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RESEARCH

Hyperspectral imaging to characterize 
plant–plant communication in response 
to insect herbivory
Leandro do Prado Ribeiro1, Adriana Lídia Santana Klock1, João Américo Wordell Filho1, 
Marco Aurélio Tramontin2, Marília Almeida Trapp3, Axel Mithöfer3 and Christian Nansen4,5* 

Abstract 

Background: In studies of plant stress signaling, a major challenge is the lack of non-invasive methods to detect 
physiological plant responses and to characterize plant–plant communication over time and space.

Results: We acquired time series of phytocompound and hyperspectral imaging data from maize plants from the 
following treatments: (1) individual non-infested plants, (2) individual plants experimentally subjected to herbivory 
by green belly stink bug (no visible symptoms of insect herbivory), (3) one plant subjected to insect herbivory and 
one control plant in a separate pot but inside the same cage, and (4) one plant subjected to insect herbivory and one 
control plant together in the same pot. Individual phytocompounds (except indole-3acetic acid) or spectral bands 
were not reliable indicators of neither insect herbivory nor plant–plant communication. However, using a linear 
discrimination classification method based on combinations of either phytocompounds or spectral bands, we found 
clear evidence of maize plant responses.

Conclusions: We have provided initial evidence of how hyperspectral imaging may be considered a powerful non-
invasive method to increase our current understanding of both direct plant responses to biotic stressors but also to 
the multiple ways plant communities are able to communicate. We are unaware of any published studies, in which 
comprehensive phytocompound data have been shown to correlate with leaf reflectance. In addition, we are una-
ware of published studies, in which plant–plant communication was studied based on leaf reflectance.

Keywords: Reflectance profiling, Phytocompounds, Plant stress signalling, Plant defences, Insect–plant interaction, 
Plant phenomics
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Background
Plant defenses to insect herbivory include a wide range 
of co-evolutionary adaptations, and they are intensively 
studied from evolutionary, ecological and crop manage-
ment perspectives. The leaf tissue damage by herbivores 
elicit complex cascades of physiological responses in 
surrounding cells (locally responses) and expression of 
hundreds of genes, and they induce whole-plant hormo-
nal responses [1–3]. Plant defenses to insect herbivory 

involves triggering of so-called “herbivore-associated 
molecular patterns” (HAMPs) [3, 4], which lead to syn-
thesis and emission of volatile organic compounds 
(VOCs) [1–3]. The synthesis and emission of VOCs in 
response to herbivory may enable faster systemic plant 
defense responses than hormonal signaling via the vascu-
lar tissue [1]. Many VOCs are known to be involved in 
the regulation of plant responses to herbivory, including 
jasmonic acid (JA) [3, 5–7], salicylic acid (SA) [3, 8–10], 
and reactive oxygen species [11–13]. For instance, it was 
demonstrated experimentally that mechanically damaged 
sagebrush plants released a pulse of methyl jasmonate 
that induced direct resistance in wild tobacco [14]. Fur-
thermore, wild tobacco plants with clipped sagebrush 
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neighbors had increased levels of putative defensive 
oxidative enzymes (polyphenol oxidase) and showed 
reduced levels of leaf damage by grasshoppers and cut-
worms [15].

According to Maffei et  al. [16], reactive oxygen spe-
cies and intracellular calcium signatures belong to early 
events of plant defenses in response to biotic stressors, 
and they are responsible for most of the cascading bio-
chemical reactions. The oxidative metabolism, particu-
larly hydrogen peroxide synthesis, is related to a wide 
variety of reactions and signaling cascades, which are 
necessary for all aspects of plant growth and defense 
against biotic and abiotic stresses [11]. In addition, 
hydrogen peroxide is involved in: development of individ-
ual root hairs xylem differentiation and lignification, wall 
loosening and cross-linking, root/shoot coordination and 
stomatal control, and hypersensitivity reactions [13, 17]. 
In addition to aerial plant–plant communication, there 
is a growing body of research describing below-ground 
plant–plant communication through the roots [18–22].

