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ABSTRACT OF THE DISSERTATION 
 
 

Neural and Psychological Coordination in Social Communication and Interaction 

by  

Shannon Burns 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2020 

Professor Matthew D. Lieberman, Chair 

 
 
Dynamic, naturalistic study of social interactions in humans is a small but growing literature. 

Emerging from this work is the theory that social interaction creates a “merged mind” between 

interlocutors – they come into psychological, behavioral, and neural alignment in order to 

better predict each other and coordinate as one social unit. However social interaction is 

diverse, so more work is needed to understand the specific nature of alignment between 

people in a variety of interactive contexts. In particular, it’s unclear how heterogeneities among 

members of an interaction impact their ability to align. This work aims to help address this gap 

by first evaluating and improving ways to collect neuroimaging data in naturalistic, social 

settings (Chapter 2). Then, empirical research is presented that examines how personal 

similarity factors impact the extent of alignment during personal disclosure interactions, where 

one person speaks and the other listens (Chapter 3). Finally, further empirical research 

investigates different types of alignment that may be present in a dyadic back-and-forth 

discussion in a joint decision-making paradigm. How this work contributes to a broader 
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understanding of the ways people communicate and work together, and how this research can 

continue with improved methods, is discussed.  
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Chapter 1 - Dissertation Overview 
 

Background 
 
 Over the course of a normal day, one might engage in various social interactions – 

listening to a friend talk about their vacation, meeting with colleagues at work, or cooperating 

with a spouse to get children bathed and put to bed. Humans spend much of their waking life 

interacting with other people in some way, and much of this is done relatively seamlessly and 

effortlessly. Yet, the psychological abilities needed to manage and coordinate cognition and 

behavior with others can be quite complex. The occasional social gaffe is a reminder of how 

much could go wrong.  

 Traditional social psychology and neuroscience has typically tried to parse the 

complexities of social cognition and behavior by distilling them into subcomponents that could 

be investigated individually, summarized simply, and reproduced in a laboratory. This pursuit 

has offered important insights into processes such as face perception, social information 

memory, or physical action prediction. Yet an understanding of how these processes naturally 

operate and interact in real-world scenarios remains incomplete. Further, most research has 

focused on the level of the individual in a social interaction – how they view social agents 

around them, regulate their own behaviors, etc. While useful for understanding the 

psychological experience of an individual, this doesn’t address aspects of the social system as a 

whole, taking into account the dynamic and emergent phenomena of a social interaction arising 

between two or more people. Thus the majority of social psychological theory is built on 
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literature about the human mind in isolation rather than in context and interaction with other 

people.  

 That isn’t to say that investigations of dynamic, real world social interaction are entirely 

absent, however. Though the majority of social psychology has focused on the individual as the 

unit of analysis, some researchers have investigated interactive social processes between 

people. In fact, some of the earliest work in social psychology as a formal field described the 

concept of “group dynamics,” or the social forces that guide behavior. Motivated by the 

seemingly inhuman atrocities committed during World War II, psychologist Kurt Lewin argued 

that it was important to move past the description of behavior in individuals and study the 

dynamic phenomena emerging from a social group context, as some group behaviors could not 

be comprehended by investigating a person alone (Lewin, 1947). Lewin’s theorizing about 

group behavior also emphasized the dynamical nature of it, describing how fluctuations in racial 

prejudice might be created in a town, or how work group members may collectively increase 

aggressive behaviors under certain leadership styles.  

 In more modern research, advances in statistical analysis have enabled more detailed 

characterizations of the processes that enable the coordination of thought and action over 

time, and the creation of shared meaning between people. A noteworthy thread emerging from 

this work is the observation that people tend to naturally synchronize the oscillations of a host 

of behaviors such as walking, talking, gesturing, or fidgeting (Lakin, 2013). This often happens 

without awareness, but produces several downstream effects such as interpersonal liking, 

emotion regulation, and changes in cognitive executive functioning (Reddish, Fischer, & 

Bulbulia, 2013; Valdesolo, Ouyang, & DeSteno, 2010). Convergence in language use and 
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problem-solving strategies also seems to occur between conversation partners and facilitates 

their joint performance (Fusaroli et al., 2012; Hinsz, Tindale, & Vollrath, 1997; Thompson & 

Fine, 1999). The term “shared cognition” has thus been used to describe the ways in which task 

representations and information processing strategies are more similar between interacting 

partners than between disconnected single actors (Tindale & Kameda, 2000; van den Bossche 

et al., 2011). 

Social neuroscience has begun to investigate the neural mechanisms underlying these 

coordination dynamics as well. Much as the previously mentioned behavior signals do, neural 

patterns seem to synchronize when people are engaged in behavioral mimicry (Holper, 

Scholkmann, & Wolf, 2012; Osaka et al., 2015; Pan et al., 2017). Neural synchrony has also been 

identified in cases of joint task performance (e.g., Dommer et al., 2012; Fishburn et al., 2018), 

interpersonal storytelling (e.g., Stephens, Silbert, & Hasson, 2010; Yeshurun et al., 2017), and 

dyadic discussion (Jiang et al., 2015; Sänger, Müller, & Lindenberger, 2013). 

Based on this evidence, theorists have suggested that shared cognition reflects mutual 

attention direction, similar representational mappings, and the ability to predict upcoming 

behavior between interacting individuals (Dale et al., 2013; Macrae et al., 2008; Pelose, 1987). 

This enables fluid exchange of information and meaning. In turn, this shared cognition (as 

represented by neural synchrony) reflects a “merging of minds” that is necessary for shared 

understanding and joint goal-directed behavior to occur (Kelso, Dumas, & Tognoli, 2013; 

Thompson & Fine, 1999; Wheatley et al., 2012). Multiple people engaging in the same mental 

processes enables personally-relevant functions such as learning of new information from 
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others, but also actions like group movement and maintenance that are evolutionarily adaptive 

for humans.  

Yet, this theory that psychological and neural convergence enables social interaction is 

young and large questions remain. In particular, what about the social interactions where 

interlocutors don’t perform the same action or have the same ideas? In the previously 

described research, coordination among people was the goal, but preexisting differences 

among interaction partners weren’t assessed that may influence social convergence. In 

addition,  this “merging of minds” is conceived to be an exact reinstantiation of patterns across 

people, but it is not clear if weaker forms of coherence may still exist in otherwise 

asynchronous situations. Finally, the potential value of not being on the same page as another 

person is unclear, though could potentially benefit situations where “two minds are better than 

one.”  

 

This Dissertation 
 
 This dissertation aims to help fill some of the holes in our understanding of mental 

convergence in social interaction by examining the potential phenomenon under varying 

conditions of heterogeneity among social actors. Across two studies, I and collaborators 

collected neural, behavioral, and survey data in order to estimate how participants’ 

psychological experience varies within social communication and interaction, and if there are 

still coherent dynamics among these experiences.  

 Measuring neural processes within social interactions is particularly difficult, as 

traditional neuroimaging modalities such as fMRI require participants to be immobilized and 
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thus are not well suited to natural social contexts. A relatively underutilized neuroimaging 

technology called near-infrared spectroscopy (fNIRS) is more robust to participant motion and 

thus uniquely situated for research on social interaction, so it was used throughout this 

dissertation. However, its uncommonness as a neuroscience research tool means that best 

practices are still in development and data processing approaches are unstandardized. Thus, in 

Chapter 2 of this dissertation, I explore in depth the functional capacity of fNIRS as a research 

tool for social neuroscience. In addition, I describe techniques I developed for exploring fNIRS 

data quality in social interaction research in order to make informed decisions about data 

inclusion. 

 In Chapter 3, I investigate neural and psychological alignment in personal disclosure 

communication and what may modulate its strength. Specifically, this experiment focuses on 

how similarly listeners of a personal narrative encode the content of that narrative in relation 

to the speaker sharing that narrative. This type of speaker-listener design has been used before 

in past investigations of neural alignment (Stephens, Silbert, & Hasson, 2010; Liu et al., 2017), 

but it is currently unclear how variables like interpersonal similarity may make it easier or more 

difficult to align in understanding of a communicated narrative. Past research hypothesizes that 

more similar people and/or people with similar experiences may understand each other better 

in communication as well as express more empathy to each other (Banks, Berenson & Carkhuff, 

1967; Haley & Dowd, 1988; Kirk, Best, & Irwin, 1986; Robiner & Storandt, 1983), so these 

attributes are investigated in relation to how they may be associated with neural and 

psychological alignment between a speaker and a listener during the recounting of a narrative. 

In addition, alignment is also measured between pairs of listeners, to investigate how well they 
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converge on one understanding of the narrative even if that particular understanding does not 

match the speaker’s. The results of this investigation shed light on the effect of interpersonal 

similarity on social communication, as well as the nature of interpersonal alignment in this type 

of social interaction more generally.  

 Finally, in Chapter 4 I explore neural synchronization in a discussion that involves back 

and forth deliberation between two people to jointly solve a decision-making task. Unlike in 

speaker-listener scenarios where successful communication can be defined as accurate 

reinstantiation of one person’s mental representation in that of another, successful discussion 

may involve separate thought patterns between interlocutors as they present alternative view 

points before eventually converging on a joint decision. Thus, the specific type of alignment 

that might occur in this sort of social interaction may not be the same as that experienced in 

communication with one speaker and one listener (Fusaroli & Tylén, 2016; Kelso, Dumas, & 

Tognoli, 2013; Riley et al., 2011). Therefore this chapter examines different approaches to 

calculating neural alignment to see which is a better characterization of the neural dynamics 

within interpersonal discussion, and which better predicts discussion outcomes such as the 

efficiency of the discussion and the interpersonal feelings it engenders between discussion 

partners.  

 Altogether, this work aims to refine research approaches to social interaction topics as 

well as improve our understanding of whether and how people “merge minds” in natural social 

interaction.  
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Chapter 2 - Methods of fNIRS data quality assessment for naturalistic 
social experiments 

 

Introduction 
 

Over the last two decades, social neuroscience has grown into a robust field studying 

the psychological, neural, and physiological processes of humans in a social context – how they 

think about and interact with other humans, and how the social world influences human 

development and function. Yet, testing these social phenomena in their most naturalistic form 

within the lab has been a struggle for past neuroimaging work. The technological limitations of 

popular neuroimaging methods like fMRI and EEG require that research subjects be mostly 

immobile while participating in experiments, and mostly alone while doing so. Subjects can 

view socioemotional stimuli on a computer screen or push keyboard buttons to engage with a 

task, but this is still far removed from the richness of the real-world situations these 

experiments try to emulate.  

Functional near infrared spectroscopy (fNIRS) is an emerging neuroimaging method that 

can address these concerns. Yet, it is also a relatively underdeveloped technology compared to 

other neuroimaging modalities, so there is still room for improvement in processing and 

analyzing pipelines to best use fNIRS for truly social neuroscience research. In this chapter, I will 

review how fNIRS works compared to other neuroimaging modalities, why these differences 

give fNIRS a unique position in social neuroscience research, and ultimately why it was used as 

the neuroimaging technology for this dissertation. Then, I will describe signal evaluation 
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developments I have made to increase fNIRS’ utility for research into social communication and 

interaction.  

 

How fNIRS Works 
 

Functional near infrared spectroscopy is a noninvasive neuroimaging device that tracks 

and records brain activity. Similar to fMRI, fNIRS relies on the BOLD response to do this – the 

blood oxygen level dependent signal that occurs when localized populations of neurons fire, 

consume oxygen, and thereby require more oxygen to be pumped to the area in order to 

continue operating. This oxygen arrives by hitching a ride on the back of a protein called 

hemoglobin. Both fMRI and fNIRS can detect changes in hemoglobin concentrations caused by 

neuronal firing, due to physical differences in the oxygenated and deoxygenated hemoglobin 

molecules (HbO and Hb, respectively).  

