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Proportionate Adaptive Filters Based on Minimizing Diversity 
Measures for Promoting Sparsity

Ching-Hua Lee, Bhaskar D. Rao, Harinath Garudadri
Department of Electrical and Computer Engineering University of California, San Diego

Abstract

In this paper, a novel way of deriving proportionate adaptive filters is proposed based on diversity 

measure minimization using the iterative reweighting techniques well-known in the sparse signal 

recovery (SSR) area. The resulting least mean square (LMS)-type and normalized LMS (NLMS)-

type sparse adaptive filtering algorithms can incorporate various diversity measures that have 

proved effective in SSR. Furthermore, by setting the regularization coefficient of the diversity 

measure term to zero in the resulting algorithms, Sparsity promoting LMS (SLMS) and Sparsity 

promoting NLMS (SNLMS) are introduced, which exploit but do not strictly enforce the sparsity 

of the system response if it already exists. Moreover, unlike most existing proportionate algorithms 

that design the step-size control factors based on heuristics, our SSR-based framework leads to 

designing the factors in a more systematic way. Simulation results are presented to demonstrate 

the convergence behavior of the derived algorithms for systems with different sparsity levels.

Index Terms—

adaptive filtering; proportionate adaptation; sparse system identification; diversity measure 
minimization; iterative reweighting

I. Introduction

In many applications of adaptive filters, the impulse responses (IRs) to be identified are 

often sparse or compressible (quasi-sparse), i.e., only a small percentage of the IR 

components have a significant magnitude while the rest are zero or small. Examples include 

network and acoustic echo cancellation [1]–[3], acoustic feedback control in hearing aids 

[4], [5], etc. Therefore, designing adaptive filters that can exploit the structural sparsity for 

performance improvement over the conventional approaches such as the least mean square 

(LMS) and the normalized LMS (NLMS) [6]–[9] has been an area of great interest over the 

past few decades.

An early and influential work on identifying sparse IRs is the proportionate NLMS 

(PNLMS) algorithm proposed by Duttweiler [1]. The PNLMS algorithm was developed in 

an intuitive way, i.e., the equations used to calculate the step-size control factors were not 

based on any optimization criterion but were based on good heuristics. The main idea behind 
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the approach is to update each filter coefficient using a step size proportional to the 

magnitude of the estimated coefficient. Variants that also utilize this concept of 

proportionate adaptation were later proposed and [10] provides a good summary.

The recent progress on sparse signal recovery (SSR) has led to a number of computational 

algorithms [11], [12]. Inspired by the batch estimation techniques in SSR, methods have 

been proposed for theoretically justifying the formulation of the proportionate adaptation 

scheme in adaptive filters [13], [14], or even obtaining a general adaptive filtering 

framework that incorporates sparsity [15]–[17]. Another class of algorithms, i.e., the family 

of sparsity regularization-based approaches [18]–[22], has also been proposed by adding a 

sparsity-inducing penalty to the ordinary LMS objective function.

In this paper, we build on this trend of drawing inspiration from SSR, and propose a novel 

way of deriving proportionate adaptive filters based on minimizing diversity measures using 

the well-known iterative reweighting methods [23]. The resulting algorithms can incorporate 

flexible diversity measures that have proved effective in SSR. Furthermore, by setting the 

regularization coefficient of the diversity measure term to zero, we introduce the Sparsity 

promoting LMS (SLMS) and Sparsity promoting NLMS (SNLMS) that exploit but do not 

strictly enforce the sparsity of the system response if it already exists. The proposed SSR-

based framework leads to designing the step-size control factors for proportionate 

adaptiation in a more systematic way, as opposed to most existing proportionate algorithms 

that design the factors based on heuristics [1], [10]. Simulation results are presented to 

demonstrate the convergence behavior of the derived algorithms for systems with different 

levels of sparsity.

