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Precision Medicine for Relapsed 
Multiple Myeloma on the Basis of an 
Integrative Multiomics Approach

INTRODUCTION

Multiple myeloma (MM) is a mostly incurable 
malignancy of terminally differentiated plasma 
cells that affects 6.5 per 100,000 people per year 
in the United States, making it the second most 
common hematologic malignancy.1 Typically, the 
trajectory of MM is characterized by a pattern of 
recurrent remissions and relapses, with patients 
becoming increasingly refractory to treatment. 
Hallmarks of MM include chromosomal trans-
locations and copy number alterations (CNA).2 
However, the causal drivers of MM pathogenesis 
are still unclear, and treatment is administered 
empirically on the basis of recurrence risk rather 
than genetic events. High-throughput DNA 

sequencing of patients with MM has revealed 
wide and remarkable heterogeneity of the muta-
tional spectrum across patients and a complex 
subclonal structure,3,4 suggesting that the use of 
a personalized therapeutic approach is likely to 
improve the outcomes for myeloma.5

In the past 4 years, we have focused on the 
design and development of a computational 
platform for personalized therapy of relapsed 
and/or refractory MM, on the basis of a com-
prehensive patient profile generated from 
DNA and RNA sequencing. Many institutions 
have now started precision medicine programs 
aimed at identifying viable therapeutic options 
for patients with cancer on the basis of specific 
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targetable mutations. This is leading to a land-
mark paradigm shift in cancer therapy, in which 
treatment may be administered on the basis of 
the specific genomic alterations observed in a 
patient’s tumor, rather than on the tumor histol-
ogy or tissue type.

Our approach to precision medicine of relapsed 
MM critically incorporates RNA sequencing–
based drug repurposing. In this article, we pres-
ent our platform and the results obtained from a 
precision medicine clinical trial with 64 patients 
with relapsed MM seen at Mount Sinai. We 
show that our comprehensive approach can ben-
efit patients beyond an approach that is based 
on mutations alone. Importantly, although our 
pipeline is designed and tailored for the specific 
needs of MM therapy, it can provide a general 
framework for incorporating RNA sequencing–
based drug repurposing in oncology.

METHODS

Protocol Approvals and Patient Enrollment

The patients were physician referred. Enroll-
ment criteria, which included relapsed myeloma, 
lack of Food and Drug Administration (FDA)–
approved therapeutic options, and a prognosis 
of 6 months of survival, were approved by the 
Mount Sinai institutional review board (IRB). 
Informed written consent was obtained from 
each patient. As part of the IRB-approved 
genomics protocol, genomics findings were 
returned to the patient and treating physician in 
a standardized report to provide interpretative 
assistance. Patient enrollment started in Febru-
ary 2014 and ended in February 2016. The study 
was concluded in September 2017.

Sample Processing and Sequencing

Bone marrow (BM) aspirates and peripheral 
blood (PB) were obtained from patients with 
MM in the study. Tumor genomic DNA and 
RNA were obtained from CD138+ cells isolated 
from BM (Data Supplement). Normal genomic 
DNA (control) was obtained from granulocytes 
isolated from PB. Whole-exome sequencing 
(WES) and RNA sequencing libraries were 
submitted to Illumina HiSeq2500 for paired-
end sequencing (100 base pairs). Targeted 
sequencing was performed using the Lymphoma 
Extended targeted next-generation sequencing 
panel from Cancer Genetic, Rutherford, NJ; 

Data Supplement). Raw sequencing data are 
available at National Center for Biotechnology 
Information Sequence Read Archive (accession 
number: PRJNA474747).

Data Processing and Bioinformatics 
Analysis

We designed and implemented a software frame-
work for the definition and execution of data 
analysis workflows. The DNA workflow pro-
cesses raw data from paired tumor and nor-
mal samples to detect, annotate, and prioritize 
somatic mutations and CNA and to identify 
actionable alterations. The RNA workflow pro-
cesses RNA sequencing (RNAseq) data from 
tumor samples to identify outlier genes, deter-
mine pathway activation, and perform drug 
repurposing. Extended methods are provided in 
the Data Supplement.

