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Models
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Abstract

For right-censored data the accelerated failure time (AFT) model is an alternative to the commonly 

used proportional hazards regression model. It is a linear model for the (log-transformed) outcome 

of interest, and is particularly useful for censored outcomes that are not time-to-event, such as 

laboratory measurements. We provide a general and easily computable definition of the R2 

measure of explained variation under the AFT model for right-censored data. We study its 

behavior under different censoring scenarios and under different error distributions; in particular, 

we also study its robustness when the parametric error distribution is misspecified. Based on 

Monte Carlo investigation results, we recommend the log-normal distribution as a robust error 

distribution to be used in practice for the parametric AFT model when the R2 measure is of 

interest. We apply our methodology to an alcohol consumption during pregnancy data set from 

Ukraine.

Keywords

censoring type; error distribution; explained variation; log-normal distribution; semiparametric 
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1 Introduction

The R2 measure of explained variation for right-censored data has been studied since early 

days of survival analysis up until very recently. Much of the work has been done under the 

popular proportional hazards regression model. An early reference is Harrell (1986), and a 

comprehensive review and comparison can be found in Schemper and Stare (1996) for 

works published up until then. O’Quigley and Xu (2012) also thoroughly examined the 

concepts of explained variation as well as explained randomness under the proportional 

hazards model. Very roughly speaking, there are three general ways to define such a 

measure: squared correlation coefficient; residual based; and information based. All three as 

well as the R2 measure itself is best understood under the linear regression model without 
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censoring. In addition, the definitions are generally model dependent, i.e. specifically for the 

proportional hazards model.

The work of this paper was motivated by a prospective cohort study conducted among 

pregnant women in Ukraine as a part of the Collaborative Initiative on Fetal Alcohol 

Spectrum Disorders (Arenson et al., 2010; Mattson et al., 2010, CIFASD). One of the goals 

of the study was to identify predictors of maternal alcohol consumption in pregnancy. In this 

study, all women who came in for a routine prenatal visit were screened with questions on 

alcohol consumption, drug or vitamin exposures, demographics and pregnancy history. 

During the interview, a woman reported the number of days in a month that she consumed 1 

to 2, 3 to 4, or 5 or more drinks on an occasion around conception as well as in the most 

recent month. To capture the frequency and amount of alcohol consumed, we decided to 

examined the average absolute ounces of alcohol consumed by a woman per day and per 

drinking day. Such calculations created right-censoring data, because for those who reported 

5 or more drinks on an occasion, the exact amount was unknown. If we ignore it and fit it 

with ordinary least squares regression, which could not properly handle right-censored 

outcome data, the R2 in the naive fit would show bias with increasing amount of censoring, 

as illustrated in Figure 1.

To handle this type of right-censored outcome data, the popular Cox proportional hazard 

regression model does not provide a natural interpretation as it models the hazard function, 

while our outcome is not time-to-event. Instead, we consider the accelerated failure time 

(AFT) model. The AFT model is a linear regression model, albeit typically with logarithm 

transformation on the outcome, and predicts the mean amount of drinking given the other 

maternal characteristic variables. As in many practical problems, we would like to know the 

ability of the maternal characteristics in predicting maternal drinking as reflected by an R2 

measure. While the R2 measure is well-known under the linear models with no censoring in 

the data, to our best knowledge no R2 measures have been proposed in the literature under 

the AFT model with right-censored data. As we will see, however, it is not difficult to 

develop such a measure.

In the following we first define an R2 measure under the AFT model. We then study its 

performances via simulation in Section 3, including when the model is missepecified. In 

Section 4 we apply the measure to the alcohol consumption during pregnancy data set from 

Ukraine. We conclude with discussion in Section 5.

2 R2 measure under the AFT model

The accelerated failure time model can be written

Y = Z⊤β + σε, (1)

where Y is the response variable, often the logarithm of the uncensored outcome T of 

interest, Z is a vector of covariates or independent variables, β is a vector of unknown 

regression parameters, σ is an unknown scale parameter, and ε is an error term with fixed 
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variance. While the semiparametric AFT model has been studied in the statistical literature 

where the distribution of ε is unspecified, the parametric AFT model is more widely used in 

practice due to its ease of computation and availability in common statistical software, and it 

is our focus here. However, the definition below can be easily extended to the 

semiparametric AFT model, as will be discussed later. The commonly used parametric 

distributions for ε are: exponential, logistic, log-logistic, log-normal, Gaussian, and Weibull.

