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ABSTRACT OF THE DISSERTATION 

 

Where do trees die?  

Climate change impacts and biological feedbacks in California forests 

by 

Carl August Norlen 

Doctor of Philosophy in Biological Sciences 

University of California, Irvine, 2023 

Professor Michael L. Goulden, Chair 

 

Climate change is impacting forests in multiple interacting ways such as changing 

fire regimes and hotter droughts linked to drought induced forest die -off. These first order 

climate change impacts can interact with subsequent disturbances by producing amplifying 

feedbacks that make subsequent disturbances more severe or dampening feedbacks that 

make subsequent disturbances less severe.  

In Chapter 1 we tested the common assumption that that recent tree mortality will 

not alter die-off severity during subsequent droughts. by comparing die-off in semi-arid 

conifer forest stands in California that were exposed to a single drought and two sequential 

droughts. We found that recent tree morality reduces die-off severity in semi-arid conifer 

forests exposed to subsequent drought. 

In Chapter 2 we tested how a history of prescribed fire and wildfire with varying 

severities changes forest cover and water use and forest drought vulnerability. Forests 

with recent fire history had reduced tree cover, increased shrub cover, and decreased 

water use (ET), with the greatest changes due to wildfires and high severity fires. These 



 

xii 
 

decreases in tree cover and ET led to decreased forest die-off severity compared to similar 

forests that had not recently experienced fire. 

In Chapter 3, we compared the importance of potential forest drought vulnerability 

risk factors and modeled how forest die-off risk is changing using a simple statistical 

approach. We found that drought exposure, proximity to the climate water limit, and forest 

density were generally the most important predictors of drought vulnerability.  Forests 

without recent disturbance, especially those at moderate elevations with relatively high 

tree cover and where water use and annual precipitation are similar in magnitude 

currently have the highest drought vulnerability. 

As forests continue to experience disturbances linked to climate change, dampening 

effects will impose a transient, and perhaps long-term, constraint on the impact of drought. 

Human actions such as prescribed fire and perhaps other management actions, can  

produce decreases in tree cover and water that in turn increase forest resistance to 

drought. Implementing natural climate solutions that consider both climate change 

amplified risks and dampening feedbacks, will improve the likelihood that climate 

mitigation projects provide long-term climate mitigation. 
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INTRODUCTION 
 

Global Importance of Forests 

Climate change is often framed as an existential threat to planet Earth and all life. 

However, this misses the more pressing threat of climate change for human civilization as 

we know it. Humans both rely on stable ecosystems such as forests for survival through 

ecosystem services such as access to water, controls on climate, and controls o n wildfire. 

The value of ecosystems to humans is often framed through important, but less essential 

services such as recreation and improved mental health. Unfortunately, humans are also 

the drivers of changes to ecosystem, which in turn, threatens human survival.  

In this era of rapid climate change, forests are of particular interest and importance 

for climate change impacts because they have large carbon stocks and play an important 

role in the global carbon cycle (Pan et al., 2011). Climate change is making drivers of forest 

disturbance such as droughts and fire weather more common and more extreme (Anderegg 

et al., 2020). This means that carbon currently stored in living forests is more likely to be 

quickly released during wildfires or slowly released as live trees become dead trees and 

begin to decompose. 

Forest Ecosystem Services and Natural Climate Solutions 

Forests provide ecosystem services including water, climate regulation, reduced 

wildfire risk, forest products, recreation, carbon storage, and more (Ninan & Inoue, 2013). 

Impacts from climate change amplified disturbances such as wildfires and drought induced 

mortality are changing forest structure and therefore the services that forest provide. The 

pace and scale of these changes to forest structure and their implications for ecosystems 
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services remain relatively uncertain. Whether forests will continue to pro vide the services 

that our current human civilization relies on is an open question. If forests and other 

ecosystems that humans rely on change more rapidly than human society adapts to and 

mitigates the effects of climate change it is an open question whether humans can survive 

in a world with drastically altered ecosystems. Improved forest management, reforestation, 

and avoided deforestation are promising potential natural climate solution to store 

additional carbon (Anderegg et al., 2020; Fargione et al., 2018; Griscom et al., 2017). That 

highlights the importance of understanding how these proposed management actions and 

risks to forests under climate change (Aponte et al., 2016; Field et al., 2020).  

Climate Change Impacts on Forests 

Climate change has large impacts on forests such as drought induced mortality, 

wildfires and increased windthrow all of which can lead to releases of stored carbon and 

therefore accelerate climate change instead of mitigating it (McDowell et al., 2020). Models 

often predict large future tree mortality events (Jiang et al., 2013; McDowell et al., 2016). 

However, climate change induced self-limiting feedbacks or dampening effects can also 

play a role in reducing the long term effects of climate change amplified disturbances on 

forests (Lloret et al., 2012; Seidl et al., 2017). 