In fMRI, the differences are magnetic - Hb distorts a magnetic field created by the MR 

scanner more than HbO does, so recording the strength of this field across the brain enables 

the researcher to find when an increased ratio of HbO to Hb is present at each area of the brain 

as a mark of brain activity. In fNIRS, the important property of HbO and Hb is optical. HbO and 

Hb have different absorption spectra, meaning that when light of some wavelength is projected 

through a medium composed of one of those compounds, different amounts of light are 

absorbed depending on which compound the light is passing through. Light in the visible red 

and near infrared wavelength range (~700-900 nanometers) can pass through skin and bone 

fairly easily, so by projecting this sort of light into the head and measuring how much is 

reflected back out, fNIRS can detect concentrations of both HbO and Hb independently. This 
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process is akin to a pulse oximeter used at the doctor’s office, but scaled up to many different 

light emitters and detectors spread across the head to record HbO and Hb concentrations at 

many brain locations. A more detailed discussion of the biophysics of fNIRS can be found in 

Ferrari, Mottola, & Quaresima (2004) and Scholkmann et al. (2014).  

 

Figure 1 – Schematic of a simple fNIRS set up, with infrared source and detector wires set up over the prefrontal 
cortex. Light travels through the cortex from sources to detectors in a banana-shaped path, recording a channel of 
data between each source-detector pair.  
 
 

The fNIRS machine itself is generally the shape of a small box, varying in size between 

that of a textbook to that of a microwave. The machine interfaces with the human head via 

bundles of cables called optodes – wires that emit near infrared light (sources), and wires that 

detect incoming light (detectors). One source-detector pair creates a “channel,” in which one 

HbO/Hb time series recording is made of whichever brain area is located between the source 

and detector.  Channels can be thought of as large MRI voxels located at that fNIRS channel. In 

order to facilitate the projection of light into head and detection of light reflected back out, 

optodes are typically held in place on the head via a stretchy cap or a rigid frame. The number 

of channels in an fNIRS recording is determined by the optode layout on the head and the 
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number of optodes available on a particular machine. This number typically ranges from around 

a dozen in studies of targeted neural areas to more than one hundred in high density 

configurations.  

 

 

Figure 2 – Examples of fNIRS head layouts and machines from various production companies. A) High density, full 
brain coverage with the ETG-4000 unit from Hitachi (hitachimed.com). B) A lightweight, prefrontal-specific layout 
with the OctaMon unit from Artinis (artinis.com). C) A hyperscanning study imaging multiple concurrent 
participants with the NIRScout unit from NIRx (nirx.net). D) Backpack design of the mobile LIGHTNIRS unit from 
Shimadzu (shimadzu.com).  
 

Advantages of fNIRS  
 

Due to its technological design, fNIRS differs from other neuroimaging modalities in 

important ways. Table 1 summarizes how fNIRS compares to other common techniques with 

respect to a variety of research concerns. Notably, fNIRS is uniquely tolerant of participant 

motion. Optodes are affixed to a participant’s head, and thus move through real space in the 
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same way the head moves through real space. This makes any head motion irrelevant to the 

measurement system between the source and detector. In contrast, the MRI and PET 

environments depend on a magnetic field or positron camera system surrounding the outside 

of a person’s head and thus require the head position to remain stationary in order to localize 

activity within the field to a particular brain location. Additionally, head muscle movements will 

not overwhelm the cerebral signal in fNIRS as it does in EEG. So long as any body motion does 

not shift an optode’s secured position on the head, participants can sit up, talk, gesture, and 

even walk or exercise while wearing an fNIRS apparatus. 

 

Table 1 – Comparison of fNIRS to other imaging modalities 

 fNIRS fMRI EEG PET 

Signal depth: ~1.5cm into 
cortex 
 

Full brain Cortex Full brain 

Spatial resolution: 
 

~1cm ~1mm 4-8cm ~4mm 

Sampling rate: 1-200Hz <= 1Hz 200-1000Hz Minutes to 
hours 
 

Cost: $10k-400k $1-7 million, + 
several hundred 
$ per scan 
 

$5k-200k $1-3 million, + 
several hundred 
$ per scan 

Portability:  Portable 
machine, few 
accessories 

Stationary Portable 
machine, many 
delicate 
accessories 
 

Stationary  

Motion sensitivity: Only sensitive if 
optodes move 
on scalp  

Participants 
cannot move 
head  

Participants 
cannot move 
muscles 

Participants 
cannot move 
head 
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in/around 
head 
 

Participant 
comfort: 

Snug cap, but 
participants can 
move around, 
no safety risk  

Participants 
must remain 
still, loud 
machine, safety 
risks  

Participants 
must hold 
upper body 
still, messy gel 
applied to 
head, no 
safety risk 

Participants 
must remain 
still, loud 
machine, 
injection 
required, safety 
risks 

 

 

Another major advantage of fNIRS is its general usability, which can be broken down 

into its cost, portability, and comfort to the participant. It is an order of magnitude more 

affordable to acquire than fMRI or PET, and does not require any additional costs to record data 

besides reimbursement to a subject for their research participation, as in a behavioral study. No 

specific qualifications are needed to operate fNIRS beyond research training with the system, so 

no additional doctor or specialized technician is required on site. The machine is portable with 

limited accessories required for traveling – simply a computer for recording data, a power 

source, and the head cap or other optode positioning system. In contrast, EEG can be portable, 

but high quality data collection requires a dense and delicate electrode cap with associated 

conductive paste and cleaning materials. The more user-friendly EEG systems trade spatial 

resolution and signal quality for increased usability. PET and MRI machines are very large and 

must be secured to the floor in specially designed rooms. Finally, the only potentially 

uncomfortable aspect of fNIRS imaging is the tightness of the caps used to hold the optodes to 

the head. Participants are able to move comfortably during an experiment, and no gel or other 

liquid needs to be added to their head to improve optode-scalp contact as in EEG. There is also 
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no substance to inject into a participant like with PET, and no safety concerns such as gamma 

radiation in PET or ferromagnetic implants in an MRI.   

fNIRS is limited in terms of which areas of the brain it can record signal from - data in 

fNIRS is restricted to 1-2cm of surface cortex due to the fact that light scatters and dissipates 

too much to be usable in deeper layers of tissue. This is more than adequate to record 

functional areas on the cortical surface such as medial prefrontal cortex, motor cortex and the 

temporoparietal junction, but fNIRS is not sensitive to activity in deeper structures like the 

limbic system, orbitofrontal cortex, and cingulate cortex. The spatial resolution and sampling 

rate of fNIRS are also potential limitations, depending on the requirements of a particular 

experiment. While better than EEG, fNIRS is less spatially resolved than fMRI and PET. The 

signal can be reliably localized to about 1 centimeter, with 3D tomographic mapping capabilities 

only available in very dense optode layouts. Additionally, the sampling rate of fNIRS can range 

between 1-200Hz, which is better than all but EEG. Yet, fNIRS still measures the hemodynamics 

response, which is an inherently slower signal than direct neuronal firing.  

Due to these characteristics, fNIRS can excel in particular niches of social neuroscience 

that require participant motion, such as studies of social interactions as done in this 

dissertation.  

 

Challenges in fNIRS Data Processing 
 

fNIRS holds great promise for improving the external validity of social neuroscience 

research. However, the technology is relatively underutilized and underdeveloped compared to 

other neuroimaging modalities such as fMRI and EEG – according to Web of Science, it wasn’t 
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until 2012 when the number of fNIRS research publications per year exceeded 100 (in contrast, 

fMRI sees thousands of publications each year). Due to this fact, open questions still remain 

about the best way to clean and prepare fNIRS data for analysis.  

For example, the quality of fNIRS data suffers greatly when detected infrared light signal 

coming out of the head is weak, and/or when that signal is contaminated by ambient light from 

the surrounding environment. This problem does not occur when optodes make unobstructed 

connection with the scalp, but participant hair sometimes gets in the way of this connection. 

The thicker and darker these strands of hair are, the more infrared light is blocked (Katus et al., 

2019; Khan et al., 2012). When too much infrared signal is blocked this way, the resulting data 

is a time series of white noise instead of hemodynamic fluctuations (Figure 3b). Engineering 

efforts to increase fNIRS signal intensity and optode design are ongoing, but currently this sort 

of signal disruption is not uncommon in fNIRS research, as an estimated 57% of the world 

population has dark brown to black hair on the head (Panhard, Lozano, & Loussouarn, 2012).  

Another major challenge for analyzing fNIRS data is the presence of motion artifacts. As 

previously mentioned, fNIRS is robust to participant motion, but only so long as the optodes do 

not shift position on a participants’ head. If this occurs, large shifts in light intensity are 

recorded as the detector optode momentarily lets in ambient light or either optode changes in 

amount of connection with the scalp (Figure 3c). Best fNIRS practices involve tightly fitting 

optodes to the head, stabilizing optode cables so that their movement doesn’t shift optode 

position, and/or using wireless fNIRS devices. However, motion artifacts may still occur and 

negatively impact data quality. The most egregious artifacts are large signal variations over very 

short periods of time – signal patterns that do not occur in the relatively slow drifting 
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hemodynamic signal.  However, while the presence of an artifact is usually easy to detect, 

automatic removal of these patterns from data time series in order to reveal true signal 

beneath them is not trivial. Extensive work on detecting and removing these artifacts from 

collected data has been conducted (e.g., Barker, Aarabi, & Huppert, 2013; Chiarelli et al., 2016; 

Fishburn et al., 2019; Molavi & Dumont, 2012), but as of yet no standard process has emerged 

that reliably removes motion artifacts from all datasets. All methods attempted for this 

dissertation either left some large motion artifacts unaffected, or imposed occasional new 

perturbations that do not correspond to brain signal.  

 

A  

B  
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C  

Figure 3 – Examples of raw fNIRS data time series. A) High quality data is relatively autocorrelated with no quick 
perturbations. In particularly clean data, a heartbeat signal is visible, corresponding to small fluctuations at ~ 1Hz. 
B) When optodes have poor connection to the scalp or hair is blocking light travel between source and detector, 
the predominant signal evident in the recorded data is white noise – random high frequency fluctuations with few 
to no slow frequencies present. C) In the event an optode shifts position on the scalp, motion artifacts may be 
introduced that look like brief spikes (large change with return to previous baseline), discontinuities (large change 
with change in new baseline), or periods of volatility change (variance in data over time changes). The amplitude of 
these artifacts is usually several times that of the standard deviation of the data without motion, but not always. 
The primary characteristic of a motion artifact is that these changes occur very quickly (within a couple samplings 
of data), while real hemodynamic signal typically takes several seconds to change +/- 1 standard deviation.  
 

It is outside the scope of this dissertation to develop additional signal processing 

methods for removing these sorts of artifacts in fNIRS data. Instead, we followed an alternative 

approach – evaluate how adverse the possibility of these artifacts may be for our data, and 

reject data channels based on a data susceptibility threshold. While the goal of signal cleaning is 

to eliminate the need for dropping any data, the state of fNIRS preprocessing is not mature 

enough to ensure this outcome for many real datasets, and thus further evaluation methods 

are needed to judge how good of a job the preprocessing did before the data can be trusted as 

a true representation of participant brain activity. The following methods have been 

implemented in open source Matlab and Python code called preprocessingfNIRS along with 

other batch preprocessing functions, available at github.com/smburns47/preprocessingfNIRS. 
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Evaluating Noisy Channels Before Preprocessing 
 

When there is a poor connection between an optode and the scalp, the recorded signal 

will either be swamped by ambient light, or not be recorded at all such that ambient white 

noise is the only signal present. This results in a data time series dominated by high frequency 

noise from which real signal cannot be reliably recovered. Thus, it is important to detect and 

exclude noisy channels like this from analysis.  

