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Abstract
The problem of stability has long been a limiting factor in de-
veloping neural networks that can grow in size and complex-
ity. Outside of particular, narrow parameter ranges, changes
in activity can easily result in total loss of control. Human
cognition must have reliable means of acting to stay within
the stable ranges of sensitivity and activation. Learning is one
such mechanism, and population dynamics are another. Here,
we focus on another, often overlooked stability mechanism:
cellular homeostasis through metabolism dynamics. We ran a
visual change detection experiment designed to strain network
stability while minimizing any learnable patterns. We fit the
data using models with and without cellular energy levels as a
factor, finding that the model influenced by its past history of
energy use was a closer fit to the human data.
Keywords: Homeostasis; attention; visual change detection;
neural modeling

Introduction
The stability of learning and development depends partly on
the stability of the learner’s underlying cognitive machinery.
A system that is not tethered to a baseline level of activ-
ity is vulnerable to being excited out of control or perishing
through complete inaction. A number of mechanisms have
been uncovered that promote basic stability in neural systems
across multiple timescales. For instance, neurons coupled to
one another via patterns of local excitation and lateral inhibi-
tion, can interact over fractions of a second to stably form and
maintain “peaks” of activation around a core value of interest
(e.g. Thelen, Schöner, Scheier, and Smith, 2001). As patterns
in the short term persist, memory traces can be formed that
are able to project the influence of these patterns over much
longer timescales, leading to overall stability across similar
situations.

Stability can also be driven at a level even below that
of populations of neurons. Cellular metabolic processes al-
low individual neural units to contribute to the stability of
a population coded representation by, observing and acting
on their own changes in activity, and doing so at multiple
timescales. The Hebbian rule, relating changes in correla-
tions in the activity of neurons to their degree of co-activation,
under-specifies the adjustment mechanisms needed for higher
order stability. Oja (1982) derives an additional term, that, if
included in the instantaneous rate of Hebbian weight change,
will remain within some stable range of activity while main-
taining the correlation. It was suggested that this term could

be thought of as a form of intrinsic “leakage” rate, η, of the
materials available to the synapse.

This initial modification to the Hebbian rule was largely
abstracted, however, from the precise biological interpreta-
tion. The cellular mechanism would need to toggle the adap-
tation of a neural unit between “labile” and “stable” dispo-
sitions toward changing connection strengths (Bienenstock,
Cooper, & Munro, 1982). One suggested candidate for this
process is brain-derived neurotrophic factor (BDNF) (Glaser
& Joublin, 2011). Using Calcium levels as a proxy for the
instantaneous levels of change at a synapse, neural units cod-
ing for changes in the level of BDNF can dynamically alter
the underlying synaptic excitation/inhibition levels of cells.
For instance, blocking input channels to the retina using a
tetrodotoxin can affect cellular activity in ways that suggest
homeostatic forces (Turrigiano, 2011). Strong excitatory in-
puts, when blocked, allow for a period of higher than nor-
mal activity once unblocked; likewise, the opposite is shown
when inhibitory inputs are blocked. More generally, energy
stores build up in the blocked neurons when receiving lower
than normal input (and thus experiencing lower than normal
activity themselves), or when allowed to fire higher than nor-
mal, stores are depleted. When a baseline level of energy
is restored, normal conditions are eventually achieved again,
but the effect in the meantime is one of an internal, cellular
homeostatic force.

In the present study, we use a visual change detection
paradigm to explore the capacity of the cognitive system to
adapt to changes in task demands. Our model of the data are
more detailed than that described by Oja (1982), but more ab-
stract than a chemically detailed BDNF explanation. Our goal
was to create perturbations of cognitive homeostasis that can
produce interesting behavioral level data suitable for mod-
eling effects beyond those observable in cellular recordings.
The specifics of two computational models are then intro-
duced for capturing the new behavioral effects. Simulations
show that the model with a cellular energy term outperforms
a version without one. We conclude with a discussion on
the merits of including energy terms in basic neural models
as a part of establishing a common language of conservation
across the brain, even when exploring cognition at the level
of behavior.
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Change Detection
The change detection paradigm is a useful way of studying
the cognitive operations necessary for several processes rele-
vant to homeostasis. A typical trial in a change detection task
consists of a sample set of items to remember, followed by
a test set of items and a response prompt. The paradigm is
simple yet challenging to model (Johnson, Spencer, Luck, &
Schöner, 2009); so we opted for a highly simplified version
with only one feature dimension of change: color. By chang-
ing anywhere from zero to six colors per trial, however, we
still allowed for a straightforward manipulation of homeosta-
sis across trials, disturbing the balance of expectation, ability,
and adaptation constantly throughout our task.