Where do Trees Die? 

Large episodic tree death events have been of high interest to scientists for at least 

the last several four decades, which is unsurprising due to the essential links been trees, 

forests, and human society (Breshears et al., 2005; Mueller-Dombois, 1987). Increased 

stress from climate change provides the opportunity and necessity to better understand 
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forests, trees, and tree mortality. Due to the importance of forests to the global carbon cyc le 

and regional human societies better understanding of how forests are currently responding 

to climate change and will respond in the future is of both high interest and benefit to the 

public at large, policy makers, and land managers. 

California as a Study System 

California provides an ideal study system to better understand forests under climate 

change because of its diverse forests and record of climate change amplified disturbances 

due to drought and wildfire over the last several decades. In addition to experiencing a 

series of severe droughts, and increasing burned area over the last several decades, there 

are a wide variety of forest habitats and a wealth of forest inventory, remote sensing, and 

other geospatial data. This ideal study system allows for exciting investigations into 

understanding the climate change amplified of wildfires and droughts on forests. 

  



 

4 
 

References 

Anderegg, W. R. L., Trugman, A. T., Badgley, G., Anderson, C. M., Bartuska, A., Ciais, P., Cullenward, D., 
Field, C. B., Freeman, J., Goetz, S. J., Hicke, J. A., Huntzinger, D., Jackson, R. B., Nickerson, J., 
Pacala, S., & Randerson, J. T. (2020). Climate-driven risks to the climate mitigation potential 
of forests. Science, 368(6497). https://doi.org/10.1126/science.aaz7005 

Aponte, C., de Groot, W. J., & Mike Wotton, B. (2016). Forest fires and climate change: causes, 
consequences and management options. International Journal of Wildland Fire, 25(8), i–ii. 

Breshears, D. D., Cobb, N. S., Rich, P. M., Price, K. P., Allen, C. D., Balice, R. G., Romme, W. H., Kastens, J. 
H., Floyd, M. L., Belnap, J., Anderson, J. J., Myers, O. B., & Meyer, C. W. (2005). Regional 
vegetation die-off in response to global-change-type drought. Proceedings of the National 
Academy of Sciences of the United States of America, 102(42), 15144–15148. 

Fargione, J. E., Bassett, S., Boucher, T., Bridgham, S. D., Conant, R. T., Cook-Patton, S. C., Ellis, P. W., 
Falcucci, A., Fourqurean, J. W., Gopalakrishna, T., Gu, H., Henderson, B., Hurteau, M. D., 
Kroeger, K. D., Kroeger, T., Lark, T. J., Leavitt, S. M., Lomax, G., McDonald, R. I., … Griscom, B. 
W. (2018). Natural climate solutions for the United States. Science Advances, 4(11), 
eaat1869. 

Field, J. P., Breshears, D. D., Bradford, J. B., Law, D. J., Feng, X., & Allen, C. D. (2020). Forest 
Management Under Megadrought: Urgent Needs at Finer Scale and Higher Intensity. 
Frontiers in Forests and Global Change, 3. https://doi.org/10.3389/ffgc.2020.502669 

Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., 
Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., 
Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., … Fargione, J. (2017). 
Natural climate solutions. Proceedings of the National Academy of Sciences of the United 
States of America, 114(44), 11645–11650. 

Jiang, X., Rauscher, S. A., Ringler, T. D., Lawrence, D. M., Park Williams, A., Allen, C. D., Steiner, A. L., 
Michael Cai, D., & McDowell, N. G. (2013). Projected Future Changes in Vegetation in 
Western North America in the Twenty-First Century. Journal of Climate, 26(11), 3671–3687. 

Lloret, F., Escudero, A., Iriondo, J. M., Martínez-Vilalta, J., & Valladares, F. (2012). Extreme climatic 
events and vegetation: the role of stabilizing processes. Global Change Biology, 18(3), 797–
805. 

McDowell, N. G., Allen, C. D., & Anderson-Teixeira, K. (2020). Pervasive shifts in forest dynamics in a 
changing world. Science. 
https://www.science.org/doi/abs/10.1126/science.aaz9463?casa_token=BN2Jpf5tT9sAAA
AA:q9l0O7UJXg4Xk8YB4YlURsrt11d8nAznGOprLfang9uH-
vLkqg7II94W7bd2pEUDl59lmsaVhB2wKIQ 

McDowell, N. G., Williams, A. P., Xu, C., Pockman, W. T., Dickman, L. T., Sevanto, S., Pangle, R., 
Limousin, J., Plaut, J., Mackay, D. S., Ogee, J., Domec, J. C., Allen, C. D., Fisher, R. A., Jiang, X., 
Muss, J. D., Breshears, D. D., Rauscher, S. A., & Koven, C. (2016). Multi-scale predictions of 
massive conifer mortality due to chronic temperature rise. Nature Climate Change, 6(3), 
295–300. 

