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Geographic pair matching in large-scale
cluster randomized trials

Benjamin F. Arnold 1,2 , Francois Rerolle1, Christine Tedijanto1,
SammyM. Njenga3, Mahbubur Rahman 4, Ayse Ercumen5, AndrewMertens 6,
Amy J. Pickering 7,8, Audrie Lin 9, Charles D. Arnold10, Kishor Das 11,
Christine P. Stewart 10, Clair Null12, Stephen P. Luby 13, John M. Colford Jr6,
Alan E. Hubbard 14 & Jade Benjamin-Chung 8,15

Cluster randomized trials are often used to study large-scale public health
interventions. In large trials, even small improvements in statistical efficiency
can have profound impacts on the required sample size and cost. Location
integrates many socio-demographic and environmental characteristics into a
single, readily available feature. Here we show that pair matching by geo-
graphic location leads to substantial gains in statistical efficiency for 14 child
health outcomes that span growth, development, and infectious disease
through a re-analysis of two large-scale trials of nutritional and environmental
interventions in Bangladesh and Kenya. Relative efficiencies from pair
matching are ≥1.1 for all outcomes and regularly exceed 2.0, meaning an
unmatched trial would need to enroll at least twice asmany clusters to achieve
the same level of precision as the geographically pair matched design. We also
show that geographically pairmatched designs enable estimation of fine-scale,
spatially varying effect heterogeneity under minimal assumptions. Our results
demonstrate broad, substantial benefits of geographic pair matching in large-
scale, cluster randomized trials.

In cluster randomized trials, investigators randomly allocate groups of
individuals to receive an intervention that manipulates the physical or
social environment, or cannot be delivered to individuals1. Cluster
randomized trials are especially common in studies of infectious or
contagious outcomes, where estimating the effect of an intervention
deployed to groups of individuals is paramount2. The number of
cluster randomized trials indexed in PubMed has increased almost
exponentially from 12 in the year 2000 to 465 in 2022 (Supplementary

Fig. 1). Many of the early cluster randomized trials were small, rando-
mizing fewer than 30 units3, but in recent years many large-scale trials
have enrolled hundreds and even thousands of clusters4–9. Large-scale
cluster-randomized trials have become increasingly common in the
Global South to study real-world (pragmatic) interventions with a goal
toward improved generalizability in diverse populations2. Large trials
are often expensive, so methods to improve their efficiency or gain
additional insights from them can have an important impact on their

Received: 29 April 2023

Accepted: 17 January 2024

Check for updates

1Francis I. Proctor Foundation, University of California, San Francisco, CA, USA. 2Department of Ophthalmology, University of California, San Francisco, CA,
USA. 3Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya. 4Environmental Interventions
Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh. 5Department of Forestry and Environmental Resources, North Carolina State University,
Raleigh, NC, USA. 6Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA. 7Department of Civil and Environmental
Engineering, University of California, Berkeley, CA, USA. 8Chan Zuckerberg Biohub, San Francisco, CA, USA. 9Department of Biobehavioral Health, Penn-
sylvania State University, University Park, PA, USA. 10Department of Nutrition, University of California, Davis, CA, USA. 11CURAM, SFI Research Centre for
Medical Devices, University of Galway, Galway, Ireland. 12Mathematica, Washington, DC, USA. 13Infectious diseases and Geographic Medicine, Stanford
University, Stanford, CA, USA. 14Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA. 15Department of Epidemiology
and Population Health, Stanford University, CA, USA. e-mail: ben.arnold@ucsf.edu

Nature Communications |         (2024) 15:1069 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-6105-7295
http://orcid.org/0000-0001-6105-7295
http://orcid.org/0000-0001-6105-7295
http://orcid.org/0000-0001-6105-7295
http://orcid.org/0000-0001-6105-7295
http://orcid.org/0000-0003-0520-2683
http://orcid.org/0000-0003-0520-2683
http://orcid.org/0000-0003-0520-2683
http://orcid.org/0000-0003-0520-2683
http://orcid.org/0000-0003-0520-2683
http://orcid.org/0000-0002-1050-6721
http://orcid.org/0000-0002-1050-6721
http://orcid.org/0000-0002-1050-6721
http://orcid.org/0000-0002-1050-6721
http://orcid.org/0000-0002-1050-6721
http://orcid.org/0000-0001-6193-2221
http://orcid.org/0000-0001-6193-2221
http://orcid.org/0000-0001-6193-2221
http://orcid.org/0000-0001-6193-2221
http://orcid.org/0000-0001-6193-2221
http://orcid.org/0000-0002-3877-3469
http://orcid.org/0000-0002-3877-3469
http://orcid.org/0000-0002-3877-3469
http://orcid.org/0000-0002-3877-3469
http://orcid.org/0000-0002-3877-3469
http://orcid.org/0000-0002-1137-9058
http://orcid.org/0000-0002-1137-9058
http://orcid.org/0000-0002-1137-9058
http://orcid.org/0000-0002-1137-9058
http://orcid.org/0000-0002-1137-9058
http://orcid.org/0000-0003-4575-8571
http://orcid.org/0000-0003-4575-8571
http://orcid.org/0000-0003-4575-8571
http://orcid.org/0000-0003-4575-8571
http://orcid.org/0000-0003-4575-8571
http://orcid.org/0000-0001-5385-899X
http://orcid.org/0000-0001-5385-899X
http://orcid.org/0000-0001-5385-899X
http://orcid.org/0000-0001-5385-899X
http://orcid.org/0000-0001-5385-899X
http://orcid.org/0000-0002-3769-0127
http://orcid.org/0000-0002-3769-0127
http://orcid.org/0000-0002-3769-0127
http://orcid.org/0000-0002-3769-0127
http://orcid.org/0000-0002-3769-0127
http://orcid.org/0000-0003-3631-3132
http://orcid.org/0000-0003-3631-3132
http://orcid.org/0000-0003-3631-3132
http://orcid.org/0000-0003-3631-3132
http://orcid.org/0000-0003-3631-3132
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45152-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45152-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45152-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45152-y&domain=pdf
mailto:ben.arnold@ucsf.edu


value. Here, we assess geographic pairmatching as a logistically simple
design strategywith the potential to increase the value of large cluster-
randomized trials through improved efficiency (decreased sample
size) and through unique insights from spatially explicit analyses of
effect heterogeneity under minimal assumptions.

Random allocation within strata or pair matched clusters can
improve statistical efficiency if the variable(s) used to stratify ormatch
are strongly correlated with the outcome and the stratification or
matching variables are used in the analysis3. Restricted randomization
is another strategy sometimes used in trials to ensure balance on
baseline covariates, but since the restricted randomization process is
generally ignored in the analysis it is unlikely to improve statistical
efficiency3. Pair matching is an extreme form of stratification whereby
investigators first create pairs of clusters that are similar by some
measure, such as the baseline outcome, and then randomly allocate
one cluster to receive an intervention and the other to serve as a
control. Themain benefits of pair matching are that it ensures balance
on characteristics used to match and that it can increase statistical
power if trial outcomes are highly correlatedwithinmatched pairs and
the analysis accounts for the matched design.

In large, cluster randomized trials, the decision of whether to pair
match or stratify the randomization can have profound consequences
for the conduct, power, and cost of the trial. Yet, there are mixed
recommendations about pairmatching in themethods literature. Early
methodologic studies generally recommended against pair matching
on the basis of analytic drawbacks and loss of statistical power through
fewer degrees of freedom in the analysis, which can be an issue in small
trials with fewer than 20 clusters10–13. Later methodologic contribu-
tions drew on empirical examples from economic outcomes in Mex-
ico’s Seguro Popular public insurance program, which used a large
cluster-randomized, pair matched design (74 matched pairs), and
argued strongly for use of baseline characteristics to pair match ran-
domization based on considerations of statistical efficiency and
robustness to unexpected events, such as co-interventions or
epidemics14–16.