II. Background

A. Adaptive Filters for System Identification

Let hn = [h0,n,h1,n, …,hM−1,n]T denote the adaptive filter of length M at discrete time instant 

n. Assume the IR of the underlying system is ho = ℎ0
o, ℎ1

o, …, ℎM − 1
o T

, and the model for the 

observed or desired signal is dn = unTho + vn, where un = [un,un−1, …,un−M+1]T is the vector 

containing the M most recent samples of the input signal un and vn is an additive noise 

signal. The output of the adaptive filter unThn is subtracted from dn to obtain the error signal 

en = dn − unThn. The goal in general is to continuously adjust the coefficients of hn such that 

eventually hn = ho; i.e., to identify the unknown system.

The classic LMS and NLMS algorithms can be derived from the following unconstrained 

optimization problem using an objective function Jn(h) of the instantaneous error1 [6]:

min
h

   Jn(h) ≜ en2 = dn − unTh 2 . (1)

1One can also derive the algorithms by using the expected value of the error function and then replacing the gradient/Hessian by the 
instantaneous gradient/Hessian as an estimate [6]–[8]. We utilize the direct approach because of the simplicity and to shorten the 
derivation.
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Applying the stochastic gradient descent which utilizes a first order approximation results in 

the LMS [7]:

hn + 1 = hn − μ
2 ∇hJn hn = hn + μunen, (2)

where ∇h denotes the gradient operator with respect to h and μ > 0 is the step size.

Applying the stochastic regularized Newton’s method which utilizes a second order 

approximation gives the NLMS [8]:

hn + 1 = hn − μ ∇h
2Jn hn + 2δI −1∇hJn hn

= hn + μunen
unTun + δ

, (3)

where ∇h
2 denotes the Hessian operator with respect to h, I denotes the identity matrix, and δ 

> 0 is a small regularization constant for preventing singularity.

B. Diversity Measure Minimization for SSR

The concept of SSR is to search for sparse solutions to an underdetermined system of linear 

equations y = Ax, where A ∈ ℝN × M represents an overcomplete dictionary with rank(A) = 

N and N < M, N < M, x ∈ ℝM is the underlying sparse representation, and y ∈ ℝN is the 

measurement vector. A popular approach is to consider the following diversity measure 

minimization problem:

min
x

  ‖y − Ax‖2
2 + λG(x),   λ > 0, (4)

where G(·) is the general diversity measure weighted by λ that induces sparsity in its 

argument. We further define a separable diversity measure that has the form 

G(x) = ∑i = 0
M − 1g xi , where g(·) has the following properties:

Property 1: g(t) is symmetric, i.e., g(t) = g(−t) = g(|t|);

Property 2: g(|t|) is monotonically increasing with |t|;

Property 3: g(0) is finite;

Property 4: g(t) is strictly concave in |t| or t2.

The iterative reweighting methods [23] are popular techniques for solving (4). By 

introducing a weighted ℓ2 [24], [25] or ℓ1 [26] norm term as an upper bound for G(x) in each 

iteration, they form and solve for a new optimization problem accordingly to approach the 

optimal solution [23]. We briefly review the reweighted ℓ2 method here as we will be using it 

for deriving adaptive filtering algorithms that incorporate sparsity.
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To apply the iterative reweighted ℓ2 approach, first note that the function g(t) has to be 

concave in t2 for Property 4; i.e., it satisfies g(t) = f(t2), where f(z) is concave for z ∈ ℝ+. 

Assume at the k-th iteration we have an estimate x(k). Then the estimate of the next iteration 

k + 1 is given as:

x(k + 1) = arg min
x

‖y − Ax‖2
2 + λ W(k) −1x 2

2
, (5)

where W(k) = diag wi
(k)  with

wi
(k) = df(z)

dz z = xi
(k) 2 − 1

2 , (6)

and d denotes the differential operator. In each iteration k, the matrix W(k) provides a 

surrogate function as an upper bound for the objective function in (4).2 Sequentially 

minimizing the surrogate functions allows the algorithm to produce more focal estimates as 

optimization progresses [23].