Mueller-Dombois, D. (1987). Natural Dieback in Forests. Bioscience, 37(8), 575–583. 



 

5 
 

Ninan, K. N., & Inoue, M. (2013). Valuing forest ecosystem services: What we know and what we 
don’t. Ecological Economics: The Journal of the International Society for Ecological 
Economics, 93, 137–149. 

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., 
Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., 
Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s 
forests. Science, 333(6045), 988–993. 

Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, 
M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., 
& Reyer, C. P. O. (2017). Forest disturbances under climate change. Nature Climate Change, 
7(6), 395–402. 

 

 

  



 

6 
 

CHAPTER 1 
 

Recent tree mortality dampens semi-arid forest die-off during subsequent 
drought 

Reprint of:  
Norlen, C. A., & Goulden, M. L. (2023). Recent Tree Mortality Dampens Semi‐Arid Forest Die‐Off 
During Subsequent Drought. AGU Advances, 4(3), e2022AV000810.  
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1.1 Introduction 

Climate change is expected to increase drought frequency and intensity (Pachauri et al., 

2014), which are commonly predicted will increase forest stress and disturbance over the 

coming century (Allen et al., 2015; Anderegg et al., 2020a). Ecological models project 50% 

or greater needleleaf evergreen conifer tree loss by 2100 in the Northern Hemisphere 

(Jiang et al., 2013; McDowell et al., 2016). The effects of 21st century droughts on forests 

are well documented, with drought and hotter temperatures combining to increase forest 

die-off severity (Allen et al., 2015; Breshears et al., 2005; Goulden & Bales, 2019; McDowell 

et al., 2011). Forest die-off threatens ecosystem services (Thom & Seidl, 2016) such as 

carbon sequestration (Pan et al., 2011), water quality, habitat, and controls on wildfire risk 

(Miura et al., 2015).  

The interactions between disturbance agents – drought, wind, wildfire, and 

pathogens – remain uncertain (Anderegg et al., 2020a; Kleinman et al., 2019; Seidl et al., 

2017). An increase in die-off frequency and severity will inevitably increase the occurrence 

of repeated or co-occurring disturbances (i.e., multiple disturbances). These sequential or 

simultaneous disturbances may be independent from, amplify, or dampen each other (Seidl 

et al., 2017). Model projections often assume that forest die-off severity in response to 

drought is constant and independent from past disturbance (Adams et al., 2013; Jiang et al., 

2013; McDowell et al., 2016). Much of our understanding of drought-induced tree mortality 

is based on observations of die-off thresholds over the last 20 to 30 years (Allen et al., 

2015; Hartmann et al., 2018; McDowell et al., 2008). These observations demonstrate 

predisposing factors for die-off such as high forest water use, high leaf area (Goulden & 

Bales, 2019; Jump et al., 2017), high forest density (Mueller-Dombois, 1987; Savage, 1994, 
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1997; Young et al., 2017), and the presence of trees with physiological drought 

vulnerabilities (McDowell et al., 2002, 2008; Ryan et al., 2006; Ryan & Yoder, 1997) such as 

needleleaf conifers (Brodrick & Asner, 2017; Fellows & Goulden, 2012; Fettig et al., 2019) 

and large individuals (Fellows & Goulden, 2012; Fettig et al., 2019; Stovall et al., 2019). 

However, recent die-off episodes that dampen future disturbance severity would reduce 

the impact of subsequent drought on forests  by mitigating these pre-disposing factors 

(Mueller-Dombois, 1987; Waring, 1987). Changes in drought stress or dampening effects 

from prior die-off provide potential mechanisms to explain spatial and temporal patterns 

of semi-arid conifer forest die-off (Goulden & Bales, 2019; Madakumbura et al., 2020; 

Young et al., 2017). Reduced forest leaf area or density can increase resource availability 

(e.g., water (Goulden & Bales, 2019; Young et al., 2017)). The death of vulnerable trees can 

decrease the density of physiologically vulnerable (Waring, 1987) or pathogen-susceptible 

trees (Franklin et al., 1987; Waring, 1987). Drought exposure can produce physiological 

acclimation in surviving trees (Anderegg et al., 2020a; McDowell et al., 2019; Seidl et al., 

2017). However, observational studies have rarely considered these possible feedbacks 

(but see (Anderegg et al.,2020b; DeSoto et al., 2020; McDowell et al., 2019)) 

Semi-arid forests in the western United States have experienced a series of droughts 

over recent decades, with recent extreme episodes in 1999-2002 and 2012-2015. Forests 

in the Southwestern United States (i.e., Arizona, California, Colorado, Utah, New Mexico) 

experienced die-off due to a 1999-2002 drought (Breshears et al., 2005). Forests in 

California’s Sierra Nevada experienced die-off due to a widespread 2012-2015 drought 

(Asner et al., 2016; Byer & Jin, 2017; Goulden & Bales, 2019); this second drought also 

impacted many of the same areas in inland Southern California Mountains that had 
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experienced die-off during the 1999-2002 drought (Fellows & Goulden, 2012; Kelly & 

Goulden, 2008; Minnich, 2007). This created a regional mosaic (Fig. 1.1a), with semi-arid 

conifer forest stands that have been exposed to either one (1999-2002 or 2012-2015) or 

both (1999-2002 and 2012-2015) droughts. 

