve optimal performance, LIs can be partitioned into disjoint 

sets based on their potency probabilities such that group testing is performed independently in each 

set (and with different group testing parametrizations) (368). We achieve this in ALO Module-2.A 

using Algorithm A.3 in order to find the optimal maximum number of CAGT rounds that are 

needed for discovering the potent LIs (𝑤∗) by function 𝑓𝑖𝑛𝑑_𝑤𝑐∗. First, we reorder the LIs based 

on LI potency probability vector 𝒑 such that 0 ≤ 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑁 < 1. Second, we calculate ℎ 
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as the maximum number of potent LIs using the Poisson binomial distribution of 𝒑 and a 

confidence threshold of 𝑡 ∈ [0,1] (e.g., 0.95). Third, we consider the 𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 to be all the 

LIs relating to 𝒑 with a 𝑤∗ that is returned from the CAGT catalog for (|𝑝|,0, ℎ). Fourth, we run 

𝑓𝑖𝑛𝑑_𝑤𝑐∗ for 𝒑1…𝑗 and 𝒑𝑗…|𝑝| recursively ∀𝑗 ∈ [1, |𝒑|] and update 𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 if the returned 

partition pairs by the two 𝑓𝑖𝑛𝑑_𝑤𝑐∗ calls are better than the current 𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛. To avoid 

duplicate runs of 𝑓𝑖𝑛𝑑_𝑤𝑐∗, we check the input 𝒑 against a lookup table (named 𝑐𝑎𝑐ℎ𝑒_𝑤𝑐∗) in 

the beginning and only calculate the answer on the first occurrence. 

 

Algorithm A.3 Identify the optimal maximum number of CAGT rounds that are needed for 

discovering the potent LIs (𝑤∗) using the 𝑓𝑖𝑛𝑑_𝑤𝑐∗ function considering the LI potency 

probability vector 𝒑 ∈ [0,1]𝑁 where 𝑁 is the number of LIs. 

Inputs: LI potency probability vector 𝒑 where 0 ≤ 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑁 < 1 (i.e. assume that 

LIs are ordered by their potency probabilities without loss of generality), and a confidence 

threshold 𝑡 ∈ [0,1]. 
Outputs: Disjoint sets of LIs (amounting to partition called 𝑄+) such that subjecting individual 

sets 𝑄 to the CAGT algorithm leads into optimal maximum number of CAGT rounds that are 

needed for discovering the potent LIs (𝑤∗). It will be in the following nested format due to 

recursion where 𝑤∗ is the 𝑄3 from the top nested set, and the non-nested subsets amount to the 

disjoint sets of LIs. 

𝑄: (𝑄𝑙,𝑄𝑟, 𝑤) 

  𝑄𝑙(𝑄1): left subset of 𝑄 (if nested), or index of the first LI in the set (if not nested) (𝑄/𝐼𝑛𝑡𝑒𝑔𝑒𝑟) 

  𝑄𝑟(𝑄2): right subset of 𝑄 (if nested), or index of the last LI in the set (if not nested) 

(𝑄/𝐼𝑛𝑡𝑒𝑔𝑒𝑟) 

  𝑤(𝑄3): maximum number of rounds in this 𝑄 (𝐼𝑛𝑡𝑒𝑔𝑒𝑟) 

1: 

 

 

2: 

3: 

4: 

5: 

 𝑐𝑎𝑐ℎ𝑒_𝑤𝑐∗  ← {} // A cache used to avoid duplicate runs of 𝑓𝑖𝑛𝑑_𝑤𝑐∗. 

