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Signaling pathway cooperation in TGF-β-induced epithelial-
mesenchymal transition

Rik Derynck, Baby Periyanayaki Muthusamy, and Koy Y. Saeteurn
Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of 
Regeneration, Medicine and Stem Cell Research, University of California at San Francisco, San 
Francisco, CA 94143-0669, USA

Abstract

Transdifferentiation of epithelial cells into cells with mesenchymal properties and appearance, i.e. 

epithelial-mesenchymal transition (EMT), is essential during development, and occurs in 

pathological contexts, such as in fibrosis and cancer progression. Although EMT can be induced 

by many extracellular ligands, TGF-β and TGF-β-related have emerged as major inducers of this 

transdifferentiation process in development and cancer. Additionally, it is increasingly apparent 

that signaling pathways cooperate in the execution of EMT. This update summarizes the current 

knowledge of the coordination of TGF-β-induced Smad and non-Smad signaling pathways in 

EMT, and the remarkable ability of Smads to cooperate with other transcription-directed signaling 

pathways in the control of gene reprogramming during EMT.

Through “epithelial-mesenchymal transition” (EMT), epithelial cells transdifferentiate into 

mesenchymal cells, either partially or fully. Also endothelial cells use similar mechanisms to 

convert into mesenchymal cells, and this process is often named EndMT. Combining EMT 

with the reciprocal reversion of mesenchymal cells to an epithelial phenotype, i.e. 

“mesenchymal-epithelial transition” (MET), allows cell populations to transition through 

several rounds of EMT in development, e.g. in dorsal somite cells that arise through MET 

from early mesoderm and then differentiate into dermal mesenchyme and myoblasts [1]. 

EMT has been classified as three types depending on the physiological context. Type 1 EMT 

occurs in development, while type 2 EMT is seen in wound healing, inflammation and 

fibrosis. In cancer, type 3 EMT enables carcinoma cell invasion and dissemination, has been 

linked to cancer stem cell properties of some carcinomas, and contributes to the tumor 

stroma through conversion of epithelial and endothelial cells [2]. However, underlying these 

three types of EMT is a common transdifferentiation program with inherent variability 

depending on cell type and context. Key events in EMT are (1) dissolution of epithelial cell-

cell junctions with loss of apical-basal polarity and acquisition of front-rear polarity, (2) 

reorganization of the cytoskeletal architecture with changes in cell shape and increased cell 

motility, (3) reprogramming of gene expression resulting in repression of epithelial gene 

expression and activation of genes that help define the mesenchymal phenotype. “Master” 

transcription factors, such as Snail1 or Snail2/Slug, ZEB1 or ZEB2, and Twist, drive this 
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reprogramming, which often results in a switch in cadherin expression, a switch in integrin 

repertoire and, in many cases, expression of metalloproteases that degrade extracellular 

matrix (ECM) proteins, thus enabling invasive behavior [3,4].

Many EMT inducers, few pathways

Various secreted factors can induce or are required for EMT. Fibroblast growth factors 

(FGFs) and hepatocyte growth factor (HGF), which act through receptor tyrosine kinases 

(RTKs), were among the first reported EMT inducers conferring cell dispersion. Other 

ligands that activate RTKs or receptor-associated tyrosine kinases also induce EMT, and 

integrin signaling through tyrosine kinases can contribute to activation of the EMT program 

[1,4]. Other EMT inducers execute more direct changes in gene expression during EMT. 

TGF-β family proteins that act through Smad transcription factors, Wnts acting through β-

catenin and TCF/LEF transcription factors, and Hedgehog proteins that activate Gli proteins, 

also induce or are required for EMT in diverse contexts. Aiming to provide a unifying 

framework for the induction and regulation of EMT, it is logical to postulate that EMT 

requires the cooperation of signaling pathways that coordinately direct changes in cell-cell 

and cell-matrix interactions, cyto-architectural remodeling, and gene reprogramming. This 

cooperation may depend on distinct ligands activating complementary pathways, while some 

ligands activate several of these, and thus depend less on additional autocrine or paracrine 

factors.

