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ABSTRACT OF THE DISSERTATION

Self-Assembly of Viral Particles

by

Siyu Li

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, June 2019

Dr. Roya Zandi, Chairperson

Small spherical viruses spontaneously encapsidate their genome into protein capsids. The

encapsidation free energy and genome profile have been extensively studied using field theory

techniques with Ground State Dominance Approximation (GSDA). In the thesis we employ

the self-consistent field theory (SCFT) to calculate the exact genome field confined in a

spherical viral shell and examine the validity of GSDA. Furthermore, we study the impact of

N-terminal domains of capsid proteins and the secondary structure of RNA on the assembly

efficiency in the regions where GSDA is valid. Additionally, we investigate the origin of

icosahedral order (IO) of viral capsids. It is believed that large viruses grow their pentamers

on IO vertices through an irreversible pathway. Using continuum elasticity theory, we study

the growth of spherical cap with a stress-free boundary. We show that for large viruses, the

scaffolding proteins or an inner core are essential for the nonlinear geometry of the capsid.

The combined effect of nonlinearity and the free edge of the cap conspire to give rise to the

configurations with IO defects during the assembly pathway.
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Chapter 1

Introduction

1.1 Virus

Simple viruses consist of a protein capsid and the genomic material, either RNA or

DNA. Some viruses, such as retrovirus HIV-1, may contain an envelope of lipids protecting

their capsids. Viruses are categorized based on different factors: from the architecture point

of view, viruses may have cylindrical shape (tobacco mosaic virus, as shown in Fig. 1.1a),

spherical shape (cowpea chlorotic mottle virus in Fig. 1.1b), or conical shape (human im-

munodeficiency viruses, Fig. 1.1c); from the type of the genome viruses are distinguished

as single stranded (ss) RNA, double stranded (ds) RNA, ssDNA and dsDNA. Other factors

can further be considered as the classification factors. Examples include the host kind, the

use of reverse transcriptase in replication, the existence of envelope and so on.

The life cycle of viruses includes adsorption, entry, transcription, assembly and

release. Upon entry into the cell, the virus disassembles and releases the genome, which

replicates and synthesizes identical capsid proteins. The new generated proteins sponta-
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Figure 1.1: Cryo microscopy images of (a) tobacco mosaic virus (TMV) [1], (b) cowpea chlorotic mottle
virus [2], (c) human immunodeficiency viruses (HIV) [3], and (d) bacteriophage P22 [4].

neously encapsidate the genome and co-assemble into new virions. One exception from this

disassembly-assembly process is bacteriophage (Fig. 1.1d). Instead of endocytosis, it at-

taches to the cell receptor and injects its DNA into the cytoplasm. In the assembly process,

the phage capsid proteins copolymerize with scaffolding proteins and form the empty capsid

called prohead, the DNA is then packed afterward during the maturation process.

Considerable theoretical works have been done to decipher the mystery of the

virus life cycle. Among those, elasticity theory has shed light on virus entry and the

architecture of viral capsids [13–15], and polymer physics is widely applied for genome

configuration in the co-assembly process [16–18]. In addition, classical nucleation theory

and thermodynamics have been extensively used and provided a powerful physical tool to

investigate the equilibrium and kinetic pathway of virus assembly [19,20].

Although the life cycles vary in different families of viruses, there are two things

universal, which are the focus of the thesis: (1) the self-assembly in case of RNA viruses,

and (2) the icosahedral order (IO) in spherical viral capsids.
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1.2 Self Assembly

Many small single-stranded RNA or ssRNA viruses have been shown to sponta-

neously self-assemble in vitro, which is, outside living cells in solutions containing virus coat

protein subunits and genome. In this process the capsid proteins encapsidate genome (RNA

or DNA) to a stable, protective shell. In fact, virus coat proteins are able to co-assemble

with a variety of cargos, including RNAs of other and sometimes unrelated viruses, syn-

thetic polyanions, and negatively charged nanoparticles [21–23]. The spontaneous assembly

of properly structured viral capsids is due to the electrostatic interaction between the posi-

tive charges present on protein subunits and the negative charges of the cargos [24–31]. This

encapsidation feature has made viruses ideal for various bio-nanotechnological applications

including gene therapy and drug delivery.

Experimental and theoretical studies have shed light on the physical factors con-

tributing to the efficient assembly and stability of small virus particles.

The self-assembly studies of Comas-Garcia et al. [32] reveal in particular the im-

portance of RNA topology in packing efficiency. In vitro experiment features the role of

pH and salt concentration in CCMV assembly [33]. In particular, X-ray scattering is being

used to uncover the self-assembly pathways viral capsids packaging either RNA genome or

other polyelectrolytes [34], and fluorescence spectroscopy has been applied to monitor RNA

conformation which indicates a two-stage process in bacteriophage MS2 assembly [35].

Meanwhile, field-theoretic calculations have investigated the impact of RNA sec-

ondary structure, annealed branching, on the length of the encapsidated polymer [17, 36].

Simulations on encapsulation of polymers with a quenched level of RNA branching have
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shown that the assembly efficiency is a sensitive function of the secondary and tertiary

structures of the RNA [16,37].

Unlike small ssRNA viruses, the assembly process of large viruses is more compli-

cated due to the considerable amount of protein subunits. Instead of co-assembly of capsid

proteins and genome, large viruses typically require scaffolding proteins to form their cap-

sids. For example, bacteriophage P22 assemble to a pro-head in the presence of scaffolding

proteins, the virus maturation is triggered after the capsid formation which followed by

the DNA injection [38, 39]. Similarly, dsRNA virus infectious bursal disease virus (IBDV),

belonging to birnaviridae, is built by VP2 with the help of scaffolding proteins VP3 [40],

in the absence of VP3, no capsid could be constructed. Another family, reoviridae (blue-

tongue virus for instance), form multiple shells, where the assembly of the VP7 outer layer

relies on the preformation of scaffolding VP3 inner layer [41]. Interestingly, an evolutionary

connection has been suggested between birnaviridae and reoviridae, indicating a universal

mechanism for large virus assembly [42].

1.3 Triangulation Number

While the sizes of the small and large viruses vary from 20nm to 100nm, the uni-

versal icosahedral order (IO) is quite unexpected. To faciliate the understanding of virus

IO, Capsar and Klug built the model of viral capsid with triangulation (T) number, where

the proteins occupy the so-called “quasi-equivalent” environment on the capsid. Intuitively,

triangulation number is the number of triangles on each icosahedron’s face. Indeed, tri-

angulation number with T = 12, 22.. n2 can be sketched by subdividing the “big” face of
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icosahedron, as shown in Fig. 1.2a. However, this simple construction could not include all

icosahedral symmetric shells. A more generalized way, as proposed by Capsar and Klug,

is to map an icosahedral triangle face on a triangular lattice, illustrated in Fig. 1.2b. The

triangulation number is therefore T = h2 +hk+k2 where h and k are the lattice coordinates

followed in the two axes. The example of T=3 capsid is shown in Fig. 1.2c,d, where the net

image of an icosahedron is mapped on the triangular and hexagonal lattice correspondingly.

Note that the triangular sheet (Fig. 1.2c) is usually used when the trimers are

the subunits of the capsid, where each trimer consist of three identical proteins and the

total protein number is 60T. Other than trimers, some viruses may assemble with dimers

or hexamers (capsomers) as the building block (Fig. 1.2d). In these viruses, the number of

capsomers is 10T + 2, which one probably familiar in many virus assembly articles.

The comparison of the triangulation model and the viral capsid structure is shown

in Fig. 1.3. Since triangulation number is proportional to the capsid protein number, which

spreads on the capsid surface, T number is often scaled as the capsid area, and therefore

the radius has the relation R ∼
√
T .

Extensive works have been done to explain why viral capsid form IO. Using cap-

somers (pentamer and hexamers) as building blocks, Zandi et al. [15] performed a series of

Monte Carlo simulations and revealed that IO is a natural consequence of the free energy

minimization. Similarly, Panahandeh et al. [43], using trimers as subunits, found IO is

the dominant symmetry when investigating the minimum energy nano cages. Other than

the equilibrium structures, Wagner et al. [44] employed a minimal model to investigate the

kinetic growth of a virus. Their results show even following the local minimum energy

6



Figure 1.2: Illustration of icosahedral symmetric capsid with different triangulation number. (a) Examples
of T = n2 capsids (upper) and other T numbers (lower) with triangular subunits. (b) Mappings of one
icosahdron face on triangular sheet to retrieve T = 1, 4, 9, 16 (upper) and T = 3, 7, 12, 13 (lower). (c)
Construction of a T = 3 capsid from a map of icosahdron net image on triangular sheet. (d) Construction
of a T = 3 capsid from a map on hexagonal sheet.
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Figure 1.3: (a) Cryo microscopy images of spherical viruses [5] and (b) the icosahedral symmetric capsid
models with different T number.
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pathway, IO is still the prevalent symmetry.

In the co-assembly process of small viruses, genome plays an important role in

presuming capsid with IO. For example, Hu et.al [45] showed that the length of genome

controls the final capsid size, Krol et.al [46] observed that BMV CPs package natural BMV

genome to T=3 but encapsidate engineered mRNA to a T=2 capsid. Additionally, Sun et

al [21] showed that the purified BMV capsid proteins were able to encapsulate synthetic

charged hard core to virus-like particles (VLP). With the modification of the core size, they

observed variable sized VLPs with common icosahedral symmetries T=1, T=2 and T=3.

As counterparts in large viruses, scaffolding proteins or inner capsids perform the

function in obtaining IO. For instance, bacteriophage P22 require copolymerization of gene

5 coat proteins and gene 8 scaffolding proteins to build T=7 proheads [38,39], the absence of

scaffolding proteins would result in aberrant structures, either smaller T=4 shapes or large

spirals. IBDV as mentioned previously, form T=13 shell in the presence of the scaffolding

protein, without the helper protein, the capsid proteins can only assemble to T=1 subviral

particles [42]. Other than preserving the IO, the scaffolding proteins also act as an initiator

to speed up CPs aggregation. The bluetongue viruses, for example, do not assemble in the

absence of T=2 inner capsid [41].

While the experiments have put forward in exploring their roles, how genome, scaf-

folding proteins or cargos regulate the virus assembly and what is the universal mechanism

underlying virus assembly to assume an icosahedral structure are still unknown. To remedy

this, we use the field theory and elasticity theory, combined with numerical and simulation

skills, to study the process of virus assembly.
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The thesis is arranged as follows. In part II we use the field theory to investigate

the self-assembly of a virus particle. In chapter 2, we use self-consistent field theory to solve

the exact encapsidation free energy, and investigate the validity of ground state dominance

approximation (GSDA) used in many virus papers. In chapter 3 and 4, we apply the GSDA

to explore the impact of nonuniform charged capsid and genome stiffness on the efficiency

of virus assembly. In part III we focus on the icosahedral symmetry of viral capsid. We

generalized the classical continuum elasticity theory to incorporate the spherical manifold

in Chapter 5, then we use the elastic energy to investigate the growth pathway and find

that the disclinations (pentamers) appear consequently in an icosahedral order as a result

of the geometry nonlinearity. Finally, in conclusion part we summarize everything and raise

up many open questions to be solved in the future.
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Part II

Field Theory of Virus Assembly
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Chapter 2

Self consistent field theory on virus

assembly

2.1 Introduction

Viruses have evolved to optimize the feat of genome packaging inside a nano-shell

called the capsid, built from several copies of either one or a few different types of proteins.

Quite remarkably, under many circumstances the capsid proteins of single-stranded RNA

viruses can assemble spontaneously [16,21,24–28,47,48] around the cognate and non-cognate

RNAs and other negatively charged cargos [21–23, 49, 50]. It is widely accepted that the

electrostatic interaction is the main driving force for the assembly [24–31] and it is this

feature that has made viruses ideal for various bio-nanotechnological applications including

gene therapy and drug delivery.

Despite their great interest in biological and industrial applications, the physical
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factors contributing to the efficient assembly and stability of virus particles are not well

understood [44,51]. The difficulty emerges from the considerable number of variables in the

system including the genome charge density, the persistence length, the surface geometry

and the charge density of surface charges. The adsorption of genome to the inner wall

of capsid, the interplay between long-range electrostatic and short-range excluded volume

interactions and the issue of chain connectivity make the understanding of the problem quite

challenging. The presence of salt makes the adsorption process even more complicated.

The salt ions can screen the electrostatic interaction between the charges and modify the

persistence length of the genome leading to a change in the profile of the genome in the

capsid.

Because of the difficulties noted above, in all previous studies on the encapsidation

of viral genome by capsid proteins, the ground state dominance approximation, in which

only the lowest energy eigenstate of the system is considered, has been exclusively used

[17, 18, 36, 52–55]. In this chapter, we investigate the validity of GSDA in different regimes

as a function of salt concentration, genome charge density and surface charge density. Note

that viral RNA is relatively long compared to the capsid inner radius. For example for

many plant viruses, RNA is about 3000 nucleotides while the inner capsid radius is around

10 nm [32]. While it is well-known that GSDA works well for long chains [56], in many

recent virus assembly experiments short pieces of RNA have been systematically employed,

to study the impact of genome length on the virus stability and formation [57]. Thus the

time is ripe to explore the conditions under which GSDA does not apply and self consistent

field theory has to be solved to obtain the correct solution. Comparing the solutions of
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SCFT and GSDA shows that GSDA is less accurate when the interaction of genome with

the capsid wall is weak even if the genome is long.

2.2 Theory

In order to calculate the free energy of a virus particle in a salt solution, we model

the capsid as a positively charged shell, in which a negatively charged flexible linear polymer

(genomic RNA) is confined. Defining by N the number of monomers, N+ the number of

salt cations and N− the number of salt anions, the partition function of the system can be

written as

Z =

N+∑
i

N−∑
i

1

N+!

1

N−!
eβµN+eβµN−

∫
Dr+

i Dr
−
i Drs exp

{
− 3

2a2

∫ N

0
dsṙ2

s

−1

2

∫
drdr′ρ̂m(r)u(r − r′)ρ̂m(r′)− β

2

∫
drdr′ρ̂c(r)υc(r − r′)ρ̂c(r′)

}
(2.1)

where a is the Kuhn length of the monomers. We assume that the salt is monovalent (charge

e per ion), and the charge per monomer is τ . The monomer density ρ̂m(r) and the charge

density ρ̂c(r) are given by

ρ̂m(r) =

∫ N

0
dsδ(r − rs) (2.2)

ρ̂c(r) = ρ0(r) + τ

∫ N

0
δ(r − rs)ds+ e

N+∑
i

δ(r − r+
i )−

N−∑
i

δ(r − r−i )

 (2.3)

where ρ0(r) denotes the charge density of the viral shell. In Eq. (2.1), the term u(r) = u0δ(r)

represents Edwards’s excluded volume interaction, and vc(r) = 1/4πεr is the Coulomb

interaction between the charges, where ε is the dielectric permitivity of the solvent.
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2.2.1 Self Consistent Field Theory

To obtain the genome profile inside the virus capsid, we use Self-Consistent Field

Theory (SCFT [58]) and the grand canonical ensemble for the salt ions with their fugacity

λ corresponding to the concentration of salt ions in the bulk. Performing two Hubbard-

Stratonovich transformations and introducing the excluded volume field w(r) and the elec-

trostatic interaction field φ (see Appendix A.1), Eq. 2.1 simplifies to

Z =

∫
Dw(r)Dφ(r)e

logQ−
∫
dr{ 1

2u0
w2(r)+βε

2
(∇φ(r))2−2λ cosh(iβeφ(r))+iβρ0(r)φ(r)}

where Q denotes the partition function for a single chain

Q =

∫
Drse−

3
2a2

∫N
0 dsṙ2s−i

∫
drρ̂m(r)[w(r)+βτφ(r)]. (2.4)

The Self-Consistent Field Theory equations are obtained by performing the saddle-point

approximation on the two integration fields w and φ, see Appendix A.1. The equations are

w(r) = u0ρm(r) (2.5)

−ε∇2φ = −2λe sinh (βeφ(r)) + ρ0(r) + βτρm(r) (2.6)

where

ρm(r) =

∫ N

0
ds q(r,N − s)q(r, s) (2.7)

is the monomer concentration at point r. Equation 2.6 is the Poisson-Boltzmann equation

for the charged monomers-salt ions system [59].

In Eq. 2.7, we have introduced the propagator q(r, s), which is proportional to the

probability for a chain of length s to start at any point in the viral shell and to end at point
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r [60]. It satisfies the SCFT (diffusion) equation [61],

∂q(r, s)

∂s
=

a2

6
∇2q(r, s)− V (r)q(r, s) (2.8)

V (r) = w(r) + βτφ(r) (2.9)

with the following boundary condition

q(r, 0) =
1√
Q

(2.10)

for r anywhere in the virus shell. The single chain partition function Q is given in Eq. 2.4

and is determined through the normalization condition on q(r, s)

∫ N

0
drq(r,N − s)q(r, s) = 1 for any s (2.11)

Note that the SCFT Eq. 2.8 can also be written as an imaginary time Schrödinger equation

in the form

∂q(r, s)

∂s
= −Hq(r, s) (2.12)

with the Hamiltonian H given by

H = −a
2

6
∇2 + V (r) (2.13)

Once we obtain the propagator q then we can calculate the chain persistence length or

stiffness as explained in the next section.

2.2.2 Persistence Length

Polymers may have some bending rigidity or stiffness, due either to their intrinsic

mechanical structure or to the Coulombic interaction between charged monomers, which

has a tendency to rigidify the chain. This stiffness results in a strong correlation between
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the orientation of successive monomers. Eventually, at large separations, the directions

of monomers become uncorrelated. The persistence length of a polymer is the correlation

length of the tangents to the chain [61,62]. It is the typical distance over which the orienta-

tion of monomers becomes uncorrelated. The chain can be viewed as a set of independent

fragments of length equal to their persistence length.

In order to compute the persistence length, we calculate the correlation function

of tangents to the chain

C(s, s′) = 〈ṙ(s)ṙ(s′)〉. (2.14)

We show in Appendix that within the SCFT, this correlation function can be expressed as

C(s, s′) =
a4

9

∫
drdr′

(
∂

∂r
q(r,N − s)

)(
∂

∂r′
q(r′, s′)

)
× 〈r|e−(s−s′)H |r′〉 (2.15)

where we assumed that s > s′. In this equation, for brevity we have used the standard

quantum mechanical representation for the matrix elements of the evolution operator, see

for example Eq. A.5, A.9, A.28 in Appendix.

For large separation s− s′ � 1, this function behaves as

C(s, s′) ≈ e−(s−s′)/lp (2.16)

where by the above definition, lp is the persistence length of the chain.

2.2.3 Ground State Dominance Approximation

The set of non-linear partial differential equations given in Eqs. 2.6, 2.8 are very

tedious to solve. In the case of a confined chain, or more generally for a system with a gap

in the energy spectrum of the Hamiltonian H, it is convenient to use the so-called Ground
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State Dominance Approximation as noted in the introduction. This approximation consists

of expanding the propagator q (Eq. 2.8) in terms of the eigenfunctions of the Hamiltonian

H. We thus write

q(r, s) =

∞∑
k=0

e−Eksqkψk(r) (2.17)

where {Ek, ψk(r), k = 0, 1, 2, . . .} are the set of normalized eigenvalues and eigenstates of

H, respectively,

Hψk(r) = Ekψk(r)∫
dr ψ2

k(r) = 1. (2.18)

Using the boundary condition Eq. 2.10, we find

qk =
1√
Q

∫
drψk(r) (2.19)

with

Q =

∞∑
k=0

e−NEk
(∫

drψk(r)

)2

(2.20)

We assume that the eigenvalues are ordered as E0 < E1 < . . . < Ek < . . .. When the energy

gap between the ground state E0 and the first excited state E1 is large, the ground state

dominates the expansion Eq. 2.17 and we may write

q(r, s) = e−E0s
(
q0ψ0(r) + e−s∆R(r, s)

)
(2.21)

where ∆ = E1 − E0 is the energy gap, and the function R(r, s) is the remainder of the

expansion. When s∆� 1, the second term above becomes exponentially negligible, and we

may write

q(r, s) = e−E0sq0ψ0(r) (2.22)
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and then Eqs. 2.20, 2.19 and 2.7 become respectively equal to

Q = e−NE0
(∫
drψ0(r)

)2
(2.23)

q0 = eNE0/2 (2.24)

ρm(r) = Nψ2
0(r) (2.25)

The Poisson-Boltzmann (Eq. 2.6) and diffusion (Eq. 2.8) equations then become

−ε∇2φ = −2λe sinh(βφ) +Nτψ0(r)2 + ρ0

−a2

6 ∇
2ψ0(r) +Nu0ψ0(r)3 + βτφ(r)ψ0(r) = E0ψ0(r) (2.26)

and the energy E0 is determined so that ψ0 is normalized as

∫
dr ψ2

0(r) = 1 (2.27)

Similarly, we can compute the correlation function Eq. 2.15 within the GSDA.

Using Eq. 2.24 and the fact that

〈r|e−(s−s′)H |r′〉 = e−(s−s′)E0ψ0(r)ψ0(r′) (2.28)

in GSD, we obtain

C(s, s′) =
a4

9

(∫
drψ0(r)

∂ψ0

∂r

)2

≡ 0 (2.29)

since the integral is identically 0. We conclude that in the GSDA, the persistence length

vanishes. In order to have a non-vanishing persistence length, we need to include more

than the ground state in the eigenstate expansion of all quantities. Including the next
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leading order term (first excited state with energy E1 and wave function ψ1), we obtain (see

Appendix A.2)

C(s, s′) ≈ A1e
−|s−s′|∆ +A2e

−(N−|s−s′|)∆ (2.30)

which shows that the persistence length is the inverse of the gap

lp =
1

∆
(2.31)

The persistence length can be computed using the GSDA as it follows: having solved the

GSD Eqs. 2.26, we know E0, ψ0(r) and φ(r) from which we can calculate q(r, s) and the

Hamiltonian H. We can then compute the first excited state of H with energy E1, and

then the persistence length lp from Eq. 2.31.

2.3 Results

Due to the complexity of the problem, we numerically solve the non-linear coupled

equations given in Eqs. 2.6 and 2.8. We consider two different cases for the interaction of

genome with the capsid. First we study the adsorption of the chain to the capsid inner

wall in the absence of the electrostatic interactions, as explained in section III A below.

This way we decrease the number of parameters in the system, which helps us to gain some

insights before solving the full problem. Then in section III B, we assume that both the

capsid and chain are charged in salt solution.

2.3.1 Confined RNA with Adsorption on Capsid

We consider the confined RNA adsorbed on the capsid wall with no electrostatic

interaction present. Thus, the external field (Vext) in Eq. 2.8 contains only the excluded
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volume interaction between monomers(u0), with an extra attraction from the capsid γs. To

solve the diffusion Eq. 2.8 with this surface term is not trivial, the strategy we introduce

therefore is the effective boundary condition [63]:[
∂

∂r
q(r, s)− κq(r, s)

]
r=R

= 0 (2.32)

where κ−1 is the extrapolation length and is proportional to the inverse of γs.

We employ both SCFT and GSDA to solve the problem of a chain confined in an adsorbing

spherical shell. To obtain the exact solutions for SCFT, we solve Eqs. 2.6 and 2.8 recursively

until conditions in Eqs. 2.10, 2.11 and 2.32 are satisfied. We employ Crank-Nicolson scheme

and Broyden method [64,65] to solve the relevant equations. For the approximative solutions

of GSD, we operate on the coupled nonlinear equations (Eq. 2.26) with finite element method

and deal with the convergence issue using Newton method.

