
UC San Diego
UC San Diego Previously Published Works

Title
On statistical Multi-Objective optimization of sensor networks and optimal detector 
derivation for structural health monitoring

Permalink
https://escholarship.org/uc/item/0r25g1k5

Authors
Colombo, Luca
Todd, MD
Sbarufatti, C
et al.

Publication Date
2022-03-01

DOI
10.1016/j.ymssp.2021.108528
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0r25g1k5
https://escholarship.org/uc/item/0r25g1k5#author
https://escholarship.org
http://www.cdlib.org/


1 
 

On Statistical Multi-Objective Optimization of Sensor Networks and Optimal Detector Derivation for 

Structural Health Monitoring 

L. Colombo, M. D. Todd, C. Sbarufatti, M. Giglio 

Politecnico di Milano, Dept. of Mechanical Engineering, via La Masa 1, 20156 Milano, Italy, 

luca1.colombo@polimi.it 

University of California, Dept. of Structural Engineering, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-

0085, United States, mdtodd@eng.ucsd.edu 

Politecnico di Milano, Dept. of Mechanical Engineering., via La Masa 1, 20156 Milano, Italy, 

claudio.sbarufatti@polimi.it 

Politecnico di Milano, Dept. of Mechanical Engineering., via La Masa 1, 20156 Milano, Italy, 

marco.giglio@polimi.it 

 

Keywords: optimal sensor placement; optimal detector; Bayes cost; classification; Neyman-Pearson; multi-

objective optimization. 

 

Abstract 

Sensor placement and structural health classifiers are fundamental components of Structural Health 

Monitoring (SHM) systems, as they largely define system detection (or classification) performance. Optimal 

sensor placement strategies are designed to maximize the ability to detect damage or to minimize lifetime 

costs, given limited resource availability. However, usually choosing one strategy over the other and non-

optimal detector implementation may provide poorly performing solutions in terms of detection 

performance or total cost, even though both are critical objectives for a cost-effective SHM system 

implementation. 

The work proposes a unique and coherent framework for optimal detector and sensing network design for 

SHM. After an optimal detector is defined based on the Neyman-Pearson likelihood ratio test, classification 

performance indexes are used in a multi-objective optimization paradigm for optimal sensor placement. 

Specifically, the optimization considers maximizing the classification performances and, simultaneously, 

minimizing a measure of total cost or risk in a Bayesian sense.  

Even though the approach is general for any structure and sensor measurement process, the method is 

numerically verified with a cracked plate under tension and monitored by measurements of local strain 

serving as the surrogate SHM system. The results are also validated by comparing the multi-objective optimal 

design to engineering judgment and single-objective-based solutions in terms of probability of detection and 

costs. The advantages of an optimization scheme are emphasized with respect to an engineering scheme 

and, above all, how a multi-objective optimization strategy reflects a conjunct saving in costs and 

improvement in detection performances. 

Nomenclature 

𝐴 Damage-sensitive feature in the actual condition 

𝐵 Damage-sensitive feature in the baseline condition 

𝑋 Difference between the actual and baseline features 

𝑖,𝑊 Damage index 

𝐻0 Undamaged condition 
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𝐻1 Damaged condition 
𝜇𝑋 Mean of 𝑋 

𝜎𝑋
2 Variance of 𝑋 

𝑓𝑊 The probability density function of the damage index in the undamaged scenario 

𝑓𝑊𝑑
 The probability density function of the damage index in the damaged scenario 

𝑁 Number of data samples 

𝐷 Optimal detector 

𝛾′ The threshold for health classification 

𝑃𝐹𝐴 Probability of false alarms 

𝑃𝐷 Probability of detection 

𝐶𝐵 Bayes cost 

𝐿 Neyman-Pearson likelihood ratio 

𝑝(𝐷,𝐻𝑖) The probability density function of the detector under 𝐻𝑖 

𝑃𝐹𝐴𝑀𝐶 Probability of false alarms computed with Monte Carlo 

𝑁𝑀𝐶 , 𝑁𝑀𝐶1 Number of Monte Carlo samples 

𝑃𝑒 Probability of making an error 

𝑅 Risk/cost function 

𝑥𝑡𝑖 Sensor position 

𝑃𝐷𝑠𝑦𝑠 Probability of detection of the SHM system 

Ω Structure’s domain 

𝑆𝑘 Set of detectors associated with the sensors in region 𝑘 

𝐶𝑠 Cost of the system 

𝐶00 Cost of true negatives 

𝐶10 Cost of false positives 

𝐶01 Cost of false negatives 

𝐶11 Cost of true positives 

𝑛𝑟 Number of regions 

𝑃(𝐻𝑖,𝑘) Probability of region 𝑘 of being in the state 𝐻𝑖 

𝑃𝐹𝐴𝐵 , 𝑃𝐷𝐵  Probability of false alarms/detection for the Bayes risk 

𝑃(𝐻1) The total probability of a damaged state 

𝑃(𝐻0) The total probability of an undamaged state 

𝑑opt Optimal design 

𝛼 Weight parameter governing the relative importance of the two objective functions 

𝑦1 Value of the first objective function 

𝑦2 Value of the second objective function 

𝐶𝑡𝑜𝐶 Classification improvement to cost increase ratio 

 

1. Introduction 

In recent years, structural integrity demands have driven scientific and industrial communities' research into 

developing a framework for informing structural diagnostics, generally known as Structural Health 

Monitoring (SHM). SHM aims at real-time, automatic evaluations of the structures’ health conditions based 

on a network of permanently installed sensors [1]–[5], leading to the expectation of considerable operative 

cost reduction and improved safety margins. This is because SHM may then be used to inform predictive 

models about future structural performance in order to accomplish optimal maintenance, limit state (e.g., 

failure) prediction, or other goals, potentially resulting in total life cycle cost savings. 

Sensor network design, including the number and location of sensors, is among fundamental steps of SHM 

system development, part of “operational evaluation” in the modern SHM paradigm where the target 

damage, design and environmental constraints, and other parts of the problem are defined as well as possible 
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[6]–[9]. With such things defined, in-situ measures of structural response (“raw data”) are collected from a 

given sensor network design from which features are extracted. These features then become the information 

by which damage assessment is accomplished by comparing a baseline set representative of the undamaged 

structure and a test set; this baseline set is obtained either by direct measurements in the baseline condition 

(a baseline “database”) or by modeling assumptions, such as linearity [10] or correlation between sensor 

pairs [11]. These features usually assume the form of direct waveform metrics, data- or physics-based model 

parameters, or residual model errors. Finally, the features are then modeled under statistical hypothesis 

testing procedures to assess damage presence, location, and/or severity [6], [12]. This particular statistical 

modeling step can take several forms, and as will be discussed later, it may be accomplished optimally by 

deriving a detector that is appropriate for the hypothesis test(s) being considered. 

It is clear, then, that design factors in the initial sensor network may influence the ultimate performance 

efficiency of the classifying scheme regardless of whether it is optimal or not. As such, several previous works 

in the literature consider distributed sensor network design for SHM applications, using, e.g., strain 

measurements [13] or piezoelectric-based measurements [14]–[17]. Some works [18], [19] minimize the 

norm (trace or determinant) of the Fisher information matrix computed from the modal and measurement 

covariance matrixes. Others [20]–[24] define sensor networks based on the concept of observability, or the 

network’s ability to infer the state parameters required for performance monitoring, health assessment, and 

system control. The information may be provided by directly measuring the system parameters or 

reconstructing unobservable system parameters based on observable ones. Methods based on fault 

diagnosis [25]–[28] extend the observability analysis with state variables, and their response are indicative 

of health conditions. The performance metric defines the sensing network’s ability to distinguish fault 

conditions from nominal operation (fault detection) and, possibly, discern among the different faults (fault 

discrimination).  

