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Connected and Automated Vehicles (CAVs) have the potential to greatly improve 

roadway safety, mobility, and associated environmental factors. To date, a large number 

of CAV applications have been developed and tested, both in the real world and in 

simulation. In nearly all cases, it is assumed that vehicle localization is sufficiently 

accurate at all times. Only a few studies have accounted for uncertainty in vehicle 

localization, which can be significant given CAVs’ strong reliance on Global Navigation 

Satellite Systems (GNSS)-based systems for positioning. Positioning accuracy can vary 

both in time and space and is sometimes quite poor (>10 meters) in urban and other 

challenging environments for GNSS. This is a problem given that many CAV 

applications (e.g., Cooperative Adaptive Cruise Control) require at least lane-level, or 

submeter, accuracy. 
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This dissertation focuses on the gap between current (affordable) Connected 

Vehicle positioning technology and CAV applications’ positioning requirements. As a 

first step, the positioning requirements of a wide range of CAV applications were 

qualitatively determined. The positioning attributes examined were: required accuracy, 

type (i.e., relative vs. absolute positioning), and update rate; and the “maximum benefit” 

accuracy. It was found that lane-level positioning accuracy is critical to enabling 

functionality in a large number of applications.  

Next, the effect of position uncertainty on application performance was tested in a 

simulation environment. Two applications—an environmentally-friendly application for 

signalized intersections, and a safety-focused highway application—were examined. In 

both cases, it was found that application performance can degrade significantly (or 

outright fail) when the positioning accuracy is less than required.  

Given the negative effect of position uncertainty on application performance, a 

position error-tolerant (PE-T) application was developed. A CAV application, 

(cooperative merging) was developed and modified so that it could function when 

position errors typical of an urban environment were present. In addition, it was found 

that adjusting the application in response to position error (by increasing inter-vehicle 

spacing) could increase application benefits in some scenarios. Another way in which this 

application is novel compared to most other existing cooperative merging strategies is 

that it can accommodate application penetration rates varying from 0% to 100%. In fact, 

significant safety, mobility, and environmental benefits are shown even at 20% 

penetration rate. 
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1 Introduction 

Transportation is a vital part of any sizable nation’s economy, yet it often comes 

with negative impacts. Globally, 1.35 million people died in road traffic in 2016, making 

it the leading cause of death for people aged 5-29 around the world, and for people aged 

1-54 in the United States [World Health Organization, 2018]. In addition, the average 

commuter in the United States wastes 54 hours per year in traffic, which is equivalent to 

a congestion cost of $166 billion across the entire country in 2017 [Schrank et al., 2019]. 

In the U.S., the transportation sector accounts for the largest portion of greenhouse gas 

emissions (see Figure 1.1) [U.S. EPA, 2019]. It is clear that road transportation has much 

room for improvement in the areas of safety, mobility, and the environment. 

 

Figure 1.1: Total U.S. Greenhouse Gas Emissions by Economic Sector in 2017 [U.S. EPA, 

2019] 
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Intelligent Transportation Systems (ITS) are one way to tackle some of these 

negative impacts associated with transportation. ITS strategies range from monitoring the 

roadways for better traffic control, to an automated highway system (AHS). An AHS has 

several control layers: 

• Network – oversees highway network and performs routing according to traffic 

and desired directions 

• Link – sets the desired speeds and platoon sizes according to link traffic flows 

• Coordination – schedules interactive maneuvers of vehicles, such as merging and 

splitting 

• Regulation – controls vehicle dynamics 

Although a completely automated highway system is not in the near future, some 

aspects of the AHS can already be implemented as vehicle automation and connectivity 

continue to increase. As vehicles become increasingly connected, it becomes possible to 

improve the safety, mobility, and environmental impact of traffic through Connected 

Vehicle (CV) technology. CV technology utilizes V2V (vehicle-to-vehicle), V2I 

(vehicle-to-infrastructure), and V2X (vehicle-to-everything, such as pedestrians) 

communication to enable a wide range of applications, such as cooperative merging at 

freeway on-ramps. Various means may be used for this communication, with the most 

prominent being cellular (such as C-V2X, see [Vukadinovic et al., 2018]) and Dedicated 

Short Range Communications (DSRC [Harding et al., 2014]).  

A number of Connected Vehicle (CV) applications have already been defined and 

developed around the world. Some applications are rigorously defined, others are already 
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being implemented, while others are still being developed. The potential benefits of these 

applications are huge. A study showed that intersection-focused safety applications could 

minimize up to 575,000 crashes and 5,100 fatalities per year in the U.S. [Chang et al., 

2015]. The same study showed that a combination of V2I applications could reduce 

overall traffic delay by up to 27%, and carbon dioxide emissions and fuel consumption 

by up to 11% [Chang et al., 2015]. 

 

1.1 Problem Statement  

Many Connected Vehicle applications require vehicle position(s) as input. As the 

qualitative analysis in Chapter 3 shows, CV applications have widely varying positioning 

requirements in terms of the required accuracy, type, and update rate of positioning. The 

required accuracy ranges from knowing where the vehicle is in its lane, to simply 

knowing which section of roadway the vehicle is traveling on. As for the type of 

positioning, some applications require absolute positioning, whereas relative positioning 

is sufficient for others. For example, Cooperative Adaptive Cruise Control (CACC) 

requires the relative position and velocity of the vehicles, but the geographic location of 

the vehicles (e.g., which on-ramp the vehicles are closest to) may not matter. For other 

applications, such as routing, the absolute position of the vehicle on the map must be 

known to a certain degree of accuracy. 

Different applications also require position update rates (of sufficient accuracy). 

Applications such as collision warning require the most frequent updates (on the order of 

10 to 100 Hz), whereas an application like Eco-Speed Harmonization, which uses vehicle 
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data to calculate the average speed on a roadway section, may only need position updates 

every 10 seconds or so.  

Studies of CV applications generally assume positioning of the required accuracy 

and update rate to be continuously available (e.g., [Xia et al., 2011; Shladover et al., 

2012]), which is not the case in the real world. The primary positioning method used by 

CVs is some type of GNSS (Global Navigation Satellite Systems) such as GPS. These 

systems can also utilize differential corrections and be aided by some dead reckoning 

[Hailemariam et al., 2018]. In areas with a clear view of the sky, differential GNSS is 

often able to provide positioning with lane-level accuracy (i.e., accuracy sufficient to 

determine which lane the vehicle is traveling in, for which accuracy of <1 m is sufficient 

[Shladover and Tam, 2006]). However, when the GNSS receiver’s sky view is obstructed 

(e.g., due to buildings, terrain, or trees), position errors on the order of ten meters can be 

quite common due to Non-Line of Sight (NLOS) error. For example, Figure 1.2 shows 

the error in the cross-street direction of three different GNSS receivers in a typical “urban 

canyon,” where tall buildings line the streets. The receivers are similar to those used by 

CVs currently. 

 

 

Figure 1.2: Example position error data in an urban canyon 
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The accuracy of GNSS positioning may be improved using other sources of 

positioning information (e.g., inertial sensors, ranging sensors, and map-matching). 

However, a low-cost positioning system that is capable of lane-level accuracy in most 

driving conditions has yet to be realized, as described in Chapter 2. Until such a system is 

available, there will be a gap between CV positioning and the positioning requirements of 

many CV applications. While it is often possible for CV applications to be used even if 

the positioning accuracy is less than required, the two case studies in Chapter 4 show that 

this can significantly reduce application benefits. 

One way to address the current gap between positioning technology and CV 

application requirements, without increasing the cost of the positioning system, is to 

modify CV applications so that they can tolerate realistic levels of vehicle localization 

errors. For example, a simple way to do this is by de-activating an application when the 

position accuracy drops below the required level. A better approach would be to keep the 

application active but make it adaptable to the varying levels of accuracy. For example, 

an application for cooperative merging at highway on-ramps could increase the inter-

vehicle spacing in response to higher position errors, and similarly decrease the vehicle 

spacing when the vehicle positioning accuracy is high, as is described in Chapter 5. 

Other than directly increasing application benefits (by reducing the negative 

impact of position error on application performance), it is expected that making CV 

applications position error-tolerant (PE-T) would also accelerate the deployment of CV 

technology (bringing more of its benefits to society sooner) via the mechanism shown in 
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Figure 1.3. Increasing the application benefits would incentivize the deployment of CV 

technology, which would lead to more benefits due to the higher penetration of the 

technology. An increased deployment of CV technology would also increase the amount 

of data (e.g., probe vehicle data) available, which could be used to improve CV 

application performance. Also, the higher number of Connected agents (vehicles, 

infrastructure, or pedestrians) would allow for better collaborative positioning (see 

Section 2.1). 

 

 

 

Figure 1.3: How PE-T applications could catalyze CV deployment 

 

Another motivation for developing PE-T applications is that CVs will likely have 

varying levels of positioning technology, so it is preferable to have applications that can 

accept those different levels. The difference in positioning technology will likely become 

more pronounced as CVs become more widespread, with newer, high-end systems 

outperforming the older, low-end systems. 

It is apparent that PE-T applications could play a significant role in accelerating 

the deployment of CV technology, allowing society to experience its benefits sooner. As 
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a proof-of-concept of PE-T applications, Chapter 5 describes how a CV application was 

developed and modified to be tolerant of variable positioning error, then tested in 

simulation. This cooperative merging application can certainly improve safety at highway 

merging points, and under certain conditions, it also can improve traffic mobility and 

reduce the environmental impacts of traffic in the area. 

In Chapter 0, another CV application for highways was developed, called 

Anticipatory Lane Change Warning (ALC). It prevents lane changes that are predicted to 

result in unsafe post-lane change situations. This application was also tested in 

simulation, and it was shown that it could reduce the number of potential crashes by up to 

30%. The effect of position error on ALC is also discussed. 

1.2 Contributions 

Within this dissertation are contained several key contributions in the areas of 

Connected and Automated Vehicles (CAVs), cooperative merging, automated lane 

changing, and GNSS error modeling: 

• A novel cooperative merging application has been developed, which is capable 

of handling GNSS position errors typical of an urban canyon. Unlike many 

other cooperative merging strategies in the literature, this application is also 

able to accept application penetration rates varying from 0 to 100%. In order to 

test this application, a GNSS position error model was created based on real-

world data. Traffic simulation tests suggested that the application would 

improve safety, mobility, and environmental impact at highway merging areas. 
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This application can also be tuned (e.g., by increasing the spacing between 

vehicles) to reduce the negative impact of position error on application benefits. 

• A real-time GNSS position error model was developed. This model has been 

used to generate realistic position errors (representative of certain GNSS 

receivers in an urban environment) as an input to CAV applications in traffic 

simulation tests. This is useful for CAV applications that require continuous 

GNSS positioning. 

• An Anticipatory Lane Change algorithm was developed as a new CV 

application. It is an application for improving lane change safety, which was 

tested on highways but may also be applicable to surface streets. Simulation 

tests suggest that it could reduce the number of near-crashes by up to 30%, 

without changing the average speed of vehicles by more than 1%. 

1.3 Organization 

This dissertation is organized as follows. Background concepts and work related 

to the dissertation topic are presented in Chapter 2. Chapter 3 describes a qualitative 

analysis of the positioning requirements of a wide range of CV applications. Chapter 4 

delves deeper into the topic with quantitative tests of the effect of insufficient positioning 

accuracy on two CV applications, Eco-Approach and Departure at Signalized 

Intersections and High Speed Differential Warning. Chapter 5 describes the development 

and evaluation of a position error-tolerant (PE-T) application for cooperative merging at 

highways. The algorithm and simulation tests of the developed ALC application are 
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described in Chapter 6. In the final chapter, concluding remarks are given and future 

work pertaining to each of the chapters is suggested. 
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2 Related Work and Background  

This chapter provides background on CAV applications, positioning for CAVs, 

and the simulation tools used to carry out much of the research in this dissertation. 

Section 2.1 describes the various positioning technologies that are feasible for use by 

CVs. Section 2.2 provides background on CV applications, focusing on the ones studied 

in Chapters 4-6. Section 2.3 describes the tools used to carry out traffic simulation, since 

these played an essential role in the studies described in this dissertation. Finally, Section 

2.4 provides background on the Level of Service concept.  

2.1 Positioning for Connected Vehicles 

A positioning system can be evaluated in terms of the four Required Navigation 

Parameters (RNP): accuracy, integrity, continuity, and availability [Quddus, 2006]. 

Accuracy is defined as how far the measured position is from truth. Integrity is the 

measure of the trust that can be placed in the correctness of the information supplied by a 

navigation system. Continuity is a measure of how continuous (unbroken) the navigation 

solutions are, and availability is the percentage of time that the services of the system are 

usable by the navigator (satisfies the first three criteria). 

This section describes positioning technologies available to Connected Vehicles. 

We classify these technologies (and, in Chapter 3, CV application requirements) based on 

accuracy, type of positioning (relative or absolute), and positioning update rate. We 

separate accuracy into four levels, which are described below:  

1. None: No positioning required. 
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2. Coarse (“Where-on-road”): Accuracy sufficient to determine which roadway 

segment the vehicle is traveling on, and approximate location on it. Positioning 

accuracy is typically 5-10 meters. If the position error exceeds 10 meters, that 

location may be discarded (i.e., the accuracy drops to “None”). 

3. Lane-level: Which lane the vehicle is in (the “absolute positioning” case, 

explained below) or the number of lanes between vehicles (“relative positioning” 

case, explained below). Given that a typical passenger car is 1.8 m wide, the 

position error must be less than 0.9 m. This way, the measured position will fall 

within the correct lane, even if one side of the vehicle is on the lane edge. 

Submeter accuracy is also declared necessary for correct lane assignment in 

[Shladover and Tam, 2006].  

4. Where-in-lane: Where-in-lane accuracy is important for automated driving 

functions such as stopping at a stop bar and lane keeping. While 0.9 m accuracy 

may be sufficient for lane placement, it is not sufficient for these tasks. Therefore, 

we define 0.1 m as the required accuracy. This is also the required accuracy for 

collision avoidance applications in [FRP, 2017].  