Among the EMT inducers, TGF-β receives substantial attention, largely because of its 

potency in inducing EMT in cell culture and its roles in cancer-associated EMT, while TGF-

β family proteins direct EMT during development. Consequently, TGF-β-induced EMT has 

been better characterized than EMT in response to other inducers, and often serves as 

paradigm for analyses of this process. In TGF-β-induced EMT, Smads induce gene 

reprogramming by directly activating the expression of EMT transcription factors, and then 

cooperating with these in the control of target genes [4,5]. The functional dependence of 

Smads on interactions with DNA binding transcription factors additionally enables 

cooperation with other pathways at the level of gene expression [6]. TGF-β additionally 

induces non-Smad signaling, leading to activation of Rho GTPases, MAP kinase (MAPK) 

pathways and the PI3 kinase-Akt-mTOR pathway, similarly to, albeit to a lower level than 

RTKs [7,8]. These instruct non-transcription changes and cooperate with Smad-mediated 

gene expression during EMT, yet also directly regulate the stabilities and activities of Smads 

[7,8]. The roles of Smads in gene reprogramming, microRNA-mediated control and 

differential mRNA splicing during EMT have recently been extensively reviewed [9,10]. 

This update focuses on the control of EMT by non-Smad pathways that are activated by 

TGF-β family proteins (Fig. 1), and crosstalk of Smads with other transcription-directed 

signaling pathways (Fig. 2).

Roles of Rho, Rac and Cdc42 GTPases in EMT

In EMT, Rho, Rac and Cdc42 GTPases direct changes in epithelial cell junctions, redirect 

the apical-basal polarity into a front-rear polarity, and orchestrate the cytoskeletal 

organization that enables lamellipodia and filipodia formation [11,12]. As with EMT 
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inducers that act through RTKs, TGF-β proteins induce changes in RhoA activity as 

receptor-proximal events that do not require protein synthesis (Fig. 1).

The integrity of the epithelial cell junctions is coupled to protein complexes that maintain 

apical-basal polarity, with the Par and Crumbs complexes linked to apical tight junctions, 

and the Scribble complex localized at lateral adherens junctions [11,12]. Rho activation 

results in dissolution of epithelial junctions, and loss of cell contacts and apical-basal 

polarity. Cdc42 regulates tight junction integrity through association with the Crumbs 

complex [13], yet can also control polarity, in association with the Par complex, through 

effects on Rac GEFs that activate Rac1 [14]. TGF-β-induced EMT involves RhoA 

degradation at tight junctions, resulting from Par6 phosphorylation by the type II TGF-β 

receptor at tight junctions and RhoA ubiquitylation [15], complementing the downregulation 

of expression of epithelial junction proteins [4,9,10]. As the cells acquire front-rear polarity, 

Par and Scribble complexes, and Patj of the Crumbs complex, localize at the leading edge, 

where Rac1 and Cdc42 promote actin reorganization and membrane protrusions, and Rac1 

drives integrin clustering [9,11,12]. At the trailing edge, RhoA enables cell de-adhesion, 

inhibits Rac and prevents Par complex formation [11,12].

Upon RhoA activation, the Rho-associated kinase, ROCK, cooperates with the formin 

mDIA1 to promote actin polymerization, e.g. in actin stress fibers and lamellipodia. ROCK 

also induces myosin light chain phosphorylation, which enhances actomyosin contractility 

and contributes to cell retraction, and activates LIM kinase (LIMK) to inactivate the actin 

severing cofilin [16]. ROCK and LIMK activation were shown to be required in TGF-β- and 

BMP-induced EMT [17,18]. Rac1 and Cdc42 activation induce lamellipodia and filipodia 

formation, and resultant PAK1 activation promotes cell spreading and motility [19].

Rho GTPase-mediated control of actin polymerization also connects to changes in gene 

expression that are required for cell motility. Nuclear actin binds ribonucleoprotein 

complexes and participates in chromatin remodeling [20]. RhoA and actin also control the 

activities of the transcription factor SRF and its co-activators, the myocardin-related 

transcription factors (MRTFs) [21], which, among other genes, activate the gene encoding 

α-smooth muscle actin (α-SMA) [21], a myofibroblast protein often expressed in EMT. 