To date, most studies of plant defenses to insect her-
bivory and plant–plant communication have been char-
acterized and quantified by means of either headspace 
collection of volatiles in combination with gas chroma-
tography/mass spectrometry analysis [23–25] or through 
invasive sampling of leaf tissue to quantify up/down reg-
ulations of phytocompounds [26–28]. In addition, experi-
mental infestation of plants with arthropods is commonly 
used to confirm induction of plant defenses by a wide 
range of stressors and to confirm plant–plant commu-
nication [9, 29–35]. However, such arthropod bioassays 
have the potential to further alter plant traits and do not 
enabled non-invasive monitoring of plant response over 
time. Availability of a non-invasive technique to quan-
tify plant responses to biotic stressors, such as, a herbi-
vore, would greatly improve the ability to characterize 
plant responses to biotic stressors over time. Moreover, 
such techniques would enable more precise detection of 
when (based on time and intensity of stressor) significant 
physiological changes occur and therefore when invasive 
tissue sampling should be performed in order to optimize 
the likelihood of detecting physiological and molecular 
responses. A non-invasive method to detect and quan-
tify plant–plant communication would be of considerable 
importance in ecological studies of insect herbivory and 
adaptive/evolutionary plant responses. Finally, reflec-
tance based detection of spectral bands responding to 
plant–plant communication may be of considerable rel-
evance to the application of remote sensing technolo-
gies in agricultural systems, as it may greatly enhance the 
ability to detect emerging insect infestation hotspots.

The research field of plant phenomics is largely driven 
by deployment of a range of molecular and imaging 

technologies [36, 37]. The interest in plant imaging as 
part of high throughput phenotyping and modern crop 
breeding, reflects the growing understanding of and 
appreciation for the many important and complex ways 
that growing plants respond to their surrounding envi-
ronment and stressors, including physiological responses 
to herbivory by insects. For almost three decades, it is 
known that general leaf compounds, such as lipids, oils, 
protein, nitrogen, lignin, starch, cellulose, sugars, and 
chlorophyll can be quantified based on spectral informa-
tion in specific portions of the solar incident spectrum 
[38, 39]. As part of applications of imaging technologies 
to studies of plant responses to stressors [37], a consider-
able body of research describes detection and characteri-
zation of chlorophyll content in growing plants [40–42] 
and more broadly detection of leaf reflectance responses 
to biotic plant stressors [43, 44]. Despite a large body 
of research into applications of imaging technologies 
to detect and characterize plant stress signals, there are 
only a limited number of studies, in which changes in 
reflectance features have been associated with phyto-
compounds other than leaf pigments, such as, chloro-
phyll [42, 45, 46]. An exception is a number of studies, 
in which the authors demonstrated association between 
specific reflectance features and leaf potassium content 
[47–49]. Use of leaf reflectance data to detect and char-
acterize plant responses to abiotic and biotic stressors is 
based on the assumption that induced stress interferes 
with photosynthesis, chemical composition, and physical 
structure of the plant and affects the absorption of light 
energy and thus alters the reflectance spectrum of the 
plants [43].

In this study, the main hypothesis was that insect her-
bivory causes changes in leaf phytocompound levels, 
and these physiological defense responses are associ-
ated with detectable changes in phytocompound levels 
and in certain spectral bands of leaf reflectance profiles. 
As a secondary hypothesis, we predict that plant–plant 
communication (from plant with herbivory to an adja-
cent control plant without herbivory) will elicit both a 
change in phytocompound composition of leaves and 
also cause a corresponding change in leaf reflectance. 
To address these hypotheses, we acquired time series 
hyperspectral imaging data [before (baseline) and after 
6, 12, 24, and 48  h of herbivory] from maize plants 
(Zea mays L.) inside cages subjected to the following 
four treatments (Fig.  1): (T1) individual non-infested 
plants (control). (T2) individual plants experimentally 
subjected to herbivory by green belly stink bug Dich-
elops melacanthus (Dallas) (Hemiptera: Pentatomidae). 
(T3) one plant subjected to insect herbivory (T3A) and 
one control plant (T3B) in separate pots but inside the 
same cage, and therefore the possibility of plant–plant 
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communication via air space. (T4) one plant subjected 
to insect herbivory (T4A) and one control plant (T4B) 
together in the same pot, and therefore possibility of 
plant–plant communication via roots and air space. It 
is important to emphasize that this study was based 
on maize plants only being exposed to a low level of 
induced herbivory with no visible symptoms of insect 
herbivory. Using a separate set of maize plants under 
the same treatments, we obtained phytocompound data 
[jasmonic acid (JA), 12-oxo-phytodienoic acid (OPDA), 
auxins (in particular indole-3acetic acid (IAA)), sali-
cylic acid (SA), hydrogen peroxide, carotenoids, and 
chlorophyll a and b] from all treatments and most time 
points. We are unaware of any published studies, in 
which comprehensive phytocompound data have been 
shown to correlate with leaf reflectance. In addition, we 
are unaware of published studies in which plant–plant 
communication was studied based on leaf reflectance. 
Thus, this study provides considerable novelty to the 
fields of insect–plant interactions and plant phenomics.