 

Another important positioning requirement is positioning type (relative or 

absolute). Non-GNSS sensors such as radar can measure the position of one vehicle 

relative to another (relative positioning) but does not give the vehicle’s location (absolute 

position) without some kind of feature map (in this case, a map of radar-detectable 

features such as described in [Ward and Folkesson, 2016]). 
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Different applications require sufficiently accurate position updates at different 

rates. Applications such as collision warning require the most frequent updates (on the 

order of 10 to 100 Hz), whereas an application like Eco-Speed Harmonization, which 

uses vehicle data to calculate the average speed on a roadway section, may only need the 

position data to be updated every 10 seconds or so. Thus, another positioning requirement 

we identify is the maximum allowable time between position updates. We separate this 

value into three levels: tenths of seconds, seconds, and tens of seconds. 

2.1.1 Global Navigation Satellite Systems 

Global Navigation Satellite Systems (GNSS) are generally used as the primary 

source of position information for CVs. This is because a GNSS receiver can determine a 

user’s three-dimensional position anywhere on Earth with line-of-sight to four or more 

GNSS satellites. The basic operating principle of GNSS is estimation of the distance from 

each satellite to the receiver, referred to as a pseudorange [Farrell et al., 2016]. 

Consumer-grade GNSS receiver accuracy is usually about 10 meters [Farrell et al., 

2016]. This level of accuracy is generally sufficient to determine which road segment a 

vehicle is on, but not which lane it is in. The first GNSS was the Global Positioning 

System (GPS) launched by the United States in 1973; since then, multiple other GNSS 

constellations have come online, such as the European Union’s Galileo, Russia’s 

GLONASS, and China’s Beidou [Wang et al., 2019]. Using multiple constellations 

improves the availability and accuracy of GNSS positioning due to the increased number 

of visible satellites [Walsh et al., 1997; Wang et al., 2012; Liu and Li, 2017]. 
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Differential corrections may be used to improve the accuracy of GNSS so that it 

can provide consistent lane-level accuracy [see, e.g., Du and Barth, 2008]. This technique 

is referred to as Differential GNSS (DGNSS). DGNSS may be differential pseudorange 

or differential phase, though it usually refers to differential pseudorange. Differential 

pseudorange enables accuracy of 1 to 3 m, while differential phase improves it further to 

a few centimeters (where-in-lane accuracy) [Farrell, 2008; Uradzinski et al., 2008]. The 

basic mechanism by which accuracy is improved, for both differential pseudorange and 

differential phase, is explained below. 

Differential pseudorange utilizes the fact that GNSS receivers operating in close 

proximity experience similar “common mode” errors, such as ionospheric and 

tropospheric delay. These errors are shown in the pseudorange equation: 

 
 (2.1) 

where 𝑃𝑟
𝑠 is the measured pseudorange, 𝜌𝑟

𝑠 is the actual pseudorange, 𝑐(𝑑𝑡𝑟 − 𝑑𝑇𝑠) is the 

term containing clock error, 𝐼𝑟
𝑠 and 𝑇𝑟

𝑠 are errors due to ionospheric and tropospheric 

delay, respectively, and 휀𝑟
𝑠 is error due to receiver noise and multipath. 

A base station with known coordinates can determine these time-varying errors 

and broadcast corrections to nearby Differential GNSS receivers. Differential phase 

builds on the accuracy improvement of differential pseudorange. Once the common mode 

errors are eliminated, it is possible to use the carrier phase information of the GNSS 

signal, yielding accuracy approximately 100 times better than differential pseudorange 

[Farrell, 2008]. This technique is commonly known as Real Time Kinematic (RTK). In 

the past, RTK was typically in the domain of expensive dual-frequency receivers. Single-
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frequency receivers are less expensive, but require more time to obtain an RTK fixed-

integers solution. This time can be shortened by using multiple GNSS constellations 

instead of just one [Odijk et al., 2012].  

The drawback of DGNSS is that it requires a separate “correction” signal, using a 

known set of local base stations. These corrections can be received by various means, 

including information on the Internet (e.g., NTRIP (Networked Transport of RTCM via 

Internet Protocol) [Weber et al., 2005]), satellite signal (e.g., WAAS [Pullen et al., 

2002]), or a separate DSRC broadcast. Comparable accuracy to differential pseudorange 

GNSS may be achieved without the need for a base station by directly sharing 

pseudorange signals among vehicles [Alam et al., 2013; de Ponte Müller et al., 2014; 

Lassoued et al., 2017]. This is known as collaborative positioning. However, since there 

is no reference point with known coordinates, the improved accuracy applies only to 

relative positioning. 

 

2.1.1.1 NLOS Error 

A major weakness of GNSS positioning is that large (on the order of 10 m) 

position errors can be common in urban and other areas where the sky view is partially 

blocked. This is the case even if using differential corrections. The mechanism by which 

such error is produced is known as the Non-Line of Sight (NLOS) phenomenon [Groves 

et al., 2012]. When the receiver’s view of the sky is blocked, the following may occur, 

which can worsen GNSS positioning accuracy or even availability: 1) fewer satellites 

may be visible, and 2) satellite signals may reach the receiver via a reflected path (for 



 

15 

 

example, reflected off a building in an urban environment—see Figure 2.1). There are 

two problems associated with (1). First, if less than 4 satellites are visible, it is impossible 

to compute a 3D position solution using GNSS alone. Second, even if the positioning 

solution is still available, a smaller visible portion of the sky means a smaller area over 

which visible satellites can be scattered. This leads to poorer satellite geometry and hence 

lower positional accuracy. 

 

 

Figure 2.1: Example of NLOS error [Groves et al., 2012] 

 

The ramifications of (2) are that the receiver may receive a satellite’s signal via 

the reflected (“NLOS”) path, which erroneously increases the receiver’s estimate of that 

satellite’s pseudorange. The satellite’s signal may even reach the receiver via two or more 

paths (multipath), which also introduces position error. NLOS errors on the order of ten 

meters are easily possible [Maier and Kleiner, 2010; Gu et al., 2015]. While NLOS error 

is generally worst in built-up urban environments, it can also be caused by terrain or 

foliage (e.g., leaves may weaken the GNSS signal). The amount of error varies based on 
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factors such as: the height/geometry of the obstructions, the time of day (affecting 

satellite geometry), and antenna height. 

 

2.1.1.2 Dealing with NLOS Error 

There are various ways to deal with NLOS error. Bressler et al. classified methods 

of dealing with NLOS error into four general approaches: ignore, mitigate, identify, and 

exploit [Bressler et al., 2016]. “Ignore” is self-explanatory, and the consequences of 

using this approach are illustrated in Chapter 4. Mitigation techniques (e.g., different 

antenna design) attempt to reduce the magnitude of NLOS error. Identifying a NLOS 

signal allows it to be eliminated from the position solution or exploited. An example of 

exploitation is using 3D building models and ray-tracing to calculate the extra distance 

traveled by a NLOS signal, effectively allowing it to be used to calculate a pseudorange. 

“Avoid” simply refers to avoiding areas with more NLOS error. This could be 

accomplished using a routing application, given that there are data on which areas tend to 

have more severe NLOS error. 

Various methods for reducing the negative impact of NLOS error have been 

researched [Breßler et al., 2016]. One type of method uses three-dimensional (3D) 

building information together with satellite ephemeris (orbit) data. For example, a 3D 

map may be used to calculate the number of satellites that should be visible at a particular 

time and place. This technique has been used to improve GNSS-based services such as 

navigation [Suh and Shibasaki, 2007; Asavasuthirakul and Karimi, 2013], by routing road 

users through areas with better satellite visibility. 3D building models may also be used 



 

17 

 

to calculate which GNSS signals should be LOS, and which ones should not, at a 

particular time and location. When using this technique to reduce the GNSS position 

error, it is referred to as 3DMA (3D map-aided) GNSS [Gu et al., 2015; Groves et al., 

2012; Miura et al., 2015]. 

2.1.2 Other Positioning Technologies 

Techniques to enhance the absolute positioning accuracy of GNSS include: 

integration with sensors that measure vehicle motion (“ego motion sensors”), and map-

matching of the vehicle position. Ego motion sensors typically part of Inertial Navigation 

Systems (see, e.g., [Farrell, 2000; Redmill et al., 2001]) and Encoder Navigation Systems 

(these might use wheel speed sensors and steering angle encoders [Rezaei and Sengupta, 

2007], wheel turn sensors [Hohman et al., 2000], etc.). While these sensors can be used 

in conjunction with GNSS to provide long-term stable accuracy, inertial navigation 

systems (e.g., dead reckoning) by themselves accumulate error over time and therefore 

are not dependable during long periods of time without accurate position updates from 

other sources such as GNSS. 

Another technique used to improve positional accuracy is map-matching with 

sufficiently accurate maps. Map-matching (see, e.g., [Greenfeld, 2002]) constrains the 

vehicle position to the roadway, eliminating or partially correcting erroneous position 

estimates that appear to fall outside the roadway. However, this technique requires a map 

database, and cannot guarantee lane-level accuracy. Ranging sensors can be used for 

positioning independently of GNSS. Vehicle-based ranging sensors detect other vehicles 

and measure their position and speed relative to the sensor-equipped vehicle. Such 
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sensors include camera, radar, and LiDAR (Light Detection And Ranging); in order of 

increasing cost and accuracy. These sensors are typically capable of lane-level or higher 

accuracy within a range of about 50 m [Sakr and Bansal, 2016]. However, such sensors 

add to the vehicle cost. 

Ranging sensors may also be used for absolute positioning when combined with a 

feature-based map. LiDAR is probably the most prominent example [Farrell et al., 2016], 

although radar and vision may be used too. A vehicle equipped with multiple radar 

sensors may traverse a route, building a map of radar-detected features that can later be 

used for localization [Ward and Folkesson, 2016]. Computer vision may be used for 

absolute positioning by, for instance, determining distance and orientation to a landmark 

with known coordinates [Kogan et al., 2016]. 

2.2 CAV Applications 

Many Connected Vehicle applications have already been defined and developed 

around the world. A list of CV applications is maintained at the USDOT’s Connected 

Vehicle Reference Implementation Architecture (CVRIA) website [USDOT, 2017]. The 

list contains 88 applications as of November 2019. Each application is accompanied by a 

text description, system architecture diagram, and further information. Some applications 

are rigorously defined, others are already being implemented, and still others are in the 

process of being further developed. Several of these applications are being tested in pilot 

deployments of CV technology across the U.S., such as the Connected Vehicle Pilot 

Deployment [USDOT (“Connected Vehicle Pilot Deployment Program”)]. 
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Connected Vehicle applications can be grouped into three main types, based on 

the application objective: safety, mobility, and environmental applications. Safety 

applications are intended to reduce the number and/or severity of accidents, mobility 

applications are mainly designed to reduce travel time and increase roadway capacity, 

and environmental applications are designed to reduce energy consumption and/or 

pollutant emissions. A list of these applications can be found in Tables 3.1-3.3.  

2.2.1 Eco Approach and Departure 

Eco-Approach and Departure at Signalized Intersections (EAD) provides speed 

guidance to a vehicle so that it can pass through a signalized intersection in an 

environmentally-friendly manner [Altan et al., 2017]. This requires that both the vehicle 

and the traffic signal be equipped with wireless communication technology such as 

Dedicated Short Range Communications (DSRC) radios. 

The basic idea is that once the vehicle enters the communication range of a 

signalized intersection (nominally 300 m for DSRC), it obtains the lane-level Signal 

Phase and Timing (SPaT) information of the intersection, such as current phase (i.e., 

green, yellow, or red) and time until phase change [SAE Intl., “Dedicated Short Range 

Communications (DSRC) Message Set Dictionary”]. Using this information, the vehicle 

can plan its speed trajectory in order to reduce energy use. For example, if the vehicle 

cannot make it through the intersection on the current green phase without exceeding the 

speed limit, the driver will be advised to start coasting to a stop rather than keep pressing 

on the gas pedal. This corresponds to “Scenario 3” (red line) in Figure 2.2. All of the 

scenarios are described below. 
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Figure 2.2: EAD scenarios [Altan et al., 2017] 

EAD Scenarios: 

• Scenario 1: No speed change necessary in order to pass through the intersection 

on green. 

• Scenario 2: Vehicle must accelerate in order to pass through on green. 

• Scenario 3: Vehicle will have to stop, so it is advised to begin coasting. 

• Scenario 4: Vehicle decelerates pre-emptively in order to avoid coming to a 

complete stop. 

Of course, vehicles in front may limit the EAD-equipped vehicle’s speed. This is 

modeled in the simulation by the EAD-equipped vehicle reverting to the speed calculated 

by the default car-following model, if it is less than the speed recommended by EAD. 
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2.2.2 High Speed Differential Warning 

The purpose of the High Speed Differential Warning application is to reduce the 

likelihood of a collision by identifying high speed differentials between the application-

equipped vehicle and nearby vehicles, and providing a warning to the driver [Li et al., 

2017]. For example, if a vehicle ahead of a HSDW-equipped vehicle suddenly slows 

down (and both vehicles are equipped with wireless communication technology such as 

DSRC), the driver of the HSDW-equipped vehicle may be advised to decelerate. This 

corresponds to Scenario 1 in Figure 2.3. All 5 scenarios depicted in Figure 2.3 are listed 

below, together with their corresponding driver response.  

 

HSDW Scenarios: 

1. Slow vehicle in current lane. Driver decelerates to reduce the speed differential. 

2. Fast vehicles upstream or slow vehicles downstream in the target lane. Driver 

does not change lanes or changes lanes more cautiously. 

3. Slow vehicle changing to current lane. Driver decelerates to reduce the speed 

differential. 

4. Slow vehicle merging to current lane. Driver decelerates to reduce the speed 

differential. 

5. Fast vehicles upstream on the mainline. Driver waits for a safe occasion to merge. 
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Figure 2.3: High Speed Differential Warning Scenarios [Li et al., 2017] 

 

2.2.3 Cooperative Merging 

Merging refers to when two (or more) streams of vehicles converge into one 

stream. This is a common occurrence at traffic facilities such as roundabouts, where 

vehicles from streets must merge into the roundabout traffic, and highways, where 

vehicles merge onto the highway from on-ramps. In these cases, we refer to the stream 

being merged into as the “mainline.” CAV technology may be used to improve the 

merging process, for example through so-called “cooperative merging.” This involves 

adjusting the speeds of merging and/or mainline vehicles to achieve benefits such as 

greater safety or comfort. A study conducted by Davis suggested that cooperative 

merging can prevent the transition from free-flow to synchronous flow, which is the 

intermediate stage before a traffic jam [Davis, 2006]. 