To define an R2 measure under model (1), we recall that under the linear regression model 

with no censoring, it can be defined as one minus the ratio of residual sum of squares to the 

total sum of squares. With right-censored data, however, the sums of squares are not 

straightforward to obtain. Instead, we notice that R2 should reflect the proportion of 

explained variation over the total variation, and the explained variation can be obtained by 

subtracting the residual variation from the total variation. That is, we wish to estimate

Ω2 = 1 − Var(σε)
Var(Y) . (2)

Since ε is independent of Z, from (1) we have Var(Y) = Var(Z⊤β) + σ2Var(ε). For a sample 

with i = 1, ..., n subjects, after estimating β and σ under the AFT model (1), we define

R2 = 1 − σ2Var(ε)
Var(Z⊤β) + σ2Var(ε)

, (3)

where Var(Z⊤β) = ∑i = 1
n {Zi

⊤β − (∑ j = 1
n Z j

⊤β)/n}2/(n − 1) is the sample variance of the Zi
⊤β’s, 

and Var(ε) is known under the model. For the six commonly used distributions mentioned 

above, Var(ε) = π2/3 under the logistic and log-logistic models, π2/6 under the Weibull and 

exponential models, and 1 under the Gaussian and log-normal models. Since the above 

sample variance consistently estimates Var(Z⊤β), and the parameters are consistently 

estimated under model (1), we know that the R2 defined in (3) consistently estimates Ω2 

defined in (2).

3 Simulation studies

While the computation of R2 defined in (3) is straightforward, in practice one needs to 

choose an error distribution before fitting the AFT model (1). In addition, we would also like 

to know how censoring and covariate distribution might affect the R2 in finite samples.

3.1 Simulation setup

We simulated data sets under model (1). Data were generated with the intercept β0 = 0 

without loss of generality. We considered four types of right-censoring scenarios: no 

censoring, type I, type II, and random censoring. While random censoring commonly occurs 

in clinical studies, type I and type II censorings are often the case for laboratory or engineer 
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studies, for which the AFT model might often be used. For each of the censoring scenarios 

except no censoring, we generated q = 25%, 50% and 75% censoring. For type I censoring, 

the censoring time C was fixed, which was the 100 × (1 − q)-th percentile of the distribution 

of Y; for type II censoring, the censoring time C was the 100 × (1 − q)-th percentile of the 

sample of Yi’s; for random censoring we used Uniform (0, τ) distribution, where τ was 

chosen so that a pre-specified censoring percentage was achieved. We used R function 

survreg() written by Therneau and Lumley to fit the AFT model. For each combination of 

the parameter values, results from 2000 simulations, each with sample size 100, were given 

below unless otherwise specified. Other sample sizes have also been considered, but due to 

the limitation on space we show the most representative results here.

We considered four different covariate distributions for Z under model (1): Bernoulli, 

Normal, Uniform, or Exponential. These included discrete, continuous, symmetric, and 

skewed distributions. All of the distributions had Var(Z) = 0.25. Note that it is necessary to 

fix Var(Z) so that the R2 values can be compared for a given value of β; otherwise a scale 

change in Z is simply equivalent to multiplying β by a non-zero constant. We set β values 

from 0.5 to 4 with 0.5 increments.

For error distribution we generated ε according to logistic, log-logistic, Weibull, Gaussian 

and log-normal, with σ2 = 3/π2, 3/π2, 6/π2, 1 and 1 respectively, so that all Var(σ ε) = 1. 

For exponential error distribution, σ = 1 by definition, so that Var(σ ε) = π2/6.

Finally we generated data with Z distributed as bivariate normal with variances 0.25 and 

correlation coefficient ρ = 0, 0.2 or 0.5, β1 and β2 varied from −2 to 2 with 0.5 increment, 

and ε ~ (0, 1).

3.2 Simulation results

Effects of censoring, covariate and error distributions—In Table 1 in order to 

compare the R2 values versus Ω2 across different error distributions, we set Ω2 = 0.5 by 

construction. This is done by setting β = 2 under all except exponential error distribution, 

where we set β = 2/3π, together with the σ values given in the above setup. As shown in the 

table, the R2 measure shows desirable performance when the error distribution is specified 

correctly. The R2 measure has the least variation with the exponentially distributed error, 

most likely because σ = 1 is known. Figure 1 shows the naive R2 values when the right-

censored outcome data was fitted with ordinal least-squares ignoring the censoring indicator. 