Methods
Test plants and insects
Potted (1 L) maize plants [Zea mays L. (Poaceae)] of 
hybrid Pioneer P2530 (non Bacillus thuringiensis) with 
four leaves [stage V3 [50]] were used in this study. Green 
belly stink bugs [Dichelops melacanthus (Dallas)] were 
obtained from a colony maintained in a climate-con-
trolled room [temperature 25 ± 2  °C, relative humidity 
(RH) 60 ± 10% and a photoperiod of 14:10-h L:D] for at 
least 10 generations. Soybean [Glycine max (L.) Merrill 
(Fabaceae)] grains and plants were used as feeding and 
oviposition substrates, respectively. In Brazil, the green 
belly stink bug is a serious pest when feeding on young 
stems of maize plants [51]. Infestation of maize plants 
consisted of transferring two adult couples (four indi-
viduals) to a tulle fabric meshed bag (15  cm × 10  cm) 
[52], which was secured around the stem and lowest 
leaf of each maize plant (Fig. 1). Each experimental unit 
(either a single, treatments 1 or 2) or two, treatments 
3 or 4 maize plant) were placed inside a wooden cage 

Fig. 1 Illustration of the six plant treatments used in this study: (T1) a single maize plant in a cage infested with four stink bugs (2 males and 2 
females), (T2) a single non-infested (control) maize plant in a cage, (T3) one infested plants (T3A) and one control (T3B) in the same cage but 
in separate pots, and (T4) one infested plants (T4A) and one control (T4B) in the in the same cage and in the same pot. T3 enabled plant–plant 
communication based on volatiles (air only) from the infested plant to the non-infested control plant. T4 enabled plant–plant communication 
based on volatiles and via roots (air and root) from the infested plant to the non-infested control plant. Photos of actual experimental units are 
included



Page 4 of 11do Prado Ribeiro et al. Plant Methods  (2018) 14:54 

(30 × 25 × 25  cm), in which all six sides were covered 
with 100  µm plastic mesh. This choice of cages was to 
minimize the volatile exchange among experimental 
units, and at the same time enable some air to circulate to 
minimize humidity build-up and to ensure similar tem-
perature conditions inside experimental units. All experi-
mental units were kept in the same climate-controlled 
room (temperature 25 ± 2 °C, 60 ± 10% RH and 14 L: 10 
D h photoperiod), with all experimental units exposed to 
the same lighting regime (illuminance not measured). All 
treatments were replicated five times for hyperspectral 
imaging and three times for phytocompound data collec-
tions. As cages remained closed at all times when inside 
the climate-controlled room and only opened for a few 
minutes to perform hyperspectral imaging, the risk of 
plant–plant communication was kept as low as possible.

Hyperspectral imaging of maize leaves
We acquired time series hyperspectral imaging data: 
before (baseline) and after 6, 12, 24, and 48 h of herbivory. 
After baseline hyperspectral imaging, individual maize 
plants were randomly assigned to treatments. Hyper-
spectral imaging was performed in a room immedi-
ately adjacent to the climate-controlled room, where the 
experimental units were maintained. At each hyperspec-
tral imaging event, a single cage at a time was transferred 
from the climate-controlled room to the hyperspectral 
imaging room, and hyperspectral imaging was completed 
within 1–2 min per plant. The order of maize plants and 
experimental units being imaged was randomized each 
time.

Hyperspectral imaging conditions and settings are sim-
ilar to those described in a range of other hyperspectral 
imaging studies [49, 53–58]. All hyperspectral images 
were collected with artificial lighting from 15  W, 12  V 
light bulbs mounted in 2 angled rows, one on either side 
of the lens, with 3 bulbs in each row. A voltage stabilizer 
(Tripp-Lite, PR-7b, www.radio refer ence.com) powered 
the lighting. Ambient climate conditions were between 
24–26 °C and 50–60% relative humidity. A piece of white 
Teflon was used for white calibration, and “relative reflec-
tance” refers to proportional reflectance compared to 
that obtained from Teflon. Consequently, relative reflec-
tance values ranged from 0 to 1. For each combination 
of maize plant and time point, we imaged an area corre-
sponding to about 2 cm2 (equivalent to 64,000 pixels) on 
the second leaf after it had been placed in a horizontal 
position. Each hyperspectral image from a given com-
bination of plant and time point was divided into two 
halves. A hyperspectral push broom camera (PIKA II, 
Resonon Inc., Bozeman, MT) was used. The objective 
lens had a 35  mm focal length (maximum aperture of 
F1.4) and was optimized for the visible and NIR spectra. 