A major logistical concern for pair matching in large-scale trials is
the availability of baseline information used to pair match at the time
of randomization2. Any potential savings through reduced sample size
due topairmatching couldbeoffset by costs imposedbyobtaining the
information used to match. In large-scale trials, enrollment and base-
line measurements could require months or even years to complete,
and it is often impractical to delay randomization and treatment until
the relevant information is available to match. Even if done, gains in
statistical efficiency are not guaranteed from pair matching. For
example, members of our team conducted a cluster randomized trial
of householdwater treatment in rural Bolivia in which 22 communities
were pair matched by the baseline incidence of the primary outcome,
diarrhea17, only to find afterward that baseline incidence was uncor-
related with incidence during the trial (and thus would not have
improved efficiency)18.

Geographic location is one characteristic, known in advance, that
can be used to pairmatch and randomize clusters in real-time, without
the need to census the entire study population before randomization.
Location integrates many complex environmental and socio-
demographic characteristics that often play a central role in human
health and wellbeing19, so pair matching by location could balance
myriad population characteristics, many that are unknown or
unmeasurable. As field teams progress through enrollment, geo-
graphically proximate clusters can be paired and randomized. If a trial
uses rolling enrollment with geographic pair matched randomization,
the design also pair matches on calendar time — an important con-
sideration for seasonally varying outcomes or interventions. Geo-
graphic pair matching ensures that intervention and control groups
are evenly balanced over a study region, which means that any inde-
pendent programs or policy changes that could influence a portion of

the study population defined by geography are evenly balanced
between groups — one such co-intervention overlapped one of the
trials we study here20. Despite the potential value of geographic pair
matching for cluster randomized trials, to our knowledge there have
been no studies of its potential cost or benefit in the context of large-
scale epidemiologic field trials.

Here, we assessed the potential benefit of geographic pair
matching in cluster randomized trials, using empirical results from two
trials of improved nutrition and WASH (water, sanitation, and hand-
washing) interventions in Bangladesh and Kenya: the WASH Benefits
study4,5,21. The trials were large in scale ( > 700 clusters each), used
geographic pair matching in the design, and measured a broad set of
health and development outcomes among children born into study
compounds. Our main objective was to assess the effects of geo-
graphic pair matching on statistical efficiency across 14 outcomes
spanning child growth, infectious disease, and cognitive development.
We compared efficiency gains from geographic pair matching with
other randomization strategies and studied key drivers of efficiency
gains with respect to outcome prevalence, outcome clustering, and
the trials’ spatial scale to provide insight into the design of future large-
scale trials. Additionally, we illustrate how geographic pair matching
enables estimation of effect heterogeneity by geographically con-
tinuous modifiers under minimal assumptions, which can be used to
extrapolate trial effects to adjacent populations or help inform tar-
geting of future health interventions.

Results
WASH Benefits study design, study population, and setting
The WASH Benefits study included two cluster-randomized trials
conducted between 2012-2016 in Bangladesh and Kenya that enrolled
pregnant mothers and their newborn children4,5,21. Study populations
were rural and selected to be representative of areas of each country
with high burdens of child growth faltering and diarrhea (Fig. 1a).
Between 8-12 geographically proximate household compounds with
pregnantmothers were grouped into clusters, and 8 (Bangladesh) or 9
(Kenya) contiguous clusters were grouped into blocks for randomi-
zation. In each matched block, two clusters were randomized to con-
trol, and six clusters were randomized to different interventions
(Fig. 1b). The Kenya trial included one additional cluster in each block
for a passive control that included no visits beyond measurement
(Methods). Interventions included household improvements for
chlorine-based water treatment (W), compound-level sanitation (S),
household handwashing with soap (H) or their combination (WSH).
Additional groups received a nutritional intervention (N) or a com-
bined package of all interventions (WSH+N, details in Methods).
Newborn children were followed for two years, with outcomes mea-
sured at approximate ages 12 and 24 months.

The trials technically matched 8-tuples but for clarity of exposi-
tion in the present analysis, we limited the study population to control
and nutritional intervention clusters (N, WSH+N), and pooled out-
comes within each group to create a simplified, balanced design with
which to focus on the methodologic aspects of geographic pair
matching (Fig. 1c). The nutritional intervention promoted exclusive
breastfeeding through age six months and continued breastfeeding
through age 24 months plus complementary feeding practices and,
from ages 6-24 months, a daily small-quantity lipid based nutrient
supplement (SQ-LNS) that included micro- and macronutrients. In
Bangladesh, this included 90 matched pairs (360 clusters) and in
Kenya this included72matchedpairs (288 clusters).We included in the
analysis 14previouslypublished endpoints fromthe trials that spanned
child growth4,5, child development22,23 and infectious disease4,5,24–26 and
captured a broad variety of outcome types that might be measured in
large-scale field trials (Supplementary Tables 1, 2). Sample sizes were
similar within pairs in Bangladesh (Supplementary Fig. 2) and Kenya
(Supplementary Fig. 3), with slightly more variability in Kenya.
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Efficiency gains resulting from geographic pair matching
A common parameter of interest in a trial is the mean difference
between the intervention and control groups, which is often called the
Average Treatment Effect (ATE). The relative efficiency of a pair mat-
ched design compared to an unmatched design can be defined as the
ratio of the variances of the ATE of the unmatched to pair matched
design. Ignoring pairs in the analysis of a pair matched design is an
unbiased estimate of the variance under an unmatched design15. We
could therefore estimate the observed relative efficiency by compar-
ing the variance of the unmatched versus pair matched analyses

(Methods). We additionally approximated relative efficiency gains
from geographic pair matching using outcome correlation between
matched pairs. In its simplest form, relative efficiency reduces to a
function of the outcome correlation betweenmatched pairs (details in
Methods)15,27: Ref f = 1� rð Þ�1, where r is the correlation between mat-
ched pairs. For r = 0.5, the predicted relative efficiency is 2, suggesting
that an unmatched trial would need to enroll twice asmany clusters as
a pair matched trial to achieve the same level of precision. We esti-
mated mean outcomes at the cluster level, and then estimated the
correlation between cluster-level outcomes within matched pairs,

a

b

c

90 pair-matched

units for analysis

180 clusters
N observations:

LAZ          1,103
EASQ-C   1,099
Diarrhea   4,022
Ascaris     1,530

Control Nutrition

180 clusters
N observations:

LAZ          1,158
EASQ-C   1,094
Diarrhea   4,226
Ascaris     1,796

Nutrition+WSH

Control

90 blocks of 8 
geographically
pair-matched
clusters 
randomized

other 
interventions

Nutrition

Control

b

Control

Control
Nutrition

Nutrition+WSH
other 

interventions

89 blocks of 9 
geographically
pair-matched
clusters randomized

72 pair-matched

units for analysis

144 clusters
N observations:

LAZ          1,378
EASQ-C   1,264
Diarrhea   2,881
Ascaris     2,075

Control Nutrition

144 clusters
N observations:

LAZ          1,350
EASQ-C   1,264
Diarrhea   2,895
Ascaris     2,085

b

Bangladesh Kenya

Fig. 1 | Overview of geographically pair matched designs in the WASH Benefits
Bangladesh and Kenya trials. a Large-scale cluster randomized trials in Bangla-
desh (n = 720 clusters) and Kenya (n = 702 clusters). Points indicate study clusters,
with subdistricts and panel b insets outlined. b Clusters were geographically pair
matched in blocks of 8 (Bangladesh) or 9 (Kenya) and then randomized. Children in
the control and nutritional intervention clusters were included in the present
analyses. c Sample sizes included in analyses for four representative outcomes,

length-for-age z (LAZ), verbal communication scores (EASQ-C), diarrhea and
Ascaris sp. infection. The Kenya trial was restricted from 89 to 72 blocks with a
balanced set of control (2) and nutrition (2) clusters. Supplementary Information
Tables 1 and 2 include sample sizes for all outcomes. Open source data from
OpenStreetMapwith rendering fromCARTOusingR’s leafletpackage.Createdwith
notebook https://osf.io/bzrpk.
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noting that observed outcomes reflect correlation (if any) induced by
matching as well as the treatment effect, whichmay be heterogeneous
across pairs.

