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Thin liquid films on a slightly inclined heated plate

Uwe Thiele∗ and Edgar Knobloch1

Department of Physics, University of California, Berkeley CA 94720, USA
1Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

Abstract

The behavior of a thin liquid film on a uniformly heated substrate is considered. When
the substrate is horizontal and the Marangoni number sufficiently large the film breaks up
into a periodic array of drops. When the substrate is slightly inclined this drop-like state
slides down the substrate. The relation between these states is discussed and their stability
properties with respect to longitudinal perturbations are determined. The results shed light
on the multiplicity of states accessible to systems of this type and on the possible transitions
among them.

Key words: Heated thin film, Interfacial instability, Marangoni drops, Sliding drops,
Kuramoto-Sivashinsky equation
PACS: : 68.15.+e, 47.20.Ma, 47.20.Lz, 47.20.Ky

1 Introduction

The study of thin liquid films has a long history [1,2]. Apart from permitting a
fundamental simplification of the viscous equations governing free surface flows
such films have important technological applications, ranging from the theory of
surface coating to the so-called ’printer’s’ instability [3].

The present paper focuses on the behavior of thin liquid films with a free surface
flowing down a slightly inclined smooth solid substrate. The substrate is homo-
geneously heated and the (infinitely extended) gas layer above it is taken to be
passive. Heat transfer from the film surface to the gas is taken into account using
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Newton’s law of cooling at the liquid-gas interface. In the absence of heating the
resulting film is stable. However, this is no longer the case once thermocapillary
(Marangoni) effects are included, and the resulting instability evolves according
to a simplified equation for the film thickness h(x, t) that can be derived from the
Stokes equation using a long wave (or lubrication) approximation (cf. BURELBACH

et al. [4], ORON and ROSENAU [5], and references therein). When the substrate is
horizontal any instability is necessarily a steady-state instability, since the evolu-
tion equation then has a variational structure. However, this is not the case on an in-
clined substrate, and the instabilities then take the form of a traveling wave. ORON

and ROSENAU present numerical solutions of the evolution equation in three dif-
ferent cases to identify the structures produced by the instability: these correspond
to a film on the upper and lower surface of a horizontal substrate with and without
thermocapillarity, and a film flowing down the underside of an inclined substrate
without thermocapillary effects.

Thermocapillary instabilities are fundamentally longitudinal instabilities that pro-
duce structure in the x direction, although once such structures develop they may
in turn be unstable to transverse perturbations. The details depend on the assump-
tions made concerning the dependence of the surface tension on temperature. This
dependence is usually taken to be linear, and the instability that results in two di-
mensions was studied by DEISSLER and ORON for a film on the underside of a
horizontal substrate [6], with the corresponding results for a film on the upper sur-
face given by ORON [7]. Effects of quadratic capillarity in one dimension were
considered by ORON and ROSENAU [8] but without including gravity. A similar
equation, but for a film below an air layer of finite thickness, was derived by VAN

HOOK et al. [9] in connection with their extensive experiments on heated horizontal
films, and used to investigate the formation of dry spots. This two-layer formulation
leads to a different definition of the Biot number than used below that allows the
Biot number to acquire negative values and in consequence richer system behavior.
Subsequent work by BOOS and THESS followed numerically the evolution of a film
profile towards rupture using the full Stokes equation in combination with a linear
temperature field [10], and identified a cascade of consecutive “structuring events”
pointing towards the formation of a set of drops as the final state of the system.
However, due to a slowing down of the numerical scheme once the minimum film
thickness becomes very small the final state of the system could not be reached.
However, the qualitative agreement between these results and those obtained from
long wave approximation [7] indicates that the main features of the physical system
are well captured by this approximation, as already noted for ’falling’ liquid films
[2,11]. This terminology refers to liquid films on a strongly inclined substrate. The
dynamics of such films differs greatly from the films studied here because inertia
enters into the description via the film Reynolds number, and hydrostatic support
is insignificant. A number of different evolution equations describing falling films
have been proposed [1,12,13], most suffering from the presence of a small para-
meter, implying that the equation has not been derived by a systematic asymptotic
procedure. Nonetheless, within this type of formulation the linear stability prop-
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erties of a uniform falling film have been studied in detail, and the saturation of
the resulting instability determined by weakly nonlinear theory and direct numer-
ical simulation [13–15]. The instability evolves into a nonlinear wavetrain and for
heated substrates may lead to film rupture [15]. Transverse instabilities may also be
present, leading at long times to a pattern of rivulets with a characteristic transverse
wavenumber [16,17]. A recent overview of long wave evolution equations for thin
films can be found in Ref. [2].

In the presence of heating horizontal or nearly horizontal films may also be unsta-
ble to a short wave convective mode. In contrast to the long wave Marangoni mode
this mode is associated with a small surface deformation, and indeed does not re-
quire surface deformation at all [18]. The interaction between this mode and the
long wave Marangoni mode leads to a number of novel phenomena (e.g., [19] and
references therein) but does not occur in the parameter regime considered in the
present paper which focuses on dynamics arising from the long wave mode only.

In the present paper we revisit the problem of a heated thin liquid film on a slightly
inclined substrate with two motivations in mind: (i) we are interested in the multi-
plicity of solutions to the nonlinear evolution equation and their stability properties,
and (ii) we wish to understand the effects of a small inclination of the substrate.
The essence of the problem is captured by a simplified model that omits complica-
tions due to effective molecular interactions (disjoining pressure), and the effects
of inertia and evaporation. We focus on one-dimensional films, and examine the
consequences of a long wavelength longitudinal instability of a flat film that sets
in when the Marangoni number exceeds a critical value. On a horizontal substrate
we find that the stationary state of the system consists of an array of drops, perhaps
separated by dry spots. On an inclined substrate the dry spots are replaced by re-
gions of ultrathin film, and the array of drops slides downslope. We demonstrate
that such sliding trains of drops are a consequence of a Hopf bifurcation from the
flat film state, and that they can be stable with respect to longitudinal pertubations.
To study these drop arrays we impose periodic boundary conditions in the down-
stream direction, and formulate the problem as a nonlinear eigenvalue problem for
the slide speed and the corresponding thickness profile. Thus all our solutions take
the form of a uniformly traveling spatially periodic wave, and correspond to sta-
tionary solutions in a suitable moving reference frame. This formulation permits us
to study the properties of the resulting solutions as a function of the film parameters
and of the spatial period L, and hence to understand the origin of the multiple sta-
ble solution branches present at large values of L. Our approach resembles there-
fore that employed in earlier studies of the Kuramoto-Sivashinsky equation (see
[20] and references therein) which appears in some formulations of the falling film
problem, but differs from it in employing a more realistic equation for the film, and
(more dramatically) in having different symmetry properties. We are able, however,
to explore the sequence of transitions that takes place with increasing inclination
of the substrate before the Kuramoto-Sivashinsky-like behavior is recovered. For
this purpose we employ numerical continuation techniques [21]. These allow us
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to follow branches of stationary solutions and their bifurcations through parameter
space using a Newton-like method [22,23]. In the theory of thin films these tech-
niques have been used with success to study traveling and solitary waves in flow
down inclined planes [24], dewetting on a homogeneous substrate [25,26], sliding
drops on slightly inclined planes [27,28], transversal instabilities of sliding liquid
ridges [29], and rivulet instabilities of thin film flow over a localized heater [30].

The paper is organized as follows. In Section 2 we formulate the basic mathematical
problem. In Section 3 we discuss the stationary solutions in the case of a horizontal
substrate. These are time-independent and of two types: continuous solutions with
thickness bounded away from zero, and discontinuous solutions consisting of drops
separated by dry spots. We describe a construction that generates all such solutions
and illustrate it with explicit examples. However, we do not address the realizability
of these solutions as asymptotic solutions of the initial value problem. In Section
4 we discuss how the solution landscape collapses once the substrate is inclined.
The solutions are now devoid of dry spots and all slide down the substrate. These
states are obtained by solving a nonlinear eigenvalue problem, and their stability
properties can be mapped out by solving an additional linear eigenvalue problem.
Some bifurcation-theoretic considerations required for understanding the stability
properties of the bifurcation diagrams obtained have been relegated to an Appen-
dix. The paper concludes with a brief discussion. We do not consider transverse
instabilities (but see [29]).

2 Film thickness equation

We begin with the evolution equation for the thickness of a thin film flowing down
the upper surface of a slightly inclined substrate,

ht = −
[
h3

3

(
1

Bo
hxxx + α − hx

)
− h2

2
Ma∂xTs

]

x

. (1)

Here h(x, t) is the film thickness in units of its mean thickness h0, Ma≡ σT∆T/ρgh2
0

is the effective Marangoni number of the problem, Bo≡ ρg`2/σ0 is the Bond num-
ber [2], while Ts is the temperature at the surface of the film. The subscripts t, x and
the symbol ∂x denote the corresponding partial derivatives. For a homogeneously
heated plate

∂xTs = − Bi hx
(1 + Bih)2

, (2)

where Bi= αthh0/kth is the Biot number [2]. In deriving Eq. (1) we have nondi-
mensionalized the downslope coordinate x with a characteristic length ` � h0

representing the typical wavelength of the instability, and expressed time in units
of the time scale t0 = h0/v0, where v0 = h0u0/` and u0 = gh3

0/ν` is the charac-
teristic horizontal velocity. In addition we have scaled the pressure with P0 ≡ ρgh0
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and the temperature with ∆T , the temperature difference across the film. The sym-
bols ρ, ν, σ0, kth, and αth denote the density, kinematic viscosity, reference surface
tension at temperature T0, thermal conductivity, and the heat transfer coefficient
of the liquid, respectively. The remaining coefficient, σT , characterizes the depen-
dence of the surface tension σ on the temperature: σ = σ0 − σT (T − T0). These
equations are derived in Ref. [5], Eq. (43) with N = 1; the temperature gradient
at the surface, Eq. (2), results from the assumptions of constant temperature at the
plate and Newton’s law of cooling at the free surface of the film [2]. In the horizon-
tal limit (α = 0) Eq. (1) corresponds to Eq. (2.63) of Ref. [2]; with α = O(1) it can
also be derived as the small inclination limit of the falling film equation, Eq. (3.13)
in Ref. [15], on dropping the effects of evaporation. Note that, as defined here, the
Marangoni number Ma corresponds to M/G in [2] and to M/GP in [15]; in some
papers (eg., [10]) Ma is referred to as the inverse dynamic Bond number, while Bo
is called the static Bond number.

Eq. (1) is valid under two assumptions [5]: (a) small inclination angles required for
the retention of the hydrostatic pressure term, and (b) small values of the Reynolds
number Re = u0h0/ν to justify the dropping of inertial terms (the Reynolds num-
ber in [9] is 10−4). In the scaling used here the plane makes an angle αh0/` to
the horizontal, a quantity that is small provided ` is taken to be sufficiently large.
In addition we impose the requirement Re = gh4

0/ν
2` � 1. For thin films this is

not a restrictive assumption. The four terms on the right side of Eq. (1) then de-
scribe the effects of capillarity, and driving by gravity, hydrostatic pressure and the
Marangoni force, respectively. For a film on the underside of an inclined plate the
sign of the hydrostatic term is reversed.

Since the vertical length scale used is the mean film thickness, h0, the flat (uniform)
film corresponds to the solution h(x) = 1. This solution is unstable with respect
to infinitesimal perturbations of the form exp(βt + ikx) for Marangoni numbers
above a critical value, Mac, given by

Mac =
2

3

(1 + Bi)2

Bi
. (3)

The wavenumber at onset is zero. Above Mac the flat film is unstable to perturba-
tions with wavenumbers 0 ≤ k ≤ kc, where kc is given by

k2
c = Bo

( Ma
Mac
− 1

)
. (4)

In the following we study Eq. (1) on a periodic domain 0 ≤ x < L; by varying L
we can admit different numbers of the most unstable wavelengths 2

√
2π/kc. Due

to translation invariance the resulting problem has the symmetry O(2) (if α = 0) or
SO(2) (if α 6= 0). This change in symmetry when α becomes nonzero turns the pri-
mary bifurcations from the flat state from pitchforks of revolution into Hopf bifur-
cations that create traveling waves [31]. The resulting traveling waves may still be
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viewed as steady states, but only in an appropriately moving reference frame. When
formulated this way the speed v of the frame becomes a nonlinear eigenvalue; this
speed depends on the amplitude of the wave (more precisely on its degree of left-
right asymmetry) and hence on the distance above the critical Marangoni number.
All these solutions satisfy the constraint

h̄ ≡ 1

L

∫ L

0
h(x, t) dx = 1, (5)

i.e., that the mean thickness of the film is constant. Since
∫ L
0 h(x, t) dx represents

the ’volume’ V of the film in one spatial period, we conclude that the volume re-
mains constant during evolution, with V = L at all times. Note that we can always
choose ` = L and hence write Eq. (1) on the domain 0 ≤ x < 1. We prefer,
however, to think of ` as chosen once and for all so that both Bo and the angle α
have fixed values, and then examine the effects of increasing the spatial period L,
thereby admitting longer and longer scales into the problem, and permitting the de-
velopment of coarsening instabilities. Alternatively we can choose the length scale
` such that Bo= 1, i.e., ` =

√
σ0/ρg.