The main specifications of the spectral camera are as fol-
lows: interface, Firewire (IEEE 1394b), output, digital (12 
bit), 160 bands (spectral) by 640 pixels (spatial), angular 
field of view, 7 degrees, and spectral resolution of < 3 nm. 
We acquired reflectance in 240 spectral bands in the 
range from 380 to 1031  nm. However, to avoid spectral 
bands with low signal/noise ratio, we only included 230 
spectral bands from 405 to 1012 nm, and they were spec-
trally 3X-binned (averaged) into 75 spectral bands with 
a spectral resolution of about 9 nm. We calculated aver-
age leaf reflectance in each of the spectral bands for all 
combinations of maize plant and time point and used 
these data for statistical analyses. With five time points 
(0, 6, 12, 24, and 48 h), six plant treatments (Fig. 1), five 
replications, and two hyperspectral images, a total of 
300 average leaf reflectance profiles (observations) were 
included in the statistical analyses. In other words, the 
number of observations was 4 times the number of spec-
tral bands (N = 75). This ratio between observations and 
spectral bands is very important for the robustness of 
the data classification based on average leaf reflectance. 
Moreover, model over-fitting due to the Hughes phe-
nomenon or violation of the principle of parsimony [59] 
is a major concern when the number of explanatory vari-
ables is similar or exceeds the number of observations 
[44, 58, 60, 61].

Phytocompound analyses
Phytocompound analyses were carried out using the 
second leaf of maize plants from all treatment groups 
(Fig. 1) before infestation (baseline) and after 12, 24, and 
48 h. Three replicates were used for each combination of 
treatment and exposure time.

A relative quantification of four phyto-signaling com-
pounds (IAA, JA, SA, and OPDA) was performed using 
a method adapted from Trapp et al. [28]. After collection 
leaves were immediately frozen in liquid nitrogen and 
storage at − 80 °C until the extraction.

The leaves were ground in a crucible, and 100  mg 
of ground tissue was transferred to 1.5  mL tubes and 
extracted twice with 1  mL of methanol (70%, v  v−1). 
After the extraction, the solutions were dried in a Speed-
Vac and re-suspended in 100 µL of methanol containing 
20  ng  mL−1 of each internal standard (d5-IAA, d5-JA, 
d4-SA). These samples were analyzed by HPLC–MS/MS 
on an Agilent 1100 HPLC system (Agilent Technologies, 
Böblingen, Germany) connected to a LTQ Iontrap mass 
spectrometer (Thermo Scientific, Bremen, Germany) 
equipped with an Electrospray ionization source.

The chromatographic separation was performed in a 
Luna Phenyl-Hexyl column (150 × 4.6  mm, 5  μm; Phe-
nomenex, Aschaffenburg, Germany), using gradient elu-
tion with formic acid (0.05%, v v−1) and methanol (with 

http://www.radioreference.com
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0.05% of formic acid, v  v−1) as mobile phases A and B, 
respectively. The elution profile was: 0–10 min, 42–55% 
B in A; 10–13  min, 55–100% B; 13–15  min 100% B; 
15–15.1 min 100–42% B in A; and 15.1–20 min 42% B in 
A. The mobile phase flow rate was 1.1 mL min−1.

The ionization parameters were optimized for each 
phyto-signaling compound separately. Except IAA and 
d5-IAA (which were analyzed in positive ionization 
mode), all the others phyto-signaling compounds were 
analyzed in negative mode and monitored by the follow-
ing SRM channels: IAA (176 > 130); d5-IAA (181 > 135); 
JA (209 > 59); d5-JA (214 > 62); OPDA (291 > 165); SA 
(137 > 93); d4-SA (141 > 97). Precursors and fragment 
ions were selected with an isolation window of 2 days.

Photosynthetic pigments (chlorophyll a and b, carot-
enoid) were measured based on fresh material from sec-
ond leaves of maize plants (same as area being imaged 
with hyperspectral camera). Leaves of maize (fresh 
weight, 0.1 g) were frozen in liquid nitrogen and ground. 
Subsequently, ground leaf samples were transferred to 
a glass vial containing 5  mL of aqueous acetone solu-
tion (80%, v  v−1) for 24  h, filtered and the absorbance 
was measured in an Analytik Jena spectrophotometer 
(Specord 200 Plus, Analytic Jena AG, Jena, Germany) 
at 663.6, 646.8 and 470 nm. Carotenoid and chlorophyll 
concentrations were calculated from the absorbance of 
extract at using the adapted formula by Lichtenthaler HK 
[62] as below:

To quantify hydrogen peroxide content, fresh tissue 
was collected from second leaf on maize plants (about 
50 mg), and each sample was ground to a fine powder in 
liquid nitrogen and were homogenized in ice bath with 
5 mL of trichloroacetic acid (0.1%, w  v−1). The homogen-
ate was centrifuged at 20,000  g for 30  min at 4  °C. The 
supernatant (0.5 mL) was added to 0.5 mL 10 mM potas-
sium phosphate buffer (pH 7.0) and 1 mL of a 1 M L−1 
potassium iodide solution. The absorbance of superna-
tant was checked at 390 nm [63]. The hydrogen peroxide 
content was calculated based on a standard curve pre-
pared with hydrogen peroxide solutions (0–500 µM L−1) 
obtained by dilution of hydrogen peroxide (30%, w  w−1).

chlorophyll a (mg g−1)

= (12.25× A663, 6− 2.69× A646, 8)× 50/1000

chlorophyll b (mg g−1)

= (21.50× A646.8− 5.1× A663.6)× 50/1000

carotenoid (mg g−1)

= ((1000× A470)− (1, 82× Chl a)

−(85, 02× Chl b))/198)× 50/1000

Experimental design and data analysis
Data processing and analyses were conducted in PC-
SAS 9.4 (SAS Institute, NC). Initially, we conducted an 
analyses of variance (proc anova option = repeated and 
option = tukey) for repeated measures. An initial analy-
ses of variance for repeated measures showed a highly 
significant effect of hours of insect herbivory (P < 0.001), 
and also a highly significant interaction between hours of 
insect herbivory and plant treatment (P = 0.001). The key 
focus of this study was to examine possible differences in 
maize plant responses to treatments, so effect of hours of 
insect herbivory was eliminated by rank-transformation 
of phytocompound data [ranked within each time point 
(0, 12, 24, and 48 h)] before further analysis. Using base-
line data only (prior to insect herbivory), we conducted 
analysis of variance (proc anova) to examine the effect 
of the experimental design by comparing phytocom-
pound levels and leaf reflectance from maize plants: (1) 
alone, (2) two plants in separate pots but in the same 
cage (T3A and T3B), and (3) two plants in the same pot 
(T4A and T4B). To analyze responses to insect herbivory 
and plant–plant communication, the maize plants were 
assigned to one of four groups:

  • Control: baseline data from T1 and T2 plants, and all 
additional data acquired from T2 plants,

  • Herbivory: all data acquired from T1, T3A, and T4A 
plants after onset of herbivory.

  • Air only: all data acquired from T3B plants after 
onset of herbivory.

  • Air and root: all data acquired from T4B plants after 
onset of herbivory.

We conducted analyses of variance (proc anova 
option = repeated and option = tukey) for repeated meas-
ures (with either rank-transformed phytocompound data 
or selected spectral bands) to compare average maize 
plant responses by these four groups.

The main data analysis was conducted in two separate 
parts, and, in separate analyses, we used the same experi-
mental design in studies of phytocompound data and leaf 
reflectance data. Firstly, the purpose was to characterize 
maize plant responses to insect herbivory; secondly, the 
purpose was to characterize plant–plant communication. 
In order to characterize maize plant responses to insect 
herbivory, we examined data from the Control and Her-
bivory groups described above. In other words, maize 
plants that were either alone and not infested or plants 
that were directly infested, and a discriminant classifica-
tion model (proc discrim) [64] was developed. Initially, 
stepwise linear discriminant analysis (proc stepwise) was 
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used to only select the explanatory variables (phytocom-
pound data or spectral bands) with significant contribu-
tion to each of the discriminant classification models. 
The selected subset of explanatory variables was used to 
generate the discriminant classification models, and their 
accuracies were quantified on the basis of 80% of the 
data being randomly selected as training data set and the 
remaining 20% of the data used for independent valida-
tion. This validation procedure was repeated 10 times to 
calculate average classification accuracies.

The second part of the main data analysis consisted of 
characterizing plant–plant communication, and this was 
conducted based on plants assigned to the “Air only” 
and “Air and root” groups described above. Moreover, 
the discriminant classification models (based on phy-
tocompound data or leaf reflectance data from Control 
and Herbivory groups of plants) were used to interpret 
data from T3B and T4B plants. Under the assumption of 
plant–plant communication, T3B and T4B plants were 
predicted to be classified as subjected to herbivory (and 
not control).