Geographic pair matching led to pair-wise outcome correlations
that ranged from0.15 to 0.65 in Bangladesh and 0.05 to 0.70 in Kenya,
with corresponding relative efficiency gains that were substantial,
ranging from 1.1 to 3.3 (Fig. 2a). Outcome rank and magnitude of
pairwise correlation differed between countries. In Bangladesh, child
growth outcomes had high pair-wise correlation and child develop-
ment outcomes much lower correlations, while the reverse was gen-
erally observed inKenya. Inboth countries, particularly large efficiency
gains were observed for Ascaris sp. and Giardia sp. infections and
length-for-age z scores.

Observed efficiency gains that compared the variance of the pair
matched estimator with a difference in means estimator that ignored
pair matching were very close, albeit slightly larger, than gains pre-
dicted based on weighted correlation of pair-wise outcomes (Fig. 2b),
suggesting that the approximate relationship between correlation and
relative efficiency worked well in these trials.

Correlations that weighted pairs by their sample size were as high
or higher than unweighted estimates, sometimes substantially higher
in the Kenya trial (Supplementary Fig. 4a), consistent with a previous
analysis of economic outcomes15. Unlike the close relationship
between observed and predicted relative efficiency using weighted
correlation (Fig. 2b), observed relative efficiency gains were generally
larger than predicted based on unweighted correlation (Supplemen-
tary Fig. 4b). This result reinforces the increased efficiency of analyses
that weight by cluster size evenwhen cluster sizes are relatively similar
and independent of the outcome.

Outcome characteristics and efficiency gains from geographic
pair matching
Given the observed differences in efficiency gains between outcomes
and countries, we sought to identify underlying features of the trials or
outcomes that could help explain the observed differences. We
focused on three features related to the spatial aggregation and var-
iation in outcomes: outcome intra-cluster correlation (ICC), outcome
spatial autocorrelation measured by Moran’s I, and outcome pre-
valence for binary, infectious disease outcomes.We estimated the ICC,
Moran’s I, and prevalence using only control group clusters to avoid
the potential influence of intervention.

There was a positive relationship between efficiency gains and
outcome ICC, spatial autocorrelation, and outcome prevalence (Sup-
plementary Fig. 5). The results help illustrate that spatial variation in
the outcome underlies efficiency gains achieved through geographic
pair matching, but substantial variation in the relationships suggest
that there are unique features of geography that contribute to effi-
ciency gains that these summary statistics fail to capture.

Trial size and efficiency gains from geographic pair matching
Trials that enroll clusters over larger geographies might include
more variation in outcomes through inclusion of more diverse
populations or environmental characteristics. If true, we reasoned
that pair-wise outcome correlation, and thus relative efficiency gains,
would be higher for trials with larger geographic footprints. To study
the effect of trial size, we conducted a resampling study that sampled
with replacement geographically proximate matched pairs for trial
sizes ranging from 10 to the maximum number of pairs in each
country, 90 in Bangladesh, 72 in Kenya. The resampling approach
held cluster sizes fixed at their actual size, so resampled trials varied
in size according to the number of matched pairs. For each trial size,
we estimated the mean pair-wise outcome correlation and corre-
sponding relative efficiency across replicates. The specific relation-
ships estimated through the approach are empirical and particular to
each outcome and trial.

Relative efficiencies > 1wereobserved for nearly every outcome at
any trial size, even as small as 10 geographically contiguous matched
pairs (Fig. 3, with underlying correlation and uncertainty in Supple-
mentary Figs. 6, 7). Study clusters were separated by ≥1 km to prevent
spillover effects, so the number of proximate matched pairs roughly
corresponds with the maximum distance between pairs in km in both
trials, as a measure of the simulated trials’ geographic footprint
(Supplementary Fig. 8). Outcomes with greatest gains in relative effi-
ciency at larger trial sizes were those with greater between cluster
variance and spatial autocorrelation. For example, in Bangladesh out-
comes with highest gains in relative efficiency had high ICCs: Ascaris
sp. (ICC =0.05), Giardia sp. (0.07), length-for-age z (0.06), weight-for-
age z (0.07) and Trichuris sp. (0.05) and similarly high values of Mor-
an’s I (Supplementary Table 1). Patterns were similar for Kenya (Sup-
plementary Table 2) and reinforce the positive relationship between
efficiency gains and between-cluster variability and spatial auto-
correlation (Supplementary Fig. 5). Given total variance is fixed, the
results suggest more effective geographic matches capture a greater
degree of outcome variation between clusters when there is greater
between-cluster variance and spatial autocorrelation in the outcome.

Geographic pairmatching versus stratification or pairmatching
on primary outcomes
Geographic pair matched randomization results in a very fine stratifi-
cation bygeography. An intermediate design strategy, often favored in
guidance on the design of cluster randomized trials3,11,12, is to stratify
randomization by geographic areas such as district or subdistrict, with
the rationale that the stratification would still balance groups by geo-
graphic characteristics but would use fewer degrees of freedom and
allow for greater flexibility in the analysis. We re-analyzed the trials,
stratifying the analysis by subdistrict-level administrative units in each
country— 19 zillas in Bangladesh, and 10 sub-counties inKenya (shown
in Fig. 1a). This alternate analysis mimics a design with stratified ran-
domization, albeit optimistically since pair matching ensures a more
even spatial distribution of control and intervention clusters than
would be expected by chance under unrestricted randomization
within subdistrict strata. We compared the variance of differences
between intervention and control groups in the stratified analysis with
the unstratified analysis to estimate relative efficiency.

The subdistrict stratified analysis improved efficiency for most
outcomes compared to an unadjusted analysis, but for nearly every
outcome the pair matched estimator had the lowest variance (highest
relative efficiency) — in many cases, the subdistrict stratified analysis
was substantially less efficient comparedwith the pairmatched analysis
(Fig. 4). For five outcomes in Bangladesh, all efficiency gains were lost
with subdistrict stratification. These results show that fine stratification
by geography obtained through pair matching has potential to further
improve efficiency compared with a design that stratifies on small
administrative units, which implies there is substantial outcome varia-
tion at spatial scales below subdistrict. To further interrogate this
result, we estimated spatial outcome correlation by distance using a
universal kriging model with a semiparametric smooth of control
clustermeans (Methods). Spatial outcome correlation fell to zero by 10-
20 km for nearly all outcomes (Supplementary Figs. 9, 10), demon-
strating that spatial correlation was generally below subdistrict scale.

Another alternative randomization strategy is to pair match clus-
ters using baseline measures of the primary outcome3. The rationale is
that a baseline measure will likely be correlated with the primary out-
come and would thus improve efficiency. If pair matching by a baseline
covariate results in perfect balance in the covariate between groups,
then the within-pair outcome correlation can be approximated by the
squared correlation between the covariate and the outcome
(Methods)10. We used this relationship to approximate the relative
efficiency that could be obtained had each trial pair matched by mean
length-for-age z, a primary outcome. The estimates are optimistic since
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they rely on two strong assumptions: (i) correlation between length-for-
age z and the other outcomesmeasured contemporaneously at the end
of the trial is the same as the correlation between each cluster’s mean
baseline length-for-age z and other outcomes measured 2 years later
and (ii) perfect matching on length-for-age z.