Eq. (1) can be written in the general form

ht = − [Q(h) (α + (hxx/Bo − fh(h))x)]x , (6)

where Q(h) = h3/3 is the mobility factor and f(h) is a free energy, that in the
present case takes the form

f(h) =
1

2
h2 − 3

2
Bi Ma h log

(
h

1 + Bi h

)
. (7)

Thus f(0) = 0 and, when Bi > 0, Ma > 0, f(h) increases with h, although not
necessarily monotonically. When α = 0 Eq. (6) takes the form of a Cahn-Hilliard
equation familiar from spinodal decomposition of a binary mixture [32–34] and
dewetting of a thin liquid film [35–39] albeit with a different potential f , while
for α > 0 it resembles the driven Cahn-Hilliard equation [40] or the equation
describing sliding drops or fronts on an inclined plane [27,41,42]. Eq. (6) with
α = Ma = 0 and the opposite sign for f(h) describes the instability of a thin liquid
film bounded by a substrate and a heavier overlying liquid [43]. Consequently, some
of the general results for these systems, particularly those for stationary solutions
[26,39,43], apply here as well.

3 The horizontal substrate

On a horizontal substrate (α = 0) the film equation takes the form

ht = − [Q(h) (hxx − fh(h))x]x , (8)
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where we have set Bo = 1 since the solutions h(x) for Bo 6= 1 can be recovered
from those for Bo = 1 by stretching the x-coordinate by

√
1/Bo. The results that

follow are computed for the case Bi = 0.5. This equation has variational structure
with the quantity

E[h] ≡ 1

L

∫ L

0

[
1

2
h2
x + f(h) − f(1)

]
dx (9)

as the corresponding Lyapunov functional [5,39]. This structure has an important
consequence: no oscillations are possible and hence no primary or secondary bifur-
cations to traveling or standing waves can take place. The system therefore evolves
monotonically towards the minima of E. These correspond to stationary solutions
h(x) which satisfy

hx =
√

2[f(h) − C1 h − C2]. (10)
Here C1 and C2 are two constants of integration. We define the quantities hi and
hm such that

C1 = fh(hi), C2 = f(hm) − C1 hm. (11)
Thus the thickness h = hi corresponds to the location of an inflection point in the
film profile (hxx = 0), while h = hm corresponds to either maximum or minimum
thickness (hx = 0), depending on the sign of hxx. For localized solutions we take
hm = hi = h∞, where h∞ denotes the film thickness in the far field. It is convenient
therefore to think of the steady solutions as being parametrized by the quantities hi,
hm instead of C1 and C2. The different possible solutions h(x) may be computed
explicitly by numerical integration and represented in the phase plane (h, hx) for
different values of hi, hm. They can also be discussed in terms of a ’potential’ g(h)
defined by g(h) ≡ f(h) − C1 h. Physically g(h) is the energy per unit length of a
depression of finite length and thickness h in an infinitely extended thin film with
asymptotic thickness h∞ = 1. The energy g(h) is plotted for different values of Ma
in Fig. 1. Observe that g(h) may have one (if Ma = 0) or two (if Ma > 0) minima.
The flat film at x → ±∞ (h∞ = 1) corresponds to a global energy minimum for
0 < Ma< 1.0, remains a local minimum (i.e., metastable) for 1.0 <Ma < 3.0, and
is linearly unstable for Ma > 3.0. The local minimum that develops at h = 0 for
Ma > 0 indicates the existence of solutions in the form of liquid drops separated
by “dry spots” where the film thickness vanishes.

As already mentioned, the periodic solutions can also be parametrized using the
mean film thickness h̄ and their ’volume’ V (or spatial period L) instead of the
quantities hi, hm. Since h̄ = 1 due to the scaling used there remains a one parameter
family of solutions for each combination (Ma,Bi). Fig. 2 shows this family in terms
of the amplitude ∆h ≡ hmax − hmin and the relative energy per unit length E
(Eq. (9)) as functions of the spatial period L (thick solid lines). Fig. 2 (a) shows the
results when the flat film is unstable: a one parameter family of steady solutions
bifurcates subcritically from the flat film for which ∆h = 0. These solutions are
all unstable, and we refer to them as nucleation solutions. This is because an initial
perturbation with amplitude less than ∆h (and h̄ = 1) will decay to the flat film,
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Fig. 1. The energy g(h) ≡ f(h) − C1h for different values of Ma and Bi = 0.5 showing
global and local minima. The film is linearly unstable for Ma > 3 for which h = 1 is a
maximum.

while one with larger amplitude will evolve to a drop-like state, as discussed further
below. This family of nucleation solutions terminates at a finite value of L, L = L?,
where the minimum thickness hmin (dashed-dotted line) drops to zero and hmax =
h?, satisfying f(h?) − fh(hi)h? = 0. Nucleation solutions are present even when
the flat film is stable (see Fig. 2 (b)), but the corresponding solution branch is now
disconnected. We say in this case that the flat film state is metastable.

When the flat film is unstable the branch of nucleation solutions shown in Fig. 2 (a)
is only the first of an infinite number of primary solution branches. These bifurcate
from the flat film state at L = Ln ≡ 2πn/kc, n = 1, 2, . . . , where kc is given
by Eq. (4). In the following we use the integer n to label the resulting primary
branches. Each of these branches terminates in a singular point, with L?n = nL?

and identical critical amplitude hmax = h? (see Fig. 4). These limiting solutions
consist of the n = 1 limiting solution replicated n times in a domain of period nL?,
i.e., they consist of n identical drops each just touching its neighbors.

Figs. 2 (a,c) reveal that solutions exist even for hmax > h?. These solutions occupy
the hatched region in the figures and correspond to two parameter families of ‘dry
spot’ or ’hole’ solutions. For these solutions the fixed mean film thickness no longer
reduces the dimension of the solution space: the individual drops can be spaced
arbitrarily and every solution can be distributed periodically in such a way that it
fulfills the requirement h̄ = 1. There are three conditions that restrict the allowed
range of (hi, hmax) for this class of solutions:

(i) The individual drops are not allowed to overlap. In practice, this condition is
only important for periods smaller than the minimal period L? on the nucleation
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Fig. 2. The periodic nucleation and single drop solutions for Bi = 0.5 and Bo = 1.0 in
(a) the linearly unstable (Ma = 3.5 > Mac) and (b) the metastable (Ma = 1.5 < Mac)
regime as a function of L. The solid and dashed-dotted lines show hmax − hmin and hmin
for the nucleation solutions; hmin vanishes at the cusp on the left, located at (L?, h?). The
thick [thin] dashed line shows allowed [forbidden] single drop solutions with θ0 = 0, and
asymptotes to h = hcrit as L → ∞. Stable single drop solutions with θ0 > 0 are found
in the hatched region above this line. Panels (c,d) show the corresponding relative energies
per unit length E(L). The inset in (c) shows the film thickness profiles for the nucleation
solutions at L = 5 (dotted) and L = 10 (solid). Profiles for the drop solutions can be found
in Fig. 5.

branch. This condition determines the dotted boundary of the hatched region in
Fig. 2 (a,b).

(ii) For this type of solution the microscopic contact angle θ0 ≡ hx|h=0 has to exist,
i.e. the expression under the square root on the right hand side of Eq. (10) must be
non-negative even at h = 0. Thus fh(hi)hmax − f(hmax) ≥ 0. The dashed lines in
Figs. 2 (a,b) represent the limiting solutions with θ0 = 0. These bound the hatched
region for L > L? (thick dashed lines), but have no physical meaning for L < L?

(thin dashed lines) since they enter a region where the period of the solution would
be smaller than the corresponding drop width (see Fig. 3).
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Fig. 3. The drop volume L as a function of its width w for Ma = 3.5 (solid line) and
Ma = 1.5 (dashed line) along the thick dashed line in Fig. 2. The dotted line indicates
the relation L = w. The intersections define the points L? . Dry spots are present when
L > w. The vertical lines indicate the construction of a two-drop solution corresponding to
the maximum along the 1:1 branch in Fig. 4 (see text).

(iii) The slope hx at the maximum of the profile hmax has to be a real zero, i.e.,
fh(hi)− fh(hmax) ≥ 0. Unlike cases (i) and (ii) this condition does not result in a
line in the (L, hmax) plane but limits the allowed range of hi for a given hmax. This
limit is more restrictive than the limit arising from (ii) only for hmax > hcrit, where
hcrit satisfies

fh(hcrit)hcrit − f(hcrit) = 0, (12)
i.e.

hcrit = − 1

2Bi
+

√
1

4Bi2
+ 3Ma, (13)

obtained by setting the conditions resulting from (ii) and (iii) both equal to zero.
The thick dashed lines in Figs. 2 (a,b) representing a one parameter family of ’hole’
solutions with θ0 = 0 (Fig. 3) thus originate at L? and diverge to infinite L at
hcrit; no solutions with hmax > hcrit, h̄ = 1 and zero microscopic contact angle
are possible. Once again the limiting drop solutions can be replicated n times to
obtain periodic multidrop solutions with period nL. Each of the resulting solution
branches originates at L = nL?, hmax = h? and diverges to infinite L as hmax
approaches hcrit. These branches, labeled by the corresponding integer n, are also
shown in Fig. 4.

Figs. 2 (c,d) show the energy E for the nucleation solutions (thick solid lines) and
the hole solutions with θ0 = 0 (thick dashed lines). The hole solutions with θ0 6= 0
(not shown) always have higher energy than the corresponding θ0 = 0 solutions.
Thus the θ0 = 0 solutions are energetically favored, a fact that we use as a se-
lection mechanism in the absence of a disjoining pressure in Eq. (1) to describe
partial wetting. The disjoining pressure originates in the interaction between the
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Fig. 4. The amplitude ∆h ≡ hmax − hmin along single drop and multidrop branches with
microscopic contact angle θ0 = 0 as a function of L when Ma = 3.5, Bi = 0.5 and
Bo = 1.0 (cf. Fig. 2a). The solid lines show the primary n = 1, . . . , 5 branches consisting
of periodic nucleation solutions (lower part) and the periodic single drop solutions (upper
part) obtained by replication of the n = 1 solution. The dashed lines show the different
possible multidrop branches with maximal internal symmetry and no dry holes. Multidrop
solutions with broken internal symmetry are present between these multidrop branches as
described in the text. Every multidrop solution of this type in turn represents the starting
point for i+ j branches containing finite dry holes.

fluid molecules and those of the substrate and acts on length scales below 100 nm
[2], i.e. much smaller than the mean thickness of the film. Such a pressure also
selects a unique solution branch from within the hatched region in Fig. 2 but this
solution differs from the one selected on the basis of the above energy argument
since the selected microscopic contact angle will be nonzero.

Figs. 5 (a,b) show two series of possible drop profiles, each obtained for identi-
cal values of the parameters (Ma, Bi, Bo) and fixed volume V = L. Fig. 5 (a) is
computed for Ma = 3.5, Bi = 0.5, Bo = 1.0, corresponding to a linearly un-
stable uniform film, and the drops shown all have volume V = 30.0. In contrast
Fig. 5 (b) is for Ma = 1.5, Bi = 0.5, Bo = 1.0, corresponding to a metastable flat
film, and V = 5.0. The insets in the figure give the width w of the drops and the
contact angles determined from Eq. (10): the microscopic contact angle at h = 0
given by θ0 = hx|h=0 and the mesoscopic contact angle defined as the slope at hi:
θi = hx|h=hi . These angles are shown as a function of hmax for several different
values of L in Fig. 6. The solid profile in Fig. 5 (a) corresponds to a solution on the
thick dashed line in Fig. 2 (a). However, the corresponding solution in Fig. 5 (b) is
“forbidden” because its widthw > 5, in conflict with the requirement (i) above. The
next drop shown (dashed line) is the limiting drop with w = L. This solution has
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Fig. 5. Different drop profiles for Bi = 0.5, Bo = 1.0 and fixed volume (a) L = 30,
Ma = 3.5, (b) L = 5, Ma = 1.5. The maximum thickness hmax, the thickness hi at
hxx = 0 and the width w of the drop are listed, as are the contact angles θ0 = hx(0) and
θi = hx(hi).