The results of our calculations are presented in Fig. 2.1, which shows the confined RNA

density profile as a function of r, the distance from the shell center, for various extrapolation

length (κ−1). The goal is to compare our findings obtained through GSDA and SCFT

methods for both short and long RNAs. The dashed lines in Fig. 2.1 are obtained using

GSDA while solid lines are calculated based on the SCFT method. As illustrated in the

figure, GSD only makes a good approximation for long chains and/or short extrapolation

lengths (strong adsorption regime or large κ). With short RNA or long extrapolation

length(weak adsorption regime), GSDA profile deviates considerably from self-consistent

profile. As illustrated in Fig. 2.1, for N = 5000 regardless of the strength of interaction

κ−1, the solutions of GSDA and SCFT match almost perfectly and completely cover each

other. However, the agreement between the two methods becomes less for N = 100 and
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Figure 2.1: Confined RNA density profile vs r the distance from the capsid center for various extrapolation
lengths, κ−1=10.0, 5.0, 2.0 nm for top to the bottom of the figure. The total monomer number is N=100(left),
N=5000(right).

small values of κ. In the next section, we investigate the impact of electrostatic interaction

on the profile of RNA inside the capsid.

2.3.2 Confined RNA with Electrostatic Interaction

Since RNA acts like a negatively charged polyelectrolyte in solution, we need to

take into consideration the electrostatic interactions term βτφ(r) given in Eq. 2.8. We

assume that positive charges on the capsid are uniformly distributed. The coulombic inter-

action does usually overwhelm other forces responsible for the adsorption of chain to the
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wall, so instead of applying Robin boundary condition (Eq. 2.32) as in Sect. 2.3.1, we use

Dirichlet boundary condition (q(R, s) = 0) for monomer density by assuming the Vext is in-

finity beyond the capsid wall. The physical basis for this assumption is that RNA monomer

has stiffness, and the excluded volume interaction between the capsid wall and the RNA is

such that the density of RNA could never sit at the wall.

We then solve Eqs. 2.6 and 2.8 to obtain the RNA density through both GSDA and SCFT

methods. The genome concentration profiles are shown in Fig. 2.2 for various RNA length

(total monomer number), capsid charge density, chain charge density and salt concentra-

tions. As expected, there is alway a perfect match between GSDA and SCFT for longer

RNAs (large N), while for short RNAs (small N), the energy gap becomes considerable and

important, with ground state less dominant in the whole expansion series (Eq. 2.17) and

GSD approximation becomes less valid.
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(a) (b)

(c) (d)

Figure 2.2: Confined RNA concentration profiles with various RNA length N=50(darker), N=100(lighter)
under SCFT calculation(solid lines) and GSD approximation(dashed lines) with (a) linear chain charge
density τ=-1.0e, capsid surface charge density σ=0.8enm−2 and salt concentration λ=500mM; (b)τ=-1.0e,
σ=0.4enm−2 λ=500mM; (c)τ=-1.0e, σ=0.4enm−2, λ=100mM. (d)τ=-0.1e, σ=0.1enm−2, λ=100mM; Other
parameters used are kuhn length a=1nm, excluded volume u0=0.05nm3, capsid radius R=12nm.

We also find that the stronger the electrostatic interaction due to the higher capsid

surface charge density or genome linear charge density, the better GSDA and SCFT results

agree with each other. Fig. 2.2a shows that regardless of length of genome, at high surface

charge density, GSDA and SCFT give the same results. Note, as we decrease the surface

charge density, their difference becomes noticeable, as illustrated in Fig. 2.2b. However, with

lower salt concentration for the same surface charge density as in Fig. 2.2b, the difference

between the two methods once again becomes negligible, Fig. 2.2c. Quite interestingly as we

decrease the chain linear charge density even at low salt, we find again that the agreement

between the two models becomes detectable, Fig. 2.2d.

All results presented above show that GSDA is less valid when genome localizes

close to the center. To this end, we investigate this transition point where the wall attraction
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becomes so weak that depletion shows up, corresponding to the disappearance of the genome

peaks in graphs of Figs. 2.2a and b and also 2.4a and 2.4b below. We calculate the excess

genome at the wall by integrating the genome peak area, which is proportional to adsorbed

monomers. Then we investigate the impact of the salt concentration and surface charge

density on the adsoprtion-depletion transition. The resulting phase diagram is illustrated

in Fig. 2.3. The white shade in the figure corresponds to the maximum adsorption. As

the color gets darker, less genome is adsorbed to the wall. In the darkest region there is

no adsorption. The line separating the darkest region indicates the onset of the depletion

transition.

Figure 2.4 describes the genome profile details for two different cases. For a fixed

salt concentration but varying surface charge density (σ = 0− 0.4 enm−2) we observe that

the peak next to the wall slowly disappears as the capsid charge density decreases and most

of the genome becomes localized at the center, Fig. 2.4a. Similar behavior is displayed

in Fig. 2.4b for fixed surface charge density but various salt concentrations. Figs. 2.4a

and 2.4b together tell us that the higher salt concentration, or the lower surface density

charge, causes genome to stay away from the capsid wall and to localize toward the center,

constructing the region where GSDA is not valid any more.

2.4 Discussion and Summary

The results of previous sections show that the GSDA validity depends on the

genome localization: when the genome is absorbed on the wall, GSDA works perfectly,

25



300 350 400 450
0.0

0.1

0.2

0.3

0.4

λ(mM)

σ
(e
·n
m

-
2
)

0.001

0.003

0.010

0.030

Figure 2.3: Genome excess phase diagram with respect to salt concentration and capsid surface charge
density. The white shade corresponds to the region with the maximum genome density and black to the
depletion regime next to the wall. Other parameters used are N = 500, a=1nm, u0=0.05nm3, R=12nm.

however when the adsorption becomes weaker and the genome starts moving to the center,

GSDA stops being reliable. Fig. 2.2 illustrates this statement, where perfect match between

GSDA and SCFT is obtained in lower salt concentration and higher surface charge (localized

genome); significant deviation appears at higher salt concentration and lower surface charge

in which case the genome is delocalized. The same effect is observed for the linear charge

density of short genomes.

For longer genome with 500 monomers or more, the difference is almost unde-

tectable. Quite interestingly, the effect of the electrostatic interaction range and strength,

salt concentration and surface charge density in Sect. III B is similar to that of the ex-

trapolation length in Sect. III A. While low salt concentration (longer Debye length, strong

attraction) and high surface charge correspond to larger κ, high salt concentration (short

Debye length, weak attraction) and low surface charge on the contrary correspond to small

κ in which case the GSDA does not work well as illustrated in Fig. 2.1.
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Figure 2.4: Genome density profile for N = 1000 and (a) various surface charge density (0-0.4 enm−2)
with salt concentration λ=400mM; (b) various salt concentration(250-500 mM) with fixed surface charge
σ = 0.4enm−2. Other parameters correspond to kuhn length a=1nm, excluded volume u0=0.05nm3, capsid
radius R=12nm.

Another important difference arising from using GSDA and SCFT approaches cor-

responds to the tangent-tangent correlation function or persistence length of the polymer.

While the persistence length obtained through GSDA is zero, the persistence length calcu-

lated using SCFT is inversely proportional to the energy gap between the ground state and

the first excited state, Eq. 2.31. The vanishing persistence length in GSDA is due to the

fact that the chain constraint or connectivity is absent, and all monomers are independent.

In the case of SCFT, the persistence length increases with the length of genome until it

saturates to a finite value. Then indeed, as N increases, lp � N , explaining again why

GSDA becomes more and more valid as the length of the genome increases.

While the persistence length corresponds to the stiffness of the polymer, there is

another important length scale in the problem but it is associated with the adsorption of

polymer on the inner shell of the capsid. The adsorption of polymers to flat surfaces have

been thoroughly studied, but the adsorption to spherical shells is less understood [66–69].

In case of flat surfaces, the Edward’s correlation length determines the distance from the
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wall over which the adsorption layer decays. It goes as ξ ∼ 1/
√
u0φB, with u0 the strength

of the excluded volume and φB the bulk polymer density.

The situation studied in this chapter is more complex due to the confinement of

the polymer inside a spherical capsid in the presence of electrostatics. Quite interestingly,

Fig. 2.4(a) and (b) show there is a point around r = 10 where all the curves cross. According

to the figure, the location of the crossing point does not depend on the salt concentration

and capsid charge density. Since the capsid is a closed shell, we cannot define the bulk

density in this problem. However, φB is related to the number of monomers in the cap-

sid. Figures 2.5(a) and (b) illustrate the genome profiles for the same parameters as in

Figs. 2.4(a) and (b) respectively but using a shorter genome length. The genome length is

N = 100 and N = 1000 in Figs. 2.5 and 2.4, respectively. As illustrated in Figs. 2.5 all

the plots again meet at a particular point but the position of the crossing point is moved

compared to Fig. 2.4. It is interesting that despite different capsid charge density and salt

concentration, all curves again meet at a unique single distance from the wall.

We also checked the position of the crossing point as a function of the excluded

volume interaction expressed through the Edward’s correlation length ξ ∼ 1/
√

3u0φB. Our

numerical results did not show any dependence of the crossing point on the strength of the

excluded volume interaction. This is probably due to the fact that φB in this problem is not

really the bulk density and depends on the excluded volume interaction and might cancel

the impact of the excluded volume interaction. Although we cannot provide a closed form

formula for the Edward’s correlation length, it is interesting that all points meet at one

single point and this point is independent of the capsid charge density, salt concentration
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and the polymer excluded volume interaction but depends on the length of genome.
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Figure 2.5: Genome density profile for N = 100 and (a) various surface charge density (0-0.4 enm−2)
with salt concentration λ=400mM; (b) various salt concentration(250-500 mM) with fixed surface charge
σ = 0.4enm−2. Other parameters correspond to a=1nm, u0=0.05nm3, R=12nm.

.

In summary, in this chapter we investigated the validity of GSDA for studying the

profile of genomes in viral shells because of the extensive usage of GSDA in the literature

in describing the process of virus assembly and stability. We found that for small RNA

segments employed in recent experiments or for in vitro assembly studies with mutated

capsid proteins carrying lower charge density [30, 57, 70, 71], the GSDA deviates from the

accurate results obtained through SCFT methods. Otherwise, native RNA viruses are long

enough compared to the radius of the capsid and as such GSDA is good enough to explain

different experimental observations and there is no need to solve tedious self-consistent

equations. Our results showed that the narrower the region RNA is sitting and the stronger

is genome-capsid interaction, the larger the energy gap, and hence the better GSDA works.
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Chapter 3

Impact of a non-uniform charge

distribution on virus assembly

3.1 Introduction

The simplest viruses consist of two components: the genome, either an RNA or

DNA polynucleotide that carries the genetic code, and the capsid, a protein shell that

encloses the genome. The capsid consists of many identical (or nearly identical) copies of

the coat protein subunit. Even though the coat proteins are highly irregular in shape, the

protein shells of most spherical viruses are highly structured and obey icosahedral symmetry

[72–75]. One of the consequences of icosahedral symmetry is that it puts restrictions on

the number of proteins that can make up a spherical virus shell. It limits this number to

60 times the structural index T that almost always assumes certain “magic” integer values

T = 1, 3, 4, 7, . . . [44, 76,77].
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Many small single-stranded RNA or ssRNA viruses have been shown to sponta-

neously self-assemble in vitro, that is, outside living cells in solutions containing virus coat

protein subunits and genome. In fact, virus coat proteins are able to co-assemble with

a variety of cargos, including RNAs of other and sometimes unrelated viruses, synthetic

polyanions, and negatively charged nanoparticles [21–23]. The spontaneous assembly of

properly structured viral capsids of many icosahedral RNA viruses with this variety of car-

gos, is due to the presence of a disordered RNA binding domain on the N- or C-terminal

end of the protein subunits. These are rich in basic amino acids that potentially extend

quite deep into the capsid interior. These basic amino acids are positively charged under

most solution conditions, and typically bear a few to tens of positive charges depending on

the species of virus. It is now widely accepted that electrostatic interactions between the

positive charges on the coat protein tails and negative charges on the genome is the main

driving force for the spontaneous assembly of simple viruses in solution [24–31,78].

Näıvely, one might expect that the total charge on the genome and the capsid

would balance out, if not perfectly, then certainly approximately. However, in many ssRNA

viruses the number of negative charges on the genome significantly exceeds the number

of positive charges on capsid proteins. For example, the number of positive charges on

capsids of Cowpea Chlorotic Mottle Virus (CCMV) and Brome Mosaic virus (BMV), both

with T = 3 structures, is about 1800, yet their genome measures about 3000 nucleotides

(nt) [32]. As each nucleotide bears a single charge, this suggests an overcharging of over 60

per cent. Furthermore, in a recent set of in vitro experiments, where shorter segments of

BMV RNAs in the range of 500 − 2500 nts were mixed with CCMV capsid proteins, the
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(a) (b)

Figure 3.1: (a) a T = 1 structure presented as ISBF15,0 (b) a T = 3 structure presented as ISBF27,0

resulting virus-like particles (VLPs) had a mixed population of pseudo T = 2 and T = 3

shells that were all overcharged [32]. RNA molecules shorter than 2000 nts were packaged

in multiple copies, e.g., four in the case of 500 nt RNAs or two for 1000 nt RNAs in pseudo

T = 2 capsids and two 1500 nt RNAs in T = 3 capsids.

While the in vitro self-assembly studies show that RNA-based virus-like particles

are overcharged, experiments with linear negatively charged polymers, rather than virus

RNAs, are less conclusive. In fact, studies with linear polyanions, such as poly(styrene

sulfonate) (PSS), have often focused attention more strongly on how the capsid size dis-

tribution is impacted upon by either the polymer length or the stoichiometry ratio of the

capsid proteins and polymers [24, 45]. What is known, is that polymers, ranging in degree

of polymerisation from 1900−16500 monomers, could all be encapsidated by a T = 3 struc-

ture, resulting in anything from a weakly to a highly overcharged structure [45]. In vitro

self-assembly studies on mixtures of CCMV coat proteins and PSS chains as short as 180

monomers show a bimodal distribution of particle sizes corresponding to T = 1 and pseudo

T = 2 structures [79]. According to these experiments there are on average two polymers in

32



each T = 1 capsid (600 positive charges) and three in each T=2 (1200 positive charges) [79].

Hence, the VLPs are in this case undercharged: the ratio of negative to positive charges

is 0.6 for the T = 1 and 0.45 for T = 2 capsids. From all these findings it is not easy to

extract a sound conclusion about the optimal length of the encapsulated polymer.

Several theoretical studies have shed light on the puzzling phenomenon of over-

charging. Simulations on encapsulation of polymers with a fixed (quenched) level of branch-

ing as a model for RNA, have shown that the level of overcharging is a sensitive function

of the secondary and tertiary structures of the RNA [16, 37]. Field-theoretic calculations

presuming the branching to be annealed, not quenched, have also shown that the length

of encapsidated polymer, and hence the level of overcharging, increases as the number of

branch points increases [17, 36]. While these theoretical studies confirm that the topology

of RNA is important to the phenomenon of overcharging, they also predict that the optimal

number of charges on a linear polyelectrolyte must be less than the total number of charges

on the inner capsid wall: these complexes must be under- rather than overcharged. This

contrasts with the molecular dynamics simulations of Perlmutter et al., which show that

even linear polyanion encapsulation can lead to overcharging [16].

In virtually all theoretical studies focusing on the assembly of viral shells, the

capsid has been assumed to be smooth and to have a uniform charge distribution in a region

near the surface of the capsid [52, 53, 73, 80–82]. However, as already alluded to, in most

simple RNA viruses the positive charges reside on the RNA binding domains of the coat

proteins, which are arranged according to the underlying icosahedral symmetry of the shell.

This implies that the charge distribution must somehow reflect this icosahedral symmetry,
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certainly near the surface of the capsid, and perhaps less so away from it. Theoretically, the

effects of localization of charge near the inner surface of the capsid on the encapsulation of

genome remain largely unexplored.

To remedy this, we study the impact of a non-uniform charge density on the

optimal length of genome encapsulated by small icosahedral viruses. Since T = 1 and

T = 3 capsids have 60 and 180 RNA binding domains, respectively, we model capsids

with 60 and 180 positively charged regions, as shown in Fig. C.1. We show how a non-

uniform charge distribution, associated with the underlying icosahedral arrangement of the

proteins part of a virus shell, results in a longer optimal genome length compared to a

uniform charge distribution. This can give rise to the phenomenon of overcharging even for

linear polyanions. The effects of a non-uniform charge distribution and the highly branched

secondary structure of RNA, in particular for viral RNAs, conspire to greatly enhance

overcharging. This allows for a larger amount of RNA to be packed in the same restricted

interior of the virus shell, which arguably would be an evolutionary advantage to the virus.

Furthermore, we find that the optimal length of the genome, and as a result

that of the number of encapsulated charges, depends on the detailed structure of RNA

binding domains, i.e., the thickness, height and charge density. This is consistent with

the experimental findings of Ni et al. on Brome Mosaic virus (BMV), in which mutations

in the RNA binding domains that keep the number of charges constant but change their

length and charge density, impact upon the packaged RNA length [26]. These and many

other experiments reveal the existence of intriguing results arising from the N-terminal

domain topology [26, 30, 83, 84]. A satisfactory theoretical approach needs to treat the
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coat protein topology (N-terminal domains), RNA folding, electrostatic interactions and

polymer confinement simultaneously. Our theoretical calculations allow us to single out

the impact of length and charge density of the RNA binding domains, without considering

other effects such as the impact of translational entropy and kinetic trapping that make the

interpretation of experiments and simulations difficult.

3.2 Model

Our model consist of the genome density field that includes the entropic and steric

constributions of the polyelectrolyte and the electrostatic interactions between the polyelec-

trolyte and the capsid. We initially model the genome as a flexible linear polyelectrolyte

that interacts attractively with the positive charges residing on the binding domains and

postpone the discussion of the impact of RNA secondary structure, to Section II.A.

The free energy of a confined polyelectrolyte confined in a salt solution interacting

with an external charge distribution can, within the ground state dominance approximation,

be written as

βF =

∫
d3r
[1

6
a2|∇Ψ(r)|2 +

1

2
υΨ4(r)

− 1

8πλB
|∇βeΦ(r)|2 − 2µ cosh

[
βeΦ(r)

]
+ βτΨ2(r)Φ(r) + βρ0(r)Φ(r)

]
, (3.1)

with β the reciprocal temperature in units of energy, a the statistical step or Kuhn length

of the polymer, v is effective excluded volume per monomer, λB = e2β/4πε the Bjerrum

length, ε the dielectric permittivity, e the elementary charge, µ density of monovalent salt

ions, and τ the linear charge density of chain. As usual, the dielectric permittivity of the
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medium is persumed constant [85].

The fields Ψ(r) and Φ(r) are the monomer density field and electrostatic potential

of mean force respectively. The positive charge density ρ0(r) is placed in an icosohedrally

symetric distribution either on the capsid surface as shown in Figs. C.1(a) and C.1(b)

or extending into the interior of the capsid along the N-terminal tails as in Fig. 3.2(b).

Extremizing the free energy with respect to the Ψ(r) and Φ(r) fields subject to the constraint

that the total number of monomers inside the capsid is constant [63], N =
∫

d3r Ψ2(r),

results in two self-consistent non-linear field equations,

a2

6
∇2Ψ = −EΨ(r) + βτΦ(r)Ψ(r) + υΨ3 (3.2a)

βe2

4πλB
∇2Φ(r) = +2µe sinhβeΦ(r)−τΨ2(r)−ρ(r), (3.2b)

with E the Lagrange multiplier enforcing the fixed number of monomers. Note ρ(r) here

is the volume charge density that will be set to zero if there are no charges extended to

the interior of capsid. The boundary conditions for the electrostatic potential inside and

outside of the capsid that we model as a sphere of radius R are,

n̂·∇Φin |r=R −n̂·∇Φout |r=R = 4πλBσ(θ, φ)/βe2 (3.3a)

Φin(r) |r=R = Φout(r) |r=R (3.3b)

Φout(r) |r=∞ = 0. (3.3c)

with σ(θ, φ) the surface charge density. In case of a space charge distribution ρ 6= 0, but

then we assume σ = 0. If the charges are localized to the surface, then σ 6= 0 but the

volume charge density ρ = 0. Thus, if the charges associated with the capsid are lying

completely on the capsid wall, the volume charge density ρ(r) = 0 in Eq. (4.6c), and the
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charge from the capsid is modeled as the surface charge σ(θ, φ) in Eq. (4.7a). We discuss

the exact forms of σ(θ, φ) and ρ(r) in Section II.B.

We use Dirichlet Ψ(r) |r=R= 0 boundary conditions for the chain density at the

capsid wall but our findings are robust and we found the same results for Neumann boundary

condition ∂rΨ(r) |r=R= 0. While Eq. (3.2a) applies to a linear chain, a similar formalism

can be employed to obtain the free energy of RNA modeled as a branched polymer trapped

in a viral shell [17], as explained in the next section.

3.2.1 Branched Polymer

To examine the combined effect of the secondary structure of RNA and non-

uniform capsid charge distribution in this chapter, we model RNA as an annealed branched

polymer and add to Eq. (4.1) the following terms

− 1√
a3

(feΨ +
a3

6
fbΨ

3), (3.4)

which describe the statistics of an annealed branched polymer [17, 36, 51, 86–89] with fe

and fb the fugacities of the end and branch points respectively [17]. The field equations

(Eq. (3.2a)) become

a2

6
∇2Ψ = −EΨ(r) + βτΦ(r)Ψ(r) + υΨ3 − fe

2
√
a3
−
√
a3

4
fbΨ

2, (3.5)

In this formalism, the stem-loops or hair-pins in RNA are considered as end points. The

number of end and branch points Ne and Nb of the polymer depend on the fugacities

Ne = −βfe ∂F∂fe and Nb = −βfb ∂F∂fb . We consider only the case of a single encapsulated

polymer with no closed loops, and thus we have the following constraint: Ne = Nb+ 2. The

fugacity of branch points fb determines the degree of branching.
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3.2.2 Icosahedral Symmetric Based Function (ISBF)

To explicitly model the charged N-terminal tails, we employ Icosahedral Symmetric

Based Functions (ISBFs) for T = 1 and T = 3 structures with 60 and 180 positively charged

regions, respectively. These functions are real-valued, complete, and orthogonal and can be

written as a sum over spherical harmonics [90],

ISBFl,n(θ, φ) =

+l∑
m=−l

bl,n,mYl,m(θ, φ). (3.6)

The ISBF functions are indexed by the integers l and n, where l(l + 1) is the azimuthal

separation constant. n ∈ {0, 1, ..., Nl − 1} indexes the different ISBFs and Nl denotes the

number of linearly independent ISBFs that can be constructed for a given l. The weights

bl,n,m can be computed for each l by comparing the expansion of icosahedrally symmetric

set of delta functions in both spherical harmonics and ISBFs.

The coefficients, bl,n,m given in Eq. (3.6) become nonzero only when m is a multiple

of five, corresponding to five-fold symmetry of icosahedral group. As a function of the

associated Legendre function P lm(x), ISBFs [90] can easily be written as

ISBFl,n(θ, φ) =


∑+l

m=0
2

1+δm,0
bl,n,mNl,mP

l
m(cos θ) cos(mφ), l : even∑+l

m=1 2bl,n,mNl,mP
l
m(cos θ) sin(mφ), l : odd

with Nl,m =
√

2l+1
4π

(l−m)!
(l+m)! .

The charge distributions for structures with T = 1 and T = 3 icosahedral symmetry are

modeled by the ISBF with (l = 15, n = 0) and (l = 27, n = 0) respectively, shown in

Figs. C.1(a) and 1(b). The values of bl,n,m for T=1 and T=3 structures are given in Table

I.
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(a) (b)

Figure 3.2: The charge distributions from the capsids for (a) A T=1 thin capsid. The black spots show
the regions with a uniform surface charge density. The charges are smeared on the surface representing the
thin capsid model. (b) A T=3 thick capsid. The charges are extended into the interior of the capsid.