We estimated that had the trials pair matched exactly on cluster-
level mean length-for-age z, there would be large efficiency gains for
weight-for-age z (highly correlated with length-for-age z) but there
would have been no efficiency gains for more than half of the out-
comeswe studied. Comparedwith relative efficiency expected under a

length−for−age zweight−for−age z
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head circumference z
EASQ communication z
EASQ gross motor z
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CDI comprehension z
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Trichuris sp.
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Fig. 2 | Relative efficiency of geographic pair matching compared to an
unmatched design in the Bangladesh and KenyaWASH Benefits trials. a Paired
outcome correlation across geographically matched pairs (n = 90 in Bangladesh,
n = 72 in Kenya), translated into predicted relative efficiency for 14 child develop-
ment, child growth, and infectious disease outcomes. Dashed lines show the (1-r)−1

function, the predicted relationship between pair-wise correlation (r) and relative
efficiency. b Observed relative efficiency of a the non-parametric, pair matched

estimator versus gains predicted based on the paired outcome correlation in panel
a. The observed relative efficiency used an unmatched analysis as the basis for
comparison (Methods). A solid line marks the 1:1 axis. Correlation estimates based
on outcomes weighted by sample sizes of each pair. MacArthur-Bates Commu-
nicative Development Inventory (CDI) comprehension and expression were only
measured in the Bangladesh trial. Created with notebooks https://osf.io/pdver and
https://osf.io/d2x3b.
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pair matched design using length-for-age z to match, we found that
geographic pair matching led to substantially higher efficiency gains
for all but one outcome (Supplementary Fig. 11). This result suggests
that if trials wish to optimize their design around a single outcomeor a
small number of highly correlated outcomes then pair matching by
that outcome at baseline could be superior to geographic pair
matching, but that geographic pair matching leads to far broader
efficiency gains across diverse outcomes.

Estimates of spatially varying effect heterogeneity
A unique feature of pair matched cluster randomized trials is that each
pair provides an estimate, albeit noisy, of the average treatment

effect15. In geographic pair matched designs, pair-level effects are
georeferenced by their location, enabling non-parametric or semi-
parametric summaries of spatially varying heterogeneity in treatment
effects that would not be possible without more elaborate, parametric
modeling. To illustrate the potential utility of this type of analysis in
geographically pair matched trials, we chose one illustrative outcome
in each trial where the nutrition intervention led to lower levels of
infection and where there was spatial heterogeneity in control group
outcomes — diarrhea in Bangladesh4 and Ascaris sp. infection in
Kenya26. These were not pre-specified analyses, but instead are inten-
ded to demonstrate the methodology. We used a universal kriging
approach to spatially interpolate pair-level average treatment effects.
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Fig. 3 | Relative efficiency of geographic pair matching across resampled trials
of varying size. a Relative efficiency of geographic pair matching compared with
an unmatched design by number of geographically proximatematched pairs in the
Bangladesh trial. Lines represent mean relative efficiency over 1000 bootstrap
resampled subsets of geographically proximate matched pairs in samples ranging
from 10 to 90 pairs. Outcome labels in each panel are ordered and colored by

relative efficiency with 90 pairs.b Similar estimates ofmean relative efficiency over
1000bootstrap resampled subsets of different sizes in theKenya trial, ranging from
subsamples of 10 to 72 pairs. MacArthur-Bates Communicative Development
Inventory (CDI) comprehension and expression were only measured in the Ban-
gladesh trial. Created with notebook https://osf.io/n276c.
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The model makes no assumptions except for smoothness in the
treatment effects across geography and spatial outcome correlation
following a Matérn function (Methods). From the geostatistical model
fit, we simulated predictions at each location to estimate an approx-
imate posterior probability of treatment benefit throughout each
study region — a measure that combines the magnitude and uncer-
tainty of predicted treatment effects.

Diarrhea prevalence varied over the Bangladesh study region
(Fig. 5a), with spatially varying average treatment effects that were
larger in regions with higher prevalence (Fig. 5b). Posterior prob-
abilities of a nutrition benefit showed highest probability in the
northeastern part of the study region (Fig. 5c). Ascaris sp. infection in
control clusterswas spatially heterogeneous in theKenya trial (Fig. 5d),
but there was minimal heterogeneity in average treatment effects
(Fig. 5e) or posterior probabilities of a treatment benefit (Fig. 5f) which
suggests a more homogeneous effect throughout the study region.

A natural extension of the previous analyses in pair matched
designs is to examine heterogeneity in pair-level average treatment
effects by spatially varying covariates. In a pair matched design, pair-
level conditional average treatment effects can be examined over
continuously varying effect modifiers. In principle, geo-located pair-
level differences can be spatially joined to any continuous surface such
as environmental covariates measured through remote sensing or
spatially modeled sociodemographic layers. Population remoteness
from urban areas is one such potential effect modifier, since

remoteness could influence both exposure to environmentally medi-
ated pathogens and access to treatment once infected.We joined pair-
level estimates to 1 km gridded surfaces of modeled travel time to
cities in 201528 — in Bangladesh, we estimated travel time to Dhaka
using the underlying friction surface29 because Bangladesh’s dense
settlement pattern meant there was almost no variation in the pre-
viously generated travel time to cities layer. We used the same out-
comes as the previous section to illustrate the approach — diarrhea in
Bangladesh and Ascaris sp. in Kenya. Once pair-level treatment effects
were spatially joined to continuous measures of population remote-
ness, we used locally weighted regression to examine the relationship
between remoteness and the effects of the nutrition intervention in
each trial.

There was substantial variation in pair-level differences in Ban-
gladesh, but non-parametric, locally weighted regression fits show
higher diarrhea prevalence and larger reductions in the nutrition
group in pairs further from Dhaka (Fig. 6). In Kenya, Ascaris sp. pre-
valence was lower in more remote clusters, and average treatment
effects were slightly larger among pairs at intermediate distances of
10-20minutes from the nearest city, albeit substantial variation in pair-
level differences (Supplementary Fig. 12).

Discussion
Across a broad set of child health outcomes measured in large-scale
cluster randomized trials in Bangladesh and Kenya, we found that
geographic pair matching led to substantial improvements in statis-
tical efficiency. Of 26 outcomes assessed across the two trials, all had
positive efficiency gains and 11 had relative efficiencies between 2.0
and 3.3, meaning an unmatched trial would have needed to enroll at
least 2 to 3 times as many clusters to achieve the same level of preci-
sion as the pair matched design. In large-scale biomedical field trials,
such differences in sample size are non-trivial. In the Bangladesh trial,
for example, that would have meant 180 to 270 additional clusters
(1440 to 2160 newborns) per group, a prohibitive increase in scale
based on logistics and costs. Additionally, we demonstrated how
geographic pair matched randomization enabled unique, semi-
parametric analyses of spatial effect heterogeneity not possible
through an unmatched design. Effect heterogeneity is typically rele-
gated to exploratory, secondary analyses of cluster randomized trials.
Yet, geographically explicit treatment effect estimates, even if
exploratory, can help inform subsequent scale-up of programs that
often follow large-scale trials of interventions that prove effective, as
has recently been recommended for the nutritional intervention stu-
died here30.