Though the difficulties of collecting quality fNIRS signal in thick dark hair are well known,  

there are few explicit guidelines in the literature about how to tell if a channel has enough 

strength in the recorded hemodynamic signal. Thus, we developed a method of automatically 

evaluating how noisy a channel was based on the shape of its Fourier power spectra. It is well 

known from early work with fMRI that the power spectral density of a typical hemodynamic 

response in human cortex is 1/f, or inversely proportional to the frequency of the signal 

(Zarahn, Aguirre, & D’Esposito, 1997). In other words, slow frequencies are more prominent in 

hemodynamic signal than fast frequencies (Figure 4a). In contrast, white noise as in noisy fNIRS 

data channels has a flat power spectrum (Figure 4c). Thus, we can calculate the power 

spectrum of an fNIRS data channel and evaluate the extent to which it resembles the canonical 

1/f density shape in order to judge the likelihood that this channel has recoverable brain data. 

To do this, we calculate a modified version of the quartile coefficient of dispersion (Bonett, 

2006). The power spectral density plot of a channel is divided into quartiles, which are then 

summed. Then the variation between the slowest frequency quartile and fasted frequency 

quartile is computed as  

C = (Qslow – Qfast) / (Qslow + Qfast) 
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 This coefficient C will approach 1 as the magnitude of Qslow exceeds that of Qfast, and will 

be 0 if the magnitude of the summed frequency densities in these quartiles are the same. Thus, 

a larger coefficient C means that the data channel resembles that of a true hemodynamic 

signal, and a smaller coefficient C means the data is likely to be white noise.  

 

A  

B  

C  

Figure 4 – Raw data time series and power spectral density (PSD) plots for three different fNIRS channels, 
expressed in terms of signal power (y axis) per Nyquist frequency (x axis). A) Clean data, where a clear 1/f shape 
can be seen in the PSD plot; quartile coefficient of dispersion C = 0.99. B) Data with some noise, but from which 
signal can still be recovered as lower frequencies still dominate in the PSD plot; C = 0.66. C) Data that is completely 
saturated by noise, with seemingly random values throughout the PSD plot; C = 0.05. The C threshold for this data 
sampling rate was 0.54. 



 

 22 

 

We set a default threshold of  

Cthresh = 0.6 - 0.03*sampling rate 

for determining if a channel still had recoverable signal or not based on simulations of how 

much noise could be imposed on a time series before the true signal could no longer be reliably 

recovered at correlation r=0.8 with bandpass filtering (Figure 5). If a channel has a coefficient C 

larger than this threshold, it is accepted as usable data for further preprocessing. If not, it is 

rejected from any further analysis.  

 

A       B 

Figure 5 – A) Over 50,000 simulation iterations, noise was superimposed over clean neural data of various 
sampling rates. The quartile coefficient of dispersion C was computed for each of these noisy time series, and then 
the data was bandpass filtered to try and recover the true signal under the noise. B) Lower 95% confidence bound 
of recovery strength for each sampling rate at various values of the quartile coefficient. It was generally easier to 
recover signal in time series of higher sampling rate. 
   

 Applying this method to the datasets in this dissertation, approximately 20% of channels 

in the data from Chapter 3 were rejected as too noisy, while approximately 10% of the channels 

in the data from Chapter 4 were rejected as too noisy. Channels were more often removed at 

the lower back of the head, where human hair tends to grow the thickest, and were rarely 
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removed over the forehead. This means that analyses done on more dorsal and anterior 

channels in these datasets have somewhat more statistical power than more ventral and 

posterior channels. 

 

Evaluating Questionable Channels After Preprocessing 
 
 After identifying clean and noisy data channels, we preprocess our data with the most 

common filtering approaches – detecting motion artifacts based on a >5 SD change in value 

over a 1-second timespan, rescaling these detected spikes/discontinuities/periods of volatility 

to match that of the preceding data, and then bandpass filtering to a window 0.008-0.2 Hz that 

encompasses the frequencies of hemodynamics activity associated with cognitive function (Zuo 

et al., 2010). This is a conservative filtering approach in that it removes fluctuations that are 

certainly not attributable to brain activity, but may leave in data features that are of 

questionable origin. We use this approach to ensure that no real brain data is inadvertently 

removed during filtering, but spurious artifacts might still remain in the data. Again, there is 

currently no explicit method in the literature for evaluating how well a motion filtering pipeline 

worked within a specific dataset, so we developed a way to do this based on the impact that 

removing these potential artifacts might have on later statistical analyses.  

 To do so, we first identify questionable artifacts remaining in preprocessed data. Since 

definite motion artifacts were previously defined as changes >5 SD in 1 second, a questionable 

artifact here may be a weaker feature: >3SD in 2 seconds. Once those questionable artifacts 

have been identified, we proceed with the assumption that the effect of their presence is 

localized in the data time series, and removing them within this contained window may change 
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the statistics computed on the otherwise clean data to variable degrees. It is not possible to 

measure the extent of this change when a true synchrony value is unknown, but it can be 

measured by estimating the extent to which it changes the correlation of the time series with 

itself, with and without the artifact. In a simulation comparing this kind of change in 

autocorrelation to a change in correlation with another time series when fake artifacts were 

injected into otherwise clean time series, we found that small spikes that vary within the range 

of the rest of the data have a negligible effect on a synchrony estimation – the autocorrelation 

rarely changes by more than 0.1, and even when it does, correlation with another time series 

does not change by more than 0.08 (Figure 6a). However, the effect of large spikes that exceed 

the range of the rest of the data do meaningfully affect a synchrony estimate. In these 

instances, if the autocorrelation doesn’t change much, then the synchrony estimate doesn’t 

change much either. But both of these can change by quite a bit (Figure 6b & 6c). The same can 

be repeated for other statistical estimates such phase synchrony between time series or the 

beta parameter within a general linear model. It is worth noting for this dissertation that in 

general, the same artifacts affect a self-self and self-other phase synchrony estimate less than 

they do a correlation estimate. This is likely because phase synchrony as a calculation is more 

robust to outlier values within a time series. However, the same general conclusions exists 

here, in that small autocorrelation changes don’t result in meaningful changes in the statistical 

estimate of interest, but large autocorrelation changes might.  
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      A – effect of small spikes           B – effect of large spikes            

Figure 6 – The effect of inserting one artifact of various types in data on the autocorrelation of that data (x-axis) 
and the correlation of that data with another clean time series (y-axis). Dotted lines represent the maximum the 
correlation may change given an observed change in autocorrelation. A) The effect of a small spike within a data 
time series, defined as a change over 2 seconds with an amplitude matching the rest of the data’s range. When a 
small spike is imputed into a time series, neither the autocorrelation nor correlation value with another time series 
change by much. B) The effect of a large spike, defined as a change over 2 seconds with an amplitude of 2 times 
the range of the rest of the data. This effect of this type of artifact is sometimes negligible on the autocorrelation 
of the data, but can sometimes change the autocorrelation by quite a bit. If the autocorrelation doesn’t change by 
much, then the correlation with another time series doesn’t change by much. But if the autocorrelation does 
change by a meaningful amount, then it is possible that the correlation with another time series changes by a 
meaningful amount as well.  
 

 Thus, within a time series where questionable artifacts are detected, we can smooth 

over these artifacts to remove them and then measure how much the data’s autocorrelation 

changed based on this smoothing. The density plot in Figure 5b was used as a guide to identify 

a threshold autocorrelation change that would be allowed given that we do not want the 

synchrony estimate to change by more than some value (0.1 used as default). If removal of a 

questionable artifact resulted in a large change of autocorrelation, then that channel is marked 

as too uncertain – this artifact may or may not be real signal we are interested in, but the 

consequences of making the wrong call on that decision are too great. Uncertain channels are 

thus not included in later statistical models.   
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 In the dataset in Chapter 3, because phase synchrony was used as the neural synchrony 

estimate of interest, few channels were identified as questionable. On average, less than 1% of 

a participants data channels were removed in this way. In the dataset in Chapter 4 this number 

was slightly higher at 2% of channels per person, likely due to the greater motion involved in a 

natural conversation. Ultimately however, these outcomes seem to suggest that the motion 

filtering pipeline performed relatively well in our datasets.  

 

Conclusion 
 
 Among neuroimaging modalities, fNIRS is particularly well suited for nautralistic 

experiments of social interactions. However, given that optimal filtering techniques for fNIRS 

data are still in development, for this dissertation we aimed to develop approaches to 

measuring the quality of a data time series and the performance of a filtering pipeline on that 

time series in order to make judgements about which data channels can be used in analysis. 

The outcomes of these evaluation approaches should make the analyses in the later chapters of 

this dissertation less subject to signal noise, and thus more accurate at inferring neural 

dynamics patterns in social communication and interaction. In the future we plan to compare 

the analyses of datasets with and without these approaches in order to measure overall what 

impact such evaluation techniques make on the inferences that can be derived from fNIRS data.  
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Chapter 3 - Effects of similar experience and identity on accurate 
interpersonal understanding 
 

Introduction 
 
 When sharing a personal story with a friend, they may appear attentive and caring. 

However, it may not always be the case that they actually understand what happened to you 

and what it means to you. Instead, they may interpret your story and your feelings in an 

entirely different way than you intend. Folk wisdom asserts that in order to really understand 

what someone is going through, you need to “walk a mile in their shoes” and “see the world 

through their eyes.” Within these metaphors, the message is that you come to understand 

someone through shared experience and first-hand knowledge about that experience. In 

accordance with this guidance, there is substantial evidence that people prefer to disclose 

personal events to and seek social support from others who have had the same experience 

(Hoyt et al., 2010; Simich, Beiser, & Mawani, 2003; Suitor, Pillemer, & Keeton, 1995). People 

with a shared experience also express greater empathy compared to people without the shared 

experience (Barnett, 1984; Barnett, Tetreault, & Masbad, 1987; Batson et al., 1996; Eklund, 

Andersson-Straberg, & Hansen, 2009; Hodges et al., 2010; Preis & Kroener-Herwig, 2012).  

 Yet, evidence is lacking about whether shared experience meaningfully impacts how 

accurate of an understanding one can develop in response to another’s self-disclosure. Most 

research on shared experience focuses on affiliation behaviors or empathy expression rather 

than communication success or empathic accuracy. For those that do, the operationalization of 

accurate understanding is often loosely defined as simply a subjective rating of whether the 
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listener in a conversation “got it,” rather than any quantitative measurement of how much and 

what kind of content understanding the listener received (Banks, Berenson & Carkhuff, 1967; 

Haley & Dowd, 1988; Kirk, Best, & Irwin, 1986; Robiner & Storandt, 1983). 

 Furthermore, the current literature rarely makes a distinction between shared 

experience and shared identity. I.e., can an increase in empathy and understanding be 

explained because I have gone through the same events and you and know how I reacted to it, 

or because I am a similar person to you and therefor better know how you will react to things? 

Ostensibly over time, accumulated shared experiences between people can make them more 

similar to each other. For example, a shared history of alcoholism can extend beyond just a set 

of similar events that happened to two people, but can be a dominating life experience that 

shaped the people’s perspectives and habits in particular ways (Kirk, Best, & Irwin, 1986). Yet 

on the level of an individual interaction, where there is an accuracy advantage of similarity 

between people, it is not clear if that advantage is driven by the shared experience of a 

particular event being described, or is driven by a more general identification by the listener 

with the speaker (whether because shared identity affords more accurate inferences about the 

speaker, or simply motivates the listener to attend better). Prior work on the relationship 

between shared identity and empathy/understanding is mixed, (Grover & Brockner, 1989; 

Heinke & Louis, 2009; Krebs, 1975; Pietromonaco, Rook, & Lewis, 1992; Verhofstadt et al., 

2008; Westmaas & Silver, 2006), but this has not been directly compared to the effect of similar 

experience.  