Results
Phytocompound responses to insect herbivory
At baseline, none of the eight phytocompounds var-
ied significantly among the three groups of plants 
(P > 0.05). Thus, the experimental design (presence/
absence of a second maize plant in the same cage) did 

not appear to significantly affect the phytocompound 
levels. Figure  2 shows average phytocompound levels 
after 12–48 h, after maize plants had been divided into 
four groups. Based on tukey comparisons, three phyto-
compounds (IAA, JA, and hydrogen peroxide) varied 
significantly among the four groups (P < 0.05), but only 
IAA showed a significant difference (up-regulation) in 
response to insect herbivory (Control vs. Herbivory).

Based on stepwise forward selection, we determined 
that IAA, hydrogen peroxide and chlorophyll a and b 
contributed significantly to the discriminant classifi-
cation of Control and Herbivory plants. The valida-
tion of the discriminant classification model showed 
that the four phytocompounds could be used to clas-
sify Control and Herbivory plants with 80.7% accu-
racy (Control = 88.4% and Herbivory = 72.9%). Thus, 
although only IAA showed a significant up-regulation 
in response to insect herbivory (Fig. 2), a combination 
of phytocompounds provided strong indication of a 
maize plant response to insect herbivory. In following, 
the discriminant classification model was used to inter-
pret phytocompound from T3B and T4B plants. We 
found that 67% of T3B plants were classified as Her-
bivory plants, which suggested that their phytocom-
pound composition was more similar to that of plants 
subjected to insect herbivory than to control plants. 
We also found that 89% of T4B plants were classified as 
Herbivory plants. Thus, we demonstrated plant–plant 

Fig. 2 Average (error bars = standard error) phytocompound levels after maize plants had been divided into four groups (See Fig. 1 for treatment 
descriptions): “Control”: baseline data from T1 and T2 plants, and all additional data acquired from T2 plants, “Herbivory”: all data acquired from T1, 
T3A, and T4A plants after onset of herbivory, “Air only”: all data acquired from T3B plants after onset of herbivory, and “Air and root”: all data acquired 
from T4B plants after onset of herbivory. Different letters denote significant difference at the 0.05 level. Phytocompounds: [auxins (in particular 
indole-3acetic acid (IAA)), hydrogen peroxide  (H2O2), jasmonic acid (JA), 12-oxo-phytodienoic acid (OPDA), salicylic acid (SA), chlorophyll a (Chl_a) 
and b (Chl_b), and carotenoids (Carot)]. a IAA, b JA, c  H2O2, d SA, e OPDA, f chlorophyll a, g chlorophyll b, h carotenoids
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communication, and this was particularly evident when 
root communication was possible.

Reflectance detection of insect herbivory and plant–plant 
communication
Figure  3a shows average baseline reflectance profiles of 
maize plants divided into three experimental groups. 
Average reflectance curves were also presented as their 
difference from that of Control plants (Fig.  3b). As the 
curves were generally < 1, it is seen that presence of a 
second plant inside cages generally caused a decrease in 
average leaf reflectance, especially in T4B plants in the 
spectral range from 405 to 700 nm. As indicated by black 
dots in Fig. 3b, eight spectral bands (near 500, 630, and 
700 nm) showed significant difference in response to the 
experimental design.

Figure  4 shows the average leaf reflectance profiles of 
maize plants, when divided into four treatment groups. 
It is important to highlight that hyperspectral imaging 
data were acquired under controlled experimental con-
ditions and that only a low and brief level of herbivory-
induced stress level was imposed. Using stepwise forward 
selection, we found that 10 spectral bands (black dots in 
Fig. 4) contributed significantly to the discriminant clas-
sification model of Control and Herbivory plants. Based 
on analysis of variance for repeated measures, none of the 
10 selected spectral bands showed significant difference 
in response to plant treatments (not shown). In other 
words, none of the spectral bands could be used indi-
vidually as indicators of insect herbivory. However, we 
used the 10 spectral bands as explanatory variables in a 
discriminant classification model to classify Control and 

Herbivory plants, and this classification was associated 
with an overall accuracy of 79.3% (Control = 79.4% and 
Herbivory = 79.2%). Thus, despite only subtle between-
class variation in average leaf reflectance data, it was pos-
sible to identify a reliable leaf reflectance response to low 
level of insect herbivory. In the second part of the hyper-
spectral imaging data analysis, the discriminant classifi-
cation model (derived from plants assigned to Control 
and Herbivory) was used to interpret leaf reflectance data 
acquired from T3B and T4B plants. Interestingly, 76% 