θ0 > 0 and so lies above the thick dashed line in Fig. 2 (b). Fig. 3 shows graphically
the extent of the dry spots for these two values of Ma, Ma = 3.5 (solid line) and
Ma = 1.5 (dashed line). The figure shows the volume V (i.e., the spatial period L)
as a function of the width w of the drop. Allowed single drop solutions exist above
the dotted curve V = w since for such dropsw < L. The extent of the dry spot, i.e.,
L − w, is then given by the distance between the curve V (w) and the line V = w.
The intersection of these two curves marks the location of V (w) = w = L?. Note
that the dry spots are larger for larger Ma. This is because the increased temper-
ature dependence of the surface tension holds the drop together more effectively.
Fig. 7 shows the contours of the flow inside each drop obtained from the lubrication
approximation,

u = (ψz,−ψx), (14)
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Fig. 6. The microscopic (θ0, solid lines) and mesoscopic (θi, dashed lines) contact angles
as a function of the maximum film thickness when Bi = 0.5, Bo = 1.0, Ma = 3.5 and fixed
volume L = 5 (thin lines) and L = 10 (thick lines).

with the streamfunction ψ given by

ψ(x, z) =

(
z2h

2
− z3

6

) (
1

Bo
hxxx + α − hx

)
+
z2

2

MaBihx
(1 + Bih)2

. (15)

This flow is a consequence of the thermal gradient along the free surface of the
drop due to heat loss from its surface, and takes the form of an outward flow along
the (heated) bottom of the drop and its replenishment by cooler liquid descending
from its apex. The vigor of this circulation determines the contact angles θ0 and
θi. Such flows are of course absent from liquid drops that form on an unheated
horizontal substrate as a result of a molecular interaction between the substrate
and the fluid, i.e., via the inclusion of a disjoining pressure in the hydrodynamic
formalism [38,39], even though the governing equation has the same structure as
our Eq. (8) and the shapes of the resulting drops are quite similar.

Thus far we have only discussed periodic arrays of drops, containing only a single
drop per spatial period. These periodic solutions are linearly stable, and no coarsen-
ing can occur because no liquid can pass across the dry zones where h = 0. This is
due to the absence from the model of additional interactions between the substrate
and the film. A consequence of this fact is that drops of different sizes can be dis-
tributed arbitrarily provided they do not overlap and their overall volume matches
the total occupied space. Because of the dry substrate between the drops the result-
ing configurations are all linearly stable. However, the dependence of the energy E
on the period L implies that only the single drop solution whose period matches the
system size is absolutely stable, as in the corresponding dewetting problem [39].

Arbitrarily spaced drops on a homogeneous surface should have identical micro-
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Fig. 7. The streamlines inside a drop with (a) θ0 = 0 when Bi = 0.5, Bo = 1.0, Ma = 3.5,
L = 30, streamlines are shown for ψ = ±0.000205, ±0.001, ±0.0025, ±0.005, ±0.01,
±0.02, ±0.03; and (b) w = L when Bi = 0.5, Bo = 1.0, Ma = 1.5, L = 5, ψ = ±0.0002,
±0.001,±0.0025,±0.005, ±0.01,±0.02, ±0.03. The flow descends from the apex where
cooling is strongest.

scopic contact angle. Within our model we must demand that this angle be zero,
i.e., we take drops on the dashed line in Fig. 2 (a) or (b), respectively. Individual
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drops in a multidrop solution of period L are no longer restricted by the require-
ment (i) which only applies to the overall solution. Thus a general n-drop solution
without finite dry holes must satisfy

n∑

i=1

V (wi)− wi = 0. (16)

Every n-drop solution fulfilling this condition provides a starting point for an in-
finite number of solution branches with dry holes of finite length between the in-
dividual drops obtained by replacing one or more drops of width wi by drops of
width w̃i with V (w̃i) > V (wi), provided only that dV (w)/dw|wi > 1 for these
drops (cf. Fig. 3). This is a consequence of the fact that the total volume determines
the spatial period L via Eq. (5). The resulting dry interval

∑
V (w̃i)− w̃i can be dis-

tributed arbitrarily among the n interdrop intervals. Note that drops with wi < L?

do not constitute solutions in their own right but must be combined with others with
wj > L? to produce an admissible solution.

We now discuss, somewhat in the spirit of Ref. [43], the possible solutions in the
simplest case of two drops per period, and sketch the results for the case with three
or more drops.

Two drops: If the width of each of the constituent drops exceeds L? all drop
combinations are allowed. Since V (w1) + V (w2) is the total volume of the two
drops, the spatial period L of the solution follows from the requirement [V (w1) +
V (w2)]/L = h̄ = 1, i.e., L = V (w1) + V (w2). The dry length in one period is
therefore V (w1) − w1 + V (w2) − w2 > 0, and this can be distributed arbitrarily
since the drops do not interact.

If, however, the width of one of the drops is smaller than L?, i.e., a solution forbid-
den as a single drop solution, the second drop must fulfill the condition V (w2) −
w2 > −(V (w1) − w1). Fig. 3 shows that for every drop with w1 ≤ L? there is ex-
actly one second drop with V (w2)−w2 = −(V (w1)−w1) ( Eq. (16) with n = 2).
Such a solution does not admit dry spots and therefore has period L = w1 +w2. To
compute this branch we turn the above relations into a plot of the amplitude as a
function of L. The resulting curve starts at the singular point on the primary n = 1
branch where w1 = 0, w2 = L? and terminates at the singular point on the primary
n = 2 branch where w1 = w2 = L?, and is indicated in Fig. 4 by the dashed line
labeled 1:1. The thick vertical lines in Fig. 3 correspond to the maximum amplitude
along the 1:1 branch. Branches of solutions with dry spots fill the region in Fig. 4
above the 1:1 branch.

Three drops: Solutions consisting of three drops with no dry holes between
them can be constructed in the same way. In general once the first drop is fixed
the remaining volume can be distributed among the remaining two drops at will.
If, however, we impose additional internal symmetries a unique solution branch is
selected.

15



(i) For example, we may assume that two identical drops withw < L? are combined
with one drop with w > L?. For every such pair there is exactly one possible third
drop with V (w3) − w3 = −2(V (w1) − w1). Calculating w3 for all 0 ≤ w1 ≤ L?

yields the branch denoted by 2:1 in Fig. 4 connecting the singular points at L? and
3L? on the n = 1 and n = 3 primary branches, respectively.

(ii) If, on the other hand, we combine two identical drops with w > L? with one
drop with w < L? we obtain the branch labeled in Fig. 4 by 1:2. This branch
connects the singular points with periods 2L? and 3L? on the n = 2 and n = 3
primary branches, respectively.

It is possible to check that by breaking the internal symmetries imposed above one
can obtain any state between the curves 1:1, 1:2 and 2:1 in Fig. 4.

Multiple drops: We can insert any number i of drops of zero width at the sin-
gular point L = L? on the n = 1 branch, and each of these can be followed in L,
giving rise to the family of branches labeled i : 1. Each of these branches consists
of solutions with i identical drops (of zero width at L = L?) and one different drop
(of width L? at L = L?) and no dry spots; as one traverses the curve labeled i : 1
the zero width drops gradually grow and become identical to the original drop at
L = (i + 1)L?, where the i : 1 branch terminates on the i + 1 primary branch.
In addition each singular point L = nL?, n = 1, 2, . . . , generates an uncountable
number of solution branches consisting of solutions with dry spots (not shown), and
these fill the region in Fig. 4 above the no-dry-spot solutions just described. The ac-
cessible areas for these solutions can be constructed in a straightforward way. First
one constructs n-drop branches with inner symmetries by assuming that i identical
drops with w < L? are combined with j = n− i identical drops with w > L?. This
allows for a unique solution with j(V (wj) − wj) = −i(V (wi) − wi). Calculating
wj for all 0 ≤ wi ≤ L? gives the i : j branch connecting the singular points on
the n = j and n = i + j primary branches, respectively. The area accessible to
general n-drop solutions lies between all the 1 : j branches (1 ≤ j ≤ n − 1) and
the n − 1 : 1 branch. Fig. 4 shows all the n-drop branches with inner symmetries
for n ≤ 5.

The large degree of degeneracy exhibited by this problem is a consequence of the
absence of interaction between drops separated by dry spots. This in turn is a conse-
quence of our idealized formulation of the problem. As is well known, the degen-
eracy can be lifted by incorporating microscopic physics, such as fluid-substrate
interactions, into the formulation of the problem. However, as discussed next, the
degeneracy is also lifted when the film is placed on an inclined substrate. In the ab-
sence of disjoining pressure or contact line pinning by microscopic heterogeneities
all solutions ’slide’ as soon as the substrate is inclined, and dry spots are no longer
possible. Thus for nonzero inclinationα, however small, all drops communicate via
ultrathin inter-drop films, and coarsening transitions can proceed. This is the subject
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of the remainder of the present paper. The plethora of sliding solutions identified in
the next section for small values of α is of course an echo of the degeneracy of the
α = 0 case.

4 The inclined substrate

4.1 Weakly nonlinear theory

When α > 0 finite wavelength instabilities of the flat film are generically associated
with Hopf bifurcations. These lead to traveling waves, i.e., structures that slide
down the substrate [31]. In a periodic domain of period L these occur at

Ma = Man ≡Mac

(
1 +

k2
n

Bo

)
, (17)

where kn ≡ 2πn/L, n = 1, 2, . . . . The associated frequencies are ωn0 = αkn. Near
each of these bifurcations we can use perturbation theory to determine the direction
of branching of the resulting traveling waves, as well as their speed.

We write h(x, t) = 1+εδ(ξ), where ξ = x−vt, and integrate the resulting equation
once:

1

3Bo
δξξξ +

(
Ma− 1

3

)
δx + αδ = v(ε)δ+K(ε) + ε

(
− 1

Bo
δδξξξ − αδ2 +Aδδξ

)

+ ε2
(
− 1

Bo
δ2δξξξ −

1

3
αδ3 +Bδ2δξ

)
. (18)

Here K(ε) is a constant of integration determined by the requirement
∫ L

0 δ dx = 0,
and

Ma ≡ 1

2

MaBi

(1 + Bi)2
, A ≡ 1 − 2Man

1 + Bi
, B ≡ 1− 1 − 2Bi

(1 + Bi)2
Man. (19)

Thus

Man =
1

3

(
1 +

k2
n

Bo

)
. (20)

To solve Eq. (18) we write

δ(ε) = δ0 + εδ1 + ε2δ2 + . . . , v(ε) = v0 + εv1 + ε2v2 + . . . ,

K(ε) =K0 + εK1 + ε2K2 + . . . , (21)
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and define the small parameter ε using

Ma = Man + ε2µ2. (22)

Thus µ2 = O(1) measures (for each n) the distance from the nth Hopf bifurcation.
AtO(1) we now find that δ0 = a sin knξ, v0 = α,K0 = 0 and recover the thresholds
(20). At O(ε) the solvability conditions, that is, the conditions guaranteeing that δ1

is a periodic function of x, imply that v1 = 0, K1 = αa2/2 and hence that

δ1 = b1 cos 2knξ − c1 sin 2knξ, (23)

where

b1 ≡
1

4

(
1 +

BoA

k2
n

)
a2, c1 ≡

Bo

4k3
n

αa2. (24)

The corresponding solvability conditions at O(ε2) give the desired results:

µ2 = −
[

1 + 4Bi + 6Bi2

12(1 + Bi)2
+

1

72

(
1 + 3Bi

1 + Bi

)2(
1 +

Bo

k2
n

)](
1 +

k2
n

Bo

)
a2 +

α2Bo

4k4
n

a2,

(25)

v2 = − α

8(1 + Bi)

[
5 + 7Bi + (1 + 3Bi)

Bo

k2
n

]
a2. (26)

Thus for small inclinations α the bifurcation is always subcritical, cf. Figs. 2 and 8
below, while for sufficiently large inclinations the bifurcation is always supercriti-
cal, regardless of n. For n = 1 the transition from subcritical to supercritical occurs
at α ≡ α1 = 0.168, in agreement with Fig. 9, box 5. In all cases the nonlinearity
reduces the speed of the traveling wave.