RESULTS

Overview of the Study and Patient 
Characteristics

We developed a computational platform for per-
sonalized therapy of relapsed and/or refractory 
MM, on the basis of a comprehensive patient 
profile generated from DNA sequencing and 
RNAseq data (Fig 1). We evaluated the feasibility  
and effectiveness of our approach in an IRB- 
approved precision medicine clinical trial with  
64 participants treated at Mount Sinai (See  
Methods and Table 1). The study included 
39 men (61%) and 25 women (39%), and the 
median age was 59 years (range, 40 to 85 years). 
Forty-three patients (67%) had high-risk cytoge-
netics features such as t(4;14), t(14;16), del(13q), 
del(17p), and gain of 1q (Data Supplement). 
Overall, the patients had received a median of 
seven lines of therapy, with 13 patients (20%) 
having received > 10 lines of therapy.

Genomic Landscape of Patients With 
Relapsed MM and Actionable Findings

We obtained DNA data, either WES or targeted 
sequencing or both, for 55 patients (86%; Data 
Supplement). The pipeline identified a total of 
21,166 somatic mutations in 10,403 genes in 
54 of the 55 patients with DNA data available 
(Data Supplement). The mutational burden, 
quantified for the 41 patients with WES data 
and defined as the total number of mutations, 
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Fig 1. Schema of the 
analysis pipeline. Left 
panel (orange) illustrates 
the DNA processing flow. 
DNA is extracted from 
CD138+ tumor cells from 
bone marrow and CD3+ 
or granulocytes (GRN) 
from peripheral blood as a 
control. Whole-exome  
and/or targeted panel  
sequencing (seq) is  
performed, and the obtained 
reads are mapped to the ref-
erence genome and analyzed 
for the identification of 
somatic mutations and copy 
number alterations, which 
are then prioritized on the 
basis of their actionability. 
Right panel (blue) illustrates 
the RNA processing flow. 
RNA is extracted from 
CD138+ tumor cells, and 
RNA seq is performed. The 
obtained reads are mapped 
to the reference genome 
and summarized at the 
gene level. Gene expression 
analysis is then performed 
to calculate outlier genes, 
pathway activation, and 
drug repurposing through 
inverse match with drug- 
induced gene expression  
profiles. DNA- and RNA-
based drug recommendations 
are then summarized in 
reports. CIViC, Clinical 
Interpretations of Variants in 
Cancer (https://civicdb.org).
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ranged from 113 to 1,423, with an average of 
527.5 mutations per patient (Fig 2A). Mutations 
were distributed among 14 different categories 
according to their nature and position in the 
genome, the majority of them being located in 
introns (57%; Fig 2B). Among the mutations 

with a potential pathogenic impact, missense 
mutations were the most numerous (17%), fol-
lowed by nonsense, splice site, and start codon 
mutations (< 3%), for a total of 4,013 potentially 
pathogenic mutations in 3,163 genes (Data Sup-
plement). We used the Clinical Interpretations 
of Variants in Cancer database (https://civicdb.
org) to identify actionable mutations (ie, those 
associated with sensitivity to one or more drugs 
in one or more cancer types6; Fig 2C; Data Sup-
plement). Among the most frequently mutated 
genes, KRAS, TP53, NRAS, BRAF, ATM, and 
APC had actionable mutations. Only the BRAF 
V600E mutation was associated specifically with 
MM. The other actionable mutations detected 
were associated with other hematologic malig-
nancies or with solid cancers.

CNA constitute another important category of 
abnormalities observed frequently in MM, as 
well as in other cancers. We estimated CNA for 
the 41 patients with WES data and summarized 
them at the gene level. Overall, we found a total 
of 3,541 genes affected by CNA in at least one 
patient and identified 31 actionable alterations 
(Fig 2D; Data Supplement). We assessed con-
cordance of WES-based CNA with fluorescent 
in situ hybridization and cytogenetics for detec-
tion of the most recurrent and clinically relevant 
CNA in MM (del[1p], del[13q], del[17p], and 
gain[1q21]) and observed a 69% overlap.