Our empirical results confirm the theoretical predictions for effi-
ciency gains through pair matched randomization and provide
insights into the unique benefits of matching by geography in large-
scale trials. The Bangladesh and Kenya trials’ pair matched design was
inspired by theoretical and empirical arguments developed in the
context of public policy and health economics, which showed large
benefits of pair matching (not by geography) in Mexico’s Seguro
Popular universal health insurance trial14–16. Near-universal increases in
statistical efficiency demonstrated herein show substantial gains from
geographic pair matching for child health outcomes where all but one
pair-wise correlations exceeded the “break-even” correlation for a
design with as few as 20 clusters, or 10 matched pairs (Supplementary
Fig. 4a)10. Unique to geographic pair matching, we showed that effi-
ciency gains scale with a trial’s geographic footprint, with higher levels
of outcome clustering (ICC, Moran’s I), and with higher outcome
prevalence (binary outcomes). These results suggest that geographic
pair matching capitalizes on spatial variation in underlying socio-
demographic and environmental conditions that ultimately influence
child growth, development, and infectious disease transmission. The
consistency of results across diverse outcomes from two trials in dif-
ferent populations suggests generalizability of the empirical findings.
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Fig. 4 | Relative efficiency of geographic pair matching and subdistrict strati-
fied estimators. a Estimates from the Bangladesh trial (90 matched pairs in 19
subdistricts) for 14 outcomes, sorted by the relative efficiency of the pair matched
estimator. b Estimates from the Kenya trial (72matched pairs in 10 subdistricts) for
12 outcomes, sorted by the relative efficiency of the pair matched estimator.
MacArthur-Bates Communicative Development Inventory (CDI) comprehension
and expression were onlymeasured in the Bangladesh trial. In both panels, relative
efficiency was estimated as the ratio of the variance between a non-parametric,
unmatched estimator and each alternative estimator. Created with notebooks
https://osf.io/89g7m and https://osf.io/d2x3b.
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Although we present results from only two settings, the observed,
spatial clustering of health determinants and outcomes in across
myriad populations19 suggests that large epidemiologic field trials with
spatially heterogeneous outcomes would likely benefit from geo-
graphic pair matching in the design.

Logistical considerations are magnified in large-scale trials, and
any added complexity in a trial’s design can make its logistics more
difficult, threatening its internal validity. Pair matching using geo-
graphic location has the key logistical advantage that it is immediately
available and requires no baseline measurements in the study popu-
lation. An additional benefit of geographic pair matching is that geo-
graphy alone captured variation across diverse child health outcomes
in the contexts we studied. For complex interventions, such as the
nutritional and environmental improvements delivered in the WASH
Benefits trials, there are often many outcomes of interest beyond the

trial’s primary endpoint. Geographic pair matching leads to much
broader and, in general, larger efficiency gains across outcomes
compared to gains expected under pairmatching by length-for-age z, a
primary outcome (Supplementary Fig. 11). Moreover, we found that
pair matched randomization using each cluster’s precise location led
to far larger efficiency gains for most outcomes than if the trials used
subdistrict stratification, which suggests stratified randomization,
evenwithin small administrative areas, leaves substantial power on the
table (Fig. 4).

Geographic pair matching was universally beneficial with respect
to efficiency gains in the outcomes we studied, but the magnitude of
efficiency gains is unlikely to be known at the design stage of the trial.
These analyses suggest that efficiency gains are more likely in larger
scale trials, and if information is known about outcome spatial het-
erogeneity (ICC, Moran’s I) then outcomes with more clustering are

Fig. 5 | Spatial heterogeneity of intervention effects in geographically pair
matched trials. a Spatially heterogeneity in diarrhea prevalence in the control
group in theWASHBenefits Bangladesh trial, visualized through universal outcome
kriging with a Matérn spatial correlation structure. b Spatially smoothed average
treatment effects (ATE) of matched-pair differences of diarrhea prevalence com-
paring nutrition and control clusters in the Bangladesh trial. c Posterior probability
that the nutrition intervention reduced diarrhea in Bangladesh, derived from the
geostatistical model used to smooth the ATE in panel b. d Spatial heterogeneity in
Ascaris sp. infection prevalence in the Kenya trial. e Spatially smoothed ATE of
matched-pair differences ofAscaris sp. prevalence comparing nutrition and control
clusters in the WASH Benefits Kenya trial. f Posterior probability that the nutrition

intervention reduced Ascaris sp. infection in Kenya, derived from the geostatistical
model used to smooth the ATE in panel e. Smoothed surfaces at 1 km resolution
were estimated using a geostatistical model with Matérn spatial covariance, trim-
med by study subdistrict boundaries and a 10 km buffer around matched pair
centroids. Insets of panels a, b, d and e show estimated parameters and Matérn
correlation function with distance between matched pairs, illustrating no spatial
correlation in the ATE for Ascaris sp. in Kenya. Points represent matched pair
centroids and lines demark subdistricts in the study regions (zillas in Bangladesh,
sub-counties in Kenya). In panels c and f, posterior probabilities were estimated
from 1,000 simulation replicates at each location, drawn from the geostatistical
model fits of the ATE (Methods) Created with notebook https://osf.io/j9r4k.
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more likely to benefit from geographic pair matching. Alternatively,
trials that use geographic pair matching could ignore potential effi-
ciency gains at the design stage for primary outcomes and use it as an
insurance strategy for bias and power. The broader benefits beyond
primary outcomes may be useful given that trials are rarely indepen-
dently powered for secondary outcomes. Indeed, both WASH Benefits
trials used geographic pair matching in the randomization, but their
sample size calculations for primary outcomes ignored pair matching
to be conservative, given this uncertainty21.

Semi-parametric analyses of spatial effect heterogeneity illu-
strated how geo-located, pair-level estimates of the ATE, albeit noisy
on their own, canbe smoothed to create a continuous treatment effect
surface and can be joined to any spatially continuous covariate to
assess effect heterogeneity using a simple, locallyweighted regression.
In principle, such analyses at fine spatial scales could be done without
geographic pair matching but would require fitting separate outcome
models for each group (intervention, control) and then taking the

difference between model fits to estimate the ATE — an approach that
would have more variability because of the joint uncertainty in the
separate outcome processes. An intermediate strategy that averages
cluster-level outcomes within well-defined geographic units (such as
subdistricts) wouldbepossible under simple randomization butwould
lose some of the very fine scale information that a continuously
smoothed ATE surface provides if there is variation within adminis-
trative areas, as there was in the case of diarrhea in Bangladesh
(Fig. 5b). Beyond population remoteness, we did not study mechan-
isms that underlie the observed spatial effect heterogeneity in Ban-
gladesh. Since geography integrates many environmental and
socioeconomic characteristics, themechanism likelymultifactorial but
such analytic extensions could provide useful information for future
intervention planning.

Our results identified situations where geographic pair matching
might be less beneficial. Paired outcome correlations estimated in
these trials would not favor geographic pair matching with fewer than

Fig. 6 | Heterogeneity in the effect of nutrition ondiarrhea prevalence by travel
time from Dhaka, Bangladesh. a Modeled travel time in minutes at 1 km2 reso-
lution between Dhaka (marked by a star) and the 90 WASH Benefits Bangladesh
matched pair centroids (white circles). Black lines mark subdistricts (zillas).
b Diarrhea prevalence in control clusters by travel time to Dhaka. The line repre-
sents a non-parametric locally weighted regression fit, and the shaded band its

approximate pointwise 95% confidence interval c Matched pair differences in
diarrhea prevalence (nutrition – control) by travel time to Dhaka. The line repre-
sents a non-parametric locally weighted regression fit, and the shaded band its
approximate pointwise 95% confidence interval. In panels b and c, points are
colored by the surface in panel a. Created with notebook https://osf.io/fmgex.
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10 pairs. Pair matching did not appreciably improve efficiency for
binary outcomes with prevalence below 5%, likely due to minimal
variation in the outcome (Supplementary Fig. 5c). Future studies could
assess whether geographic pair matching improves efficiency for rare
outcomes in trials with larger cluster sizes or more longitudinal mea-
surements within clusters, effectively providing more information to
estimate cluster-level means.

Future studies could also assess optimal distance between mat-
ched pairs, which should depend on spatial outcome correlation pat-
terns and the potential for spillover between clusters. Spatial outcome
correlation disappeared by 10–20 km for almost all outcomes studied
here (Supplementary Figs. 9 and 10), suggesting that geographically
close pairing ( ~ 1 km)was beneficial for efficiency gains. Matched pairs
separated by larger geographic distances might benefit less from pair
matching depending on the scale of geographic variation in the out-
come. As with unmatched cluster randomized trials, a key assumption
of matched pair trials is no interference (spillover) between matched
pairs15. Although clusters were relatively close in both trials, they were
separated by ≥1 km to prevent contamination between them and
empirical estimates in the original trials demonstrated an absence of
spillover effects on infectious disease, child growth, measures of
environmental contamination and behavioral outcomes4,5,31.