Experiment
We designed a change detection experiment with the intention
of placing participants in situations of rapidly changing corti-
cal energy levels as might be consistent with a BDNF home-
ostatic response. The task was also designed as a situation
where homeostatic control would potentially be beneficial to
task performance. Two presentations of colored squares were
given to participants per trial, and the number of changes be-
tween presentations was reported, changing from zero to six
changes unpredictably trial by trial. No overall learnable trial-
to-trial pattern was available to participants that would aid
them in answering correctly, so that there was no advantage
to adopting complex expectations.

Method
Participants were recruited from the Simon Fraser Univer-
sity psychology department subject pool, where they received
course credit for 30 minutes of participation. We asked partic-
ipants to think of 6 color patches as alien creatures that would
change form over the course of a trial. The job of the partic-
ipant was to correctly classify the number of changes as part
of a national effort to better understand these aliens. Of the
33 subjects, 30 were retained for analysis. Three participants
were dropped for failing to complete 106 trials of the task.

Each trial involved a masked presentation sequence de-
signed to eliminate any relevance of spatial position of stim-
uli, so that color alone was the sole feature dimension of
change detection. Subjects were instructed to view a fixation
cross for two seconds at the start of each trial. A set of six
colors was then presented for four seconds, long enough to
ensure an ability to briefly encode the colors in memory. The
screen was then masked to block effects of afterimages for
two seconds, and a second set of colors was presented. The
orientation of the colors was a vertical 2x3 grid rather than
the horizontal 3x2 grid in the first presentation, to remove
any clear or objective correspondence between spatial loca-
tions in the first and second presentations. All colors were
also scrambled in positions, in addition to the display posi-
tions being rotated.

The second color display was left on the screen for either
2.5, 3.0, 3.5, or 4.0 seconds (counterbalanced across trials

per participant) to allow for different amounts of time for any
homeostatic system to adjust cellular activity rates now that
the changes, if any, were visible. The intention of the time
manipulation was that there would not be sufficient time to
make a homeostatic adjustment in one timeframe, but enough
in another, and thus that the required time for homeostatic
adjustment could be identified by changes in accuracy.

A second mask was then presented for two seconds, where-
after the participant was given any amount of time to report
the number of changes on a number line on screen. Partici-
pants were given explicit feedback about their answer in the
form of a blue mark for the correct answer in addition to the
red mark indicating the chosen response. Figure 1 depicts a
graphical representation of the task procedure.

Twelve perceptually equidistant colors were assigned to
each participant, offset from each other by a random amount.
Color coordinates were obtained from a slice of CIEL*a*b*
color space, with luminance set to a constant L = 75. Only
coordinates in this color space that have a representation in
RGB can be displayed on a monitor, so all but the largest cir-
cular portion of the color space satisfying this constraint was
removed (Johnson et al., 2009; Lehky & Sejnowski, 1999).
These twelve colors were then used consistently for a par-
ticipant’s entire experiment. Every trial randomly sampled
from the participant’s set of twelve colors as needed. A “zero
changes” trial, for example, only required six colors (the same
set of six twice), whereas a “six changes” trial required all
twelve colors (two different sets of six).

Trials were counterbalanced with a customized Latin
square in order to equally distribute the number of times each
possible number of changes in colors (0-6) was the correct
answer, while also equally distributing the number of one-
back differences between correct answers on the current and
previous trial. Figure 2 shows the actual number of total tri-
als across participants of each combination of these variables.
The four possible display times for the second color array
were evenly distributed within each of these trial types (i.e.,
within each bar in Figure 2. Display times not shown in Fig-
ure).

The partial Latin square was necessary due to mathemat-
ical constraints in designing a distribution of trials that at-
tempted to fit both criteria. Each trial is part of a one-back
link to its previous trial but also to the next trial, so any change
has a cascade of consequences for the options on other trials.
Also, certain one-back differences are impossible; for exam-
ple, if the number of changed colors on a trial is three, then
the one-back difference cannot possibly be 6, because that
would mean the correct answer on the previous trial was “-
3 changes” which is not possible. There were 9 impossible
combinations like this overall, forming a triangle of missing
bars in Figure 2 (upper right portion of figure).