// Note: In 𝑓𝑖𝑛𝑑_𝑤𝑐∗, ‘𝑏’ and ‘𝑒’ are indices of the beginning and  

// end LIs respectively with default values of ‘1’ and ‘|𝒑|’. 

function 𝑓𝑖𝑛𝑑_𝑤𝑐∗(𝒑, 𝑡, 𝑏 = 1, 𝑒 = |𝒑|): 

  if (𝑏, 𝑒) in 𝑐𝑎𝑐ℎ𝑒_𝑤𝑐∗: 

    return 𝑐𝑎𝑐ℎ𝑒_𝑤𝑐∗[(𝑏, 𝑒)] 

  ℎ ← max _𝑝𝑜𝑡𝑒𝑛𝑡_𝐿𝐼𝑠(𝒑𝑏…𝑒, 𝑡) 

  (𝑠, 𝑤) ← 𝐶𝐴𝑇𝐴𝐿𝑂𝐺. 𝑙𝑜𝑜𝑘𝑢𝑝(𝑒 − 𝑏 + 1,0, ℎ) 



 

 

137 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

 

 

 

 

17: 

18: 

 

 

 

19: 

20: 

21: 

  𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← (𝑏, 𝑒,𝑤) 

  if 𝑒 = 𝑏: 

    return 𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 

  for 𝑗 ← b to 𝑒 − 1: 

    𝑄𝑙 ←  𝑓𝑖𝑛𝑑_𝑤𝑐∗(𝒑, 𝑡, 𝑏, 𝑗) 

    𝑄𝑟 ←  𝑓𝑖𝑛𝑑_𝑤𝑐∗(𝒑, 𝑡, 𝑗 + 1, 𝑒) 

    if 𝑄𝑙3 + 𝑄𝑟3 <  𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛3: 

      𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← (𝑄𝑙, 𝑄𝑟, 𝑄𝑙3 + 𝑄𝑟3) 

  𝑐𝑎𝑐ℎ𝑒_𝑤𝑐∗[(𝑏, 𝑒)]  ←  𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 

  return 𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 

 

// The ‘𝑚𝑎𝑥_𝑝𝑜𝑡𝑒𝑛𝑡_𝐿𝐼𝑠’ function calculates the maximum number of 

// potent LIs with probability ‘𝑡’ given the potency 

// probabilities ‘𝒑’.  

function 𝑚𝑎𝑥_𝑝𝑜𝑡𝑒𝑛𝑡_𝐿𝐼𝑠(𝒑, 𝑡): 

  ℎ ←1 

  // ’𝑃𝑟𝒑(𝐾 ≤ ℎ)’: the probability that the number of potent LIs  

  // is less than or equal to ℎ using Poisson binomial  

  // distribution of 𝒑. 

  while ℎ < |𝑝| and 𝑃𝑟𝒑(𝐾 ≤ ℎ) < 𝑡: 

    ℎ ← ℎ + 1 

  return ℎ 

 

ALO Module-2.B: Partition LIs into disjoint sets for minimizing the expected number of 

CAGT rounds while keeping its maximum at bay 

We introduce a new parameter named 𝑒𝑥 (set by the user) representing the number of extra rounds 

allowed in addition to 𝑤∗ summing up to 𝑤𝑒𝑥 = 𝑤∗ + 𝑒𝑥. In the beginning of the CAGT 

algorithm, we allow an extra round in which the LIs of a disjoint set will be followed 

simultaneously by the individual, as long as the total of the maximum number of CAGT rounds 

from all disjoint sets is not greater than 𝑤𝑒𝑥. Algorithm A.4 minimizes the expected number of 
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CAGT rounds by identifying the optimal partition (i.e. disjoint sets of LIs) along with the sets that 

will have an extra initial CAGT round. The expected number of rounds for a set with extra initial 

round can be calculated using the weighted average 𝑝0 + (1 − 𝑝0) × 𝑤1 where 𝑝0 is 𝑃𝑟𝒑(𝐾 ≤ 0) 

(probability that the initial extra round returns a ‘0’), and 𝑤1 is the maximum number of CAGT 

rounds for the set if the initial extra round returns a ‘1’ (see ‘𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑤𝑖𝑡ℎ_𝑒𝑥𝑡𝑟𝑎_𝑟𝑜𝑢𝑛𝑑’ 

function under Algorithm A.4). This optimal partition (calculated by 𝑓𝑖𝑛𝑑_𝑄∗) is identified by 

finding the sets in which the extra initial round provides the maximum benefit towards the 

objective. The algorithm relies on the fact that if there is only one extra initial round available 

(𝑒𝑥 = 1), it should be used for a set who’s LIs have lower potency probabilities. 