Merging strategies can be classified into centralized and decentralized 

approaches. In a centralized approach, at least one task is globally decided for all vehicles 

by a central controller; whereas in decentralized control, each vehicle determines its own 

control policy based on information received from other vehicles or some coordinator 

[Rios-Torres and Malikopolous, 2016]. 
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Decentralized approaches include use of a “virtual” vehicle: for example, a 

vehicle on one lane may “follow” a vehicle on the other lane as if it were in its own lane 

[Lu et al., 2004]. Wang et al. developed a distributed consensus-based merging algorithm 

and tested it in simulation [Wang et al., 2018]. In the tested scenarios, it improved the 

mobility and environmental impact of the network. 

Zhao et al. investigated an optimal merging strategy for vehicles at roundabouts, 

including mixed-traffic (varying percentages of vehicles using the strategy) scenarios 

[Zhao et al., 2018]. They found that a high penetration rate (>80%) of equipped vehicles 

was necessary to achieve substantial savings in travel time and energy use, though this 

could be partially due to the near-capacity demand of the network. Another study of 

automated merging in mixed traffic showed mobility benefits when the penetration rate 

was 50% or higher [Rios-Torres and Malikopoulos, 2018]. 

 

2.2.4 Automated Lane Changes 

A number of researchers have developed algorithms for performing automated lane 

changes. Nilsson et al. developed a low-complexity lane change maneuver algorithm that 

determines if, when (the tactical aspect), and how (the control aspect) to perform a lane 

change [Nilsson et al., 2016]. Luo et al. developed a maneuver that includes both 

trajectory planning and tracking [Luo et al., 2016]. This method is notable in that it can 

abort the lane change midway, if necessary. Other approaches handle both lane changing 

and car following [Wang et al., 2015; Dang et al., 2015]. 
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The role of wireless communication technologies in lane changing and collision 

prevention has received significant attention in the literature. Chakroun and Cherkaoui 

developed a lane change advisory application and studied its network-wide impact on 

mobility [Chakroun and Cherkaoui, 2016]. Researchers examined the use of V2V 

communication in reducing the number of secondary collisions caused by an accident, and 

found that a technology penetration of approximately 25% was sufficient to drastically 

reduce the number of accidents [Busson et al., 2011]. The effect of warning 

communications on safety and capacity in a vehicle string was analyzed in [Mourllion et 

al., 2006]. 

 

2.3 Simulation Tools 

This section describes the traffic simulation tools that were used to carry out the 

work described in this dissertation. Traffic simulation modeling is an often-used tool to 

study “what-if” scenarios in transportation, such as future roadway design and the 

projected impact of CAV technology. Simulation resolution may range from microscopic 

to macroscopic. Microscopic simulation models the movements of individual vehicles, 

mesoscopic simulation deals with the average flows/speeds of links (segments of 

roadway), and macroscopic simulation can be used to perform nationwide predictions. In 

the context of CAV applications, microscopic simulation is most commonly used because 

it can model automated vehicle behavior in a CAV application(s).  

Two traffic microsimulation packages were used in this dissertation: Quadstone 

Paramics [Quadstone Paramics, 2016] and PTV Vissim [PTV Group, 2018]. Both 
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packages allow detailed simulation of the impact of CAV technology on vehicle 

trajectories, and the resulting ramifications for safety, mobility, and the environment in 

the study area (the “simulation network”). CAV technology and behaviors can be 

implemented in the traffic simulation models using an Application Programming 

Interface (API). The API allows users to access and modify simulation data (e.g., 

collecting second-by-second vehicle speed, modifying vehicle behavior). This 

functionality was also used to simulate position error, and to collect second-by-second 

speed and other data. 

When using traffic simulation, multiple runs are generally conducted for each 

tested configuration. Due to the stochastic nature of traffic, simulation results may vary 

greatly depending on random variables such as vehicle input times. These random 

variables correspond to what is called the random seed in such simulation packages as 

Paramics and VISSIM. If a simulation is run twice using the same random seed number, 

the results will be exactly the same. However, changing the random seed will almost 

certainly make the results different. Therefore, for each configuration (combination of 

simulation parameters) to be tested, multiple runs were made, each with a different 

random seed. 

Safety performance throughout the simulation network can be estimated using the 

Surrogate Safety Assessment Model (SSAM) developed by U.S. Federal Highway 

Administration (FHWA) [Gettman et al., 2008].  In SSAM, the safety performance is 

evaluated in terms of “conflicts”. A “conflict” is when two or more road users approach 

each other such that there is a risk of collision if their movements remain unchanged. A 
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high correlation has been demonstrated between conflicts and crashes [Gettman et al., 

2008]. Mobility performance was measured in terms of travel times and speeds, all of 

which were obtainable through the software API. Environmental metrics such as energy 

use and emissions of carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons (HC), 

nitrous oxides (NOx), and particulate matter (PM2.5),  were estimated using the U.S. 

Environmental Protection Agency’s Motor Vehicle Emission Simulator (MOVES) model 

[U.S. EPA, 2011]. 

2.4 Level of Service 

Level of Service is a measure of the quality of vehicle traffic service. It is given as 

a grade, with A being the best and F being the worst. The Highway Capacity Manual 

defines Levels of Service (LOS) for both highways and arterial roads [Highway Capacity 

Manual, 2010]. For highways, LOS is defined based on the vehicle density (see Figure 

2.4). LOS A represent free-flow, where drivers are able to maneuver freely and with 
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hardly any constraint imposed by other vehicles. LOS F represents traffic jam conditions, 

where vehicles move in lockstep. 

 

 

Figure 2.4: Definition of Level of Service for Freeway Segment [Highway Capacity Manual, 

2010] 
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3 Analysis of the Positioning Requirements of CV 

Applications 

3.1 Overview 

Most studies of CV applications assume vehicle positions to be perfectly known. 

However, given the current state of vehicle positioning technology, that is not the case. 

To investigate whether there is a gap between what the positioning technology can 

provide, and the positioning requirements of CV applications, it is first necessary to know 

what those positioning requirements are. Therefore, the objective of this chapter is to 

qualitatively identify the positioning attributes of the CV applications listed in the 

CVRIA, namely the required accuracy, the “maximum benefit” accuracy, required 

positioning type (relative or absolute), and update rate. These attributes are explained in 

Section 3.2. The results for each application are grouped by application type (safety, 

mobility, environmental) in Section 3.3. This section also summarizes the trends in 

positioning attributes across groups of applications. The chapter ends with a summary 

and discussion. 

 

3.2 Analysis Methodology 

The vehicle positioning attributes of each CV application listed in the CVRIA 

were identified using the information accompanying the application. These positioning 

attributes are explained below: 
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• Required accuracy: The minimum level of accuracy required for basic 

functionality of the application. We use four levels: where-in-lane, lane-level, 

coarse, and none (see Section 2.1 for an explanation of these). 

• The “maximum benefit” accuracy: Many applications gain significant benefits 

(additional knowledge or functionality) at a higher-than-required level of 

positioning accuracy [Farrell et al., 2016]. If so, the highest such level is 

considered the “maximum benefit” accuracy, and the benefit(s) are listed under 

that level. Sometimes these benefits, such as “automatic vehicle reaction” for the 

Control Loss Warning application, require some level of vehicle automation, 

which may not be featured on all Connected Vehicles.  

• Required type of positioning: Whether absolute or relative positioning is needed. If 

both are required, “absolute” is indicated. This is because relative position can be 

derived from absolute positions, but not vice versa. Absolute positioning also 

requires map information of sufficient accuracy [Farrell et al., 2016]. Note that the 

positioning type may change at a higher accuracy level than required.  

• Update interval: The maximum time that may elapse between position updates of 

the required accuracy, in order for the application to function properly. We classify 

this interval into three levels: tenths of seconds, seconds, and tens of seconds. 
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3.3 Analysis Results 

The positioning requirements of the applications listed at CVRIA were analyzed 

as discussed in Section 3.2. Table 3.1 shows the results for Safety applications, Table 3.2 

for Mobility applications, and Table 3.3 for Environmental applications.  In the tables, a 

checkmark indicates the required positioning accuracy. The positioning type is absolute 

unless the word “relative” appears in parentheses. Text written under a higher level of 

accuracy indicates significant benefits (additional knowledge or functionality) gained at 

that level. The subsections following Tables 3.1-3.3 provide summary statistics about the 

positioning attributes. 
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Table 3.1: Safety Connected Vehicle Applications 

 
 

No 
Positioning 

Coarse Positioning Lane-Level Positioning 
Where-in-Lane 

Positioning 

Max. Time 
between 
Position 

Updates (s) 

Transit 
Safety 

Transit Pedestrian Indication  ✓ 
Pedestrian-bus proximity 

warning 
(relative) 

Pedestrian-bus collision 
warning 
(relative) 

1 

Transit vehicle at Station/Stop 
Warnings 

 ✓ 
Detection of transit vehicle 

pulling in or out 
 1 

Vehicle Turning Right in Front of a 
Transit Vehicle 

  
✓ 

(relative) 
 0.1 

V2I 
Safety 

Curve Speed Warning  ✓ 
Whether speed within curve is 

likely to exceed 
recommendation 

 1 

In-Vehicle Signage  ✓ 
More accurate “virtual sign” 

location  
 1 

Oversize Vehicle Warning  ✓ 
Accurate distance to low-

clearance zone 
 1 

Pedestrian in Signalized Crosswalk 
Warning 

 ✓ 
Detection of vehicle/pedestrian 

in crosswalk 
 0.1 

Railroad Crossing Violation Warning  
✓ 

(relative) 
Better collision prediction 

(relative) 
 1 

Red Light Violation Warning   ✓  1 

Reduced Speed Zone Warning / Lane 
Closure 

 ✓ 
Whether current lane will be 

closed ahead 
 1 

Restricted Lane Warnings  ✓ 
Whether vehicle is in restricted 

lane 
 1 

Spot Weather Impact Warning  ✓ 
Lane-specific weather impacts 

(e.g., ice) 
 1 

Stop Sign Gap Assist   ✓  0.1 

Stop Sign Violation Warning   ✓  1 

Warnings about Hazards in a Work 
Zone 

  ✓  0.1 

Warnings about Upcoming Work Zone  ✓ 
Whether current lane will be 

obstructed, etc. 
 1 

V2V 
Safety 

Blind Spot Warning  + Lane Change 
Warning 

  
✓ 

(relative) 
More accurate warning 

(relative) 
0.1 

Control Loss Warning  
✓ 

(relative) 
Distance/direction to out-of-

control vehicle 
Automatic vehicle 

reaction 
0.1 
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No 
Positioning 

Coarse Positioning Lane-Level Positioning 
Where-in-Lane 

Positioning 

Max. Time 
between 
Position 

Updates (s) 

(relative) 

Do Not Pass Warning   
✓ 

(relative) 
 0.1 

Emergency Electronic Brake Light  
✓ 

(relative) 
Lane of braking vehicle 

(relative) 
 0.1 

Emergency Vehicle Alert  
✓ 

(relative) 
Lane of emergency vehicle 

(relative) 
 1 

Forward Collision Warning   
✓ 

(relative) 

Fewer false 
positives/negatives 

(relative) 
0.1 

Intersection Movement Assist    ✓ 
Improved collision 

prediction 
(relative) 

0.1 

Motorcycle Approaching Indication  
✓ 

(relative) 
Lane of motorcycle 

(relative) 
Collision prediction 

(relative) 
1 

Pre-crash Actions   
✓ 

(relative) 

Improved collision 
prediction 
(relative) 

0.1 

Situational Awareness  
✓ 

(relative) 
Lane-specific warnings 

(relative) 
 1 

Slow Vehicle Warning  
✓ 

(relative) 
Lane of slow vehicle 

(relative) 
 1 

Stationary Vehicle Warning  
✓ 

(relative) 
Lane of stationary vehicle 

(relative) 
 0.1 

Tailgating Advisory   
✓ 

(relative) 

Fewer false 
positives/negatives 

(relative) 
0.1 

Vehicle Emergency Response ✓ 
Approximate crash 

location  
Lane of crash 

Diagnosis of how 
accident happened 

10 
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Table 3.2: Mobility Connected Vehicle Applications 

 
No 

Positioning 
Coarse Positioning Lane-Level Positioning 

Where-in-Lane 
Positioning 

Max. Time 
between 
Position 

Updates (s) 

Border Border Management Systems ✓     

Commercial Vehicle 
Fleet Operations 

Container Security ✓     

Container/Chassis Operating Data ✓ Container locations    

Electronic Work Diaries  ✓ 
Driving pattern and 

other detailed 
information 

 10 

Intelligent Access Program  ✓ 
More detailed 

monitoring 
 10 

Intelligent Access Program – Mass 
Monitoring 

 ✓ 
More detailed 

monitoring 
 10 

Commercial Vehicle 
Roadside Operations 

Intelligent Speed Compliance  ✓ 
Speed may be derived 

from position 
 1 

Smart Roadside Initiative  ✓ 
More accurate 

geofence 
 1 

Electronic Payment 
Electronic Toll Collection ✓  

Required in the 
absence of an RF 

transponder 
 1 

Road Use Charging  ✓   10 

Freight Advanced 
Traveler Information 
Systems 

Freight Drayage Optimization  ✓   1 

Freight Specific Dynamic Travel 
Planning 

 ✓   1 

Planning and 
Performance 
Monitoring 

Performance Monitoring and 
Planning 

 ✓ 
Lane-level speed and  

travel time data 
 10 

Public Safety 

Advanced Automatic Crash 
Notification Relay  

 ✓ Lane of crashed vehicle  1 

Emergency Communications and 
Evacuation 

 ✓   10 

Incident Scene Pre-Arrival Staging 
Guidance for Emergency 
Responders 

 ✓ 
Better information for 

staging of assets 
 1 

Incident Scene Work Zone Alerts 
for Drivers and Workers 

 ✓ 
Lane information for 

guidance around 
incident 

 1 
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No 

Positioning 
Coarse Positioning Lane-Level Positioning 

Where-in-Lane 
Positioning 

Max. Time 
between 
Position 

Updates (s) 

Traffic Network 

Cooperative Adaptive Cruise 
Control (CACC) 

  
✓ 

(relative) 

Smaller gaps possible 
for car-following, lane 

changes 
(relative) 

Lane keeping 
(absolute) 