Assuming that there are no charges in the regions between N-terminal tails (see

Fig. 3.2(a)), we set charge density equal to zero if the magnitude of the ISBFs is smaller

than a certain cutoff value C. Thus, the distance between the charged regions depends

on the cutoff, and, since we fix the total charge of the capsid, the charge density of the

N-terminal domain changes as a function of the cutoff. We consider both the “thin capsid

model” where the charges are smeared on the surface of the spherical capsid in 60 or 180

positions as shown in Fig. 3.2(a), and the “thick capsid model” where the charges extend

into the capsid as shown in Fig. 3.2(b). For the thick capsid model, we assumed that

there are 60 (T = 1) or 180 (T = 3) “bumpy” charged regions extended inside the capsid.

To this end, we shifted and truncated ISBF15,0 and ISBF27,0 such that the capsid surface

protrudes in 60 or 180 positions presenting peptide tails (Fig. 3.2(b)) with charges uniformly

distributed in the volume of protruded regions.
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3.3 Results

We solved the coupled equations given in Eqs. (4.6) for Ψ and Φ fields, subject to

the boundary conditions given in Eqs. (4.7) through the finite element method(FEM). The

polymer density profiles Ψ2 as a function of the distance from the center of the shell, r, are

shown in Figs. 4.2(a) and 4.2(b) in three and one dimension(s) respectively. As illustrated

in the figure, the polymer density is higher at the N-terminal regions. Note that the density

at the wall in the regions between N-terminal tails is lower than that in the N-terminal

domains, but still higher compared to the capsid center even though the capsid wall is not

charged between the tails.
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Figure 3.3: Genome density profile of a T=3 capsid in (a) 3D view. The protruded regions represent RNA
(red). The density of RNA between N-terminals is very small and not shown in the figure. (b) 1D view
as the function of capsid radius with non-uniform charge distribution. The figure shows the profiles along
two different directions. The solid line corresponds to the direction in which the N-terminal tail is located
and the dashed line to the direction without N-terminal tail (inset graph). In the absence of surface charge
density and N-terminal tail (dashed curve), the density is still maximum close to the wall. The polymer
is branched with fb = 3, total monomer number=2411, salt concentration µ = 100mM, R = 12nm and
Qc = 1800.

We find that the optimal genome length increases for a non-uniform charge dis-

tribution as compared to that where the charge distribution is uniform. In fact, the free
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Figure 3.4: Encapsulation free energy for a linear and branched polyelectrolyte as a function of monomer
number for a capsid with uniform (dashed lines) and non-uniform (dotted lines) charge density. For a linear
chain the branching fugacity fb = 0 and increases to fb = 1.0 and fb = 3.0 as the chain becomes more
branched. The diamonds indicate the minimum of free energy. Other parameters used correspond to a
T = 3 virus: total capsid charges on capsid Qc = 1800, a = 1.0 nm, v = 0.01 nm3, µ = 100 mM , R = 12
nm, tail length = 4 nm

energy in addition becomes deeper indicating a higher efficiency of genome encapsulation.

Furthermore, we find that the optimal genome length increases if the cutoff C is increased,

and that the distance between the charged regions correspondingly increases. That is, as

the charges on the capsid are distributed more non-uniformly, the optimal genome length

increases. Nevertheless, for the thin capsid model, we have not been able to observe the

phenomenon of overcharging with linear chains, i.e., the number of charges on genome is

always lower than those on the capsids for all the parameters values that we tested. This

is not the case for the thick capsid model as explained below.

Figure 3.4 illustrates the encapsulation free energy as a function of genome length

for a T = 3 structure with the radius of capsid R = 12 nm at µ = 100 mM salt concentra-

tions for the thick capsid model (Fig. 3.2(b)). The total number of charges are assumed to

be Qc = 1800 for a T = 3 structure, 10 charges on each N-terminal tail. The dashed lines
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in Fig. 3.4 correspond to a capsid with a uniform charge density and the dotted lines to a

non-uniform charge density. The lines with the smallest distance between the dashed and

dots correspond to that of a linear polymer. As illustrated in the figure, the minimum of

the free energy moves towards longer chains if the charge distribution is non-uniform.

Figure 3.4 also shows the impact of RNA secondary structures on the optimal

length of encapsulated genome. The graphs in Fig. 3.4 corresponds to fb = 0 for a linear

polymer and fb = 1.0 and fb = 3.0 for branched ones. The polymer becomes more strongly

branched as fb increases. Note that in the figure the distance between dots or dashed lines

increases as the fugacity or the number of branch points increases. The figure reveals that as

the degree of branching increases, the length of encapsulated genome increases for a capsid

with a uniform charge density. This effect becomes stronger if we consider a non-uniform

charge distribution. The diamonds in the figure indicate the optimal length of genome.

The ratios of the optimal length or number of charges on RNA to the capsid total charge

Qc = 1800 from left to right in the figure are 0.39, 0.52, 0.92, 1.07, 1.22, 1.66, which clearly

shows a transition from undercharging towards overcharging. We note that we find the

same behavior when employing a T = 1 instead of a T = 3 capsid.

3.4 Discussion and Summary

The reason for overcharging associated with the non-uniform charge distributions

is twofold. A non-uniform charge distribution on the capsids obviously promotes a non-

uniform genome density distribution. However, in order to have a more uniform polymer

distribution with lower entropy cost, longer chains are preferably encapsulated to make
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Figure 3.5: Optimal genome length or Charge Ratio vs. N-terminal charge density or volume occupied for
a T = 3. (a) Hollow symbols correspond to capsid radius of R = 9.5 nm and solid ones to R = 11.5 nm with
the N-terminal tail length 3.5 nm; (b) Hollow symbols correspond to tail length of 3.5 nm and solid ones
to 5.5 nm for R = 12.5 nm. Other parameters are total charge Qc = 1800, and salt concentration µ = 100
mM (dashed) and µ = 500 mM (solid)

the genome distribution more uniform in the regions between the N-terminal tails. Figure

3.5(a) illustrates this effect for a T = 3 structure with 180 tails as a plot of the optimal

length of genome vs. the capsid charge density. Note that since the total charge of capsid

is fixed, as we increase the charge density, we lower the volume of the N-terminal regions,

which is also shown in the axis on the top of the graph. The vertical axis on the right-hand

side of the figure shows the degree of overcharging. The circles in the figure correspond to

µ = 100 mM salt concentration and squares to µ = 500 mM . For the hollow symbols the

radius of capsid is R = 9.5 nm but for the solid symbols R = 11.5 nm. As shown in the

figure, if we increase the area between the N-terminals or the radius of capsid, the amount

of overcharging increases at a given salt concentration.

However, the noted entropy effect cannot explain all the observations. At the

physiological salt concentration of µ = 100 mM , the genome only interacts with the capsid if

it is sitting in vicinity of the capsid coat protein charges. This is due to the rather short range
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of electrostatic interactions at that salt concentration. The presence of N-terminals increases

the region with which the genome interacts attractively through electrostatic interactions.

Thus, the higher the salt concentration, the more important becomes the role of N-terminals.

The figure shows that the overcharging is more pronounced at µ = 500mM . Also, the higher

salt concentration, the lower is the electrostatic self-repulsion between genome monomers,

which helps to the encapsidation of longer chains.

We also examined the impact of the length of N-terminal domains in the thick

capsid model, which corresponds to how far the charged regions extend into the interior of

the capsid. As illustrated in Fig. 3.5(b) for T = 3 capsids, more genome is encapsidated for

longer N-terminal tails, which is again due to larger interacting region for a fixed total numer

of charges on the capsid. The effect becomes more pronounced for higher salt concentrations

as illustrated in the figure.

In summary, we have studied the phenomena of overcharging observed in many

viruses. Previous mean-field theories as well as the experimental studies of CCMV capsid

proteins with short linear polymers have indicated the resulting VLPs are undercharged

[17, 18, 18, 36, 54, 91, 92]. However, MD simulations revealed overcharging can happen even

for linear polymers and the question is why [16]. In this chapter, we showed that the non-

uniform charge distribution increases both the stability and the amount of genome that can

be assembled by CPs as a result of what in essence is entropy. For a thin capsid model with

the charges smeared flatly on the surface, longer chains are encapsulated, but we have not

been able to observe overcharging with linear polymers. This indicates that overcharging

for linear systems is primarily due to the charged N-terminal regions that protrude into the
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interior of the capsid. The N-terminal regions increase the regions in which the genome can

interact with the capsid proteins and thus resulting in the encapsidation of longer chains.

This latter effect is stronger at higher salt concentrations. We find that the combined effect

of RNA base-pairing, which gives rise to the genome branching, and non-uniform charge

distribution can explain the pronounced charge inversion observed in viruses.
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Chapter 4

The effect of RNA stiffness on the

self-assembly of virus particles

4.1 Introduction

Ribonucleic acid (RNA) is one of the molecules of life, which plays a central role in

the cell as information carriers, enzymes, gene regulators, et cetera. It is made out of four

elementary building nucleotides, being A(denine), G(uanine), C(ytosine) and U(racil) [93].

As shown by Crick and Watson, purines (A,G) pair with complementary pyrimidines (C,U),

leading primarily to the pairs CG and AU. There exist also so-called wobble pairs of GU.

Single stranded RNA is quite flexible with a Kuhn length of, depending on the ionic strength

of the solution, one or two nm [94], and can form double helical stems (A helices) with a

Kuhn length of about 140 nm [62, 95]. So, double stranded RNA is stiffer than double

stranded DNA, which has a Kuhn length of 100 nm, noting that the Kuhn length is twice
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the persistence length of a so-valled wormlike chain.

The pairing of bases over long distances along the backbone gives rise to the

secondary or folded structure of RNA. Pairing of bases can be represented by so-called

arch diagrams. Nested arches represent helices, while crossings give rise to the so-called

pseudoknots [96]. The nested pairings can be described quantitatively by recursion relations

[6,97,98], which exactly sum all possible pairings without pseudoknots. From a geometrical

point of view, the generated structures can be viewed as branched polymers. The size of an

ideal, Gaussian linear polymer scales as the number of “segments” to the power ν = 1/2,

while ideal branched ones have a scaling exponent ν = 1/4 [99]. Note that there is no

excluded volume interaction between monomers of an ideal chain. For self-avoiding chains

the scaling exponents are ν = 3/5 and ν = 1/2 for the linear and branched polymers,

respectively [99,100]. However, because of its tertiary structures that include pseudoknots,

RNAs are significantly more compact than branched polymers. Indeed, several numerical

studies and surveys have found the exponent ν = 1/3 to be small for RNA, reflecting this

more compact structure [37,101].

Several recent self-assembly experimental studies reveal the importance of non-

electrostatic interactions, associated with specific structures of the genome, for the selection

of one RNA over another by the capsid proteins [102]. The self-assembly studies of Comas-

Garcia et al. [32] reveal in particular the importance of RNA topology. They carried out a

number of experiments in which a solution of the capsid proteins of cowpea chlorotic mottle

virus(CCMV) were mixed with equal amount of RNA1 of Brome Mosaic virus (BMV) and

RNA1 of Cowpea Chlorotic Mottle Virus (CCMV). In this head-to-head competition, the
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amount of coat protein (CP) of CCMV was selected such that it could only encapsidate one

of the genomes. Quite unexpectedly, the RNA1 of CCMV (the cognate RNA) lost to RNA1

of BMV, i.e, only RNA1 of BMV was encapsidated by CCMV CPs. These experiments

emphasize the impact of RNA structure on the assembly of viral shells, as RNA1 of BMV

has a more compact structure than that of CCMV [17].

Following these experiments a number of simulation studies, using quenched (fixed)

branched polymers as a model for RNA, have shown that the optimal length of encapsidated

RNA increases when accounting for its secondary structure [16,37]. Mean-field calculations

using annealed (equilibrium) branched polymers as model RNAs have also shown that

the length of encapsidated polymer increases as the propensity to form larger numbers of

branched points increases [17, 36, 103]. More importantly, these calculations show that a

higher level of branching considerably increases the depth of the free-energy gain associated

with the encapsulation of RNA by a positively charged shell. This implies that the efficiency

of genome packaging goes up with increasing the level of branching, so with increasing

compact secondary structure of the genome.

In fact, it was shown in Refs. [49, 104] that while RNA molecules of the same

nucleotide length and composition might have similar amounts of base pairing, non-viral

RNAs have significantly less compact structures than viral ones. The compactness of viral

RNAs has been associated with the presence of a larger fraction of higher-order junctions

or branch points in their secondary structure [101,104,105]. Figure 4.1(a) and (b) illustrate

the secondary structures of CCMV RNA and those of a randomly sequenced RNA with the

same length. The structures are obtained through the Vienna RNA software package [6].
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Figure 4.1: (a) The secondary structure of the CCMV RNA1 and (b) a random RNA with the same
number of nucleotides. The structures are obtained using the the Vienna RNA package [6].

As shown in the figure, CCMV RNA has considerably larger number of branched points

than non-viral RNA of the same length.

Above-mentioned theoretical and experimental studies indicate that in a head-to-

head competition between two different types of RNAs, the RNA with a larger number of

branching junctions or branch points should have a competitive edge over others [17,36,103].

A naive physical explanation is that branching causes RNA molecules to become more

compact than structureless linear polymers of similar chain length, which are then easier to

accommodate in the limited space provided by the cavity of a capsid. According to these

theories and simulations, a linear chain should definitely “loose” to a branched one of the

same number of monomers when competing head-to-head for a limited number of capsid

proteins.

To probe the effect of RNA structure and test the above theories on the self-
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assembly of virions more systematically, Beren et al. [106] recently performed a set of in

vitro packaging experiments with polyU, an RNA molecule that has no folded secondary

structure. They examined whether RNA topology, i.e., the secondary structure or level of

branching, allows the viral RNA to be exclusively packaged by its cognate capsid proteins.

More specifically, they studied the competition between CCMV viral RNA with polyU of

equal number of nucleotides for virus capsid proteins. They find that CCMV CPs are

capable of packaging polyU RNAs and, quite interestingly, polyU outcompetes the native

CCMV RNA in a head-to-head competition for the capsid proteins. These findings are in

sharp contrast with the previous experimental, theoretical, simulation and scaling studies

noted above, which suggest that the branching and compactness of RNA must lead to a

more efficient capsid assembly. That being said, the scaling theory of Ref. [81] already

hints at the subtle interplay between Kuhn length, solvent quality and linear charge density

dictating the free energy gain of encapsulation.

To explain these intriguing experimental findings, we employ a field density func-

tional theory and study the impact of RNA branching, while allowing for differences in

Kuhn length. We further consider that double helical sequences have a larger linear charge

density than non-hybridized sequences along the chain. In all previous theoretical and sim-

ulation studies related to the impact of RNA topology on virus assembly, the focus has

been on the importance of the degree of branching, ignoring the impact of base-pairing on

the RNA Kuhn length and linear charge density.

As noted above, the Kuhn length of single stranded RNA under physiological

conditions of monovalent salt is between one and two nm depending on the ionic strength
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[94], while that of a double stranded RNA is about 140 nm [62, 95]. The average duplex

length of viral RNA is about six nucleotide pairs [101], which corresponds to about five

nm. This value is much smaller than the persistence length of double stranded RNA [104],

suggesting that viral RNA can be modeled as a flexible polymer with an average Kuhn

length of about six paired nucleotides. There are of course also loop sequences that in our

model act as end, hinge and branching points, but how this translates into an effective

Kuhn length for the entire branched chain representation of the RNA is unclear. Plausibly,

the effective Kuhn length of the internally hybridized chain should be larger than that of

the equivalent unstructured non-hybridized chain. Furthermore, another major difference

between the linear and branched (base-paired) ssRNA structures seems to be the linear

charge density, which doubles for the latter on account of base pairing (hybredization).

In this chapter, we vary the degree of branching as well as the effective Kuhn length

and linear charge density of a model RNA, and study their impact on the optimal length

of encapsulated genome by capsid proteins. We find that as we increase the chain stiffness

or Kuhn length the free energy of encapsulation of RNA becomes less negative than that of

a linear chain, at least under certain conditions. Hence, a larger Kuhn length, associated

with base-pairing, might decrease the efficiency of packaging of RNA compared to a linear

polymer. In contrast, our results indicate that increasing the linear charge density improves

the efficiency of packaging of both linear and branched polymers. Thus base-pairing has

two competing effects: it makes the chain stiffer, which increases the work required to

encapsidate the chain, but at the same time it increases the linear charge density that

lowers the encapsidation free energy and augment the packaging efficiency. These results
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are consistent with the experiments of Beren et al. [106], in which the linear RNA, PolyU,

outcompetes the cognate RNA of CCMV when they are both in solution with a limited

amount of capsid proteins of CCMV, that is, sufficient to encapsidate either PolyU or

CCMV RNA but not both.

4.2 Model

The free energy associated with a genome trapped inside a spherical capsid has

been studied in the previous chapters. In this chapter we focus on the case of annealed

branched polymers as the degree of branching of RNAs [107], and write the free energy

as [17,30,36,51,59,82,103,108]

βF =

∫
d3r
[
`2

6 |∇Ψ(r)|2 +
1

2
υΨ4(r) +W

[
Ψ(r)

]
− 1

8πλB
|∇βeΦ(r)|2 − 2µ cosh

[
βeΦ(r)

]
+ βτΦ(r)Ψ2(r)

]
+

∫
d2r
[
βσΦ(r)

]
. (4.1)

with β the inverse of temperature in units of energy, v the effective excluded volume per

monomer, λB = e2β/4πε the Bjerrum length, e the elementary charge, µ the number density

of monovalent salt ions, and τ the charge of the statistical Kuhn segment of the chain. The

dielectric permittivity of the medium ε is assumed to be constant [85]. The quantity `,

the Kuhn length of the polymer, is defined as an effective stiffness averaged over the entire

sequence along the genome. Further, the fields Ψ(r) and Φ(r) describe the square root of

the monomer density field and the electrostatic potential, respectively, and the term W [Ψ]

corresponds to the free energy density of an annealed branched polymer as described in

Eq. 4.2 below.
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As discussed in the Introduction, the secondary structure of the RNA molecules

contain considerable numbers of junctions of single-stranded loops from which three or more

duplexes exit. This makes RNA act effectively as a flexible branched polymer in solution.

While the Kuhn length for a single stranded, non self-hybridized ssRNA is a few nanometers

and that for a double stranded RNA is about 140 nanometers, the Kuhn length of viral RNA

is not well determined, as we discussed above. In the absence of exact measurements, we

employ an average or effective value for `, which presumably will be larger if the number of

consecutive base pairs (duplexes) between single stranded segments or stem loops along the

RNA is larger. Further, we consider the limit of long chains consisting of a very large number

of segments N →∞ for our confined chains, where N denotes the number of segments. In

this formal limit, we employ the ground-state dominance approximation implicit in Eq. (1),

as it has proven to be accurate provided N � 1, i.e., for very long chains [56]. We specify

below the connection between the number of segments and the number of nucleotides that

make up the RNA, differentiating between self-hybridized and non self-hybridized RNAs.

The first term in Eq. (4.1) is the entropic cost of deviation from a uniform chain

density and the second term describes the influence of excluded volume interactions. The

last two lines of Eq. (4.1) are associated with the electrostatic interactions between the chain

segments, the capsid and the salt ions at the level of Poisson-Boltzmann theory [18,59,109].

The term W [Ψ] represents the free energy density associated with the annealed branching

of the polymer [86–89],

W [Ψ] = − 1√
`3

(feΨ +
`3

6
fbΨ

3), (4.2)

where fe and fb are the fugacities of the end and branched points of the annealed polymer,
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respectively [51]. Note that the stem-loop or hair-pin configurations of RNA are counted

as end points. The quantity 1√
`3
feΨ indicates the density of end points and

√
`3

6 fbΨ
3 the

density of branch points. The number of end Ne and branched points Nb are related to the

fugacities fe and fb, respectively, and can be written as

Ne = −βfe
∂F

∂fe
and Nb = −βfb

∂F

∂fb
. (4.3)

There are two additional constraints in the problem. Note first that the total number of

monomers (Kuhn lengths) inside the capsid is fixed [63,110],

N =

∫
d3r Ψ2(r). (4.4)

We impose this constraint through a Lagrange multiplier, E , introduced below. Second,

there is a relation between the number of the end and branched points,

Ne = Nb + 2, (4.5)

as there is only a single polymer in the cavity that by construction has no closed loops as

it has to mimic the secondary structure of an RNA. The polymer is linear if fb = 0, and

the number of branched points increases with increasing value of fb. For our calculations,

we vary fb and find fe through Eqs. (4.3) and (4.5). Thus, fe is not a free parameter.

Varying the free energy functional with respect to the monomer density field Ψ(r)

and the electrostatic potential Φ(r), subject to the constraint that the total number of

monomers inside the capsid is constant [63], we obtain two self-consistent non-linear differ-

ential equations, which couple the monomer density with the electrostatic potential in the
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interior of the capsid. The resulting equations are

`2

6
∇2Ψ = −EΨ(r) + βτΦ(r)Ψ(r) + υΨ3 +

1

2

∂W

∂Ψ
(4.6a)

βe2

4πλB
∇2Φin(r) = 2µe sinhβeΦin(r)−τΨ2(r) (4.6b)

βe2

4πλB
∇2Φout(r) = 2µe sinhβeΦout(r) (4.6c)

with E the earlier mentioned Lagrange multiplier enforcing the fixed number of monomers

in the cavity. The boundary conditions for the electrostatic potential inside and outside of

the spherical shell of radius R are,

n̂·∇Φin |r=R −n̂·∇Φout |r=R = 4πλBσ/βe
2 (4.7a)

Φin(r) |r=R = Φout(r) |r=R (4.7b)

Φout(r) |r=∞ = 0. (4.7c)

The boundary condition (BC) for the electrostatic potential is obtained by mini-

mizing the free energy assuming the surface charge density σ is fixed. The concentration of

the polymer outside of the capsid is assumed to be zero. The BC for the inside monomer

density field Ψ is of Neumann type (n̂·∇Ψ|s = 0) that can be obtained from the energy

minimization [63] but our findings are robust and our conclusion do not change if we impose

the Dirichlet boundary condition Ψ(r) |r=R= 0. The former represent a neutral surface,

whilst the latter a repelling surface. [56]

4.3 Results

We solved the coupled equations given in Eqs. (4.6) for the Ψ and Φ fields, subject

to the boundary conditions in Eqs. (4.7) through a finite element method (FEM). The
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Figure 4.2: Genome density profile as a function of distance from the capsid center for a linear polymer with
l = 1nm (solid line), l = 2nm(dashed line) and l = 4nm(dotted line). Other parameters used correspond to
a T = 3 virus: the total capsid charges on capsid Qc = 1800e, the strength of excluded volume interaction
υ = 0.05nm3, the fugacity fb = 0, the quantity µ corresponds to a salt concentration of 100mM , the capsid
radius R = 12nm, the temperature T = 300K and total number of nucleotides for all three cases equals
1000.

polymer density profiles Ψ2 as a function of the distance from the center of the shell,

r, are shown in Fig. 4.2 for different values of the RNA stiffness ` and a fixed number

of nucleotides, presuming the RNA not to have any secondary structure. Note that for

simplicity we assume that a linear chain with ` = 1 nm contains one nucleotide and carries

one negative charge, so τ = −e, ` = 2 nm has two nucleotides with two negative charges and

so on. Thus in our figures the numerical value of ` also indicates the number of nucleotides

in one Kuhn length for linear chains. For the three plots in Fig. 4.2, the total number of

nucleotides is calculated using Eq. 4.4 and is equal to 1000. It is worth mentioning that

Eq. 4.4 gives us the total number of Kuhn lengths N and we multiply it by ` the number

of nucleotides along one Kuhn length to obtain the total number of nucleotides.