Trial orders were generated by a Monte Carlo algorithm
that simulated many solutions to the overall trial order prob-
lem. The algorithm respected the constraints described
above, while also introducing randomness in order to limit
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Figure 1: The presentation sequence of a trial. A fixation cross appears for 2 seconds. A sample set of 6 colors to be remembered
is then presented for 4 seconds. A diffuse colored mask intended to cancel out sensory correlation with the subsequent test
array is then presented for 2 seconds followed by a set of 6 color patches rotated by 90◦ (and completely scrambled with
no correlations in positions before vs. after masking). A final colour mask is then presented for 1 second in advance of the
unconstrained response phase. Subjects would click on a value for their estimate of the number of changes, marked in red, and
the correct value marked by blue.

trial order confounds between participants. A unique solu-
tion was found for each participant. Solutions were defined as
trial orders where the total number of trials was nearly equal
for each of the seven possible correct answers (so as many
trials have an answer of “4” as have an answer of “2”), and
where the number of trials was also nearly equal for each of
the seven possible one-back changes in correct answer. The
shape depicted in Figure 2 was the algorithm’s consistent so-
lution to this problem, with only very minor differences and
asymmetries between participants.

Experiment Results
The average error across all trials and all subjects was 1.5
units (number of color changes, out of 6). A mixed effects
model with subject as a grouping factor showed no signifi-
cant improvement in change detection over the course of the
experiment (t = 1.6, p = 0.11). In accordance with our goal
of exploring sensitivity to swings in cognitive energy and ac-
tivation over time, we also checked for a lag-one correlation
in responding over the course of the experiment. Lag-one
in this case is being measured as the correlation between re-
sponses on trial t and responding on trial t-1, i.e. the cor-
relation between the list of responses and itself shifted one
trial sooner. When this correlation is positive, it suggests
that answers were given in long “runs” where a high answer
would be followed by more high answers and similarly for
low. When the lag-one correlation is negative, it suggests a
degree of “ping-ponging” back and forth between high and
low (number of changes) successive answers more often than
would be expected by chance. A lag-one of zero suggests no
particular persistent carryover effects of responding from one
trial to the next.

For this analysis, it was necessary to control for any lag-
one correlation that may have been inherent to the trial or-
der itself. Figure 2 shows how, despite equal distribution of
changes and differences in changes in colors across trials, pat-
terns exist between these two variables. To control for such
patterns during the analysis, we looked for lag-one correla-
tion only in those trials we knew had a symmetric pattern
of changes compared to previous trials: ones where the an-
swer was exactly three changes (“Correct Answer = 3” set of

bars in Figure 2). Within this restricted data set, we found
a positive correlation (β = 0.11, t = 2.74, p < 0.01) in the
responses between trials, indicating a minor preference for
repeated “runs” of responding that was not related to any ex-
perimental design.

Timing differences in the second color presentation phase
of the task did not correspond to significant differences in per-
formance. Differences were expected, but any homeostatic
effects may simply be too rapid (or too slow / occurring by
memory only during the answering phase) to be distinguished
by the difference between 2.5 and 4 seconds of presentation.

Model

We tested two models against our behavioral data: one bio-
logically inspired model (in line with with the BDNF princi-
ples discussed by Glaser and Joublin, 2011) capturing cellu-
lar homeostatic principles, and the same model but with the
cellular homeostatic term removed. Each was simulated in
Matlab using the exact order and content of trials and color
values seen by each of the 30 participants in turn. These
models provide continuous real number outputs between 0
to 6, but were forced to choose exact whole number answers
for number of changes, as the humans were. Especially for
the model that accounted for the C.H. model, the effect of
feedback could have contributed differently to the next trial’s
behavior if whole number answers were not required, so to
ensure the most human-like between-trial patterns, model an-
swers were also rounded.