Thus far, sensor network design for SHM has been mostly driven by maximizing some aspect of feature 

discrimination (through many forms, as indicated above), or, more directly, by maximizing the likelihood that 

target damage is detected [29]. Recently, in [15], [30]–[35], optimal sensor placement strategies for SHM 

were proposed in various forms of a Bayesian formulation accounting for the distributed cost of type I (false 

positive) and II (false negative) decision errors, which sought to minimize the lifetime cost, defined by a Bayes 

risk metric. These two overall objective schemes--maximizing the probability of detection/classification and 

minimizing costly errors (generalized to all incurred monitoring costs)--comprise two (potentially) competing 

goals; it is not clear what favoring one strategy does when evaluated by the other strategy’s objective in 

terms of design consequences. Both strategies are fundamental aspects of any successful but cost-effective 

SHM system. The specific SHM application is typically the driver, where applications demanding life-safety 

consideration might favor maximum classification/detection performance design (e.g., commercial airframe 

inspections), while applications requiring minimized downtime (e.g., a manufacturing process) might favor a 

minimal risk/cost design. The majority of SHM applications, one could argue, demand some combination of 

detection performance and cost minimization, and this paper is a consideration of both objectives 

simultaneously. To the best of the authors’ knowledge, no SHM studies so far have considered such multi-

objective optimal sensor design.  

As part of the ultimate goal of formulating and exploring the multi-objective SHM sensor optimization 

problem, this paper employs formal principles of detection theory to design an optimal detector for the 

general binary damage detection hypothesis test that will be proposed. The use of detection theory [36] 

ensures a consistent statistical framework in defining the optimization problem; specifically, the detector will 

be derived by the Neyman-Pearson theorem, which invokes a probabilistic likelihood ratio test that optimizes 

the hypothesis selection for deciding whether damage is present or not. Other detectors could be derived 

(e.g., a minimal probability of error detector), but any detector could be used to formulate the bigger SHM 

design optimization problem [36]. The specific performance of which optimal detector to use is not within 
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the scope of this present paper. It will be left to future work to consider a fully coupled sensor design 

optimization strategy where the detector design itself is part of that global optimization. Thus, in this work, 

once the optimal Neyman-Pearson detector is defined, the multi-objective SHM design objective will be 

formulated, and the relative importance of a minimum cost strategy compared to maximum 

detection/classification strategy is analyzed in detail, providing insights into the consequences in terms of 

costs and probability of detection when choosing one strategy over another. Specifically, the proposed 

optimal sensor placement strategy combines maximum classification performance and minimum cost of the 

system, including costs associated with wrong decisions. 

The paper undertakes this formulation in a simple case study constituted by a clamped plate under tension 

and damaged with cracks. An SHM system with a strain-based data collection system is considered for 

demonstrating the method and consequences of choosing one optimization strategy over the other in terms 

of costs and detection probability. The optimization is performed based on a genetic algorithm [37], [38] for 

its widely recognized robustness. Different sensitivity analyses have been performed, including but not 

limited to, comparison between optimal designs obtained with the proposed multi-objective framework and 

the classical single-objective optimization, providing insight into the method’s advantages in terms of 

structured design decisions. The Receiver Operating Condition (ROC) curve is also provided as a performance 

indicator of different designs. The simplicity of this SHM application example is designed in order to evaluate 

the multi-objective considerations without obfuscation from challenges that might arise from a more 

complex (and admittedly, more realistic) SHM application. 

The paper is structured as follows. The design of the optimal detector is provided in Section 2, and it is used 

for subsequent presentation of the multi-objective paradigm for optimal sensor placement in Section 3. 

Section 4 provides information on the application case for sensing network optimization, while results are 

shown in Section 5 for the test cases under varying problem boundary conditions and comparison scenarios. 

A conclusion section completes the paper. 

2. Definition of an optimal statistical detector 

A detector may be informally thought of as the transformation from feature to decision. In this work, only 

binary decisions will be considered (rather than a generalized regression into multiple data classes), where 

one typically must decide whether features obtained from a test belong to the reference (“baseline”) 

condition or not (“damaged”). One of the most common metrics used to quantify this is the squared 

difference 𝑖(𝑡) between them, or 

 𝑖(𝑡) = (𝐴(𝑡) − 𝐵)2 = 𝑋(𝑡)2    with   𝑋(𝑡) = 𝐴(𝑡) − 𝐵, (1) 

where 𝐴(𝑡) and 𝐵 are the features in the test and baseline conditions, respectively. It is noted that this is 

only one possible metric of difference, as many other types of metrics could be formulated, leading to 

different subsequent specific optimal detector mathematical transformations. However, the methodology 

that follows below may be applied to any such metric, and this paper considers the squared difference metric 

because it is among the most common used for features that, generally speaking, can be both positive and 

negative in value (such as a strain measurement, as in the application in this work). 

The detection of damage is then transformed into a binary decision between choosing the undamaged 

condition (implying 𝑖(𝑡) = 0), or the damage condition (implying 𝑖(𝑡) ≠ 0). However, statistical variability in 

the features may cause the index to deviate from zero even in the undamaged scenario. Detection theory 

provides a methodology for deriving optimal detectors (for classifying any metric or feature, such as in Eq. 

(1), to guarantee that robust decisions can be performed in realistic scenarios. An optimal detector's 

construction procedure leverages a likelihood ratio test under a binary hypothesis formulation: undamaged, 

𝐻0 (𝑖 = 0), and damaged, 𝐻1(𝑖 ≠ 0), states. A likelihood ratio test corresponding to a binary hypothesis 
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guarantees that the resulting detector is optimal [39], in the sense that it uniformly represents the most 

powerful test among the alternative tests.  

One type of detector optimality in this context is to minimize the probability of choosing 𝐻0 when 𝐻1 is 

actually true, 𝑝(𝐻0; 𝐻1), or equivalently, to maximize the probability of choosing 𝐻1 when 𝐻1 is actually true, 

𝑝(𝐻1; 𝐻1). The probability of choosing 𝐻1 when 𝐻1 is actually true corresponds to the probability of 

detection, 𝑃𝐷, and this strategy comprises the Neyman-Pearson approach [36], [39]. Another type of 

optimality strategy is to minimize decision errors, e.g., the probability of choosing 𝐻0 conditioned upon 𝐻1 

being observed as the result of a probabilistic test, 𝑝(𝐻0|𝐻1), and/or the complementary decision error, 

𝑝(𝐻1|𝐻0). There is a subtle but important notational difference in the probabilities using a semi-colon (;) and 

a vertical line (|). The former notation, e.g., 𝑝(𝐻𝑖; 𝐻𝑗), describes the probability of choosing 𝐻𝑖 when 𝐻𝑗 is 

true without any probabilistic meaning assigned to the likelihood that 𝐻𝑗 is true. The latter notation, e.g., 

𝑝(𝐻𝑖|𝐻𝑗), describes the probability of choosing 𝐻𝑖 conditioned upon a probabilistic test that indicated 𝐻𝑗 is 

true, i.e., 𝑝(𝐻𝑗), which is typically based on assumptions, prior knowledge, previous tests, etc. The law of 

conditional probabilities may be then used to define the total probability of making a decision error, 𝑃𝑒, in a 

way consistent with Bayesian reasoning. As mentioned, this work will select the Neyman-Pearson optimality 

criterion for detector design, but the minimum error detector (or other designs) could be considered. 

Regardless of the optimality strategy, of course, a statistical model for the hypothesis test must be formed, 

and the Neyman-Pearson detector design will now be considered. Using the central limit theorem, it is first 

assumed that 𝑋 may be modeled as normally distributed with variance, 𝜎𝑋
2, and that damage produces a 

change in the mean of X, 𝜇𝑋, without a change in variance. The formal hypothesis test may be formally stated 

as 

 𝐻0: 𝑋~𝑁(0, 𝜎𝑋
2) 

(2) 

and 

 𝐻1: 𝑋~𝑁(𝜇𝑋 , 𝜎𝑋
2). 