III. Incorporating Sparsity into Adaptive Filters

To incorporate sparsity into the adaptive filtering framework, we propose to add the general 

diversity measure G(h) = ∑i = 0
M − 1g ℎi  to the ordinary objective function Jn(h) in (1) as:

min
h

  Jn(h) + λG(h), (7)

where λ is the regularization coefficient. Inspired by the conceptual similarity with SSR, we 

show that by upper bounding G(h) in (7) with a weighted ℓ2 norm term, both LMS-type and 

NLMS-type sparse adaptive filters can be derived. Thus, instead of (7), we consider the 

following problem:

min
h

  Jn(h) + λ‖Wn
−1h‖2

2, (8)

where Wn = diag{wi,n}3 and each wi,n is computed based on the current estimate hi,n, 

depending on the choice of the diversity measure G(·). Observing the similarity between (5) 

and (8), we make the following correspondences: x(k) ↔ hn and W(k) ↔ Wn. Then the 

relationship between (5) and (6) suggests the following update rule for Wn in (8):

wi, n = df(z)
dz z = ℎi, n2

− 1
2 , (9)

where f(·) is a function depending on the g(·) used.

2Note that we will use a practical assumption that the diagonal matrix W(k) is positive definite at each iteration. This can be shown to 
hold for a wide variety of diversity measures used in SSR.
3Again, the positive definiteness of the diagonal matrix Wn is assumed.
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Recall that in (5) for SSR, in the k-th iteration the matrix W(k) is updated as a function of 

x(k) to create a new upper bound for G(x). Similarly, in the adaptive filtering case here, we 

propose to utilize hn at time n for computing the matrix Wn to form a new upper bound for 

G(h) accordingly. The whole concept, similar to the reweighting techniques in SSR, has now 

been applied to adaptive filtering where the upper bound evolves and adapts over time.

Before proceeding, we reparameterize the problem in terms of the scaled variable q:

q ≜ Wn
−1h, (10)

in which Wn is used as the scaling matrix. This step, similarly utilized in [4], [13], [16], can 

be interpreted as performing the affine scaling transformation (AST) commonly employed 

by the interior point approach to solving linear and nonlinear programming problems [27]. 

In the optimization literature, AST-based methods transform the original problem into an 

equivalent one, in which the current point is favorably positioned at the center of the feasible 

region [28], thus expediting the optimization process.

Using (10) for the objective function in (8) and performing minimization with respect to q, 

that is:

min
q

  Jn
l2(q) ≜ Jn Wnq + λ‖q‖2

2, (11)

then we transform the problem into a new form. To proceed, we define the a posteriori AST 

variable at time n:

qn ∣ n ≜ Wn
−1hn (12)

and the a priori AST variable at time n:

qn + 1 ∣ n ≜ Wn
−1hn + 1 . (13)

In the following, we show that by applying the stochastic gradient descent and regularized 

Newton’s method to (11), along with using (12) and (13), both LMS-type and NLMS-type 

sparse adaptive filtering algorithms can be derived.

A. LMS-Type Sparse Adaptive Filtering Algorithm

We formulate a recursive update by using the stochastic gradient descent in the q domain:

qn + 1 ∣ n = qn ∣ n − μ
2 ∇qJn

l2 qn ∣ n . (14)

Using the chain rule, (10), and (12), we can show the gradient term:

∇qJn
l2 qn ∣ n = Wn∇hJn hn + 2λqn ∣ n

= − 2Wnunen + 2λqn ∣ n . (15)

Substituting (15) into (14) leads to:
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qn + 1 ∣ n = (1 − μλ)qn ∣ n + μWnunen . (16)

Multiplying both sides of (16) by Wn and using the relationships (12) and (13), we will get 

back to the h domain:

hn + 1 = (1 − μλ)hn + μWn
2unen . (17)

This is the update rule of the generalized LMS-type sparse adaptive filtering algorithm using 
reweighted ℓ2.