TGF-β-activated Smads also cooperate with MRTFs in the control of α-SMA expression 

[22].

Interactions with GAPs, GEFs, and GDIs, and polarity complexes, and mutual interactions 

control the activities of Rho GTPases in EMT, with Rho and Rac activities often correlating 

inversely. TGF-β induces the expression of the Rho-associated GEF-H1, which enhances 

RhoA activity and contributes to α-SMA expression [23]. Depletion of GEF-H1, thus 

decreasing RhoA activity, was shown to attenuate mesenchymal marker and increase E-

cadherin expression in liver carcinomas [24]. Integrin stimulation of the focal adhesion 

kinase, FAK, can control Rho GEFs and GAPs, and, consequently, actin dynamics and cell 

membrane protrusions [25]. Src activation can promote phosphorylation and degradation of 

the Rac GEF Tiam1, leading to adherens junction disassembly and Erk MAPK activation 

[26]. Binding of RhoA to p120-catenin, which associates with E-cadherin, inhibits RhoA 

activity, leading to enhanced Rac and Cdc42 activities and cell motility [27]. The 

Derynck et al. Page 3

Curr Opin Cell Biol. Author manuscript; available in PMC 2015 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transcription corepressor ZNF703 enhances p120-catenin expression, leading to decreased 

RhoA and increased Rac1 activity, thus contributing to EMT and cell motility [28]. TGF-β 

also induces the expression of the RhoA GEF NET1A, leading to RhoA activation, but long-

term TGF-β treatment activates miR-24 expression, which inhibits NET1A expression, thus 

promoting adherens and tight junction disruption, and EMT [29]. Finally, activation of 

RhoC during EMT of colon carcinoma cells enhances cell migration, suggesting that cell 

migration may require RhoC [30].

The PI3K-Akt-mTOR pathway in EMT

Like EMT inducers that act through RTKs or membrane-associated tyrosine kinases, TGF-β 

family proteins activate the PI3K-Akt pathway, leading to mTOR activation and enhanced 

protein synthesis [31]. PI3K or Akt inhibition arrests EMT [32,33], indicating an essential 

role of this pathway in EMT.

Although encoded by distinct genes, the roles of Akt1 and Akt2, which are generally 

expressed in epithelial cells, are usually not distinguished, but some studies note intriguing 

differences. In one study, silencing Akt1 but not Akt2 expression in IGF-1- or EGF-

stimulated epithelial cells cooperates with the enhanced Erk MAPK signaling in promoting 

EMT and cell motility, whereas Akt2 controlled primarily cell proliferation and survival 

[34]. In another context, however, silencing Akt1 expression was seen to enhance TGF-β-

induced EMT [35], and silencing of Akt2 has been shown to attenuate the increased 

migration and invasion of cells that underwent EMT upon expression of Twist [36].

Akt2 activation in response to TGF-β has also been linked to selective translational control 

in EMT. Phosphorylation of hnRNPE1, a selective RNA binding protein, by Akt2 reverses 

translation inhibition, and thus induces expression, of Dab2 and ILEI, which are required for 

TGF-β-induced EMT [37,38]. This role of Akt2 may be initiated by TGF-β-induced Tyr 

phosphorylation of ShcA that enables recruitment of the p85 regulatory subunit of PI3K and 

FAK, resulting in Akt2 phosphorylation [39].

Downstream from Akt, mTOR activation results in increased protein synthesis, cell size and 

migration. Selective inactivation of mTOR complex 1, which controls protein synthesis, 

confers decreased cell size, without affecting the EMT phenotype and gene expression, but 

impairs migration and invasion [40]. In contrast, mTOR complex 2 inactivation blocks TGF-

β-induced EMT without apparent effect on non-induced epithelial cells [32]. In another 

system, mTOR complex 1 is required for E-cadherin downregulation and EMT transcription 

factor expression, perhaps dependent on GSK3β phosphorylation and inhibition by Akt [41]. 