As illustrated in the figure, the polymer density becomes larger at the wall as

the Kuhn length decreases, even though the linear charge density is fixed. In all plots for
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Figure 4.3: Encapsidation free energy of a linear polymer as a function of number of nucleotides for
` = 1nm (solid line), ` = 2nm (dashed line) and ` = 4nm (dotted line). As the stiffness ` increases,
the optimal number of nucleotides moves towards shorter chains. The quantity τ indicates the number of
negative charges in one Kuhn segment. Other parameters used are the total number of charges on the capsid
Qc = 1800, the excluded volume parameter υ = 0.05nm3, the quantity µ corresponds to a salt concentration
of 100mM , the radius of the cavity of the capsid R = 12nm and the absolute temperature T = 300K.

Fig. 4.2 we assumed that the excluded volume is kept constant. Arguably, the excluded

volume parameter υ depends on `, and usually it is assumed that υ ∝ `3 [56]. As we will

discuss in Sect. 4.4, our conclusions about the role of stiffness in the encapsidation free

energy are robust and should not sensitively depend on the strength of the excluded volume

interaction.

To investigate the packaging efficiency of a linear chain as a function of its stiffness,

we obtained the free energy of the encapsidation of the linear polymer model as a function

of number of nucleotides for different values of `, as illustrated in Fig. 4.3. The figure shows

that the optimal number of nucleotides trapped in the shell increases as ` decreases. We

emphasize again that since we assumed that the size of a single nucleotide is about one

nm, the numerical value of ` represents the number of nucleotides within one Kuhn length.

This implies that the number of nucleotides and hence the number of charges per Kuhn
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segment should increase as the Kuhn length increases. For example, in our parametrization

` = 4nm represents four nucleotides (resulting in τ = −4e). We observe the same behavior

for the free energy of branched polymers, that is, increasing ` causes the optimal length

of genome to move towards shorter chains. Obviously the stiffness value ` is larger for the

RNAs whose average number of base pairs in the duplex segments is larger.

The concept of the number of nucleotides per Kuhn length is trickier to imple-

ment for the branched polymers taken as model for self-hybridized ssRNA. For example, a

branched polymer with the Kuhn length ` = 1nm represents in our model description two

nucleotides and a charge of τ = −2e. When the average number of base pairs is about 8

in duplex segments of an ssRNA, we consider the Kuhn length is about eight nm, but the

number of nucleotides and number of charges per Kuhn length τ will be 16. Thus, in our

prescription of the self-hybridized ssRNA the number of nucleotides is twice the value of `

within a Kuhn length as a result of base pairing.

We also examined the impact of the fugacity on the optimal number of nucleotides.

There is a direct relation between the fugacity and the number of branched points: As the

fugacity increases the number of branched points of RNA increases too, see [17, 36, 103].

Figure 4.4 illustrates that the optimal number of nucleotides increases and the encapsidation

free energy becomes more negative, indicating a more stable complex, as the fugacity of

branching and hence the number of branch points increases. The solid line in the figure

shows the free energy of a linear polymer. For the case shown in the figure, the Kuhn length

of the linear chain is ` = 1nm but that for the branched polymers ` = 4nm, corresponding

to four base-paired nucleotides. The number of charges within one Kuhn length then is
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Figure 4.4: Encapsidation free energy as a function of number of nucleotides for a linear (solid line) and
branched chains with different degree of branching: fb = 0.1 (dotted line), fb = 1 (dot-dashed line) and
fb = 2 (dashed line). As the fugacity fb (and hence the number of branched points) increases, the optimal
number of nucleotides moves towards longer chains. Other parameters are Qc = 1800e, υ = 0.05nm3, the
quantity µ corresponds to a salt concentration of 100mM , R = 12nm and T = 300K.

τ = −8e.

Figure 4.4 reveals that the free energy of the linear chain is lower than that of the

branched one in certain regions of parameter space. For example, for a branched polymer

with fugacity fb = 0.1, ` = 4nm and τ = −8e (dotted line), the encapsidation free energy

of a linear chain with ` = 1nm and τ = −e is always lower than that of the branched

polymer, and thus, in a head-to-head competition with a limited number of proteins, the

linear chain will be the one that is preferentially encapsidated by capsid proteins. This

shows that the work of compaction of linear chains could be lower than that of a branched

polymer, depending on the stiffness and the degree of branching of the polymers involved.

Note that for a fixed ` while the number of branch points (fb) increases, at some point,

the branched polymers outcompetes the linear polymer for binding to capsid proteins, as is

illustrated in the figure.

We next studied the free energy of a branched polymer with a fixed fugacity for
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Figure 4.5: Encapsidation free energy as a function of number of nucleotides for a linear (solid line)
and a branched chain at ` = 2nm (dashed line), ` = 4nm (dotted line) and ` = 8nm (dot-dashed line).
Other parameters used are Qc = 1800e, υ = 0.05nm3, the quantity µ corresponds to a salt concentration of
100mM , R = 12nm and T = 300K.

different values of the stiffness `. As illustrated in Fig. 4.5 for a fugacity fb = 0.1, the linear

chain (solid) “looses” to a branched one when four nucleotides have formed two base pairs

with ` = 2nm and τ = −4e (dashed line). However, the figure shows that as ` increases,

for ` = 4nm and 8nm (dotted and dotted-dashed lines), their encapsidation free energies

become larger than that of the linear chain, indicating that in a head-to-head competition

the linear polymer will be encapsidated. Thus, if the average number of nucleotides in

duplex segments increases, it becomes energetically more costly to confine RNA inside the

capsid.

4.4 Discussion

Recent experiments emphasized on the crucial role of the RNA topology in the

efficiency of virus assembly. As noted in the introduction, Comas-Garcia et al. [32] have

shown that CCMV capsid proteins exclusively encapsidate BMV RNA in the presence of the
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Figure 4.6: Encapsidation free energy as a function of the number of nucleotides for linear (dashed
lines) and branched chains(dotted lines), with various number of charges within one Kuhn length τ . Other
parameters are Qc = 1800e, υ = 0.05nm3, the quantity µ corresponds to a salt concentration of 100mM ,
R = 12nm and T = 300K.

cognate CCMV RNA under conditions where there is a limited number of capsid proteins

in solution. The simulations and analytical studies performed in Refs. [16, 17, 36, 55, 103]

are consistent with these results: the viral RNA with a larger degree of branching has a

competitive edge over the other viral RNAs or non-viral randomly branched RNAs, keeping

all other chain quantities equal.

Indeed, all field theories, numerical calculations and simulations up to now have

indicated that the encapsidation free energy of both annealed and quenched branched poly-

mers is significantly lower than that of linear polymers. This suggests that if there are

equal amounts of linear and branched polymers in a solution, but there are sufficient cap-

sid proteins to encapsulate exclusively half of the genomes in solutions, only the branched

polymer is encapsidated by capsid proteins. Nevertheless, according to a series of more

recent experiments by Beren et al. [106] in a head-to head competition between a linear

(polyU) chain and CCMV RNA of equal length, surprisingly, and in contrast to theoretical

predictions, the linear chain outcompetes the cognate RNA.
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While previous theoretical studies have focused on the scaling behavior of linear

and branched flexible polymers [17, 18, 36, 53–55, 103], in this chapter we study the impact

of the stiffness or Kuhn length on the encapsidation of RNA by capsid proteins. In general

the duplexed segments of viral RNA contain on average about five to six base-pairs [101].

Note that some studies show that viral RNAs must have between 60 and 70 per cent of their

nucleotides in duplexes, so the linear charge density is almost a factor of two larger and the

effective chain length about twice shorter [111]. We argue that while the base pairing on

the one hand makes the RNA more compact, on the other hand it increases the effective

Kuhn length or the statistical length of the polymer unit. This leads to an increase in the

work of compaction of the flexible chain by capsid proteins, which is directly related to the

encapsidation free energy of the polymer as plotted in Fig. 4.5. We emphasize again that

the findings of this chapter is not in contradiction with the previous studies: The more

strongly branched a polymer is, the more competitive it becomes to be encapsidated by

capsid proteins. However, in this work we show that because of base-pairing, the RNA

also becomes stiffer and under appropriate conditions can no longer outcompete the linear

polymer for binding to capsid proteins.

Since branching due to base-pairing causes both the stiffness and the linear charge

density of an otherwise linear polymer to increase, one might wonder which effect, higher

charge density or larger stiffness, makes the viral RNA less competitive than a linear poly-

mer. Figure 4.6 distinguishes the effect of stiffness and charge density. The dashed lines in

the figure correspond to linear polymers with ` = 1nm but different numbers of charges per

Kuhn segment τ = −e,−4e,−10e. In the plots, the longer the dashes are, the higher the
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charge density is. As illustrated in the figure, the encapsidation free energy becomes lower

as the charge density increases. The charge density has the same impact on the encapsi-

dation free energy of branched polymers. Figure 4.6 shows that as the charge density of

branched polymer increases (dotted lines), their free energy decreases. The more distance

between the dots, the higher the charge density of the branched polymer. Quite interest-

ingly, the figure shows that the effect of stiffness overshadows the impact of charge density.

A branched polymer with the stiffness of ` = 2nm and charge density of τ = −4e or −10e

has a higher free energy than a linear polymer with the stiffness of ` = 1nm but the charge

density of τ = −4e. These examples do not correspond to “real” RNA as it is not possible

to increase the number of charges to more than 2e per base pair, but they clarify that

base-pairing has three competing effects. First, it makes RNA stiffer, which increases the

work of encapsidation but, second, in parallel gives rise to the branching effect and, third,

a higher charge density, which both lowers the encapsidation free energy and enhances the

packaging efficiency of RNA by capsid proteins.

Another important point to consider, is the change in the excluded volume interac-

tion that must somehow be connected with the variation in the Kuhn length. We repeated

the calculations done for Fig. 4.5, but considered the excluded volume effect, which ap-

proximately goes as `3 [56]. We found that our conclusion is robust and that the excluded

volume interaction only slightly modifies the boundary in the parameter space where the

linear polymers are able to outcompete the branched ones. The results of this study can

explain the intriguing findings of the experiments of Beren et al. [106] in which the unstruc-

tured polyU RNA is preferentially packaged and outcompetes native RNA CCMV, despite
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the fact that viral RNAs have more branch points and as such have a more compact struc-

ture. Last but not least we note that the interaction of RNA with capsid proteins could

modify the preferred curvature of proteins and result into the capsid of different sizes and T

numbers as demonstrated in [106]. However, since very little is known about this effect, in

this chapter we exclusively focused on the impact of RNA stiffness resulting from its base

pairing in the RNA encapsidation free energy.

4.5 Conclusions

Results of our field theory calculations have shown that competition between dif-

ferent forms of RNA for encapsulation by virus coat proteins is a complex function of the

degree of branching, effective stiffness of the polymer, linear charge density and excluded

volume interactions. The conclusion of previous works that the more branched an RNA is

on account of its secondary, base-paired structure, the larger the competitive edge it has

to be encapsulated in the presence of coat proteins needs to be refined. Under appropriate

conditions of linear charge density and effective chain stiffness, we find that a linear chain

may in fact outcompete even the native RNA of a virus, as was recently also shown ex-

perimentally. Of course, our conclusions are based on coarse-grained model in which the

RNA binding domains of the coat proteins are represented by a smooth, uniformly charged

wall. In future work we intend to more realistically model these polycationic tails that form

a complex with the polynucleotide. Of particular interest here is the impact of excluded

volume interactions between these tails and the polynucleotide.
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Part III

Elasticity Theory for Viral Capsid
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Chapter 5

Elasticity in curved topographies:

Exact theories and linear

approximations

5.1 Introduction

There are many examples of 2D crystals on curved spaces, including colloids ab-

sorbed on a spherical surface [43,112], negative curvature [113] at oil-water interface, virus

shells [44,114,115] and colloids mixtures [116], just to name a few. The uniqueness of these

problems arises from the subtle but profound relation between geometry and topology.

The equilibrium structure of two-dimensional ordered structures on the surfaces

of non-zero Gaussian curvature is dictated by the presence and arrangement of defects such

as dislocations and disclinations. The energetically forbidden defects in flat surfaces be-
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come ubiquitous on curved substrates; nevertheless, their presence gives rise to equilibrium

structures that include finite stresses. The standard theory of elasticity [117] is unwieldy

to investigate the interplay of the defects and geometry and, often, is not the most suit-

able starting point for these problems. In fact, in order to satisfy topological constraints,

somewhat uncontrolled approximations need to be considered.

In this chapter we develop a geometric theory for elasticity that incorporates topo-

logical constraints exactly, thus allowing to calculate the stress and strain in a curved surface

and analyze different approximations employed in the literature. Examples that will be dis-

cussed include five-fold disclinations in a triangular lattice in the regions of constant positive

Gaussian curvature, see Fig.5.1.

The organization of the chapter is as follows: In the following section, we first

present different approximations employed in literature to solve elasticity equations and

provide a conceptual discussion of our approach, which is developed in Sect. 5.3. As an

example, the case of a spherical cap, with or without a central disclination and the derivation

of all their relevant analytical formulas are presented in Sect. 5.4. Explicit comparisons

between the different approximations and the exact results are presented in Sect. 5.5. Some

general conclusions are presented in Sect. 5.6. More technical/mathematical developments

are deferred to the appendices, where we have made a special effort in providing all the

detail necessary so that all calculations are fully reproducible.
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5.2 Formalism: Conceptual Aspects

The basic quantities in elasticity theory are the displacements u(x̄) from a reference

state x̄

x ≡ x̄ + u(x̄) , (5.1)

and the associated strain (uαβ) and stress (σαβ) tensors, which are conjugated variables

in the thermodynamic sense [117]. A definition of the strain tensor is given by comparing

how a small vector in the reference state dx̄ transforms after a mechanical deformation,

represented by dx:

dx2 = dx̄2 + 2uαβdx̄
αdx̄β . (5.2)

The physical interpretation of this equation is that two particles initially apart by dx̄, after

deformation become separated by dx. This equation can be written as a function of two

metrics, denoted as reference and target hereon, as follows,

gαβ = ḡαβ + 2uαβ. (5.3)

While the distances in the reference space are measured according to the metric ḡαβ, after

deformation, which defines the target space, distances and angles among physical particles

change and are determined by the metric gαβ, as illustrated in Fig. 5.1. The strain tensor

is the difference between target and reference metrics.

The reference state is defined as a strain and stress free configuration, which is

typically taken as x = (x, y, z) in 3D or x = (x, y, z = 0) in 2D, which implies an euclidean
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reference metric

dx̄2 = dx2 + dy2 + dz2 (3D) (5.4)

dx̄2 = dx2 + dy2 (2D) . (5.5)

Physically, the reference state maybe associated with a lattice where all nearest neighbors

are at the same distance and form the same angle. In 2D we associate it with the triangular

lattice, see Fig. 5.1. Further below, we will show that the reference state is not unique,

as a triangular lattice with topological defects such as disclinations and dislocations is also

allowed. We mention, on passing, that in 3D a lattice where all nearest neighbors are at the

same distance and form the same angle would consist of a tiling with regular tetrahedra,

which is not possible [118] and leads to several consequences that have been discussed

elsewhere [119,120]. Our goal in this chapter is to develop a formalism to obtain the stress

and strain in a curved surface. In particular, we focus on how an initially flat monolayer,

whose reference state is given by x̄, consisting of a plane with additonal defects, deforms into

a given topography ~r(x̄) embedded in 3D space, as illustrated in Fig. 5.1. Note that both

the reference metric dx̄2 and target metric d~r2 (which, in order to alleviate the notation

will be denoted as dx2 in what it is, certainly, a blatant abuse of language) are known

beforehand. We aim at finding the following transformation

x = F(x̄) , (5.6)

which will be obtained by solving the equations of elasticity theory. How this transformation

is related to the more familiar quantities in elasticity theory: the stress tensor σαβ, the Airy

function (χ) [121] etc.. will be discussed extensively later in the chapter.
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Figure 5.1: Example of reference/target metric and space for a target space consisting of a spherical cap.
This problem is solved in Section 5.4.

The problem of finding the transformation given in Eq. 5.6 is quite subtle because

of the interplay of curvature, topology and defects such as disclinations or dislocations [121,

122]. For example, in a boundary free crystal, the sum of all disclination charges is related

to the Euler characteristic χE through the Gauss Bonnet theorem [123]

M∑
i=1

si =

∫
d2x
√
gK(x) = 2πχE , (5.7)

where K(x) is the Gaussian curvature, g is the determinant of the surface metric and for

a triangular lattice si = π
3 qi (qi = ±1). In case of a spherical surface, χE = 2 leading to

the well known result that a spherical crystal has an excess of twelve qi = 1 disclinations

(pentamers) in the absence of heptamers (qi = −1).

Solutions to the theory of elasticity are obtained mostly within the Foppl Von
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Karman theory of elastic plates, which amounts to small displacements from equilibrium

positions, an approach we denote as the Euler Framework (EF). A useful quantity to calcu-

late the free energy and stress of a curved object is the Airy stress function. For a crystal

consisting of M disclinations at positions xi and with charge si, the equation for the Airy

function is

1

Y
∆2χ(x) =

M∑
i=1

siδ(xi − x)−K(x) , (5.8)

where ∆ is the 2D Laplacian on a plane and Y is the Young modulus [117, 124]. Note

that the Gaussian curvature of the surface acts as an external field. Relevant solutions to

Eq. 5.8 are available for a buckled disclination or dislocation [124], a spherical cap with

and without a central disclination [125,126] and also, for a spherical cap with an off-center

disclination [127–129]. We emphasize again that the EF is exact in the limit of small

curvature only. More precisely, if rm is the dimension of the crystal and R some “average”

curvature of the surface, the small curvature limit is defined by

α ≡ rm
R

= θm << 1 . (5.9)

In a spherical cap (with constant curvature radius R), a major problem arises as α → π,

that is, as the spherical cap becomes a full sphere. Because within EF the solution of Eq. 5.8

is defined on a plane for a disk of area A = πr2
m, the constraint Eq. 5.7

∫
d2xK(x) =

∫
d2x

R2
=

A

R2
= πα2 6= 4π , (5.10)

breaks down.

For a full sphere [130], the topological constraint Eq. 5.10 cannot be satisfied

within EF. The failure to exactly satisfy a topological constraint is a serious conceptual
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problem that typically results in very significant computational errors. In Ref. [131–133] a

generalization of Eq. 5.8, which we denote as the Laplace Formalism (LF), was proposed

1

Y
∆2
gχ(x) =

1√
g(x)

M∑
i=1

siδ(xi − x)−K(x) , (5.11)

where the Laplacian ∆g is computed with the target metric, i.e., on the curved surface. Now,

for a full sphere, the topological constraint Eq. 5.7 is satisfied identically. Although very

successful and highly accurate in many applications [134], the LF appears as an uncontrolled

approximation: It is not obvious how to compute next orders so that eventually the exact

solution will be recovered. Furthermore, for crystal with boundaries, like a crystal spanning

a spherical cap, it is not immediately apparent what additional boundary conditions must

be supplemented to Eq. 5.11.

For the reasons exposed, neither the EF nor the LF are entirely satisfactory, de-

spite their many successes. There is a clear need for a more rigorous formalism able to

develop the LF as a systematic expansion and from which the EF appears as a low curva-

ture expansion. A first insight on how to develop this formalism is provided by the fact that

physical quantities (energies, stresses, strains, etc..) should be independent of surface pa-

rameterizations, that is, expressed in terms of geometric invariants, an approach pioneered

by Koiter as early as 1966 [135]. An elegant formulation with numerous new insights has

been provided in Ref. [136] and extended further in Ref. [137]. In previous papers, see

Ref. [138,139] we have anticipated some aspects of the formalism fully elaborated here.

Before dwelling into the actual formalism, it is worth describing the main ideas

and concepts, which are very intuitive despite the significant amount of differential geom-

etry [123] necessary for its rigorous development. As already discussed, both the target
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metric gµν(x) and the reference ḡµν(x̄) are known, what is therefore needed is the transfor-

mation Eq. 5.6 that enables to express the two metrics either as gµν(x̄) or ḡµν(x).

A simple counting of the number of variables helps understand the problem better.

A general metric has three degrees of freedom g11, g22, g12, so in order to exactly map ḡµν

into gµν three functions are necessary. The solution of elasticity theory Eq. 5.6 provides

only two of them as F is a 2D mapping. The third function is associated with the Gaussian

curvature. If the curvature of the reference and target metrics are not the same, a situation

that is called geometric frustration or metric incompatibility, then it is not possible to make

the two metrics ḡµν and gµν coincide by Eq. 5.6. Since the Gaussian curvature is a scalar

invariant under reparameterizations, metric incompatibility, immediately leads to non-zero

strains (and stresses), as obvious from Eq. 5.2.

A few more clarifications are pertinent. First of all, as discussed above, the refer-

ence metric represents a strain and stress free configuration. We have already pointed out

that a triangular lattice provides a concrete example. However, there are others: a cone

with the appropriate aperture angle and q = 1, 2, 3 disclination charge at its tip and q = 0

(hexamers) everywhere else is also a stress and strain free configuration. In the same way,

one can consider a reference metric that contains an arbitrary number of defects, and hence,

the associated curvature will be given by the disclination density s(x̄)

K̄(x̄) = s(x̄) =
1√
ḡ

M∑
j=1

sjδ(x̄− x̄j)

=
1√
ḡ

ND∑
j=1

sjδ(x̄− x̄j) +

Nd∑
i=1

εαβbiα∂µ(e µ
β δ(x̄− x̄i))

 (5.12)

where use has been made of vielbeins e µ
β , see Appendix B.2. The second equality follows
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by separating the M disclinations as ND isolated disclinations and Nd dislocations, that is,

considering tightly bound disclinations as dipoles characterized by a Burgers vector ~b. Only

for a few cases, such as ND = 0, Nd = 0 (plane), ND = 1, Nd = 0 (cone) or ND = k,Nd = 0

(with 12 ≥ k ≥ 2, icosahedral sections), see also the limiting case ND = 0, Nd = 1 [140],

it is possible to embed explicit solutions in target space such that K = K̄ and therefore,

they are strain and stress free. In this form, elasticity solutions amount to expressing a

given metric gαβ as its optimal approximate in terms of “quanta” of disclinations of charge

π
3 q and dislocations of Burgers vector b. In fact, the geometric content of this “quanta”

becomes even more explicit by noting that isolated disclinations are “quanta” of Gaussian

curvature while dislocations are of geometrical torsion [138,141].

In this chapter, we will not further discuss the role of dislocations, however, it

is worth noting that it is possible to approximate any metric by Eq. 5.12 if Nd → ∞,

as demonstrated in Ref. [138]. This corresponds to the limit where Burgers vector b are

infinitesimally small, i.e. mean field solutions, also discussed in Ref. [142,143]. In this limit,

the Perfect Curvature Condition (PCC)

K(x) = s(x) (5.13)

is satisfied. As pointed out in Ref. [113], it has the electrostatic analogy of a continuum

of charge K(x) being represented by ND isolated charges and a continuum of polarization,

i.e. Nd →∞ dipoles. More generally, the quantity

η(x) = K(x)− s(x) (5.14)

is a measure of the geometric frustration or metric incompatibility. The PCC η(x) = 0 is
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the necessary and sufficient condition for a stress-strain free state to exist in target space.

We next develop these ideas in precise mathematical form.