 
Figure 1.1. The distribution of drought exposure sequences across California. (a) The spatial 
overlap between drought exposure, defined as forty-eight month Standardized Precipitation Index 

(SPI48) ≤ -1.5, in 1st Period (1999-2002) and 2nd Period (2012-2015). Yellow locations were exposed 
in 1999-2002 only (1st Drought Only), purple locations were exposed in 2012-2015 only (2nd 

Drought Only), orange locations were exposed to drought in both 1999-2002 and 2012-2015 (Both 

Droughts), and gray locations were exposed to drought in neither 1999-2002 nor 2012-2015 
(Neither Droughts). The black polygons outline the study region in the Sierra Nevada and Southern 

California Mountains. (b) The distribution of grid cells by SPI48 exposure in the 1st Period and 2nd 
Period. In the color bar, blue represents fewer grid cells, yellow represents an intermediate number 

of grid cells, and red represents a greater number of grid cells. The partially opaque blue squares 
represent SPI48 exposure combinations with less than 20 grid cell observations. The sample size 
for both panels is N = 62,887. 

We used geospatial and forest inventory data and analyses to compare semi-arid 

conifer forest stands in California that were exposed to a single drought during 2012 -2015 

(we refer to this sample as 2nd Drought Only) with stands that were exposed to droughts in 

both 1999-2002 and 2012-2015 (we refer to this sample as Both Droughts; Fig. 1.1). We 
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first evaluated whether die-off during 2012-2015, which we call the 2nd Period, was 

independent from, amplified by or dampened by die-off during 1999-2002, which we call 

the 1st Period. We then explored whether changes in cumulative moisture deficit, a measure 

of water availability that we defined as the difference between water use and water input, 

or changes in susceptibility to cumulative moisture deficit were the underlying 

mechanism(s) that explain changes to die-off severity.  

1.2 Materials and Methods 

1.2.1 Experimental Design 

Semi-arid conifer forests in the study region spanned 62,887 grid cells (each grid cell is 

nine hectares or 100 Landsat pixels) or approximately 566,000 hectares (Figure 1.1). We 

quantified extreme drought exposure as forty-eight-month Standardized Precipitation 

Index (SPI48) ≤ -1.5. SPI48 is a measure of precipitation anomalies over four water years, 

with SPI48 ≤ -1.5 indicating a precipitation shortfall 1.5 standard deviations below the 

climate normal. SPI48 ≤ -1.5, occurred in 13,580 of 62,887 grid cells (~22%) during the 1st 

Period (1999-2002) and 61,898 of 62,887 grid cells (~98%) during the 2nd Period (2012-

2015; Figure 1.1b).  

We separated grid cells into four drought exposure sequences: Neither Drought, 

Both Droughts, 1st Drought Only, and 2nd Drought Only. We quantified the difference 

between SPI48 in 1999-2002 and 2012-2015 (dSPI48) to compare four-year precipitation 

between the two time periods. To identify forests in the Neither Drought sample we filtered 

for locations with 1999-2002 and 2012-2015 SPI48 >-1.5. To identify forest in the Both 

Droughts sample we filtered for locations with 1999-2002 and 2012-2015 SPI48 ≤-1.5 and 

dSPI48 ≤ 0.5. To identify forests in the 2nd Drought Only sample we filtered for forests 
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where drought was extreme in only 2012-2015 by identifying grid cells with 2012-2015 

SPI48 ≤ -1.5, 1999-2002 SPI48 >-1.5, and dSPI48 > 0.5. To identify forests in the 1st Drought 

Only sample we filtered for forests where drought was extreme in only 1999-2002 by 

identifying grid cells with 1999-2002 SPI48 ≤ -1.5, 2012-2015 SPI48 > -1.5 and dSPI48 > 

0.5. In practice, the dSPI48 threshold removed a total of 3,966 grid cells either were in the 

Both Droughts sample and had different levels of SPI48 drought exposure were in the 2nd 

Drought Only sample and had similar levels of SPI48 drought exposure (Fig. A.3).  