 Therefore, the current study aims to directly compare the effect of similar experience 

and similar identity on a listener’s ability to understand and empathize with a speaker’s 
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personal emotional stories. Similar experience and similar identity will be measured explicitly 

and separately in order to parse which may drive an effect of understanding and/or empathy. 

We aim to assess shared understanding in three ways – 1) the extent to which a listener can 

retell all the semantic content of the narrative they just heard; 2) the similarity between the 

speaker and a listener’s moment-to-moment ratings of the story’s emotional content; 3) the 

synchronization of brain activity between the speaker and a listener while the story is being 

told and encoded, as recent developments in neuroscience illustrate how shared understanding 

of a narrative between people can be identified via the amount of synchronous brain activity 

between them (Dikker et al., 2014; Honey et al., 2012; Liu et al., 2017; Nguyen, Vanderwal, & 

Hasson, 2018; Stephens, Silbert, & Hasson, 2010; Yeshurun et al., 2017). We will also measure 

the extent to which a listener experiences the same emotions from the story as the speaker, 

how much empathy they feel toward the speaker, and their empathic accuracy for how the 

speaker reported feeling. By assessing similar experience and identity in tandem and measuring 

shared understanding in more quantitative fashion than previous literature, we hope to 

discover what about someone can enable them to understand and empathize with another 

person more effectively.  

 

Methods 
 
Participants  

Speaker - Recruitment for this study was conducted in two phases. In the first phase, 12 

initial participants were recruited with a university-wide email distribution to record a variety of 

personal stories on camera in the lab while their brain activity was recorded. We wanted the 
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speakers to talk about personal events that varied in terms of how strong identity cues within 

the story may be, so we recruited speakers who had experienced both an event with low 

identity salience (death of a pet or romantic break up), and an event with high identity salience 

(status as a sexual minority being outed without permission). Six of these speakers identified as 

female, one as male, two as transgender, and three as gender nonbinary. Five identified as 

white, two as Hispanic/Latinx, three as Asian/Pacific Islander, and two as mixed ethnicity. The 

average speaker age was 21.67 (SD = 4.05). From this set, one speaker was chosen to show to 

listeners whose videos were relatively similar in length, similar in the strength of self-reported 

negative affect, and whose brain activity recordings during the stories were high quality. This 

speaker identified as a white female and was 21 years old. The negative personal stories she 

told recounted the time her dog died and a time her sexual identity was outed without her 

permission. 

Listeners - In phase 2 of the study, 120 participants were recruited with a university-

wide email distribution to watch the chosen speaker’s recorded stories while their own brain 

activity was recorded. The recruitment process asked participants questions relating to their 

experiences with pets and their own sexual identity to ensure a variety of experiences and 

identities relative to the speaker were represented in the listener sample. To eliminate any 

cross-gender communication effects in this study, all recruited listeners identified as female. 

The average age was 20.27 years (SD = 2.07). Forty-one listeners identified as Asian/Pacific 

Islander (34.16%), 26 as White (21.66%), 26 as mixed ethnicity (21.66%), 22 as Hispanic/Latinx 

(18.33%), 3 as Black (2.5%), and 2 as North African/Middle Eastern (1.66%).  
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Materials  

 Neural activity in both the speaker and listeners was recorded using functional near 

infrared spectroscopy (fNIRS). This imaging method uses infrared light to measure oxygenated 

blood flow in the brain’s cortical surface as an indirect measure of brain activity (see Chapter 2 

of this dissertation for more information). The specific equipment used was a NIRScout imaging 

unit from NIRx Technologies (nirx.net). This unit has 32 source and 32 detector optodes, which 

were secured into stretchy head caps and positioned to create 108 separate data measurement 

channels covering nearly the entire head (Figure 1). This positioning was standardized over all 

participants using the 10-10 UI external positioning system. Light intensity data was collected at 

wavelengths 760 and 850nm, with a sampling rate of 1.95Hz.  

 

Figure 1 – Channel location projected to the cortical surface, and groupings of channels to form 32 anatomical 
regions of interest.  
 

Audiovisual videos of speakers’ stories were recorded on a Panasonic LUMIX G7 

Mirrorless 4k camera and displayed to listeners in full screen resolution on a 21.5” Apple iMac 

desktop computer. Speakers’ and listeners’ continuous affect ratings were recorded on a 

separate Lenovo IdeaPad laptop running the real-time media annotation software CARMA 
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(Girard, 2018). All other experimental responses were recorded via survey hosted digitally on 

Qualtrics.  

 

Procedure  

  Speaker - Upon arrival to the lab, speakers were seated in front of a computer and video 

camera and were fitted with the fNIRS equipment. Once fitted, the speakers were asked to 

recall 5 different stories on different topics, ignoring a topic if they had not experienced that 

event before. These topics were chosen by the researchers to elicit differently-valenced 

emotions, and to prompt different perceptions of shared experience/personal similarity in 

listeners – their first day at college, a time their pet died, a time they went through a romantic 

break up, a time their sexual identity was outed, and a time they were shown great kindness. 

For this study however, analyses were only planned for the negatively-valenced stories. Before 

each story, the speakers were given instructions on which story to tell and how long to make it 

(3-8 minutes), and then were left alone in the experiment room to plan how they would tell 

their story. Once decided, they notified the experimenter that they were ready to begin by 

ringing a desk bell in the room. At this point, the experimenter began the camera and fNIRS 

recordings, and then left the room again while the speaker told their story. Once finished, the 

speaker again notified the experimenter with the desk bell. In between each story, the speaker 

completed the short form of the Positive and Negative Affect Schedule survey (PANAS; 

Mackinnon et al., 1999) for how they were feeling right now after recounting the story, and 

how they felt at the time of the story. After finishing all stories, the fNIRS equipment was 

removed and the speakers re-watched their videos on a laptop computer. During this 
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rewatching, they provided continuous affect ratings of the stories. Specifically, they were 

instructed to rate how positive or negative the content of the story was at each moment on a 

scale from +100 (positive) to -100 (negative).  

Listeners - Upon arrival at the lab, listeners were seated in front of a computer and were 

fitted with the fNIRS equipment. Once fitted, listeners watched the four videos the chosen 

speaker had recorded, in the following fixed order – first day at college, death of a pet, outing 

of their sexual identity, and an act of kindness. This order was chosen so that the identity-

salient video would not contaminate reactions to the pet loss video (no salient identity cues), 

and so that the session could end with a positive story. During video watching, participants’ 

brain activity was recorded with fNIRS. They were left alone in the experiment room during the 

videos and rang a desk bell at the end to indicate to the experimenter when they were finished. 

In between each video, listeners answered survey questions in which they completed the 

PANAS for themselves, for what they thought the speaker felt at the time of the story, and for 

what they thought the speaker felt at the time of the video recording. Listeners were also asked 

to rate how much empathy they felt for the speaker on a 1-7 scale, how similar of an 

experience this was to one they’ve had before, how similar the speaker seems to them, and 

were asked to retype the story they just heard in as much detail as possible. After watching the 

videos for the first time, the fNIRS equipment was removed and the listeners again watched the 

videos a second time, during which they provided continuous affect ratings in the same manner 

as the speakers.  
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Neural Data Processing  

 Data collected with fNIRS was subjected to a preprocessing pipeline that progressed as 

follows – 1) automatic identification and removal of noisy channels with frequency spectra 

approach (see Chapter 2); 2) detection of motion artifacts within remaining channels, defined 

as periods of data with a greater than 5 standard deviation change in less than 1 second; 3) 

rescaling of data in artifact segments to remove spikes/discontinuities/volatility changes within 

the data; 4) bandpass filtering to 0.008-0.2Hz; 5) conversion of light intensity values to percent 

change in oxygenated hemoglobin concentration using the Modified Beer Lambert Law; 6) 

evaluation and rejection of any channels with large remaining spikes/volatility changes. 

 

Variable Definition and Statistical Analysis 

 This study aimed to measure shared understanding, as defined by alignment across 3 

different domains – semantic, affect perception, and neural. Each type of alignment calculation 

is a measure of similarity within that measurement domain between two participants – either 

the speaker and a listener, or a pair of listeners. Semantic alignment was calculated on the text 

of the story the speaker told and the text of each listener’s retelling. The software package 

ALIGN was used to do this calculation by locating the position of each text within a pre-trained 

high-dimensional semantic space and then calculating the distance between these positions 

(Duran, Paxton, & Fusaroli, 2019). This semantic space was previously trained on 3 billion words 

in the freely available Google News corpus. The inverse of the resulting distance is thus a 

similarity score between the semantic content of each text and represents how much content 
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within one text is present within the other (allowing for variation is highly similar vocabulary 

used to express the same meaning).  

 Alignment in affect perception was calculated as a correlation between the timecourses 

produced by each participant’s continuous affect ratings. Thus, this measure does not tap into 

affective judgements of the overall video, but on the perceived affective valence and intensity 

of the content in each moment of the story. Similar fluctuations in these ratings indicate that 

two people similarly perceived the affective dynamics of the story, and would result in high 

affective perception alignment scores between them.  

 Neural data was used to compute another alignment measure. First, time courses of 

brain activity were recorded in each fNIRS channel on a participants head. To reduce the 

number of independent statistical tests performed on this data and increase the signal-to-noise 

of neural measurement, these time courses were combined to create 32 new time courses 

representing 32 anatomical regions of interest (ROIs) (Figure 1). Then, the similarity between 

the neural time course in one participant’s ROI to that of the matching ROI in another 

participant was calculated using phase synchrony. While Pearson’s correlation is a more 

common method of neural synchrony calculation (Nastase et al., 2019), phase synchrony is 

more robust to momentary time course artifacts that may occur in neural data while an 

individual is speaking and can provide moment-to-moment estimations of coherence (Glerean 

et al., 2012).  

 The final variables used in this study were four measures of relevant empathy outcomes 

– expressed empathy, emotional state matching between speaker/listener or listener/listener, 

and empathic accuracy. The empathy rating question within the survey was used as the 
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measure of expressed empathy for each listener. Next, because the PANAS questionnaires 

completed by the speaker and listeners consisted of rating scales for ten different emotions, a 

correlation distance between the 10-item vectors of these ratings can be used to investigate 

similarity in emotion states. Emotion matching was defined as the correlation between the 

speaker’s and listeners’ self PANAS ratings, while empathic accuracy was defined as the 

correlation between the speaker’s self PANAS ratings and those provided by the listeners on 

behalf of the speaker.  

Each of these alignment and empathy scores were computed within each video. In the 

speaker-listener analyses, scores were computed between the listener and speaker for each 

listener. In the listener-listener analyses, scores were computed for each possible pair of 

listeners. Relationships between variables were determined using cross-classified multilevel 

models treating participant and video as random factors. For these analyses, only the data from 

the two negative stories were used, and any missing data was excluded from the model 

pairwise. The Satterthwaite method was used to calculate degrees of freedom and p-values 

were corrected for multiple comparisons and converted to q-values using the Benjamini-

Hochberg approach (significance scores denoted by q). Effect sizes are reported as the marginal 

R2 (variance explained by the fixed effect).  