(3) 

Let us next recall the damage index metric, 𝑖 = 𝑋2 = 𝑊. Using the probability transformation theorem and 

some mathematical manipulation, the probability distributions of W={w[0]} for a single observation of the 

damage index under the two hypotheses may be written as 

 
𝑝(𝑤[0];𝐻0) = 𝑓𝑊 =

1

𝜎𝑋

1

√2𝜋
𝑤[0]−

1
2𝑒

−
𝑤[0]

2𝜎𝑋
2

 
(4) 

and 

 

𝑝(𝑤[0];𝐻1) = 𝑓𝑊𝑑
=

𝑒
−
1
2(
𝑤[0]+𝜇𝑋

2

𝜎𝑋
2 )

cosh (
𝜇𝑋
𝜎𝑋
2√𝑤[0])

√2𝜋𝑤[0]𝜎𝑋
 

(5) 

In real applications, one is likely to compute more than a single feature over time, leading to many 

observations of the damage index metric. Supposing that 𝑁 such metrics are independently collected, 

W={w[k], k=1…N}, the probability density functions (pdfs) of Eqs. (4) and (5) further transform to 

 
𝑓𝑊 = 𝑒

−
1

2𝜎𝑋
2 ∑ 𝑤[𝑘]𝑁

𝑘=1
∏

1

𝜎𝑋

1

√2𝜋
𝑤[𝑘]−

1
2

𝑁

𝑘=1

 
(6) 

and 
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𝑓𝑊𝑑

= 𝑒
−
1

2𝜎𝑋
2 ∑ (𝑤[𝑘]+𝜇𝑋

2 )𝑁
𝑘=1

∏
1

√2𝜋𝑤[𝑘]𝜎𝑋
cosh (

𝜇𝑋
𝜎𝑋
√𝑤[𝑘])

𝑁

𝑘=1

 
(7) 

The two parameters 𝜇𝑋 and 𝜎𝑋 may be estimated from 𝑋 using a Maximum Likelihood Estimate (MLE) 

approach [40]. Given the pdf of X, the Generalized Likelihood Ratio Test (GLRT) requires computing the MLE 

of the unknown parameters 

 [
𝜇𝑋
𝜎𝑋
] = 𝚯𝑖̅̅ ̅ = argmaxΘi(𝑝(𝑋; 𝚯i, 𝐻𝑖)), 

(8) 

where the latter is found by taking the gradient of the pdf and setting it to zero 

 
𝚯𝑖̅̅ ̅ =

∂𝑝(𝑋; 𝚯i, 𝐻𝑖)

𝜕𝚯𝑖
= 𝟎. 

(9) 

Considering the pdf of 𝑋 = {𝑥[𝑘], 𝑘 = 1…𝑁} under H1 as 

 𝑝𝑋(𝑥[𝑘];𝐻1) =
1

(2𝜋𝜎𝑋
2)
𝑁
2

𝑒
−
1

2𝜎𝑋
2 ∑ (𝑥[𝑘]−𝜇𝑋)

2𝑁
𝑘=1

, (10) 

taking the partial derivatives with respect to 𝜇𝑋 and 𝜎𝑋 results in the MLEs of the parameters: 

 

𝜇𝑋 =
1

𝑁
∑𝑥[𝑘]

𝑁

𝑘=1

𝜎𝑋 = √
1

𝑁
∑(𝑥[𝑘] − 𝜇𝑋)

2

𝑁

𝑘=1

.

 (11) 

With these parameters now estimated, the Neyman-Pearson optimal likelihood ratio test is computed as 

 𝐿(𝑤[𝑘]) =
𝑓𝑊𝑑

𝑓𝑊
> 𝛾, (12) 

where 𝛾 is a threshold for the hypothesis selection decision (defined shortly). Substituting the expressions of 

𝑓𝑊 and 𝑓𝑊𝑑
 and taking the logarithm of both sides (which doesn’t affect the detector, since the logarithm is 

a monotonic function), the optimal Neyman-Pearson detector, 𝐷, is finally obtained as 

 
𝐷 = ln(𝐿(𝑤[𝑘])) = −

𝑁𝜇𝑋
2

2𝜎𝑋
2 +∑cosh(

𝜇𝑋

𝜎𝑋
2√𝑤[𝑘])

𝑁

𝑘=1

> ln(𝛾) = 𝛾′. 
(13) 

Under the Neyman-Pearson theorem, this detector D will maximize the probability of detection, PD, given by 

 𝑃𝐷 = ∫ 𝑝(𝐷;𝐻1)𝑑𝐷

∞

𝛾′

, (14) 

where 𝑝(𝐷;𝐻1) is the distribution of the detector 𝐷 under 𝐻1. A detection test is performed by comparing 

the value of the detector 𝐷 with the threshold, 𝛾′. Detector values 𝐷 that exceed the threshold 𝛾′ imply 

choosing 𝐻1 (“damage condition”) is the right decision, while values that don’t exceed the threshold 𝛾′ imply 

choosing 𝐻0 (“baseline condition”) is the right decision. This threshold 𝛾′ is determined by the (application-

dependent) allowable probability of false positives (“false alarms”), PFA, defined by 

 𝑃𝐹𝐴 = ∫ 𝑝(𝐷;𝐻0)𝑑𝐷,

∞

𝛾′

 (15) 
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where 𝑝(𝐷;𝐻0) is the distribution of the detector under 𝐻0. Eqs. (14) and (15) often cannot be solved 

analytically in closed form and must be solved numerically. Such is the case in this work, as the transformation 

from 𝑝(𝑤[𝑘]) to 𝑝(𝐷) indicated by Eq. (13) is not analytically tractable.  

An example of the numerical procedure based on Monte Carlo simulations is utilized hereafter. Given a 

probability of false alarm level chosen according to the specific problem, the threshold for each test sensor, 

𝛾𝑀𝐶
′ , can be obtained minimizing an error functional defined comparing 𝑃𝐹𝐴 with the numerically computed 

version of the same, 𝑃𝐹𝐴𝑀𝐶 , through Monte Carlo: 

 𝛾𝑀𝐶
′ = argminγ (ln ((PFA − PFAMC(γ))

2
)). 

(16) 

 

The probability of false alarm as a function of the threshold can be computed according to the pseudocode 

below: 

for ii=1:𝑁𝑀𝐶  

 for jj=1:𝑁𝑀𝐶1  

 extract 𝑁 random normal samples with zero mean and 𝜎𝑋
2 variance 

 estimate the mean and variance 

 compute the detector D 

 aggregate all realizations of the detector  

 end 

 Count the number of times the sampled detectors exceed the threshold considered 

 Divide the number by 𝑁𝑀𝐶1 

 Collect the results 

end 

 Average the results 

In the previous, 𝑁𝑀𝐶  and 𝑁𝑀𝐶1 are the number of Monte Carlo samples and need to be sufficiently high to 

produce a small error in the estimated quantities. Once the threshold is computed as a function of the 

probability of false alarms, the detector of Eq. (13) is completely defined and can be implemented for damage 

detection. 

Just as with calculating 𝑃𝐹𝐴, a Monte Carlo numerical procedure can be followed for calculating 𝑃𝐷. The 

pseudocode for computing the probability of detection for each sensor as a function of damage is reported 

below: 

For kk=1:𝑁damages 

for ii=1:𝑁𝑀𝐶  

 for jj=1:𝑁𝑀𝐶1  

 extract 𝑁 random normal samples with mean 𝜇𝑋 and variance 𝜎𝑋
2 

 estimate the mean and variance 

 compute the detector D 

 collect the detector 

 end 
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 Count the number of times the sampled detectors exceed the threshold 

 Divide the number by 𝑁𝑀𝐶1 

 Collect the results 

end 

 Average the results 

end 

Even though this Neyman-Pearson detector will be used going forward in formulating the optimal design 

problem, it is worth briefly presenting another common detector approach, primarily because its formulation 

mirrors the formulation of the larger minimum risk/cost optimization problem. Recall the second detector 

optimality criterion considered minimizing decision errors, which may be even further generalized to 

minimizing the costs associated with those decision errors. As mentioned prior to Eq. (2), the law of total 

conditional probability may be used to arrive at the total probability of making an error, Pe, given in the binary 

case by 

 𝑃𝑒 = 𝑃(𝐻0|𝐻1)𝑃(𝐻1) + 𝑃(𝐻1|𝐻0)𝑃(𝐻0). (17) 

This can be mapped into a cost function R by assigning a cost 𝐶𝑖𝑗 to each decision, both the incorrect decisions 

given by Pe as well as the correct decisions such that 

 𝑅 = ∑ 𝐶𝑖𝑗𝑃(𝐻𝑖|𝐻𝑗)𝑃(𝐻𝑗).