The inability of cells to transition through EMT when mTOR is inactivated may relate in 

part to impaired RhoA and/or Rac1 activation, affecting cytoskeletal remodeling [32,33]. 

Additionally, Akt destabilizes adherens junction complexes through phosphorylation of the 

nectin-associated protein afadin [42].

Akt activation also impacts Smad activation in response to TGF-β, and, thus, Smad-

mediated transcription responses in EMT. For example, association of Akt with 

unphosphorylated Smad3 can sequester Smad3, thus attenuating TGF-β-induced Smad 

activation [43]. Considering the key roles of Smads in TGF-β-induced EMT, this attenuation 
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is expected to inhibit the expression and activity of EMT transcription factors. However, 

TGF-β was shown to inhibit insulin-induced Akt-Smad3 association, thus enhancing Smad 

activation [44]. Additionally, since phosphorylation of Smads by GSK3β leads to 

ubiquitylation and degradation, inactivation of GSK3β by Akt may enhance Smad-mediated 

transcription in EMT.

Besides targeting the Smads, Akt targets the EMT transcription factors themselves. Snail1 is 

phosphorylated by GSK3β, leading to its ubiquitylation and degradation, and inhibition of 

GSK3β by Akt stabilizes Snail1, thus enhancing EMT [45,46]. Similarly, GSK3β 

phosphorylates and destabilizes NF-κB, and Akt activation enhances NF-κB-mediated 

contributions to EMT [47]. Akt also phosphorylates Twist1, enhancing its activity and 

promoting Twist1-mediated expression of TGF-β2, which then promotes EMT [48]. In 

HER2-induced EMT, Akt was shown to phosphorylate heat shock factor-1, which activates 

Snail2 expression, thus promoting EMT [49]. Finally, the induction of Akt2 expression by 

Twist [36] provides yet another level of crosstalk between the PI3K-Akt pathway and EMT 

transcription factors.

MAP kinase pathways control EMT

TGF-β family proteins induce MAPK pathways, but their activation levels are weaker than 

in response to many RTK ligands. Erk1/2 MAPK signaling in response to TGF-β is initiated 

by ShcA phosphorylation on Tyr by the type I TGF-β receptor [50], whereas activation of 

p38 MAPK and/or JNK results from the recruitment of the E3 ubiquitin ligases TRAF4 or 

TRAF6 to the TGF-β receptor complex and subsequent activation of the TAK1 kinase 

[51-53]. Initiation of EMT is often accompanied by activation of Erk1/2 MAPK, Erk5 

MAPK, p38 MAPK and/or JNK, and their upstream kinases (Fig. 1).

Pharmacological inhibition of Erk1/2 MAPK activation prevents both TGF-β- and HGF-

induced EMT [54]. In response to HGF, Erk1/2 MAPK activates the expression of the 

transcription factor EGR-1, which induces Snail1 expression and EMT [55]. In IGF-1-

induced EMT, activation of ZEB1 expression requires the Erk1/2 MAPK pathway [56], 

whereas, in radiation-induced EMT, the Erk1/2 MAPK pathway induces GSK3β 

phosphorylation, thus attenuating GSK3β-mediated decrease in Snail1 activity [57]. Finally, 

in cells with Ras- or Raf-induced EMT, the Erk-activated ribosomal S6 kinase RSK induces 

gene expression, in part dependent on the transcription factor Fra1, that contributes to 

increased motility and invasion [58]. Consequently, activation of the Erk1/2 MAPK allows 

scenarios of transcriptional cooperation of TGF-β-activated Smads with c-Jun and/or Fra1.

Additionally, direct phosphorylation of receptor-activated Smads by Erk MAPK allows Erk 

MAPK to control the nuclear translocation of Smad complexes and repress or enhance TGF-

β- or BMP-induced gene responses [59]. This crosstalk appears to depend on the nature of 

the Smad and Smad target genes [11, 60], and their control by other pathways and 

functionally interacting proteins in transcription complexes. Thus, Smad and Erk MAPK 

signaling cooperate to control gene reprogramming during EMT.