Algorithm A.4 Identify the optimal partition along with the disjoint sets that will have an extra 

initial CAGT round using the 𝑓𝑖𝑛𝑑_𝑄∗ function, such that the expected number of CAGT rounds 

is minimized while keeping its maximum at bay. 

Inputs: LI potency probability vector 𝒑 and confidence threshold 𝑡 (same as in Algorithm A.3), 

𝑐𝑎𝑐ℎ𝑒_𝑤𝑐∗ (populated from Algorithm A.3) and total number of CAGT rounds allowed 𝑤𝑒𝑥 

(sum of 𝑤∗ calculated by Algorithm A.3, and the user defined extra rounds allowed 𝑒𝑥). 

Output: The optimal partition 𝑄∗ along with the disjoint sets that will have an extra initial 

CAGT round. It will be in the following nested format dur to recursion. The non-nested 𝑄s 

amount to the disjoint sets of interest which will be used in Module-3. 

𝑄: (𝑄𝑙,𝑄𝑟, 𝑤, 𝑎𝑟, 𝑒𝑟) 
  𝑄𝑙 (𝑄1): left subset of 𝑄 (if nested), or index of the first LI in the set (if not nested) 

(𝑄/𝐼𝑛𝑡𝑒𝑔𝑒𝑟) 

  𝑄𝑟(𝑄2): right subset of 𝑄 (if nested), or index of the last LI in the set (if not nested) 

(𝑄/𝐼𝑛𝑡𝑒𝑔𝑒𝑟) 

  𝑤 (𝑄3): maximum number of rounds in this 𝑄 (𝐼𝑛𝑡𝑒𝑔𝑒𝑟) 

  𝑎𝑟(𝑄4): average number of rounds in this 𝑄 (𝐹𝑙𝑜𝑎𝑡) 

  𝑒𝑟(𝑄5): whether extra round should be used in this 𝑄 if not nested (𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒). 

1: 

2: 

3: 

4: 

5: 

𝑐𝑎𝑐ℎ𝑒_𝑤𝑒𝑥 ← {} // A cache used to avoid duplicate runs of 𝑓𝑖𝑛𝑑_𝑄∗. 

function 𝑓𝑖𝑛𝑑_𝑄∗ (𝒑, 𝑡, 𝑐𝑎𝑐ℎ𝑒_𝑤𝑐∗, 𝑤𝑒𝑥, 𝑏 = 1, 𝑒 = |𝒑|): 

  𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 𝑐𝑎𝑐ℎ𝑒_𝑤𝑐∗[(𝑏, 𝑒)] 

  if 𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛3 ≥ 𝑤𝑒𝑥: 

    return 𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 
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6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

 

 

 

25: 

 

 

26: 

27: 

28: 

29: 

30: 

31: 

32: 

33: 

  if (𝑏, 𝑒, 𝑤𝑒𝑥) in 𝑐𝑎𝑐ℎ𝑒_𝑤𝑒𝑥: 

    return 𝑐𝑎𝑐ℎ𝑒_𝑤𝑒𝑥[(𝑏, 𝑒, 𝑤𝑒𝑥)] 

  𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑤𝑒𝑟 ←  𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑤𝑖𝑡ℎ_𝑒𝑥𝑡𝑟𝑎_𝑟𝑜𝑢𝑛𝑑(𝒑, 𝑡, 𝑏, e) 

  if 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑤𝑒𝑟4 < 𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛3: 

    𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑤𝑒𝑟 

  for 𝑗 ← b to 𝑒 − 1: 

    𝑄𝑟𝑤 ← 𝑐𝑎𝑐ℎ𝑒_𝑤𝑐∗[(j + 1, 𝑒)] 

    𝑄𝑙 ← 𝑓𝑖𝑛𝑑_𝑄∗(𝒑, 𝑡, 𝑐𝑎𝑐ℎ𝑒_𝑤𝑐∗, 𝑤𝑒𝑥 − 𝑄𝑟𝑤3, 𝑏, 𝑗) 

    if 𝑄𝑟𝑤3 + 𝑄𝑙3 > 𝑤𝑒𝑥: 

      continue 

    if 𝑄𝑟𝑤3 + 𝑄𝑙3 = 𝑤𝑒𝑥: 