We excluded the 1st Drought Only and Neither Drought exposure sequences from 

further analysis due to low or non-existent sample sizes within our study region (773 1st 

Drought Only and 0 Neither Drought grid cells). We continued our analysis with 8,923 grid 

cells exposed to Both Droughts, and 49,222 grid cells exposed to drought in 2nd Drought 

Only (Fig. A.1). In the Both Droughts sample, 64% of grid cells were in the Southern 

California Mountains versus 36% in the Sierra Nevada (Fig. A.2). In the 2nd Drought Only 

sample, 92% of grid cells were in the Sierra Nevada versus 8% in the Southern Califor nia 

Mountains (Fig. A.2).   

We used SPI48 (Abatzoglou et al., 2017) calculated on a per-pixel basis to track 

drought exposure because it incorporates only water inputs from precipitation (Pr) and 

uses a four-year timescale that reflects long-term forest access to soil moisture (Goulden & 

Bales, 2019; Madakumbura et al., 2020). We retrieved 4-km resolution SPI48 data from 

https://wrcc.dri.edu/wwdt/archive.php. We down-sampled the SPI48 layers for 1999-

2002 and 2012-2015 to 30-m resolution with bilinear interpolation.  

https://wrcc.dri.edu/wwdt/archive.php
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1.2.2 General Geospatial Data Processing  

We retrieved California-wide geospatial observations to supplement the Landsat 

vegetation indices. We used a California state perimeter with an added 500-m buffer to 

filter geospatial observations. The California state perimeter was retrieved from 

https://developers.google.com/earth-engine/datasets/catalog/TIGER_2016_States. We 

used the arcpy python package form ArcGIS Pro and Earth Engine to reproject and 

rasterize vector data to 30-m resolution. We first converted and co-registered all geospatial 

datasets to 30-m spatial resolution in the Albers Equal Area (EPSG 5070) projection using 

Earth Engine.  

1.2.2.1 Landsat Data Processing  

We used Landsat observations to calculate a proxy for forest die-off and 

Evapotranspiration (ET). We retrieved Landsat observations for the state of California, 

filtered for clouds, snow, and shadows and calculated annual composites for three 

vegetation indices using Earth Engine (Gorelick et al., 2017). The steps we used to retrieve, 

process, and composite Landsat data are listed below. 

(1) We retrieved all collection 1, level 1 Landsat 5, 7, and 8 (L5, L7, L8) surface reflectance 

scenes observed between March 1, 1984 and December 31, 2019 that intersected a state of 

California perimeter with a 500-meter (m) buffer. 

(2) We used the United States Geological Survey (USGS) provided pixel_qa layer based on 

FMask to remove snow, clouds with high confidence, and cloud shadows from each Landsat 

image. For Landsat 8 we also removed clouds with high cirrus confidence with FMask (Z. 

Zhu et al., 2015). 

(3) We renamed Landsat 7 and Landsat 8 bands to follow Landsat 5 naming conventions. 

https://developers.google.com/earth-engine/datasets/catalog/TIGER_2016_States
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(4) We homogenized Landsat 5 equivalents of B1 (Blue), B2 (Green), B3 (Red), B4 (Near 

Infrared), B5 (Shortwave Infrared 1), B7 (Shortwave Infrared 2) for Landsat 7 and Landsat 

8 using the ordinary least squares regression lines derived for the Continental United States 

(Roy et al., 2016).   

(5) We calculated Tasseled Cap Brightness (Crist & Cicone, 1984; Healey et al., 2005), NDVI and 

NDMI for each Landsat image. 

a. 𝑇𝑎𝑠𝑠𝑒𝑙𝑒𝑑 𝐶𝑎𝑝 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 = 𝐵1 ∗ 0.3037 + 𝐵2 ∗ 0.2793 + 𝐵3 ∗ 0.4743 + 𝐵4 ∗

 0.5585 + 𝐵5 ∗ 0.5082 + 𝐵7 ∗ 0.1863 

b. 𝑁𝐷𝑉𝐼 =  
𝐵4 – 𝐵3 

𝐵4 + 𝐵3
 

c. 𝑁𝐷𝑀𝐼 =  
𝐵4 – 𝐵5 

𝐵4 + 𝐵5
  

(6) We calculated the mean and standard deviation of Tasseled Cap Brightness for the full time 

series stack. We removed Landsat pixels that were anomalously (two standard deviations) 

brighter (snow or clouds) or darker (cloud shadows) than the mean time series brightness 

for each pixel. 

(7) NDMI and NDVI. We calculated the mean water year NDVI (Oct 1 – Sep 30) and mean late 

season NDMI (Aug 1 – Oct 31) for each year in the full Landsat time series. 

1.2.2.2 Geospatial Data Masking and Regridding 

We applied masks using Earth Engine to exclude pixels that had burned, were not 

identified as needleleaf conifer forests, and that occurred outside our study region in the 

Sierra Nevada and Southern California Mountains. We excluded burned pixels to avoid 

confusing remote sensing observations of wildfire for forest die -off. We included only 

needleleaf conifer forests because they are the most susceptible to die-off in our study 

region. We excluded geospatial data outside our study region United States Forest Service 
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(USFS) Ecological Subsections to allow for landscape level comparisons between geospatial 

and forest inventory observations.  