In the following we choose instead to fix the value of Ma (> 1/3) and vary the
spatial period L to allow longer and longer wavelength disturbances. In this case
instability sets in at Ln ≡ 2πn[Bo(3Ma − 1)]1/2 and if we write

L = Ln + ε2ν2 (27)

we find that

ν2 =
1

8(1 + Bi)2

Man

3Man − 1

[
2(1 + 4Bi + 6Bi2)− (7 + 30Bi + 45Bi2)Man

]
a2

+
α2

4Bo

a2

(3Man − 1)2
, (28)

v2 = − α

8(1 + Bi)

[
5 + 7Bi +

1 + 3Bi

3Man − 1

]
a2. (29)

These results enable us to plot the loci of µ2 = 0 in the (α,Bi) plane for different
values of the spatial period, as well as the loci of ν2 = 0 in the (α,Bi) for differ-
ent values of Ma. These plots provide a great deal of information about the small
amplitude behavior of the system.

18



Like the small amplitude states all larger amplitude nonuniform solutions of Eq. (6)
drift downstream. Such solutions rapidly become non-sinusoidal. The simplest ones
of this type are stationary in reference frames moving with constant speed and
satisfy the equation

Q(h) (α+ (hxx/Bo − ∂hf(h))x)− vh+ C0 = 0, (30)

where v is the downstream velocity in the laboratory frame. Here x denotes the
comoving variable x+ vt, and C0 is a constant of integration that, in contrast to the
reflection-symmetric case α = 0, cannot be set to zero. The constant C0 may be
identified with the flux of liquid in the comoving system. We choose

C0 = Γ0 + vh0 ≡ −Q(h0)α + v h0, (31)

corresponding to a uniform film of thickness h0. The corresponding flux in the
laboratory frame is then given by Γ0 = −Q(h0)α. Note that for a given value of
Γ0, i.e., of h0, there may be two homogeneous solutions with this flux, h = h0 and
h = h′0, where

h′0 = h0

(
−1

2
+

√
3v

αh2
0

− 3

4

)
. (32)

The second solution is therefore present whenever v/αh2
0 > 1/3, and corresponds

to the so-called conjugate solution, as discussed in the falling film context, for in-
stance, in [44,45]. The lengths h′0 and h0 appear in the profile of drops of large
volume, with h′0 corresponding to the thickness in the plateau region between ad-
jacent drops, and h0 characterizing the thickness of the plateau region within the
drop (see below). Continuity between the cases α = 0 and α 6= 0 demands that
as α → 0 these lengths converge to the ones already identified for α = 0, i.e., to
the fixed points of Eq. (10). These are 0 and hcrit given by Eq. (13). These results
can be used to calculate the velocity of long drops in the limiting case of vanishing
inclination,

lim
α→0

v

α
=

h2
crit

3
. (33)

In [39,27] a similar problem is discussed in connection with the transition between
dewetting on a horizontal plane and sliding drops on an inclined plane.

The selection problem for α = 0 discussed in Section 3 is resolved dynamically
once the substrate is inclined. The only “dry spot” solutions that can move with-
out involving divergencies at the contact line are the ones with zero microscopic
contact angle, i.e., the ones on the thick dashed line in Fig. 2. It is therefore not
surprising that the stationary solutions of Eqs. (30,31) with periodic boundary con-
ditions reproduce, for very small values of α, the thick (and thick dashed) curves of
Fig. 2. However, the “dry spots” on the upper (thick dashed) branch are no longer
dry, and instead adjacent “drops” are separated by a very thin film, of thickness of
order 10−5 for α = 0.001. The resulting drop solution slides downslope with a very
small velocity (v ≈ 10−5). The appearance of such ultrathin films can be viewed
as dynamic generation of precursor films similar to those invoked on horizontal
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substrates to permit contact line motion, or simply as a dynamic effect: the moving
drops leave behind them a thin film, and in a periodic array there is no ’first’ drop.
However, as discussed below, the stability of the resulting configuration is another
matter, and depends on the relevant timescales for the movement of the drops and
any instability of the ultrathin film, as well as on the distance between adjacent
drops. In the following section we examine the properties of this type of solution in
greater detail.

4.2 Stationary solutions and their linear stability

In this section we study in detail the various possible spatially periodic uniformly
traveling solutions of Eqs. (30,31) together with their linear stability properties.
We do this using continuation [21] either in the period L or the amplitude ∆h,
starting from small amplitude solutions obtained as neutrally stable solutions of the
linearized problem, i.e., sinusoidal solutions with period Lc = 2π/kc where kc is
given by Eq. (4). We emphasize, however, that on the real line all perturbations with
0 < k < kc, i.e., L > Lc, grow in time. We may start from a solution consisting
of just one period Lc or from a ’replicated’ solution with period nLc, where n is an
integer. We call the resulting solution branches emanating from the zero amplitude
state (the uniform film) n-mode primary branches. Branches bifurcating from these
in secondary bifurcations will be called secondary solution branches. The n > 1
primary branches can be obtained directly from the n = 1 branch by multiplying
the solution period by n. Solutions on such branches have ”internal symmetry” Zn,
in addition to the SO(2) symmetry due to translation invariance of the system. The
secondary bifurcations either respect the discrete Zn symmetry (in which case they
correspond to saddle-node bifurcations) or break it, creating a secondary branch of
lower symmetry.

The continuation yields a family of stationary nonlinear solutions we call h0(x);
these solve the nonlinear eigenvalue problem for the speed v specified by Eqs. (30,31),
subject to periodic boundary conditions with spatial period L. To determine the
stability of these solutions we write h(x) = h0(x) + εh1(x) eβt, where h1 is an
infinitesimal perturbation in the comoving frame. Eq. (6), linearized in ε, yields an
eigenvalue problem for the growth rate, β, and the associated eigenfunction, h1(x):

β h1 = {[Qh(h0xfhh − h0xxx/Bo)]x + (Qh0xfhhh)x}h1

+[2Qh0xfhhh +Qh(2h0xfhh − h0xxx/Bo)]h1x

+Qfhh h1xx − Qhh0x h1xxx/Bo − Qh1xxxx/Bo
−(αQhh1)x + vh1x, (34)

where all derivatives of f are functions of the stationary profile h0(x) and Q =
h0(x)3/3.
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The eigenvalues and eigenfunctions of this problem are obtained using a three step
procedure. First, h0 is determined using numerical continuation techniques [21]
starting from analytically known small amplitude solutions as described in [27].
Second, the eigenvalue problem is discretized in space and solved numerically. The
necessary equidistant discretization imposes a strong limitation on the parameter
range where it can be used. The method gives, for instance, no reliable eigenvalues
for large periods or step profiles. To avoid this problem we employ a third step,
using the results for small periods as starting solutions for numerical continuation
in L of the solution of the nonlinear eigenvalue problem (30) together with the
linear eigenvalue problem (34). This extended system consists of 11 first order
differential equations (3 for h0 and 8 for the real and imaginary parts of h1). Using
this procedure we can calculate both h0 and h1 and the associated eigenvalues v
and β in parallel, for any system parameters. Moreover, points of special interest,
such as the location of zero or maximum growth rate, or of the transition between
real and complex eigenvalues, can also be followed through parameter space. This
procedure works not only for the primary solution branches but also for secondary
branches, for reasons explained in the Appendix.

4.2.1 The n = 1 primary branch

We start by studying the primary branch for n = 1 as a function of α. In Fig. 8 (a)

we show the rms amplitude ||δh|| ≡
√∫L

0 (h− h̄)2 dx/L along this branch as a
function of the imposed spatial period L for several values of the inclination α
computed for Ma = 3.5, Bi = 0.5 and Bo = 0.5. The figure retains the qualitative
properties of the nucleation and drop solutions found for α = 0 (see Figs. 2 and 4).
Specifically, the subcritical small amplitude nucleation solutions present for α = 0
persist for sufficiently small α, together with a vestige of the cusp at L ≈ L? with
which they terminate when α = 0. Likewise, the large amplitude “drop” solutions
persist, but with one important difference: these solutions contain no dry spots, and
hmin is strictly positive, albeit very small. However, the figure also shows that with
increasing α the primary branch changes its shape dramatically. First, the amplitude
of the drop-like solutions decreases, while at the same time their downstream veloc-
ity increases (Fig. 8 (b)). This is not surprising: as α increases the film flows faster,
and hence for a fixed prescribed flux in the laboratory frame the film thickness must
be less. Fig. 8 (c) shows these results in terms of the amplitude ∆h ≡ hmax− hmin,
and shows that asymptotically all these solutions become independent of L. How-
ever, the fact that the decrease in amplitude is ultimately nonmonotonic (at fixed
L) indicates that rather more must be happening in the nonlinear regime. This new
behavior comes in through a hysteresis bifurcation that introduces a pair of saddle-
node bifurcations on the upper part of the branch. Parts of the branch then pinch
off yielding isolated loops or isolas of solutions. At the same time the primary bi-
furcation changes from subcritical to supercritical. From Fig. 8 (a) it is difficult to
infer how exactly the saddle-nodes appear. To understand this process better we fol-
low in Fig. 9 the loci of the saddle-nodes in Fig. 8 (a) as a function of α. Note that
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Fig. 8. Traveling wave solutions of Eq. (1) along the n = 1 primary branch as a function
of L when Ma = 3.5, Bi = 0.5 and Bo = 0.5. (a) The L2 norm of δh ≡ h(x) − 1
for different values of the inclination α. (b) The corresponding drift velocity v. (c) The
amplitude ∆h ≡ hmax − hmin. The linestyles in (b) and (c) correspond to those used in
(a). The saddle-node departs from its location at L ≈ L? once α > 0.2.

only the parts decorated by the dots correspond to the branches shown in Fig. 8; the
remainder lie on branches that are not connected to the trivial (flat) state. Fig. 10
provides a more complete picture of the evolution of the primary branch with α,
as well as including other n = 1 branches (dashed and dotted lines) produced via
secondary bifurcations from n > 1 primary branches. The latter are omitted from
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Fig. 9. The loci of saddle-node bifurcations on the n = 1 branches in the (α, L) plane
(solid black lines) obtained by continuation for Ma = 3.5, Bi = 0.5 and Bo = 0.5. The
decoration by the dots indicates saddle-nodes on the primary n = 1 branch; the remainder
are on secondary branches. The events marked (i)-(iii) indicate the creation and annihilation
of pairs of saddle-nodes, and the emission of a saddle-node from the primary bifurcation of
the flat state, respectively. The boxes 1 to 6 frame sequences of transitions discussed in the
text. The horizontal dotted line indicates the critical period 2π/kc for the linear stability of
the flat film (Eq. (4)), while the vertical dotted line indicates the transition between sub- and
supercritical bifurcation as obtained from weakly nonlinear theory in Section 4.1 (Eq. (25)).
The insets show a 30× 60 enlargement of box 1, and a 6× 1 enlargement of box 2.

Fig. 8 (a) for the sake of clarity.

In Fig. 9 different types of global bifurcations can be seen:
(i) Creation of a pair of saddle-nodes.
(ii) Annihilation of a pair of saddle-nodes.
(iii) Emission of a saddle-node from the primary bifurcation on the flat film solu-
tion (i.e., a transition from sub- to supercritical branching).

Annihilation or creation of saddle-nodes can occur with or without a change in the
number of branches. The possible processes are most easily described in terms of
the corresponding normal forms for an amplitude a. We write these in terms of a
distinguished bifurcation parameter λ and an unfolding parameter ε. The possible
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Fig. 10. The L2 norm ||δh|| as a function of L along the primary (solid lines) and different
secondary (dashed and dotted lines) n = 1 branches for several values of α and Ma = 3.5,
Bi = 0.5 and Bo = 0.5. Note the appearance of a hysteresis bifurcation between (a) and
(b) and a reconnection of the primary and secondary branches between (b) and (c). In (d)
the primary branch is supercritical, and an isola is present. Heavy lines indicate drop-like
solutions.

processes are:

(a) a hysteresis bifurcation, described by the normal form

λ + εa− a3 = 0, (35)

(b) the destruction or creation of a loop, described by the normal form

a2 + λ2 − ε = 0, (36)

and (c) a ’necking’ bifurcation resulting in reconnection of existing branches, de-
scribed by the normal form

a2 − λ2 + ε = 0. (37)

In (a) when ε < 0 there are no saddle-node bifurcations on a(λ); the branch devel-
ops an inflection point, d2λ/da2 = 0 at ε = 0, and two saddle-node bifurcations for
ε > 0. In contrast, in (b) solutions only exist in the interval −√ε < λ <

√
ε and

form a closed loop that shrinks to nothing as ε decreases to zero. In (c) when ε < 0
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the solutions form two hyperbolas a = ±
√
λ2 − ε separated by 2

√−ε in a. When
ε = 0 the two hyperbolas pinch together at the origin forming two straight lines,
a = ±λ. For ε > 0 these reconnect forming two hyperbolas separated by 2

√
ε in λ

and introducing two saddle-node bifurcations. For more details see [46].