B. NLMS-Type Sparse Adaptive Filtering Algorithm

For the reweighted ℓ2 problem (11) we can also consider the stochastic regularized Newton’s 

method option to formulate the recursive update in the q domain:

qn + 1 ∣ n = qn ∣ n − μ ∇q
2Jn

l2 qn ∣ n + 2δI −1∇qJn
l2 qn ∣ n . (18)

Using the chain rule, (10), and (12), we can show the Hessian term:

∇q
2Jn

l2 qn ∣ n = Wn ∇h
2Jn hn Wn + 2λI

= 2WnununTWn + 2λI .
(19)

Substituting (19) and (15) into (18) results in:

qn + 1 ∣ n = I− μλ
λ + δ I− WnununTWn

unTWn
2un + λ + δ

qn ∣ n

+ μWnunen
unTWn

2un + λ + δ
,

(20)

where we have applied the matrix inversion lemma to simplify terms and avoid matrix 

inversion.

Multiplying both sides of (20) by Wn and using the relationships (12) and (13), we will get 

back to the h domain:

hn + 1 = I−μλΦn hn + μWn
2unen

unTWn
2un + λ + δ

, (21)

where for simplicity we have let:

Φn = 1
λ + δ I− Wn

2ununT

unTWn
2un + λ + δ

. (22)

This is the update rule of the generalized NLMS-type sparse adaptive filtering algorithm 
using reweighted ℓ2.
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C. Discussion

It is worth mentioning that there is considerable difference between the proposed algorithms 

derived from (8) and the existing SSR algorithms based on (5): the SSR techniques are batch 

estimation methods for recovering the underlying sparse representation, while the proposed 

algorithms are specifically tailored for the adaptive filtering scenario. We would also like to 

point out that it is not so straightforward to obtain the iteration schemes (17) and (21) if one 

does not consider the change of variables (10). This step, similar to the AST commonly 

employed in the optimization literature, is thus of great importance for obtaining the 

proposed algorithms. Note that the above procedure can be extended to other reweighting 

strategies, e.g., the reweighted ℓ1 framework, for deriving a different class of algorithms.

IV. Sparsity Promoting Algorithms

An interesting situation arises when we consider the limiting case of λ → 0+. For the 

algorithms (17) and (21), by setting λ = 0 we see the terms with λ as a scaling factor vanish, 

leading to the following Sparsity promoting LMS (SLMS):

hn + 1 = hn + μWn
2unen, (23)

and Sparsity promoting NLMS (SNLMS):

hn + 1 = hn + μWn
2unen

unTWn
2un + δ

. (24)

Even with λ = 0, the SLMS and SNLMS still have a diagonal matrix term Wn
2 on the 

gradient to leverage sparsity. This indeed realizes proportionate adaptation similar to 

PNLMS-type algorithms. From the objective function perspective, (7) indicates a trade-off 

between estimation quality and solution sparsity as controlled by λ. In the limiting case of λ 
→ 0+, the objective function exerts diminishing impact on enforcing sparsity on the 

solution, meaning that eventually no sparse solution is favored over other possible solutions. 

Interestingly, the SLMS and SNLMS, because of their proportionate nature similar to the 

PNLMS-type algorithms, are capable of speeding up convergence without compromising 

estimation quality should sparsity be present. This will be later supported by experimental 

results in Section V.

It is worth noting the fact that we can utilize λ = 0 to obtain the SLMS and SNLMS could 

be attributed to the change of variables (10), which is similar to the concept of AST that 

belongs to the family of interior-point methods [28]. Due to the use of (10), optimization is 

performed in the q domain rather than in the h domain, allowing the use of the limiting case 

of λ → 0+. This does not apply to existing regularization-based algorithms developed in the 

original variable domain, e.g., [18]–[22]. Setting λ = 0 in these algorithms reduces to the 

ordinary LMS without benefiting from sparsity.

For the design of the step-size control factors, many popular diversity measures in SSR can 

be used to instantiate the algorithms for updating Wn. We present an example using the p-
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norm-like diversity measure [27] with g(hi) = |hi|p, 0 < p ≤ 2. Using (9) leads to the update 

rule for Wn:

wi, n = 2
p ℎi, n + c 2 − p

1
2 . (25)

Note that we have added a small regularization constant c > 0 for avoiding algorithm 

stagnation and instability. In (25), the parameter p controls the behavior of the adaptive 

filtering algorithms: using p → 1 in (25) results in a step-size control factor close to that of 

the PNLMS, while letting p = 2 recovers the LMS/NLMS. The parameter p thus plays the 

role for fitting the sparsity levels of the systems.