Fig. 3 Average reflectance profiles a acquired from maize plants prior to insect herbivory (baseline) and divided into three groups: single plant per 
cage (alone), two plants in different pots but in the same cage (air), and two maize plants planted in the same pot (air and root). Average reflectance 
profiles b from T2, T3B, and T4B maize plants after 3–48 h of insect herbivory were divided with average reflectance profiles acquired from control 
plants (T1). See Fig. 1 for treatment descriptions. Significant F-values at the 0.05-level from statistical comparisons are denoted as dots

Fig. 4 Average reflectance profiles from maize plants divided into 
four groups, “Control”, “Herbivory”, “Air only”, and “Air and root” (see 
Fig. 2 for description). Stepwise linear discriminant analysis was 
conducted to selected spectral bands (black dots), which contributed 
to the discriminant classification model of Control and Herbivory 
plants
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(T3B plants) and 77% (T4B plants) were classified as sub-
jected to insect herbivory. This result strongly suggested 
that plant–plant communication from infested plants 
(T3A and T4B) to T3B and T4B plants triggered a detect-
able leaf reflectance response, so that the average reflec-
tance profiles of T3B and T4B plants were more similar 
to those of Herbivory plants.

Discussion
This study was conducted to determine whether phyto-
compound data and hyperspectral imaging data could 
be used to detect maize plant response to both direct 
insect herbivory and also to plant–plant communication 
from an infested to a non-infested plant. We demon-
strated that individual phytocompounds (except IAA) as 
well as reflectance in individual spectral bands were not 
reliable indicators of neither insect herbivory nor–plant 
communication. However, using a linear disciminination 
classification method based on combinations of either 
phytocompounds or spectral bands, we found clear evi-
dence of maize plant responses. The potential of using 
changes in average reflectance data as indicator biotic 
stress is of particular interest to a broader community of 
researchers studying plant–insect interactions.

In a large body of literature, arthropods have been used 
as indicators of plant responses to a range of stressors 
and to plant–plant communication [9, 29–35]. As part 
of elucidating the mechanisms responsible for such bio-
responses, it is well-established that herbivore-induced 
stress elicits plant physiological responses, which lead to 
changes in phytocompound levels (including OPDA, JA, 
IAA, and hydrogen peroxide) [1, 2, 65–67], and this was 
partially confirmed in this study. It is also well-described 
(and corroborated in this study) that herbivore-induced 
stress in one plant can elicit a phytocompound response 
in adjacent control plants, either induced by VOCs [1, 2, 
14, 15, 68–70] and/or through root-based signaling [18–
22]. Finally, there is ample evidence of how biotic stress 
by herbivores induces detectable changes in leaf reflec-
tance [43, 44]. However, this is the first report describ-
ing herbivore-induced stress in plants subjected to insect 
herbivory causing a detectable and statistically significant 
change in leaf reflectance in an adjacent control plant. 
Thus, we are providing the first report of plant–plant 
communication of biotic stress being detected and quan-
tified through the means of non-invasive method, namely 
analyses of leaf reflectance.

Plants have developed various strategies to defend 
themselves against herbivores and pathogens either alone 
or in “community” tactics [1]. Although some of these 
strategies are constitutive, most are inducible in response 
to stressors, so that plants enter a “primed state” [71, 72]. 
In general, induced stress interferes with photosynthesis, 

chemical composition, and physical structure of the plant 
and affects the absorption of light energy and thus alters 
the reflectance spectrum of the plants under stress [43]. 
In plants, immediate responses to herbivory are typically 
followed by a rapid and transient generation of reactive 
oxygen species in response to damage in the plant tissue 
[11–13, 73]. In a concentration-dependent manner, the 
hydrogen peroxide is a reactive oxygen species respon-
sible by important functions in plant development and 
metabolism such as homeostasis, acclimatization, and 
plant defense processes [74]. In addition, hydrogen per-
oxide acts as a signaling molecule in plants to a variety of 
others signaling molecules and plant hormones [14, 75, 
76], since it can induce the synthesis or activation of tran-
scription factors that are associated with the induction of 
several enzymes of the antioxidant system [77, 78].