 

Results 
 
Baseline Neural Synchrony 

 First, we examined the baseline amount of neural synchrony for all negative videos 

between listeners, and between the speaker and listeners, in order to evaluate how much 
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neural processing was shared on average. Synchrony between each listener pair was computed, 

and the average compared to a bootstrapped null distribution of phase-randomized neural time 

courses. Between listeners, there was a significant amount of synchrony all across the brain, 

with the strongest synchrony occurring in the posterior superior frontal gyri, superior parietal 

lobules, and right superior occipital gyrus (Figure 2a). Between the speaker and listeners, 

average neural synchrony was computed with a lag, as speakers’ neural encoding of their 

message tends to precede the verbal delivery of it (Liu et al., 2017; Stephens, Silbert, & Hasson, 

2010). A lag of 4-10s was investigate, based on which value maximized synchrony for a given 

ROI. Speaker-listener synchrony was maximized at 8-10s in the significantly synchronous 

prefrontal areas. Baseline synchrony here was less extensive, but still significant in the left 

inferior frontal gyrus and right anterior middle frontal gyrus (Figure 2b). 

 

A  
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B  

Figure 2 – Average neural synchrony in all negative emotion videos A) between all listeners, and B) between the 
speaker and all listeners. 
 

Neural Synchrony and Psychological Alignment Measures  

Next, we examined how related the measures of semantic alignment, affect perception 

alignment, and neural alignment were to each other to see how much independent information 

they captured and to validate that neural alignment reflected shared understanding of the 

narrative. Across all listener pairs, semantic alignment was not related to affective perception 

alignment (t(1, 10404) = -0.68, p = 0.50). In other words, listeners who exhibited similar 

understanding of the semantic content they heard did not necessarily have a similar affective 

understanding of the story. However, semantic alignment between listeners did predict neural 

alignment across large areas of the prefrontal cortex, left pre-SMA, and right superior parietal 

lobule (Figure 3a). This indicates that listeners who had more similar semantic understanding of 

the stories had more synchronized neural activity to each other in these areas. There was also a 

significant relationship between affect perception alignment and neural synchrony in the right 

angular gyrus (Figure 3b). 
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A  

B  

Figure 3 – Brain areas where amount of neural synchrony between pairs of listeners significantly corresponded 
with A) amount of semantic alignment, and B) amount of affect perception alignment.  
 

 Examining speaker-listener pairs, we did not find any significant relationship between 

neural synchrony and the psychological alignment measures. High alignment with the speaker 

in semantic or affective perception of the story did not predict strength of neural synchrony 

with the speaker.  
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Effect of Similarity  

Lastly, we sought to investigate how much similar experience drove alignment and 

empathy scores, compared to similar identity. In other words, we tested the effect of listeners 

having a similar experience to the speaker against the effect of listeners perceiving themselves 

to be similar people to the speaker. While these variables are conceptually related, they were 

only moderately correlated in these data (r = 0.42), and can thus be interrogated as separate 

effects. First, we investigated the effect of similarity on alignment between listeners – i.e., did 

listeners who saw themselves as more similar to the speaker converge on a more canonical 

understanding of the story. Both predictors (similar experience and similar identity) were run in 

the same model in order to identify which type of similarity significantly related to the outcome 

variables over and above the effect of the other type. For semantic alignment, both similarity of 

experience and similarity of identity significantly predicted semantic alignment, but in 

differential ways (Table 2). Listeners with a more similar identity to the speaker had significantly 

more semantic alignment with each other, but listeners with more similar experiences to the 

speaker had significantly less semantic alignment with each other. In other words, listeners 

with a similar experience in their past had a more idiosyncratic understanding of the stories’ 

semantics. Similar experience did not relate to affective perception alignment between 

listeners. When investigating the effect of similarity on alignment between the speaker and 

listeners, there were no significant relationships. 

  

Table 1 – Effects of similar experience  and similar identity on semantic and affective 

alignment 
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 Semantic 
alignment 
between listeners 

Affective  
alignment 
between listeners 

Semantic 
alignment 
between speaker-
listener 

Affective 
alignment 
between speaker-
listener 

Similar 
experience 

t(12629) = -6.95  
q = 1.17e-11*** 
R2 = 0.0039 
 

t(10280) = 0.65  
q = 0.52 
 

t(189) = -1.99  
q = 0.095 
 

t(193) = -0.52,  
q = 0.90 
 

Similar 
identity 

t(12770) = 16.74 
q < 1e-8 *** 
R2 = 0.022 
 

t(10302) = 0.85  
q = 0.39 
 

t(222) = 0.35 
q = 0.87 
 

t(191) = 1.35,  
q = 0.54 
 

 

Listeners with a more similar identity to the speaker had more convergent neural 

synchrony with each other than listeners with less similar identity in the prefrontal cortex 

(Figure 4a). This means that if two listeners regarded themselves as very similar to the speaker, 

their brain activity was more likely to resemble each other in the prefrontal cortex (Figure 5). 

Thus, perceptions of similar identity seemed to make brain activity converge on a canonical 

response to the stories. In contrast, listeners with a more similar experience to the speaker had 

more neural synchrony with each other only in the right occipital cortex. In the bilateral 

temporal cortex and right posterior middle frontal gyrus, the more two listeners had a similar 

experience with the speaker, the less neural synchrony they had with each other (Figure 4b). 

Similar to the behavioral responses, these sorts of listeners seemed to have more idiosyncratic 

neural activity in these areas while listening to the stories.  

There were no significant relationships between similar experience / similar identity and 

speaker-listener neural synchrony.  
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A  

B  

 

Figure 4 – A) Areas of greater neural alignment between listeners of high similar identity rating. B) Areas of greater 
neural alignment (red) and less neural alignment (blue) between listeners of high similar experience rating.  
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Figure 5 – Visualization of convergent brain patterns within the prefrontal cortex between listeners who rated 
themselves as highly similar to the speaker, and listeners who rated themselves as different. The relative location 
of the dots represents the similarity between brain responses, such that dots that are close together represent 
more similar neural responses than dots that are far apart. Orange dots are the 20 listeners who rated themselves 
as most similar to the speaker, while blue dots are the 20 listeners who rated themselves as least similar to the 
speaker. The orange dots cluster tighter in space, indicating that high-similarity listeners converged more on a 
canonical brain response to the story.  
 

 Lastly, we investigated the effects of similarity on the various empathy measures – 

emotion state matching with other listeners, emotion state matching with the speaker, 

empathic concern, empathic accuracy during the retelling, and empathic accuracy for the time 

of the event. Similar experience was positively related to emotion state matching with the 

speakers, but negatively related to emotion state matching with each other. That is, the stories 

seemed to evoke more divergent emotions in listeners who had had the same experience while 

listeners without the experience had similar emotional responses to each other. However, the 

set of emotional responses amongst the similar experience listeners still resembled that of the 

speaker more than the emotional responses of the listeners without a similar experience. 

Listeners who perceived themselves to have a similar identity to the speaker had more similar 

emotional experiences to each other, but similar identity was not related to how well their 
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emotional experiences matched the speaker. Both similar experience and similar identity were 

positively associated with expressed empathy for the speaker independently. Neither similar 

experience nor similar identity was significantly associated with empathic accuracy.     

 

Table 2 – Effect of similar experience and similar identity on expressions of empathy 

 Emotion state 
matching with 
other listeners  

Emotion state 
matching with 
speaker 
 

Empathic 
concern 

Empathic 
accuracy 
(telling) 

Empathic 
accuracy 
(event) 

Similar 
experience 

t(12770) =  
-4.51  
p = 9.99e-
6*** 
R2 = 0.0017 
 

t(214) = 2.96,  
q = 0.010 
R2 = 0.034 
 

t(187) = 3.25,  
q = 0.0083 
R2 = 0.032 
 

t(212) = 0.19,  
q = 0.85 
 

t(214) = 0.42,  
q = 0.81 
 

Similar 
identity 

t(12770) = 
7.16  
p =  
1.27e-12***  
R2 = 0.0039 
 

t(217) = -0.61,  
q = 0.81 
 

t(218) = 5.90, 
q = 
8.16e-8*** 
R2 = 0.17 
 

t(218) =  
0.17,  
q = 0.87 
 

t(216) = 0.66,  
q = 0.99 
 

 

 

Discussion  
 
 Common wisdom suggests that someone who has experienced the same thing as 

someone else should be able to more effectively understand and empathize. However, 

quantitative evaluations of whether this similar experience actually improves accurate 

interpersonal understanding are missing from the literature, and it is unclear how much a 

positive effect may be driven by similar experience versus more general similar identity 

between a speaker and listener. This study aimed to resolve these questions by measuring 
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semantic, affective, and neural alignment between speakers and listeners of two negative 

emotion stories.  

 Perhaps contrary to expectations, listeners who had had a similar experience as the 

speaker did not have significantly better or worse understandings of the story contents than 

listeners who had not had a similar experience. There was no detectable effect of similar 

experience on either semantic alignment, affect perception alignment, or neural alignment 

between the speaker and listeners. This suggests that when encoding the details of a story, the 

personal history of a listener is not related to how well they understand the story. However, 

amongst each other, similar experience did have an effect. In particular, pairs of listeners who 

said they both had a similar experience to the speaker had more divergent semantic 

understandings of the corresponding story. The emotion state the story evoked within them 

was also more idiosyncratic if they had had a similar experience. Additionally, while listening to 

the story, listeners with a similar experience had less neural alignment with each other in areas 

including bilateral superior temporal cortex. Given this area is associated with the perception 

and decoding of spoken language (Buchsbaum, Hickok, & Humphries, 2001; Chang et al., 2010; 

Howard et al., 2000), this result seems to suggest that people with a similar experience were 

encoding the story in a more idiosyncratic way at the lowest levels of auditory perception. Such 

divergence in narrative understanding may be a result of self-projection while listening to the 

story – if certain details remind you of events in your past, this could trigger vivid and unique 

mental associations and memories while listening to the story that would not exist in people 

without similar past experience. These associations may distract the listener from attending to 

the specific details of the story, but still evoke similar emotions. This may be why neural and 
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semantic alignment were negatively associated with similar experience, but these listeners still 

had relatively more similar emotional reactions to the speaker than listeners did without the 

similar experience.  

 In contrast, perceptions of similar identity between the listeners and speaker were 

generally positively associated with how the story was encoded. While this variable was still not 

related to how well listeners understood the specific semantic and affective details 

communicated by the speaker, listeners who saw themselves as more similar to the speaker 

seemed to converge on some canonical understanding of the stories. There was greater 

semantic alignment in their retellings of the story compared to listeners who did not see 

themselves as similar to the speaker, and their neural activity was more convergent in the 

prefrontal cortex. This suggests they were processing the narratives in a particular way. This 

may be because generally similar people can more accurately predict each others’ mental 

states and actions (Stinson & Ickes, 1992). Alternatively, this may be a story of motivation. 

Perceptions of similarity between people increases motivation to attend to them (Westmaas & 

Silver, 2006), and higher motivation to understand someone increases empathic accuracy for 

their emotions (Klein & Hodges, 2001; Nelson, Klein, & Irvin, 2010). Without detailed personal 

experiences to refer to, then, people with a similar identity to the speaker may be motivated to 

listen and then fall back on a more stereotypical mental representation of what they heard. We 

expect the motivation story is more likely, as similar identity in this study was defined by the 

listener’s perceptions of similarity based on a short video clip (which might be inaccurate) and 

not any specific measures of similarity dimensions between the speaker and listeners.  
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 A lack of associations between similarity variables and alignment with the speaker could 

signify that these attributes don’t affect how well one understands the story another person is 

sharing. If so, this would be good news for anyone hoping to be an effective support giver but 

who does not share a history of certain events with the speaker. However, this could also be a 

result of study design – only one speaker was used in this study, so it is possible that meaning 

was not well communicated in this particular instance. This design was chosen because it 

allowed for pairwise analysis between listeners of the same narrative, but it does reduce the 

statistical power of the analyses between the speaker and listeners. In order to verify that 

similar experience and identity are not associated with accurate interpersonal understanding, 

future research should include more speakers and story examples. Altogether, these results 

illustrate how similar experience and similar identity operate differently to influence the way 

we process socially shared information.   
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Chapter 4 - Using linear, nonlinear, and higher-order approaches to 
identifying neural synchrony in conversing dyads 
 

Introduction 
 
 Emerging theory of social interaction posits that in order to coordinate with other 

people effectively, separate minds mutually adapt to each other in a dynamic fashion to 

converge on overlapping mental representations and synchronous behavior (Chatel-Goldman et 

al., 2013; De Jaegher, Di Paolo, & Gallagher, 2010; Hasson et al., 2012; Kelso, Dumas, & Tognoli, 

2013; Wheatley et al., 2012). By adapting to the dynamic patterns of someone else (their 

behavior, their language use, etc.), one can better anticipate the behavior of other people, form 

joint goals, and operate as cohesive social units.  