We next regridded all data, including Landsat observations, to 300-m spatial 

resolution using Earth Engine. We assigned each 300-m grid cell the mean value of 

intersecting 30-m pixels except for vegetation type where we assigned the mode value of 

the intersecting 30-m pixels. We excluded grid cells calculated based on less than 20 pixels. 

We used wildfire history data to remove grid cells that had burned from 1980 to 

2019 from our analysis. We reprojected and rasterized each year of fire data.  

We used the fire history dataset from California’s Fire and Resource Assessment Program 

(FRAP) retrieved from https://frap.fire.ca.gov/mapping/gis-data/.  

We identified grid cells dominated by needleleaf conifer forest types using 

Landscape Fire and Resource Management Planning Tools Existing Vegetation type 

(LANDFIRE EVT) data for 2001. We retrieved the LANDFIRE EVT layer for 2001 (EVT 

us_105) from https://www.landfire.gov/viewer/.We included pixels where LANDFIRE EVT 

was one of the following: Redwood (EVT code #2015), Juniper-Pinyon Woodland (2016, 

2025, 2019, 2059, 2119, 2115), Grand Fir (2018, 2047, 2232), Bristlecone Pine (2020, 

2057), Knobcone Pine (2022, 2034, 2170, 2177), Sierra Nevada Mixed Conifer (2027, 

2231), Jeffrey Pine (2031), Red Fir (2032), Interior Douglas-Fir (2045, 2051, 2227, 2166), 

Limber Pine (2049), White Fir (2052, 2172, 2208, 2028), Interior Ponderosa Pine (2053, 

2054, 2060, 2117, 2179), Lodgepole Pine (2058, 2167, 2173, 2050), or Pacific Douglas -Fir 

(2200, 2206).  

https://frap.fire.ca.gov/mapping/gis-data/
https://www.landfire.gov/viewer/
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We excluded geospatial observations outside of our study region using USFS 

Ecological Subsections. We retrieved the geodatabase of USFS Ecological Subsections from 

https://data.fs.usda.gov/geodata/edw/datasets.php?xmlKeyword=ecomap+subsection. 

We included the following subsections: San Rafael-Topatopa Mountains (M262Ba), 

Northern Transverse Ranges (M262Bb), Sierra Pelona-Mint Canyon (M262Bc), San Gabriel 

Mountains (M262Bd), Upper San Gabriel Mountains (M262Be), Santa Ana Mountains 

(M262Bf), San Gorgonio Mountains (M262Bg), Upper San Gorgonio Mountains (M262Bh), 

Little San Bernardino-Bighorn Mountains (M262Bi), San Jacinto Foothills-Cahuilla 

Mountains (M262Bl), San Jacinto Mountains (M262Bm), Palomar-Cuyamaca Peak 

(M262Bo), Desert Slopes (M262Bp), Lower Batholith (M261Ep), Upper Batholith 

(M261Eq), Eastern Slopes (M261Er), Tehachapi-Piute Mountains (M261Es), and Kern 

Plateau (M261Eu).  

1.2.3 Observations of Forest Die-off  

We used the following geospatial proxies for forest die-off: change in NDMI (dNDMI) for 

die-off intensity, and the USFS Aerial Detection Surveys (ADS) for die-off extent (Goulden & 

Bales, 2019; Madakumbura et al., 2020). We used Forest Inventory and Analysis (FIA) data 

as an alternative measurement of forest mortality. We did not differentiate between forest 

die-off caused by physical drought stress, bark beetle and other insect attack, or a 

combination of both.  

1.2.3.1 dNDMI  

NDMI is related to the amount of moisture per ground area and as such is sens itive to both 

the LAI and hydration of individual leaves (Goodwin et al., 2008; Hardisky et al., 1983). 

dNDMI is particularly sensitive to changes in live leaf area, with negative values providing a 

https://data.fs.usda.gov/geodata/edw/datasets.php?xmlKeyword=ecomap+subsection
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proxy for decreased live leaf area and die-off, and positive values providing a proxy for 

increased live leaf area and canopy growth (Goodwin et al., 2008; Goulden & Bales, 2019). 

We calculated dNDMI for 2004 to capture die-off in 1999-2002 by subtracting the mean 

NDMI for 1997, 1998, and 1999 (three years before the drought) from the mean NDMI for 

2003 and 2004 (the two years after the end of the drought). We calculated dNDMI for 1991 

to 2005 similarly to dNDMI for 2004. For example, we calculated dNDMI for 1991 by 

subtracting mean NDMI for 1984, 1985, and 1986 from mean NDMI for 1990 and 1991. We 

calculated dNDMI for 2017 to capture die-off in 2012-2015 by subtracting the pre-drought 

mean NDMI (mean of 2009, 2010, and 2011) from post-drought NDMI (mean of 2016 and 

2017). We calculated dNDMI for 2006 to 2019 similarly to dNDMI for 2017. 