There are some caveats to these analyses. Cluster sizes were small
in both trials andwithin-pair sample sizes were generally well balanced
between groups by design. It is therefore unclear how well our results
would generalize to trials with larger clusters that have hundreds or
thousands of measurements or to trials with large between-group
differences in paired cluster sizes. Ensuring similar cluster sizes within
pairs has theoretical advantages in terms of bias in the non-parametric
estimator15, and validity of permutation tests inmatched-pair designs32

so should be preferred in matched designs whenever feasible. Similar
cluster sizeswithinpairs also leads to a balancednumber of individuals
in each group, which is more statistically efficient compared to an
imbalanced design. Another caveat is that all efficiency comparisons
focused on non-parametric, cluster-level estimators of the ATE.
Regression-based estimators that use individual-level responses with
appropriate variance corrections provide an alternative analysis
approach3,15, but since we used weighted estimators we would not
expect appreciable differences in variance estimates. The trials did not
have baseline outcomemeasurements as childrenwere not yet born so
we could not assess whether additional gains might be possible by
combining geographic pairmatched (or stratified) randomizationwith
additional regression adjustment for baseline outcomes. Additional
gains may be possible by controlling for residual outcome variation
not captured in thematchedor stratified randomization, but caremust
be taken in selection of adjustment covariates and the analysis meth-
ods add complexity compared with the unadjusted estimators used
here33. Additionally, we did not study the effect of geographic pair
matching onefficiencyof permutation tests34,35. Inferencebasedon the
paired t test and the permutation test is very similar for large sample
sizes anticipated in large-scale cluster randomized trials, which we
demonstrated for primary outcomes in both trials4,5, but it may be an
interesting topic for future studies. Finally, the enrollment and pair
matching of geographically proximate clusters occurred sequentially
over the course of a year, meaning that clusters were effectively pair
matched on geography and calendar time. This means that observed
spatial heterogeneity could also embed seasonal heterogeneity for
seasonally-varying outcomes, such as diarrhea in Bangladesh. Trials
that wish to separately study spatial heterogeneity and temporal het-
erogeneity would need to measure geographically pair matched clus-
ters in a more random order, rather than sequentially over a study
region.

When considering the generalizability of the findings, note that the
results arise from two community-based trials with a relatively large
number of pairs, small cluster sizes, and outcomes that were specific to

the rural Bangladesh and Kenya contexts. The results should not be
extrapolated to trials with fewer than 10 clusters where the relative
efficiency could be worse if geographic pair matching induces a weak
correlation in outcomes (r <0.11). Moreover, it is unclear whether
geographic pair matching of randomized units other than commu-
nities, such as healthcare centers, would obtain similar gains in effi-
ciency or could be used to study fine-scale spatial heterogeneity in
treatment effects as we have done here. Finally, the relationship
between efficiency gains and measures of intra-cluster correlation and
spatial autocorrelation could be different in trials with larger clusters—
a recent simulation study showed that increasing cluster sizemay play a
role achieving effectivematching evenwhen the ICC approaches zero36.

In conclusion, this empirical analysis of geographic pair matching
in large-scale trials of in rural Bangladesh and Kenya confirmed pre-
dictions based on statistical theory and demonstrated substantial,
universal gains in statistical efficiency across child health outcomes
that were often the equivalent of increasing the sample size by
2-3 times compared with an unmatched design. Geographically pair
matched designs enabled estimation of continuous effect surfaces and
effect heterogeneity by continuously varying spatial covariates with
almost no modeling assumptions — a valuable extension in large-scale
trials where inference at smaller geographic scales may be warranted.
Based on these substantial benefits with few logistical or analytical
costs, geographic pair matching should be considered in the design of
future large-scale, cluster randomized trials.

Methods
Inclusion and ethics
Trial protocols were reviewed and approved by ethical review com-
mittees at the International Centre for Diarrhoeal Disease Research,
Bangladesh (PR-11063), theKenyaMedicalResearch Institute (protocol
SSC-2271), University of California, Berkeley (protocols 2011-09-3652,
2011-09-3654), and Stanford University (protocols 23310, 25863). All
participants provided informed consent. Investigators from Bangla-
desh and Kenya led the trials in partnership with academic partners in
theUnited States and have continued to provide substantive input into
the design and interpretation of secondary analyses, including the
present study.

Study design
The WASH Benefits study protocol and primary outcome papers
include details of the design, rationale, and intervention
procedures4,5,21. The Bangladesh and Kenya trials shared overall
objectives and major design features, but were designed as separately
powered, replicated trials. In Bangladesh, field teams identified groups
of 8 pregnant mothers in their second trimester living geographically
close enough for a local health promoter to visit them regularly. This
formed a cluster, and randomizationwas at the cluster level to enable a
single health promoter to deliver a consistent intervention to all 8
pregnant mothers and their children. The field team traveled at least
1 km before starting a new cluster to prevent between-cluster spillover
effects31. Geographically proximate blocks of 8 clusters were pair
matched and randomized to a double-sized control group (2 clusters)
or one of 6 intervention groups, described below. The Bangladesh trial
included 90 blocks of 8 clusters, for a total of 720 clusters (Fig. 1a).

In Kenya, the design was almost identical to Bangladesh, but
clusters were slightly larger (12 pregnant mothers per cluster on
average) and geographically pair matched blocks included 9 clusters
rather than 8 to allow for a passive control group. In Kenya, the double-
sized control group included monthly mid-upper arm circumference
measurements and the passive control group included no visits to
assess whether visits alone influenced outcomes (there was no
difference)5. The Kenya trial included 89 blocks of up to 9 geo-
graphically pair matched clusters, but 21 blocks were incomplete so
the trial enrolled a total of 702 clusters (Fig. 1a).
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The six intervention groups included: household water treat-
ment (W), improved latrines for all households in intervention
compounds (S), improved handwashing facilities with soap at the
latrine and kitchen (H), improved nutrition for birth cohort children
(N), combined WSH and combined WSH +N. The improved nutrition
intervention included promotion of Infant and Young Child Feeding
recommendations such as exclusive breastfeeding through age
6 months and continued breastfeeding through age 24 months, plus
a daily Small Quantity Lipid Based Nutrient Supplement (SQ-LNS)
from ages 6 to 24 months. Interventions primarily focused on chil-
dren in the birth cohort and their household. Households were
located within multiple-household family compounds and the sani-
tation intervention improved latrines for the entire compound. For
all interventions, community health promotors who lived in study
communities delivered an in-depth behavior change program that
was developed over several years of pilot studies ahead of the main
trials.

Since our focus in this analysis was on design methodology and
statistical properties of geographically pair matched designs, we
restricted the analysis to clusters in the double-sized control group
and those that received the nutrition intervention (N, WSH+N). This
created a balanced design withinmatched pairs, with each geographic
pair including 4 clusters (Fig. 1c). All 90 blocks in the Bangladesh trial
were complete but in the Kenya trial we limited the analysis to 72 pair
matched blocks that were complete with respect to the 4 clusters of
interest. Clusters that received the nutrition intervention were ana-
lyzed as a single intervention group as there has been no evidence for
differences between the N and WSH+N group for any outcome we
included, with outcome-specific references provided in the following
section. Child sexwas not considered in the present analyses as all age-
eligible children were enrolled and analyzed in the trials, but sex has
been provided in individual level Source Data files.

Outcome measurements
The analysis included 14 previously published endpoints in the trials
(Supplementary Tables 1 and 2). We chose outcomes that were mea-
sured in the full birth cohort (not a substudy), included continuous and
binary measures, and represented a broad range of child health out-
comes measured in biomedical field trials (growth, development,
infectious diseases). The number ofmeasurements varied by outcome
due to slightly different measurement strategies for each.