Since our goal was to capture the levels of errors and inac-
curacy in human behavior, and the difficulties of the task be-
ing between-trial consistency, we fed the signal for the num-
ber of changes on a trial to the models directly, so that the
target measure of the fit was focused on the specific pattern
of errors made by each human on each of their trials. Each
model was fit to human responses using the method described
below, which tested enough detail to capture these homeosta-
sis straining effects over time, as well as patterns of variance
in errors.
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Figure 2: Histogram of different trial types in the experiment.
Every trial had a correct answer, and all but the first trial had
a one-back difference between its correct answer and the cor-
rect answer on the previous trial. Some of these combinations
were impossible (see text). The shape seen here equally dis-
tributes correct answers overall, and also equally distributes
changes between trials overall, while avoiding the impossible
trial types. Bars are not perfectly symmetrical due to par-
tial randomization between participants to avoid trial order
effects. Some small asymmetries between bars are visible
due to the necessity of using a Monte Carlo algorithm for this
task.

Cellular Homeostasis Model
The primary model of interest displayed homeostasis as a re-
sult of cellular energy resisting extreme response rates by be-
coming depleted after heavy use or energized after low use.
The neuron’s energy reserves were its only way of tracking
information across trials. Its output on a trial is given by:

Ot = astEt +b+ εn
where st is the stimulus on the trial (the number of changed

colors), ε is normally distributed noise, a, b, and n are freely
fitted coefficients, and E is cellular energy, calculated per trial
as:

Et = Et−1 +
(Ot−1−3)c

τ
− (Et−1−1) c

3
τ

The fourth free parameter of the model is c in the energy
equation above. τ was not parameterized and was always set
to a constant value of 10. The Ot−1 − 3 represents the fact
that three was the most central response out of options 0-6,
so any values below this were considered “low” answers that
helped relatively gain cellular energy, and any values above
this were “high” answers that relatively depleted energy re-
serves. The third term represents relaxation of the system to
neutral energy over time, but 1/3 slower than the rate of en-
ergy change from responding (Toyoizumi, Kaneko, Stryker,
& Miller, 2014). Setting Et−1 − 1 causes energy to relax to-
ward a neutral value of 1, where it would have no effect on the
cell’s output. All model answers were rounded to the nearest
integer from 0-6 - the only valid answers in this task - on a
per-trial basis. This was also true of the mathematical model

variant below.
The energy term mimics the predictions of the BDNF

chemical cell model, with as much abstraction as necessary
to allow for easy application to typical cognitive behavioral
data. As in the BDNF model, a decision neuron firing at a rel-
atively low rate (0-2 changes in this task) builds up energy and
fires faster than normal for a brief period in response, while
a neuron firing relatively energetically (4-6 changes in this
task) will progressively deplete energy and fire more slowly
for a time in response.

Simple Mathematical Model
The second model had no biological motivation, but serves as
a baseline comparison with the C.H. model. It replicates the
C.H. model in structure, but with the energy term removed.
This model had no means by which to account for previous
trials, as the model had no form of memory/hysteresis. It did,
however, still have all of the information needed to perform
perfectly at the task according to task instructions (rather than
fit to human answers). A perfect score could be achieved
with parameter values a = 1, b = 0, and n = 0. Thus, lower
performance by this model at fitting human data would be due
to a lesser ability to capture human sources of error and trial
to trial effects (theoretically irrelevant and distracting from
optimal performance) only. The model is given by:

Ot = ast +b+ εn

Fitting Method
We created three dimensional histograms of responses for hu-
mans and models to fit and compare results. Every trial across
subjects was sorted into histogram bins according to the cor-
rect answer on that trial (0 to 6), the difference between the
correct answer on that and the correct answer on the previ-
ous trial (-6 to 6), and the participant’s (real or simulated)
response (0 to 6). This produced 7 x 13 x 7 set of possibili-
ties (637 histogram bins). The first two dimensions represent
objective trial types (ones built into the design and based on
actual stimuli) and since these were not perfectly evenly dis-
tributed due to mathematical constraints (see Figure 2), we
weighted the importance of cells from the combinations that
had more more data points, using weighted least squares:

Fit =
√

1
637 ∑s,d,r(∑s,d(NHs,d )(Hs,d,r,model −Hs,d,r,human)2)

where H is the histogram, and s, d, r are stimuli at time
of response (t); difference in stimuli(t) – stimuli(t-1); and re-
sponse, respectively. This method captures information about
trial to trial effects, main effects, interactions, general task ac-
curacy, and patterns of variance, all in one measure.

This histogram method was chosen for the objective func-
tion to avoid the problem that fitting averaged descriptives
like accuracy or standard deviation of responses, which could
lead to degenerate model patterns: a mean might be fitted by
100% of model answers at exactly the mean without realistic
variance, for example. Fitting the entire histogram of all rele-
vant measures allowed for the model with the richest detailed
pattern of fits across every measure.
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Figure 3: Change responses versus change responses on the
previous trial, where the current trial had 3 changes. C.H. is
the Cellular Homeostatic Model.