0.1 

Queue Warning  
✓ 

(relative) 
Lane of queue 

(relative) 
 1 

Speed Harmonization  ✓ 

Can use lane-level 
vehicle trajectories to 

calculate 
recommended speed 

 1 

Vehicle Data for Traffic 
Operations 

 ✓ 
Better incident 

detection 
 1 

Traffic Signals 

Emergency Vehicle Preemption   ✓ 

Can plan route through 
traffic and direct other 
vehicles to make way 

(relative) 

 1 

Freight Signal Priority  
✓ 
 

Whether vehicle is in 
left-turn bay (and 

hence requires left-
turn green) 

 1 

Intelligent Traffic Signal System  ✓ 
Number of vehicles 

arriving in each 
lane/direction of travel 

 1 

Pedestrian Mobility    ✓ 1 

Transit Signal Priority  ✓ 

Whether vehicle is in 
left-turn bay (and 

hence requires left-
turn green) 

 1 

Transit 

Dynamic Ridesharing  ✓ 
High-occupancy lane 

usage data 
 10 

Dynamic Transit Operations  ✓   10 

Integrated Multi-Modal Electronic 
Payment 

✓   
Required in the 
absence of RF 
transponder 

 1 

Intermittent Bus Lanes  ✓ 
Whether vehicle is in 

bus lane  
 1 
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No 

Positioning 
Coarse Positioning Lane-Level Positioning 

Where-in-Lane 
Positioning 

Max. Time 
between 
Position 

Updates (s) 

Road ID for the Visually Impaired  ✓ 
Location of 

appropriate bus 
 1 

Smart Park and Ride System   ✓  10 

Transit Connection Protection  ✓   10 

Transit Stop Requested  ✓   1 

Traveler Information 

Advanced Traveler Information 
Systems 

✓ 

Allows use of probe 
vehicles for collection 

of traffic and other 
data 

Lane-level data from 
probe vehicles 

  

Traveler Information-Smart 
Parking 

 ✓ 
Location of empty 

parking spaces 
  

* Also requires identification of vehicle as freight/transit vehicle 
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Table 3.3: Environmental Connected Vehicle Applications 

 
No 

Positioning 
Coarse Positioning 

Lane-Level 
Positioning 

Where-in-Lane 
Positioning 

Max. Time between 
Position Updates (s) 

AERIS/ 
Sustainable 

Travel 

Connected Eco-Driving ✓ 
Eco-driving advice 

based on road grade, 
local traffic speeds…  

Interactions with 
nearby vehicles 

(relative) 
 10 

Dynamic Eco-Routing  ✓   10 

Eco- Approach and Departure 
at Signalized Intersections 

 ✓  
Can stop behind 

queue at 
intersection 

Automatically stop at 
stop bar 

1 

Eco-Cooperative Adaptive 
Cruise Control 

  
✓ 

(relative) 

Smaller gaps possible 
for car-following, lane 

changes 
(relative) 

Lane keeping 
(absolute) 

0.1 

Eco-Freight Signal Priority  ✓  

Whether vehicle is 
in left-turn lane 

(requires left-turn 
green) 

 1 

Eco-Integrated Corridor 
Management Decision 
Support System 

✓ 
Link-level emissions 

data 
  10 

Eco-lanes Management  ✓  
Whether vehicle is 

in eco-lane 
 10 

Eco-Multimodal Real-Time 
Traveler Information 

✓ 

Allows use of probe 
vehicles for 

collection of traffic 
and other data 

Lane-level data from 
probe vehicles 

 10 

Eco-Ramp Metering   ✓  1 

Eco-Smart Parking  ✓ 
Parking space 

locations 
 1 

Eco-Speed Harmonization  ✓ 
Lane-level 

recommended 
speeds 

 1 

Eco-Traffic Signal Timing  ✓ 

Number of vehicles 
in each 

lane/direction of 
travel 

 1 

Eco-Transit Signal Priority  ✓ 
Whether vehicle is 

in left-turn lane 
 1 



 

 

 

3
7
 

 
No 

Positioning 
Coarse Positioning 

Lane-Level 
Positioning 

Where-in-Lane 
Positioning 

Max. Time between 
Position Updates (s) 

(requires left-turn 
green) 

Electric Charging Stations 
Management 

✓  
Wireless charging at 

parking space 
  

Low Emissions Zone 
Management 

 ✓ 
Whether vehicle is 

crossing zone 
boundary 

 1 

Roadside Lighting  ✓   1 

Road Weather 

Enhanced Maintenance 
Decision Support System 

 ✓   1 

Road Weather Information 
and Routing Support for 
Emergency Responders 

 ✓   1 

Road Weather Information for 
Freight Carriers 

 ✓   1 

Road Weather Information for 
Maintenance and Fleet 
Management Systems 

 ✓   1 

Road Weather Motorist Alert 
and Warning  

 ✓   1 

Variable Speed Limits for 
Weather-Responsive Traffic 
Management 

 ✓   1 

* Also requires identification of vehicle as freight/transit vehicle 
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3.3.1 All Applications 

82% of all applications require either no or “coarse” positioning for basic 

functionality; the remainder require lane-level positioning. Of the applications which 

require positioning, about three-quarters require absolute positioning, and the rest need 

only relative positioning. 

Figure 3.1 and Figure 3.2 break down these statistics by application type. 

Regarding the position accuracy (Figure 3.1), most of the applications requiring lane-

level accuracy are in Safety; 90% of the Mobility and Environmental applications require 

either coarse positioning or none at all. Regarding the positioning type (Figure 3.2), 

Safety contains most of the relative positioning applications. When positioning is 

required by a Mobility or Environmental application, it is usually absolute. 

 

 

Figure 3.1: Required positioning accuracy (by application type) 
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Figure 3.2: Required positioning type (by application type) 

 

Despite the fact that lane-level accuracy enables nearly all applications, 15% of 

all applications benefit from where-in-lane accuracy, and many more benefit from a 

higher level of accuracy than is required. In fact, the “maximum benefit” accuracy is 

lane-level or higher for 80% of the applications. Figure 3.3 shows the distribution of 

required vs. “maximum benefit” accuracy. Notably, while about 10 of the applications do 

not require positioning, nearly all applications benefit from some form of positioning. 
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Figure 3.3. Required vs. “maximum benefit” accuracy 

 

Figure 3.4 examines the distribution of the “maximum benefit” accuracy for each 

application type. It can be seen that the “maximum benefit” accuracy is lane-level or 

higher for all Safety applications, and for over 60% of the Mobility and Environmental 

applications. 

 

 

Figure 3.4. “Maximum benefit” positioning accuracy by application type 
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3.3.2 Safety applications 

The 30 Safety applications provide information that is intended to reduce the risk 

of an accident. These applications address collisions with transit vehicles (Transit 

Safety), location-based hazards (V2I, or vehicle-to-infrastructure, Safety), and collisions 

with other vehicles (V2V, or vehicle-to-vehicle, Safety). Transit Safety contains only 

three applications. Following is a discussion of the other two groups of Safety 

applications, which are larger. 

 The 13 V2I Safety applications provide safety information based on vehicle 

location along the roadway. It follows that most (12 out of 13) require absolute 

positioning. For those applications which warn of a potential hazard ahead, such as Curve 

Speed Warning (approximately two-thirds of the applications fall into this category), 

coarse positioning is sufficient. The remaining one-third deals with collisions between 

vehicles and therefore requires lane-level positioning. However, all applications in this 

group benefit from lane-level accuracy.  

Updates every 0.1 s are necessary for some of the collision prediction 

applications; an update interval on the order of 1 s is sufficient for the rest of the V2I 

Safety applications, which display information inside the vehicle once it reaches a certain 

area of the roadway. The positioning requirements are summarized below: 

• Type: Absolute (12), Relative (1) 

• Required Accuracy: Lane-level (4), Coarse (9) 

• Update Interval: 0.1 s (3), 1 s (10)  
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The 14 V2V Safety applications are intended to prevent vehicle-vehicle crashes. 

Hence, nearly all require relative positioning (not absolute positioning). Similar to the 

V2I Safety applications, only a portion of these applications require lane-level accuracy, 

but all benefit from it. For most, the interval between accurate position updates must be 

on the order of 0.1 s, because vehicle dynamics must be closely tracked (and warnings 

given) in a timely manner.  

• Type: Absolute (1), Relative (12), None (1) 

• Required Accuracy: Lane-level (6), Coarse (7), None (1) 

• Update Interval: 0.1 s (9), 1 s (4), 10 s (1) 

3.3.3 Mobility applications 

The 36 Mobility applications are intended to facilitate the movement of goods and 

vehicles. As such, they include applications to improve emergency response, ease traffic 

congestion, facilitate ridesharing, etc. There are 11 groups of Mobility applications.  

While coarse positioning enables nearly all Mobility applications (see Figure 3.1), 

the “maximum benefit” accuracy is generally lane-level. Figure 3.5 shows how the 

“maximum benefit” accuracy varies from group to group. The first 6 groups are mostly 

small (1-2 applications each), so they are consolidated into the first bar. We see that lane-

level is the dominant “maximum benefit” position accuracy in every bar. Also, the 

Traffic Network and Traffic Signals groups benefit from higher accuracy levels than the 

Public Safety and Transit groups. 
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Figure 3.5. “Maximum benefit” positioning accuracy by group (mobility applications) 

 

3.3.4 Environmental applications 

The 22 Environmental applications deal with the environmental aspects of traffic: 

reducing energy use and emissions (the AERIS/Sustainable Travel group) and providing 

road weather information (the Road Weather group).  

The 16 AERIS/Sustainable Travel applications range from Eco-CACC and other 

applications involving partial automation, to applications giving advice upon request 

(e.g., Dynamic Eco-Routing). In the former case, a short interval (about 0.1 s) between 

lane-level positioning updates is necessary, whereas in the latter case, a longer interval 

(on the order of 10 s) between coarse positioning updates can suffice. Therefore, the 

positioning requirements of this group are quite diverse. They are summarized below: 

• Type: Absolute (11), Relative (1), None (4) 

• Required Accuracy: Lane-level (2), Coarse (10), None (4) 

• Update Interval: 0.1 s (1), 1 s (9), 10 s (5) 
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Approximately half of the AERIS/Sustainable Travel applications have a Mobility 

counterpart (for example, Speed Harmonization is the Mobility version of Eco-Speed 

Harmonization), in which case the positioning requirements are almost identical. The 

difference between the applications lies in the objective: Environmental applications 

primarily seek to reduce energy use and/or emissions, while Mobility applications 

primarily aim to lower overall travel time. 

The Road Weather applications deal with weather conditions such as high winds, 

standing water, and flooding along the roadway. All require coarse, absolute positioning 

and do not gain any obvious benefits at higher levels of positioning accuracy. Though, to 

use probe vehicle data to accurately determine which areas of the roadway are impacted 

by weather conditions, position updates every second are preferable. 

3.4 Summary and Discussion 

Table 3.4 shows the dominant trends in the large groups (groups with 4 or more 

applications). While V2I and V2V Safety are the only groups in which a significant 

number of applications require lane-level positioning, it can be seen that most groups still 

benefit from lane-level positioning. The time interval between accurate position updates 

must be on the order of seconds for most application groups; V2V Safety’s requirement is 

even stricter, 0.1 second. Finally, absolute positioning is required by most groups. The 

exceptions are V2V Safety and some of the Traffic Network applications. 
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Table 3.4: Summary table of application groups 

  Accuracy   

Application 
Type 

Group No 
Positioning 

Coarse 
Positioning 

Lane-Level 
Positioning 

Where-in-
Lane 

Positioning 

Max. Time 
between 
Position 

Updates (s) 

Positioning 
Type 

Safety 
V2I Safety  ✓ ✓+  1 Abs 

V2V Safety  ✓ ✓+ + 0.1 Rel 

Mobility 

Public 
Safety 

 
✓ +  1 Abs 

Traffic 
Network 

 
✓ +  1 Rel/Abs 

Traffic 
Signals 

 
✓ +  1 Abs 

Transit  ✓ +  10/1 Abs 

Environmental 

Sustainable 
Travel 

 
✓ +  10/1 Abs 

Road 
Weather 

 
✓   1 Abs 

LEGEND: ✓   REQUIRED +   GAINS SIGNIFICANT BENEFITS 
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4 Impact of Position Uncertainty on Selected CV 

Applications 

4.1 Overview 

In the previous chapters, the vehicle positioning requirements of a variety of 

Connected Vehicle applications were qualitatively determined, and it was shown that 

affordable positioning technologies for CVs are not able to provide lane-level positioning 

in all environments. However, it was not clear how much of an impact substandard 

positioning (e.g., lower positioning accuracy than required) would have on application 

benefits, and existing studies of CV applications tend to neglect position uncertainty. 

This chapter describes case studies that were carried out to quantify the impact of 

substandard positioning accuracy on CAV applications, and the resulting effect on traffic 

in the study area. Two state-of-the-art CAV applications were examined: 1) an 

environmentally-friendly application for arterial roads, called Eco-Approach and 

Departure at Signalized Intersections; and 2) a safety-focused highway application, High 

Speed Differential Warning. The applications are described in Section 2.2. 

Traffic simulation was used to evaluate the impact of various levels of positioning 

uncertainties on these applications at the traffic level. The traffic micro-simulation  

package  Quadstone  Paramics version 6.9.3 [Quadstone Paramics] was used (see Section 

2). The simulations were carried out on simulation networks that have been calibrated 

using real-world data collected in the field (e.g., average speed and flow at various points 
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throughout the network). Different levels of position error were tested, and its effects on 

the safety, mobility, and environmental benefits of the applications were evaluated. 

The rest of this chapter is organized as follows. Section 4.2 explains how position 

uncertainty was characterized for use in the simulations. Section 4.3 describes the 

simulation setup and results for the Eco-Approach and Departure application. Section 4.4 

does the same for the High Speed Differential Warning application. Section 4.5 

concludes the chapter with a summary and discussion. 