Child length, weight, and head circumference measurements
were included from each trial’s final visit when children were
approximately 24 months old. Anthropometric measures were con-
verted into length-for-age z, weight-for-age z, weight-for-height z, and
head circumference z using the median of triplicate measurements,
child’s age in days, and the 2006World Health Organization reference
standards4,5,37.

The trials used the Extended Ages and Stages Questionnaire
(EASQ) to measure gross motor, communication, and personal-social
skillswhen childrenwereapproximately 24months old. EASQscores in
the control group were normalized (mean 0, standard deviation 1) to
create z scores within 2-month age bands for the study population22,23.
The Bangladesh trial additionally measured language development
using a locally validated version of the MacArthur Bates Commu-
nicative Development Inventory (CDI) for verbal comprehension and
expression22.

Both trialsmeasured diarrhea using caregiver reported symptoms
when children were approximately 12 and 24 months old. Symptoms
were measured using a 7 day recall period and diarrhea was defined as
three or more loose or watery stools in 24h or a single stool with
blood4,5. The trials measured parasite infection in whole stool among
birth cohort children when they were approximately 24 months old
plus older children living in study compounds: in Kenya up to one
older child (ages 3–15 years) and in Bangladesh up to two older

children (ages 3–12 years), with preference given to older siblings liv-
ing in the birth cohort child’s household25,26. Stool specimens were
tested for soil transmitted helminth infections including: Ascaris lum-
bricoides, Trichuris trichiura, and hookworm (Ancylostoma duodenale,
Necator americanus) using the double-slide Kato-Katz technique. Stool
specimens were additionally tested for Giardia duodenalis infection
using qPCR in Bangladesh and ELISA in Kenya24,26.

Basic assumptions
Formal statistical assumptions of pair matched cluster randomized
trials have been defined15. In brief, we assume that treatment is ran-
domized at the cluster level and that potential outcomes of indivi-
duals within clusters do not depend on the treatment status of other
clusters, including matched pair clusters. The second assumption
(no contamination or spillover between clusters) is reasonable in this
context as clusters were separated by ≥1 km to prevent spillover, and
an absence of between-cluster spillover has been previously
demonstrated for several outcomes in the trials4,5,31. Finally, we
assume that clusters represent a random sample from the larger
population but all individuals within a cluster are observed. This
reflects the trials’ design since clusters consisted of all eligible
mothers and their newborn children and has been referred to as the
unit average treatment effect15.

Relative efficiency as a function of pair-wise outcome
correlation
We defined relative efficiency as the ratio of the variance of group
differences in a design with unrestricted randomization versus a
design withmatched pair randomization. For outcome Y0measured in
the control groupwith varianceσ2

0 and Y1measured in the intervention
group with variance σ2

1 , in an unmatched design Y0 and Y1 are inde-
pendent and so the variance of the difference is

σ2
U = σ2

1 + σ
2
0 ð1Þ

Pair matching can induce correlation between outcomes, such
that the variance of the difference is then

σ2
P = σ

2
1 + σ

2
0 � 2CovðY 1,Y0Þ: ð2Þ

Defining the pair-wise correlation as, r =CovðY 1,Y0Þ=ðσ1σ0Þ, the
variance of matched pair differences is

σ2
P = σ

2
1 + σ

2
0 � 2σ1σ0 � r: ð3Þ

If the variance is equal in the two groups, the unmatched variance
is 2σ2 and the matched pair variance is 2σ2ð1� rÞ, with relative effi-
ciency:

Ref f = σ2
U=σ

2
P = ð1� rÞ�1: ð4Þ

If variances are unequal in the two groups, Ref f = ð1� xÞ�1 where
x =2CovðY 1,Y0Þ=ðσ2

1 + σ
2
0Þ. Thus, relative efficiency scales with the

correlation between the paired outcomes. Note that this simple rela-
tionship holds under a model for the paired t test27, and for non-
parametric estimators of pair matched differences15. Furthermore, r
can represent the unweighted correlation or weighted correlation
using, as in this study, the number of individualsmeasured in each pair
as weights. Our primary analyses favored a weighted correlation since
it aligned much more closely with empirical efficiency gains (Fig. 2b,
Supplementary Fig. 4b).

To see the relationship between relative efficiency and trial sam-
ple size, let S be the sample standard deviation of cluster-level out-
comes withmU clusters enrolled in an unmatched design (σ2

U = S2=mU)
and mP clusters enrolled in a pair matched design (σ2

P = S
2=mP).
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Assume equal variance in the intervention and control group and set
the variances of the unmatched and pair matched designs equal:
2σ2

U =2σ2
Pð1� rÞ, 2 S2

mU
= 2 S2

mP
ð1� rÞ, and mU =mPð1� rÞ�1. The number

of clusters required in an unmatched design, mU, is thus the number
required in a pair matched design mP multiplied by the relative effi-
ciency Ref f = ð1� rÞ�1.

We estimated group means for control and nutritional interven-
tion groups within matched pairs (90 in Bangladesh, 72 in Kenya) and
then estimated aweighted correlationbetweenoutcomeswithweights
equal to the total number of children in the matched pair. To estimate
95% confidence intervals for weighted correlation of within-pair out-
comes and corresponding relative efficiency, we used a non-
parametric bootstrap resampling approach, resampling pairs with
replacement and 1000 iterations.

For labeling in figures, we also computed the “break-even” cor-
relation for different trial sizes—the minimum correlation in paired
outcomes matching must induce for the matched pair design to be
able to detect smaller differences compared with an unmatched
design10. We assumed 80% power and 5% Type I error in the calcula-
tion. For example, the break-even correlation for 10 pairs is r =0.11.

Relative efficiency estimates from pair matching on other
variables
Many trials might consider pair matching on a baseline covariate x,
such as a baseline measure of the primary outcome, to ensure bal-
ance and gain efficiency in the primary analysis. If the primary out-
come is denoted y, then under a perfectmatch between clusters on x,
the within-pair outcome correlation is equal to the squared correla-
tion between x and y10: ryy = ðrxyÞ2. We estimated the correlation in
pair level means in control clusters for all outcomes included in the
analysis.

To provide an estimate of the efficiency gains possible under pair
matching by the trials’ primary outcome, length-for-age z, we trans-
lated the correlation between length-for-age z score (x) and each
outcome (y) to an estimate of the within-pair outcome correlation
using the above relationship and then to relative efficiency compared
with an unmatched design: ð1� ryyÞ�1. The estimates of relative effi-
ciency are approximate and optimistic because they make two strong
assumptions: perfectmatching in cluster-levelmeans of length-for-age
z, and the correlation between length-for-age z and other outcomes
measured contemporaneously is the same as if we had access to true
baseline means in length-for-age z, measured two to three years in
the past.

Relative efficiency of pair matched and subdistrict stratified
estimators
We compared empirical variances of the ATE estimated in the trials
using different estimators: pair matched analysis, an unmatched ana-
lysis, and a subdistrict stratified analysis. Our parameter of interestwas
the mean difference in outcomes between children that received the
nutritional intervention, Y1, versus those that did not, Y0:
ψ= E Y 1 � Y0

� �
. Non-parametric estimators and their variance for pair

matched and unmatched designs follow those proposed by Imai and
colleagues15. Given a pair matched design, ignoring the pair matching
in the analysis provides an unbiased estimate of the variance under an
unmatched design15.