1.2.3.2 USFS ADS (Aerial Detection Surveys) 

We used ADS observations as an independent measure of the presence or absence of 

mortality in our study region. We retrieved the ADS mortality surveys for USFS Region 5 

for the years 1978 to 2019 from https://www.fs.usda.gov/detail/r5/forest-

grasslandhealth/?cid=fsbdev3_046696. The ADS data is measured in units of dead trees 

acre-1 (TPA1). In addition to mortality, ADS polygons with total flown area are recorded. 

We added a TPA1 field with a value of zero to the flown area polygons. We rasterized the 

TPA1 field for both the ADS survey and flown area polygons. We created an annual raster 

layer of die-off by taking the maximum of TPA1 for the rasterized mortality survey and 

flown area layers for each year.  

 We used ADS to compare landscape scale die-off extent between the 1999-2002 and 

2012-2015 time periods at 300-meters. Observations from ADS are more reliable for 

comparing die-off extent than die-off intensity measured with TPA1 (Hicke et al., 2020), 

https://www.fs.usda.gov/detail/r5/forest-grasslandhealth/?cid=fsbdev3_046696
https://www.fs.usda.gov/detail/r5/forest-grasslandhealth/?cid=fsbdev3_046696
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partially due to a shift to digital from analog sketch mapping starting in the early 2000s and 

a change from TPA1 to broad die-off intensity categories in 2017. In general, sketch 

mapping also has an accuracy of ~68% (Johnson & Ross, 2008) at 50-m resolution, which is 

sufficient for comparing landscape scale patterns of die-off extent at 300-m. 

We calculated ADS die-off for 2004 by taking the maximum of the annual mortality 

layers (combined mortality and flown area) for 1999-2004. We calculated ADS die-off for 

2017 by taking the maximum of the annual mortality layers for 2012-2017. We used 

maximum TPA1 value to avoid double counting die-off and included all years of each time 

period plus two additional years to capture all observed die-off across different years, as 

each year of ADS observations is incomplete. To allow comparison between 1999 -2004 and 

2012-2017 ADS for die-off extent we converted TPA1 values into categorical presence or 

absence of mortality with TPA1 values of ≥ 5 trees acre-1 assigned as tree mortality (1) and 

< 5 trees acre-1 as no tree mortality (0). 

1.2.3.3 Field Observations of Forest Basal Area (BA) and Die-off  

We calculated basal area (BA) and mortality of needleleaf conifer trees using FIA 

observations (Bechtold & Patterson, 2005). The USFS FIA program measures inventory 

plots annually on a 10-year rotating schedule for California. Observations based on the 

current sampling protocol are available for 2001-2019. We retrieved FIA observations 

from https://apps.fs.usda.gov/fia/datamart/ using rFIA (Stanke et al., 2020). We calculated 

tree mortality as dead basal area for all trees and for the following tree genera: pine, fir, 

oak, juniper, and cedar. We selected plots that were sampled during only 2003-2006, only 

2016-2019, or both time periods. We included only plots with the following plot 

disturbance conditions (DSTRBCD1): no disturbance (0), insect damage (10), insect 

https://apps.fs.usda.gov/fia/datamart/
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damage to understory (11), insect damage to trees (12), drought (54), unknown  (70). We 

calculated the total live and dead basal area for each plot and for each tree genus in each 

plot using the plot adjustment factor (TPA_UNDADJ) for each tree counted in the plot with a 

diameter greater than 12.7 centimeters. For plots sampled in 2016-2019 we removed trees 

killed before 2013 using the morality year field (MORTYR). We removed any plots that had 

less than five percent total conifer basal area. 

We calculated the mean SPI48 drought exposure for 1999-2002 and 2012-2015 in 

each Ecological Subsection. We used SPI48 values to assign the plots from each subsection 

to one of the two drought exposure sequences. We filtered drought exposure by Ecological 

Subsection because we did not have access to the precise geospatial locations of FIA plots 

due to United States federal regulations. The following subsections were exposed to Both 

Droughts: M262Bc, M262Bd, M262Be, M262Bf, M262Bg, M262Bh, M262Bi, M262Bl, 

M262Bm, M262Bo, M262Bp, and M261Es. The following subsections were exposed to the 

2012-2015 Drought Only: M262Ba, M262Bb, M261Ep, M261Eq, M261Er, and M261Eu. 

1.2.4 Geospatial Predictors of Forest Die-off  

We compared three different geospatial predictors of die-off: cumulative moisture deficit 

from four-year Pr-ET which represents water availability, aboveground live biomass 

density (AGB), and annual mean maximum temperature (T max).  

