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Abstract Introduction: Practice effects (PEs) present a potential confound in clinical trials with cognitive out-
comes. A single-blind placebo run-in design, with repeated cognitive outcome assessments before
randomization to treatment, can minimize effects of practice on trial outcome.

Methods: We investigated the potential implications of PEs in Alzheimer’s disease prevention trials
using placebo arm data from the Alzheimer’s Disease Cooperative Study donepezil/vitamin E trial in
mild cognitive impairment. Frequent ADAS-Cog measurements early in the trial allowed us to
compare two competing trial designs: a 19-month trial with randomization after initial assessment,
versus a 15-month trial with a 4-month single-blind placebo run-in and randomization after the sec-
ond administration of the ADAS-Cog. Standard power calculations assuming a mixed-model
repeated-measure analysis plan were used to calculate sample size requirements for a hypothetical
future trial designed to detect a 50% slowing of cognitive decline.

Results: On average, ADAS-Cog 13 scores improved at first follow-up, consistent with a PE and pro-
gressively worsened thereafter. The observed change for a 19-month trial (1.18 points) was substan-
tively smaller than that for a 15-month trial with 4-month run-in (1.79 points). To detect a 50%
slowing in progression under the standard design (i.e., a 0.59 point slowing), a future trial would
require 3.4 times more subjects than would be required to detect the comparable percent slowing
(i.e., 0.90 points) with the run-in design.

Discussion: Assuming the improvement at first follow-up observed in this trial represents PEs, the rate
of change from the second assessment forward is a more accurate representation of symptom progres-
sion in this population and is the appropriate reference point for describing treatment effects character-
ized as percent slowing of symptom progression; failure to accommodate this leads to an oversized
clinical trial. We conclude that PEs are an important potential consideration when planning future trials.
© 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction
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functioning, vis-a-vis ability to benefit from repeated expo-
sure [1,2]; however, in randomized controlled trials, they
introduce a source of external signal that may confound
observation of the target outcome [3].

Various methods have been proposed to address PEs,
including statistical corrections and use of alternate test
forms [3-5]. Although alternate forms may minimize
memory for specific test items, they do not account for
improvements that arise from increased familiarity with
test procedures in general [6-8], and equivalent alternate
forms are not available for many neurocognitive measures.

Another method to accommodate for PEs in clinical trials
is to use a test run-in or “dual baseline” wherein the cognitive
outcome measure(s) are administered twice before randomi-
zation and scores from the second testing are used as the base-
line reference. This approach helps to account for the initial,
rapid improvements that occur with repeated testing, which
are typically most pronounced between the first and second
test administration [5,8]. In a variant of this approach, often
referred to as a single-blind placebo run-in design, partici-
pants are randomized to treatment or placebo, but all receive
placebo during the run-in period between dual baseline as-
sessments and only receive the treatment to which they had
been randomized (i.e., active or placebo) after the second
assessment. Dual baseline or run-in designs have been used
to reduce the influence of practice and placebo effects on
clinical trials with neuropsychological outcomes in a variety
of diseases and interventions [9—11].

We investigated the impact of a cognitive test run-in
design on magnitude of potential effect size and power cal-
culations by examining the performance of participants in
the placebo arm of a secondary prevention trial to delay pro-
gression from mild cognitive impairment (MCI) to Alz-
heimer’s disease (AD) dementia.

2. Methods
2.1. Overview

We conducted retrospective analyses of placebo arm data
from a multicenter, randomized, double-blind, placebo-
controlled trial of vitamin E and donepezil HCL to delay
clinical progression from MCI to AD dementia; design
and results of the trial are described elsewhere [12].

2.2. Participants

Data were obtained from participants in the placebo arm
of the donepezil/vitamin E study. All participants were be-
tween the age of 55 to 90 years and met diagnostic criteria
for amnestic MCI [13]. The placebo group comprised 259
participants with a mean age of 72.9 years (standard devia-
tion [SD] = 7.6), and an average of 14.7 years of education
(SD = 3.1); 47% were female, 53% were APOE €4 carriers,
and the mean score on the MMSE at screening was 27.35
(SD = 1.8). Data from only the first 18 months of the
36-month trial were used for these analyses because con-

verters to AD dementia were offered open-label donepezil,
precluding the ability to look at PEs separate from potential
treatment effects in subjects who converted.

2.3. Procedure

The modified 13-item Alzheimer’s Disease Assessment
Scale, cognitive subscale (ADAS-Cog 13), was administered
at the screening visit (1 month before randomization), 3 and
6 months after randomization, and semiannually thereafter.
The ADAS-Cog 13 includes all items from the original
ADAS-Cog (i.e., word list recall and recognition; measures
of language, orientation, constructional and ideational
praxis), plus a number cancellation task and a delayed free
recall task for a total of 85 points, with higher scores indi-
cating greater cognitive impairment [14]. Three alternate
forms of the word-recall word list component were used in
the trial: list 1 was administered at screening and 12 months,
list 2 at 3 and 18 months, and list 3 at 6 months.