Analysis of the MM Transcriptome for the 
Identification of Actionable Variations

RNAseq data were available for 60 patients 
(94%) and were used to determine outlier 
genes and pathway activation and to perform 
RNA drug repurposing (Data Supplement). We 
defined deregulated genes (over- or underex-
pressed) as actionable if they were reported as 
predictive of sensitivity to at least one drug in 
CIViC. We identified a total of 28 actionable 
genes, 17 over- and 11 underexpressed (Fig 3A; 
Data Supplement). We then calculated pathway 
activation by single-sample gene set variation 
analysis7 on a set of actionable pathways rele-
vant in MM: XBP1s activation, mammalian tar-
get of rapamycin signaling, histone deacetylase 
(HDAC), DNA repair, interleukin-6 signaling, 
PI3K/AKT activation, Hedgehog signaling, fibro-
blast growth factor receptor 3, and mitogen- 
activated protein kinase (MAPK). Figure 3B 
presents pathway activation scores calculated for 
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Table 1. Patient Characteristics

Parameter Patients (n = 64)

Age, years (range) 59 (40-85)

Sex

Male 39 (61)

Female 25 (39)

Disease stage (ISS)

I 21 (33)

II 14 (22)

III 11 (17)

NA 18 (28)

Cytogenetic alterations

t(4;14) 12 (18)

t(14;16) 4 (6)

t(11;14) 11 (17)

t(8;14) 1 (1.5)

del 13q14 32 (50)

gain 1q21 25 (39)

del 17p 12 (18)

del 1p 4 (6)

Hyperdiploidy 13 (20)

Other 21 (33)

Previous treatments

ASCT 41 (64)

Bortezomib 59 (92)

Carfilzomib 42 (66)

Cyclophosphamide 47 (73)

Daratumumab 35 (54)

Doxorubicin 24 (37)

Elotuzumab 8 (12)

Etoposide 28 (44)

Lenalidomide 56 (87)

Nivolumab 11 (17)

Pomalidomide 42 (65)

Thalidomide 29 (45)

Vincristine 9 (14)

Previous lines of therapy

5-10 31 (48)

> 10 13 (20)

NOTE. Data are presented as No. (%) unless indicated otherwise.
Abbreviations: ASCT, autologous stem cell transplant; ISS, International Staging System.

http://ascopubs.org/journal/po


the 60 patients, whereas Figure 3C illustrates the 
distribution of activated pathways in the cohort. 
Each pathway is associated with specific targeted 
drugs (Data Supplement).

Finally, we performed RNA-based drug repur-
posing by matching each patient’s RNA profile 
(z scores) with gene expression profiles induced 
by different drugs from the L1000 project, using 
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the L1000CDS2 method, which is based on char-
acteristic direction signatures.8,9 The rationale 
behind this approach is that a drug inducing a gene 
expression profile that is opposite to a patient’s pro-
file might be able to revert the disease-associated  
signature and the phenotype. This approach has 
been demonstrated successfully in several pub-
lished cases.10-12 Figure 3D presents the distribu-
tion of FDA-approved cancer drugs selected by 
our analysis in the cohort. The Data Supplement 
summarizes FDA-approved noncancer drugs 
options that were selected for at least one patient.

Implemented Recommendations and 
Response to Therapy

Our pipeline generated recommendations for 
63 of 64 patients (98%). Recommended drugs 
were prioritized on the basis of their specific 

association with MM, according to the available 
evidence in CIViC (Data Supplement). Of the 
63 patients with recommendations, 26 received 
at least one of the suggested drugs (42%). The 
most prescribed drugs were trametinib (n = 16 
[61%]), venetoclax (n = 8 [30%]), and panobi-
nostat (n = 6 [23%]). Trametinib was recom-
mended because of mutations in either NRAS 
or KRAS; venetoclax was recommended because 
of high BCL2 expression in the context of 
all the patients analyzed (Data Supplement); 
panobinostat was recommended on the basis 
of RNAseq analysis indicating activation of the 
HDAC pathway and/or by RNA-based drug 
repurposing selecting the pan-HDAC inhibitor 
vorinostat. Other prescribed drugs were dab-
rafenib, prescribed because of concurrent BRAF 
and RAS mutations, and etoposide, selected by 
RNA-based drug repurposing (Table 2).
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Of the 26 treated patients, 21 were evaluable for 
response (81%). Of these, 11 (52%) received a 
drug on the basis of RNA profiling, eight (38%) 
on the basis of DNA profiling, and two (10%) 

on the basis of both RNA and DNA profiling. 
Five patients received our recommended drugs 
alone, whereas for 16 patients, the drugs were 
either added to previous treatment (n = 10)  
or administered in combination with other 
drugs on the basis of physician discretion (n = 6).  
The clinical benefit rate was 76% (minimal 
response or greater; Fig 4A). In particular, of the 
21 evaluable patients, one (5%) achieved CR; 
three (14%), very good partial response; and 10 
(47%), PR, to give an overall response rate of 
66%. Two patients (10%) had minimal response, 
three (14%) had stable disease, and two (10%) 
had progressive disease. The median duration 
of response was 131 days (range, 37 to 372 
days). Five patients had still ongoing responses 
at the end of the study (September 1, 2017), 
with response durations of 235, 182, 150, 172, 
and 99 days, respectively (Fig 4B). Significant 
(≥ grade 3) nonhematologic toxicities were seen 
in five patients (24%); these included neutrope-
nic fever, diarrhea, fatigue, and cardiomyopathy 
(Table 2).