4.2 Characterization of Position Uncertainty 

Given that 𝐱𝑣 = (𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣 , 𝑐𝛿𝑡)⊤ ≜ (𝒑⊤, 𝑐𝛿𝑡)⊤ represents the three-dimensional 

vehicle position and local clock offset with respect to GNSS time reference, a reasonable 

model for its estimated position is 

 �̂�𝑣 =  𝐱𝑣 +  𝜼𝒗 (4.1) 

where 𝜼𝒗 is a random term representing the position estimation error,  modeled  as 

𝜼𝒗 ~ 𝑁(𝝁𝑣 ,  𝚺𝑣). The covariance matrix is not necessarily diagonal, but we might initially 

consider  𝚺𝑣 = 𝑑𝑖𝑎𝑔(𝜎𝑥
2, 𝜎𝑦

2, 𝜎𝑧
2), with 𝜎𝑖

2 the variance of the estimates of the i-th 

coordinate. 

It is commonly agreed that positioning errors are adequately characterized by a  

Gaussian  random  variable,  if  the number of estimates is sufficiently high [Diggelen 

2007]. Using the Eco-Approach and Departure application as an example, vehicle 

position is used to estimate the vehicle’s distance to the intersection (𝑑𝑣2𝑖) as soon as the 

vehicle enters the intersection’s communication range (see Figure 4.1). Each vehicle 
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makes this estimate once for a given intersection. When considering many vehicles’ 

estimates of this distance, it can be said that 

 

 �̂�𝑣2𝑖  ~ 𝑁(𝑑𝑣2𝑖  +  𝜇𝑑 , 𝜎𝑑
2) (4.2) 

 

where �̂�𝑣2𝑖 is a vehicle’s estimated distance from the intersection; 𝜇𝑑  is the mean error 

(bias), and 𝜎𝑑
2 is the variance of the error (noise). Both of these parameters depend on the 

errors committed on the position estimate, which propagate to �̂�𝑣2𝑖. More precisely, we 

could write 𝜇𝑑 ≜  𝜇𝑑(𝝁𝑣) and 𝜎𝑑
2 ≜ 𝜎𝑑

2(𝚺𝑣). 

 

 

Figure 4.1: Impact of position uncertainty on estimated vehicle position 
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4.3 Eco-Approach and Departure at Signalized Intersections 

4.3.1 Position Disturbance to EAD 

As discussed in Section 4.2, longitudinal position error affects the  𝑑𝑣2𝑖  (distance 

to intersection) input to the EAD application. It is assumed that the vehicle is able to 

follow the car in front in a manner similar to a human driver, and is also able to stop at 

the stopbar of an intersection. This could represent: 1) a human driver who is trying to 

follow the speed recommended by EAD; or 2) a vehicle with automated speed control 

that also has a camera for detecting the stopbar and the vehicle ahead (although radar or 

LiDAR could also be used to detect the vehicle ahead). Lateral error could affect the 

application if the vehicle’s lateral position is used to determine the vehicle’s lane and thus 

which SPaT information to use (e.g., through movement vs. left turn). However, if the 

vehicle’s route is known beforehand (which could be done by tying the driver’s 

navigation system to the EAD application), then the vehicle’s lane is not needed to 

determine which SPaT information to use. Therefore, we do not consider lateral position 

error in our analysis of this application. 

Using the position error model described in Section 4.2, we assume that the bias 

𝜇𝑑 = 0, which should be true when averaged over a sufficiently high number of vehicles. 

Therefore, different levels of 𝜎𝑑 are tested. In a Gaussian distribution, 99% of 

observations fall within 3𝜎 of the mean. Therefore, we test the following error levels: 

3𝜎𝑑 = {0, 20, 40, 60, 80} meters. “0 m” represents the ideal case with no position error, 

the “20 m” case represents some urban canyon effect, and higher levels of error represent 
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an increasing “urban canyon” effect. The hypothesized effect of an erroneous �̂�𝑣2𝑖 is as 

follows. If �̂�𝑣2𝑖 is incorrect, the speed advice will also be incorrect (e.g., speed up instead 

of coast), resulting in increased energy/emissions. 

4.3.2 Simulation Setup 

A three-intersection signalized corridor was used for the simulation tests. The 

corridor is based on a section of El Camino Real in Palo Alto, California (Figure 4.2). 

Traffic demands and signal timing were calibrated using data collected in the field. There 

are three lanes in each direction, the intersection spacing varies from 200 to 500 meters 

and the speed limit is 40 mph. Vehicle counts and their origin-destination patterns were 

calibrated for the peak hour of a typical weekday morning (7:30-8:30 AM) in summer 

2005. The calibrated volume-to-capacity ratio of the network is 0.77, which is considered 

heavy traffic. 
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Figure 4.2. Simulation network for EAD 

 

To account for the stochastic nature of traffic in the real world, multiple 

simulation runs were conducted and an average Measure of Effectiveness (MOE) was 

obtained for each scenario. The error bars in Figure 4.3 and Figure 4.4 represent the 

estimated error of the MOE, which is given by the following equation [Williams et al., 

2018]: 

 𝜖 =  𝑡𝛼/2

𝛿

𝜇√𝑁
 (4.3) 

where 𝑡𝛼/2 is the critical value of the t distribution at the significance level α (α = 0.05 in 

our study); µ and δ are the mean and standard deviation, respectively, of the MOE based 

on the already conducted runs; N is the number of runs; and 𝜖 is the error specified as a 

fraction of the mean µ. 
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4.3.3 Results 

The effect of position error on EAD was tested at multiple traffic levels and 

penetration rates of EAD. The default setting was heavy traffic (100% of the calibrated 

traffic volume) and a 100% penetration rate of EAD (all vehicles are EAD-equipped). 

This corresponds to the “Baseline” case in Figure 4.3 and Figure 4.4. To investigate the 

effect in light traffic, tests were also conducted at 50% of the calibrated traffic volume. 

Finally, to test the effect at intermediate penetration of the technology, an EAD 

penetration rate of 50% was also tested.  

Figure 4.3 shows how the energy savings of the EAD application change at 

different levels of position error. It can be seen that the Baseline energy savings start to 

decrease once the position error exceeds 20 m. For the other cases, the energy savings 

remain rather stable regardless of the position error. As Figure 4.4 shows, EAD’s effect 

on travel time is roughly the same whether the maximum position error is 0 (ideal case) 

or 20 m. At higher levels of position error, EAD’s travel time penalty increases for all 

three combinations of EAD penetration rate and traffic volume. Therefore, we say 20 

meters is the maximum error the application can tolerate before performance starts to 

degrade on this particular roadway network. 
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Figure 4.3: Impact of position uncertainty on energy use 

 

 

Figure 4.4: Impact of position uncertainty on mobility (travel time) 
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4.4 High Speed Differential Warning 

4.4.1 Position Disturbance to HSDW 

Longitudinal, and especially lateral, position error are hypothesized to negatively 

affect the HSDW application. Longitudinal error would affect the estimated distance 

between the Host Vehicle and Remote Vehicle (i.e., ∆𝑥′ in Figure 4.1). Lateral error 

could cause the estimated lane of either vehicle to be incorrect. This is quite serious, as it 

would result in a mistaken HSDW scenario, or an HSDW scenario not being recognized 

as one. Any of these outcomes would lead to incorrect HSDW logic and possibly an 

inappropriate driver response, which could reduce the safety benefits of the application. 

Since it was hypothesized that the application would be quite sensitive to lateral 

position error, small lateral errors were tested. The lateral error of each communication-

capable vehicle was drawn at each time step in simulation, from a Gaussian distribution 

having 𝜇 = 0 and 3𝜎 = 5 𝑚𝑒𝑡𝑒𝑟𝑠. In other words, the magnitude of error is less than 5 

m, 99% of the time. The estimated lane of each communication-capable vehicle is based 

on the true lane, the position error, and the lane width. If the estimated position falls 

outside the roadway boundary, the estimated lane is set to the closest lane to that position. 

4.4.2 Simulation Setup 

A 15-mile highway network was used for simulation tests of HSDW. The network 

is based on a section of California State Route 91 East (SR-91E), extending from the 

Orange County Line to La Sierra Avenue in Riverside, California (see Figure 4.5). It has 

curved sections and 9 pairs of on-/off-ramps. The number of lanes varies from 4 to 6; the 
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speed limit is 65 mph. The road segment is highly utilized. Traffic demands for this 

network were calibrated based on a typical weekday morning in the summer of 2006 

[Boriboonsomsin and Barth, 2006].  

 

 

Figure 4.5: Simulation Network for HSDW (SR-91E) 

 

Since HSDW is primarily a safety application, the chosen Measure of 

Effectiveness (MOE) was a surrogate safety metric, the average number of potential rear-

end conflicts per vehicle. This is calculated as the total number of potential rear end 

conflicts divided by the total number of vehicles. 10 runs were made for each 

combination of traffic volume level and DSRC penetration rate. The error associated with 

the MOE for each configuration was obtained using equation (4.3). The error is 

represented by the error bars in Figure 4.6 - Figure 4.9. 

4.4.3 Results 

The position disturbance to HSDW was tested at two traffic volumes and two 

application penetration rates. The traffic volumes tested were medium (25,000 vehicles) 

and heavy (32,000 vehicles). These correspond to Levels of Service D (transitional flows) 
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and E (unstable flows), respectively, for that network [HCM 2010]. In this study, the 

penetration rate of HSDW was fixed at 9% of DSRC-equipped vehicles (to represent the 

market share of an automobile manufacturer that chooses to include the HSDW 

application on its DSRC-equipped vehicles), and DSRC penetration rates of 20% and 

100% were tested. 

Chronologically speaking, a DSRC penetration rate of 20% will be reached before 

100%. When the penetration rate is 20% and the traffic volume is medium, neither the 

HSDW-equipped nor the other vehicles have a significant change in the number of 

conflicts (see Figure 4.6), even with perfect positioning. In the presence of position error, 

the average number of conflicts increases for HSDW-equipped vehicles, but as the error 

bars show this change is not statistically significant.  

 

 

Figure 4.6: HSDW results (Medium traffic, 20% DSRC-equipped) 
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When the traffic level is heavy (still 20% penetration of DSRC), HSDW provides 

a large safety benefit for HSDW-equipped vehicles (see Figure 4.7). With perfect 

positioning, HSDW cuts the number of conflicts in half. However, adding lateral errors 

up to 5 m is sufficient to decrease the safety benefit substantially (from -50% conflicts to 

-30%). 

 

 

Figure 4.7: HSDW results (Heavy traffic, 20% DSRC-equipped) 

 

When the penetration rate of DSRC is 100%, the results for medium traffic 

volume are similar to the results for a 20% DSRC penetration rate (see Figure 4.8). In 

heavy traffic (Figure 4.9), HSDW with perfect positioning cuts the number of conflicts 

by about 60% for HSDW-equipped vehicles. However, when the simulated position error 

is present, the reduction in conflicts becomes only 30%. 
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Figure 4.8: HSDW results (Medium traffic, 100% DSRC-equipped) 

 

 

Figure 4.9: HSDW results (Heavy traffic, 100% DSRC-equipped) 
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4.5 Summary and Discussion 

In this chapter, a simple position error model was developed and used to test the 

effect of different levels of position error on two different Connected Vehicle 

applications: Eco Approach and Departure at Signalized Intersections and High Speed 

Differential Warning. Traffic simulations were carried out at various traffic levels and 

technology penetration rates. 

The Eco-Approach and Departure application examined in this chapter only 

requires vehicle position for the “distance to intersection” input to the application. 

Position errors up to 20 m did not noticeably affect system performance, at the traffic 

volumes and application penetration rates tested. This corresponds to Chapter 3’s finding 

that this application requires only coarse positioning accuracy. However, position errors 

greater than 20 m always worsened system-wide mobility, and sometimes increased 

energy use as well. 

The HSDW application requires knowledge of vehicle lane to function properly, 

and therefore requires lane-level positioning accuracy. The experimental findings in this 

chapter confirm this: even errors bounded by 5 m (a lane is typically 3-3.5 m wide), in 

the lateral direction, caused application benefits to drop significantly in heavy traffic, 

whether the percentage of communication-capable vehicles was 20% or 100%. The 

particular position error model used may be considered unrealistic in that values were 

randomly drawn from a Gaussian distribution. This means that, theoretically, it was 

possible for the error to jump a large distance (the maximum would be from +5 m to -5 

m) in one time step. In reality, the GNSS receiver’s Kalman filter would probably prevent 
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such a rapid deviation in the lateral direction. However, the distribution is also narrow 

(𝜎 = 1.67 𝑚) compared to that of typical urban canyon position error (𝜎 ≈ 10 𝑚). These 

results demonstrate the necessity of: 1) using sufficiently accurate position information as 

input to these applications, and/or 2) modifying the applications so that they can 

accommodate some position error.  
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5 Position Error-Tolerant Cooperative Merging 

Application 

5.1 Overview 

Cooperative merging is a promising CV application for improving the safety, 

mobility, and/or environmental impact of traffic at merging areas, such as those at 

roundabouts and highways. As described in Section 2.2.3, a variety of strategies for 

cooperative merging have been developed. However, none of these takes into account 

possible errors in the vehicles’ position, and many of them assume 100% of vehicles to 

be equipped with the hardware and software necessary for the merging strategy. This will 

not be the case for quite some time, except perhaps at traffic facilities dedicated to CAVs. 

Studies that do examine intermediate penetration rates of CAVs tend to show benefits 

only when the penetration rate is 50% or higher [Zhao et al., 2018; Rios-Torres and 

Malikopoulos, 2018]. 

This chapter presents a set of cooperative merging strategies that provides safety, 

mobility, and environmental benefits to the traffic stream, even at penetration rates as low 

as 20% in some cases. Two of the strategies are also able to accept position errors typical 

of an urban canyon. It is shown that adjusting the application (by increasing the inter-

vehicle spacing) leads to increased benefits under certain circumstances.  

The rest of this chapter is organized as follows. Section 5.2 describes the 

development of a model for GNSS position error in an urban canyon based on real-world 

data. Section 5.3 describes the developed cooperative merging strategies. Simulation tests 
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of the strategies under varying conditions are described in Section 5.4. The chapter ends 

with a summary and discussion. 

5.2 Development of a GNSS Position Error Model 

In order to implement realistic position error in simulation, we developed a model 

for position error based on real-world data. Position data were collected using GNSS 

positioning systems of a similar grade to those used by Connected Vehicles in current 

deployments [Hailemariam et al., 2018]. The receivers were first tested under open-sky 

conditions to verify their open-sky accuracy. Then, they were mounted on a vehicle and 

driven through an urban canyon (downtown Los Angeles, California), and the lateral 

position error of each receiver was calculated. 