 An important piece of evidence for this theory is neural data demonstrating alignment 

in mental representations between interacting people. In fMRI experiments, researchers have 

found that spatial patterns representing particular mental concepts are reliable and 

distinguishable (Devereux et al., 2013; Diedrichsen & Kriegskorte, 2017; Thornton & Mitchell, 

2017), and that listeners of a narrative story have meaningfully convergent spatial patterns of 

brain activity with each other in the default mode network when listening to the same narrative 

(Chen et al., 2017; Regev et al., 2019). These patterns match those elicited when speaking 

about the narrative as well (Chen et al., 2017; Zadbood et al., 2017). Over time, fluctuations in 

these patterns map onto each other across people the more people share a basis of knowledge 

for processing the narrative – for example, when knowing the language the narrative is in 

(Honey et al., 2012; Liu et al., 2017) or having particular background knowledge or perspective 
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on the narrative (Lahnakoski et al., 2014; Nguyen, Vanderwal, & Hasson, 2018; Yeserun et al, 

2017). Outside of the well-controlled lab environment, researchers have also used EEG to find 

convergent brain processes among high school students the more engaged they were with a 

lesson (Dikker et al., 2017). This work has shown that synchronized neural activity underlies 

similar mental representations among people receiving a particular message, and successful 

communication brings listeners mentally in line with each other.  

What about in continuous dialog, where interlocutors may be expected to mutually 

converge with each other based on ongoing feedback? Researchers have sought to identify 

synchronous neural patterns in these sorts of situations as well. However, this effort has 

experienced more difficulty.  While several experiments have documented “neural synchrony in 

social interaction” as a general overarching result, the specifics of the data are more conflicting 

than in single-person narrative studies. In particular, this observed synchrony seems to occur in 

only small areas that vary widely across experiments. These studies sometimes identify it in the 

temporoparietal junction (Jiang et al., 2012; Jiang et al., 2015; Tang et al., 2015), sometimes in 

medial prefrontal cortex (Holper, Scholkmann, & Wolk, 2012), sometimes in the pre-

supplementary motor area (Pan et al., 2017), and sometimes not between any two 

corresponding areas but instead between different locations across dyad members (Lu & Hao, 

2019).  

 It is difficult to say at this time why these results are not more coherent. One reason 

may be that social interactions are diverse experiences in terms of interactive dynamics and 

joint goals, and variation in these factors might affect how the neural synchronizing process 

progresses (McGrath, 1984). Two people may be engaged in a joint discussion where the goal is 
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to come to an agreement, but along the way different ideas must be explored and thus the 

partners must evoke divergent mental representations before arriving at a joint conception. In 

another case where mutual performance is the goal, two partners may be expected to 

converge neurally as they do the same action, or they might be expected to consistently have 

divergent activity if the overall goal requires separate actions done in parallel. This diversity of 

experience makes it difficult to investigate the neural dynamics of dyadic social interaction 

generally.  

 In addition, there is need for more explicit acknowledgement of different types of 

neural alignment findings in this work. Most use the phrase “neural synchrony” to refer to 

evidence of similar neural patterns between people as they interact in real time. However, the 

specific mathematical approach to calculating this “similarity” varies substantially, and have 

large implications for the theoretical interpretation of that similarity. In some work, including 

most of the literature addressing shared viewing experience of narratives, similarity in neural 

activity is defined as a linear function between each person’s data streams (e.g., Liu et al., 2017; 

Stephens, Silbert, & Hasson, 2010). That is, given a time course vector x of one person’s neural 

data, the time-corresponding values y of another person’s neural data can be expressed as  

y = b1x 

An important aspect of this sort of relationship is that the effect of x is modulated by a constant 

b1 – any point xt in x can be transformed into the corresponding point yt in y by applying the 

same scalar transformation b1. This kind of relationship means there is a one-to-one mapping 

between points in x and y, and this mapping is consistent across time. In practice, this means 
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that under linear synchrony, two brain signals would be exhibiting the same amount of activity 

at the same time (accounting only for a possible difference in scaling; Figure 1). 

 

 

Figure 1 – Two hypothetical time courses from separate brains that are linearly dependent – similar fluctuations at 
similar times.   
 

 However, two signals could still be dependent even if the requirements for one-to-one, 

time-invariant mapping of points are relaxed. This would qualify the signals for nonlinear 

dependence. Some experiments search for this kind of nonlinear relationships between 

separate people’s brain activity (e.g. Holper, Scholkmann, & Wolf, 2012; Jiang et al., 2015). 

These include a multitude of specific approaches such as bicoherence, wavelet coherence, 

distance correlation, and mutual information. The exact ways of calculating these approaches 

vary, but in general they don’t search for a single constant scalar that transforms a time course 

x into y. Instead, there is typically some sort of nonlinear transformation done on the data first 

in order to find a different basis space to identify dependence. For example, in the cross-

wavelet transform, similarity between time courses is identified in the frequency domain of the 

signals (having converted them to frequency power spectra). This is expressed as  
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Wf1 y = Yxy Wf2 x 

where Wf is itself a function that maps the values of a time course to a particular shape, in this 

case the Morlet mother wavelet, and Yxy is the cross-wavelet power that describes how much 

the transformed signal x is present in the power spectra of the transformed signal y (Issartel et 

al., 2015; Maraun & Kurths, 2004). The implication here is that there is no single transformation 

that can be applied to all values of x to get the right corresponding value of y – where x 

increases by a little, y might increase by a little or decrease by a lot. But the fluctuation shapes 

that x goes through are also identifiable in y, but perhaps at a time delay. This might occur in 

systems where one signal partially causes another at a time delay, or where the two signals are 

mutually causal.  

 

Figure 2 – Two hypothetical brain time courses with time-variant nonlinear dependence. The blue signal exhibits 
the same fluctuations, but at a delay of 15 seconds and at varying scales over time. Linear dependence measures 
such as Pearson’s correlation would miss this dependence, but nonlinear synchrony approaches can detect it.  
 

 Two signals can also be dependent in time, but not deterministically so. This means that 

a particular value of x does not predict a closed set of possibilities in y. Put another way, 

knowing where a certain brain goes next in brain state space may not give information about 

where another mutually interacting brain goes in state space. However, these signals may still 
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be related through their higher-order statistics – perhaps the specific values of the signals don’t 

correspond, but how much that value changes over time in each signal does. For example, an 

event happening in the environment two people are a part of may cause their brain activity to 

shift at the same time in response, but may not cause them to shift in the same way. This 

means there is not a linear relationship between xt and yt, but there is in the distance metrics 

computed between each points t and t+1. This can be expressed as  

 ||yt – yt+1|| = b1 ||xt – xt+1||  

where ||•|| denotes a distance measurement, such as Euclidean distance or correlation. In this 

way there is no defined solution set for mapping signal x to y, but there is a defined set for 

mapping the changes in values over time (Figure 3). While this approach has been used to 

identify the way individual brains reliably chunk viewed narratives into discrete encodings 

(Baldassano et al., 2017; Chang et al., 2018), it has not yet been used to document coherence 

between people in live social interactions.  

 

Figure 3 – Two hypothetical brain time courses that have higher-order synchrony – the value of one signal is not 
predictable from the value of the other, but a small change in one brain predicts a small change in the other, while 
a large change in one brain predicts a large change in the other.  
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 The psychological implications of these similarity measures are very different. In a linear 

relationship, this would mean two interlocutors are having the same mental experience across 

time. In a nonlinear relationship, they may not be having the same experience at once, but 

similar experiences that one person had are also had by the other at some delay. Lastly, in a 

higher-order relationship based on changes rather than values, two people may never have the 

same experience but there is some constraining factor about the conversation that determines 

the timing of when peoples’ experiences change. Currently, because there have not yet been 

any intentional investigations of what kind of dynamics better explain neural activity in various 

types of social interaction, our understanding of this overall phenomenon is lacking.  

 In the present study, then, we aim to directly compare these different measures of 

neural synchrony in a dataset of conversing dyads in order to investigate what sort of similarity 

best explains the neural dynamics of that interaction. Specifically, we will be comparing the 

linear measurement Pearson’s correlation, the nonlinear approach wavelet transform, and the 

state change coherence measurement described previously. The data in this study consists of 

dyads in a joint decision-making paradigm, where one might expect the moment-to-moment 

synchrony of the dyads to be low as they present and analyze different opinions on a problem, 

but for more rigid synchrony to emerge by the end as a joint solution and perspective on the 

problem is converged upon. Therefore, we expect nonlinear and higher-order similarity 

measures to better describe the neural dynamics within these conversations than the linear 

method, and to be more associated with psychologically meaningful attributes about the 

conversation such as its length, pre-existing similarity in discussion starting position, and 

subjective ratings of personal similarity / interaction quality / common understanding / 
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perceived overlap in background information. These results should help clarify the specific 

nature of neural synchrony within a joint decision context, which would contribute to a better 

understanding of social interaction overall.  

 

Methods 
 
Participants  

 Participants for this study were recruited from the student population of a large 

California university between fall 2017 and spring 2018. Two hundred and twenty total people 

participated, paired into 110 same-gender dyads (71 female-female dyads, 39 male-male 

dyads). The average age of the participant sample was 20.32 years (SD = 2.60). Sixty-three 

identified as White/Caucasian (28.64%), 49 as Biracial/Mixed (22.27%), 48 as Hispanic/Latinx 

(21.82%), 42 as Asian/Pacific Islander (19.09%), 10 as Middle Eastern/North African (4.55%), 7 

as Black/African-American (3.18%), and 1 as Native American (0.45%).  

 

Materials 

 Neural activity in participants was recorded using functional near infrared spectroscopy 

(fNIRS). This imaging method uses infrared light to measure oxygenated blood flow in the 

brain’s cortical surface as an indirect measure of brain activity (see Chapter 2 of this 

dissertation for more information). The specific equipment used was a NIRScout imaging unit 

from NIRx Technologies (nirx.net). This unit has 32 source and 32 detector optodes, which were 

split evenly over the two interlocutors’ heads during the experiment. These optodes were 

secured in stretchy head caps and positioned over the prefrontal cortex and bilateral 
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temporoparietal junction to create 35 separate data measurement channels per person (Figure 

4). These positions were chosen because they correspond to default mode network areas that 

can be reached on the surface cortex, and these areas are most commonly identified in past 

research as locations of coherence in communication. This positioning was standardized across 

participants using the 10-10 UI external positioning system. Light intensity data was collected at 

wavelengths 760 and 850nm, with a sampling rate of 3.91Hz.  

 

Figure 4 – Positions of channels on each participant’s head.   