2.4. Data analyses

Sample size calculations informed by placebo arm data
from the MCI trial were performed assuming a mixed-model
repeated-measures (MMRM) analysis using standard methods
we have described [15] and implemented in the R statistical
programming language package longpower [16] using a
type-Ierror rate of 5%, power of 80%, and assuming equal allo-
cation to arms. The mean and covariance matrix of repeated
ADAS-Cog measures were supplied to the power.mmrm func-
tion within the longpower package. To simplify presentation,
we assumed no covariate adjustment and no loss to follow-
up in power calculations. MMRM, as used in contemporary
secondary prevention trials, compares change from randomi-
zation to final visit in the treatment arm versus change in con-
trol [17]. Mean and SD at each assessment are reported, as is
the mean and SD of change from treatment randomization to
month-18 visit. We compare the relative sample size required
for the two trial designs by example, calculating sample size
required to detect a 50% slowing of decline. Under our as-
sumptions, the relative sample size required when effect size
is expressed as percent slowing of decline is solely a function
of the mean and covariance structure of the pilot data for this
analysis plan [ 18]. Hence, relative sample size for our reported
findings for the 50% slowing of decline generalize to any effect
size expressed as percent slowing of decline.

3. Results

Participant mean scores on the ADAS-Cog 13 are shown in
Fig. 1. At screening, the group mean score was 17.40
(SD = 6.0). At 3-month follow-up, the group mean score
improved slightly to 16.79 (SD = 7.0). At 6-month follow-
up, the group mean returned to the baseline level
(mean = 17.38; SD = 7.0), and performance progressively
declined thereafter. Between screening and 18-month
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Fig. 1. ADAS-Cog 13 scores of participants with MCI in the placebo arm of the ADCS donepezil/vitamin E study. Abbreviations: ADAS-Cog 13, modified 13-
item Alzheimer’s Disease Assessment Scale; ADCS, Alzheimer’s Disease Cooperative Study; MCI, mild cognitive impairment.

follow-up, the mean change was +1.18 (SD = 6.2); the change
between the 3- and 18-month visits was +1.79 (SD = 5.2).

Using data from the screening visit (1 month before base-
line) to 18-month follow-up in power calculations, a stan-
dard 19-month trial design is estimated to require 1764
subjects per arm to detect a 50% slowing of decline. Using
data from 3- to 18-month follow-up in power calculations,
a 15-month study with 4-month placebo run-in would
require 521 subjects per arm to detect a 50% slowing of
decline, 70% less subjects than required by the standard
design. Stated another way, the standard design trial would
require 3.4 times more subjects for comparable power.
This is a general finding when treatment effect size is ex-
pressed as percentage slowing of mean rate of decline (see
Section 2); that is, regardless of the percentage effect size
powered for, when effect size is expressed as percentage
slowing of decline, the standard design trial will require
3.4 times more subjects than the run-in design trial.

4. Discussion

We used the placebo arm data from a completed trial to
demonstrate the impact of PEs on magnitude of potential effect
size and sample size projections for two study designs.
Regarding treatment effect size, clearly in the presence of
PEs, the rate of change after washout of PEs (from the
3-month visit forward in our example) is the most correct char-
acterization of rate of disease progression on a given instrument
[5]. It follows that treatment effect sizes characterized relative
to this rate are more accurate and meaningful. Moreover, char-

acterizing treatment effect size relative to change from first
assessment results in oversized trials in the presence of PEs.

Results demonstrate that two investigators, informed by
the pattern of progression observed in a previous trial and
with similar directives in terms of treatment effect size,
can come to dramatically differently sized trials depending
on the design. This is explained by the difference in effect
size when effect size is expressed in units of ADAS-Cog
13. For example, for the standard design with 19-month
treatment, a 50% reduction in change corresponds to half
of 1.18 (Fig. 1) or 0.59 units. For the run-in design, a 50%
reduction in change corresponds to half of 1.79 (Fig. 1) or
0.90 units. In units of ADAS-Cog 13, the effect size powered
for in the run-in design is much larger and requires a smaller
projected sample size.

There are limitations to this analysis. Alternate versions of
the ADAS-Cog word list memory test were used in the trial, so
it is possible that improved performance observed at the sec-
ond administration of the ADAS-Cog reflects version differ-
ences rather than a PE. The possibility that the word list used
at the 3-month visit was easier for participants seems less
likely, however, given that a similar improvement relative to
previous measurements was not observed at 18-month
follow-up, when the same word list was again used. Further-
more, the run-in design, as proposed, does not consider the ef-
fects of any additional PEs that may occur beyond the second
test administration. Finally, instruments that are less vulner-
able to PEs will be less prone to the issues outlined in this
report. Replication of these findings in other cohort and trial
data, with other commonly used outcome measures, will
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further confirm the potential impact of the single-blind placebo
cognitive test run-in design on effect size characterization.

Consideration of PEs will be increasingly important as
the target population for AD trials moves earlier in the dis-
ease course, where measurable treatment effects may be sub-
tle and PEs more robust [5,19,20]. Trials of treatments
intended to slow the underlying AD neurodegenerative
process, where no acute treatment effects are anticipated,
may be particularly vulnerable in this regard. We conclude
that the presence of PEs is an important consideration
when planning future trials.
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RESEARCH IN CONTEXT

1. Systematic review: Practice effects on neuropsycho-
logical measures have been well documented and
may mask treatment effects in clinical trials with
cognitive end points. Single-blind run-in designs
have been used to attenuate practice effects before
randomization for other diseases but have not been
applied consistently in Alzheimer’s disease trials.

2. Interpretation: Archival analyses of placebo arm data
from a secondary Alzheimer’s disease (AD) preven-
tion trial with mild cognitive impairment participants
revealed that using a single-blind placebo cognitive
test run-in design yielded greater change in cognitive
outcome (ADAS-Cog 13) than a traditional design
with randomization at the first assessment visit. The
run-in design dramatically reduced the requisite
sample size to achieve comparable statistical power.

3. Future directions: Replication of these findings using
other outcome measures as well as in participants in
the preclinical and asymptomatic stages of AD will
further validate the utility of using a single-blind
placebo cognitive test run-in for AD prevention
trials.
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