Some studies specifically implicate Erk2 as key effector in EMT. EMT induced by 

oncogenic Ras requires Erk2, but not Erk1, with Erk2 acting in part through activation of 
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expression of Fra1 and its target genes, thus inducing ZEB1/2 expression [61]. Supporting a 

key role of Erk2, TGF-β-induced EMT in prostate cancer cells expressing activated Ras 

requires activation of MEK1, and not MEK2, and Erk2, as well as c-Myc, which is 

phosphorylated by Erk2 [62]. Furthermore, EMT of colon cancer cells, resulting from 

increased expression of PLAC8, a protein involved in colon cancer, was shown to correlate 

with and depend on Erk2 phosphorylation [63].

In parallel with the Erk1/2 MAPK pathway, TGF-β and EMT inducers that act through 

RTKs, activate MEK5, leading to Erk5 MAPK (Bmk1) signaling [64]. In keratinocyte 

wound healing, Erk5 is required for Snail2 expression and motility [65], whereas, in TGF-β-

treated hepatocytes, Erk5 stabilizes Snail1 through GSK3β inactivation, promoting EMT 

[66]. Conversely, silencing Erk5 expression was shown to enhance Akt/GSK3β signaling, 

Snail1 expression and EMT [67]. These data suggest that in some contexts, Erk5 MAPK 

may antagonize Erk2 MAPK in the control of EMT.

Like many cytokines, TGF-β family proteins induce p38 MAPK activation, and inactivation 

of p38 MAPK prevents TGF-β-induced EMT [68]. In gastrulation, E-cadherin 

downregulation, EMT and migration of mesoderm from the primitive streak are defective 

when p38 MAPK activation is impaired [69]. In TGF-β-induced EMT of lung alveolar cells, 

p38 MAPK and Smads cooperate in gene reprogramming, with distinct gene expression 

changes impaired when p38 MAPK is inactivated [70]. p38 MAPK can cooperate with 

Smad3/4 at TGF-β target genes through the transcription factor ATF2 [71]. Inhibition of p38 

MAPK in some cancer cells allows for E-cadherin re-expression and reversal to an epithelial 

phenotype, and may play a role following cancer dissemination [72]. Conversely, however, 

p38 MAPK activation attenuates E-cadherin downregulation during EMT of mesothelial 

cells, by suppressing NF-κB signaling, allowing p38 MAPK to act as “brake” in the control 

of EMT. In that system, p38 MAPK activation promotes Snail1 and represses Twist1 

expression [73]. The differential control of EMT by p38 MAPK may depend on the 

activation of converging signaling pathways and cell type. In how far Smad1 or Smad3 

phosphorylation by p38 MAPK [59] contributes to EMT remains to be appreciated.

Lastly, EMT induced by TGF-β requires JNK activation, which in tracheal epithelial cells 

has been attributed to JNK1 and not JNK2 [74]. Further supporting a role of JNK activation 

in EMT, JNK deficiency in p53−/− mouse embryonic fibroblasts promotes an epithelial 

phenotype [75]. At the molecular level, JNK may contribute to EMT through 

phosphorylation, and consequent stabilization, of Twist1 [76], and phosphorylation of 

Smad1 and Smad3, resulting in enhanced Smad-mediated responses [77]. The control of 

EMT by JNK signaling, and differential roles of JNK1 and JNK2 require further studies.

Smads enable transcriptional crosstalk with other transcription-directed 

EMT pathways

In TGF-β- or BMP-induced EMT, the cells coordinate Smad-directed gene expression with 

non-transcription effects of non-Smad signaling pathways. Additionally, these pathways 

target Smads for phosphorylation or other modifications, and thus define their function 

[7,8,59]. Finally, in the nucleus, the activated Smad complexes cooperate with DNA binding 
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transcription factors and coregulators at regulatory gene sequences [4,6], thus providing a 

platform for functional integration of Smads with other EMT pathways in the control of 

gene expression (Fig. 2).