1

𝑖,𝑗=0

 (18) 

The costs 𝐶𝑖𝑗 serve as weights on various decision probabilities (both correct and incorrect), and the function 

R is minimized [36] according to a similar likelihood ratio test (analogous to the Neyman-Pearson likelihood 

test) given by 

 𝐿(𝑤[𝑘]) =
𝑝(𝑤[𝑘]|𝐻1)

𝑝(𝑤[𝑘]|𝐻0)
> 𝛾 =

(𝐶10 − 𝐶00)𝑃(𝐻0)

(𝐶01 − 𝐶11)𝑃(𝐻1)
, (19) 

where the threshold is now determined by prior knowledge and decision consequence costs. Thus, this 

minimum risk detector establishes a decision rule that minimizes the total cost of making all decisions, rather 

than a decision rule that maximizes the probability of making the correct “true positive” decision (i.e., the 

probability of detection). 

3. The sensor network optimization procedure 

The use of an (optimal) detector ensures a statistically rigorous transformation from feature space to decision 

space. With such a decision rule in place, it is generally true that the specific sensor network design used 

could influence the performance of the decision rule. In the simplest case, for example, it is entirely 

reasonable to assume that sensors placed in low signal-to-noise ratio locations, or perhaps rather insufficient 

observability of the network, would affect the overall SHM system’s performance, as quantified by some 

global metric.  As discussed in Section 1, SHM sensor network optimization, broadly defined, follows two 

potential objectives: (1) maximizing some measure of feature discrimination, generally meaning maximizing 

the system’s global probability of detection 𝑃𝐷, or (2) minimizing the total decision and operational cost of 

the SHM system, generally meaning minimizing the consequence costs of all decisions the SHM is asked to 

make together with what the cost of the particular SHM system deployment is.  It is worth noting that both 

of these broad objectives mimic the optimal detector decision rules derived in Section 2. In Section 3.1, the 

Neyman-Pearson detector rule is generalized for a sensor location under multiple possible damage locations 

and then fused into a global measure of 𝑃𝐷 for any particular sensor location. The multi-objective 
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optimization problem is then defined in Section 3.3, providing the fitness functions to maximize the 

probability of detection and minimize the total cost (defined as a Bayes risk measure), which are aggregated 

into a single weighted objective function. 

3.1 Extension to multiple sensors and possible damage locations 

The probability of detection for the single sensor defined in Section 2 can be first defined for the more general 

case of detecting damage that is located at different locations on the structure. Considering damage 

occurrences to be independent in space, i.e., the probability of the sensor detecting damage at one location 

is independent of its probability to detect damage at another location, the total probability of detection for 

that single sensor (located at position 𝑥𝑡𝑖) is 

 
𝑃𝐷(𝑥𝑡𝑖) = ∏ 𝑃𝐷𝑖 .

𝑁damages

𝑖=1

 
(20) 

 

Eq. (20) applies only to a single-sensor design, and this definition must be modified to account for the more 

typical problem of using a network of such sensors. This is fundamentally a problem in sensor fusion, which 

can occur at many levels of the “data to decision” process [41].  In this work, a single vote fusion rule is used, 

where global detection is achieved if any one of the detectors computed at each of the 𝑥𝑡𝑖 sensor positions 

exceeds its local Neyman-Pearson threshold 𝛾𝑖. A schematic workflow of this fusion rule is provided in Fig. 1. 

 

 
Fig. 1. Sensor fusion rule for defining the detection of a true positive. 

With a true positive detection thus defined, the global probability of detection would require running Monte 

Carlo simulations over the entire sensor network design space, leading to a demanding computational 

procedure for an optimization framework. Sequential block simplification overcomes the need for a Monte 

Carlo simulation. The probability of detection can be computed only once, for each test sensor position 

available, according to Eq. (20), and the system probability of detection can be calculated from the 𝑃𝐷𝑖  of the 

sensors that comprise the network. Fig. 2 shows the working principle of sequential block simplification with 

a generic sensor network composed of 𝑛 sensors with probability of detections 𝑃𝐷𝑖  (𝑖 = 1,… , 𝑛). The 

algorithm considers a random pair of sensors (𝑖 and 𝑖 + 1) and substitutes their individual probability of 

detections with an equivalent probability of detection, 𝑃𝐷𝑖−𝑖+1, until the entire sensor network is 

systematically analyzed. The equivalent joint probability of detection for a pair of sensors, 𝑖 and 𝑖 + 1, is 

defined as 

 𝑃𝐷𝑖−𝑖+1 = 𝑃𝐷𝑖 + 𝑃𝐷𝑖+1 − 𝑃𝐷𝑖𝑃𝐷𝑖+1 . 
(21) 
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Thus, a computationally efficient formulation of the system’s global probability of detection can be derived 

and implemented in an optimization framework shown in Fig. 2. 

 

 
Fig. 2. Sequential block simplification workflow. 

3.2 Definition of the Bayes risk/cost 

For scenarios where the probability of possible outcomes is established a priori, Bayes risk is a popular 

decision-making optimality criterion. As introduced in Eq. (18), 𝑅 is the sum of each outcome’s expected cost, 

defined as the cost of each event multiplied by its probability; in SHM, they consist of all the possible 

combinations of the structure’s predicted and true damage states.  Expanding on the previous definition of 

the Bayes risk, the desired practical form is derived. The latter can be implemented in a multi-objective 

optimization strategy that will be the focus of Section 3.3. 

In this work, the damage state is considered as a simple binary condition: either damaged or undamaged. 

Furthermore, considering that the cost and probabilities can vary continuously within the structure domain 

Ω ∈ ℝ3, the global risk metric is derived as 

 𝑅 = ∫ ∑ 𝐶𝑖𝑗𝑃(𝐻𝑖|𝐻𝑗)𝑃(𝐻𝑗)

1

𝑖,𝑗=0Ω

 (22) 

Operatively, Eq. (22) can be approximated by discretizing the structure in 𝑛𝑟 regions small enough to consider 

the costs and probabilities constant within each region domain, Ω𝑘, and equal to the integral of their 

distribution within each region. The risk can then be written as: 

 𝑅 = ∑ ∑ 𝐶𝑖𝑗,𝑘𝑃(𝐻𝑖,𝑘|𝐻𝑗,𝑘)𝑃(𝐻𝑗,𝑘)

1

𝑖,𝑗=0

𝑛𝑟

𝑘=1

 (23) 

where ⋅, 𝑘 refers to the risk/cost associated with region 𝑘. For the sake of simplicity, Eq. (23) is written 

explicitly as 

 

𝑅 = ∑𝐶00,𝑘𝑃(𝐻0,𝑘|𝐻0,𝑘)𝑃(𝐻0,𝑘)

𝑛𝑟

𝑘=1

+∑𝐶01,𝑘𝑃(𝐻0,𝑘|𝐻1,𝑘)𝑃(𝐻1,𝑘)

𝑛𝑟

𝑘=1

+∑𝐶10,𝑘𝑃(𝐻1,𝑘|𝐻0,𝑘)𝑃(𝐻0,𝑘)

𝑛𝑟

𝑘=1

+∑𝐶11,𝑘𝑃(𝐻1,𝑘|𝐻1,𝑘)𝑃(𝐻1,𝑘)

𝑛𝑟

𝑘=1

 

(24) 

The latter includes costs associated with wrong and correct decisions. The local costs represent the complete 

cost due to structural health classification with respect to normal operation, resulting in application-specific 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11 
 

coefficients. Specifically, each cost parameter in Eq. (24) refers to the following, where the subscript 𝑘 is 

omitted for brevity: 

 𝐶00 is the cost of true negatives, thus the cost of deciding a structure is undamaged when it is really 

undamaged. It includes costs related to normal operation. 

 𝐶10 is the cost of false positives, thus the cost of deciding a structure is damaged when it is really 

undamaged. It considers out-of-service costs, inspection costs, etc. 