5.3 Formalism: Development

5.3.1 Exact Formulas

As introduced previously, we will consider two metrics, gµν(x) (target metric) and

ḡµν(x) (reference metric). Both metrics are defined over the same domain Bt, which we

denote as the target domain. The reference domain Br represents the rest frame where the

elastic energy is zero. Consistent with our discussion in Sect. 5.2, we will denote as x the

target coordinates and as x̄ the reference coordinates. The solution of the problem is then

to determine F in Eq. 5.6 (x = F(x̄)).

The most general elastic free energy has the form

F =
1

2

∫
B
W (g(x), ḡ(x)) dVolg . (5.15)

We now show that an appropriate choice of W leads to the familiar expression for the elastic

energy [117], see also Ref. [137]. If Y is the Young modulus and νP is the Poisson ratio, the

following quantities are defined

Aαβγδ =
Y

1− ν2
P

(
νP g

αβgγδ + (1− νP )gαγgβδ
)

Aαβγδ =
1

Y
((1 + νP )gαγgβδ − νP gαβgγδ) (5.16)

in such a way that AαβγδAγδα′β′ = gαα′g
β
β′ . Then the functional W (g(x), ḡ(x)) is defined so

that it reduces to the standard elastic energy for an isotropic medium, that is

W (g(x), ḡ(x)) = Aαβγδuαβuγδ , (5.17)
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where the strain tensor, see Eq. 5.2, is

2uαβ(x) = gαβ(x)− ḡαβ(x) . (5.18)

Note that the free energy Eq. 5.15 is invariant under general reparameterizations. Working

in the target frame, the metric gαβ(x) is known, so we will derive the equilibrium equations

in order to determine the reference metric ḡµν(x), which, expressed in the target coordinates

is not known. The stress tensor is given by

σαβ =
1
√
g

δF

δuαβ
= Aαβγδuγδ . (5.19)

Variations of Eq. 5.15 under reparameterizations (ξβ) of the reference metric δḡαβ = −∇̄αξβ−

∇̄βξα, leaving the target metric invariant gives

δF = −1

2

∫
B
d2x
√
gσαβδḡαβ =

∫
B
d2x
√
gσαβ∇̄αξβ

=

∫
B
d2x

[
∂

∂xα

(√
gσαβξβ

)
−
√
ḡ∇̄α

((
g

ḡ

)1/2

σαβ

)
ξβ

]
(5.20)

The first term is a total derivative, and it can be converted to an integral along

the boundary

∫
B
d2x

∂

∂xα

(√
gσαβξβ

)
=

∫
∂B
dxρ
√
gεργσ

γβξβ . (5.21)

Should the boundary contain a line tension term

Fl = γ

∫
∂B
ds , (5.22)

then

δFl = −γ
∫
∂B
dxµ∇µtνξν , (5.23)
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where tµ is the unit tangent to the boundary. Taking into account the geometric formula

tµ∇µtν =
1

rB
e ν
α nα , (5.24)

with rB the radius of curvature, nα the normal and e ν
α are the vielbeins, see the Appendix

B.2. The correct boundary condition is:

nγ σ̂
γν = − γ

rB
nν , (5.25)

where σ̂αβ = eαµe
β
νσµν , see Appendix for the different expressions of the stress tensor

and some additional details on the derivation of these formulas. This boundary condition

reduces to the one derived for the EF in Ref. [126].

From the definition of the covariant derivative, it is

∇ασαβ =
∂σαβ

∂xα
+ Γααγσ

γβ + Γβαγσ
αγ . (5.26)

Therefore, the equations determining equilibrium are

∇̄α

((
g

ḡ

)1/2

σαβ

)
= ∇̄ασαβ +

(
Γααγ − Γ̄ααγ

)
σγβ = 0 , (5.27)

which can also be written as

∇ασαβ +
(

Γ̄βαγ − Γβαγ

)
σαγ = 0 , (5.28)

and the appropriate boundary conditions as defined by Eq. 5.25. Here, we have used the

Christoffel symbols that are symmetric Γβαγ = Γβγα.

A general solution to Eq. 5.27 is given by the following ansatz [137]

σαβ =
1
√
g

1√
ḡ
εαρεβγ∇̄ρ∇̄γχ , (5.29)
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where ε12 = −ε21 = 1 and zero otherwise, and χ is the Airy function. Using the following

identity,

1

g
εαρεµν = gαµgρν − gανgρµ, (5.30)

Eq. 5.29 can be written as

σαβ =

(
ḡ

g

)1/2 (
ḡαβ ḡργ − ḡαγ ḡβρ

)
∇̄ρ∇̄γχ. (5.31)

Using the formula gργΓνργ = − 1√
g∂γ(
√
ggγν) and the fact that the covariant derivative of

the metric is zero, i.e., ∇̄αḡµν = 0, we find

∇̄ασαβ +
(
Γααγ − Γ̄ααγ

)
σγβ =

1√
gḡ
εαρεβγ∇̄α∇̄ρ∇̄γχ . (5.32)

The right hand side of the above equation can be expressed in terms of the Riemann tensor,

see Eq. B.39, as follows

εαρεβγ∇̄α∇̄ρ∇̄γχ =
1

2
εαρεβγ [∇̄α, ∇̄ρ]∇̄γχ

=
1

2
εαρεβγR̄µγαρ∇̄µχ = 0 , (5.33)

where the last identity follows since the Riemann tensor of the reference metric is zero

outside the defect cores, that is, almost everywhere, see Eq. 5.12. Thus, Eq. 5.29 provides

a general solution of Eq. 5.27 in terms of the Airy function.

Substituting the solution of Eq. 5.29 into the definition of the strain Eq. 5.18 gives,

1
√
g

1√
ḡ
εαρεβγ∇̄ρ∇̄γχ =

1

2
Aαβγδ (gγδ − ḡγδ) (5.34)
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or

ḡαβ = gαβ −
2√
gḡ
Aµλαβε

µρελγ∇̄ρ∇̄γχ

ḡαβ = gαβ −
2

Y

(
g

ḡ

)1/2 [
gαβg

ργ − (1 + νP )gγαg
ρ
β

]
∇̄ρ∇̄γχ (5.35)

Thus ḡµν(χ(x)) can be obtained from above equation. Note however, that among all possible

functions χ, there is only one that has the right curvature K̄, so the equation above needs

to be supplemented with the additional constraint

2K̄ = R̄ = ḡµνR̄µν = ḡµνR̄ρµρν = 0 , (5.36)

which uniquely determines χ. Here K̄ = s(x) is the Gaussian curvature, R̄ the scalar

curvature, R̄µν the Ricci tensor and R̄ρµγν the Riemann tensor. That is, the solution

consists among all possible functions of χ, to select the one that makes ḡµν a flat metric.

In general, such solution is complicated as ḡµν appears on both sides of the equation, and

the rhs includes its derivatives.

Using Eqs. 5.17-5.19 and 5.35, the expression for the elastic energy (Eq. 5.15)

without any approximations is,

F =
1

2

∫
B
σαβAαβρσσ

ρσdVolg

=
1

2Y

∫
B
dVolg

g

ḡ

(
(1 + νp)g

αρgβσ − νpgαβgρσ
)
× ∇̄α∇̄βχ∇̄ρ∇̄σχ (5.37)

note that up to this point all formulas are exact. We now discuss some common approxi-

mations.
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5.3.2 Incompatibility metric approximation

target frame

Since the actual metric gµν(x) is known, the goal is to compute the reference metric

ḡµν(x), and from there, one can obtain the transformation Eq. 5.6. If one assumes that η,

see Eq. 5.14, is somehow small, the Airy function and the metric are:

χ = χ(1) + χ(2) + · · · (5.38)

ḡ = g + g(1) + g(2) + · · · , (5.39)

where each term contains increasing powers of η. Obviously the Airy function is at least,

linear with η, as for η = 0, χ = 0 and g = ḡ. Plugging this expansion into the Airy

equation 5.35 provides the explicit orders in the expansion. The first order is

g
(1)
αβ = − 2

Y

(
gαβ∆χ(1) − (1 + νP )∇α∇βχ(1)

)
, (5.40)

where ∆ = gαβ∇α∇β = 1√
g∂α(gαβ

√
g∂β) is the Laplace-Beltrami operator. Higher orders

are discussed in the Appendix B.3. The goal is now to derive an explicit equation for χ(i),

as discussed below.

First order expressions for energy and stress: target frame

With the metric expressed linearly in terms of the Airy function, the next step is

to enforce the constraint Eq. 5.36. For this purpose, it is necessary to compute the scalar

curvature. This calculation is relegated to Appendix B.3, and gives

K̄ = K +
1

Y

(
∆2χ(1) + 2K∆χ(1) + (1 + νp)g

µλ∇µK∇λχ(1)
)
. (5.41)
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In addition to the square of Laplacian in the above equation there are additional terms that

will be explored further below. The stress tensor within this order is

σαβ = gαβ∆χ(1) − gαµgβν∇µ∇νχ(1) , (5.42)

and the energy

F =
1

2Y

∫
d2u
√
g

[
(∆χ(1))2 +

(1 + νP )

g
εασερβ∇α∇βχ(1)∇ρ∇σχ(1)

]
. (5.43)

As elaborated in Appendix B.4, may be expressed as

F =
1

2Y

∫
d2u
√
g(∆χ(1))2 −

− 1 + νp
2Y

∫
d2u
√
gKgαβ∇αχ(1)∇βχ(1) − 1 + νp

2Y

∮
dxρ
√
gερασ

αβ∇βχ(1). (5.44)

A variation on the previous expansion consists in dropping the cross terms involv-

ing Kχ in Eq. 5.41. The resulting equations are

K̄ = K +
1

Y
∆2χ(1) , (5.45)

with corresponding energy

F =
1

2Y

∫
d2u
√
g(∆χ(1))2 − 1 + νp

2Y

∮
dxρ
√
gερασ

αβ∇βχ(1) , (5.46)

which we recognize as the LF discussed in Sect. 5.2. Note that in the absence of line tension

or external stress, the boundary conditions determine that the second term vanishes iden-

tically. Hereon, we will refer the approximation Eq. 5.41 as the Incompatibility Framework

(IF) in order to differentiate it from the LF.
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reference frame

The expansion for the metric and the Airy function is

χ = χ(I) + χ(II) + · · · (5.47)

g = ḡ + ḡ(I) + ḡ(II) + · · · (5.48)

Similarly as in the target approximation Eq. 5.40, the first order is

ḡ
(I)
αβ =

2

Y

(
ḡαβ∆̄χ(I) − (1 + νP )∇̄α∇̄βχ(I)

)
, (5.49)

with ∆̄ being the Laplace-Beltrami operator of the reference metric. Higher orders are

discussed in the appendix B.3.

First order expressions for energy and stress: reference frame

The formulas derived in the previous case automatically translate into the reference

frame by replacing gαβ ↔ ḡαβ and χ(1) → −χ(I), leading to

K = K̄ − 1

Y

(
∆̄2χ(I) + 2K̄∆̄χ(I) + (1 + νp)ḡ

µλ∇̄µK̄∇̄λχ(I)
)

(5.50)

The stress tensor within this order is

σαβ = ḡαβ∆̄χ(I) − ḡαµḡβν∇̄µ∇̄νχ(I) , (5.51)

and the energy

F =
1

2Y

∫
d2u
√
ḡ

[
(∆̄χ(I))2 +

(1 + νP )

ḡ
εασερβ∇̄α∇̄βχ(I)∇̄ρ∇̄σχ(I)

]
. (5.52)
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Given the assumptions about the reference metric, see Eq. 5.12, the above equations simplify

to

1

Y
∆̄2χ(I) = K̄ −K (5.53)

and energy

F =
1

2Y

∫
d2u
√
ḡ(∆̄χ(I))2 (5.54)

where ∆̄ is the Laplacian on the plane. Thus, the reference frame expansion coincides

with the EF discussed in Sect. 5.2. The singular terms in Eq. 5.12 can be dropped from the

second term in Eq. 5.52 as they only contribute within the defect cores. These contributions

are accounted by an empirical core energy term Ecore as linear elasticity breaks down.

5.4 Results

As a concrete example, we will solve the case of a crystal on a sphere of radius R, as

illustrated in Fig. 5.1. The extent of the crystal is parameterized by its aperture angle θM .

This problem has been described previously within the EF by Morozov and Bruinsma [126]

as well as Grason [128]. In the current notation, the Gaussian curvature is K = 1
R2 and K̄

the disclination density K̄ = s(r). The reference frame metric is Euclidean and is defined

over a disk of radius ρ0 by

ds2 = dρ2 + ρ2
(

1− s

2π

)2
dψ2 ≡ ḡµνdx̄µdx̄ν . (5.55)

The case s = π
3 qi corresponds to a disclination of positive charge placed at the center of the

disk. The target metric is

ds2 = dr2 +R2 sin2(r/R)dϕ2 ≡ gµνdxµdxν . (5.56)
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The problem then consists in finding the function F such that

xµ = F(x̄µ) , (5.57)

where xµ = (r, ϕ) and x̄µ = (ρ, ψ). We will investigate symmetric solutions where ψ = ϕ

r ≡ r(ρ) = F (ρ) , (5.58)

so that the problem becomes one dimensional.

5.4.1 Exact Solution

We will discuss symmetric solutions defined by Eq. 5.58 and we will calculate ρ(r).

The reference metric is

ds2 = dρ2 + ρ2dψ2 ≡ (ρ′(r))2dr2 + w2ρ2(r)dϕ2 (5.59)

where ρ′ = dρ/dr, w ≡ 1 − s
2π and the reference metric is expressed in target coordinates.

The non-zero Christoffel symbols are:

symbol Γrrr Γrϕϕ Γϕϕr

reference ρ′′(r)
ρ′(r) −w2 ρ(r)

ρ′(r)
ρ′(r)
ρ(r)

target 0 −R sin(r/R) cos(r/R) cot(r/R)
R

(5.60)

The components of the stress tensor Eq. 5.19 is the difference between the target and

reference metric, that is

σrr =
Y

2(1− ν2
p)

[
1− ρ′(r)2 + νp

(
1−

(
wρ(r)

R sin(r/R)

)2
)]

σrϕ = 0 (5.61)

σϕϕ =
Y

2(1− ν2
p)R2 sin2(r/R)

×

[
1−

(
wρ(r)

R sin(r/R)

)2

+ νp(1− ρ′(r)2)

]
.
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Inserting Eq. 5.60 into Eq. 5.27 we obtain

dσrr

dr
+ Γϕϕrσ

rr + Γ̄rrrσ
rr + Γ̄rϕϕσ

ϕϕ = 0, (5.62)

which becomes

dσrr

dr
+

(
cot
(
r
R

)
R

+
ρ′′(r)

ρ′(r)

)
σrr − w2ρ(r)

ρ′(r)
σϕϕ = 0. (5.63)

Introducing Eq. 5.61 into Eq. 5.63 yields a nonlinear ordinary differential equation

for ρ(r)

2vw2

R2 sin( rR)2
ρ(r)2

(
cot( rR)

R
− ρ′(r)

ρ(r)

)
− 2ρ′(r)ρ′′(r)

+

(
cot( rR)

R
+
ρ′′(r)

ρ′(r)

)
×
[
1− ρ′(r)2 + v

(
1− w2ρ(r)2

R2 sin( rR)2

)]
− w2 ρ(r)

ρ′(r)

1

R2 sin( rR)2
×
[
1− w2ρ(r)2

R2 sin( rR)2
+ v − vρ′(r)2

]
= 0 (5.64)

with boundary conditions ρ(0) = 0 and σrr(θmR) = Y
1−ν2p

[
1− ρ′(θmR)2 + v

(
1− w2ρ(θmR)2

R2 sin(θm)2

)]
=

0. Although within this formalism the Airy function is not necessary to calculate the stress,

its actual form is valuable as a comparison with its approximations. It is given as:

σrr =
1

R sin(r/R)wρ(r)ρ′(r)
∇̄2
ϕχ =

w

R sin(r/R)ρ′(r)2

dχ

dr

σϕϕ =
1

R sin(r/R)wρ′(r)ρ(r)

(
d2χ

dr2
− ρ′′(r)

ρ′(r)

dχ

dr

)
(5.65)

where σrϕ = 0 is satisfied identically. Note that only one of the equations needs to be

satisfied, as the other becomes then an identity.
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5.4.2 Incompatibility metric approximation solutions

Reference frame

The equations describing the Airy function for a disclination of charge s in the

reference frame have been described above, namely

∆̄2χ(I) + Y (K − s(r)) = 0 . (5.66)

The solution can be read directly from Ref. [126], and it is given by

χ(I)(ρ) =
Y

64R2

(
2ρ2

0ρ
2 − ρ4

)
+
Y s

8π
ρ2

(
log(ρ/ρ0)− 1

2

)
, (5.67)

where ρ0 = Rθm is the radius of the crystal. This is a double expansion in the small

parameters ρ2
0/R

2 and s/(2π).

Substitution of Eq. 5.67 into Eq. 5.49 gives

ḡ(I)
rr =

1

8R2
(ρ2

0 − ρ2 + νp(3ρ
2 − ρ2

0))− s

2π
νp +

s

2π
(1− νp) log(

ρ

ρ0
),

ḡ
(I)
φφ = w2ρ2

(
1

8R2
(ρ2

0 − 3ρ2 + νp(ρ
2 − ρ2

0)) +
s

2π
+

s

2π
(1− νp) log(

ρ

ρ0
)

)
. (5.68)

The target frame metric becomes

grr = ḡ + ḡ(I)
rr

= 1 +
1

8R2
(ρ2

0 − ρ2 + νp(3ρ
2 − ρ2

0))− s

2π
νp +

s

2π
(1− νp) log(

ρ

ρ0
)

≡ r′(ρ)2,

gφφ = ḡφφ + ḡ
(I)
φφ

= w2ρ2 + w2ρ2

(
1

8R2
(ρ2

0 − 3ρ2 + νp(ρ
2 − ρ2

0)) +
s

2π
+

s

2π
(1− νp) log(

ρ

ρ0
)

)
≡ sin2(r(ρ)) . (5.69)
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Using the transformation properties of g(x̄)µν in terms of F in Eq. 5.6, we obtain

r(ρ) = ρ

(
1 +

1

16R2
(ρ2

0 −
ρ2

3
+ νp(ρ

2 − ρ2
0))− s

4π
+

s

4π
(1− νp) log(

ρ

ρ0
)

)
, (5.70)

which is inverted to give the complete solution,

ρ(r) = r

(
1− 1

16R2
((θmR)2 − r2

3
+ νp(r

2 − (θmR)2)) +
s

4π
− s

4π
(1− νp) log(

r

θmR
)

)
.

(5.71)

The stresses are then found using Eq. 5.51

σρρ =
Y

16R2
(ρ2

0 − ρ2) +
Y s

4π
log(

ρ

ρ0
)

ρ2σψψ =
Y

16R2
(ρ2

0 − 3ρ2) +
Y s

4π

(
1 + log(

ρ

ρ0
)

)
(5.72)

and the free energy from Eq. 5.54 becomes,

F

πρ2
0Y

=
θ4
m

384
+

1

32
(
s2

π2
− s

2π
θ2
m)

F

Area · Y
=

θ4
m

1536
+

1

32

(
s

π
− θ2

m

4

)2

. (5.73)

The limit θm → 0 (flat limit) agrees with previous results [124].

Target frame

With the assumptions that ψ = ϕ, the target metric becomes

ds2 = (F ′(ρ))2dρ2 + sin2(F(ρ))dψ2 (5.74)

The equations for the Airy function are either Eq. 5.41 (IF) or Eq. 5.45 (LF), namely

∆2χ
(1)
IF +

2

R2
∆χ

(1)
IF = s(x)− 1

R2
(IF)

∆2χ
(1)
LF = s(x)− 1

R2
(LF) (5.75)
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where s(x) is the disclination density.

The solutions to Eq. 5.75 is

χ
(1)
IF (r)/(Y R2) = log(cos(

r

2R
))− log(cos(

θm
2

))− 1

2
cos(

r

R
) csc(θm) tan(

θm
2

) +
1

2
cot(θm) tan(

θm
2

)

+
s

2π

[
sin2(

r

2R
) log(

tan( r
2R )

tan( θm2 )
)− 1

2
sin2(

r

2R
) sec2(

θm
2

) +
1

2
tan2(

θm
2

)

]
(5.76)

and also

χ
(1)
LF (r)/(Y R2) = Li2(sin2(

r

2R
))− Li2(sin2(

θm
2

))− cot2(
θm
2

) log(
1 + tan2( r

2R )

1 + tan2( θm2 )
) log(1 + tan2(

θm
2

))

+
s

2π

[
Li2(− tan2(

r

2R
))− Li2(− tan2(

θm
2

))

+ log(tan(
r

2R
)) log(1 + tan2(

r

2R
))− log(tan(

θm
2

)) log(1 + tan2(
θm
2

))

+ 2 log(cos(
r

2R
))

(
cot2(

θm
2

) log(cos(
θm
2

)) + log(sin(
θm
2

))

)
− 2 log(cos(

θm
2

))

(
cot2(

θm
2

) log(cos(
θm
2

)) + log(sin(
θm
2

))
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, (5.77)

with Li2 the dilogarithmic function. It is relevant at this point to compare the Airy function

in target space with the one in reference space; the difference between both gives an idea

of the errors involved in the coresponding approximations. Using Eq. 5.67 by expanding

Eq. 5.77 to the next orders gives

χ
(1)
IF (x)/(Y R2) = − 1

64
(x2 − θ2

m)2 +
s

16π
(θ2
m − x2 + 2x2 log(

x

θm
))

− 1

384
(θ6
m − 2x2θ4

m + x4θ2
m) +

s

192π
(3x4 + 2θ4

m − 5x2θ2
m − 2x4 log(

x

θm
))

χ
(1)
LF (x)/(Y R2) = − 1

64
(x2 − θ2

m)2 +
s

16π
(θ2
m − x2 + 2x2 log(

x

θm
))

− 1

2304
(θ6
m + 2x6 − 3x4θ2

m) +
s

384π
(θ4
m − x2θ2

m + 2x4 log(
x

θm
)), (5.78)

with x = r/R. It is important to note that there are only linear terms in disclination charge

s, but higher orders in x and θM . This is basically due to the fact that defects in both IF

and LF appear linearly, but, the displacements do not need to be small. The explicit form
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of the stresses can be found using Eq. 5.42

σrrIF (r)/Y =
1
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2
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r

R
)

[
sec2(

r

2R
) + sec2(
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(5.79)

and
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(5.80)

which we thoroughly analyze in the next section.

5.5 Discussion

We now present approximate solutions and compare them to those of the exact

equations, and analyze each quantity in turn.

5.5.1 The function F

This function defines how distances between particles in reference frame are trans-

formed in target space. We have not been able to find an analytical expression for the exact
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Figure 5.2: The difference between target and reference coordinate (r − ρ(r)) as a function of the target
coordinate (r) for different values of disclination charge s and Poisson ratio νp (a) [s = 0, νp = 0.2], (b)
[s = 0, νp = 0.8], (c) [s = π

3
, νp = 0.2] and (d) [s = π

3
, νp = 0.8]. The solid lines correspond to the exact

result Eq. 5.64 while the dotted lines denote the EF solution Eq. 5.71.

Eq. 5.64, which we could nevertheless solve numerically. In Fig. 5.2 we compare it to the EF

solution defined by Eq. 5.71. In order to visualize the difference, the figures are shown as a

function of r− ρ(r). Quite interestingly, the EF mapping shows very small errors, certainly

for θm < 0.1, which corresponds to an aperture angle of 60 degrees. Even for θm ∼ 1.5 (half

the sphere), the linear approximation does extremely well when a disclination is present,

which is expected as the disclination charge screens the Gaussian curvature, so that the

geometric frustration parameter η, see Eq. 5.14, is small and subsequent corrections to the

linear contribution become very small.
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Figure 5.3: χ as function of r (target frame) or ρ (reference frame) corresponding to cap sizes θm = 0.8
and θm = 0.3. The upper figure denotes to s = 0 and lower one with s = π/3.