The boxes in Fig. 9 frame particularly interesting transitions that make use of these
elementary processes. We describe these from left to right, i.e., for α increasing:
- 1. A secondary branch develops a pair of additional saddle-nodes below the origi-
nal one in a hysteresis bifurcation. The upper two then annihilate in a (reverse) hys-
teresis bifurcation, resulting in an overall decrease in the amplitude at the ’nose’.
This sequence of transitions corresponds to a quartic fold, with the normal form
a4 − λ + ε1a + ε2a2 = 0 [46], and is responsible for the presence of the struc-
ture shown in the inset. This structure is a consequence of a projection of the two
parameter unfolding in (ε1, ε2) onto a single unfolding parameter ε in Fig. 9. The
same structure is present at the vertex of the neighboring curve (corresponding to a
different secondary branch), just below box 2.
- 2. A hysteresis bifurcation creates a saddle-node pair which is then destroyed in
another hysteresis bifurcation, creating a closed loop of saddle-node loci (see en-
largement of box 2 in Fig. 9).
- 3. A necking bifurcation between the primary and one of the secondary n = 1
branches at L ≈ 28 creates another pair of saddle-node bifurcations, followed by
the annihilation at L ≈ 18 of one of these with the saddle-node at the ’nose’ of
the original secondary n = 1 branch (a hysteresis bifurcation). This ’reconnection’
between the primary and secondary n = 1 branches thus changes the large L be-
havior of the primary branch, with the thick solid curve in Fig. 10 (b) becoming a
thick dashed curve in Fig. 10 (c) and vice versa. The remaining saddle-node created
in the necking bifurcation moves to L =∞ prior to the hysteresis bifurcation. This
corresponds to the disappearance of the dotted branch in Fig. 10 (b).
- 4. Here the first bifurcation is again a necking bifurcation, but this time it switches
the termination of the primary branch to a different n > 1 branch than before (cf.,
the solid and dashed curves in Figs. 10 (b,c)). This transition is followed by a hys-
teresis bifurcation on the primary branch at small L, followed by a reverse necking
bifurcation that detaches an isola of solution from the ’crest’ of the primary branch
(cf. Fig. 10 (c)). Before this loop shrinks to zero the large L saddle-node (and the
whole of the dashed branch in Fig. 10 (c)) moves off to infinity. Thus only one
saddle-node (the ’nose’ on the primary branch) remains for α on the right bound-
ary of box 4.
- 5. A saddle-node is emitted from the primary bifurcation at L = Lc when α1 ≈
0.168 (dotted line) as predicted by the weakly nonlinear theory in Section 4.1.
At this point the primary bifurcation changes from subcritical to supercritical (cf.
Figs. 10 (c,d)). This event is followed by the creation of an isola of solutions to the
right of this saddle-node, which reconnects with the primary branch as α increases,
thereby annihilating two of the saddle-nodes.
- 6. The ’nose’ on the primary branch pinches off at l ≈ 18 via a necking bifurca-
tion and the resulting isola shrinks and vanishes with increasing α. The net effect
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is to shift the ’nose’ to the right (cf. Fig. 10 (d)).
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Fig. 11. Same as Fig. 8a but for Ma = 5.0.

For larger values of Ma the behavior becomes yet more complicated, as illustrated
in Figs. 11 for Ma = 5.0. We do not discuss here the details of the transitions
indicated by this figure, except to point out that the saddle-node bifurcation on the
primary n = 1 branch departs from L = L? once α exceeds α ≈ 0.4. This value
should be compared with α = 0.2 for a similar effect at Ma = 3.5.

4.2.2 Linear stability of the n = 1 branch

Fig. 12 (a) summarizes the linear stability results along the n = 1 primary branch
when Ma = 3.5, Bi = 0.5, Bo = 0.5 and α = 0.135: the broken heavy lines in-
dicate intervals of stability. All of these lie on the upper part of the branch and
hence correspond to drop-like states. These results are obtained for perturbations
of the same wavelength L as the basic state h0(x), i.e., instability with respect to
longer wavelengths (coarsening) is not indicated. Such longer wavelength pertur-
bations are considered when performing the stability analysis of the n > 1 primary
branches. Some of the n > 1 primary branches are also shown. The proximity of
these branches to the n = 1 branch may be responsible for some of the complexity
revealed by the stability analysis (see below).
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Fig. 12. (a) The stability properties of the primary n = 1 branch with respect to perturba-
tions of period L when Ma = 3.5, Bi = 0.5, Bo = 0.5 and α = 0.135. Solid (dashed) lines
represent unstable (stable) solutions. (b) Largest eigenvalues β along the upper (thick lines)
and lower (thin lines) parts of the primary n = 1 branch. Solid (dashed) lines represent real
(real part of a complex pair of) eigenvalues. The solid black dots in (a) indicate the location
of secondary steady state and Hopf bifurcations.

Because the n = 1 primary branch bifurcates subcritically from the linearly sta-
ble flat film solution the branch is initially linearly unstable, and remains so until
the saddle-node bifurcation at which the branch turns towards larger L. As already
explained, this bifurcation is located near L = L?, and signals the transition from
nucleation solutions to drop-like solutions. Thus the drop-like solutions are initially
stable. Fig. 12 shows that for Ma = 3.5 and α = 0.135 this bifurcation occurs at
L ≈ 8 (L? = 6.2) and corresponds to a real eigenvalue passing through zero. In
Fig. 12 (b) the leading real eigenvalue along the branch of drop-like solutions is
indicated by a heavy line, and one sees that this eigenvalue goes through two suc-
cessive loops within which it in fact becomes positive. These loops are responsible
for the pairs of saddle-node bifurcations visible in the bifurcation diagram shown
in Fig. 12 (a). Fig. 12 (b) also shows the complex eigenvalues (dashed lines), and
shows that the same complex eigenvalue is responsible for the three successive
Hopf bifurcations indicated in Fig. 12 (a). Note, in particular, the presence of back-
to-back Hopf bifurcations that introduce an instability ’bubble’ between L ≈ 14
and L ≈ 17.
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Fig. 13. A comparison between the solutions h0(x) and the unstable eigenfunctions h1(x)
at several different locations along the primary n = 1 branch for the parameters of Fig. 12.
(a) L = 10, (b) L = 15 (upper unstable interval), (c) L = 15 (middle unstable interval),
and (d) L = 27. Note that the steady state instability (Figs. a,b) is localized in the hole
region of each solution, while the oscillatory instability (Figs. c,d) has largest amplitude at
the front of the drop. The sign of the eigenfunctions h1 is arbitrary but their amplitude is
normalized such that ||h1|| = 1; in Figs. (c), (d) the solid and dotted lines show the real and
imaginary parts of the eigenfunction h1(x, t) at a particular instant in time.

Fig. 13 compares the unstable eigenfunctions h1(x) with the corresponding profiles
h0(x) at four locations along the primary branch. Fig. 13 (a) shows h0(x) and h1(x)
at L = 10 along the lower (nucleation) branch. The solution h0(x) reveals an in-
cipient ’hole’ at which the unstable eigenfunction is largely localized. Figs. 13 (b,c)
show the corresponding results for L = 15 in the two unstable intervals along the
upper branch. The basic state in the first of these (the ’upper’ unstable interval) has
a more pronounced ’hole’ as expected for a solution on the drop-like part of the
primary branch, with the unstable eigenfunction localized at the front of the drop
(at the right of the figure), and even more strongly at the inflection point at the
back of the drop. These facts suggest that the hysteresis in this part of the primary
n = 1 branch is in fact due to an incipient instability attempting to introduce a sec-
ond droplet into the solution. We believe that the proximity of the n = 2 primary
branch (labeled n = 2 in Fig. 12 (b)) to this hysteresis loop supports this interpre-
tation of the unstable eigenfunction. The results shown in Fig. 13 (c) are for the
unstable solution on the lower part of this hysteresis loop. The unstable eigenvalue
is now complex (see Fig. 12 (b)) but the unstable eigenfunction remains localized at
the front and back of the drop. However, this time the largest oscillation amplitude
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is found at the front of the drop, indicating that the instability can be associated with
an oscillatory instability of the front. As L increases the drop develops a longer and
longer plateau of thickness h ≈ 1 (Fig. 13 (d) for L = 27) but the oscillatory in-
stability remains associated with the front of the drop, with a much broader and
smaller maximum amplitude associated with its back (Fig. 13 (d)). Note, however,
that since Ma>Mac the plateau region must itself be unstable, and Fig. 13 (d) shows
that this is indeed so.
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Fig. 14. Profiles of primary (solid lines) and secondary (dashed lines) n = 1 solutions for
Ma = 3.5, Bi = 0.5, Bo = 0.5 and different periods L when (a) α = 0.08, (b) α = 0.113.
Thick (thin) lines refer to upper (lower) parts of each branch as in Fig. 10. Note the asym-
metry in the profiles and the development of an extended ’dry’ spot as L increases. The
solutions in (b) develop an undershoot just before the front of the drop; this undershoot
manifests itself as a small spiral in the (h, hx) phase portraits shown in the right set of
panels. The secondary solutions along the dotted branch in Fig. 10 are not shown.
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4.2.3 Connection with the α = 0 solutions

It is of interest to understand how the structure of h0(x) shown in Fig. 13 is con-
nected to the nucleation and drop solutions obtained for α = 0. To this end we
return to Fig. 10 (a) with α = 0.08, and plot the solutions h0(x) at selected points
along the upper (thick continuous line) and lower (thin continuous line) segments of
the n = 1 branch, and compare these with solutions along the upper (thick dashed
line) and lower (thin dashed line) part of the secondary branch also included in the
figure. The latter is strongly subcritical and does not connect to any of the primary
branches with n ≤ 4. For this value of α the saddle-node on the n = 1 branch
is located at L ≈ 6.9. Fig. 14 (a) shows that for L not too large (L = 10) the up-
per branch solutions do indeed resemble the drop solutions with zero contact angle
present for α = 0. The figure also shows that with increasing L (e.g., L = 40) these
solutions become markedly asymmetrical but still retain their drop-like appearance.
Note, in particular, the gradual development of a narrow undershoot in the profile
marking the front of the drop. This is the thinnest part of the film, and indicates
where any rupture may be expected to occur. The adjacent phase plane projections
show that this overshoot is associated with the appearance of a complex (spatial)
eigenvalue of a fixed point hx = hxx = hxxx = 0 of Eq. (30) written as a dy-
namical system in the spatial variable x. The figure also shows that the solutions
on the secondary branch are dominated by the n = 1 solution, although they also
contain an admixture of n = 2. With increasing L the thin plateau region disap-
pears, but the thinnest part of the film remains associated with the front of the drop,
and comparable in magnitude to that along the primary n = 1 branch. These con-
clusions apply to the other secondary branches that are present in this region (see
Fig. 10 (a)). Fig. 14 (b) shows the corresponding results for α = 0.113 for which
the saddle-node on the primary n = 1 branch occurs at L = 7.2. The behavior of
h0(x) with increasing L is qualitatively the same, except that the longer drops now
develop a plateau with h0 ≈ 1, much as seen for α = 0.135.