Case Studies

Case 1: Patient ISMMS05 (RNA-Based Recom-
mendation: Panobinostat Plus Venetoclax). A 
73-year-old woman was diagnosed with IgG 
lambda MM in November 2007. She received 
lenalidomide and dexamethasone as front-line 
treatment, then relapsed and received multi-
ple lines of chemotherapy (Data Supplement). 
Her CD138+ cells were then collected and 
sequenced. Our pipeline revealed activation of 
the HDAC pathway through RNA analysis and, 
concordantly, identified the HDAC inhibitor 
vorinostat through drug repurposing. More-
over, gene expression analysis revealed a high 
expression of BCL2 compared with that of the 
other patients analyzed (Data Supplement). On 
the basis of these findings, she was administered 
venetoclax 400 mg PO once daily, the HDAC 
inhibitor panobinostat 20 mg Monday, Wednes-
day, and Friday, 2 weeks on, 1 week off, and, in 
addition, pomalidomide 2 mg Monday to Fri-
day, 3 weeks on, 1 week off. Notably, the patient 
had been treated previously with pomalidomide.  
Before therapy, IgG was elevated to 2,910 mg/dL  
and free lambda, 141. IgG has decreased to as 
low as 785 mg/dL and free lambda light chains 
to 19.16 mg/dL (Data Supplement). The patient 
remains receiving treatment.
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different drugs at different times; thus, their responses are shown as two separate bars. 
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response at the end of the study. (B) Each bar indicates the time that each patient was 
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achieved (white). Red diamond indicates death of the patient. (+) Additional drugs 
were used in the specific time frame (see Table 2 for details). Gray bars indicate time 
receiving a different treatment outside of our recommendation. Red arrow indicates 
patient had an ongoing response at the end of the study.
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Case 2: Patient ISMMS23 (WES-Based Recom-
mendation: Trametinib). A 72-year-old man was 
diagnosed with IgA kappa plus kappa MM, 
Durie-Salmon stage IIB in April 2011. After 
relapsing after receiving multiple treatments 
including pomalidomide 2 mg (immediate 
preceding regimen), his CD138+ cells and PB 
samples were sent for sequencing (Data Supple-
ment). The pipeline identified an NRAS G12S 
mutation, and the patient was administered the 
MEK inhibitor trametinib. Before treatment,  
his IgA and free kappa light chains measured  
661 mg/dL and 576 mg/L, respectively (free 
kappa/lambda ratio, 19·32). Three months after 
treatment began, his IgA had reached a nadir of 
94 mg/dL, whereas his free kappa light chains 
had decreased to 109 mg/L. The patient relapsed  
5 months later, with free kappa light chains rising to 
390 mg/L (IgA, 187 mg/dL; Data Supplement).

Case 3: Patient ISMMS40 (WES + RNA-Based 
Recommendation: Trametinib Plus Venetoclax). A 
55-year-old man was diagnosed with IgG kappa 
MM in April 2008. The patient was initially 
administered lenalidomide and dexamethasone, 
which resulted in relapse and, after multiple 
failed regimens, his CD138+ cells and PB were 
sent for sequencing (Data Supplement). WES 
analysis identified a KRAS Q22K mutation. 
Concordantly, RNA analysis showed activation 
of the MAPK pathway. Gene expression anal-
ysis revealed a high expression of BCL2 com-
pared with that of the other patients analyzed 
(Data Supplement). He was administered the 
BH3-mimetic venetoclax 400 mg Monday to 
Friday and trametinib 2 mg Monday, Wednesday,  
Friday. It has been shown that the combi-
nation of BH3-mimetic and MEK inhibition 
upregulates the proapoptotic Bcl-2 family mem-
ber Bim and can have a synergistic anticancer 
activity.13 The patient’s free kappa/lambda ratio 
decreased from 13.2 to 0.251, and he responded 
well to therapy. However, he eventually developed 
grade 3 fatigue, and treatment was held. After 
relapse, the patient was challenged with veneto-
clax 400 mg Monday to Friday, trametinib 2 mg  
Monday, Wednesday, Friday, and carfilzomib 
20/27 mg/m2. This showed tumor response, with 
an M spike decrease from 6.08 g/dL to 4.86 g/dL 
and an IgG decrease from 7,321 mg/dL to 4,818 
mg/dL. Notably, the patient was previously refrac-
tory to carfilzomib. The patient has been continu-
ing this regimen for 3 months (Data Supplement).