 

 Prior to the experiment, participants reviewed a short description of a public health 

issue (the then contemporary Zika epidemic) and descriptions of 5 different approaches to 

helping people affected by this public health issue. They were then prompted to distribute a 

hypothetical $100 million of grant money amongst these options (Appendix A). During the 

experiment when participants were discussing, they again completed this resource allocation 

task, but togheter as a dyad. After the discussion, participants answered a set of post-study 

questionnaires to assess their opinions of how the discussion went. The reduced set of 

questions analyzed for this study are denoted with a * in Appendix B. Audiovisual videos of the 

participants’ discussions were recorded on two Panasonic LUMIX G7 Mirrorless 4k cameras.  
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Procedure 

 The data in this paper comes from a study that was initially planned to investigate 

discourse differences between people who believed they were the same or different political 

identity. Therefore, before coming to the lab, participants completed a political identity 

questionnaire and then were paired to randomize their respective political positions (while 

being told they held the same or different positions, a treatment that was orthogonal to dyads’ 

actual political differences). The experimental procedure was modeled after the joint resource 

allocation task describe in Keltner & Robinson (1993). Upon arrival to the lab, participants were 

welcomed to different rooms, given informed consent, and then asked to complete the 

resource allocation task by themselves. Participants were then brought into the same room 

together, fitted with the fNIRS equipment, and then told they either had the same or different 

political views, or weren’t told anything at all. They were also instructed to complete the 

resource allocation task again, but this time as a group that needed to arrive at a joint solution. 

They were asked to discuss the issue in depth, as if they were making a decision about the 

allocation of real money. After instructions, the experimenters turned on the cameras, started 

the fNIRS recording, and left the room for the duration of the discussion. This way, the cameras 

captured both the onset timing of the brain activity recording and the onset of the 

conversation. Participants were given as much time as they needed to come to a joint solution 

to the task, and then rang a desk bell at the end to signal to the experimenters that they were 

finished. Lastly, participants were again separated into different rooms and asked to complete 

the discussion quality questionnaire. After completion of this survey, participants were 
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debriefed about their actual political alignment and the aims of the study, were given 

compensation, and allowed to leave.  

 

Video Coding 

 Video recordings of the conversation were trimmed to start and end with the dyads’ 

conversations, and then were analyzed in three ways. First, the videos were run through the 

opensource Python software FlowAnalyzer (https://flowanalyzer.readthedocs.io/) in order to 

extract measurements of the participants’ frame-by-frame motion (Barbosa et al., 2009). These 

were downsampled to the sampling rate of the fNIRS acquisition, and then used as motion 

regressors for the neural data. Likewise, research assistants watched the videos and coded 

when each participant was speaking. These data were used as speaking turn regressors for the 

neural data. Lastly, transcripts of the conversations were automatically generated with the 

online tool Temi (temi.com), and any mistakes in the auto transcripts were corrected by 

research assistants. These transcripts will be analyzed at a later date. 

 

Neural Data Preprocessing  

 Data collected with fNIRS were subjected to a preprocessing pipeline that progressed as 

follows – 1) automatic identification and removal of noisy channels with frequency spectra 

approach (see Chapter 2); 2) Removal of motion and speaking regressors; 3) detection of 

motion artifacts within remaining channels, defined as periods of data with a greater than 5 

standard deviation change in less than 1 second; 4) rescaling of data in artifact segments to 

remove spikes/discontinuities/volatility changes that do not occur in neural patterns and which 
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might negatively impact further preprocessing/analysis; 5) bandpass filtering to 0.008-0.2Hz; 6) 

conversion of light intensity values to percent change in oxygenated hemoglobin concentration 

using the Modified Beer Lambert Law; 7) evaluation and rejection of any channels with large 

remaining spikes/volatility changes. Regression of motion and speaking regressors was 

performed prior to later preprocessing and analysis because these actions might introduce 

patterns within the data due only to the offset and onset of physically speaking, rather than 

underlying neural representations. 

 

Results 
 
Linear Synchrony Between Dyads 

 First, we analyzed dyads’ neural data using Person’s correlation to check if we could 

detect any linear dependencies between interlocutor’s brain data (Nastase et al., 2019). 

Specifically, we took neural activity time courses from the same data channel in each of the 

discussion partners’ recordings and calculated the correlation between these. We then tested 

these correlation values against a bootstrapped null distribution, generated from 10,000 

random pairings of participants’ data who were not in the same conversation together. 

Controlling for multiple comparisons, we found that dyads exhibited significant linear 

synchrony in the medial prefrontal cortex during their discussion (Figure 5). However, there was 

no significant increase in this synchrony over the course of the discussion, in this area or other 

brain areas, as measured by comparing synchrony estimates in the first and last two minutes of 

the conversation. There also were no significant associations between correlation synchrony 

and any behavioral measures.  
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Figure 5 – Location of significant neural time series correlation during dyad conversations.  

 

Nonlinear Synchrony Between Dyads 

Next, we analyzed dyads’ neural data using the cross-wavelet transform procedure to 

check if we could detect any linear dependencies between interlocutor’s brain data (code from 

Grinsted, Moore, & Jevrejeva, 2004). Moving window sections of neural activity time courses 

from the same data channel in each of the discussion partners’ recordings were convolved with 

Morlet mother wavelets of varying scale, and the cross wavelet power was then estimated for 

the frequency bin corresponding to each scale. This produces a matrix of time and frequency-

resolved estimates of wavelet coherence between the two signals, which was then averaged 

across the time period of interest for each analysis. We then tested these coherence values 

against a bootstrapped null distribution, generated from 10,000 random pairings of 

participants’ data who were not in the same conversation together. Controlling for multiple 
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comparisons, we found that dyads exhibited much more extensive nonlinear coherence during 

the discussion than in the linear coherence analysis. Significant nonlinear synchrony was 

present in nearly the entire prefrontal cortex, as well as in bilateral temporoparietal junction 

(Figure 6a). There was also a significant increase between the first and last two minutes of the 

conversation within the dorsomedial prefrontal cortex (t(206,1) = 3.70, p = 0.00039; Figure 6b), 

though there were still no associations with the behavioral measures. 
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Figure 6 – A) Areas of significant wavelet transform coherence between dyad partners during conversation. B) 
There was a significant increase in wavelet transform coherence between dyad partners from the first two minutes 
of the conversation to the last two minutes.   
 
 
State Change Synchrony Between Dyads 

Finally, we analyzed how well the timing of dyads’ whole-brain state changes matched 

each other (“whole-brain” here meaning the inclusion of all data measurement channels over 

the default mode network). Past publications that used this method relied on Hidden Markov 

Models to match neural data to predefined state change events (corresponding to scene 

changes in movies) in order to estimate alignment of the location of these events between 

people. In our case, it was not possible to predefine the timing or even number of expected 

brain state changes, as a natural conversation is not as experientially discrete as an audiovisual 

movie. Thus, we developed an alternative measure that tracked relative magnitude of brain 

state changes over time, and then identified the correlation between these magnitudes for the 

separate discussion partners. First, within one subject, the vector of whole-brain activity at 

every time t was correlated with the vector of whole-brain activity at every other point in time 

to create an auto-similarity matrix. The off-diagonal k for this matrix thus represents the 

magnitude of brain state change that occurred between time t and t+k. These off-diagonals 

were extracted for the signal windows t+5 through t+20, and corresponding off-diagonals from 

each interaction partner were then correlated. The resulting correlation values for every off-

diagonal examined were then averaged to derive one state change coherence value. We then 

tested these coherence values against a bootstrapped null distribution, generated from 10,000 

random pairings of participants’ data who were not in the same conversation together.  
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 Using this procedure, we found a significant amount of neural state change coherence in 

conversing dyads (t(103) = 7.97, p < 0.0001; Figure 7a). Between the first and last two minutes 

of the conversation, there was also a significant increase in neural coherence (t(206,1) = 3.17, p 

= 0.0021; Figure 7b). Lastly, the amount of neural coherence over the course of the 

conversation was significantly associated with how long the conversation lasted, such that 

dyads with greater state change coherence arrived at a joint solution to the task more quickly 

exhibited higher neural coherence (t(102) = -2.85, p = 0.0053; Figure 7c).  
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Figure 7 – A) Bootstrapped null distribution of brain state transition coherences among non-interacting 
participants, compared to the experimental sample mean. B) This brain state transition coherence measure 
significantly increased over the first and last two minutes of the participants’ conversation. C) The extent of this 
brain state coherence over the conversation was significantly associated with conversation length, such that 
quicker discussions exhibited great brain state coherence.   
 

Discussion 
 
 The theory of shared cognition in social interactions posits that the coordination of 

neural and mental states in interactional communication enables mutual coordination and 

understanding. However, until now it has been difficult to establish this phenomenon in real life 

dyads due to the complexities of back-and-forth conversation. This study aimed to investigate 

the nature of alignment that might exist within a mutual decision-making conversation by 

comparing different conceptualizations of synchrony.  

We found evidence of linear synchrony between discussion partners within the medial 

prefrontal cortex during their discussion, such that during the conversation the activity patterns 

within this area are more entrained than they would be between non-interacting dyads. 

Specifically, this entrainment was of the type where certain temporal patterns of fluctuations 

within one person matched on to the same patterns in the other person. This suggests that 

somewhat similar mental processes within this area were engaged in at the same time between 

discussion partners. The medial prefrontal cortex is consistently associated with reasoning 

about decision options and the mental states of others (Frith & Frith, 2006; Overwalle & 

Baetens, 2009; Spiers & Maguire, 2006), so given that linear synchrony was identified here, this 

may suggest that discussion partners tend to engage reasoning in concert with one another in 

conversation.  
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We also found more extensive time-variant nonlinear synchrony across wide areas of 

the medial and lateral prefrontal cortex, as well as bilaterally in the temporoparietal junction. 

According to these results, activity in these areas did not necessarily match in amount between 

discussion partners, but particular kinds of activity in one person was reliably associated with 

some other kind of activity in the other. While fNIRS is likely not spatially resolved well enough 

to detect differences in spatial patterns within a brain area that would differentiate the content 

of information represented here, this sort of widespread synchrony between partners might 

speak to a see-sawing, communication-generation vs. communication-decoding pattern 

between alternating speakers and listeners. This is a weaker form of synchrony than the above 

reported linear coherence results, but it still suggests that some amount of mutual adaption 

occurred within real discussion partners. This entrainment increased in strength between the 

beginning and end of the conversation in the dorsomedial prefrontal cortex in particular, 

perhaps indicating that trading roles between sharing one’s thoughts and interpreting another’s 

thoughts became a more efficient process over the course of the conversation. 

Finally, across the default mode network, we found evidence that movement between 

different brain states in one person significantly predicted movement to new brain states 

within an interacting partner. This higher-order synchrony increased from beginning to end of 

the interaction, and the strength of this synchrony over the interaction was associated with 

how efficiently the interaction progressed. The analysis method used did not assume that these 

states would match across participants, or even that one particular state within a participant 

would ever reoccur at any point in another person. Thus, these results speak not so much to 

any shared mental representations between people, but does suggest that they were tuned 
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into a particular temporal progression through the conversation – when one person switched to 

a new topic mentally, the other person was not still stuck in an old representation or 

daydreaming independently of the other person’s communication. They progressed through 

the conversation in a coordinated fashion, and were detectably within the same social system 

experiencing the same temporal events. Where this coordination was weaker, interpersonal 

decision-making took longer to complete, perhaps signifying some process loss between people 

who weren’t progressing toward a solution at the same rate.  

All together, these results suggest that while there may be some minimal linear 

synchrony and temporal pattern matching between people in a live decision-making dialog, 

nonlinear and higher-order cohesion describe the neural dynamics of this sort of interaction 

more fruitfully. This means that discussion partners do not simply mirror each other’s neural 

and mental states during conversation, but are still coordinated in terms of what they think 

next and when they think it. Yet, only one of these measures was significantly associated with 

only one behavioral measure of interaction quality, suggesting the identified results may be 

more a property of joint decision-making generally and can’t differentiate between subjective 

assessments of how the interaction progressed. In the future, it would be worthwhile to 

validate these results in a more spatially resolved neuroimaging method like hyperscanning 

fMRI, or in conversations where agreement is never reached. It would also be worthwhile to 

compare these types of synchronization in other interaction contexts where psychological 

convergence might be expected for the entire conversation, and which might more closely 

predict interaction quality – e.g., joint action, or interpersonal instruction. In these cases, 

perhaps linear synchronization and mental representation matching is more prominent.  
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In addition, while the above analysis methods were applied largely in a global fashion 

across large sections of time in the interaction, sliding window or time localized versions can 

also be used to pinpoint particular moments of high synchrony within an interacting dyad. 