It used a large sample size of 10000, ε ~ (0, 1) and Z ~ (0, 0.25). It is clear that 

censoring can have a profound effect on the R2 values if a proper method is not used to 

analyze the right-censored data.

Figure 2 demonstrates the behavior of R2 for different covariate distributions. Here ε ~ (0, 

1); the results under other true error distributions are similar. As shown in the figure the R2 

values are basically unaffected by the underlying distribution of Z (except binary with 75% 

censoring; see below). The error bars represent the standard deviation from the simulations. 

We see that the R2 has slightly more variation when Z is exponentially distributed, and the 

least variation when Z is Normal or Uniform.
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The effect of different censor scenarios is also illustrated in Figure 2. Generally, the R2 

measure behaves very similarly under different types of censoring. In addition, it has less 

variation with decreasing amount of censoring and increasing sample size as expected (data 

not shown). For 75% censoring and when Z is Bernoulli, over 95% of those subjects with Z 
= 1 are censored when β > 2, and β̂ is overestimated. This has resulted in usually large R2 

values as shown in Figure 2.

Misspecified error distribution—Figure 3 shows for each of the six error distributions 

that are used to generate the data, the R2 values when each of these six distributions are 

fitted to the data under model (1), respectively. Note that when the true error is Gaussian or 

logistic, only these two models are used to fit the data since the outcome can be potentially 

negative. In Figure 3 the parameter values are chosen so that the true explained variation Ω2 

= 0.5. We see that among all the fitted error distributions, log-normal (in red color) is the 

most robust against distributional misspecification. Exponential and Weibull models 

underestimate the R2 in all cases except when they are the true error distribution. Closer 

examination of the parameter estimates under the misspecified error distributions reveals 

that both β̂ and σ̂ can deviate from their true values when the model is wrong; interestingly 

when the log-normal error distribution is used to fit the data, the deviations in the parameter 

estimates appear to ‘cancel out’ to give nearly correct R2 values as compared to Ω2.

In Figure 4 we consider different values of Ω2 from 0.1 to 0.8, with increments of 0.1. We 

used normally distributed Z with 25% type I censoring; results for other types of censoring 

are qualitatively comparable (data not shown). The estimated values are plotted near the grid 

points for the corresponding Ω2 values, but are slightly shifted left or right so that different 

colors can be as visible as possible. The color scheme is the same as in Figure 3 for the fitted 

error distributions. For each column of the true error distribution, we should compare to the 

results when the true distribution is used to fit the model; for example, in the third column 

when the true distribution is log-normal, we should compare all the other colors to red, 

which represents when the true log-normal model is fitted (hence the results are reliable). 

Across the top row we see that overall log-normal and log-logistic give R2 values the closest 

to when the true error distribution is fitted (remember to only compare the vertical values 

near the grid point, and not the horizontal distrances). Upon closer examination using plots 

like in Figure 3 (data not shown) we see that at the lower end of Ω2 values like 0.1, log-

logistic does slightly better than log-normal, in terms of the robustness under consideration. 

But overall, log-normal appears to perform the best, with log-logistic a close second. The 

middle and bottom rows show the Var(Z⊤β) and σ̂ values, respectively. And we further 

discuss the goodness-of-fit issue in the last section.

Multiple covariates—Figure 5 shows the R2 values (as %) with varying correlation 

coefficients for the two covariate cases with 0% and 25% random censoring. R2 measure 

also behaves similarly with type I and II censoring (data not shown).

4 Drinking during pregnancy data

We now return to the CIFASD alcohol consumption during pregnancy study. As mentioned 

earlier the purpose of this study was to evaluate the patterns of alcohol consumption in 
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pregnancy as reported by women in Ukraine and to describe maternal predictors of 

potentially harmful alcohol consumption to help inform future intervention and prevention 

strategies. The study screened 11,909 pregnant women from two study sites in Ukraine 

between 2007 and 2012, and 10,976 of them were classified as ‘ever-drinking’. These ‘ever-

drinking’ women were asked to recall the number of days they had 1 or 2 drinks, 3 or 4 

drinks, or 5 or more drinks during the relevant time period. In the calculation 1 or 2 drinks 

was coded as 1.5 drinks, and 3 or 4 drinks was coded as 3.5 drinks. The category of 5 or 

more drinks created right censoring in the summary measure below, as the actual number of 

drinks was unknown. Alcohol consumption in response to these questions was summarized 

as the average number of drinks per day over the month for which the woman was reporting 

as reflection of the overall quantity of alcohol consumed (around conception, and during the 

most recent month). More specifically, this is equal to (1.5x + 3.5y + 5z)/30 where x, y and z 
are the number of days they had 1 or 2 drinks, 3 or 4 drinks, or 5 or more drinks, 

respectively. Overall 7262 women reported having > 0 drinks around conception, and 5841 

women reported having > 0 drinks in the most recent month. Our analyses below are 

restricted to these subsets of women. There were totally about 7% right-censored 

observations.