5.5.2 Airy function and stresses

The Airy function, computed with the different approximations, namely EF (Eq. 5.67),

IF (Eq. 5.76) and LF (Eq. 5.77) is shown in Fig. 5.3 for two different values of the aperture

angle (cap size). Small but significant differences are observed for larger caps.

The stresses show similar trends as observed for the Airy function illustrated in

Fig. 5.4. As expected, for large values of the apeture angle the exact result is in much better

agreement with the case of a disclination at the center (note the different scales in the plot).
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Figure 5.4: Stress σrr and σφφ with small cap size (θ = 0.3, left column) and large cap size (θ = 1.0,
right column). The top four plots of stress correspond to zero disclination and four bottom plots to a single
disclination at the center.
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Figure 5.5: Free energy per unit area for s = 0 and s = π
3

for different model presented in the chapter.

5.5.3 Energy

The values for the total free energy are shown in Fig. 5.5 as a function of the

aperture angle θm . As expected, in the flat limit θm → 0, the EF, LF and IF all converge

to a value that is different from the exact result, which is also slightly different from another

exact result obtained by Seung and Nelson [124] (see the discussion in conclusions and

Appendix), namely

F

YArea
=

1

288
= 0.0035 (EF, LF, IF) (5.81)

= 0.0041 (Exact)

= 0.0040 (Exact SN) .

The (small) disagreement between EF, LF and IF with the exact result is a consequence

of large displacements near the core of a disclination on a flat topography [144]. The small

disagreement with SN results also reflects the intrinsic ambiguity of what is meant by an

“exact” elastic theory, as terms with higher powers of the strain tensor, for example, maybe
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included in the definition of the elastic energy Eq. 5.15, a point which we will elaborate in

the conclusions.

For the case of a central disclination, at finite and increasing values of the aperture

angle θm, the different linear approximations gradually converge to the exact result. Note

that the free energy goes through a minimum at around θm ≈ 1.05, which maybe interpreted

as the point where the disclination optimally screens the Gaussian curvature. It seems

reasonable that this point maybe calculated when the PCC Eq. 5.13 is satisfied on average,

namely ∫
d2xs(x) =

∫
d2xK(x)→ π

3
= 2π(1− cos(θc)) , (5.82)

that is, at θM = θc = arccos(5/6) = 0.59, which is significantly lower and reflects the role of

the boundary conditions. It is also important to note that when θM > θc, the approximation

to the energy for the disclination free monolayer starts to deviate from the exact result.

5.6 Conclusions

In this chapter we have presented a general fully covariant elastic theory, as defined

by the energy Eqs. 5.15 and 5.17, anticipated in Refs. [136,137]. We discussed three different

linear approximations (EF, LF, IF) from which all analytical results quoted in the literature

have been derived. Quite unexpectedly, the differences are quantitatively very small, but

the ones in target space (LF, IF) have the advantage that satisfy topological relations, see

Eq. 5.7, exactly. It is possible to compute orders beyond linear and, in this way, obtain the

exact result, although for general problems, this is rather cumbersome.

The actual meaning of the “exact solution”, however, appears as an ambiguous
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concept. While our exact result of a single disclination on a flat monolayer as θm → 0 is

almost the same as the value (see Eq. 5.81) obtained by Seung and Nelson [124], it is not

obvious that the energies obtained by the two methods match for all values of θm. The

Seung and Nelson’s energy is given as

FD =
ε

2

∑
〈i,j〉

(
dij − d̄ij

)2
=
ε

2

∑
〈i,j〉

(|~ri − ~rj | − a)2 (5.83)

where 〈i, j〉 are the nearest neighbors defined by a triangulation T . This energy is con-

ceptually the same as the one defined by Eqs. 5.15 and 5.17, since d̄ij = a is the distance

in reference and dij in target space, and, expanding in small displacements, both energies

coincide for the choices of elastic constants Y = 2ε/
√

3 and νp = 1/3 [124]. However, these

two approaches differ beyond linear order. It is possible to make them agree at higher orders

by adding higher powers of |dij − d̄ij | in Eq. 5.83 ,

F = FD +

M∑
l=2

εl
2

(
dij − d̄ij

)2l
(5.84)

so that, for appropriately chosen values εl, higher orders of the displacement beyond linear

will agree with the energy Eq. 5.17. Additional powers of uαβ can also be added to Eq. 5.17,

to make it agree with Eq. 5.83. Either case, it serves to make the point that Eqs. 5.17 and

5.83 represent two different non-linear elastic theories, and therefore, it is expected that

the exact results for a single disclination will differ. It should be noted, however, that both

exact results are close, thus highlighting that non-linear corrections are small. The natural

question becomes then, which one is the “correct” model. A satisfactory answer can be

given if the underlying microscopic potential among particles is known. Then it is possible

to impose that the higher orders of elasticity theory (see Eq. 5.84) match the same orders
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Figure 5.6: Example of the (33.42) Archimedean tiling with zero elastic energy. Such configuration,
however, has zero energy modes and require additional constraints to be stable.

of the energy of the crystal in powers of the displacement, as discussed in Ref. [133], where

exceedingly accurate predictions for energies were obtained for any geometry.

Another fundamental aspect of the geometric theory of elasticity discussed in this

chapter is the choice of the reference metric, which corresponds to a configuration where all

nearest neighbors distances and angles are the same. In some cases, such as for a defect free

disk or a cone with a single disclination, it is possible to optimize the geometry resulting

into strain and stress free configurations in target space. For other, more complex defect

distributions, such target space configurations do not exist. A conspicuous property of

the model in Eq. 5.83, however, is that it involves nearest neighbor distances only, and

the condition that the angles are the same does not need to be satisfied. Thus, general

Archimedean tilings configurations, such as the one shown in Fig. 5.6, are strain/stress free

for a target space consisting of a plane. It is interesting to note that it is possible to build
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dodecagonal quasicrystals out of (33.42) Archimedean tiling, which have been observed in

nanocrystal systems [145]. Within elasticity theory, those Archimedean tilings require a

Poisson ratio νp = 1/3, as clear from the discussion following Eq. 5.83, see also Ref. [144].

We have shown that the “exact” equations of elasticity theory amount to mini-

mizing the difference between the target and the reference metric

g(Target metric)− ḡ(Reference metric) = 2uαβ

where the target metric is fixed by the topography (the surface), see Fig. 5.1, and the

reference metric is such that its curvature K̄ is a sum of disclinations and dislocations

K̄ = Disclinations + Dislocations

= “Quanta” of Curvature + “Quanta” of Torsion ,

where the disclinations are quantized in units of π
3 and the dislocations in units of the

Burgers vector ~b. These equations summarize the geometric content of the equations in

elasticity theory as applied to arbitrary topographies. For boundary free crystals, they also

satisfy topological constraints, for example, Eq. 5.7.

There are a number of issues that we have not discussed. For example, the free

energy Eq. 5.17 is invariant under general parameterizations, which in turns, through the

Noether theorem, gives rise to conservation laws that relate to the stress tensor. Also, the IF

includes a term, see Eq. 5.41, that has derivative of the Gaussian curvature. In those cases

where the Gaussian curvature is not constant and varies rapidly, this term may become

important or even dominant.

In summary, we presented a covariant formulation of elasticity that unifies geomet-

ric and topological concepts with the theory of defects. All available results in the literature
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maybe recovered from this formulation as suitable approximations, thus providing a rigorous

justification on their validity, and providing the necessary framework for our recent studies

of icosahedral order in virus shells [139]. Throughout this chapter, the geometry has been

fixed. There are obviously many fascinating problems when the geometry is allowed to

fluctuate, see, for example Ref. [146], but those problems will be discussed elsewhere.
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Chapter 6

Elasticity in large icosahedral

viruses: The interplay of Gaussian

curvature and disclination

interactions.

6.1 Introduction

More than fifty years ago, Caspar and Klug [147] made the striking observation

that the capsids of most spherical viruses display icosahedral order(IO), defined by twelve

five coordinated units (disclinations or pentamers) occupying the vertices of an icosahedron

surrounded by hexameric units, see Fig. 6.1. While many studies have shown that this

universal IO is favored under mechanical equilibrium [73–75], the mechanism by which these
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shells grow, circumventing many possible activation barriers, and leading to the perfect IO

remains mainly unknown.

Under many circumstances, small icosahedral capsids assemble spontaneously around

their genetic material, often a single-stranded viral RNA [16, 21, 24, 32, 47]. Yet, larger

double-stranded (ds) RNA or DNA viruses require what we generically denote as the tem-

plate: scaffolding proteins (SPs) or an inner core [38–40, 42, 148, 149]. The focus of this

paper is on these large viruses that require a template for successful assembly.

The major difficulty in understanding the pathway towards IO is apparent from the

results of the generalized Thomson problem, consisting of finding the minimum configuration

for interacting M -point particles constrained to be on the surface of a sphere. Simulation

studies show that the number of metastable states increase exponentially with M [150],

and only with the help of sophisticated optimization algorithms at relatively small values

of M [15, 16, 23, 151], it is possible to obtain IO ground states. These situations, typical

of spherical crystals, become even more difficult when considering the assembly of large

capsids, in which once protein subunits are attached and a few bonds are made, it becomes

energetically impossible for them to re-arrange: Should a single pentamer appear in an

incorrect location, IO assembly would fail.

The combined effect of irreversibility and the inherent exponentially large number

of metastable states typical of curved crystals puts many drastic constraints on IO growth.

The complexity of the problem may be visualized by the various viral shells illustrated in

Fig. 6.1, characterized by a structural index, the T number [76,147,152] T = h2 + k2 + hk,

with h and k arbitrary integers, such that the crystal includes 60T monomers or 10(T − 1)
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hexamers and 12 pentamers (disclinations).

A possible mechanism to successfully self-assemble a desirable structure might

consist of protein subunits with chemical specificity, very much like in DNA origami [153]

where structures with complex symmetries are routinely assembled. In viruses, however,

capsids are built either from one or a few different types of proteins, so specificity cannot

be the driving mechanism leading to IO [15, 47, 76, 154, 155]. In this paper, we show that

a “generic” template provides a robust path to self- assembly of large shells with IO. This

is consistent with many experimental data in that regardless of amino acid sequences and

folding structures of virus coat and/or scaffolding proteins, due to the “universal” topolog-

ical and geometrical constraints, large spherical viruses need scaffolding proteins to adopt

IO, see Fig. 6.1. Although the focus of the paper is on virus assembly, the implication of

our study goes far beyond and extend to many other problems where curved crystals are

involved, a point that we we further elaborate in the conclusion [115,156].

The distinct feature of spherical crystals is that their global structure is constrained

by topology. More concretely, if s(x) is the disclination density, then

∫
d2x s(x) = 2πχ , (6.1)

where χ is the Euler characteristic (χ = 2 for a sphere). However a capsid closes only at the

end of the assembly, and thus, Eq. 6.1 does not really restrict the number of disclinations

during the growth process, as pentamers or other disclinations may be created or destroyed

at the boundaries. For a complete shell, the easiest way to fulfill Eq. 6.1 is with twelve

q = +π
3 disclinations, and this is the case we will follow hereon.
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T=9
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Figure 6.1: Figure 1a. From left to right: Bacteriophage P22 [7], Bacteriophage N4 [8], Rotavirus [9],
Herpes simplex virus [10], Phage ΦM12 [11] and Pseudoalteromonas virus [12]. The triangulation number of
each virus is shown below it. The scaffolding proteins and hydrogenases inside the capsid of Bacteriophage
P22 and the inner shell of Rotavirus are illustrated in the figure. To form structures with IO, all viruses in the
figure need scaffolding proteins as illustrated for Bacteriophage P22. Only Rotavirus requires a preformed
scaffolding layer. Rotavirus belong to Reoviridae virus family, they all form T = 13 and have multi-shell
structures. Figure 1b. Capsids obtained in the simulations from left to right: T = 7, T = 9, T = 13, T = 16,
T = 19 and T = 21.
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A minimal model for spherical crystals consists of a free energy

Fc =

∫
d2x

[
µu2

αβ +
λ

2
(uαα)2

]
+
κ

2

∫
d2x(H(x)−H0)2

≡ F lc + F bc (6.2)

where uαβ is the strain tensor. The coefficients µ, λ are the Lame coefficients, which depend

on the microscopic underlying interactions. Here H(x) is the extrinsic curvature of the

template, H0 the spontaneous curvature and κ the bending rigidity. By integrating the

phonon degrees of freedom, we can recast the term F lc in Eq. 6.2 as a non-local theory of

interacting disclinations, with free energy [131]

F lc =
K0

2

∫
d2xd2y [(K(x)− s(x))G(x,y)(K(y)− s(y))] , (6.3)

where K(x) is the Gaussian curvature and K0 is the Young modulus. The disclination

density s(x) =
∑12

i=1 qiδ(x − xi) has as variables the positions of 12 disclinations, each

of charge qi = π
3 . The function G(x,y) is the inverse of the Laplacian square [131]. All

previous studies for the model in Eq. 6.3 have been done for curved crystals without a

boundary. In this paper, we provide, for the first time, the necessary formalism to include

the presence of a boundary.

A discrete version of Eq. 6.2 is given by [115,124,131,156]

Fd = Es + Eb =
∑
i

1

2
ks(bi − b0)2 +

∑
i,j

kb[1− cos(θij − θ0)] (6.4)

with θ0 a preferred angle, related to the spontaneous curvature H0. The stretching energy

sums over all bonds i with b0 the equilibrium bond length and the bending energy is between

all neighboring trimers indexed with ij. We further assume that there is an attractive force

between the trimers and the preformed scaffolding layer (inner core) (see Fig.6.4), which,
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consistent with our minimal model, involves a simple LJ-potential ELJ =
∑

i 4ε[( σri )
12 −

2( σri )
6] with ε the depth of the potential and σ the position of minimum energy corresponding

to optimal distance between the center of the core and subunits. In the next section, we

associate a dynamics to these models, which corresponds to following a local minimum

energy pathway.

6.2 Methods

6.2.1 Discrete model

The growth of the shells is based on the following assumptions [23,32,47,154]: At

each step of growth, a new trimer is added to the location in the boundary which makes

the maximum number of bonds with the neighboring subunits. This is consistent with the

fact that protein-protein attractive interaction is weak and a subunit can associate and

dissociate till it sits in a position that forms a few bounds with neighboring proteins. These

interactions eventually become strong for the subunits to dissociate and trimer attachment

becomes irreversible [16]. The attractive interactions between subunits, whose strength

depends on electrostatic and hydrophobic forces, are implicit in the model. Note that pH

and salt can modify the strength of protein-protein and protein-template interactions and

thus the growth pathway. The impact of pH and salt on the shell assembly will be pursed

elsewhere.
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EHEp

Ep>EH

Ep<EH

Figure 6.2: Dynamics of formation of a hexamer vs. a pentamer: five trimers are attached at a vertex
with an opening angle close to π/3 at the top and much smaller than π/3 at the bottom. If the energy per
subunit of formation of a pentamer Ep is higher than a hexamer EH , then a hexamer forms (top); otherwise,
a pentamer assembles (bottom).

A crucial step in the assembly process is the formation of pentamers, which occurs

only if the local energy is lowered, as illustrated in Fig. 6.2. After the addition of each

subunit or the formation of a pentamer, using HOOMD package [157, 158], we allow the

triangular lattice to relax and to find its minimum energy configuration [44].

The proposed mechanism follows a sequential pathway where trimers (T ) attach

to the growing capsid (C → C ′) according to the reaction

T + C � TC

TC → C ′ (6.5)

with characteristic rates kD, k
′
D and kr. The rate kD = 2πDTRT is diffusion limited, with

RT the trimer radius and DT its diffusion coefficient, so that the reaction speed is linear in

trimer concentration vTC = kD[T ], k′D is the detachment rate as the trimer searches for the

local minimum, and kr is the irreversible rate of attachment of the trimer to the capsid. The

combined reaction rate is therefore kT = krkD
k′D+kr

. Once the second reaction in Eq. 6.5 takes

place, there is no possibility for correcting mistakes: if a pentamer forms in the incorrect

location, IO is frustrated. With some additional assumptions about the dependence of kr
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on the coordination of the growing capsid, it is possible to derive overall rates for capsid

formation, a problem that will be pursued elsewhere.

Two important parameters arises in discussing spherical crystals with the model

Eq. 6.4. One is the Foppl von-Karman (FvK) number [115]

γ =
b20ks
kb

, (6.6)

which measures the ratio of stretching to bending moduli. When the FvK number is large,

the protein subunits optimize stretching and bend away from their preferred radius of

curvature showing some degree of faceting, which is the case of large viruses, see Figure 6.1.

For the case of template driven self-assembly, we introduce a new parameter

η =
kb
ε
, (6.7)

which measures the relative strength of the bending rigidity to the attraction of the trimers

to the template. For small η, the proteins follow the core curvature during growth at all

the time, regardless of proteins spontaneous curvature. For large η, the shell detaches from

the core and follow its preferred curvature. In this paper we will be mostly interested in the

regime η ≈ O(1) and γ � 1, where the template, rather than the spontaneous curvature

dictates the size of the capsid.

6.2.2 Continuum model

We now consider the model given in Eq. 6.3 on a spherical cap with an aperture

angle θm, so that its geodesic radius is Rm = θmR, see Fig. 6.4b. The Lame term (F lc) in
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Eq. 6.3 can then be written as

F lc =
1

2K0

∫
d2x
√
g (∆χ)2 , (6.8)

where gµν is the metric defining the surface and the Laplacian is ∆ = 1√
g∂µ(gµν∂ν), with χ

the Airy Stress function that satisfies

1

K0
∆2χ(x) = s(x)−K(x). (6.9)

In SI Appendix, we provide the detailed calculations. We note that approximate solu-

tions of Eq. C.2 are available under the assumption that the Laplacian is computed with

a flat metric, see Ref [128], which immediately leads to
∫
d2xK(x) =

∫
d2x
R2 = A

R2 = π 6=

2χπ = 4π, directly violating the topological constraint Eq. 6.1. Therefore previous re-

sults [130] are limited to small curvatures or aperture angles (θm � π). The generalization

of Eq. 6.3 to include boundaries proceeds by defining the stress tensor by the expression

σαβ = gαβ∆χ(x)− gαµgβν∇µ∇νχ(x). We now include a stress free condition σαβn
β = 0 at

the boundary, where nα is the normal to the boundary. For a spherical cap, see Fig. 6.4b,

we use the metric ds2 = gµνdx
µdxν = dr2 +R2 sin2(r/R)dφ2. Note that following the simu-

lation outcomes, we ignore boundary fluctuations. This is mainly because of the strength of

protein-protein interactions and line tension implicit in the growth model and is consistent

with the simulation results.

With the above definitions, the topological constraint Eq. 6.1 is satisfied exactly

for a sphere. The free energy Eq. 6.3 then becomes

F lc(θm,xi) = E0(θm) +

N∑
i=1

E0d(xi, θm) +

N∑
i=1

N∑
j=1

Êdd(xi,xj , θm) (6.10)
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with E0 is the free energy of the hexamers, E0d the interplay between Gaussian curvature

and pentamers and Êdd describes disclination(pentamer) interactions. It is convenient to

separate this last term as

F ddc =

N∑
i=1

N∑
j=1

Êdd(xi,xj , θm) =

N∑
i=1

Eself (xi) +

N∑
i=1

N∑
j>i

Edd(xi,xj), (6.11)

where Eself (xi) is the disclination self-energy, which depends on the location of a pentamer

relative to the boundary.

6.3 Results

Consistent with the assumptions describing the dynamics of growth noted in pre-

vious section, we consider the spherical cap in Fig. 6.4b with an aperture angle, which

monotonically varies from θm = 0 to θm = π (sequential growth) as a function of time

θm(t). Then, for each value of θm we calculate the free energy Eq. 6.10 and compare it to

the one with an additional new defect (local condition). Once the latter one is favorable,

the new defect is added.

For small values of θm, the cap grows defect free. In Fig. 6.3 we plot the energy of

a spherical cap for θm = 0.7. The dotted line in the figure shows the disclination self-energy

Eself , the dashed line the Gaussian curvature-disclination interactions E0d and the solid

line is the sum of both energies as a function of the location of disclination in the cap. The

diamond in the figure corresponds to the minimum of energy and indicates the location

of the first (and only) disclination appearing in the cap, around r ∼ 0.66R. This value

is very close to the geodesic distance following from the local “screening” of the Gaussian
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Figure 6.3: The 1D energy plot for the first disclination: The dotted line corresponds to disclination
self-energy Eself (Eq. 6.11), the dashed line to the Gaussian curvature-disclination interactions E0d and the
solid line is the result of the addition of both energies F lc − E0 (Eq. 6.10) as a function of the location of
disclination in the shell for θm = 0.7. The energy goes through a minimum for r = 0.66R. The inset graph
shows the zoom-out energy plot where the circle region corresponds to the main graph.

curvature
∫
d2s(x) =

∫
d2K(x) → π

3 = 2π(1 − cos(θm)) such that r = arccos(5/6)R =

0.59R. Somewhat counter intuitively, the first disclination does not appear at the center of

the cap, which is the result of the competition between the disclination self-energy whose

minimum is at the boundary and the Gaussian curvature-disclination interaction E0d with

its minimum energy occurring at the cap center, see Fig. S2 in SI Appendix where the

contourplots of the different elastic free energies as a function of the location of the first

disclination, r are shown. As the shell grows, the appearance of a new disclination becomes

energetically favorable, i.e. a new energy valley for the formation of a new disclination

emerges, as illustrated in Fig. 6.4b, where we show the contour plots of total elastic energies

for spherical caps with θm = 0.8 through θm = π. The bigger ball in each plot indicates

the position of the latest energy well, which is where the addition of the next disclination

takes place. Remarkably, both in the continuum model and simulations, during the growth

process, the disclinations always appear in the positions that eventually become the vertices
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Figure 6.4: The snapshots of a T=13 growth in discrete simulation (first row) and continuum theory
(second row). The upper caps correspond to the simulation growth with triangles representing the trimers.
The yellow vertices belong to pentamers, blue ones to hexamers and red ones to the cap edge. The gold
core mimics the preformed scaffolding layer or inner core. The lower caps denote the energy contourplots
for the newest disclinations that appear in the purple energy well, with geodesic shell size Rm = Rθm. The
red region has the highest energy and purple the lowest one. There is a yellow ball in the position of each
disclination. The largest ball corresponds to a newly formed disclination.

of an icosahedron.

Results with the discrete model Eq. 6.4 are shown in Fig. 6.4a. Here again, the

disclinations universally appear at the vertices of an icosahedron, in complete agreement

with the analytical calculation. The simulations were performed for all values between

T = 7 and T = 21 and in all cases the IO was achieved without a single error. The size

of the core in Fig. 6.4a is commensurate with T = 13 structures. We note that for these

simulations the proteins spontaneous radius 1/H0 is much smaller than the core radius, Rc

(RcH0 � 1), a point that is discussed in more detail further below. In SI Appendix we

provide a movie illustrating the growth of a T = 21 structure, which includes 420 triangles.

6.3.1 The role of stretching and bending rigidity

Figure C.3 shows the stretching energy vs N (number of subunits assembled) as a

T = 13 shell grows for six different values of FvK γ > 1. We note that for large spontaneous
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radius of curvature and small γ when bending rigidity is dominant, no large icosahedral

shell assembles successfully. Rather interestingly, there are conspicuous differences in the

dynamics as a function of the FvK parameter γ.