Formmatchedpairs, ck clusters inmatchedpair k, andnjk children
in cluster j and pair k, the sample ATE is:

ψM
ATE =

1
n

Xm

k = 1

Xck

j = 1

Xnjk

i= 1

ðY 1ijk � Y0ijkÞ: ð5Þ

A non-parametric, unbiased estimator is the weighted average of
pair-level differences in group means. The treatment assignment of

cluster j in matched pair k is Ajk (1 intervention, 0 control):

bψ
M
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1
Pm

k = 1wk
�
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wk
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j = 1njkAjk
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with weights defined as the number of children in the matched pair,
wk =

Pck
j = 1 njk . A conservative estimate of the variance is:

Var ψM
ATE

� �
=

m

m� 1ð Þn2
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In a study with a total of n children and c clusters, and nj children
in cluster j, we defined the unmatched ATE for potential outcomes of
child i in cluster j as:

ψU
ATE =

1
n

Xc

j = 1

Xnj

i= 1

Y 1ij � Y0ij

� �
: ð8Þ

The non-parametric estimator is:

bψ
U
ATE =

1
n

Xc

j = 1

Xnj

i= 1

AjY ij � 1� Aj

� �
Y ij

h i
ð9Þ

A conservative estimate of the variance is a function of variability
in weighted cluster level means:

Var ψU
ATE

� �
=
2c
n2 Var ewj � Y j1

� �
+Varðewj � Y j0Þ

h i
, ð10Þ

where Y ja =
Pnj

i= 1Y ija=nj for a=0,1.We usedweights equal to the cluster
size, ewj =nj .

As a final comparator, we considered a subdistrict stratified ATE,
defined as

ψS
ATE =

X
s
E Y jA= 1,S= sð Þ � E Y jA=0,S= sð Þ½ � � Pr S= sð Þ ð11Þ

for geographic subdistricts S that included 19 zillas in Bangladesh
(administrative level 3) and 10 sub-counties in Kenya (administrative
level 2). These are the smallest administrative levels recognized in each
country above the village level. We estimated this parameter using
weighted least squares regression of cluster level means on a
treatment indicator and subdistrict level indicators, with weights
equal to the number of children in each cluster. We used the variance
on the treatment coefficient in the model for estimates of relative
efficiency. As an internal consistency check, we confirmed that a
similar model, stratified on matched pair rather than subdistrict
(equivalent to a weighted, paired t test), provided identical point
estimates and highly similar variance to the nonparametric, pair
matched estimator.

For each outcome, we defined the observed relative efficiency as
the ratio of the variance estimated in the unmatched analysis to the
variance of the pair matched estimator or the subdistrict-adjusted
estimator. We then compared the observed relative efficiencies with
one-another, and with the relative efficiency predicted by weighted
correlation estimated using pair matched outcomes, as defined in the
previous section.
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Influence of trial size on efficiency gains through geographic
pair matching
To study the effect of trial size on relative efficiency gains through
geographic pair matching, we conducted a resampling analysis that
used a modified bootstrap to down sample the trial, using smaller,
geographically contiguous subsamples to represent smaller trials. We
identified subsamples of size s = 10,12,14, . . . ,m pairs in increments of 2
(m = 90 in Bangladesh, m = 72 in Kenya). Clusters were kept at their
observed sizes, and so the different subsampled trials varied in size
according to the number ofmatched pairs. For subsample of size s, we
randomly sampledwith replacement amatched pair and identified the
s � 1 geographically closest pairs. We estimated the weighted corre-
lation of pair matched outcomes for each randomly selected, geo-
graphically contiguous subsample, and the corresponding relative
efficiency using the relationship defined above, Ref f = ð1� rÞ�1. We
repeated the modified bootstrap resampling process 1000 times, and
summarized the mean relative efficiency and the maximum distance
between pairs (in km) across bootstrap replicates for each outcome
and subsample of size s.

Estimation of outcome intra-cluster correlation and spatial
clustering
Weexamined outcome intra-cluster correlations (ICC), defined as ratio
of between-cluster outcome variance to the total variance. A higher
ICC indicates higher outcome correlation within clusters. We fit an
intercept-only linear regression model on individual-level outcomes
that included a random effect for cluster. We estimated the ICC as the
between-cluster variance divided the total variance, and estimated its
95% confidence interval using a non-parametric bootstrap with 1000
iterations38. We characterized global spatial clustering in outcomes
using Moran’s I as a measure of spatial autocorrelation, using the
inverse-distance between pair centroids as weights39,40. Estimates of
the ICC and Moran’s I were restricted to control clusters only to avoid
the potential influence of intervention on each measure.

Estimation of spatially varying effect heterogeneity
We used universal kriging, a semi-parametric smoothing technique, to
spatially smooth pair-level effect estimates for one outcome in each
trial: diarrhea in Bangladesh and Ascaris sp. infection in Kenya. We
chose these two outcomes from the large list studied to demonstrate
the technique because both outcomes exhibited spatial heterogeneity
in underlying prevalence and were reduced by the nutrition interven-
tion in the trials.

The kriging model conditioned on the observed pair-level treat-
ment effects and allowed them to vary by longitude (x) and latitude (y):

E bψ
M
ATE jx,y

h i
=α +β1x +β2y+ S x,yð Þ: ð12Þ

The S(x,y) term allowed for spatial correlation in the outcomes
using a Gaussian process with Matérn covariance function with
smoothness ν and scale ρ parameters.We fit themodel withmaximum
likelihood41. The only assumptions of the approach are that the out-
come surface is smooth and the spatial outcome correlation follows
the Matérn function—thus, inference relies principally on the pair
matched randomization and not on the statistical model. To visualize
spatial heterogeneity in the underlying outcomes we fit the same
universal kriging model to pair-level control group means for all out-
comes included in the analysis.

Conditional on the geostatistical model parameter fit, we simu-
lated 1000predicted treatment effects at each location over a fine grid
of the study area41, within 10 km of matched pair centroids. At each
location, we used the proportion of 1000 simulated outcomes where
there was a reduction in prevalence due to intervention as an estimate
of the posterior probability of benefit PrðψATE <0jx,yÞ— a quantity that

combines the magnitude of effect and conveys uncertainty in the
predictions42.

Estimation of effect heterogeneity by travel time to cities
To demonstrate how geographic pair matching allows for non-
parametric assessment of effect heterogeneity by continuous, spa-
tially varying covariates, we extended the effect heterogeneity analyses
of diarrhea in Bangladesh and Ascaris sp. infection in Kenya. We con-
sidered travel time to cities as an example effectmodifier because of its
potential influence on access to treatment (antibiotics, anthelmintics)
or exposure to environmentally mediated pathogen transmission.

We joinedpair-level differences tomodeled surfaces of travel time
to cities in 2015 at 1 km2 grid cell resolution28. In Bangladesh, there was
almost no heterogeneity in modeled travel time to cities given rural
Bangladesh’s dense settlement pattern so we estimated travel time to
Dhaka using the underlying friction surface and a previously published
algorithm, also at 1 km2 resolution29. We joined the spatial layers to
mean prevalence in the control clusters and pair-level differences, and
then summarized the relationship between continuous travel time and
mean outcomes, along with approximate (t distribution) pointwise
standard errors, using a locally weighted regression with default
parameters in R43.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
De-identified data and replication files required to conduct the ana-
lyses are available through the Open Science Framework (https://osf.
io/cxb5e)44. Geographic location data from the trials required to make
maps and conduct spatial analyses are not publicly available to protect
participant confidentiality. Access to geolocation datamay be possible
upon reasonable request to the corresponding author (ben.arnol-
d@ucsf.edu) within ten years of publication, pending appropriate
human subjects review and approval for the use of de-identified par-
ticipant data (timeframe for initial response: weeks). Subdistrict
boundaries used inmaps and analyses were created by GADM (version
3.6, available for unrestricted use at www.gadm.org). The global fric-
tion layer and travel time to cities layer were created by the Malaria
Atlas Project and accessed through themalariaAtlas R package28,45. The
de-identified individual level data generated in this study are provided
in the Source Data file. Source data are provided in this paper.

Code availability
Computer code used to replicate the analyses is available through the
Open Science Framework (https://osf.io/cxb5e)44. Analyses used R
statistical software (version 4.3.2, 2023-10-31).
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