In additional to the quantity and frequency of alcohol consumption, women were also asked 

to respond to seven standard screening questions for risky drinking, including binary 

predictors for inability to remember activities after a drinking episode (Amnesia), feeling 

annoyed by other’s criticism of the respondent’s drinking (Annoy), the desire to cut down on 

drinking (Cut-Down), the need for an “eye-opener” (Eye-opener), guilt regarding drinking 

(Guilty), others are concerned about the respondent’s drinking (Worry), and ability to hold 

six or more drinks (Tolerance). The number of drinks a woman can hold, i.e. before passing 

out, falling asleep, or becoming too sick to continue, was also recorded (HOLD). The seven 

questions above comprise the CAGE (Cut-down + Annoy + Guilty + Eye-opener), the 

TWEAK (2×Tolerance + 2×Worry + Eye-opener + Amnesia + Cut-down), and the T-

ACE(2×Tolerance + Annoy + Cut-down + Eye-opener) scores, that have five levels (0 – 4), 

eight levels (0 – 7), and six levels (0 – 5), respectively (Russell et al., 1996).

We fit the AFT model (1) to each of the two alcohol consumption outcome measures 

(around conception, and during the most recent month), with the risky drinking predictors 

described above, as well as relevant maternal characteristics variables. The maternal 

characteristics variables were selected from twenty-two covariates using stepwise 

procedures (Chambers et al., 2014), and included smoking status, age when first started to 

drink, marital status, education, gravidity, etc. The prediction models were built with each of 

the risky drinking predictors alone, and with each of the CAGE, TWEAK and T-ACE scores 

plus the selected maternal characteristics covariates. The R2 values were computed for each 

model, and Figure 6 shows these values under various error distributions for drinking around 

conception; the results for the most recent month in pregnancy are qualitatively similar, but 

with slightly higher R2 values (see below). Logistic error distribution gave notably higher R2 

values for some models, when compared to the other error distributions. Closer examination 

of the model fits under logistic revealed that the scale parameter σ as well as the error 

variance was estimated to be very small in magnitude. The same was true to a degree for 

Gaussian error, leading to also relatively large R2 values. While in this case we do not know 
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what the true model is, in simulation studies we have also noticed relatively poorly estimated 

scale parameters when these two error distributions are used (Figure 4).

As the log-normal error distribution was found to be generally a robust choice according to 

our simulation results above, we also tabulated the R2 values under log-normal in Table 2, 

for both around conception and during the most recent month drinking. We can see that the 

single predictor HOLD gives the highest R2 values for both outcomes, explaining 41% of 

variation in drinks per day during the most recent month in pregnancy. The dichotomized 

version of it, Torelance, also explains substantial amounts of variation, and is included in the 

calculation of TWEAK and T-ACE. Overall, the predictors are better at explaining the 

variation in the amount of drinking per day in the most recent month than around 

conception.

5 Discussion

In this paper we have studied an R2 measure under the AFT model that is easy to calculate. 

A similar approach was suggested in Heller (2012) for the proportional hazards model, but 

on the risk scale instead of the variance scale as we consider here. The decomposition of the 

variance of the outcome variable was also used in Xu (2003) for an R2 measure under the 

linear mixed effects models. The measure is robust with respect to the covariate distribution, 

censoring, and the true underlying error distribution. In practice the error distribution can be 

misspecified under the parametric AFT model, and through simulation studies we have 

found the log-normal error distribution to be the relatively robust against such 

misspecification. Here we emphasize that the R2 measure, while related to the concept of 

goodness-of-fit, is really a measure of explained variation. This can be easily seen in a 

simple linear regression example where the regression slope is very close to zero but with no 

violation of the model assumptions, in this case the R2 is very close to zero albeit the fit is 

good. In our opinion, the R2 measure is designed to capture the ability of the covariates in 

predicting the response; while this is often model dependent, it is desirable to be robust 

against model misspecifications. That is, the R2 values ideally should not change 

substantially even if some of the model assumptions are violated. It is in this light that we 

recommend the use of the log-normal error distribution under the parametric AFT model in 

conjunction with the use of the R2 measure defined in this paper.