DISCUSSION

Here, we reported our integrated multiomics 
approach for personalized therapy of MM and 
its application in a pilot precision medicine clin-
ical trial with 64 patients with relapsed MM seen 
at Mount Sinai. As patients with MM progress 
through advanced disease and receive multiple 
lines of therapy, they are left with fewer and 
fewer treatment options. The results of our 
study show how a precision medicine approach 
incorporating RNA sequencing may identify 
viable and effective therapeutic options beyond 
the current FDA-approved armamentarium in 
MM. Our pipeline generated recommendations 
from a larger pool of FDA-approved cancer 
drugs (MM and non-MM) for 63 of 64 patients 
in the trial (98%; Fig 5).

Treatment was implemented in 40% of patients, 
and 81% of these were evaluable (Table 2). 
Remarkably, 62% of the evaluable patients 
received a drug on the basis of RNA profiling. 
Two drugs that we repurposed successfully from 
other cancers in our study were trametinib and 
venetoclax, the former selected on the basis 
of DNA and the latter on the basis of RNA 
findings. Trametinib is a MEK1/2 inhibitor 
approved by the FDA in combination with dab-
rafenib for unresectable or metastatic melanoma 
and non–small-cell lung cancer carrying muta-
tions in BRAF (V600E/V600K). Recent stud-
ies have shown activating mutations in NRAS, 
KRAS, and BRAF in MM, making the MAPK 
pathway a significant therapeutic target also in 
MM.3-5 A retrospective study has demonstrated 
clinical activity of trametinib in patients with 
MM with RAS-mutated tumors.14 Eleven of 21 
evaluable patients in our study received trame-
tinib, either alone or in combination with other 
drugs. Six of them had clinical response, with a 
median progression-free survival of 110 days, 
and two patients had ongoing responses at the 
end of the study. Venetoclax is a BH3 mimetic 
that acts as a Bcl-2 inhibitor and is approved 
only for patients with chronic lymphocytic leu-
kemia carrying deletion of 17p.15 Phase I clin-
ical trials reported the efficacy of venetoclax in 
relapsed and/or refractory MM, where patients 
with high BCL2 expression had a higher ORR 
than did patients with low BCL2 expression.16-18 
Our pipeline selected venetoclax for eight 
patients on the basis of BCL2 expression, and all 
of them showed clinical response, with a median 
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progression-free survival of 161 days, and five 
patients had ongoing responses at the end of the 
study. Overall, these results compare favorably 
to the efficacy seen in several novel agents for 
MM, including pomalidomide, daratumumab, 
and elotumumab, as well as targeted precision 
medicine approaches such as the NCI-MATCH 
(National Cancer Institute Molecular Analysis 
for Therapy Choice) trial, in which patients with 
specific solid tumors received treatment on the 
basis of actionable DNA mutations.19

Our trial also identified the challenges in imple-
menting NGS-based recommendations in a 
real-world setting. In 60% of the patients with rec-
ommendations, treatment was not implemented, 
either because of insurance denial of the drug or 
because of rapid progression of disease before 
sequencing results were available. Insurance denial 
represents a significant limitation in the imple-
mentation of personalized therapy that is based on 

genomic findings. Our results suggest a need for 
specialty pharmacies and insurers to evolve with 
the technology to optimally help patients. 

The second limiting factor in our study was the 
time required for sequencing. The average turn-
around time from sample collection to sequenc-
ing data was 6 weeks. However, most patients 
with relapsing MM experience rapid progression 
and need immediate treatment. To address this, 
we are now using rapid-run sequencing, which 
provides results in a few days. This may be more 
expensive initially but may become cost effective 
with greater use.