      𝑄 ← (𝑄𝑙, 𝑄𝑟𝑤,𝑄𝑟𝑤3 + 𝑄𝑙3, 𝑄𝑟𝑤3 + 𝑄𝑙4) 

    if 𝑄𝑟𝑤3 + 𝑄𝑙3 < 𝑤𝑒𝑥: 

      𝑄𝑟 ←  𝑓𝑖𝑛𝑑_𝑄∗(𝒑, 𝑡, 𝑐𝑎𝑐ℎ𝑒_𝑤𝑐∗, 𝑤𝑒𝑥 − 𝑄𝑙3, j + 1, 𝑒) 

      𝑄 ← (𝑄𝑙, 𝑄𝑟, 𝑄𝑟3 + 𝑄𝑙3, 𝑄𝑟4 + 𝑄𝑙4) 

    if 𝑄4 < 𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛4: 

      𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ← 𝑄 

  𝑐𝑎𝑐ℎ𝑒_𝑤𝑒𝑥[(𝑏, 𝑒, 𝑤𝑒𝑥)] ← 𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 

  return 𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 

 

// Create a non-nested 𝑄 relating to LIs between 𝑏 and 𝑒 in  

// which the extra initial CAGT round is used. 

function 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑤𝑖𝑡ℎ_𝑒𝑥𝑡𝑟𝑎_𝑟𝑜𝑢𝑛𝑑(𝒑, 𝑡, 𝑏, e): 

  // Calculate average number of CAGT rounds if extra initial 

  // round is used. 

  𝒑 ← 𝒑𝑏…𝑒 

  𝑝0 ← 𝑃𝑟𝒑(𝐾 ≤ 0)  

  𝑤0 ← 1 

  𝑝1 ← 1 − 𝑝0 

  ℎ1 ← 𝑚𝑎𝑥_𝑝𝑜𝑡𝑒𝑛𝑡_𝐿𝐼𝑠(𝒑, 𝑡) // Same function as in Algorithm A.3 

  (𝑠1,𝑤1) ← 𝐶𝐴𝑇𝐴𝐿𝑂𝐺. 𝑙𝑜𝑜𝑘𝑢𝑝(|p|, 1, ℎ1) + 1 

  𝑎𝑟 ← 𝑝0 × 𝑤0 + 𝑝1 × 𝑤1 // Average number of rounds 

  return (𝑏, 𝑒, 𝑤1, 𝑎𝑟, 𝑇𝑟𝑢𝑒) 
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A.2.3. ALO Module-3: Perform the CAGT rounds for each LI subset 

adaptively 

Finally in the last ALO module, for each individual, Algorithm A.5 is followed separately for all 

disjoint sets of LIs identified (i.e. Q∗). Algorithm A.5, is similar to main CAGT Algorithm 1. 

with three extensions. First, the maximum number of potent LIs (ℎ) in each disjoint set is first 

estimated using the 𝑚𝑎𝑥_𝑝𝑜𝑡𝑒𝑛𝑡_𝐿𝐼𝑠 function (see Algorithm A.3). Second, in a disjoint set 𝑄, 

if 𝑄5 = 𝑇𝑟𝑢𝑒, the initial CAGT round will involve all the LIs of that disjoint set. Third, the LIs 

that are identified as impotent due to criteria ‘#2’ of the revision table (Table A.1) will be 

combined together from all disjoint sets and verified using the main CAGT Algorithm 1 with an 

initial round that involves such LIs (referred to as 𝑉0
’). This will be repeated until |𝑉0

’ | = 0. Note 

that, criteria ‘#2’ is only valid when our assumption about the maximum number of LIs (ℎ) is 

correct. However, our assumption is correct only with the confidence 𝑡 (e.g. 0.95 probability) 

hence requires additional verification. 

Algorithm A.5 Identify potent LIs for an individual using one independent CAGT run for each 

disjoint set of LIs returned by Algorithm A.4, and a final CAGT run to identify potent LIs in 

𝑉0
’ . 

Input: Disjoint sets from the 𝑄∗ returned by Algorithm A.4 referred to as 𝑄𝐹∗ (i.e. a flat list of 

non-nested 𝑄s from 𝑄∗), the LI potency probabilities 𝒑 and confidence threshold 𝑡. 