The development of asymmetry is seen most clearly in the comoving streamlines
shown in Fig. 15. For example, Fig. 15 (a) shows the result for α = 0.08, L = 10.
The drop is sliding towards the right with speed v = 0.021. This motion has almost
no effect on the drop shape which resembles that for α = 0 (cf., Fig. 7) but the
streamlines are already markedly asymmetric. As discussed further below this is a
consequence of the fact that films on a substantially inclined substrate are described
well by the Kuramoto-Sivashinsky equation which possesses an unphysical reflec-
tion symmetry at leading order that is broken only at higher order. However, as
seen from Eq. (15) this symmetry is absent from the equations for the streamlines.
Fig. 15 (b) shows the corresponding result for α = 0.08, L = 40. Since the drop is
heavier it slides faster (v = 0.053) and its profile becomes markedly asymmetric.
The front counterclockwise cell is greatly compressed while the back clockwise
cell now occupies most of the drop volume. At the same time the ’hole’ becomes
shallower, permitting the presence of an open streamline which enters the drop from
the right, hugs its front as the ambient fluid is swept into it before being expelled
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Fig. 15. Comoving streamlines for different inclination angles and periods when Ma = 3.5,
Bi = 0.5 and Bo = 0.5. (a) α = 0.08, L = 10 and v = 0.021, shown values of the
streamfunction are ψ = 0.015, 0.01, 0.004, −0.001, −0.005, −0.0075, −0.01, −0.015,
−0.02; (b) α = 0.08, L = 40 and v = 0.053, ψ = 0.015, 0.01, 0.005, −0.001, −0.0035,
−0.0075, −0.01, −0.015, −0.0175, −0.02; (c) α = 0.215, L = 35 and v = 0.09,
ψ = −0.005, −0.0075, −0.011, −0.015, −0.0175, −0.02, −0.02199, −0.022, −0.0222,
−0.02227, −0.0225, −0.025, −0.03; (d) α = 0.215, L = 25 and v = 0.21, ψ = −0.02,
−0.04, −0.06, −0.08, −0.1, −0.12, −0.14. The last panel shows a solution on the small
amplitude surface wave branch formed when the primary bifurcation becomes supercritical.

along the bottom. In Fig. 15 (c) for α = 0.215, L = 35 the long plateau region
is responsible for the appearance of a pair of additional clockwise cells, separated
from the original clockwise cell (and from one another) by stagnation points. The
drop slides quite rapidly (v = 0.09) and does so on top of a slower film attached to
the substrate. The volume of fluid trapped within the drop (rather than circulating
through it) is smaller and decreases to zero as the inclination α increases. Fig. 15 (d)
shows an example for α = 0.215, L = 25 containing no closed streamlines. This
pattern is characteristic of a traveling surface wave; the phase velocity of this wave
is ten times larger than the sliding speed of the drop in Fig. 15 (a).
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4.2.4 The n = 2 primary and secondary branches

As already mentioned the primary branches with n > 1 consist of n identical
waves or drops, and hence are susceptible to secondary bifurcations that break the
discrete internal translational symmetry that results. Such bifurcations result in a
longer spatial period and hence are associated with coarsening of the pattern. They
are familiar from earlier analyses of both the Eckhaus instability [47], and of the
Kuramoto-Sivashinsky equation [20].
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Fig. 16. The n = 2 primary (solid dark lines) and secondary (dashed dark lines) branches
for Ma = 3.5, Bi = 0.5, Bo = 0.5 and (a) α = 0.05, (b) α = 0.2, (c) α = 0.22, (d)
α = 0.8. The other primary branches are shown in gray. Secondary bifurcations on the
n = 2 primary branch are indicated by solid black dots. The letters in panel (b) indicate the
secondary branches corresponding to the respective panels of Fig. 17 showing film thick-
ness profiles.

Fig. 16 shows the n = 2 primary branch (solid black line) for several different val-
ues of the slope α. Qualitatively, the evolution of this branch follows that found
already for the n = 1 primary branch (see Figs. 8 and 10). In particular the primary
bifurcation again becomes supercritical for sufficiently large α. Fig. 16 also shows
a number of secondary branches (dashed black lines) that bifurcate from the n = 2
branch. Some of these reach large values of L and may go off to infinity (as happens
in the Rayleigh-Bénard problem at large Prandtl numbers), while others reconnect
to the n = 2 branch. Remarkably, none actually connect to the n = 1 primary
branch, although there is no reason why such a connection should not occur. These
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Fig. 17. Film thickness profiles along the n = 2 primary branch (panel a) and the n = 2
secondary branches (panels b-f) when Ma = 3.5, Bi = 0.5, Bo = 0.5 and α = 0.2 for
different periods as given in the legends. The respective branches are indicated in Fig. 16(b)
by the corresponding letter. In cases where a given value of L cuts a branch in several
locations the solid line refers to the upper solution, dashed to the middle and the dotted to
the lowest.

secondary branches all consist of two-humped solutions but with no symmetry be-
tween the humps, although near the secondary bifurcation that produces them the
bumps are of course almost identical. This is seen clearly in Fig. 17 which shows
the profiles at selected points along both the n = 2 primary branch and the sec-
ondary branches that bifurcate from it when α = 0.2, ordered from top to bottom
according to the distance to the secondary bifurcations along the branch. Each panel
in this figure refers to a different branch in Fig. 16 (b), with (a) referring to the pri-
mary n = 2 branch, and (b)-(f) referring to the secondary branches bifurcating
from the n = 2 branch at locations indicated by solid dots in Fig. 16 (b), starting
with the first of these at L ≈ 43 (Fig. 17 (b)) and following up the n = 2 branch.
The last two secondary branches lie essentially on top of the n = 2 branch (and so
are invisible in Fig. 16 (b)) and are omitted. In the phase space projection shown in
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Fig. 18. The drift velocity v along the n = 2 primary (solid lines) and secondary (dashed
lines) branches for (a) α = 0.05, (b) α = 0.2, (c) α = 0.22, (d) α = 0.8 and the parameters
of Fig. 16).

the rightmost panels the bifurcations to the secondary branches correspond to (spa-
tial) period-doubling. Fig. 18 shows the slide speed v along each of these branches.
Since the solutions resemble the n = 2 solutions their speed is almost identical to
that along the n = 2 primary branch. Moreover, the amplitude ∆h ≡ hmax − hmin
for these solutions also becomes independent of L when L is large. Fig. 18 shows
that v generally decreases with L towards an asymptotic value v∞ > 0, as a result
of the increasing wavelength of the solution, and we expect this to be so even in
Fig. 18 (a) for large enough L.

We remark that Fig. 16 (d) for α = 0.8 is of the type familiar from studies of falling
films [1] and indeed the Kuramoto-Sivashinsky equation. This result suggests that
the new behavior we have described here occurs for very shallow inclinations of
the substrate only, with a quite abrupt change in behavior for larger inclinations
(for fixed Ma, Bi, Bo), despite the fact that our model equation does not include
effects of inertia. A similar simplification occurs for small Bo (at fixed Ma, Bi, α).
In both these regimes the bifurcation structure becomes almost independent of the
values of the fixed parameters.
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Fig. 19. The dominant eigenvalues β along the n = 2 primary branch for Ma=3.5, Bi=0.5,
Bo=0.5 and α = 0.135 (shown as a gray dashed line in Fig. 12). The solid (dashed) lines
indicate real (complex) eigenvalues. The gray (black) lines refer to symmetry-preserving
(-breaking) perturbations. Panel (a) refers to the upper part of the branch, while (b) refers
to the lower part, above and below the saddle-node bifurcation at L ≈ 14.92, respectively.

4.2.5 Linear stability of n = 2 primary branch

Fig. 19 shows the dominant eigenvalues along the n = 2 branch when α = 0.135
(shown dashed in Fig. 12). In this figure the gray lines (solid indicating real eigen-
values, dashed indicating the real part of a complex pair) show the eigenvalues that
preserve the internal symmetry of the solution, i.e., eigenvalues whose eigenvectors
lie in the fixed point subspace of this symmetry. Thus, for example, the location
where the solid gray line passes through Reβ = 0 near L ≈ 15 corresponds to the
saddle-node bifurcation on the n = 2 branch. The black lines (solid indicating real
eigenvalues, dashed indicating the real part of a complex pair) indicate eigenvalues
whose eigenvectors break this internal symmetry. Such bifurcations correspond to
the development of asymmetry between the two drops. Fig. 19 (a) shows the eigen-
values along the upper part of the branch (above the saddle-node) while Fig. 19 (b)
shows the eigenvalues along the lower part. The latter is unstable with two unstable
eigenvalues, one corresponding to a symmetric eigenvector which passes through
zero at the saddle-node, and the other corresponding to an antisymmetric one which
only stabilizes above the saddle-node (see inset), producing a short interval of sta-
bility on the upper part of the branch (15.2 < L < 19) terminated by a Hopf bi-
furcation producing symmetric oscillations (cf. Fig. 19 (a)). There are other stable
intervals as well. It is of interest to mention that the primary symmetric eigenvector
is obtained from the n = 1 via the replication procedure, while the antisymmetric
eigenvector is there because the n = 2 branch bifurcates after the n = 1 branch.
Fig. 19 also indicates the presence of intervals in L in which the n = 1 and the
n = 2 branches are both unstable. This fact is of interest since in this interval the
solutions must have a more complicated time-dependence than a simple traveling
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wave, cf. [48].
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Fig. 20. The real parts of the largest eigenvalues β along the n = 2 primary branch when
Ma = 3.5, Bi = 0.5, Bo = 0.5 and α = 0.2. Panels (a-c) refer to the upper, middle and
lower parts of the branch. The solid (dashed) lines indicate real (complex) eigenvalues.
The gray (black) lines refer to symmetry-preserving (-breaking) perturbations. The figure
reveals intervals of stability on both the lower and upper parts. The part between the two
saddle-nodes (Fig. 16b) is unstable everywhere.

The corresponding results for α = 0.2 are shown in Fig. 20. This figure shows the
leading eigenvalues along the top, middle and lower portions of the n = 2 primary
branch shown in Fig. 16b. From Fig. 20 (c) we see that there is a stable interval be-
tween L ≈ 47.5 and L ≈ 51 on the lower part of the branch, while Fig. 20 (a) shows
that there is another stable interval on the upper part between L ≈ 18 and L ≈ 27.
The part of the branch between the two saddle-nodes is, as usual, unstable through-
out (Fig. 20 (b)). In both cases stability is acquired at a steady state bifurcation,
the second secondary bifurcation in the former case, and the left-most saddle-node
bifurcation in the latter. Moreover, in both cases the branch subsequently loses sta-
bility via a Hopf bifurcation. The corresponding results for α = 0.8 are shown in
Fig. 21. The primaryn = 2 branch is now supercritical and there are no saddle-node
bifurcations. The figure shows that there are two intervals in L within which the
n = 2 branch is stable, located approximately in 51 < L < 60, and 89 < L < 97.

Fig. 22 (a) summarizes these results in a different way. The figure shows the loci of
saddle-node (dotted lines), steady state (solid lines) and Hopf (dashed lines) bifur-
cations in the (α,L) plane, and highlights the fact that for small α (α < 0.1) as well
as for large α (α > 0.26) the behavior of the system simplifies dramatically, with
very intricate behavior in the transition region in between. There one can distin-
guish two subregions: (i) the behavior in 0.1 < α < 0.15, reflecting the complexity
associated with the reconnections between primary and secondary branches (boxes
3 and 4 in Fig. 9), and (ii) the behavior in 0.17 < α < 0.25, resulting from the tran-
sition from sub- and supercritical primary bifurcation (box 5 in Fig., 9) responsible
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for the formation of a small amplitude portion of the primary branch with solu-
tions in the form of surface waves. The figures represents the bifurcations without
indicating on which portion of the branch they may occur; thus a particular bifur-
cation can move from one portion of the branch to another (for example, from the
nucleation or lower portion to the drop-like upper portion) as one traverses the bi-
furcation locus. For instance, the S-shaped curves describing the steady state bifur-
cations around α = 0.2 describe pairs of steady state bifurcations that emerge from
the saddle-node between the surface wave and nucleation portions of the branch,
one onto each portion. With increasing α one bifurcation moves along the nucle-
ation branch segment towards smaller periods and annihilates at the “nose” with a
bifurcation approaching along the large amplitude portion. The behaviour is even
more involved around α = 0.12 where bifurcations can also change between pri-
mary and secondary branches. The superposition of results for different branches
is responsible for the crossing of the different curves. Note, that some curves in
Fig. 22 (a) are not shown in their entirety, and hence are absent from some of the
enlargements. These represent bifurcation points on secondary branches that are
not considered further.

The most accessible regime, the surface waves for larger α, is shown in Fig. 22 (b).
Here the primary branch is supercritical and consists of surface waves only. There
are no saddle-node bifurcations. Consequently one can readily identify the differ-
ent bifurcations and the bands of linearly stable solutions (indicated by shading)
already discussed for α = 0.8 (Fig. 21). As one approaches α ≈ 0.25 from above
stable bands with larger and larger periods are added.