5.2.1 Data Collection 

Data from three single-frequency GNSS receivers were collected. The receivers 

consisted of one u-blox NEO-7P and two NEO-M8P receivers. The NEO-7P is a single-

constellation (GPS) receiver, whereas the NEO-M8P is a multi-constellation (GNSS) 

receiver. The NEO-7P utilized WAAS corrections, and one of the NEO-M8P receivers 

utilized RTCM corrections to enable its RTK mode. 

All three receivers were connected to a NEO-M8P’s patch antenna using a GPS 

splitter. The antenna was centered on top of the test vehicle, and RTCM corrections were 

downloaded in the test vehicle using a Netgear AirCard 770S 4G LTE mobile Wi-Fi 

hotspot. 
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5.2.2 Open-Sky Test 

Two two-hour static tests were first conducted to characterize the open-sky 

position accuracy of each receiver. Average position error was calculated as the distance 

of each measured point from the actual location of the receiver. Table 5.1 shows the test 

results. As expected, the receiver with RTCM corrections has the highest accuracy due to 

its RTK mode. The receiver with WAAS corrections is the next most accurate, followed 

by the receiver with no corrections. Dynamic (i.e., test vehicle is moving) data from the 

receivers were also examined, and the measured positions were observed to fall in the 

correct lane on Google Earth. 

 

Table 5.1: Static open-sky test results 

 Avg. Position Error [m] 

Test location No corrections WAAS RTCM 

Riverside 1.43 1.23 0.06 

Los Angeles 1.25 1.12 0.15 
 

5.2.3 Urban Canyon Test 

The urban canyon dynamic test took place in downtown Los Angeles, California. 

For this test, an additional piece of equipment was used: a forward-facing camera, attached 

to the inside of the windshield, recorded which lane the vehicle was traveling in. The test 

vehicle was driven continuously for approximately 25 minutes on each of three test routes. 

The first two routes had skyscrapers adjacent to the roadway (the first route is shown by 

the white line on Figure 5.1). The third route did not. Therefore, we classified the first two 

routes as “deep” urban canyons, and the third route as a “medium” urban canyon.  
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Figure 5.1 shows data from the first two runs on the first deep urban canyon route. 

The red trace shows the path formed by position measurements from the receiver with 

RTCM corrections; blue is the receiver with WAAS corrections; and green is the receiver 

without any corrections. The “ground truth”, or reference, trajectory is shown in white. It 

was traced on Google Earth using the vehicle’s lane, which was recorded by the camera 

mounted on the vehicle.  

 

 

 
 

Figure 5.1: GNSS tracks from the first two runs on a deep urban canyon route 

(red: RTCM corrections, blue: WAAS corrections, green: no corrections, white: truth) 

 

Lateral position error was calculated as the shortest distance from each GNSS 

position to the reference route. Figure 5.2 shows the error vs. time plot for all three 

receivers on the third (medium urban canyon) route. It can be seen that the lateral position 

error rarely exceeds 20-30 m. The data from all three routes were aggregated together, and 
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it was found that the position error tends to follow a half-normal distribution (half-normal 

rather than normal since only the magnitude of the error was measured). This is shown in 

Figure 5.3, where the blue histogram shows the actual data from each receiver, and the red 

line is the half-normal fit. 𝜇 = 0, and 𝜎 is listed in the title of each plot. The function fits 

fairly well in all three cases. 

 

 

Figure 5.2: Lateral error vs. time on the medium urban canyon route 
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Figure 5.3: Actual error distributions and half-normal fit 

 

When modeling position error for an application like that uses a vehicle’s 

measured position continuously (e.g., cooperative merging), the error should behave 

realistically. If it is simply drawn from a distribution with the parameters above, the error 

may change by a large amount in a single time step, which is not realistic. The same real-

world experimental data showed that the amount of position error changed more 
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gradually, typically at a rate of 2 m/s or less (see the blue distributions in Figure 5.4). A 

logistic distribution was fit to these data (red histograms).  

The logistic distribution can be represented as 𝐿(𝜇, 𝑠) with probability density 

function given by 

 𝑓(𝑥;  𝜇, 𝑠) =
𝑒−

𝑥−𝜇
𝑠

𝑠(1 + 𝑒−
𝑥−𝜇

𝑠 )2
 (5.1) 

where 𝜇 is the mean (the distribution is symmetric) and 𝑠 is a scale parameter 

proportional to the standard deviation. The red histograms represent a logistic distribution 

with 𝑠 = 0.3 𝑚/𝑠. A logistic rather than normal distribution was used because a logistic 

distribution has heavier tails (higher kurtosis). Even so, Figure 5.4 shows that the 

experimental data have even higher kurtosis than the fitted logistic distribution. 
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Figure 5.4: Rate of change of lateral position error in the urban canyon 

 

 

5.2.4 Real-Time Position Error Model 

Error in the lateral (cross-street) direction is typically 1-5 times larger than error 

in the longitudinal (along-street) direction [Groves, 2011]. Since in the cooperative 
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merging application we are only dealing with longitudinal position error, we had to 

convert it from lateral error. This was done, albeit approximately, by dividing the 

parameters of the error distributions (which corresponded to lateral error) by 2. 

Position error was modeled in the simulation as follows. When a vehicle enters 

the simulation network, its initial longitudinal position error, which translates to error in 

the “distance to start of merge zone” input to the application, is randomly drawn from a 

Gaussian distribution: 

 (�̂�𝑣2𝑚)𝑡=0~ 𝑁( (𝑑𝑣2𝑚)𝑡=0 , 𝜎𝑑
2) (5.2) 

where 𝑡 = 0 indicates the time when the vehicle enters the control zone, (𝑑𝑣2𝑚)𝑡 is the 

distance the vehicle still has to travel to reach the start of the merge zone (as of time t), 

and 𝜎𝑑 is the standard deviation of the longitudinal position error. For this simulation 

network, we set 𝜎𝑑 = 5 meters. In the real world, this value would vary by location and 

time. 

 Subsequently, the position error is allowed to change at a gradual rate, as 

indicated in the following equation:  

 (�̂�𝑣2𝑚)𝑡 =  (�̂�𝑣2𝑚)𝑡−𝑇.𝑆. +  𝑇. 𝑆.  × 𝐿(𝜇, 𝑠) (5.3) 

where (�̂�𝑣2𝑚)𝑡 is the estimated remaining distance to the start of the merge zone at time 

𝑡, 𝑇. 𝑆. is the length of a simulation time step (0.1 second), and 𝐿(𝜇, 𝑠) is the logistic 

distribution. We set 𝜇 = 0 and 𝑠 = 0.15 m/s. 
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5.3 Cooperative Merging Strategies 

Three cooperative merging algorithms, each corresponding to a different testing 

scenario, were developed. In the first scenario, vehicle positions are perfectly known (in 

the real world, submeter accuracy should suffice). In the second scenario, the position 

error is representative of a typical urban canyon, and the merging algorithm is modified 

in two ways so that the algorithm can still function, and so as to lessen the negative 

impact of position error. In the third scenario, the position error is the same, but the 

merging algorithm is further modified so that there is increased spacing between vehicles. 

All three were tested under the same conditions. The application makes several 

assumptions, which are listed below: 

• If there is a vehicle ahead within 50 m, the distance to it, and its relative 

speed, are known (this information could be provided by a ranging sensor, 

such as camera). This assumption is considered reasonable in light of the fact 

that 99% of new cars in the U.S. will require an automated emergency braking 

(AEB) system by 2022. Such a system needs to know the above information. 

• The vehicle’s lane is known (this could be provided by a camera that 

identifies lane markings). This information is required so that mainline 

vehicles know whether they are in the outermost lane of the highway, in 

which case their application is active.  

• Road geometry in the control zone is known—so that the distance to merge 

point can be calculated based on the vehicle’s current position. 
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5.3.1 Base Algorithm 

Cooperative merging requires communication between vehicles, directly (V2V 

communication) and/or indirectly via the infrastructure (V2I communication). In the 

literature, vehicle communication and control generally occurs upstream of the merging 

area and sometimes within the merging area as well. In our scenario, vehicle control is 

done only upstream of the merging area (“merge zone”); we refer to the area within 

which vehicles are controlled as the “control” zone. This zone extends 375 m upstream of 

the start of the merge zone (see Figure 5.5).  

Cooperative merging can be broken down into two distinct tasks: 1) determination 

of vehicle sequence (in which order the vehicles should merge), and 2) control of vehicle 

dynamics [Wang et al., 2018]. These tasks are carried out for all application-equipped 

vehicles within the control zone, at every time step. Regarding (1), the on-ramp is 

sufficiently long that by the time ramp vehicles enter the control zone, most of them have 

accelerated to the free-flow speed on the mainline. Therefore, vehicle sequence is 

determined by distance to the start of the merge zone: whichever vehicle is closer, merges 

first. The sequence is updated in real-time, so that if a vehicle is slowed down by other 

vehicles in front, it may be pushed back in the sequence. 
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Figure 5.5: Simulation network for Cooperative Merging 

 

Based on the vehicle sequence, an application-equipped vehicle follows a 

speed/gap control strategy which is adapted from that described in [Shladover et al., 

2012]. If the vehicle is first in the sequence, it follows speed control (tries to follow the 

speed limit). Otherwise, the vehicle uses gap control, trying to maintain a desired gap 

from the vehicle ahead of it in the sequence. The acceleration prescribed by speed control 

is  

 𝑎𝑠𝑐 = 𝑏𝑜𝑢𝑛𝑑(−0.4(𝑣 − 𝑣𝑑), 2, −2) (5.4) 

where 𝑎𝑠𝑐 is the acceleration in m/s2, 𝑣 is the vehicle speed in m/s, 𝑣𝑑 is the desired speed 

(set to the speed limit), and the “bound” function is defined as follows.  

If 𝑦 = 𝑏𝑜𝑢𝑛𝑑(𝑥, 𝑥𝑢𝑏 , 𝑥𝑙𝑏), then 

 𝑦 = {
𝑥𝑢𝑏, 𝑖𝑓 𝑥 > 𝑥𝑢𝑏

𝑥𝑙𝑏, 𝑖𝑓 𝑥 < 𝑥𝑙𝑏

𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.5) 
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The acceleration prescribed by gap control is 

 𝑎 = 𝑏𝑜𝑢𝑛𝑑(�̇� + 0.25(𝑠 − 𝑠𝑑), 𝑎𝑠𝑐 , −2) (5.6) 

 𝑠𝑑 = 𝑇𝑑𝑣 (5.7) 

where 𝑠 is the spacing between the two vehicles (in meters), 𝑠𝑑 is the desired spacing, 𝑇𝑑 

is the desired time headway (seconds), and �̇� is the rate of change of the spacing.  

This strategy may be considered somewhat optimistic for current ACC systems 

because it ignores the half- to full-second lags associated with processing sensor signals. 

However, recently proposed ACC strategies compensate for this delay by predicting the 

future state based on current sensor measurements [Bekiaris-Liberis et al., 2017; Wang et 

al., 2018]. Therefore, we use this delay-less model in our simulation, assuming that by 

the time vehicles are able to automatically follow the merging advice, they will be 

equipped with these advanced ACC systems. 

 If speed control is used, then 𝑎 = 𝑎𝑠𝑐. The final acceleration used by the vehicle 

is the minimum of 𝑎 and the original acceleration prescribed by VISSIM’s car-following 

model. The reason for this is to ensure that the vehicle does not crash into the one ahead 

of it, which may not be application-equipped. This could represent the actions of human 

driver intervention or an automatic emergency braking (AEB) system. 

5.3.2 First Modification for Position Error 

Position error affects the merging algorithm in several ways. First, it introduces 

error into the spacing term of the gap control, causing vehicles on different lanes to not 

line up properly. Second, it may alter the vehicle sequence. Figure 5.6 illustrates a 

situation where both of these problems are present. Vehicle 1 is, in reality, ahead of 
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Vehicle 2; however, the measured positions of the vehicles (represented by the grayed-

out vehicles) make it seem as if Vehicle 2 is ahead of Vehicle 1. As a result, Vehicle 1 

may decelerate when in fact Vehicle 2 should either decelerate or maintain constant 

speed. As a result, the vehicles will come closer together in terms of their longitudinal 

position, which runs contrary to the goal of the merging algorithm. 

 

 

Figure 5.6: Example effect of error on vehicle position measurements 

 

If the two vehicles are in the same lane, this problem can be solved simply by the 

following vehicle using its ranging sensor to obtain the distance and relative speed of the 

leading vehicle. This is one of the modifications made for this second algorithm. 

Another modification was necessary. The above problems simply reduce the 

efficiency of the merging algorithm. A more critical problem was also observed to arise 

as a result of position error. When position error caused mistakes in the vehicle sequence, 

traffic sometimes came to a complete stop as a result of a situation like that illustrated in 

Figure 5.7. The numbers show the vehicle sequence as determined from position 

measurements. Using the original merging algorithm, if Vehicle 2 is forced to slow down 

by a vehicle ahead, Vehicle 3 will follow suit (because it is using gap control to “follow” 
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Vehicle 2). Vehicle 1 is then forced to decelerate (and Vehicle 2 decelerates to “follow” 

it), leading to a loop of deceleration until all 3 vehicles come to a complete halt. 

 

Figure 5.7: Example lock-up scenario 

 

The chosen solution for this problem was to add a condition for gap control: if 

there is no vehicle ahead for a certain distance (we selected 3𝑠𝑑), the vehicle defaults to 

speed control. In this way, vehicles will cease decelerating due to gap control, once they 

fall behind the rest of the traffic by a distance of 3𝑠𝑑. 

5.3.3 Second Modification for Position Error 

The above modified merging strategy was also adjusted as follows, to see if the 

adjustment would improve algorithm performance. If the application-equipped vehicle is 

“following” a vehicle on a different lane, the desired spacing 𝑠𝑑 will be increased by 2𝜎𝑑, 

which is two times the standard deviation of the local position errors. In this case, 𝜎𝑑 =

5 𝑚, so 𝑠𝑑 was increased by 10 m.  
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5.4  Simulation Tests 

All three cooperative merging strategies were tested in simulation. The traffic 

microsimulation package VISSIM was used. The geometry of the simulation network is 

based on the area of the CA-91E freeway where it is joined by the Serfas Club on-ramp 

in Corona, CA (see Figure 5.5). In the simulation network, the number of highway lanes 

was varied from 2 to 3 to investigate the effect of different number of lanes. The vehicle 

inputs used for each case are given in Table 5.2. Different penetration rates of each 

merging strategy were tested. 10 simulation runs, each one simulated hour long, were 

conducted for each merging strategy, penetration rate, and number of highway lanes. 