Output: The list of impotent and potent LIs referred to as  𝑉0
∗ and 𝑉1

∗ respectively. 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

𝑉0
∗ ← {};𝑉1

∗  ← {};𝑉0
′  ← {} 

for 𝑄 in 𝑄𝐹∗: 

  LI ← {𝑄1, 𝑄1 + 1,…𝑄2} 

  (𝑉0, 𝑉1) ← 𝑟𝑢𝑛_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑(𝐿𝐼, 𝑄5, 𝒑, 𝒕) 

  𝑉0
∗ ← 𝑉0

∗ ∪ 𝑉0 

  𝑉1
∗ ← 𝑉1

∗ ∪ 𝑉1 

  𝑉0
′ ← 𝑉0

′ ∪ (𝑄\𝑉0\𝑉1) 

while |𝑉0
′| > 0: 
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9: 

10: 

11: 

12: 

13: 

 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

 

28: 

  (𝑉0, 𝑉1) ← 𝑟𝑢𝑛_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑(𝑉0
′, 𝑇𝑟𝑢𝑒, 𝒑, 𝒕) 

  𝑉0
∗ ← 𝑉0

∗ ∪ 𝑉0 

  𝑉1
∗ ← 𝑉1

∗ ∪ 𝑉1 

  𝑉0
′ ← 𝑉0

′ \𝑉0\ 𝑉1 

return (𝑉0
∗, 𝑉1

∗) 

 

function 𝑟𝑢𝑛_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑(𝐿𝐼, 𝑒𝑥𝑡𝑟𝑎, 𝒑, 𝒕): 

  𝑉0 ← {};𝑉1 ← {} 

  if 𝑒𝑥𝑡𝑟𝑎 and 𝑔𝑒𝑡_𝑝𝑜𝑡𝑒𝑛𝑐𝑦(LI) = 0: 

    𝑉0 ← 𝑉0 ∪ 𝑄 

    return (𝑉0, 𝑉1) 

  𝑙 ← 1 if 𝑒𝑥𝑡𝑟𝑎 else 0 

  ℎ ← 𝑚𝑎𝑥_𝑝𝑜𝑡𝑒𝑛𝑡_𝐿𝐼𝑠(𝒑{𝐿𝐼}, 𝑡) // Same function as in Algorithm A.3 

  𝑚𝑜𝑑𝑒𝑙 ← 𝐶𝐴𝐺𝑇_𝑀𝑜𝑑𝑒𝑙(𝐿𝐼, 0, ℎ) 

  do: 

    𝑅𝑖 ← 𝑚𝑜𝑑𝑒𝑙. 𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑() 

    𝑟𝑖 ← 𝑔𝑒𝑡_𝑝𝑜𝑡𝑒𝑛𝑐𝑦(𝑅𝑖) 

    (𝑉0, 𝑉1, 𝑉0
′) ← 𝑚𝑜𝑑𝑒𝑙. 𝑓_𝑡ℎ𝑖𝑟𝑑_𝑒𝑥𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑅𝑖 , 𝑟𝑖) 

  while |𝐿𝐼 ∖ 𝑉0 ∖ 𝑉1\ 𝑉0
′| > 0 

return (𝑉0, 𝑉1) 

 

class 𝐶𝐴𝐺𝑇_𝑀𝑜𝑑𝑒𝑙(𝐿𝐼, 𝑙, ℎ): 

  // Same as the 𝐶𝐴𝐺𝑇_𝑀𝑜𝑑𝑒𝑙 used in Algorithm 1. except for the  

  // function ‘𝑓’ that is replaced by ′𝑓_𝑡ℎ𝑖𝑟𝑑_𝑒𝑥𝑡𝑒𝑛𝑡𝑖𝑜𝑛’ which 

  // ensures that LIs identified by criteria ‘#2’ of the 

  // revision table (Table A.1) are removed from 𝑉0 before the  

  // function return. 