The behavior for small α is shown in Fig. 22 (c). For very small α the branching
points cluster around the saddle-node bifurcation at the ’nose’ separating the nu-
cleation and large amplitude drop-like branches, and approach the singular point at
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Fig. 21. The real parts of the largest eigenvalues β along the n = 2 primary branch when
Ma = 3.5, Bi = 0.5, Bo = 0.5 and α = 0.8 (Fig. 16d) showing intervals of stability
in 51 < L < 60 and 89 < L < 97. The solid (dashed) lines indicate real (complex)
eigenvalues. The gray (black) lines refer to symmetry-preserving (-breaking) perturbations.
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Fig. 22. Loci of bifurcation points on the n = 2 primary branch as a function of the in-
clination α for Ma = 3.5, Bo = 0.5 and Bi = 0.5. The solid (dashed) lines represent
steady state (Hopf) bifurcations. The dotted lines stand for the saddle-nodes already shown
in Fig. 9 but scaled for the n = 2 branch. Panel (a) shows the transition between the small
and large α regimes, while (b) and (c) show the large and small α regime, respectively.
Regions where the primary n = 2 branch is linearly stable are shaded gray. Only the first
two bands of stable solutions are indicated. The shading of the second band is discontinued
near the necking bifurcation (see text), which reorders the branches. The enlargement (d)
shows a region where a Takens-Bogdanov bifurcation is present while (e) zooms in on the
disappearance of an isola.

period L∗ as α → 0. Using Figs. 19(a) and 20(a) one can easily identify the first
stable region on the large amplitude branch segment (indicated by gray shading in
Fig. 22 (c)). However, Fig. 19(a) reveals a second stable band as well, present for
L > 22 and ending at the next saddle-node at L ≈ 36. The situation is compli-
cated by the fact that the large amplitude portion of the branch may undergo further
saddle-node bifurcations, as is the case, for example, when α = 0.135. In Fig. 22 (c)
this second band is also shaded gray, but the shading is discontinued at the location
of the necking bifurcations involving disconnected branches, cf. Fig. 10.

Finally, the figure also indicates the presence of Takens-Bogdanov bifurcations,
where the Hopf frequency vanishes. Such bifurcations mark the endpoints of the
dashed curves (Hopf bifurcations) on solid curves denoting saddle-node bifurca-
tions, for example, at α ≈ 0.191 and α ≈ 0.138 (Fig. 22 (c)) and at α ≈ 0.26
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(on the left boundary of Fig. 22(b), shown in detail in Fig. 22(d)). Of course in the
laboratory frame these bifurcations are responsible for the introduction of a second
frequency into the dynamics of the system. Finally, Fig. 22(e) shows a detail of the
region where the large isola shown in Fig. 16 (c) vanishes.
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Fig. 23. The n = 4 primary (solid black line), secondary (dashed black line) and tertiary
(dotted black line) branches for Ma = 3.5, Bi = 0.5, Bo = 0.5 andα = 0.8. Solid gray lines
show the corresponding n 6= 4 primary branches, while dashed gray lines show secondary
n = 2 branches. Panel (b) shows a detail of (a). Secondary bifurcations are indicated by
solid black dots.

4.2.6 Primary branches with n > 2

The branching behavior associated with subsequent primary branches becomes ever
more complex. In Fig. 23 (a) we show the branching associated with n = 4 (black
lines) with an enlargement included in Fig. 23 (b), both for α = 0.8, together with
some of the secondary branches originating from the n = 2 branch (dashed gray
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lines) and indeed the other primary branches (continuous gray lines). In this figure
the solid black line represents the n = 4 primary branch, the long-dashed black
lines represent secondary branches that bifurcate from it, while the short-dashed
lines represent tertiary branches, i.e., branches that bifurcate from the secondary
branches.

The main purpose of Fig. 23 is, once again, to demonstrate the immense complex-
ity in solution space of this apparently simple system. All of the solutions shown
are steady in an appropriately sliding frame; we do not follow or show oscillatory
solutions, even though we have located a number of secondary Hopf bifurcations
as well. Of course this complexity grows as α decreases because of the extreme
degeneracy of the α = 0 case described in Section 3 (cf. Fig. 24).
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Fig. 24. The dependence of the multidrop branches on the inclinationα for comparison with
Fig. 4 for α = 0 (dashed-dotted). The primary branches are almost independent of α. The
multidrop branches appear to emanate from the near-singular point on the n = 1 primary
branch, provided α remains small. The parameters are Ma = 3.5, Bi = 0.5, Bo = 0.5.

4.2.7 The small α regime

We conclude the discussion of the different types of solutions by showing an amplitude-
spatial period plot summarizing the primary branches (which are almost indepen-
dent of the inclination α) and the various secondary branches that connect them,
for several values of α near α = 0 (Fig. 24). The dot-dashed lines in the figure rep-
resent the symmetric multidrop solutions emanating from the singular points L? on
the primary branches (Fig. 4), while the remaining lines show their analogues for
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α > 0. For α = 0.005 and α = 0.01 it is still possible to identify the analogues of
the 1:1, 1:2 and 2:1 branches, even though their end points have shifted away from
the points nL∗. The left termination of the 1:1 branch is still on the n = 2 primary
branch but the 1:2 and 2:1 branches no longer bifurcate from the n = 3 branch and
are only connected to one another. Thus for α > 0 the 1:2 and 2:1 branches dis-
connect from the n = 3 branch, although for small α this fact may be almost invis-
ible (see Fig. 24). In fact the connection between the 1:2 and 2:1 branches remains
close to the n = 3 branch even for larger α, as these branches gradually transform
themselves to a branch of traveling waves. By the time α reaches α = 0.05 the
bifurcation diagram no longer resembles the α = 0 results.

The small α limit is amenable to a theoretical simplification as well. Specifically, if
we take α = ε3α̂, and write h(x, t) = 1 + ε2δ(X,T ), where X = εx, T = ε4t are
slow variables, we obtain from Eq. (1) the Childress-Spiegel equation [49] with a
drift term:

δT −
(

1 + 3Bi

3 + 3Bi

)
(δδX)X = −α̂δX −

1

2

µBi

(1 + Bi)2
δXX−

1

3Bo
δXXXX +O(ε). (38)

Here µ is the bifurcation parameter, defined by

Ma = Mac + ε2µ, (39)

where Mac is given by Eq. (3), and δ(x, t) is required to have zero mean: δ̄ =
0. Thus, whenever α > 0 the solutions drift with speed v, and the symmetry of
the problem changes from O(2) to SO(2). Weakly nonlinear theory of the type
described in Section 4.1 shows (cf. [49]) that with periodic boundary conditions on
a domain of length L

µ2 = −(1 + Bi)2

36Bi

Bo

k2
a2, v2 = 0, (40)

where we have written µ = µc + ε2µ2, v = α + ε2v2 + . . . . In view of (19,22)
these results agree with the k → 0 limit of the more general results (25,26) when
α = O(ε3). Thus in this limit all primary bifurcations are indeed subcritical.

4.2.8 The large α regime

In contrast, for large α, i.e. for physical inclination angles approaching order one,
we write h = 1 + εη(x−αt, t), η̄ = 0, anticipating that the film flows with a speed
near α and becomes more and more uniform as α increases. When α = α̃/ε we
find that η satisfies the Kuramoto-Sivashinsky equation

ηt + 2α̃ηηξ = −1

3

(
Ma

Mac

)
ηξξ −

1

3Bo
ηξξξξ + O(ε), (41)
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where ξ ≡ x − αt. If the higher order terms are neglected the resulting equation
has an unexpected symmetry: ξ → −ξ, η → −η. As a result on a periodic domain
the equation possesses O(2) symmetry instead of the expected SO(2) symmetry.
This symmetry forces all the primary bifurcations to be steady state bifurcations
instead of being steady state bifurcations by accident. Moreover, all such bifurca-
tions are supercritical [20] in agreement with the conclusion reached in Section
4.1. Of course the Kuramoto-Sivashinsky equation describes only the leading or-
der contribution to the film dynamics, and the inclusion of the O(ε) correction
does restore the expected SO(2) symmetry, albeit only in the nonlinear terms. This
change of symmetry produces a number of qualitative changes in the well-known
bifurcation diagram for the Kuramoto-Sivashinsky equation [20] by unfolding the
secondary bifurcations, much as in [1,50]. As a result the secondary branches
may become disconnected from the primary ones. This is the case, for example,
for the parity-breaking bifurcation from steady states to traveling waves. In the
Kuramoto-Sivashinsky equation with O(2) symmetry this bifurcation is a pitchfork,
and the waves can travel in either direction. In contrast, in the presence of small
O(2) symmetry-breaking terms the steady states turn into traveling waves, while
branches of traveling waves are split into two, since there is now a difference be-
tween (nonlinear) waves traveling downstream or upstream (relative to the moving
frame). Specifically, the small amplitude part of what was the steady state branch
now connects smoothly to the downstream traveling waves created in the original
parity breaking bifurcation, while the large amplitude part connects to the upstream
branch of traveling waves, and becomes disconnected from the other branch. The
drift therefore deforms the original parity-breaking bifurcation into the classic im-
perfect bifurcation, and this is all that may be expected in such a one-parameter
unfolding of a pitchfork bifurcation. In contrast branches of standing waves turn
into branches of tori (two-frequency traveling waves) but do not become discon-
nected. Additional observations are made in Ref. [51]. With this in mind the clas-
sical analysis of the Kuramoto-Sivashinsky equation with O(2) symmetry provides
a good guide to the behavior of our system for sufficiently large α (small ε). The
consequences of this type of qualitative change are clearly visible in Fig. 16 (d),
obtained for α = 0.8, even though this value of α is not large. For larger α the
computed diagrams resemble those for the Kuramoto-Sivashinsky equation [20]
more and more closely.

5 Discussion

In this paper we have examined in detail the profiles and stability properties of thin
films on a horizontal or slightly inclined heated substrate using a model equation
incorporating only thermocapillary effects, hydrostatic and Laplace pressure, and
gravitational forcing when the substrate is inclined. We focused on a parameter
regime in which the film is unstable with respect to long wave thermocapillary
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modes, avoiding the short wave convective instability [19]. This assumption limits
the practical application of our analysis to films that are not too thick (to avoid
convection) but not too thin (to justify our omission of van der Waals interaction
with the substrate). However, the results provide the basis for understanding the
behavior of the system even outside of this regime, for example, with the disjoining
pressure included.

Within our formulation we identified two types of solutions, unstable nucleation
solutions and stable drop solutions. A careful study of the horizontal substrate
problem allowed us to construct a vast family of drop solutions separated by ’dry’
regions of different lengths. All of these solutions are nominally stable since our
formulation does not include any nonhydrodynamic interactions among drops sep-
arated by dry regions. Of these solutions those with zero microscopic angle are
energetically favored, and form a special class because they can move without in-
volving divergencies at the contact line. We showed, by solving a nonlinear eigen-
value problem, that on a slightly inclined plane periodic drop solutions do indeed
slide down the plane, and explored in detail their relationship to the solutions on the
horizontal substrate. In particular we showed that on an inclined substrate the dry
regions between the drops are replaced by an ultrathin film that enables neighboring
drops to communicate. This communication in turn allows coarsening instabilities
to proceed, instabilities that do not occur in our model on a horizontal substrate. We
concluded that the degeneracy of the horizontal case is responsible for the plethora
of solutions present for small inclinations, and determined in some detail(!) the
transitions among these as a function of the inclination angle and the spatial period.

Throughout we formulated the problem as one with periodic boundary conditions
on a line, and examined the sequence of transitions as the spatial period L increases.
For small enough L a given film is stable, but as L increases it undergoes a sequence
of bifurcations each of which produces a branch of nonuniform solutions. Our cal-
culations reveal that these primary bifurcations are typically subcritical, at least for
sufficiently small inclinations α, and therefore produce unstable states. We have
identified these states with the spatially periodic nucleation solutions. As a result
the solutions that are of physical interest are those on the upper branch, above the
saddle-node bifurcations at which the primary branches turn around. These saddle-
node bifurcations are vestiges of a singularity in the α = 0 case at which the
minimum thickness of the nucleation solutions vanishes. The reason for this sin-
gularity is simple to understand – it is a consequence of the fact that a film of a
fixed volume (or spatial period) cannot have an arbitrarily large amplitude without
rupture. Beyond this singularity amplitude (i.e., maximum thickness) can only in-
crease at the expense of introducing dry spots into the film structure. Thus when
α = 0 these larger amplitude solutions are nothing but arrays of drops held to-
gether by surface tension, and separated by dry spots. Because of the enormous
degeneracy of solutions of this type when α = 0 there is a very large number of
slowly drifting drop-like states once α > 0, and it is these states that constitute
the potentially stable solutions above the saddle-node bifurcations. In this regime
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we have located intervals in the spatial period L containing no stable simple trav-
eling wave solutions. Here one expects states with complex time-dependence, but
perhaps more than that, since the profusion of unstable states suggests that the sys-
tem may wander among these states, exhibiting very long transients even when
stable states are available. This type of scenario resembles that discussed recently
by SCHMIEGEL and ECKHARDT [52,53] in the context of the transition to turbu-
lence in plane Couette flow. At larger α the drift associated with finite inclination
starts to dominate the dynamics, and the primary branches become supercritical
with the resulting solutions resembling the traveling wavetrains familiar from the
Kuramoto-Sivashinsky equation. We have seen that these solutions are in fact con-
nected to the unstable nucleation solutions present for α = 0. In this regime chaotic
dynamics are still present but the number of unstable solutions is much smaller, a
fact that is reflected in shorter transients. Moreover, the chaotic behavior can now
be associated with global bifurcations in the phase space of the system.