Wnt proteins induce gene expression changes using β-catenin and TCF/LEF transcription 

factors, and “non-canonical” signaling that activates Rho GTPases and MAPK pathways 

[78]. In development, Wnts control or are required for EMT, e.g. in gastrulation, neural crest 

cell delamination and heart valve development, in which also TGF-β family proteins drive 

EMT. Pathologically, Wnts are implicated in EMT in fibrosis, e.g. in diabetic nephropathy, 

and carcinomas, again contexts in which TGF-β induces EMT. In both developmental and 

pathological EMT, TGF-β/BMP proteins and Wnts were shown to cooperate, e.g. in cardiac 

development [79] and generation of cancer stem cells with EMT properties [80].

Upon Wnt signaling, TCF/LEF transcription factors activate genes that contribute to EMT, 

and TGF-β- and BMP-activated Smads were shown to cooperate with β-catenin or TCF/LEF 

in the control of gene expression, thus enabling interdependent transcriptional crosstalk. For 

example, TGF-β-induced EndMT and endocardial EMT require β-catenin, with convergence 

of Wnt/β-catenin and Smad signaling [81]. In pulmonary epithelial cells, β-catenin is 

required for TGF-β-induced EMT, and cooperates with Smad3 in the control of α-SMA 

expression [82]. Similarly, TGF-β-induced EMT of kidney epithelial cells depends on 

association of Smad3 with β-catenin [83].

At another level, GSK3β mediates crosstalk between Wnt and TGF-β/BMP signaling. 

GSK3β phosphorylates proteins with key roles in EMT, including β-catenin, and Snail, ZEB 

and Twist, thus targeting them degradation [80]. Deactivation of GSK3β in response to Wnts 

not only activates Wnt target gene expression in EMT, but also stabilizes EMT transcription 

factors [78,84]. Since GSK3β targets Smad1 for degradation, Wnt signaling additionally 

stabilizes Smad1, thus enhancing BMP signaling [85], and promotes Wnt cooperation with 

BMP signaling. Such cooperation controls cardiac progenitor cell migration [79], and directs 

segmental patterning in Drosophila [86]. Wnts may similarly cooperate with TGF-β 

signaling, since GSK3β also phosphorylates Smad3, thus attenuating TGF-β signaling 

[87,88]. Finally, Wnts induce the expression of some TGF-β/BMP ligands, and vice versa 

[89], enabling reciprocal control of ligand production.

The versatility of receptor-activated Smad association with transcription factors also enables 

TGF-β/BMP cooperation with Notch signaling. Notch induces or is required for EMT in 

several contexts, including in cardiac development and carcinomas, and integrates with 

TGF-β/Smad signaling in EMT. Stimulation of Notch by Delta-like or Jagged ligands 

induces the release of the Notch intracellular domain (NICD) from the membrane, which 

then acts as transcription cofactor with RBPJ/CSL [90]. The NICD has been shown to 

associate with Smad1 and Smad3, resulting in coordinate control of target genes [91-93]. In 

EndMT, TGF-β-induced Smad complexes and Notch-activated RBPJ/CSL complexes 

cooperate at target genes [94,95], and Smad4 cooperation with RBPJ/CSL controls N-

cadherin expression [96]. Additionally, TGF-β can induce expression of the Notch ligand 

Jagged1, and the transcription factor Hey1, downstream from Notch, and silencing either 

gene, or Notch inactivation, prevents TGF-β-induced EMT [97]. Through this crosstalk, 
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Notch signaling is required for a subset of TGF-β-induced gene responses in epithelial cells, 

including some that control EMT [97,98], and controls the duration and amplitude of TGF-β 

target gene responses [99]. The integration of TGF-β/BMP and Notch signaling in EMT has 

been well studied in heart valve development, where Notch signaling through Hey represses 

BMP2 expression and signaling [94], controls Smad expression [94], and is required for 

TGF-β-induced EMT [100].

Hedgehog, in particular Sonic Hedgehog (Shh), signaling can also lead to, or is required for, 

EMT in carcinomas. Hedgehog ligands act through Gli transcription factors [101] that can 

induce EMT-associated changes in gene expression [102]. Furthermore, PI3K-Akt signaling 

was shown to be required for Shh-induced EMT [103]. Conversely, however, silencing of 

Gli1 promotes EMT of pancreas carcinoma cells [104], suggesting attenuation of EMT by 

Shh/Gli1 signaling. Association of Gli1 with Smad4 allows for direct Shh/Gli1 cooperation 

with TGF-β/Smad signaling in the control of TGF-β target genes [105]. Whether 

combinatorial targeting allows for crosstalk in the control of EMT-associated gene 

reprograming remains to be shown. TGF-β-induced expression of Gli1 and Gli2 [106] 

allows for additional crosstalk with Hedgehog signaling of relevance in EMT.