 

Table 5.2: Vehicle inputs 

 Vehicle Demand [vph] 

Number of Highway Lanes Highway Ramp 

2 4400 800 

3 6600 1200 

 

Second-by-second vehicle trajectory data were collected and used to calculate 

safety, mobility, and environmental metrics for the network. Time-to-collision (TTC) is a 

safety indicator defined as the time required for two vehicles to collide, if they continue 

on their current courses and speeds. It is generally agreed that a TTC of less than 1.5 

seconds is in the critical, rather than normal, driving regime [Grayson, 1984; van der 

Horst, 1990; Gettman et al., 2008]. Therefore, the number of occurrences with TTC < 1.5 

seconds was used as the safety metric. 

The mobility metric was average speed, defined as  
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 �̅� =
𝑉𝑀𝑇

𝑉𝐻𝑇
 (5.8) 

where �̅� is the average speed (mph), 𝑉𝑀𝑇 = total vehicle miles traveled, and 𝑉𝐻𝑇 = total 

vehicle hours traveled. The environmental metrics were energy use and amount of 

various pollutant emissions (CO, CO2, NOx, HC, and PM2.5), all calculated using the 

MOVES model. 

Level of Service (see Section 2.4) of the highway was also determined, based on 

vehicle density just upstream of the start of the merge zone (see Figure 5.5). Density was 

computed from 5-minute average speed and flow measurements as follows: 

 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (
𝑣𝑒ℎ

𝑚𝑖
) =

𝐹𝑙𝑜𝑤 (
𝑣𝑒ℎ
ℎ𝑟 )

𝑆𝑝𝑒𝑒𝑑 (
𝑚𝑖
ℎ𝑟)

 (5.9) 

 

5.4.1 Two-Lane Highway 

Figure 5.8 shows the level of service over time on the two-lane highway when no 

vehicles are using any cooperative merging strategy. The horizontal lines indicate the 

density thresholds between different levels of service. Each non-horizontal line represents 

a simulation run. In this scenario, it can be seen that the Level of Service starts around D-

E and then rises to F, usually by the 25-minute mark. When 100% of vehicles are 

equipped with the cooperative merging strategy with perfect positioning, much more time 

is spent in LOS D-E rather than LOS F, as can be seen in Figure 5.9. 
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Figure 5.8: Level of Service on the 2-lane highway (0% equipped) 
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Figure 5.9: Level of Service on the 2-lane highway (100% equipped) 

 

The difference in LOS (congestion levels) translates to the mobility results shown 

on Figure 5.10, which shows that equipping 100% of vehicles with the merge application 

increases average speed on the network by about 80% (from 30 mph to 55 mph). As 

expected, the mobility benefit increases with the percentage of equipped vehicles, for the 

first merging strategy (perfect positioning). When typical urban canyon position error is 

present, the benefits are not as high. Increasing the spacing between vehicles appears to 

help at 100% penetration rate but not at the lower penetration rates. 
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Figure 5.10: Mobility results for the 2-lane highway 

 

Figure 5.11 shows the effect on network-wide safety, in terms of the number of 

potential conflicts (occurrences of a time-to-collision (TTC) of less than 1.5 seconds), in 

the second-by-second trajectory data. These results are similar to the Mobility ones, in 

that the perfect positioning case performs best. It can be seen that the number of conflicts 

is greatly reduced, even if only 20% of vehicles are equipped. For the “Merging (error)” 

case, it appears that a penetration rate of 50% is sufficient to see substantial safety 

benefits. Although the directly measurable effect on mobility at this penetration rate is 

small, mobility may see indirect benefits due to the lowered chance of a crash.  
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Figure 5.11: Safety results for the 2-lane highway 

 

The environmental impact of the merging strategies is shown in Figure 5.12. It 

can be seen that the energy use decreases by up to 22% when 100% of vehicles are 

equipped; at the lower penetration rates, the direct effect on energy use is an increase (of 

usually 5% or less). However, when taking into account the reduction in accident risk, the 

direct increase in energy use could be negated by the energy savings resulting from the 

prevention of an incident and the ensuing congestion.  
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Figure 5.12: Environmental results for the 2-lane highway 

 

5.4.2 Three-Lane Highway 

Figure 5.13 shows the level of service on the three-lane highway, when none of 

the vehicles are using any cooperative merging strategy. Similar to the two-lane scenario, 

it can be seen that the Level of Service usually starts around D-E and then rises to F, 

generally by the 25-minute mark. When 100% of vehicles are equipped with the merging 

application and perfect positioning, the LOS is almost always maintained at D-E, as can 

be seen in Figure 5.14. In this sense, the performance of the merging algorithm is even 

better on the three-lane highway than the two-lane highway. 
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Figure 5.13: Level of Service on the 3-lane highway (0% equipped) 
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Figure 5.14: Level of Service on the 3-lane highway (100% equipped) 

 

The difference in LOS (congestion levels) can also be seen in the network 

mobility metrics (see Figure 5.15), which shows that equipping 100% of vehicles with 

the merge application increases average speed on the network by about 120% (from 27 

mph to 58 mph). This is an even greater increase than for the 2-lane case. As expected, 

the mobility benefit increases with the percentage of equipped vehicles—for all three 

merging strategies, on this network. When typical urban canyon position error is present, 

the benefits can be maintained (at least at 20% and 50% penetration rates) by increasing 

the spacing. In fact, this strategy even appears to outperform the merging strategy with 

perfect positioning at those penetration rates. 
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Figure 5.15: Mobility results for the 3-lane highway 

 

Figure 5.16 shows the effect on network-wide safety, in terms of the number of 

potential conflicts. As with the Mobility results, the benefits of all three merging 

strategies increases with an increasing percentage of equipped vehicles, and the “with 

error” algorithm performs better with the increased spacing. But unlike the Mobility 

results, the merging strategy with perfect positioning performs best. Notably, it has a 

large benefit at low penetration rate: it reduces the number of conflicts by 40% when only 

20% of vehicles are equipped.  
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Figure 5.16: Safety results for the 3-lane highway 

 

Similar to the safety and mobility results, the energy use shows benefits for every 

merging strategy and penetration rate tested (see Figure 5.17). Similar to the trends for 

safety and mobility, the energy savings increase with increasing penetration rate, up to a 

maximum of 31% energy savings. 
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Figure 5.17: Environmental results for the 3-lane highway 

 

5.5 Summary and Discussion 

This chapter describes the development and testing of three cooperative merging 

strategies. This set of strategies is novel in two ways. First, all three can handle varying 

percentages of application-equipped vehicles (anywhere between 0% and 100%), 

sometimes showing significant benefits at penetration rates as low as 20%. To the 

authors’ best knowledge, no other cooperative merging strategy to date has shown 

significant benefits at such a low penetration rate. Second, two of the cooperative 

merging strategies presented are able to accommodate position errors representative of a 

state-of-the-art GNSS positioning system traversing an urban canyon.  

The final application could incorporate all three merging strategies, for example 

by simply choosing the best one based on circumstances (i.e., when in an urban canyon, 
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use one of the strategies that can handle error, whichever is better; and when in an open-

sky area, use whichever of the three strategies performs best in that scenario). Of course, 

further testing is needed to capture the huge diversity of scenarios in the real world, and it 

is very likely that the merging strategies could be refined to increase benefits in these 

various scenarios. 
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6 Anticipatory Lane Change Application 

6.1 Overview 

Another highway application called Anticipatory Lane Change Warning (ALC) 

was developed in this dissertation. Like the cooperative merging application, it improves 

safety of the overall traffic stream by reducing the number of potential crashes. However, 

it relies more on ranging sensors for positioning, and thus is less affected by GNSS 

position error. Even so, GNSS position error may have negative consequences for the 

application, as discussed in Section 6.6. 

Anticipatory driving, or adjusting one’s driving behavior in anticipation of the 

future movements of surrounding vehicles, plays an important role in reducing the 

number of road accidents [Stahl et al., 2013]. It is generally associated with experienced 

drivers, though could possibly be coded into the behavior of automated vehicles. The role 

of anticipation in driving has been studied in the literature [Stahl et al., 2013; Treiber et 

al., 2007]. In [Treiber et al., 2007], the authors incorporate anticipation of the movements 

of vehicles ahead into a car-following model (e.g., braking in reaction to several vehicles 

ahead) and show that this increases the stability of traffic flow. In a lane change scenario, 

the future situation of the target lane is equally important. 

Conventional lane change warning and automated lane changing systems detect 

other vehicles using on-board sensors such as camera, radar, and ultrasonic sensors. One 

limitation of existing lane change algorithms (listed in Section 2) is that they tend to 

consider the traffic situation only in terms of the lane-changing, or “host”, vehicle (HV in 
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Figure 6.1), the preceding vehicle (Vehicle C), and the vehicles in front of and behind the 

intended gap in the target lane (Vehicles B and A, respectively). However, a normal lane 

change takes at least a few seconds to complete, during which time the situation may 

change significantly. Critically, the gap may become too small to be safe: for example, if 

Vehicle D brakes just as HV starts to change lanes, Vehicle B may brake as well. As a 

result, the gap between Vehicles A and B may become unsafely small by the time HV 

completes the lane change. While this can be avoided to some extent by aborting the lane 

change maneuver midway [Luo et al., 2016], a better option (both in terms of safety and 

traffic flow) is not to initiate the maneuver in the first place. 

 

 

Figure 6.1: Example pre-lane change situation 

 

To enable this option, it is first necessary for HV to detect Vehicle D. In literature 

on automated lane changes, vehicle detection is generally accomplished by ranging 

sensors (e.g., radar [Nilsson et al., 2016]) or wireless vehicle-to-vehicle (V2V) 

communication (e.g., [Luo et al., 2016]). An example of the latter is Dedicated Short 

Range Communications (DSRC) [Harding et al., 2014]. While HV’s ranging sensors may 

not detect Vehicles D and E in Figure 6.1 due to the lack of line-of-sight, V2V 
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communication does not have this line-of-sight limitation and thus can detect vehicles 

occluded by others (i.e., Vehicles D and E). 

The application presented in this chapter utilizes motion information about 

vehicles further ahead (obtained via V2V communication) to “anticipate” the movements 

of the surrounding vehicles, enabling better decision-making with regard to lane 

changing. In particular, this information is used to prevent a lane change if it is predicted 

that such a lane change would place the vehicle in an unsafe situation. This work has 

been presented in [Williams et al., 2018b]. The rest of this chapter is organized in the 

following way. Section 6.2 describes the ALC algorithm. Section 6.3 describes 

assumptions regarding vehicle detection, and Section 6.4 details how motion prediction is 

carried out. Tests of the algorithm using traffic simulation are described in Section 6.5, 

and Section 6.6 remarks on how the application would be affected by position 

uncertainty. A summary and discussion are provided in the final section. 

6.2 Algorithm 

The starting condition for the algorithm is that the application-equipped vehicle 

wishes to change lanes (see Figure 6.2). The outcome is that the lane change is either 

delayed or not. When considering manually-driven vehicles, this assumes that the driver 

heeds the lane change warning. The first check in the algorithm is whether the lane 

change is discretionary (e.g., changing to a faster lane). This is because the algorithm 

only delays mandatory lane changes, such as those required to exit the freeway. The next 

steps in the algorithm check whether Vehicles A-E are detectable by HV, because this is 

required for HV to predict the motion of all 6 vehicles over the next 3 seconds. If it is 



 

92 

 

predicted that there will be sufficient (in terms of safety) headway in front of and behind 

HV at the end of the prediction time window, then the lane change is allowed to proceed. 

Otherwise, it is delayed. 

 

Figure 6.2: ALC algorithm flowchart 

 

6.3 Vehicle Detection 

For this algorithm to work, the motions of Vehicles A-E and the HV must be 

predicted and therefore, these vehicles must all be detected by HV. We assume that the 

HV is equipped with ranging sensors, such as radar, that can detect Vehicles A-C if they 

are within the range and field of view of the sensors. In our study, we consider the HV to 

be equipped with four corner radars and one front radar. Each corner radar, based on the 
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Bosch Mid-Range Radar (MRR) rear1, is modeled as having a range of 80 m and field of 

view of 90 degrees. The front radar, based on the Bosch MRR front radar2, is modeled as 

having a range of 160 m and field of view of 20 degrees. The location of the radars on the 

HV, along with their field of view and range relative to one another, are depicted in 

Figure 6.3. For Vehicles A and B to be detected, they must be within the range of the 

nearest corner radar. For Vehicle C to be detected, it must lie within range of the front 

radar. Vehicles B and C must be equipped with sensors for detecting Vehicles D and E, 

respectively; for this purpose, it is assumed that they are equipped with the same front 

radar as HV. Vehicles B and C must also be DSRC-equipped, in order to transmit D and 

E’s information back to HV.  

 

Figure 6.3: Locations of radar on ALC-equipped vehicle 

 

                                                

1 https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-

assistance-systems/lane-change-assist/mid-range-radar-sensor-mrrrear/ 
2 https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-

assistance-systems/predictive-emergency-braking-system/mid-range-radar-sensor-(mrr)/ 
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6.4 Motion Prediction 

If the vehicles corresponding to Vehicles A-E in Figure 6.1 are all detected by HV 

as described above, it is assumed that their current positions, speeds, and accelerations 

are known. This is because radar measures the positions and speeds of detected objects 

relative to the ego-vehicle. Acceleration can be estimated from current and previous 

speed measurements, if the measurement update rate is sufficiently high (for radar, the 

rate is generally 10 Hz or higher). 

To predict the positions and speeds of all 6 vehicles at the end of the three-second 

time window, kinematics and an empirical car-following model are used. The main 

premise of the car-following model is that: if one vehicle is following another closely 

enough, its acceleration/deceleration can be predicted as a function of its speed, the speed 

of the vehicle ahead, and the distance between the two. The predicted acceleration is 

based on the situation one second earlier, to account for human reaction time. This is 

similar to the Gazis-Herman-Rothery, or “general”, car-following model [Brackstone and 

McDonald, 1998]. Our model was constructed using second-by-second vehicle trajectory 

data from a VISSIM freeway network, which included a mix of traffic conditions ranging 

from congested to free flow. 