Our main conclusion, beyond the remarkable richness of this apparently very sim-
ple problem, is that the degeneracy of the horizontal case influences the inclined
problem only for quite small values of the inclination angle, specifically α �
h0/` ∼ h0(σ0/ρg)−1/2. For larger inclinations the system behaves much more like
the falling films under the influence of inertia studied, for example, in [12,15] even
though our theory does not retain inertial effects and the dominant balance in the
direction normal to the substrate is still hydrostatic. We showed that such films be-
have much like the Kuramoto-Sivashinsky equation, and our work can be viewed as
a quantification of the range of applicability of this equation to thin films on an in-
clined plane. Refs. [54,55] show that the approach proposed here remains valuable
even for systems with broken translation symmetry. This symmetry can be broken,
for example, by inhomogeneous heating, a problem studied recently in the context
of a falling film with inertia [56].

As usual in problems of this type the spatial period L is left as a parameter in the
theory, although in experiments it may be determined by the fastest growing scale
when Ma > Mac. However, in view of the tendency towards coarsening it is im-
perative that larger values of L are examined as well. Indeed, it is unlikely that
a correct description of systems of this type can be obtained without considering
values of L much larger than the wavelength of the primary instability. Our results
indicate that this type of problem, like the Kuramoto-Sivashinsky equation, pos-
sesses a large variety of solutions in large domains. The result of a simulation may
locate a single stable solution, or if it is repeated with different initial conditions,
perhaps a different solution. The only way that the results of such simulations can
be understood is to focus initially on small periodic domains where the simpler of
these solutions first appear, and to trace them to the values of L of interest. This
allows one to recognize different solutions, and understand the nature of the transi-
tions among them as L varies. Our results therefore also shed light on the transition
to complex spatio-temporal behavior that is characteristic of these systems.
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We have shown that unstable modes may be located at the front or the back of the
drop, and examined the change in these modes as the volume of the drop increases
and it develops an extended plateau region. We did not, however, perform any direct
numerical simulations. The main reason is that, for α = 0, our model equation is
ill-posed, in the sense that it does not possess solutions for all time. Specifically, its
solutions cannot be followed past rupture time, when the film thickness first van-
ishes. This is because as this instant approaches finer and finer scales appear in the
problem [57], and these scales becomes infinitely small at the moment of rupture.
It is possible that the appearance of smaller scales in the simulation of related equa-
tions [7,10] is related to this process, even though of course the equation remains
a mathematically acceptable model until rupture time. To our knowledge there are
no comparable results for the inclined case, although it is likely that similar results
hold. Our approach avoids this issue but also fails to locate time-dependent rupture,
and indeed solutions with more complex time-dependence.

Although we are not aware of experiments done on thin liquid films on slightly
inclined heated plates, the experimental setups used in the study of the limiting
cases of horizontal or vertical plates could easily be adapted for this purpose. The
parameters of the system used by VAN HOOK et al. [9] to study the long wave in-
stability on a horizontal heated plate and of a second proposal involving a different
silicone oil are tabulated in [10]. For these films the longwave instability remains
the dominant instability for films of thickness h0 = O(100µm). For water films,
such as those used in [58,59] to study a falling film on a locally heated plate, our
model applies for h0

�
O(10µm). However, to model an actual experimental sys-

tem the influence of the wetting properties of the liquid should be included in the
theory via a disjoining pressure. This pressure accounts for the missing interface
energy and selects a microscopic contact angle for drops on a horizontal substrate,
and hence a unique solution branch from the hatched region in Fig. 2. An attractive
interaction between the film and the substrate is likely to have an important effect
on the behavior of the film. On the one hand it may stabilize the ultrathin film in the
interdrop regions, and increase the range of inclinations for which the large ampli-
tude drop solutions remain stable, thereby shifting the transition between the drop
and surface wave regimes towards larger α. On the other hand a strong surface-
substrate interaction may also destabilize the ultrathin film in the interdrop region
resulting in actual rupture. Should this occur the drops would be unable to slide,
and our solutions would become inapplicable. These conjectures are supported by
the results of ORON and BANKOFF on condensing [60] and evaporating [61] films
under the influence of a disjoining pressure.

A related approach for isothermal films with a disjoining pressure also leads to a
film equation of the form Eq. (6) but with a different free energy f(h) [35,39]. The
solution of the corresponding time-independent problem for a horizontal plate also
yields drops, with drop profiles that have a passing resemblance to those determined
here. However, in these drops the liquid is at rest, in contrast to our case in which the
surface cooling drives an internal circulation. In this case, too, if the film ruptures
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the time-dependent thin film equation fails to address the drop selection problem
since it breaks down at the precise instant at which the film ruptures. Thus models
of this type cannot predict the final equilibrium drop shape when film rupture occurs
[62].
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Appendix: The degeneracy of Eq. (1)

The appearance of Hopf bifurcations once the substrate is inclined is expected on
general grounds [31]. However, the way this occurs in equation (1) is nongeneric.
This is because the speed with which the resulting waves travel at onset is indepen-
dent of their wavenumber. This fact is responsible for a number of special features
of this equation. These properties are shared by a number of thin film equations
but are nongeneric within the larger class of evolution equations. The discussion
that follows is crucial for understanding the numerical results reported in Section
4. In particular we explain here why in the present problem secondary branches
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of solutions consist of single frequency states, when generically in systems with
SO(2) symmetry such branches consist of quasiperiodic states. The fact that this is
not the case here permits us to compute the secondary states using the same branch
following algorithm as used for the primary branches.

We begin with the linear problem in the presence of periodic boundary conditions,
and examine solutions growing like (h(x)−1) exp st. In the frame of the substrate,
each primary bifurcation is a Hopf bifurcation with frequency ωn0 = αkn, n =
1, 2, . . . . Specifically, the eigenvalue sn = iαkn is associated with the eigenfunction
exp−iknx, while the eigenvalue sn = −iαkn is associated with the eigenfunction
exp iknx. A traveling wave then takes the form h(x, t) − 1 = 1

2
[a exp ikn(x −

αt) + ā exp−ikn(x − αt)], describing a wave traveling in the +x direction, i.e.,
downslope. Note that when α = 0 the linear problem has a zero eigenvalue of
double algebraic multiplicity, i.e., the eigenvalue sn = 0 is associated with two
independent eigenfunctions exp±iknx. This is a generic feature of problems with
O(2) symmetry when the primary instability breaks the symmetry, i.e., kn 6= 0. The
resulting bifurcation is a pitchfork of revolution.

In the nonlinear regime the wave frequency depends on the amplitude, as described
for example by Eq. (29). Since dv2/dkn 6= 0 the speeds of the different traveling
waves differ at finite amplitude. In a reference frame moving with speed α to the
right, all the primary bifurcations simultaneously become steady state bifurcations,
each associated with a zero eigenvalue of double multiplicity. The corresponding
eigenfunctions are exp±iknx. However, in this frame the resulting steady solutions
begin to drift as soon as their amplitude becomes finite, as described by the normal
form

ȧn = νan + c|an|2an, (42)

where c ≡ cr + ici is a complex coefficient that depends on n, i.e., the branch of
interest. Writing an = Rn eiφn we have

Ṙn = νRn + crR
3
n, φ̇n = ciR

2
n. (43)

Comparing these expressions with those derived in Section 4.1 we deduce that
cr = −ν2/a2, ci = knv2/a2. The frequency of the (nonlinear) traveling waves
is therefore given by ωn ≡ kn(α + v2R2

n). The coefficient ci arises from the term
−α(h2 − 1)hx on the right side of Eq. (1) written in the moving frame. This term
is the only one that breaks the symmetry x → −x and it vanishes when h = 1
(α 6= 0). Thus the linear stability problem in the moving frame is invariant under
x→−x but the nonlinear problem is not.

Since each zero eigenvalue in the moving frame is doubled, the bifurcating branch
inherits in general two small eigenvalues. As seen from Eq. (43) in the case of the
n = 1 branch one of these eigenvalues is−2ν while the other vanishes. The former
describes the stability of the wave with respect to amplitude perturbations and is
positive (negative) if the branch bifurcates subcritically (supercritically). The latter
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describes neutral stability with respect to spatial translations. This pattern repeats
for the branches with n = 2, 3, . . . , except of course that the n = 2 branch already
has two unstable eigenvalues inherited from the n = 1 bifurcation that precedes
it, and these may result in secondary bifurcations on the n = 2 branch that in-
volve the n = 1 Fourier component. In generic systems with SO(2) symmetry, i.e.,
spatially periodic systems with broken x → −x symmetry secondary bifurcations
from traveling waves are either saddle-node bifurcations or Hopf bifurcations cre-
ating quasiperiodic (two-frequency) states. This is not the case here even though for
α 6= 0 Eq. (1) also has SO(2) symmetry. To explain why we consider the normal
form equations describing the interaction between the n = 1 and n = 2 bifurca-
tions. Since the corresponding Hopf frequencies are in the ratio 1:2 the appropriate
equations (in the moving frame) are

ȧ1 = ν1a1 + d1ā1a2 + (e1|a1|2 + f1|a2|2)a1 + . . . ,

ȧ2 = ν2a2 + d2a
2
1 + (e2|a1|2 + f2|a2|2)a2 + . . . (44)

Equations of this form can be derived from Eq. (1) by a center-unstable mani-
fold reduction of the type described by ARMBRUSTER ET AL. in their study of the
Kuramoto-Sivashinsky equation [63]. However, our interest in these equations is
not in the coefficients but in the qualitative predictions that can be deduced from
them.

We begin by noting that because of the special property of the linear problem both
ν1 and ν2 are real, although all the other coefficients are in general complex. The
stability properties of the n = 2 solution (a1, a2) = (0, a20) with respect to pertur-
bations involving the n = 1 mode are then given by the solution of

ȧ1 = ν1a1 + d1ā1a20 + f1|a20|2a1. (45)

The eigenvalues are

s± = ν1 + f1r|a20|2 ±
√
|d1|2|a20|2 − f2

1i|a20|4. (46)

Thus for small values of |a20|, i.e., near the bifurcation to the n = 2 state, both
of these eigenvalues are real and positive. As a result the n = 2 branch is neces-
sarily doubly unstable at onset (even if it bifurcates supercritically) but can gain
stability after two successive steady state bifurcations at which the eigenvalues s±
pass through zero. However, because of the nonlinearly induced drift of the state
(0, a20) the resulting secondary state also drifts downstream, and is therefore a sin-
gle frequency traveling wave. The drift frequency will, of course, depend on the
amplitude of the n = 1 contribution to the waveform, and the resulting ’mixed’
mode will therefore drift with a different speed than the basic (0, a20) state at the
same value of the parameters. Single frequency solutions of this type are easily
found numerically by solving the appropriate nonlinear eigenvalue problem.
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The behavior just described is very different from the generic situation in which the
equations in the rest frame of the (zero amplitude) n = 2 branch take the form

ȧ1 = (ν1 + iΩ)a1 + d1ā1a2 + (e1|a1|2 + f1|a2|2)a1 + . . . ,

ȧ2 = ν2a2 + d2a
2
1 + (e2|a1|2 + f2|a2|2)a2 + . . . , (47)

where Ω ≡ ω10 − ω20/2 6= 0. A similar calculation shows that for this case

s± = ν1 + f1r|a20|2 ±
√
|d1|2|a20|2 − (Ω + f1i|a20|2)2 (48)

and hence that near onset the two eigenvalues form a complex conjugate pair. In this
case any secondary bifurcation near onset must be a Hopf bifurcation, and the n = 2
state may therefore acquire stability after a single secondary Hopf bifurcation. This
bifurcation introduces an oscillating n = 1 component into the dynamics, with
frequency near Ω. In the frame of the substrate this state is a two-frequency state,
as predicted by general theory, with the second frequency near ω2 (the frequency
of the traveling waves along the n = 2 branch).

The above considerations help us understand the origin of a number of surprising
properties of the stability assignments along the n = 1 and n = 2 branches re-
ported in Section 4, and give us confidence that these calculations were performed
correctly.
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