In practice, we have found it helpful to perform normalization to the matrix term Wn
2 for 

stability purposes, i.e., to replace Wn
2 in (23) and (24) with Sn where:

Sn = Wn
2

1
M tr Wn

2 , (26)

and tr(·) denotes the matrix trace. Similar steps of normalization can also be seen in other 

proportionate algorithms [10]. Note that the normalization (26) also applies to the 

generalized algorithms (17) and (21).

V. Simulation Results

The proposed algorithms are evaluated using computer simulations in MATLAB. We 

considered three system IRs as shown in Fig. 1 that represent different sparsity levels: quasi-

sparse, sparse, and dispersive systems, respectively. Each of the IRs has 256 taps. For 

demonstrating convergence behavior, experiments were conducted to obtain the mean 

squared error (MSE) learning curves, i.e., the ensemble average of en2 as a function of 

iteration n. The ensemble averaging was performed over 1000 independent Monte Carlo 

runs for obtaining each MSE curve. The adaptive filter length was 256 and the coefficients 

were initialized with all zeros. The input signal un and the noise vn were zero mean white 

Gaussian processes with variance 1 and 0.001, respectively.

Fig. 2 presents the resulting MSE curves of using the SNLMS (24) as an example. The 

update rule (25) was used for Wn
2, using c = 0.001. The normalization (26) was performed. 

The NLMS (3) is also compared. We used μ = 0.5 and δ = 0.01 for both SNLMS and 

NLMS. From the results we see that the selection of p is crucial for obtaining optimal 

performance for IRs with different sparsity degrees. For the quasi-sparse case in Fig. 2 (a), 

the fastest convergence is given by p = 1.5, which seems a reasonable value in terms of 

finding a balance between PNLMS (p → 1) and NLMS (p = 2). For the sparse case in Fig. 2 

(b), p = 1.2 gives the best results, which is also intuitive since the sparsity level has 

increased. For the dispersive case in Fig. 2 (c), p = 1.8 results in the fastest convergence and 

is comparable to NLMS. These results show that the algorithm exploits the underlying 

system structure in the way we expect.
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Fig. 3 presents the mean of estimated filter coefficients to observe the converged solutions. 

The results were computed as the average of 500 iterations when the algorithm was in 

steady-state. In each case, we see that SNLMS (with the optimal p found in Fig. 2) 

converges to the same solution as NLMS, which agrees well with the corresponding true IR 

in Fig 1. This supports the argument that the proposed strategy of utilizing λ → 0+ provides 

the algorithms with the capability of leveraging sparsity without compromising estimation 

quality. In other words, the results together with Fig. 2 demonstrate that the sparsity 

promoting algorithms can exploit sparsity for speeding up convergence in the adaptation 

stage and perform equally well in steady-state should sparsity be present in the underlying 

system response.

VI. Conclusion

In this paper, we exploited the connection between sparse system identification and SSR, 

and utilized the iterative reweighting strategies to derive novel proportionate adaptive filters 

that incorporate various diversity measures for promoting sparsity. Moreover, utilizing a 

regularization coefficient λ → 0+, the proposed SLMS and SNLMS algorithms can take 

advantage of, though do not strictly enforce, the sparsity of the underlying system if it 

already exists. Simulation results were presented to demonstrate the effectiveness of the 

algorithms.
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Fig. 1. 
IRs of (a) quasi-sparse, (b) sparse, and (c) dispersive systems.
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Fig. 2. 
MSE of SNLMS with various p for (a) quasi-sparse, (b) sparse, and (c) dispersive systems.
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Fig. 3. 
Mean of estimated filter coefficients for (a) quasi-sparse, (b) sparse, and (c) dispersive 

systems.
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