 𝐶01 is the cost of false negatives, thus the cost of deciding a structure is undamaged when it is really 

damaged. It considers out-of-service costs, life-safety issues, capital loss, or other failure 

consequence costs. 

 𝐶11 is the cost of true positives, thus the cost of deciding a structure is damaged when it is really 

damaged. It considers out-of-service costs, repair or replacement costs, etc. 

The conditional probabilities in Eq. (24) may be further simplified as follows: 

 

𝑃(𝐻1,𝑘|𝐻1,𝑘) = 𝑃(∃𝐷𝑖 ∈ S𝑘: 𝐷𝑖 > 𝛾𝑖|𝐻1,𝑘) =
𝑃(∃𝐷𝑖 ∈ S𝑘: 𝐷𝑖 > 𝛾𝑖 ∩ 𝐻1,𝑘)

𝑃(𝐻1,𝑘)
=

𝑃𝐷,𝑘

𝑃(𝐻1,𝑘)
∝ 𝑃𝐷,𝑘

𝑃(𝐻1,𝑘|𝐻0,𝑘) = 𝑃(∃𝐷𝑖 ∈ S𝑘: 𝐷𝑖 > 𝛾𝑖|𝐻0,𝑘) =
𝑃(∃𝐷𝑖 ∈ S𝑘: 𝐷𝑖 > 𝛾𝑖 ∩ 𝐻0,𝑘)

𝑃(𝐻0,𝑘)
=

𝑃𝐹𝐴,𝑘

𝑃(𝐻0,𝑘)
∝ 𝑃𝐹𝐴,𝑘

𝑃(𝐻0,𝑘|𝐻0,𝑘) = 𝑃(𝐷𝑖 < 𝛾𝑖  ∀𝐷𝑖 ∈ S𝑘|𝐻0,𝑘) = 1 − 𝑃(∃𝐷𝑖 ∈ S𝑘: 𝐷𝑖 > 𝛾𝑖|𝐻0,𝑘) = 1 −
𝑃𝐹𝐴,𝑘

𝑃(𝐻0,𝑘)
∝ 1 − 𝑃𝐹𝐴,𝑘

𝑃(𝐻0,𝑘|𝐻1,𝑘) = 𝑃(𝐷𝑖 < 𝛾𝑖  ∀𝐷𝑖 ∈ S𝑘|𝐻1,𝑘) = 1 − 𝑃(∃𝐷𝑖 ∈ S𝑘: 𝐷𝑖 > 𝛾𝑖|𝐻1,𝑘) = 1 −
𝑃𝐷,𝑘

𝑃(𝐻1,𝑘)
∝ 1 − 𝑃𝐷,𝑘

 (25) 

where 𝑆𝑘 is the set of detectors associated with the sensor in Ω𝑘. 

The Bayes Risk is now proportional to 

 

𝑅 ∝∑𝐶00,𝑘(1 − 𝑃𝐹𝐴,𝑘)𝑃(𝐻0,𝑘)

𝑛𝑟

𝑘=1

+∑𝐶01,𝑘(1 − 𝑃𝐷,𝑘)𝑃(𝐻1,𝑘)

𝑛𝑟

𝑘=1

+∑𝐶10,𝑘𝑃𝐹𝐴,𝑘𝑃(𝐻0,𝑘)

𝑛𝑟

𝑘=1

+∑𝐶11,𝑘𝑃𝐷,𝑘𝑃(𝐻1,𝑘)

𝑛𝑟

𝑘=1

 

(26) 

Considering the cost coefficients constant for all the 𝑛𝑟 regions and independent of the various detection 

probabilities, they may be brought out of the summation to yield 

 

𝑅 ∝ 𝐶00∑(1− 𝑃𝐹𝐴,𝑘)𝑃(𝐻0,𝑘)

𝑛𝑟

𝑘=1

+ 𝐶01∑(1 − 𝑃𝐷,𝑘)𝑃(𝐻1,𝑘)

𝑛𝑟

𝑘=1

+ 𝐶10∑𝑃𝐹𝐴,𝑘𝑃(𝐻0,𝑘)

𝑛𝑟

𝑘=1

+ 𝐶11∑𝑃𝐷,𝑘𝑃(𝐻1,𝑘)

𝑛𝑟

𝑘=1

 

(27) 

By applying the following unitary definitions to each term 

 

𝑅 ∝ 𝐶00
∑ (1 − 𝑃𝐹𝐴,𝑘)𝑃(𝐻0,𝑘)
𝑛𝑟
𝑘=1 ∑ 𝑃(𝐻0,𝑘)

𝑛𝑟
𝑘=1

∑ 𝑃(𝐻0,𝑘)
𝑛𝑟
𝑘=1

 

+ 𝐶01
∑ (1 − 𝑃𝐷,𝑘)𝑃(𝐻1,𝑘)
𝑛𝑟
𝑘=1 ∑ 𝑃(𝐻1,𝑘)

𝑛𝑟
𝑘=1

∑ 𝑃(𝐻1,𝑘)
𝑛𝑟
𝑘=1

+ 𝐶10
∑ 𝑃𝐹𝐴,𝑘𝑃(𝐻0,𝑘)
𝑛𝑟
𝑘=1 ∑ 𝑃(𝐻0,𝑘)

𝑛𝑟
𝑘=1

∑ 𝑃(𝐻0,𝑘)
𝑛𝑟
𝑘=1

+ 𝐶11
∑ 𝑃𝐷,𝑘𝑃(𝐻1,𝑘)
𝑛𝑟
𝑘=1 ∑ 𝑃(𝐻1,𝑘)

𝑛𝑟
𝑘=1

∑ 𝑃(𝐻1,𝑘)
𝑛𝑟
𝑘=1

 

(28) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 
 

and defining 

 

𝑃𝐷𝐵 =
∑ 𝑃𝐷,𝑘𝑃(𝐻1,𝑘)
𝑛𝑟
𝑘=1

∑ 𝑃(𝐻1,𝑘)
𝑛𝑟
𝑘=1

𝑃𝐹𝐴𝐵 =
∑ 𝑃𝐹𝐴,𝑘𝑃(𝐻0,𝑘)
𝑛𝑟
𝑘=1

∑ 𝑃(𝐻0,𝑘)
𝑛𝑟
𝑘=1

 (29) 

then Eq. (28) can be written as 

 

𝑅 ∝ 𝐶00∑(1 − 𝑃𝐹𝐴𝐵)𝑃(𝐻0,𝑘)

𝑛𝑟

𝑘=1

 + 𝐶01∑(1 − 𝑃𝐷𝐵)𝑃(𝐻1,𝑘)

𝑛𝑟

𝑘=1

+ 𝐶10∑𝑃𝐹𝐴𝐵𝑃(𝐻0,𝑘)

𝑛𝑟

𝑘=1

+ 𝐶11∑𝑃𝐷𝐵𝑃(𝐻1,𝑘)

𝑛𝑟

𝑘=1

 

(30) 

 

The term 𝑃𝐷𝐵  in Eq. (30), the Bayes probability of detection, is the expected proportion of the structure’s 

damaged region correctly classified or, equivalently, the portion of the structure that exhibits the type II 

error. The term 𝑃𝐹𝐴𝐵 , the Bayes probability of false alarm, is the expected proportion of the structure’s 

undamaged regions incorrectly classified or portion of the structure exhibiting type I error. 

Finally, if one includes the cost of the system (including the SHM hardware deployment/maintenance costs, 

etc.) in the Bayes risk, 𝐶𝑆, the final form of Bayes risk/cost (𝐶𝐵) takes the following form: 

 

𝐶𝐵 = 𝐶𝑆 +∑𝐶00(1 − 𝑃𝐹𝐴𝐵)𝑃(𝐻0,𝑘)

𝑛𝑟

𝑘=1

 +∑𝐶01(1 − 𝑃𝐷𝐵)𝑃(𝐻1,𝑘)

𝑛𝑟

𝑘=1

+∑𝐶10𝑃𝐹𝐴𝐵𝑃(𝐻0,𝑘)

𝑛𝑟

𝑘=1

+∑𝐶11𝑃𝐷𝐵𝑃(𝐻1,𝑘)

𝑛𝑟

𝑘=1

 

(31) 

 

3.3 Definition of the objective functions 

Once 𝑃𝐷𝑠𝑦𝑠 is defined, it can be exploited for sensor network optimization in a damage identification scenario. 