The car-following model was constructed as follows. For each observed 

deceleration, the positions and speeds of the decelerating vehicle and its preceding 

vehicle one second earlier were recorded. Then, the observed decelerations were binned 

based on speed of the ego vehicle and relative speed of the preceding vehicle. For each 

combination of speed bin and relative speed bin, deceleration was plotted as a function of 
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the two vehicles’ spacing (front bumper-to-front bumper distance). Figure 6.4 illustrates 

an example, showing speed bin 15-25 mph and relative speed bin -20 to -10 mph.  

 

Figure 6.4: Example spacing vs. acceleration plot 

 

Figure 6.4 shows that within the range of spacing shown (10 to 25 m), the average 

deceleration is about -3 m/s2. Extending this method to other speed bins and relative 

speed bins, a lookup table for “next-second” deceleration was generated. If any input 

parameter for the lookup table falls outside the prediction regime (e.g., spacing > 25 m 

for the example shown), no prediction is made and the algorithm does not delay the lane 

change. 

If the input parameters to the car-following model fall within the prediction 

regime and a deceleration is predicted, kinematics are then used to derive the vehicle’s 
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speed and position. Speed is obtained using equation (6.1) and then position is obtained 

using equation (6.2), where xt, vt, and at represent position, speed, and acceleration at 

time t. The subscript t-1 denotes the data of the previous time step. 

 vt = vt-1 + 0.5(at + at-1) (6.1) 

 xt = xt-1 + 0.5(vt + vt-1) (6.2) 

 If the positions and speeds of all 6 vehicles at t=3 seconds are successfully 

predicted in this manner (t=0 represents the start of lane change intention), the next step 

in the algorithm is to check whether the gap between Vehicles A and B will be safe at the 

end of the lane change maneuver. Generally, the recommended headway for safety is 2-3 

seconds at a minimum [Ayres et al., 2001; California Department of Motor Vehicles, 

2018]. Therefore, the algorithm prevents a lane change if the predicted headway in front 

of or behind the HV at the end of the three-second lane change window will be less than 

2 s. This assumes that the HV’s position along the road will be the same as if it had not 

changed lanes; only its lateral position (lane) will be different.  

6.5 Simulation Setup and Results 

The microscopic traffic simulator VISSIM version 9 [PTV Group, 2018] was used 

to evaluate the impact of this algorithm on network-wide safety and mobility under a 

variety of traffic scenarios (different congestion levels and penetration rates of the 

application). The chosen safety metric was number of conflicts, as estimated by the 

SSAM model. Average speed, taken as the average of all vehicles’ speeds at all time 

steps, was used as the measure of mobility.  
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Ten simulation runs were conducted for each different configuration 

(configuration being a unique combination of several simulation settings: the network, 

traffic volume, and DSRC/ALC penetration rate). Each set of ten runs utilized the same 

10 “random seed” numbers, for a fair comparison.  

6.5.1 Hypothetical Network 

To test the effect of ALC, a simplified, hypothetical freeway segment was initially 

used. The segment is one mile long, straight, and has 3 lanes (all in the same direction). 

The length of each simulation one hour (in simulation time). The impact of the 

application was tested at different traffic volumes and penetration rates. Two levels of 

traffic flow were tested: 5,000 vph (vehicles/hour) and 7,000 vph, which represent 

medium and heavy traffic, respectively. At 5,000 vph, ALC had negligible impact on 

mobility (average speed increased by 0.1%) and small impact on safety (average number 

of potential conflicts per simulation run dropped from 10 to 9), even when all vehicles 

were ALC-equipped.  The low impact of ALC at this level of traffic volume is probably 

due to the low vehicle density: ALC is not activated very often. 

At 7,000 vph, ALC has a much larger impact on safety. The average number of 

potential conflicts without ALC is 31, and ALC decreases the number of conflicts by a 

median of 28%. This can be seen on the “100% Penetration Rate” box plot in Figure 6.5. 

Figure 6.5 also shows the effect when the percentage of ALC-equipped vehicles in the 

traffic stream (“penetration rate”) is less than 100%. When the penetration rate is lower, 

the safety benefits decrease, which is expected. At all penetration rates, the effect on 

mobility is small: the median change in average speed is between 0 and +1%. The small 
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effect on mobility could be due to the following reasons, which cancel each other’s 

mobility effects: 1) ALC may delay a vehicle which is attempting to move to a faster 

lane, thus lowering its trip average speed; and 2) ALC lowers the amount of weaving, 

increasing the average speed because vehicles do not have to brake for other vehicles 

cutting in front. Weaving also results in short headways between vehicles, which are 

potentially dangerous. 

 

Figure 6.5: ALC results on hypothetical network (7000 vph) 

 

Overall, these results suggest that the application can enhance freeway safety with 

no cost to mobility, at least at application penetration rates of 20% or higher (the median 

decrease in number of potential conflicts is 20% or more at these levels). 
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6.5.2 Real-world Freeway Network 

Next, the effectiveness of ALC was tested on a real-world freeway network. The 

network is based on a 17 mile-long segment of the northbound Interstate 270 (“I-270”) in 

Columbus, Ohio. It has multiple curved sections and 9 pairs of on- and off-ramps (see 

Figure 6.6). The number of lanes along the mainline is usually 3-5, and the network flows 

were calibrated using real-world weekday peak hour traffic data. Each simulation run was 

two hours long (simulated hours). 
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Figure 6.6: Real-world network used to test ALC (I-270 in Columbus, OH) 

 

Without ALC, the average number of potential conflicts per simulation run is 

approximately 600. When 100% of the vehicles are ALC-equipped, this number drops by 

about 30% (see Figure 6.7), similar to the “heavy traffic” (7,000 vph) results for the 

hypothetical network. This benefit decreases at lower penetration rates of ALC, as shown 
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in Figure 6.7. For example, at a 10% penetration of ALC, the median reduction in 

conflicts drops to 15%. 

 

 

Figure 6.7: ALC results on real-world network (100% penetration of ALC) 

 

If the ALC penetration rate is only 9% of the DSRC-equipped vehicles (to 

represent the market share of a major automaker that chooses to equip its vehicles with 

ALC), the reduction in number of conflicts is generally lower (see Figure 6.8). 

Interestingly, the median reduction in number of conflicts tends to stay fairly constant at 

around 15% for DSRC penetration rates ranging from 10% to 100%. 
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Figure 6.8: ALC results on real-world network (9% penetration of ALC) 

 

Whether the penetration rate of ALC is 9% or 100% of DSRC-equipped vehicles, 

ALC’s effect on mobility is small: it changes the average speed on the network by 1% or 

less for every run. This corroborates the results obtained on the hypothetical network. 

Overall, the I-270 results suggest that when the DSRC penetration rate is 10%, only 9% 

of those vehicles need to be ALC-equipped (i.e., if equipping 100% of DSRC-equipped 

vehicles with ALC does not appear to provide benefits). However, at higher DSRC 

penetration rates, the safety benefits can be increased by loading ALC on 100% of the 

DSRC-equipped vehicles.  

6.6 Effect of Position Uncertainty 

In the ALC application, position uncertainty may affect the object matching 

performance when matching objects detected by different sources of positioning 
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information. For example, in Figure 6.9, for HV to obtain Vehicle D’s position and 

speed, it must first match its ranging sensor measurement of B with Vehicle B’s GNSS 

position (communicated wirelessly, together with B’s distance measurement of D). The 

reason B must be detected by HV’s ranging sensor is so that it can be correctly identified. 

Otherwise, there may in fact be another vehicle just upstream of “B”, making this other 

vehicle the true B. If the GNSS position of HV, B, or C is incorrect, the object matching 

may be incorrect. For example, if B’s GNSS position measurement is the grayed-out 

Vehicle B in Figure 6.9, HV may not be able to match it with the ranging sensor-detected 

B. This object-matching problem has been the subject of several studies [Chen et al., 

2015; de Ponte Müller et al., 2016]. The following would increase the likelihood of 

correct object matching: 

1. Using vehicle tracks (position histories), rather than instantaneous positions 

only, for matching [Chen et al., 2015]. 

2. Not too many Connected Vehicles near B, or at least their position error does 

not cause their measured positions to overlap with B’s measured or true 

position. 

 

Figure 6.9: Example pre-lane change situation, with position error 
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6.7 Summary and Discussion 

Conventional lane change warning and automated lane changing systems detect 

other vehicles using on-board sensors such as camera, radar, and ultrasonic sensors. With 

the advent of Connected Vehicle (CV) technology, wireless communication (e.g., 

Dedicated Short Range Communications, or DSRC) becomes another option for 

“sensing” surrounding vehicles. In particular, DSRC does not have the line-of-sight 

limitation of ranging sensors and thus can “see” traffic farther ahead, which lends itself 

well to anticipating the movements of nearby vehicles. This chapter presented an 

algorithm that uses such data to predict whether a desired lane change will result in an 

unsafe situation, and prevents the lane change if that is the case. The effectiveness was 

evaluated in the microscopic traffic simulator VISSIM using a freeway network that has 

been well calibrated with rush hour traffic data. System performance in terms of safety 

was estimated using the Surrogate Safety Assessment Model (SSAM) under a variety of 

traffic scenarios (different congestion levels, penetration rates of connected vehicles and 

application-equipped vehicles). Tests showed that the proposed algorithm could reduce 

the number of potential traffic conflicts by up to 30% without impacting mobility, with 

higher reductions at higher traffic volumes and higher percentages of application-

equipped vehicles. 
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7 Conclusions and Future Work 

The overarching goal of the work in this dissertation is to help bring the safety, 

mobility, and environmental benefits of Connected Vehicle (CV) technology to the public 

sooner, by developing new CV applications, highlighting the gap between affordable 

positioning and application requirements, and finding ways to close the gap (for example, 

by integrating position uncertainty into the applications). The specific areas which have 

been addressed in this dissertation are: 1) the positioning requirements of CV 

applications, 2) the impact of position uncertainty on CV applications, 3) modelling of 

realistic GNSS position error in simulation, 4) development of a novel cooperative 

merging application which is able to tolerate such position error, and 5) development of a 

novel highway application for improving the safety associated with lane changes. 

Section 7.1 provides the conclusions and Section 7.2 provides some of the future 

directions for the research.  

7.1 Conclusions 

Chapter 3 describes a qualitative analysis of the positioning requirements of a 

wide variety of CV applications. The requirements examined were the required level of 

accuracy, type of positioning, and positioning update rate. It was found that coarse (lower 

accuracy than lane-level) positioning enables 82% of applications. Lane-level accuracy 

enables the remaining applications, which are mostly safety applications. 80% of 

applications either require or benefit significantly from lane-level accuracy.  
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Chapter 4 went further to quantify the impact of position uncertainty on two CV 

applications, Eco Approach and Departure at Signalized Intersections (EAD) and High 

Speed Differential Warning (HSDW). It was found that using positioning of insufficient 

accuracy could cause application benefits to drop significantly, for both applications. 

Chapter 5 describes the development and testing of a cooperative merging 

application which is able to tolerate the GNSS position errors typical of an urban canyon. 

It was found that adjusting the application, by increasing inter-vehicle spacing, could 

increase application performance in some scenarios. Notably, this cooperative merging 

application shows significant safety, mobility, and environmental benefits, even at low 

(20%) penetration rate. This is important, because it shows the potential for merging as 

one of the “early deployment” applications. 

In Chapter 6, another developed application, Anticipatory Lane Change Warning 

(ALC), is presented. This application predicts whether an intended lane change will result 

in an unsafe situation, and prevents it if that is the case. Simulation tests on two highway 

networks, including a very large one calibrated using real-world data, suggest that the 

application increases safety (up to 30% reduction in conflicts) without slowing down 

traffic. As expected, the benefits increase with increasing penetration rate of the 

application. 

7.2 Future Directions 

While this dissertation contains its fair share of research findings and 

contributions to the field, there is plenty of work still left to be done in this area. This is 

described below, where each subsection corresponds to a chapter in the dissertation. 
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7.2.1 Impact of Position Uncertainty on EAD and HSDW 

Regarding the HSDW application, it would be interesting to test the application’s 

sensitivity to longitudinal position error, not just lateral error. This way, the need for 

improved positioning in the longitudinal direction can be assessed (it is clear that lane-

level accuracy in the lateral direction is required). It can also serve as the first step in 

making the application more robust to longitudinal position error. Also, it should be 

tested with the urban canyon error model developed in Section 5.2, and a position error-

tolerant (PE-T) version of HSDW can be developed in tandem. 

7.2.2 Position Error-Tolerant Cooperative Merging Application 

There is a plethora of future research directions, in both the areas of algorithm 

development and testing. There are multiple ways in which the cooperative merging 

algorithm could be improved. First, the algorithm should be generalized so that it can be 

used in a wider variety of scenarios (for example, when the on-ramp is too short for 

vehicles to accelerate to free-flow speed). In this case, the sequence in which vehicles 

merge should not be determined by distance to merge point, but rather by a different 

metric like time-to-arrival. Second, the benefits could potentially be increased by refining 

the merging algorithm so that vehicles pre-emptively slow down before reaching the 

merge zone (if congestion and lower speeds are present on the highway). This should 

facilitate smoother merging, leading to increased benefits for all three of the merge 

algorithms tested. 

Regarding the testing of the merge algorithm, it was shown that increasing the 

spacing between vehicles could improve overall system performance. Therefore, a 
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sensitivity analysis should be conducted with respect to spacing to determine the optimal 

value. The algorithm should also be tested at a 10% penetration rate. Since there were 

already substantial benefits at 20% penetration rate (in some cases), if it also shows 

benefits at 10% penetration this could serve as a major incentive for automakers to adopt 

it as an “early deployment” application. 

Finally, the position error model could be refined by incorporating other sensors 

(for example, if the vehicle has just entered an urban environment, its position accuracy 

can be temporarily maintained through dead reckoning). Also, the correlation of GNSS 

errors should be taken into account. That is, differencing nearby GNSS positions 

eliminates the common mode errors without need for differential corrections. 

7.2.3 Anticipatory Lane Change 

Future work could examine the effect of position error on the application. As 

mentioned in Section 6.6, GNSS position error could potentially interfere with matching 

between V2V- and radar-detected objects. Also, the impact of this application on energy 

use and emissions should be investigated in addition to the already-measured safety and 

mobility. 
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