 

A.3. Spatial Inference Vertex Cover (SPIV) 

It is recently shown that a two stage group testing algorithm called SPIV (371) is asymptotically 

optimal when the expected number of potent LIs is known. We estimated the expected number of 

potent LIs that are needed by the SPIV algorithm from the LI potency probabilities. Initially the 
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LIs with high potency probabilities (greater than a hyper-parameter threshold 𝑡 used in the range 

of 0.2 to 0.4) are separated from the rest and followed one at a time. In step1, we devise overlapping 

sets of LIs in a ring according to the first stage of the SPIV algorithm (371). In step2, each devised 

set of LIs are followed by the individual simultaneously to determine the potency of each set. In 

step3, individual LI potencies are determined using two rules: (a) if an LI set is determined to be 

impotent by the individual, all LIs that participate that set will be marked as impotent, and (b) if 

an LI set is determined to be potent, and all except one of the LIs is determined to be impotent 

from the previous rule, the single remaining LI in that set will be marked as potent. In step4, the 

remaining LIs (with unknown potencies) are followed by the individual one-by-one to determine 

each LI potency, and the rules are applied after each until all potencies are determined (see Figure 

A.2). The second stage of the SPIV algorithm can be followed in step4, however we believe our 

updated step is appropriate due to the adaptive nature of the problem, its simplicity and practicality. 

One can integrate the second stage of SPIV into the last step to evaluate its potential value. 
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A.4. Appendix Figures 

 

 

Figure A.1 CAGT algorithm illustration by an example in two rounds. The CAGT algorithm 

is used to identify a maximum of 2 potent LIs amongst 9 candidate LIs in two rounds A & B. Note 

that the “Cat” icon represents lookup from the CAGT catalog in order to find (𝑠, 𝑤) for a given 

|𝑔| number of LIs with between 𝑙 and ℎ potent LIs as illustrated with examples in C. (A) The 

CAGT model is initiated with a single node that includes all LIs, and a range for the number of 

potent LIs to be identified. In Step1, a catalog lookup is made using (9, 0, 2) tuple which returns 

(3, 8) indicating that CAGT requires a maximum of 8 rounds, and 3 LIs should be picked for the 

next round R1. In Step2, the individual follows the LIs 1, 2, and 3 simultaneously and achieves the 

target health outcome indicating that at least one LI amongst these three are potent. In Step3, the 

CAGT model is updated by (a) splitting the node g1 into two nodes and revising the CAGT model 
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using Table A.1 The revised CAGT model M1 at the end of this step has two leaf nodes for two 

disjoint sets of LIs, each with different limits on the number of potent LIs in them. (B) In Step1, 

each leaf node of the M1 model is examined to identify the best leaf node to pick the LIs from, for 

the next round. For g2, a catalog lookup is performed using the (3,1,2) tuple which returns (2,3) 

indicating that 2 LIs should be used for the next round R2 if the LIs are picked from g2. Next the 

alternative updated models for potential responses to these LIs are illustrated below g2 (and 

similarly for g3). For each leaf node of the alternative models, a catalog lookup is performed to 

identify the total max number of rounds needed for the model and the maximum is identified. In 

the illustrated example, node g3 is found to be better for picking the next LIs from since to max 

total rounds that CAGT will require is less, compared the case where g2 is used. The Step2 and 

Step3 are followed similar to the first round leading into discovery of two LIs (8 and 9) that are 

determined to be impotent. This is due to the fact that in g3, there maximum number of potent LIs 

is 1, therefore when the response r2 to R2=4,5,6,7 is 1, the remaining LIs in g3 must be impotent. 
 

 

 

Figure A.2 Lifestyle Optimization By Spatial Inference Vertex Cover (SPIV). We adopted the 

asymptotically optimal two-stage group testing method called SPIV for lifestyle optimization. 

First, LIs are assigned to LI groups. Second, the LIs in each group are followed simultaneously by 

the individual. Third, the responses of the individual to LI groups (based on their symptoms) are 

used to resolve/identify the potency of each LI. In this step, (a) the LIs that were assigned to a 

group with no response are determined to be impotent, and (b) an LI is determined to be potent if 

all other LIs in that group are impotent while the individual had a positive response to the 

corresponding group. Fourth, the remining LIs with unknown potencies are followed 1-by-1, until 

all potencies are fully resolved. 
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