For small values of γ = 2 (thick black line in Fig. C.3) the shell elastic energy

grows almost linearly as a function of N but does not show IO. This takes place for higher

γ-values. The arrows in Fig. C.3 indicate a drop in the elastic energy associated with the

appearance of pentamers, see SI Appendix for more details. At the beginning of the growth,

the shells with different values of γ might follow different pathways and thus, the number

of hexamers vary before the first few pentamers form. However, as the shell grows, the

pentamers appear precisely at the same place, independently of γ. Note that the bending

energy of the shells always grows linearly as a function of number of subunits for any γ (see

SI Appendix).

6.4 Discussion

Our results show that for large shells (T > 4) successful assembly into IO requires

a non-specific attractive interaction between protein subunits and a template. This interac-

tion is implicit in the continuum model and is included as a generic attractive Lennard-Jones

potential in the simulations. Furthermore, we find that the location of pentamers are com-

pletely controlled by the stretching energy as it is the case in the continuum elasticity

theory.

In the absence of the template, small spherical crystals (T = 1 and T = 3) assemble

spontaneously, for almost any FvK parameter γ. However, as we increase the spontaneous
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Figure 6.5: The stretching energy of a T=13 shell as a function of number of trimeric subunits. For small
FvK numbers (γ = 2, black line), there is no significant drop in energy as a pentamer forms. However, for
large FvK numbers (γ � 1), the formation of pentamers drastically lowers the energy of the elastic shell.

radius of curvature, the final structure depends on the value of γ. For small γ, large

spherical shells without any specific symmetry form, and at large γ > 5 curved hexagonal

sheets, which eventually assemble into tubular or conical structures are obtained. Thus our

results predict that large shells with IO cannot grow without template.

A template can have a significant impact on the structure and symmetry of the

shell. While a weak subunit-core attractive interaction has a minimal role in the shell shape,

a very strong subunit-core interaction will override the mechanical properties of proteins.

The subunits sit tightly on the template to form a sphere with no specific symmetry. We

were able to observe large shells with IO only for η ∼ 1 but at high γ. In this regime, in order

for pentamers to overcome the core attraction and form in the “correct” position, they must

assume a symmetric shape and buckle up (see Fig. 6.1b). Indeed a strong bending energy

is needed to overcome the shell adsorption. We find that without decreasing γ (increasing

kb) but with increasing spontaneous curvature, the bending energy associated with the
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deviation from the preferred curvature of subunits adsorbed to the core becomes strong

enough to make the pentamers buckle and assume a smooth shape. Quite interestingly, we

find that this is the strategy that the nature has taken to form large shells with IO.

The role of the inner core or the preformed scaffold layer presented above is very

similar to the role of SPs, which assemble at the same time as the capsid proteins (CPs),

i.e., the template grows simultaneously with the capsid (see Fig. 6.6). In fact one can think

of the inner core as a permanent “inner scaffold” [42]. For example, Bacteriophage P22 has

a T=7 structure, but in the absence of scaffolding (Fig. 6.1, P22) often a smaller T = 4

forms. Similarly, Herpesvirus makes a T = 16 structure but without the SPs, a T = 7

assembles. More relevant to the present study is the case of Infectious Bursal Disease Virus

(IBDV) a dsRNA virus that in the presence of SPs forms a T = 13 capsid but in the absence

the subunits assemble to form a T = 1 capsid. This is exactly the condition for formation

of the T = 13 structure in Fig. 6.4 where the preferred curvature between subunits is such

that in the absence of scaffold they form a T = 1 structure. Reoviridae virus family also

form T = 13 but they have multi-shell structures, which act as inner cores. For instance, in

this family Bluetongue virus is a double capsid particle, outer (necessary for infection) and

inner capsid (encloses RNA genome). The inner capsid, termed as “core” has two protein

layers. The surface layer (or shell) is a T = 13 capsid that assembles around the inner shell,

a T = 2 structure (an inner core). Interestingly, it has been suggested that there is an

evolutionary connection between SPs of IBDV and inner capsid of Bluetongue virus [42].
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Figure 6.6: The role of scaffolding proteins (SPs) in the formation of T = 13 capsid of IBDV. Without
SPs, the CPs (blue and white subunits) of IBDV form T = 1 structure (upper figure). In the presence of
SPs (yellow subunits), they form T = 13 structure (lower figure). The results of our simulations are also
illustrated next to each intermediate step. Note that SPs (yellow subunits) do not assemble without the
CPs but probably experience some conformational changes during the assembly. However, our focus here is
solely on the impact of scaffolding on the CPs resulting in a change in the capsid T number. For preformed
SPs, like in the case of bluetongue virus, the core is spherical and there is no indication of any changes on
the size of spherical template during the assembly.

6.5 Conclusions

Our model establishes that successful self-assembly of components into a spherical

capsid with IO requires a template that determines the radius of the final structure. This

template is very non-specific, and in its absence, protein subunits assemble into either

smaller capsids or structures without IO.

Even though the focus of the above study was on the impact of the preformed

scaffolding layer, based on the experimental observations we conclude that the SPs, which

assemble simultaneously with CPs (Fig. 6.6), play basically the same role as the inner core

in the assembly of large icosahedral shells. Figure 6.6 shows that in the absence of SPs, CPs

of IBDV form a T = 1 structure but when the same IBDV proteins co-assemble with SPs
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(yellow units) a T = 13 forms. The figure also shows the pathway of formation of T = 1

and T = 13 structures obtained in our simulations. We emphasize that the mechanical

properties of subunits are the same for both shells, the difference in structures arises from

the substrate or SPs.

The contribution of the SPs is twofold. The CPs of many viruses including blue-

tongue virus noted above do not assemble in the absence of SPs. On the one hand, it

appears that SPs lower the energy barrier and help capsid subunits to aggregate. On the

other hand, by forcing the CPs to assemble into a structure larger than their spontaneous

radius of curvature, they contribute to preserving IO.

Examples of the role of templates on the formation of spherical crystals are not

limited to viruses, but include crystallization of metals on nanoparticles [159], solid do-

mains on vesicles [160, 161], filament bundles [128] and colloidal assemblies at water-oil

interfaces [112]. Nevertheless, it has been shown [162] that sufficiently rigid crystals grow

as almost flat sheets free of defects, unable to assemble with IO. This regime, however, seems

not to be accessible to viral capsids, as the hydrophobic interaction between monomers force

close-packing structures that are incompatible with grain boundaries.

This study shed light at fundamental scale on the role of mechanical properties of

building blocks and scaffolding proteins. The proposed mechanism is consistent with avail-

able experiments on viruses involving either scaffolding proteins or inner capsids. Further

experiments will be necessary to validate many predictions of our described mechanism.
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Part IV

Conclusion
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Chapter 7

Conclusion

Viruses self-assemble to form spherical capsids with icosahedral orders. The mech-

anisms are quite different depending on the size of viruses.

Two models are presented for small viruses: (1) nucleation and growth, or (2)

en-mass assembly. Our studies show that the first model is appropriate for empty capsids,

while the second mechanism can explain better the assembly in the presence of genome

molecules. To find the assembly pathways, considerable efforts have been made in exper-

imental work, molecular dynamics simulations as well as many theoretical works such as

classical nucleation theory, line assembly model and thermodynamics. However, the signif-

icant number of parameters, such as pH, salt concentration, protein concentration, genome

structure, packaging signal make the study of the assembly pathway extremely hard and

the future research is still very much needed.

Compared to the small viruses, large viruses are even a bigger mystery. The en-

mass pathway is ruled out because of the significant amount of protein subunits should
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assemble and as such the disassembly becomes almost impossible. Quite remarkably, the

thesis shows that a perfect shell with IO can be formed through nucleation and growth. We

prove that a nonspecific template is required for an error-free pathway. As the spherical

cap grows, the nonlinear geometry imposed by the template gives rise to a deep potential

well, which attracts the new pentamer to be located at the vertex of an icosahedron.

The thesis has successfully investigated the virus assembly of different families

through theoretical and simulation work. However, many exceptions still exist. For exam-

ple, trimer subunits are limited to a certain group of viruses, the proposed mechanism in the

thesis may not be suitable for viruses composed of only pentamers, such as simian vacuo-

lating virus 40. In addition, presuming a perfect curvature seems a hard task for scaffolding

proteins, and fluctuations are well expected to be a reasonable cause of non-icosahedral

shells. Thus, many other auxiliary mechanisms incorporating the specific interaction of

proteins and packaging signal of scaffolding proteins for instance, are to be pursued in the

future. Nevertheless, the thesis sheds light on the mechanism of assembly of both small and

large viruses, and provides many predictions for future experiments. Further applications

will be expected in various areas of nanotechnology, gene delivery and medicine.

118



Bibliography

[1] Heinz Fraenkel-Conrat and Robley C Williams. Reconstitution of active tobacco
mosaic virus from its inactive protein and nucleic acid components. Proceedings of
the National Academy of Sciences of the United States of America, 41(10):690, 1955.

[2] JB Bancroft, GJ Hills, and Rou Markham. A study of the self-assembly process in a
small spherical virus formation of organized structures from protein subunits in vitro.
Virology, 31(2):354–379, 1967.

[3] Barbie K Ganser, Su Li, Victor Y Klishko, John T Finch, and Wesley I Sundquist.
Assembly and analysis of conical models for the hiv-1 core. Science, 283(5398):80–83,
1999.

[4] Chunyan Wang, Jiagang Tu, Jun Liu, and Ian J Molineux. Structural dynamics of
bacteriophage p22 infection initiation revealed by cryo-electron tomography. Nature
microbiology, page 1, 2019.

[5] T. S. Baker, N. H. Olson, and S. D. Fuller. Adding the third dimension to virus life
cycles: Three-dimensional reconstruction of icosahedral viruses from cryo-electron
micrographs. Microbiology and Molecular Biology Reviews, 63(4):862–922, 1999.

[6] I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker, and P. Schus-
ter. Fast Folding and Comparison of RNA Secondary Structures. Monatsh. Chem.,
125:167, 1994.

[7] Paul C Jordan, Dustin P Patterson, Kendall N Saboda, Ethan J Edwards, Heini M
Miettinen, Gautam Basu, Megan C Thielges, and Trevor Douglas. Self-assembling
biomolecular catalysts for hydrogen production. Nature chemistry, 8(2):179, 2016.

[8] Kyung H Choi, Jennifer McPartland, Irene Kaganman, Valorie D Bowman, Lucia B
Rothman-Denes, and Michael G Rossmann. Insight into dna and protein transport in
double-stranded dna viruses: the structure of bacteriophage n4. Journal of molecular
biology, 378(3):726–736, 2008.

[9] Joseph B. Pesavento, Mary K. Estes, and B.V.Venkataram Prasad. Ii, 1. structural
organization of the genome in rotavirus. In Viral Gastroenteritis, volume 9 of Per-
spectives in Medical Virology, pages 115–127. Elsevier, 2003.

119



[10] Z Hong Zhou, Matthew Dougherty, Joanita Jakana, Jing He, Frazer J Rixon, and
Wah Chiu. Seeing the herpesvirus capsid at 8.5 å. Science, 288(5467):877–880, 2000.
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Appendix A

Appendix: Self consistent field

theory

A.1 Self consistent field theory

In this section we derive several equations presented in Section II of the paper.

Using a Hubbard-Stratanovich transformation, the partition function of Eq. 1 reads

Z =

∫
Dw(r)Dφ(r) elogQ[iw(r)+iτφ(r)]

e
∫
dr
(
− 1

2u0
w(r)2−βε

2
(∇φ(r))2+2λ cosh(iβeφ(r))−iβρ0(r)φ(r)

)
(A.1)

where λ is the salt ion fugacity and

Q =

∫
Dr(s)e−

3
2a2

∫N
0 dsṙ2−i

∫N
0 ds(w(r(s))+βτφ(r(s))) (A.2)

is the partition function of a single Gaussian chain in the external field (iw(r) + iβτφ(r)).

Now performing the saddle-point approximation on the two fields w(r) and φ(r), we get
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from Eq. A.1

w(r) = u0
δ logQ

δw(r)
(A.3)

−ε∇2φ(r) = 2λie sinh(iβeφ)− iρ0(r) +
δ logQ

δφ(r)
(A.4)

At this stage, from Eqs. (A.3) and (A.4), we can anticipate that the fields w(r) and φ(r)

are pure imaginary and redefine iw → w and iφ→ φ.

Using standard quantum mechanical notations, we may write

Q =

∫
drdr′〈r|e−NH |r′〉 (A.5)

where the Hamiltonian H is given by

H = −a
2

6
∇2 + (w(r) + βτφ(r)) (A.6)

From Eqs. (A.3) and (A.2), we have

δ logQ

δw(r)
=

1

Q

∫
Dr(s)

∫ N

0
ds δ(r − r(s)) e−

3
2a2

∫N
0 dsṙ2−

∫
ds(w(r(s))+βτφ(r(s)))

= ρ(r) (A.7)

where ρ(r) is the monomer density.

Using quantum mechanical notation, we have

δ logQ

δw(r)
=

1

Q

∫ N

0
ds

∫
dr1 dr2〈r1|e−(N−s)H |r〉〈r|e−sH |r2〉 (A.8)

Defining the propagator q(r, s) as

q(r, s) =
1√
Q

∫
dr′〈r|e−sH |r′〉 (A.9)

we have

δ logQ

δw(r)
= ρ(r) =

∫ N

0
ds q(r,N − s)q(r, s) (A.10)
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Using the above equations, Eqs. (A.3), (A.4) become

w(r) = u0ρ(r) (A.11)

−ε∇2φ(r) = −2λe sinh(βeφ) + ρ0(r) + βτρ(r) (A.12)

and the propagator q(r, s) satisfies the diffusion equation

∂q(r, s)

∂s
=
a2

6
∇2q(r, s)− (w(r) + βτφ(r)) q(r, s) (A.13)

which can be recast in the form of the Schrödinger equation
(
∂
∂s +H

)
q(r, s) = 0 with the

Halmitonian H given by Eq. A.6.

Numerically, we solve Eqs. (A.10), (A.11), (A.12) and (A.13) recursively until

convergence, with initial condition q(r, 0) = 1/
√
Q

A.2 Ground state dominance approximation

Expanding the partition function Q as well as the propagator q on the normalized

eigenstates |ψn〉 with eigenvalues En of the Hamiltonian H

H|ψn〉 = En|ψn〉 (A.14)∫
drψ2

n(r) = 1 (A.15)

we have

Q =

∫
drdr′〈r|e−NH |r′〉 =

∑
n

∫
drdrψn(r)ψn(r′)e−NEn (A.16)

Reducing the expansion (A.16) to the lowest eigenstates of H, we see that we can

keep only the ground state ψ0 with energy E0, provided the first excited state ψ1 has an
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eigenvalue E1 such that

N∆� 1 (A.17)

where ∆ = E1 − E0 is the gap in the eigenvalues.

This is the so-called Ground State Dominance approximation (GSDA). It implies

Q ≈ I2
0e
−NE0 (A.18)

where I0 =
∫
drψ0(r) =

√
Qe

NE0
2 and

q(r, s) ≈ 1√
Q
e−sE0ψ0(r)I0

= e
NE0

2 e−sE0ψ0(r) (A.19)

and the density (A.10) becomes

ρ(r) = Nψ2
0(r) (A.20)

The coupled equations (A.11, A.12) can be written as

−E0ψ0(r) =
a2

6
∇2ψ0(r)−

(
u0Nψ0(r)2 + βτφ(r)

)
ψ0(r) (A.21)

−ε∇2φ(r) = −2λe sinh(βeφ) + ρ0(r) + βτNψ0(r)2 (A.22)

Using the normalization
√
Nψ0(r) → ψ0(r), the above equations become the fa-

miliar Euler-Lagrangian equations [36,103,163]

−E0ψ0(r) =
a2

6
∇2ψ0(r)− u0ψ0(r)3 − βτφ(r)ψ0(r) (A.23)

−ε∇2φ(r) = −2λe sinh(βeφ) + ρ0(r) + βτψ0(r)2 (A.24)

with the constraint

N =

∫
ψ0(r)2dr (A.25)
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A.3 Persistence length

The persistence length is the correlation length of the tangents of the polymer.

C(s, s′) =
1

a2

(
< ṙ(s) · ṙ(s′) > − < ṙ(s) > · < ṙ(s′) >

)
(A.26)

where the average is calculated with the Boltzmann weight given by the partition function

Eq. A.1. Note that the true correlation length requires to use unit tangent vectors rather

than ṙ. With spherical geometry we have < ṙ(s) >= 0, and the persistence length is given

by

C(s, s′) =
1

a2
< ṙ(s) · ṙ(s′) >

=
1

a2

1

Z0

∫
Dw(r)Dφ(r) e

∫
dr
(
− 1

2u0
w(r)2−βε

2
(∇φ(r))2+2λ cosh(iβeφ(r))−iβρ0(r)φ(r)

)

×
∫
Dr(s)ṙ(s)ṙ(s′)e−

3
2a2

∫N
0 dsṙ2s−

∫N
0 ds(w(r(s))+βτφ(r(s))) (A.27)

Fixing the fields w(r) and φ(r) to their SCFT value, the above expression (A.27)

simplifies to

C(s, s′) =
1

a2

1

Q

∫
Drs ṙ(s)ṙ(s′)e−

3
2a2

∫N
0 dsṙ2s−

∫N
0 ds(w(r(s))+βτφ(r(s)))

=
1

a2

1

Q

∫
drNdr0drdr

′ṙ(s)ṙ(s′) < rN |e−(N−s)H |r >< r|e−(s−s′)H |r′ >< r′|e−s′H |r0 >

(A.28)

where we have assumed s > s′. Using the correspondance principle

p =
1

i

∂

∂r

ṙ =
1

i

a2

3
p = −a

2

3

∂

∂r
(A.29)
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which is a direct property of the Fourier transform, we obtain the persistence length as

C(s, s′) =
1

a2Q

∫
drNdr0drdr

′
(
−a

2

3

∂

∂r

)(
−a

2

3

∂

∂r′

)
× < rN |e−(N−s)H |r] >< r|e−(s−s′)H |r′ >< r′|e−s′H |r0 >

=
a2

9Q

∫
drdr′

∫
drN

(
∂

∂r
< rN |e−(N−s)H |r >

)
× < r|e−(s−s′)H |r′ >

∫
dr0

(
∂

∂r′
< r′|e−s′H |r0 >

)
=

a2

9

∫
drdr′

(
∂

∂r
q(r,N − s)

)
× < r|e−(s−s′)H |r′ >

(
∂

∂r′
q(r′, s′)

)
=

a2

9

∑
n

∫
drdr′e−(s−s′)En

×
(
ψn(r)

∂

∂r
q(r,N − s)

)(
ψn(r′)

∂

∂r′
q(r′, s′)

)
(A.30)

Having solved the SCFT equations, the full Hamiltonian (A.6) can be diagonalized numer-

ically and the above formula allows to compute the full correlation function, in the SCFT

approximation.

If we restrict ourselves purely to the GSDA, using Eqs. (A.18) and (A.19), we

obtain

C(s, s′) =
a2

9

∫
drdr′

(
∂

∂r
e
NE0

2 e−(N−s)E0ψ0(r)

)
× e−(s−s′)E0ψ0(r)ψ0(r′)

(
∂

∂r′
e
NE0

2 e−s
′E0ψ0(r′)

)
=

a2

9

∫
drdr′

(
∂

∂r
ψ0(r′)

)
ψ0(r)

× ψ0(r′)

(
∂

∂r′
ψ0(r′)

)
a2

9

(∫
drψ0(r)

∂

∂r
ψ0(r)

)2

= 0 (A.31)
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where we have used the fact that

∫
ψ0(r)

∂

∂r
ψ0(r) dr =

1

2

∫
∂

∂r
ψ2

0(r) = 0

Therefore, in the GSDA, the persistence length vanishes, and this is due to the fact that in

this case, the chain constraint is absent.

If the system is confined in the viral shell and there is a sizeable gap, rather than

staying in the ground state, we can restrict the expansion to the first excited state. Then

< r′|e−sH |r >= e−sE0ψ0(r)ψ0(r′) + e−sE1ψ1(r)ψ1(r′) (A.32)

and Eq (A.9) can be written as

q(r, s) =
1√
Q

∫
dr0 < r|e−sH |r0 >

=
1√
Q

(
e−sE0ψ0(r)

∫
dr0ψ0(r0) + e−sE1ψ1(r)

∫
dr0ψ1(r0)

)
=

1√
Q

(
e−sE0I0ψ0(r) + e−sE1I1ψ1(r)

)
(A.33)

where I0 =
∫
dr ψ0(r), and I1 =

∫
dr ψ1(r). Plugging this result into Eq. A.30, the
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persistence length is therefore

C(s, s′) =
a2

9Q

1∑
n=0

∫
drsdrs′e

−(s−s′)En

×
(
ψn(rs)

∂

∂rs

(
e−(N−s)E0I0ψ0(rs) + e−(N−s)E1I1ψ1(rs)

))
×
(
ψn(rs′)

∂

∂rs′

(
e−s

′E0I0ψ0(rs′) + e−s
′E1I1ψ1(rs′)

))
=

a2

9Q

(
e−(s−s′)E0e−(N−(s−s′))E1I2

1

(∫
drψ0(r)

∂

∂r
ψ1(r)

)2

+e−(s−s′)E1e−(N−(s−s′))E0I2
0

(∫
drψ1(r)

∂

∂r
ψ0(r)

)2
)

= A

(
e−(s−s′)∆

(∫
drψ1(r)

∂

∂r
ψ0(r)

)2

+e−(N−(s−s′))∆
(
I1

I0

)2(∫
drψ0(r)

∂

∂r
ψ1(r)

)2
)

(A.34)

where we have used
∫
ψ0(r) ∂∂rψ0(r) dr = 0, A = a2

9
1
Qe
−NE0I2

0 , and ∆ = E1 − E0 which is

the energy gap. So for 1 << s− s′ << N , we can read off the persistence length as

lp =
1

∆
(A.35)
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Appendix B

Appendix: Covariant theory

B.1 The Seung-Nelson result as a function of area

Seung-Nelson [124] quote, for a flat disclination

F

Y s2R2
= 0.008 . (B.1)

The radius is given by R = na, where n is an integer and a is the lattice constant. A more

precise calculation computes this coefficient as 0.00785 [144]. This is a numerical calculation

considering a pentagonal shape crystal containing 5n2 triangles. Each trianlge has an area

√
3

4 a
2, hence

F

Y Area
= 0.008

(π
3

)2
/(5
√

3/4) ≈ 0.00405 , (B.2)

or 0.00400 with the more precise value [144]. This is the coefficient used in Eq. 5.81.
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B.2 Geometry, curvature, vielbeins and the definition of the

stress tensor

It should be noticed that the stress tensor, defined by Eq. 5.19 is in general different

than the one defined in standard textbooks, such as Landau and Lifshitz, which we denote

as σ̂αβ. We now show the relation between both tensors. For that purpose, we introduce

the Vielbeins eαµ, defined as

gµν = eαµe
β
µδαβ

δαβ = e µ
α e µ

β gµν (B.3)

Then, there is the relation

σ̂αβ = eαµe
β
νσ

µν . (B.4)

The advantage of σ̂αβ is that the units of all the components are the same. This is not the

case for σµν . Obvious to say that all physical quantities have the same dimensions in either

form.

Also, the line tension term Eq. 5.22 is simplified by

∫
∂B
ds =

∫
∂B

√
gdl =

∫
∂B
dxµgµνt

ν , (B.5)

where tν = 1√
g
dxµ

dl for any parameterization xµ(l). Here tµ is the unit tangent vector to the

curve defining the boundary. Note that

g = gµν
dxµ

dl

dxν

dl
(B.6)
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and dxµ =
√
gtµdl. The variation of this term gives

∫
∂B
dxµδgµνt

ν = −
∫
∂B
dxµ(∇νξµ +∇µξν)tν

=

∫
∂B
dxµ(ξµ∇ν + ξν∇µ)tν

=

∫
∂B
dxµ∇µtνξν , (B.7)

where dxµξµ = 0 as the vector ξµ is perpendicular to tµ. Note that the vector

nρ =
√
gεµρt

µ , (B.8)

is a unit vector, perpendicular to tµ.