Since most SHM applications require a combination of classification performance and cost minimization for 

a cost-effective implementation, both metrics are considered simultaneously in the following formulation. 

This work focuses on a multi-objective optimization procedure, designing a sensor network that maximizes 

the system probability of detection and, at the same time, minimizes the Bayes risk. Considering the structure 

is divided in 𝑛𝑟 regions as introduced in Section 3.2, the two objective functions are defined as: 

 

{
 

 
𝑦1 = −𝑃𝐷𝑠𝑦𝑠

𝑦2 = 𝐶𝑠 +∑𝐶00(1 − 𝑃𝐹𝐴𝐵)𝑃(𝐻0,𝑘) + 𝐶01(1 − 𝑃𝐷𝐵)𝑃(𝐻1,𝑘) + 𝐶10𝑃𝐹𝐴𝐵𝑃(𝐻0,𝑘) + 𝐶11𝑃𝐷𝐵𝑃(𝐻0,𝑘),

𝑛𝑟

𝑘=1

 (32) 

 

where the first objective function, 𝑦1, aims to maximize the global probability of detection or classification 

performance (expressed as minimizing its negative, since 𝑃𝐷𝑠𝑦𝑠>0), while 𝑦2 aims to minimize the Bayes risk 

(𝑅) or cost (𝐶𝐵). The latter includes costs associated with incorrect decisions and the system’s explicit cost, 

incorporating eventual prior knowledge about structure's areas more prone to damage. 

The cost-related parameters must be chosen according to the specific application and allow considering the 

entire SHM system life cycle in the design process. The remaining parameters 𝑃(𝐻0,𝑘) and 𝑃(𝐻1,𝑘) permit 
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one to include prior knowledge about the probability that region 𝑘 may be damaged or undamaged. The 

latter becomes particularly important when installing many sensors is impractical either from economic or 

technological points of view, possibly biasing sensors placement toward more critical areas. However, it is 

worth remarking that prior knowledge is not a mandatory input. 

Since multi-objective optimizations likely return a family of solutions rather than a single one, a decision 

metric is defined. Considering a weighting parameter 𝛼 governing the relative importance of the two 

objective functions, the optimal design, 𝑑opt, is considered as the sensor network minimizing the following 

relation: 

 𝑑opt = argmind(𝛼𝑦1
2 + (1 − 𝛼)𝑦2

2) (33) 

 

Normalization of the two objective functions is desired before implementing Eq. (33), especially if they feature 

different signs or order of magnitude, to avoid wrong consideration of one of the two. A normalization 

between 0 and 1 as in Eq. (34) can be considered to implement Eq. (33). 

 

{
 

 𝑦1 =
𝑦1 − 𝑦1𝑚𝑖𝑛

𝑦1𝑚𝑎𝑥 − 𝑦1𝑚𝑖𝑛

𝑦2 =
𝑦2 − 𝑦2𝑚𝑖𝑛

𝑦2𝑚𝑎𝑥 − 𝑦2𝑚𝑖𝑛

 (34) 

 

Once the optimal designs, 𝑑opt, are available as a function of the 𝛼 coefficient, the designer can choose the 

best for the specific application. Applications demanding life-safety consideration might favor maximum 

classification/detection performance design (e.g., commercial airframe inspections), thus greater 𝛼, while 

applications requiring minimized downtime (e.g., a manufacturing process) might favor a minimal risk/cost 

design (lower 𝛼). 

As a conclusion to Section 3, the primary workflow for implementing this multi-objective optimization 

strategy is shown in Fig. 3. 
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Fig. 3. Flowchart of the methodology. 

 

 

4 The case study 

The sensor network design through multi-objective optimization is presented with a cracked plate and a 

strain-based feature for damage identification. The reference specimen and the simulated strain measures 

are briefly described in this Section. 

4.1 The specimen 

The multi-objective optimization procedure for damage identification sensor network design is tested on a 

clamped plate with different crack damages. The plate has a length of 150 𝑚𝑚, a width of 60 𝑚𝑚, and a 

thickness of 5 𝑚𝑚, as shown in Fig. 4a. 
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(a) (b) 

Fig. 4. The specimen and the damages; (a) The specimen with damage regions; (b) Graphical representation of the smallest 
(yellow) and biggest (red) simulated crack positions. 

The plate is made of Aluminum with an elastic modulus of 79 𝐺𝑃𝑎 and a Poisson’s ratio of 0.33. A load in the 

positive X direction with a magnitude of 12 𝑘𝑁 is applied at the specimen free end, simulating plate tension.  

Six damage regions are considered in the specimen (Fig. 4a), and damages of different sizes are simulated 

within each area. Specifically, suppose that six damage positions are contemplated in the areas more prone 

to damaging with sizes spanning from 2.5 𝑚𝑚 to 15 𝑚𝑚 with steps of 2.5 𝑚𝑚 in positions 3-5 and from 

2.5 𝑚𝑚 to 10 𝑚𝑚 in positions 1-2, as shown in Fig. 4b. This discretization considers different types of cracks, 

investigating the method’s ability to cope with non-homogenous damages. 

4.2 The direct FEM for strain measure simulation 

The index (𝑖(𝑡)) for damage identification is derived comparing strains in the actual condition (𝐴(𝑡)) to a 

reference baseline (𝐵), reflected in an index deviation from the null condition if the structure is damaged. 

The pattern of strain measures is numerically simulated with a Finite Element Model (FEM) of the plate. The 

latter is generated in ABAQUS with a high-fidelity mesh consisting of 9000 S4 shell elements. Fatigue crack 

damage is implemented using the SEAM function available in ABAQUS, thus duplicating the nodes along the 

crack edge for crack opening when the specimen is loaded.  

The FE model is used to generate strain patterns in healthy and damaged states, followed by evaluating the 

different method responses when the numerically simulated strain measures are considered for computing 

the probability of detection. An example of the strain pattern and the deformed configuration simulated for 

different crack positions and sizes is shown in Fig. 5, visualizing the influence of different damages on the 

strain field.  Numerical noise, modeled as white Gaussian noise with a standard deviation 𝜎𝑋 = 5 𝜇𝜀 is added 

to the baseline and actual measures, enabling the implementation of a statistical hypothesis testing as in Eqs. 

(2) and (3). The standard deviation value is chosen to simulate realistic performances of strain's acquisition 

systems. 

  
(a) (b) 
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(c) (d) 

Fig. 5. Example of strain fields (𝜺𝒙𝒙) due to cracks; (a) 2.5 mm crack in position 3; (b) 2.5 mm crack in position 1; (c) 15 mm crack 
in position 3; (d) 10 mm crack in position 1. 

5. Results 

The optimization is carried out with a genetic algorithm for its well-established robustness. It is not the 

authors intention to enter into the details of related theory background, while the interested reader can refer 

to [42] for review. 

The optimal sensor placement results are presented in this Section for the case study in Section 4. Firstly, the 

procedure is presented for a reference set of cost parameters (Section 5.1) and compared to engineering 

solutions (Section 5.2). A sensitivity analysis of the Bayes risk’s parameters is performed, providing insights 

into their influence on the network. Solutions obtained with a multi-objective framework are compared to 

single-objective optimal designs in Section 5.4, and, finally, the Receiver Operating Characteristic (ROC) 

curves are shown for different optimal networks in Section 5.5. 

5.1 The reference sensor network design 

The optimal design solution is a function of the parameters in Eq. (32) that are set according to the specific 

application. The parameters are defined as a function of the costs of normal operation (𝐶00) and are 

summarized in Table 1. Since the strain values do not feature a considerable gradient, the simulated 

measures are extracted considering a coarser grid of sensors with 5 𝑚𝑚 spacing to reduce the computational 

time. Thus, a maximum of 360 sensors can potentially be installed on the plate. 