In applications of any statistical model ideally we would like to be able to assess the 

goodness-of-fit and, while the R2 is not a measure of fit, improved fit could lead to greater 

values of R2. Unfortunately with right-censored data, although attempts have been made in 

the literature to check the parametric distributional assumptions, they tend not to be very 

sensitive to model departures and their ‘practical utility is limited’; see O’Quigley and Xu 

(1998) and references therein. More successes have been achieved under the semiparametric 

settings such as checking the proportional hazards assumption (O’Quigley and Xu, 1998; 

O’Quigley, 2003). These facts highlight the need to develop more effective model diagnostic 

tools under the parametric models for right-censored data and, perhaps until then, the 

importance of robustness of the approaches utilized to analyze data including the R2 

measure.
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It is known that for multivariate linear regression, adding new regressors, even when 

unrelated to the outcome will increase the R2 value. This is directly due to the least-squares 

estimation method, which is equivalent to the maximum likelihood estimation (MLE) under 

the normally distributed errors. For other error distributions under the AFT model, this may 

not be exactly the case for the MLE, but empirically we do observe that adding covariates 

tend to increase the R2 value. Some statisticians use the so-called adjusted R2. Our approach 

in practice has been to bare in mind this property of the R2, and see if the increase in R2 is 

‘worth’ the addition of the extra covariate(s). In our example of the last section, adding the 

covariates to TWEAK increased the R2 for the around conception outcome from about 0.20 

to 0.25, which might be considered a nontrivial increase. Alternatively, one could also adopt 

resampling methods to estimate the potential bias. Bootstrap (bias-corrected) confidence 

intervals for Ω2 were considered in Xu (1996).

We have defined an R2 measure that directly handles multiple covariates. Partial coefficients 

can also be defined. For example if there are two sets of covariates Z1 and Z2, one may ask 

the question of how much added value is Z2 in explaining the outcome after Z1 has been 

accounted for. Denote R1
2 the measure under the model using only Z1, and R1 + 2

2  the measure 

under the model using both Z1 and Z2. Then one can define the partial coefficient 

R2 ∣ 1
2 = 1 − (1 − R1 + 2

2 )/(1 − R1
2). Using the TWEAK (Z1) plus covariates (Z2) example above, 

R2 ∣ 1
2 = 1 − (1 − 0.254)/(1 − 0.205) = 0.06 in that case. An alternative approach, however, is to 

define coefficients for the model with a single regressor, and to define partial coefficients, 

and then to build multivariate coefficients using a formula similar to the above. Such 

approaches were considered in details in O’Quigley and Flandre (1994). These different 

approaches lead to the same multivariate coefficient in linear regression, but is not 

necessarily the case under the AFT model here, which depends on how one constructs the 

simple and partial coefficients.

While we have focused on the parametric AFT model which are widely used in practice, 

formulas (2) and (3) are readily extended to the semiparametric transformation models, 

which includes the Cox proportional hazards model as a special case. It is clear that as long 

as the regression coefficients and the error variance are consistently estimated, the R2 

measure consistently estimates Ω2, which has a clear interpretation as explained variation. In 

the case of transformation models, this is the explained variation in the transformed response 

variable, which is most likely different from the explained variation in the response variable 

in its original scale. However, in the context of the transformation model being used to 

analyze the data, it is perhaps this explained variation in the transformed response that is the 

more relevant.

Another related approach that has been recently advocated in the literature is information 

theoretical, also called explained randomness (Kent, 1983; Kent and O’Quigley, 1988; 

O’Quigley et al., 2005; Preseley et al., 2011). This approach is also easy to calculate as it is 

typically based on the likelihood ratio statistic that is often part of the output from a model 

fitting software. It is possible, however, that this likelihood based approach might be more 

sensitive to distributional misspecifications. Further investigation is needed in order to verify 
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whether it can be as robust as the R2 measure defined in (3) together with the log-normal 

error distribution under the AFT model with right-censored data.
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Figure 1. 
Naive R2 values using OLS with increasing amount of random censoring.
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Figure 2. 
Effects of covariate distributions and censoring on the R2 measure.
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Figure 3. 
R2 performance under misspecified error distributions; Ω2 = 0.5 by construction, 25% 

censoring.
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Figure 4. 
R2 performance under misspecified error distributions, for various values of Ω2.
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Figure 5. 
R2 values with bivariate normal covariates, 0% and 25% random censoring.
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Figure 6. 
R2 values when different error distributions are fitted to the CIFASD data at conception.
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