The variation in Eq. B.7 refers to δgαβ with the implicit condition δḡαβ = 0, while

the variation leading to Eq. 5.20 is with respect to δḡαβ with δgαβ = 0. One notes, however,

that the general transformation

δgαβ = ∇αξβ +∇βξα

δḡαβ = ∇̄αξβ + ∇̄βξα , (B.9)

encodes a simple reparamaterization and therefore, under this transformation any term Fa

appearing in the energy should satisfy

δFa = δgFa + δḡFa = 0 , (B.10)

hence, the correct variation, with respect to ḡαβ picks up a minus sign, as compared with

Eq. B.7,

δFl = −
∫
∂B
dxµ∇µtνξν , (B.11)

as used in the main text.
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B.3 Incompatibility metric approximations

B.3.1 Incompatibility metric approximation: target frame

The second order in the expansion Eq. 5.38 is given by

g
(2)
αβ = − 2

Y

(
gαβ∆χ(2) − (1 + νP )∇α∇βχ(2)

)
− 2

Y

(
gαβg

ργΓµ(1)
ργ − (1 + νP )Γ

µ(1)
αβ

)
∇µχ(1)

− 1

2
g

(1)
αβg

γσg(1)
γσ (B.12)

Obviously, the expansion can be continued to all orders, and in this way a perturbative

solution to Eq. 5.35 and Eq. 5.36 can be found. The goal is now to derive an explicit

equation for χ(i), as shown below.

B.3.2 Incompatibility metric approximation: reference frame

The second order in Eq. 5.49 can also be computed as:

ḡ
(II)
αβ =

2

Y

(
ḡαβ∆̄χ(II) − (1 + νP )∇̄α∇̄βχ(II)

)
+

1

2
ḡ

(I)
αβ ḡ

γσ ḡ(I)
γσ (B.13)

B.3.3 First order solution: target frame

We will compute the Ricci tensor R̄σν = R̄ρσρν , which from Eq. B.52 is

R̄σν = Rσν +∇µΓµ(1)
νσ −∇νΓµ(1)

µσ . (B.14)
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The first term is obtained from Eq. 5.40, Eq. B.50 and Eq. B.52, leading to

−Y∇µΓµ(1)
νσ = ∇σ∇ν∆χ(1) − (1 + νP )gµγ∇µ∇ν∇σ∇γχ(1)

+ ∇ν∇σ∆χ(1) − (1 + νP )gµγ∇µ∇σ∇ν∇γχ(1)

− gσν∆2χ(1) + (1 + νP )gµγ∇µ∇γ∇ν∇σχ(1) (B.15)

This is simplified by using Eq. B.38 and Eq. B.39

gµγ∇µ∇γ∇ν∇σχ(1) = gµγ∇µ∇ν∇γ∇σχ(1)

− gµγ∇µ
(
Rλσγν∇λχ(1)

)
(B.16)

and

gµγ∇µ∇σ∇ν∇γχ(1) = gµγ∇σ∇µ∇ν∇γχ(1)

− gµγRλνµσ∇λ∇γχ(1)

− gµγRλγµσ∇ν∇λχ(1) . (B.17)

One more application of Eq. B.39 converts Eq. B.17 into

gµγ∇µ∇σ∇ν∇γχ(1) = gµγ∇σ∇ν∇µ∇γχ(1)

− gµγ∇σ
(
Rλγµν∇λχ(1)

)
− gµγRλνµσ∇λ∇γχ(1)

− gµγRλγµσ∇ν∇λχ(1) . (B.18)

Using the expression of the Riemann tensor in two dimensions Eq. B.44, we obtain

gµγRλνµσ∇λ∇γχ(1) = Kgνσ∆χ(1) −K∇σ∇νχ(1)

gµγRλγµσ∇ν∇λχ(1) = −K∇ν∇σχ(1) . (B.19)
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and

gµγ∇σ
(
Rλγµν∇λχ(1)

)
= −∇σK∇νχ(1) −K∇σ∇νχ(1). (B.20)

Also

gµγ∇µ
(
Rλσγν∇λχ(1)

)
= gσνg

µλ∇µK∇λχ(1)

− ∇σK∇νχ(1)

+ gσνK∆χ(1)

− K∇σ∇νχ(1) (B.21)

Collecting all these terms, Eq. B.15

−Y∇µΓµ(1)
νσ = 2∇σ∇νχ(1) − gσν∆2χ(1) −

− (1 + νP )
[
∇σ∇ν∆χ(1) + 2K∇σ∇νχ(1)+

+ gσνg
µλ∇µK∇λχ(1)

]
(B.22)

The next quantity to compute is

−Y∇νΓµ(1)
µσ = ∇ν∇σ∆χ(1) − (1 + νP )gµγ∇ν∇µ∇σ∇γχ(1)

+ 2∇ν∇σ∆χ(1) − (1 + νP )gµγ∇ν∇σ∇µ∇γχ(1)

− ∇ν∇σ∆χ(1) + (1 + νP )gµγ∇ν∇µ∇γ∇σχ(1) (B.23)

that immediately leads to

−Y∇νΓµ(1)
µσ = 2∇σ∇ν∆χ(1) − (1 + νP )∇ν∇σχ(1) (B.24)
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Therefore, the Ricci tensor is

R̄σν = Rσν +
1

Y

(
gσν∆2χ(1)+

+ (1 + νP )
[
2K∇σ∇νχ(1) + gσνg

µλ∇µχ(1)∇λK
])

(B.25)

Finally, the scalar curvature is obtained as the trace of the Ricci tensor, hence

K̄ = K +
1

Y

(
∆2χ(1) + 2K∆χ(1) + (1 + νp)g

µλ∇µK∇λχ(1)
)
. (B.26)

B.4 Elastic energy in the target frame

Our starting point is Eq. 5.43, which for the sake of reference we repeat here:

F =
1

2Y

∫
d2u
√
g
[
(∆χ(1))2+

+
(1 + νP )

g
εασερβ∇α∇βχ(1)∇ρ∇σχ(1)

]
. (B.27)

We now focus on the second term. Using Eq. 5.30 this term becomes

εασερβ∇α∇βχ(1)∇ρ∇σχ(1) = g
[
∇α∇βχ(1)∇α∇βχ(1) − (∆χ(1))2

]
. (B.28)

Making further use of Eq. B.36, allows to prove the following identity

√
gTαβ∇α∇βχ(1)

= ∂α

(√
gTαβ∇βχ(1)

)
−√g∇αTαβ∇βχ(1)

= ∂α

(√
gTαβ∇βχ(1)

)
−√g∇α(gαβ∆χ(1))∇βχ(1) −

− √
gKgβα∇αχ(1)∇βχ(1) (B.29)

146



where Tαβ = ∇α∇βχ(1). Note that

∇αTαβ = ∇αgαρgβν∇ρ∇νχ(1) = gβνgαρ∇α∇ρ∇νχ(1)

= gβνgαρ∇ν∇α∇ρχ(1) − gβνgαρRλραν∇λχ(1)

= gβα∇α∆χ(1) +Kgβα∇αχ(1) (B.30)

Here, we have used the identity Eq. B.40.

Using the same operations, it is

√
g∇α(gαβ∆χ(1))∇βχ(1)

= ∂α

(√
g∆χ(1)gαβ∇βχ(1)

)
−√g(∆χ(1))2 . (B.31)

Hence, the second term in Eq. B.27 becomes

−1 + νp
2Y

∫
d2u
√
gKgαβ∇αχ(1)∇βχ(1) (B.32)

plus a total derivative

1 + νp
2Y

∫
d2u∂α

[√
g
(
Tαβ∇β −∆χ(1)gαβ∇β

)
χ(1)

]
= −1 + νp

2Y

∫
d2u∂α

[√
gσαβ∇βχ(1)

]
, (B.33)

where use has been made of the definition of the stress tensor, see Eq. 5.42. The above

integral contributes only at the boundary, leading to the contribution

−1 + νp
2Y

∮
dxρ
√
gερασ

αβ∇βχ(1). (B.34)

For a spherical cap, the above equation is

1 + νp
2Y

∮
dθ
√
gσrβ∇βχ(1). (B.35)

and therefore, in the absence of line tension vanishes by the boundary condition σrβ = 0,

β = r, θ at the boundary.
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B.5 General formulas in Riemannian geometry

B.5.1 Useful identities

The following results apply for any metric gµν in any dimension, unless further

restrictions are stated.

1

2
∂µ(log g) = Γρµρ . (B.36)

The last equation can be written also as

1
√
g
∂µ(
√
g) = Γρµρ . (B.37)

Another relation involving Christoffel symbols is

gργΓνργ = − 1
√
g
∂γ(
√
ggγν) . (B.38)

The following relation, involving the Riemann tensor is

[∇µ,∇ν ]V ρ = RρλµνV
λ . (B.39)

The same relation exists for forms as well, namely

[∇µ,∇ν ]Wργ = −RλρµνWλγ −RλγµνWρλ (B.40)

Finally, the Ricci and scalar curvature are defined as

Rµν = Rλµλν R = gµνRµν (B.41)

The equations from here onwards are valid in two dimensions only:

1

g
εαρεµν = gαµgρν − gανgρµ . (B.42)
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gαβ =
1

g
εαρεβσgρσ . (B.43)

And, the Riemann tensor is

Rρλµν = K (gρµgλν − gρνgλµ) , (B.44)

where K = R/2 is the Gaussian curvature.

B.5.2 Expansion around a given metric

From the incompatibility expansion Eq. 5.38 it is

Γ̄ρµα = Γρµα + ηΓρ(1)
µα + η2Γρ(2)

µα + · · · (B.45)

here, the η value is just a formal quantity that allows to keep track of the different orders

in the expansion.

The compatibility of the connection with the metric implies

∇µgαβ = 0

∇̄µḡαβ = 0 (B.46)

This last equation, in explicit terms is

∇̄µḡαβ =
∂ḡαβ
∂xµ

− Γ̄ρµαḡρβ − Γ̄ρµβ ḡαρ = 0. (B.47)

Introducing the expansion Eq. B.45 into the previous equation leads to

∇µgαβ + η
(
∇µg(1)

αβ − Γρ(1)
µα gρβ − Γ

ρ(1)
µβ gαρ

)
+

η2
(
∇µg(2)

αβ − Γρ(2)
µα gρβ − Γ

ρ(2)
µβ gαρ − Γρ(1)

µα g
(1)
ρβ − Γ

ρ(1)
µβ g(1)

αρ

)
(B.48)
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which immediately leads to the identities

∇µg(1)
αβ − Γρ(1)

µα gρβ − Γ
ρ(1)
µβ gαρ = 0

∇µg(2)
αβ − Γρ(2)

µα gρβ − Γ
ρ(2)
µβ gαρ − Γρ(1)

µα g
(1)
ρβ − Γ

ρ(1)
µβ g(1)

αρ = 0

with solutions

Γρ(1)
µα =

gρβ

2

(
∇µg(1)

αβ +∇αg(1)
βµ −∇βg

(1)
µα

)
(B.49)

and

Γρ(2)
µα =

gρβ

2

(
∇µg(2)

αβ +∇αg(2)
βµ −∇βg

(2)
µα

)
− gρβΓγ(1)

µα g
(1)
γβ (B.50)

These expressions allow to compute the Riemann tensor, defined from

R̄ρσµν = ∂µΓ̄ρνσ − ∂νΓ̄ρµσ + Γ̄ρµλΓ̄λνσ − Γ̄ρνλΓ̄λµσ . (B.51)

Inserting the terms in Eq. B.49 and Eq. B.50 after some algebra it leads to

R̄ρσµν = Rρσµν + η
(
∇µΓρ(1)

νσ −∇νΓρ(1)
µσ

)
+ (B.52)

+ η2
(
∇µΓρ(2)

νσ −∇νΓρ(2)
µσ + Γ

ρ(1)
µλ Γλ(1)

νσ − Γ
ρ(1)
νλ Γλ(1)

µσ

)
.

The Ricci tensor is

R̄σν = Rσν + η
(
∇µΓµ(1)

νσ −∇νΓµ(1)
µσ

)
+

+ η2
(
∇µΓµ(2)

νσ −∇νΓµ(2)
µσ + Γ

µ(1)
µλ Γλ(1)

νσ − Γ
µ(1)
νλ Γλ(1)

µσ

)
. (B.53)
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Appendix C

Appendix: Elastic energy for

spherical cap

C.1 Elastic energy in continuum model

In this section we provide the detailed calculations for the elastic energy term(F lc)

in continuum model, Eqs. 10 and 11 given in the text. We define the elastic free energy as

F lc =
1

2K0

∫
d2x
√
g (∆χ)2 , (C.1)

where gµν is the metric of the surface. The Laplacian(∆) is then defined as 1√
g∂µ (gµν∂ν).

For a spherical surface (Fig. C.1), the metric tensor and the laplacian operator are ds2 =

dr2 + R2 sin2( rR)dφ2 and ∆ = 1
sin( r

R
)∂r
(
sin( rR)∂r

)
+ 1

R2 sin2( r
R

)
∂φφ, respectively. The Airy

Stress function χ satisfies

1

K0
∆2χ(x) = s(x)−K(x). (C.2)
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with s(x) =
∑N

i=1
qi√
g δ(x− xi) the disclination density and K(x) = 1

R2 gaussian curvature.

We seek the solutions of χ subject to the stress free boundary conditions, σrr = σφr = 0.

Following the defination of the stress tensor, the boundary conditions are then

σrr =
1

R
cot(

r

R
)∂rχ+

1

R2 sin2( rR)
∂φφχ = 0 (C.3)

σφr = − 1

R sin( rR)
∂r

(
1

R sin( rR)
∂φχ

)
= 0 (C.4)

at r = Rθm = Rm.

Constructing the green function

∆2G(x,xi) =
1
√
g
δ(x− xi), (C.5)

subject to the dirichlet (G(Rm, ri) = 0) and stress free boundary conditions given in

Eqs. (C.3) and (C.4), we find the airy stress function can be written as the integral of

the green function with the source field

χ(x) = K0

∫
d2x′ G(x,x′)

(
s(x′)−K(x′)

)
= K0R

2

(
N∑
i=1

qiG(x,xi)−
∫
d2x′ G(x,x′)

)

= K0R
2

(
N∑
i=1

qiG(x,xi)− Ω(x)

)
, (C.6)

where x has been rescaled in the unit of R and Ω(x) ≡
∫
d2x′ G(x,x′). Thus we have

∆2Ω(x) = 1. (C.7)

152



Integrating the free energy in Eq. (C.1) by parts and using the green function G, we find

F lc =
K0R

2

2

∫
d2xd2y [(K(x)− s(x))G(x,y)(K(y)− s(y))]

=
K0R

2

2

∫ d2x Ω(x)−
N∑
i=1

2qi Ω(xi) +
N∑
i=1

N∑
j=1

qiqjG(xi,xj)


= E0(θm) +

N∑
i=1

qiÊ0d(xi, θm) +

N∑
i=1

N∑
j=1

qiqjÊdd(xi,xj , θm)

= E0(θm) +
N∑
i=1

E0d(xi, θm) +
N∑
i=1

Eself (xi) +
N∑
i=1

N∑
j>i

Edd(xi,xj) (C.8)

where the first term in Eq. (C.8) describes the gaussian curvature self energy,

the second term corresponds to disclination-gaussian curvature interaction, the third term

denotes disclination self-energy and the last term is the disclination-disclination interaction

energy. In the next section we solve the green function G(xi,xj) and Ω(x) for when there

exists only one disclination at the center of a spherical cap and then solve it for when it is

placed off center.

C.1.1 Center Disclination

We solve Eqs. (C.5)-(C.7) for a radially symmetric system when we only have one

disclination at the center of a spherical cap (ri = 0). We find

2πG(r, 0) = Li2(− tan2(
r

2
)) + log(1 + tan2(

r

2
)) log(tan(

r

2
)) + u (C.9)

Ω(r) = Li2(− tan2(
r

2
)) +

1

2
log(1 + tan2(

r

2
))2 + u (C.10)
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where Li2 is a polylogarithm Li2(x) =
∑∞

n=1
xn

n2 and u, the homogeneous solution of bihar-

monic equation ∆2u = 0, is given by

u = C +D log(1 + tan2(
r

2
)) (C.11)

Applying the boundary conditions Eqs. (C.3)-(C.4), G(θm, 0) = 0 and Ω(θm) = 0,

we find

2πG(r, 0) =Li2(− tan2(
r

2
)) + log(1 + tan2(

r

2
)) log(tan(

r

2
))

+ 2 log(cos(
r

2
))

(
cot2(

θm
2

) log(cos(
θm
2

)) + log(sin(
θm
2

)))

)
− Li2(− tan2(

θm
2

))− log(1 + tan2(
θm
2

)) log(tan(
θm
2

))

− 2 log(cos(
θm
2

)

(
cot2(

θm
2

) log(cos(
θm
2

)) + log(sin(
θm
2

))

)
(C.12)

and

Ω(r)

= Li2(− tan(
r

2
)2) +

1

2
log(1 + tan2(

r

2
))2 + log(1 + tan2(

r

2
)) cot2(

θm
2

) log(1 + tan2(
θm
2

))

− Li2(− tan(
θm
2

)2)− 1

2
log(1 + tan2(

θm
2

))2 − log(1 + tan2(
θm
2

)) cot2(
θm
2

) log(1 + tan2(
θm
2

))

(C.13)

We will employ the expressions for G(r, 0) and Ω(r) to calculate the free energy of the

system given in Methods section.

C.1.2 Off-center disclination

We now consider an off-center disclination. In this case, the gaussian curvature

contribution Ω(r) remains as in the previous section but the green function G(x,xi) can be
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obtained using the function Γ as follows,

∆Γ(x,xi) =
1
√
g
δ(x− xi) (C.14)

∆G(x,xi) = Γ(x,xi). (C.15)

Expressing Γ(x,xi) as the sum of eigenstates, we have

2πΓ(x,xi) = log(tan(
r>
2

))−
∞∑
n=1

1

n

tann( r<2 )

tann( r>2 )
cos(nφ), (C.16)

which we insert in Eq. (C.15). Then we find

2πG(x,xi)

=Li2(− tan2(
r>
2

)) + log(tan(
r>
2

))
(

log(1 + tan2(
r>
2

)) + log(1 + tan2(
r<
2

)
)

+
∞∑
n=1

1

n

(
1

n

tann( r<2 )

tann( r>2 )
−Hn(cot(

r>
2

)) tann(
r<
2

)− cotn(
r>
2

)Hn(tan(
r<
2

))

)
cos(nφ)

+ U(x) (C.17)

where r< and r> correspond to min(r,ri) and max(r,ri) respectively. The function U(x)

denotes the homogenous solution of biharmonic(∆2) operator,

U(x) = c0 + d0 log(1 + tan(
r

2
)2) +

∞∑
n=1

1

n

(
cn tan(

r

2
)n + dnHn(tan(

r

2
))
)

cos(nφ) (C.18)

with Hn the basis function of the biharmonic operator that is given by

Hn(x) =
x2+n

n

(
1

1 + x2
− 1

1 + n
2F1

(
2, 1 + n, 2 + n,−x2

))
, (C.19)

where 2F1 is the hypergeometric function with 1
1+n2F1(2, 1 + n, 2 + n, x) =

∑∞
i=0

i+1
n+i+1x

i.

Applying the boundary conditions Eqs. (C.3)-(C.4) and G(θm, ri) = 0, we obtain the coef-
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ficients in Eq. (C.18) as

d0 = − log(b) +
1

2

(
1 + b−2

)
log

(
1 + b2

1 + xρ2

)
c0 = −Li2(−b2)− log(b)

(
log(1 + b2) + log(1 + xρ2)

)
− d0 log(1 + b2)

dn =
1−

(
1 + b−2

)
xρ−nnHn(xρ)

1− (1 + b−2) b−nnHn(b)

(xρ
b

)n
b−n

cn =
b−2n

n
(
b2+n − (1 + b2)nHn(b)

)(
xρn

(
− b2+n + nHn(b) + bnnHn(b−1)

(
b2+n − (1 + b2)nHn(b)

) )
+ b2+nnHn(xρ)

)
(C.20)

where b = tan( θm2 ) and xρ = tan( ri2 ).

C.2 Energy contourPlots

Using G(x,xi) and Ω(x) in Eqs. (C.17) and (C.13) respectively, we calculate the

elastic energies due to the Gaussian curvature-disclination interaction (E0d) and disclination

self-energy (Eself ) as given in Eq. (C.8). The contourplot of the elastic free energy for E0d

and Eself as a function of the location of the disclination in the shell is illustrated in Fig. C.2.

Similar to the 1-D case shown in Fig. 3, the minimum energy due to disclination-Gaussian

interaction is at the center of the shell Fig. C.2(a) and related to the disclination self-energy

is at the edge Fig. C.2(b). While the Gaussian curvature attracts the disclination to the

center of the shell, the defect self-energy pushes it towards the boundary. The addition

of these two interactions gives rise to a minimum energy, which is off the center of the

shell. Figure C.2(c) illustrates the contourplot of the energy of the interaction between two

disclinations (Edd). The first disclination (the white ball in Fig. C.2(c)) is placed at the
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minimum of E0d + Eself but the second one is located at the minimum of E0d + Eself +

Edd. While the curvature-disclination interaction and disclination self-energy determine the

number of pentamers in the growing shell, the repulsion between the disclinations distribute

them at the vertices of an icosahedron. In this work, we calculated the interaction of

Gaussian curvature with disclination and disclination self-energy in the presence of an edge

for the first time.

C.3 Bending and stretching energies

Figure C.3 illustrates the bending energy vs. the number of trimers. While there

is a huge drop in the stretching energy for the formation of each pentamer (Fig.5), we see

almost no difference in the bending energy between the formation of a pentamer and a

hexamer as the shell grows. Note that the drops in the stretching energy other than the

marked ones in Fig. 5 indicate the positions in which three or four trimers buckle out

making the system ready for the assembly of a pentamer. At the later steps, when one or

two trimers will be added to the growing pentamers, the stretching energy further decreases

in the marked drops, revealing the formation of a complete pentamer.

We emphasize that at large FvK (γ), the triangles remain more or less equilateral

during the growth process but the shell easily bends away from the preferred curvature.

In fact the magnitude of bending energy is one order of magnitude larger than stretching

energy because of the deviation of dihedral angle between the proteins from the preferred

one. In the simulations the bending energy was necessary to facilitate the buckling of

pentamers at the right position.
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Rm

R
�m

Figure C.1: A spherical cap with geodesic size Rm and radius R, the cap center is marked as a red dot on
the top.

(a) E0d, equation (C.8) (b) Eself , equation (C.8) (c) Edd, equation (C.8)

Figure C.2: The contourplots of (a) Gaussian Curvature-Disclination interaction energy; (b) Disclination
self-energy; (c) Disclination interaction energy.

In the absence of bending rigidity, the pentamers became deformed to release their

stress to their neighboring hexamers. It is interesting to note that in our system when the

spontaneous radius is much smaller than the core radius, the difference between the bending

energy for a pentamer and a hexamer is not considerable. We find that at high γ the bending

energy does not play any roles in the preference between pentamers and hexamers in the

shell and the location of pentamers are completely controlled by the stretching energy as it

is the case in the elasticity theory.
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Figure C.3: The bending energy of a T=13 shell as a function of triangular subunits.
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