Social units are hypothesized to be weak oscillators (Mayo & Gordon, 2020), which typically 

exhibit instability in terms of the amount of cohesion experienced at any one moment. It would 

be particularly interesting to investigate if, say, periods of linear synchrony might emerge out of 

general nonlinear patterns at key moments of clarity between people, or if length/strength of 

these temporary periods increase in more successful interlocutors. By continuing to 

acknowledge and explore the various kinds of synchrony that may occur within social 

interactions, we can grow our understanding of how people’s minds coordinates across a 

diversity of social interaction contexts.   
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Appendices 
 
Appendix A: Discussion Prompt:  

The CDC has issued an alert about the dangers of the Zika virus. This disease has affected 

hundreds of thousands of people worldwide and tens of thousands in the United States and 

Territories. It is spread mostly via mosquito bites. While Zika is usually not fatal, it can induce 

fever, rash, joint and muscle pain, and headache. Most notably, if a pregnant woman 

becomes infected, her fetus may develop birth defects like microcephaly, which causes the 

baby to have a smaller-than-normal head size, intellectual disability, hearing and vision 

problems, and/or seizures. There is currently no vaccine for Zika. These facts make Zika one 

of the more concerning health risks currently known to the CDC.  

 

Imagine you are a member of a grant committee. You are in charge of $100 million in charity 

money for the purpose of helping people affected by the Zika virus. Below are a number of 

programs that have proposed different solutions. Please decide how you would allocate the 

money among the following programs in order to best help people affected by Zika:  

 

1.  Scientific research and development to find a vaccine   

 

2. Public education about how best to avoid contracting the disease  

 

 

3. Research and development for improving the life quality of babies 

already born with microcephaly  

 

 

 

4. Subsidize healthcare for affected families  

 

 

 

5. Research and implement mosquito control/eradication strategies  
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Appendix B: Post-Discussion Questionnaire  

 

My partner was very cooperative  
 
1  2  3  4  5  6  7 
 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
My partner’s input was very useful  
 
1  2  3  4  5  6  7 
 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
I liked my partner as a person  
 
1  2  3  4  5  6  7 
 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
My partner seemed very willing to work together to decide on the solution  
 
1  2  3  4  5  6  7 
 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
My partner had good ideas  

1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
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The reasons my partner gave for their opinions made sense to me  

1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
I think my partner would agree with me on other important issues  
 
1  2  3  4  5  6  7 
 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
I would want to work with my partner again in the future  
 
1  2  3  4  5  6  7 
 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
*I found the interaction to be comfortable  

1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
*I thought the interaction was very difficult to get through  

1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
*This interaction made me feel very stressed  

1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
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I was motivated to find the best solution 

1  2  3  4  5  

Very      Somewhat            Unsure       Somewhat          Very 
False       False         True          True 
 

My partner was motivated to find the best solution 

1  2  3  4  5  

Very      Somewhat            Unsure       Somewhat          Very 
False       False         True          True 
 

I listened carefully to my partner  

1  2  3  4  5  

Very      Somewhat            Unsure       Somewhat          Very 
False       False         True          True 
 
 
My partner listened carefully to me 

1  2  3  4  5  

Very      Somewhat            Unsure       Somewhat          Very 
False       False         True          True 
 

The inputs from my partner and I complimented each other 

1  2  3  4  5  

Very      Somewhat            Unsure       Somewhat          Very 
False       False         True          True 
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We drew conclusions together  
 
1  2  3  4  5  

Very      Somewhat            Unsure       Somewhat          Very 
False       False         True          True 

 
My partner and I handled differences of opinions by addressing them directly 
 
1  2  3  4  5  

Very      Somewhat            Unsure       Somewhat          Very 
False       False         True          True 

 
My partner gave me equal say in the decision 

1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
I tried to give my partner equal say in the decision 

1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 

*My partner and I had a common understanding of what the problem was  

 1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
*My partner and I had a common understanding of how to solve the problem  
 
1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
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*My partner and I had very different background information about the topic at the start of 
our interaction  
 
1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
*My partner and I are very different types of people  
 
1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
We solved the problem in a way we both agree on 
 
1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
I am satisfied with the decision we came up with  

1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
My partner is satisfied with the decision we came up with  

1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
I think our solution is the best solution to the problem at hand 

1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
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My partner thinks our solution is the best solution to the problem at hand 

1  2  3  4  5  6  7 
Strongly     Moderately      Slightly   Neither Agree     Slightly      Moderately          Strongly 
Disagree      Disagree        Disagree       nor Disagree       Agree          Agree           Agree 
 
 
How much do you care about solving health issues related to the Zika virus? 
 
1  2  3  4  5  

None           A little            A moderate         A lot      A great deal 
At all            amount       
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Chapter 5 – General Discussion  
 
 
Overview of Findings 
 
 Social neuroscience as a field has developed largely through highly controlled 

investigations of socially isolated individuals. This means that a large frontier of research 

remains on real-world and naturalistic social processes like social communication and 

coordination. While emerging theory suggests that people’s mental states begin to merge 

during an interaction and that this shared cognition enables more efficient coordination, the 

current literature does not examine if this can still happen when there are underlying difference 

between people, or when the social interaction involves heterogenous thought patterns among 

people.  

 This dissertation aimed to help answer these questions. First, in Chapter 2, I discussed 

how traditional methods of neuroimaging like fMRI and EEG are not best suited for social 

interaction research, and why the relatively underutilized method fNIRS should be given more 

consideration in this application. fNIRS is more robust to participant motion and provides for 

more flexible use cases, meaning it is less restrictive on what a participant or participants can 

be doing during an experiment. However, due to its underutilization, optimal data processing 

strategies are still in development. Thus, I showed two ways in which fNIRS data collected 

during dynamic social communication experiments can be evaluated for quality in order to 

improve measurement accuracy and inference quality.  

 In Chapter 3, fNIRS was used to evaluate how neural patterns between a speaker and 

listener in a personal disclosure situation may be synchronous, reflecting shared understanding 
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of the communicated content. This study also evaluated how similarity of experience and 

similarity of identity between the speaker and listener may modulate the extent of this 

synchronization. The results showed that there was relationship between these similarity 

measures and how well listeners of a narrative understood it the way the speaker did, but 

similarity of experience and identity did associate with how these listeners understood the 

narratives in general. More specifically, similar experience led to a more idiosyncratic 

understanding of the semantic content in the stories as well as more divergent neural patterns, 

suggesting that having personal memories related to the narrative may trigger various mental 

representations that are unique to the listener. In contrast, similarity of identity brought people 

more towards a single canonical understanding of the stories they listened to. This work 

highlights factors within a social communication that can influence the extent to which people 

mentally coordinate and converge.  

 The research in Chapter 4 aimed to probe synchronous neural dynamics as well, this 

time within mutually interacting discussion partners during a joint decision-making task. In 

addition, rather than focusing on the particular kind of synchrony of Chapter 3 where similar 

mental states are expected between people, this study compared different conceptualizations 

of synchrony to see which might best describe the nature of neural coordination in dyadic 

interaction – linear synchrony, nonlinear synchrony, and higher-order coordination. The results 

of this work show that while some linear synchrony was identifiable in interacting dyads, 

nonlinear and higher-order synchrony was more descriptive of the neural dynamics in the 

overall conversation, identified temporal increases, and was associated with conversation 
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efficiency. It also highlighted the need to be theoretically and analytically specific about what 

type of coherence of a social system is being sought in a research study.  

 

Implications  
 

 While not a complete evaluation of all social communication and coordination contexts, 

this work contributes to our understanding of how humans successfully interact in social 

contexts. Where it is important that one message is communicated and understood between 

people, synchronized neural activity reflects how well that mental representation is 

reinstantiated in a new person. Yet, how accurately one encodes the particulars of that 

message does not necessarily predict how much empathy one feels towards the communicator, 

or even how well one infers the speakers feelings about that message. Thus, while 

remembering the specific details of a message may be related to specific patterns of brain 

activity, asynchronous activity and understanding may still lead to socially desirable outcomes 

such as empathy and emotion interpretation.  

 Relatedly, an exact match in neural patterns is not the only type of coordination that 

can exist in a social interaction. Interlocutors can also exhibit synergistic states that are not the 

same, but that still predict each other reliably, as well as higher-order coordination tied to the 

temporal progression of events within a conversation. This nicely illustrates that social minds 

might not necessarily “merge” in the strictest sense when the goals of the interaction include 

comparing and discussing different sources of information and opinion, but are still mutually 

dependent within a coherent social system. 
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 This work also makes contributions to the wheelhouse of methods for studying natural 

social interaction. By improving our approach to evaluating fNIRS data, we can make rich and 

externally valid social neuroscience more common, which would in turn improve our general 

understanding of the human brain. In addition, this work contributes a new approach to 

analyzing dynamic interaction data collected in this way, which refines existing theory about 

how brains coordinate in conversation and provides new avenues to explore within other types 

of social interactions.  

  

Future Directions  
 

 Due to the richness of social communication data, there is room for further exploration 

within the data of the presented studies. Chapter 3 explored factors about the speaker and 

listeners that affect the extent of neural synchronization between them, but the messages 

themselves can also be explored as variable sources of entrainment. Within a narrative, certain 

moments may bring listeners particularly in line with each other or with the speaker. These 

could potentially be attributed to periods of high emotionality, naming of personal emotions 

rather than just detail description, or other unexpected factors.  

 This temporally-sensitive approach to analyzing data could also be applied to the study 

in Chapter 4. While linear synchrony was not a very accurate model of the relationship between 

dyad members’ neural activity in conversation, there could be moments in time where this is 

more pronounced. It would be valuable to the study of social interaction to know what these 

moments may mean – e.g., periods of speaker-listener role-taking, mutual insight, coordinated 
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action, etc. The stability of these possible periods could also be investigated as evidence that a 

weakly-coupled social system is developing stronger connections. Alternatively, the direction 

that signals seem to be leading each other at various points in time could be used to predict 

who is currently leading a conversation, enabling investigation of turn-taking behaviors in 

dyadic discussions.  

 Beyond this work, there is still extensive space for exploring shared neural dynamics is a 

variety of different social contexts, and the factors that may modulate those dynamics. 

Situations like negotiation, interpersonal instruction, or team task work are understudied in 

social neuroscience due to the complexities of these events and the difficulties of collecting 

data in them. The approaches described in this dissertation could be brought to bear on 

investigating these poorly-understood social contexts. Further, if enough descriptive research is 

performed, it could be possible to track the extent of coherence between people in social 

interactions as a predictor of successful communication. This would be valuable for arranging 

teams within organizations, identifying points of strength of weakness within instructional 

lessons, and for training of social support figures like therapists.  

 

Final Conclusions  
 

 Social interaction is one of the most difficult contexts to study empirically, due to its 

complexity and diversity in the real world. Yet it is also one of the most important to 

understand, as so much of human life is lived in and optimized for social communication and 

coordination. The research in this dissertation contributes new insights into the neural and 
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psychological dynamics underlying social interaction in a few different contexts. It also 

demonstrates how these dynamics relate to heterogeneities among members of the 

interaction, such as their background knowledge or individual opinions. Lastly, it provides 

methodological contributions for continuing this line of work. This all will hopefully benefit the 

pursuit of understanding human psychology and behavior in context, the natural way in which 

we all live.  