Parameter Value Parameter Value 

𝐶00 1 𝑃(𝐻1) 0.5 

𝐶10 100𝐶00 𝑃(𝐻0) 0.5 
𝐶01 104𝐶00 𝑃(𝐻0,𝑘) 1.4 ⋅ 10−3 

𝐶11 300𝐶00 𝑃(𝐻1,𝑘) 1.4 ⋅ 10−3 

𝐶𝑠 2𝐶00 ⋅ 𝑛𝑠 𝑃𝐹𝐴 10−3 
Table 1. Cost parameters summary. 

Subplots of Fig. 6 show the optimal design results. The optimal design front, 𝑑opt, according to Eq. (33), is 

highlighted in Fig. 6a with red dots as a function of different 𝛼 values. Notice that proper normalizations 

between 0 and 1 of the two objective functions as in Eq. (34) are performed before computing the decision 

metric to consider the two functions properly. The two extreme values for 𝛼 in Eq. (33), i.e., 𝛼 = 0 and 𝛼 =

1, bias the multi-objective function toward a single target for the optimal design. Specifically, 𝛼 = 0 considers 

only the minimum Bayes cost in the Pareto front solutions, favoring solutions with a lower cost of the system 

and, thus, fewer sensors (Fig. 6b). On the other hand, 𝛼 = 1 means that maximization of the health 

classification performances is chosen for optimal decision criterium, and solutions tending to saturate all the 

sensor positions available are promoted (Fig. 6d). The relative importance of the two objective functions 

varies with 𝛼, and one can choose the best approach for the specific application. Values of 𝛼 closer to 0 tend 

to solutions favoring cost reduction, while values closer to 1, solutions that maximize detection probability. 

A value of 𝛼 = 0.5 (Fig. 6c) considers a perfect balance between the functions, being the design solution 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



17 
 

closest to the Utopia point [43], which ideally minimizes both functions simultaneously. It is worth remarking 

that the Utopia point does not exist for non-trivial multi-objective optimization problems. 

  
(a) (b) 𝛼 = 0 

  
(c) 𝛼 = 0.5 (d) 𝛼 = 1 

Fig. 6. The optimal sensor design; (a) The optimal design choice (red circles) as a function of 𝜶; (b) The optimal sensor network 
(𝜶=0); (c) The optimal sensor network (𝜶=0.5); (d) The optimal sensor network (𝜶=1). 

 

5.2 Comparison with engineering solutions 

Whenever an optimization problem is involved, it is worth investigating if the optimized solution outperforms 

easier and less demanding designs that one can obtain with simple engineering judgment. The optimal design 

solutions of Section 5.1 are compared with many sensor networks, differently covering the plate area in a 

structured way and reflecting the uniform prior probability of damage, 𝑃(𝐻1,𝑘) = 𝑐 (with 𝑐 a constant value), 

in each region. Different solutions have been tested; however, only four networks with an increasing number 

of sensors are reported for brevity in this section. Fig. 7 shows the structured solutions aiming at the best 

geometrical plate coverage for different sensor numbers to consider varying SHM system costs in the Bayes 

risk objective function. 

  
(a) Structured 1 (b) Structured 2 
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(c) Structured 3 (d) Structured 4 

Fig. 7. The structured engineering designs. 

 
Fig. 8. Comparison of the probability of detection and Bayes cost between optimized and engineering solutions. 

The solutions are compared in terms of damage classification capability (𝑃𝐷) and cost (𝐶𝐵). Fig. 8 highlights 

the results separately for each testing metric. Blue bars refer to the different structured designs in Fig. 7, 

while the green bar to the optimal design solution for 𝛼 = 0. One can notice that the optimal design 

outperforms all the structured solutions in terms of costs and classification performances. An increase of 

about 816% compared to the best structured option (0.440 vs. 0.048) is achieved in the detection capability 

with a cost reduction of 23%, proving the additional optimization work is justified. Furthermore, the red and 

blue lines represent the probability of detections and Bayes costs as a function of 𝛼. Useful information from 

a decisional point of view can be extracted from the graph. One can readily compare the cost of performance 

variations as a function of the two metrics' relative importance. Indeed, the 𝛼 = 0.6 design features a 

classification improvement of 29%, passing from 0.440 (𝛼 = 0) to 0.568 (𝛼 = 0.6), with a small supplement 

of cost (3821 $ vs. 3898 $, about +2%). The improvement of classification relative to the cost increase can be 

evaluated with a synthetic index, 𝐶𝑡𝑜𝐶 =

𝑃𝐷(𝛼)

𝑃𝐷(𝛼=0)
−1

𝐶𝐵(𝛼)

𝐶𝐵(𝛼=0)
−1

. Fig. 9 shows the index as a function of 𝛼. The design for 

𝛼 = 0.05 features the biggest classification improvement for the smallest increase in the cost (+31), resulting 

in the design configuration pursuing the highest increase of probability of detection with the minimum 

increase in Bayes cost. 
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Fig. 9. Classification improvement to cost increase ratio as a function of 𝜶. 

5.3 Sensitivity analysis on the cost parameters 

The optimization results are strongly influenced by the parameters included in the Bayes cost definition. In 

this section, a sensitivity analysis on the cost parameters is performed to understand each parameter's 

relative influence on the results. Specifically, Fig. 10 and Fig. 11 show the results for varying parameters and 

prior probabilities of damage in the structure. 

Optimal designs like in Section 5.1 are obtained for varying costs of correct decisions, 𝐶11, and in the limit 

condition where only the costs of wrong decisions are considered. A negligible effect on the results is also 

produced for varying false positives costs, with almost unaffected solutions when the parameter is decreased 

by one order of magnitude. The same solution that maximizes the probability of detection is obtained for all 

the parameter combinations when 𝛼 = 1. If 𝛼=1, only the first objective function is considered in the decision 

metric, and the solutions are unaffected by the cost parameters variations. Two parameters mostly impact 

the results, i.e., 𝐶𝑠 and 𝐶01. Increasing the system's cost or reducing the false negatives' cost, the optimization 

favors designs with fewer sensors. The latter is due to a more significant impact of additional sensors on the 

cost, if 𝐶𝑠 is increased, and relaxation on the consequences for missed damages for reduced cost of false 

negatives. It is interesting noticing the algorithm behavior in the limiting condition of a negligible cost of the 

system (𝐶𝑠 = 0) or too high cost of false alarms (Fig. 10a). When one of the previously described conditions 

is met, the optimization degenerates in a trivial multi-objective optimization, and all the Pareto front 

solutions collapse in the Utopia point. The two objective functions become comparable, and a unique 

solution is found for the multi-objective problem.  

Fig. 11 shows the influence of different prior probabilities of damage on the sensor networks. The influence 

of different prior damage probabilities within the plate are investigated, considering small variation 

compared to the uniform distribution (e.g., Fig. 11a) up to prior probabilities completely biased toward one 

region (e.g., Fig. 11l). Prior knowledge in the optimization procedure can favor solution designs exploiting 

information from previous experiments. The latter is crucial if the number of sensors is constrained and 

previous experience evidenced areas more prone to damage. Even though results mostly reflect prior 

knowledge (e.g., Fig. 11b or Fig. 11h), the algorithm does not blindly mirror the prior probability distribution. 

The latter is particularly visible in Fig. 11m, where, despite a prior probability completely biased toward 

Region 1 (Fig. 11l), the sensors are not installed only in that region. Indeed, the probability of detection is 

computed with damages simulated in all the regions, inducing sensor placement in Region 2-6 even though 

in a smaller quantity compared to Region 1, demonstrating that the method can also cope with wrong prior 

information. 
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(a) 𝐶𝑠 = 0 or 𝐶01 = 10

7 or 𝛼 = 1 

  
(b) 𝐶01 = 10

3  (𝛼 = 0) (c) 𝐶01 = 10
3  (𝛼 = 0.5) 

  
(d) 𝐶10 = 10  (𝛼 = 0) (e) 𝐶10 = 10  (𝛼 = 0.5) 

  
(f) 𝐶11 = 600  (𝛼 = 0) (g) 𝐶11 = 600  (𝛼 = 0.5) 

  
(h) 𝐶𝑠 = 10  (𝛼 = 0) (i) 𝐶𝑠 = 10  (𝛼 = 0.5) 
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(l) 𝐶00 = 𝐶11 = 0  (𝛼 = 0) (m) 𝐶00 = 𝐶11 = 0  (𝛼 = 0.5) 

Fig. 10. Sensor design for different cost parameters and 𝜶. 