The models have differing numbers of free parameters (4
vs. 3), yet due to the dynamical nature of the cellular energy
model, its maximum likelihood cannot be easily calculated,
and simulations take non-trivial time to perform. Ultimately,
the main concern of an overly complex model is failure to
generalize, so instead of scoring parsimony, we ruled out
over-fitting directly using cross-validation. For each model,
we split the subject pool in half, and separately fit each half.
We then recorded the fits for each half using only the best pa-
rameters found from fitting the other half. All results reported
below are exclusively these generalization results, removing
our concerns about hidden differences in generalization abil-
ity between the three and four parameter models.

We fit a 7 value range for each parameter in a grid covering
all of reasonable parameter space for the task, separately for
each half of participants as above. We then focused more
closely near each best fit at higher precision until precision
increases stopped yielding better fits.

Model fitting results
The best fitting parameters for the cellular homeostasis model
were a = −0.4, b = 3.5, c = 0.92, and n = 1.4. The best
fitting parameters for the simple mathematical model were
a =−0.45, b = 3.5, and n = 1.5.

The average cross-validation weighted least squares error
for the cellular homeostasis model was 8.335, while the aver-
age cross-validation weighted least squares error for the sim-
ple mathematical model was 9.436. Since these values al-
ready account for the greater potential for over-fitting with
four versus three parameters, they can be compared at face
value: the energy term meaningfully accounts for human be-
haviors above and beyond slope, intercept, and noise terms.

Although the magnitude of the effect is somewhat modest,

it is noteworthy to point out again that the simple mathemati-
cal model was able to achieve 100% objective accuracy at the
task as per the task instructions by simply fitting parameters
a = 1, b = 0, and n = 0, a combination that was within the
tested range of reasonable parameters during fitting. Thus,
the lower performance of the simpler model is purely a re-
sult of more poorly fitted patterns of human error, possibly
error in response to patterns of trials that threw off home-
ostatic neutrality, since the better fitting energy term in the
homeostasis model varies by activity on previous trials.

Ultimately, the exact cause of the better fits of the cellular
homeostasis model are unclear. Analysis of the full three-
dimensional fitting histogram suggested noticeable differ-
ences between the two models and between models and hu-
man data, but these differences were too diffuse and opaque
to easily interpret.

Lag-one correlations on trials with three color changes
also fit human data better in the homeostasis model than
in the simple mathematical model. Where βhuman = 0.11,
βcellular model = 0.05 and βsimple model = 0 (see Figure 3).
These correlations highlight the lag-one effects in particular,
but lag-one effects are also built into the 3-dimensional his-
tograms used for the main fitting results.

Discussion
Behavioral stability is often approached from the perspec-
tives of neural population dynamics or higher-level verbal or
executive control theories. Stability is also attainable, how-
ever, through more microscopic means, at an intra-cellular or
synaptic level. This source of homeostasis in cognition and
behavior is, by itself, simple. Activity is most likely stabilized
around a static resting level, at least within the timescales af-
forded by a particular task. This does not necessarily match
the flexibility or possible sophistication of higher level stabi-
lizing mechanisms.

Cellular homeostasis is, however, an appreciable effect,
especially when studied in a task that eliminates distracting
forces and pushes the boundaries of a system’s homeostasis.
Even in less specialized situations, however, cellular effects
are likely continuing to function and can contribute toward
an understanding of behavior. This form of homeostasis may
generally be playing a silent and under-appreciated role in a
wide variety of cognitive activities, providing a small but im-
portant level of baseline stability that can act as a foundation
for more targeted systems like learning mechanisms to ex-
plore more freely without risk of losing control of a system.

Our findings require significant further investigation to es-
tablish an exact pattern of behavior that is being captured by
the cellular energy term of our model, and followup experi-
ments are necessary to confirm those mechanisms once iden-
tified. In the meantime, we suggest cognitive modelers more
often consider including cellular energy terms in neural mod-
els of not only cellular-level effects, but behavioral effects as
well. All cognitive processes involve neurons, so even mod-
est effects of such a cellular system may be of great impor-
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tance collectively, for a range of effects at different levels of
complexity and abstraction.
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