Literature reviews of hyperspectral vegetation indices 
have identified spectral bands in the 900–940 nm region 
to correlate well with wet biomass and leaf area index 
across a series of crops [79, 80]. It is also been determined 
that spectral bands near 948, 975 and 1004 nm are mean-
ingful when developing spectral band indices to detect 
iron deficiency in crops [81]. In addition, the relationship 
reflectance at 970 nm/900 nm was proposed as a mean-
ingful water index of crops [82]. However, the vast major-
ity of hyperspectral indices are based on spectral bands 
from 450 to 800  nm [79, 81–85]. In the current study, 
eight spectral bands (near 500, 630, and 700 nm) showed 
significant difference in response to the experimental 
design (Fig.  3b). This result implies that some level of 
plant–plant communication was already occurring prior 
to the onset of insect herbivory. We also demonstrated 
that a combination of 10 spectral bands (see black dots in 
Fig. 4), especially between 700 and 750 nm, could be used 
to classify maize plants with/without insect herbivory. 
Most studies of reflectance responses to insect-induced 
stress have shown that herbivory causes an increase in 
reflectance [44]. Sensitivity analyses across wide spec-
tral ranges (between 400 and 2500  nm) have shown 
that increased reflectance near 700  nm wavelength is 
a consistent indication of stress [86, 87]. Moreover, an 
increase in reflectance near 700 nm appears to be linked 
to reduced absorption due to lower chlorophyll concen-
tration [42, 46, 88]. However especially regarding pierc-
ing-sucking herbivores, there are important exceptions 
suggesting that feeding behavior may be important. As 
an example, greenbug [Schizaphis graminum (Rondani) 
(Hemiptera: Aphididae)] infestations in wheat [Triticum 
aestivum L. (Poaceae)] caused a decrease in reflectance 
in the UV-light portion of the spectrum [89]. In addition, 
herbivory by bird cherry-oat aphids [Rhopalosiphum 
padi (L.) (Hemiptera: Aphididae)] also caused a decrease 
in leaf reflectance [90]. In a study of Russian wheat aphids 
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[Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae)] 
and greenbugs (S. graminum), both sucking herbivo-
rous insects, it was determined that the strongest reflec-
tance responses were detected in spectral bands between 
625–635 and 680–695 nm [89]. The results presented in 
this study underscore the importance of disentangling 
reflectance responses associated with inherent and more 
general plant–plant communication from those being 
potentially providing specific information about signaling 
of biotic stress imposed by herbivorous insects. As this 
is the first study of plant–plant communication and leaf 
reflectance data, we do not have comparative data.

An important detail in this study was the structure 
and handling of cages used to hold the maize plants. 
That is, we decided to keep all cages in the same room, 
as it was considered critical that they were all under the 
same abiotic conditions (i.e. light, temperature and rela-
tive humidity). In addition due to concerns about mold 
and build-up of humidity (especially when two plants 
were in a cage compared to cages with one plant), it was 
considered necessary to allow some air movement in 
and out of cages. Also, use of hermetically closed cages 
could also affect the feeding behavior and survival of the 
stink bugs. However at the same time, we obviously had 
concerns about possible volatile-based communication 
among plants in different cages. It is possible that more 
significant plant responses would have been detected, if 
we had been able to control and maintain air flow inside 
each of the cages, but that was not possible due to logisti-
cal limitations.

In conclusion, we demonstrated plant–plant commu-
nication from an infested to a non-infested plant when 
based on phytocompound data as well as on average leaf 
reflectance data from a selected combination of spectral 
bands. Thus, we have provided initial evidence of how 
remote sensing may be considered a powerful non-inva-
sive method to increase our current understanding of 
both direct plant responses to biotic stressors but also to 
the multiple ways plant communities are able to commu-
nicate. Due to plant–plant communication, our results 
suggest that in laboratory studies thorough caging and/or 
separation of replicated plants, and of plants subjected to 
different treatments, is of major importance when con-
ducting experimental laboratory studies. We are aware of 
how growth chamber space at universities is often shared 
by students and faculty from multiple groups. In addi-
tion, multiple plants may be grown in flats or trays to save 
space. The results presented here suggest that interfer-
ence via plant–plant communication may adversely affect 
the quality and/or consistency of the data being collected, 
unless individual plants are effectively “protected” from 
plant–plant communication. In an applied agricultural 
context, the results from this study are encouraging as 

they suggest that “hotspot” detection of emerging insect 
infestations in agricultural crops may be more likely if 
based on analyses of reflectance values in spectral bands. 
That is, if a small cluster of crop plants are infested by 
insects and emit a stress signal to adjacent plants, which 
in turn also respond to the stressor, then it may be easier 
to spatially localize the emerging infestation hotspot in 
crop fields. Thus, confirmation of leaf reflectance based 
detection of plant–plant communication is highly rel-
evant to development of accurate and reliable methods in 
precision agriculture to determine when and where crop 
plants are under stress.
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