Of the 21 treated patients who were evaluable, 
five did not respond to the recommended ther-
apy. Multiple factors should be considered to 
improve the accuracy of treatment prediction. 
One key factor is clonal heterogeneity. MM is 
characterized by a branching pattern of clonal 
evolution, in which distinct subclonal tumor 
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Genomics
Transcriptomics
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No drugs identified (3%)
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Fig 5. Schematic of the trial with results, limitations, and proposed solutions. We recruited 64 patients (pts) with relapsed and/or refrac-
tory multiple myeloma (MM) treated at the Mount Sinai hospital. We obtained RNA sequencing (RNAseq) for 94%, whole-exome sequenc-
ing (WES) for 64%, and targeted DNA panel data for 53% of the pts. Sequencing (Seq) data were analyzed by our pipeline (see Fig. 1), and 
drug recommendation reports were produced. Treatment was implemented in 40% of the pts, and 81% of these were evaluable (see Table 2). 
According to IMWG criteria, 76% of the pts had a clinical response (MR and above, where MR = minimal response and corresponds to a 25% 
reduction of disease marker), whereas 24% of the pts had stable disease (SD) or worse. Problems to address to improve recommendations include 
assessment of clonal heterogeneity, analysis of bone marrow microenvironment, and extension of reference data to include MM-specific drug 
profiles from in vitro and in vivo models. Treatment was not implemented in 60% of the pts, because either no drugs were identified, because 
insurance denied the proposed drugs, or because of rapid progression of the patient before the results of sequencing were available. CyTOF, 
mass cytometry; scRNA, single-cell RNA.
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populations may evolve by selective pressure of 
therapy.5,20,21 We have recently started to inves-
tigate the impact of clonal heterogeneity on 
therapy selection, by extending our analysis to 
include clonality assessment on the basis of WES 
and/or single-cell RNA sequencing (scRNA-
seq). Integration of both WES and scRNAseq 
may provide a more comprehensive profile of 
a patient’s tumor, enabling drug repurposing at 
the subclonal level.

Another key factor in optimal therapy predic-
tion is the BM microenvironment. MM cells are 
strongly dependent on the surrounding micro-
environment, which promotes their homing, 
growth, survival, and migration, as well as their 
resistance to drugs.22 Therapies targeting both 
the cellular and the noncellular BM compart-
ments are available and are currently used in 
MM, although not in a targeted manner. Pro-
filing the microenvironment by scRNAseq and/
or mass cytometry, which allows simultaneous 
measurements of up to 50 markers at single-cell 
resolution, may help dissect the nontumor com-
partment and better inform targeted therapy. 
We are currently investigating the feasibility of 
including this feature in the next generation of 
our platform. In particular, the use of scRNAseq 
in clinical precision oncology is limited by sev-
eral challenges, including increased cost com-
pared with bulk sequencing (approximately 10 
times higher), high sensitivity to sample purity, 
and dropouts (ie, undetected transcripts due to 
low amounts of RNA sequenced within individ-
ual cells), as well as data processing and inter-
pretation. In fact, the analysis of scRNAseq data 
requires the use of specialized tools, which are 
still in their development stage. Nevertheless, 
scRNAseq represents a promising and powerful 

technology that will likely complement current 
precision medicine strategies in the near future.

A third key factor to consider concerns the accu-
racy of the predictions. This involves sequencing 
data, reference data in the knowledge base, and 
the algorithms used. We are working on extend-
ing our knowledge base to incorporate MM- 
specific data, including transcriptional effects of 
novel agents, to quickly and effectively translate 
robust research findings into clinical practice. To 
further improve drug recommendations, we are 
implementing validation of the in silico findings 
using both in vitro (micro-C3) and in vivo (PDX) 
models.23,24 This will also contribute to reducing 
both the costs and the toxicities associated with 
ineffective treatments. Finally, we are going to 
equip our platform with a machine learning flow, 
which will implement interactive learning tech-
niques to refine the predictions on the basis of 
therapy outcome and physician’s opinion.

In conclusion, here we have described our 
sequencing-based precision medicine platform 
for relapsed and/or refractory MM and reported 
the results of a pilot clinical trial to assess the fea-
sibility and usefulness of this approach. The trial 
has allowed us to test and reveal the accuracy of 
our platform and to understand the pitfalls and 
limitations of the approach, laying the founda-
tion for our next-generation precision medicine 
framework. Overall, the results demonstrate fea-
sibility and early efficacy, providing a basis for 
expanding NGS-guided personalized therapy 
integrating RNA- and DNA-based drug repur-
posing for patients with cancer.
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