 

 

  

(a) (b) 𝛼 = 0 (c) 𝛼 = 0.5 

 

  

(d) (e) 𝛼 = 0 (f) 𝛼 = 0.5 

 

  

(g) (h) 𝛼 = 0 (i) 𝛼 = 0.5 

 

  

(l) (m) 𝛼 = 0 (n) 𝛼 = 0.5 
Fig. 11. Optimal designs (𝜶 = 𝟎 and 𝜶 = 𝟎. 𝟓) with different prior probabilities of damage (left column). 

 

5.4 Comparison between single and multi-objective optimizations 
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In this work, the sensor placement strategy is based on multi-objective optimization. However, usually, one 

either maximizes the classification performance or minimizes the cost, without considering how the choice 

of one optimization logic affects other’s metrics. In this section, the single objective minimization of the cost 

is compared with the corresponding multi-objective solution (𝛼 = 0). The two optimizations feature a 𝐶𝑠 =

10 to further highlights the differences in the solutions of the two approaches. Notice that the comparison 

between the single-objective solution maximizing the probability of damage and the corresponding multi-

objective design (𝛼 = 1) degenerates in the same solution, as described in Section 5.3, and for this reason is 

not reported. 

 

  

(a) (b) Single-objective (Bayes cost) (c) Multi-objective (𝛼 = 0) 
Fig. 12. Single and multi-objective optimal designs with a non-uniform prior probability of damage and 𝑪𝒔 = 𝟏𝟎. 

 

 
Fig. 13. Multi and single-objective solutions performances in terms of Bayes cost and probability of detection. 

The two solutions are shown in Fig. 12 with a non-uniform prior probability of damage, as in Fig. 12a. One 

can readily notice that the single-objective optimization design solution features a lower number of sensors 

compared to the multi-objective design considering only the Bayes-cost in the decision metric 𝑑opt. The latter 

is due to the influence of the Neyman-Pearson objective function in the Pareto front of the multi-objective 

optimization even when only the Bayes cost is considered in 𝑑opt. Indeed, the metric is computed from the 

Pareto front, where the two objective functions influence each other. The impact of the first objective 

function in the results is even more evident in Fig. 13, where the values of the Bayes cost (𝐶𝐵) and probability 

of detection (𝑃𝐷) are compared. The cost increment of the multi-objective design (+9%) is highly 

compensated by a system probability of detection order of magnitudes greater than the single-objective one. 

The gap can be further increased if one considers the design solution for 𝛼 = 0.05, which possesses a 𝑃𝐷 

about 3 times bigger than for 𝛼 = 0, with an increase in the cost of only 3%. 
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5.5 The Receiver Operating Characteristic (ROC) curves 

The previous sections' results are obtained with a fixed probability of false alarms, 𝑃𝐹𝐴, when computing the 

threshold for damage classification, 𝛾′. However, the system performance in terms of probability of detection 

is usually provided as a function of the probability of false alarms, possibly defining the Receiver Operating 

Characteristic (ROC) curves. 

The optimal design solutions (𝛼 = 0) as a function of the probability of detection are visually compared in 

Fig. 14, considering a biased prior probability of damage. The effect of relaxing the constraint on the 

admissible false alarm rate in the health classification threshold is promptly visible. Sensor networks with 

fewer sensors are favored for increasing 𝑃𝐹𝐴. Indeed, a threshold associated with a higher false allowance 

rate returns a detector with a higher probability of detection and, consequently, the same effect can be 

obtained in the objective functions with a lower number of sensors. 

 
(a) 

  
(b) 𝑑opt1  (𝑃𝐹𝐴 = 10

−3, 𝛼 = 0) (c) 𝑑opt2  (𝑃𝐹𝐴 = 10
−2, 𝛼 = 0) 

  
(d) 𝑑opt3  (𝑃𝐹𝐴 = 10

−1, 𝛼 = 0) (e) 𝑑opt4  (𝑃𝐹𝐴 = 5 ⋅ 10
−1, 𝛼 = 0) 

Fig. 14. Optimal designs for different probability of false alarms. 

The same four optimal sensor network designs are used to compute the ROC curves of the SHM system. Fig. 

15 shows the probability of detection for each 𝑑opt as a function of the parameters 𝛼 and 𝑃𝐹𝐴. As expected, 

the performances in terms of 𝑃𝐷 differ mostly for low 𝛼 or 𝑃𝐹𝐴, while tending to similar performances for 

relatively high 𝑃𝐹𝐴 (Fig. 15a). The ROC curves for 𝛼 = 0 are shown in  Fig. 15b. The converging behavior is 

visible for optimal designs 𝑑opt1
− 𝑑opt3

 and 𝑃𝐹𝐴 > 0.05. However, 𝑑opt4
 features the slowest converging 

rate since the number of sensors is the lowest. The convergence rate is higher if considering 𝛼 tending to 1 

(Fig. 15a). Finally, the ROC curves are shown for fixed 𝑃𝐹𝐴 = 10
−3 (Fig. 15c), as in the previous sections, and 

providing the corresponding Bayes cost, normalized between 0 and 1, for each point of the curve and 

computed for 𝑃𝐹𝐴 = 10
−3. Generally, the Bayes cost increases as the optimal designs with higher false 
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allowance are considered. The lowest costs are, indeed, found for 𝑑opt1. The ROC curves are computed for 

𝑃𝐹𝐴 = 10
−3, which is also the probability of false alarm considered while optimizing 𝑑opt1. Thus, the solution 

behaves better in terms of Bayes costs and probability of detections, confirming the design behaves optimally 

for the specific conditions. 

 
(a) 

  
(b) 𝛼 = 0 (c) 𝑃𝐹𝐴 = 10

−3 

Fig. 15. ROC curves; (a) ROC curves for different alpha; (b) ROC curves (𝜶 = 𝟎); (b) ROC curves and Bayes costs for 𝑷𝑭𝑨 = 𝟏𝟎
−𝟑. 

 

6. Conclusions 

A rigorous unified and consistent framework for optimal statistical detector definition and sensor placement 

is described in this work. An optimal statistical detector for anomaly detection is defined based on the 

Neyman-Pearson likelihood ratio test and is exploited in a multi-objective optimization paradigm for SHM 

sensor network design. The results detailed in this work are thoroughly documented to provide the reader 

with a critical method for interpreting multi-objective optimization results and systematically produce 

optimal sensor networks for SHM.  

The optimal statistical detector is constructed for typical SHM damage sensitive features based on a squared 

difference between the actual and reference conditions. The detector performance in terms of classification 

is then exploited for multi-objective optimization of an SHM sensor network. The optimization aims to 

balance maximization of the classification performances and minimization of the total cost (or Bayes risk). 

The latter is a function of different costs, including type I and II decision error costs and the SHM system cost. 

However, it usually provides a contrasting solution design compared to a maximum detection approach, 

despite being both fundamental aspects for an industrially-competitive SHM system. 

Numerical results with a cracked plate show the method attractiveness for designing data collection systems 

systematically. The optimal strain-based sensing design features significant improvements in cost reduction 
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and performance enhancements than networks defined based on engineering judgement only. Different 

sensitivity analyses have been performed, investigating the Bayes cost parameters influence on the results, 

and detailing the most significant one. Furthermore, the multi-objective optimal designs have been 

compared with single-objective ones, illustrating the main difference between the two and demonstrating 

an overall better performance in the detection efficiency over cost. The Receiver Operating Characteristic 

(ROC) curves are also provided as a function of different designs. 

Finally, even though not reported here, the optimal detector construction and the sensor placement design 

remain valid with different damage-sensitive features and sensor types, e.g., an ultrasonic distributed 

monitoring system based on piezoelectric sensors.  The only thing that changes is the specific measurement 

model process that leads to the specific formulation of the various probability terms. The authors' future 

research will be devoted to implementing the method with different SHM scenarios and algorithms 

extremely sensitive to proper sensor network definition.   
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