The transcription coactivators TAZ and YAP regulate cell proliferation and differentiation, 

and are controlled by the Hippo pathway [107]. TAZ defines mesenchymal cell 

differentiation [108], and increased TAZ levels, frequently observed in cancers, promote 

EMT [109-111] and cancer stem cell generation, and cancer progression [110,111]. TAZ 

associates with TGF-β-induced Smad complexes [112], while YAP forms complexes with 

BMP- and TGF-β-activated Smads [113,114]. TAZ and YAP facilitate nuclear translocation 

of Smads and thus contribute to efficient regulation of TGF-β target genes [112,113]. They 

also cooperate with Smads in the control of target gene expression, and this integration is 

facilitated through interactions with components of the Mediator complex [112,113,115]. 

Differential TAZ or YAP binding with Smad complexes and cooperation of Smads with 

diverse DNA-binding transcription factors set the stage for differential regulation of Smad-

mediated and EMT-associated gene reprogramming by the Hippo pathway. Finally, Hippo 

signaling controls overall Wnt signaling, while also exhibiting differential effects at Wnt 

target genes through interactions of TAZ or YAP with β-catenin and Wnt-activated 

transcription complexes [114,116]. The regulation of TAZ and YAP by Hippo signaling 

may control the cooperation of TGF-β/Smad signaling with Wnt signaling in EMT.

As is apparent from these examples, Smads enable functional crosstalk with signaling and 

transcription pathways of importance for the reprogramming of gene expression in EMT. 

These observations could be extended with additional examples of functional interactions, 

as, for example, Smads functionally interact with NFκB, an effector of inflammatory 

cytokines that also contributes to EMT [117]. TGF-β-activated Smads also associate with, 

and potentiate the activities of the hypoxia-induced transcription factor HIF-1α, which plays 

a central role in hypoxia-induced EMT in tumors [118]. This extensive versatility of Smad-

mediated control over other pathways, together with the activation of non-Smad signaling 

pathways, allows TGF-β/BMP signaling to act as a critical inducer of the EMT process.
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Figure 1. 
TGF-β-activated non-Smad pathways in epithelial-mesenchymal transition. In addition to 

the well-established Smad signaling pathway that controls target gene transcription during 

EMT, TGF-β family proteins also activate non-Smad pathways. These pathways have non-

transcriptional roles in EMT, including dissolution of epithelial junctions, cytoskeletal 

reorganization and motility, and translational control. They also target Smads and thus help 

define their functions, while also controling the expression and activation of transcription 

factors, with which Smad complexes cooperate in the control of gene expression.
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Figure 2. 
Smad complexes can cooperate with transcription pathways in the control of gene 

expression in epithelial-mesenchymal transition. The Notch, Hedgehog, Wnt and Hippo 

signaling pathways direct transcriptional activation or repression of target genes by their 

respective effectors. TGF-β/BMP-activated Smad complexes control target gene 

transcription in cooperation with an extensive array of DNA binding transcription factors 

and coactivators and corepressors. This versatility enables the Smad complexes to associate 

and functionally cooperate with transcription effectors of Notch, Hedgehog, Wnt and Hippo 

Derynck et al. Page 18

Curr Opin Cell Biol. Author manuscript; available in PMC 2015 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



signaling, and, thus, to coordinately control gene reprogramming in EMT. The genes 

encoding EMT transcription factors are known to be directly activated by TGF-β-activated 

Smad complexes and may represent examples of such coordinate control. In addition to the 

pathways shown and discussed, Smads can also coordinately control gene expression with 

IκB/NFκB, STAT transcription factors and an array of other transcription factors that are 

respond to signaling pathways.
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