1.2.4.1 Cumulative Moisture Deficit  

We used four-year Pr-ET overdraft as a proxy for the spatial distribution of cumulative 

moisture deficit because it incorporates both water input and (Precipitation) water use 

(Evapotranspiration). We calculated Annual Precipitation minus Evapotranspiration (Pr-

ET) in units of millimeters of water per year (mm yr -1) by subtracting the annual ET from 
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down-sampled Pr for each water year (Fellows & Goulden, 2017; Goulden & Bales, 2019). 

We then calculated four-year Pr-ET for 1999-2002 by taking the sum of the water year Pr-

ET layers for 1999 through 2002. We calculated four-year Pr-ET similarly for 2012-2015 

by taking the sum of the Pr-ET layers for 2012 through 2015. Four-year Pr-ET is calculated 

in units of millimeters of water per four years (mm 4yr -1). A value of -1000 mm 4yr-1 for 

four-year Pr-ET overdraft means that over the previous four years of water use (ET) was 

greater than water input (Pr) by 1,000 mm. 

We calculated ET for each water year by scaling between eddy covariance ET flux 

measurements and water year NDVI (Goulden et al., 2012; Goulden & Bales, 2019). We 

measured the net ET at four eddy covariance towers in the Sierra Nevada around the upper 

Kings River basin along a west to east transect at ∼800 m elevation intervals beginning at 

405 m, four in the San Jacinto Mountains at elevations ranging from 205 m to 1710 m and 

two in the Santa Ana Mountains at ~500 m (Goulden et al., 2012; Hinojo-Hinojo & Goulden, 

2020).  We retrieved ET field observations from https://www.ess.uci.edu/~california/. We 

calculated annual ET by integration after filling intervals with missing, calm, or otherwise 

unsuitable observations as a function of incoming solar radiation. We combined annual ET 

for the ten California flux towers to create a regression between annual ET and NDVI to 

extrapolate ET spatially and temporally (R2 = 0.692; Fig. A.4). We created the same 

regression between annual ET and NDVI using only the six forested flux tower sites to 

confirm that our approach is robust in only our target ecosystem types (R2 = 0.764; Fig. 

A.4). The NDVI values used for this regression were calculated using the approach 

described in the Landsat Observations section. We calculate the NDVI for each eddy 

covariance site as the mean of nine upwind Landsat pixels. As we have discussed in 

https://www.ess.uci.edu/~california/
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previous papers, a strong correlation exists between annual NDVI and ET because of 

bidirectional linkages between Leaf Area Index (LAI) and canopy gas exchange (Goulden et 

al., 2012; Goulden & Bales, 2014, 2019). In semi-arid regions like California, site water 

balance, LAI, primary production, and ET are tightly correlated. LAI is also well correlated 

with NDVI, creating a tight relationship between annual NDVI and ET.  

We used annual Pr to calculate annual Pr-ET. We calculated annual Pr for each 

water year (Oct 1 – Sep 30). We calculated annual Pr for each water year by taking the sum 

of monthly Pr. We retrieved monthly 4-kilometer (km) Pr for 1985 to 2019 from the 

Parameter-elevation Relationships on Independent Slopes Model (PRISM) retrieved from 

https://developers.google.com/earth-

engine/datasets/catalog/OREGONSTATE_PRISM_AN81m. We down-sampled each year of 

Pr from 4-km to 30-m resolution with bilinear interpolation.  

1.2.4.2 Annual Maximum Temperature (Tmax) 

We used annual Maximum Temperature (Tmax) as an alternative predictor of forest die-off. 

We calculated annual Tmax for each water year (Oct 1 – Sep 30). We calculated annual Tmax 

as the mean of monthly Tmax. We retrieved monthly 4-kilometer (km) Tmax for 1985 to 2019 

from the Parameter-elevation Relationships on Independent Slopes Model (PRISM) 

retrieved from https://developers.google.com/earth-

engine/datasets/catalog/OREGONSTATE_PRISM_AN81m. We down-sampled each year of 

Tmax from 4-km to 30-m resolution with bilinear interpolation.  

1.2.4.2 Aboveground Live Biomass (AGB) 

We used the existing LandTrendr + Gradient Nearest Neighbor (LT-GNN) AGB data set for 

1990-2017, which is publicly available and peer reviewed (Hooper & Kennedy, 2018; 

https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81m
https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81m
https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81m
https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81m
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Kennedy et al., 2018), as an alternative predictor of forest die-off severity. We used LT-GNN 

AGB for California retrieved from: 

http://emapr.ceoas.oregonstate.edu/pages/data/viz/index.html. LT-GNN AGB for 1999 

represented forest density during the 1st Period, and LT-GNN AGB for 2012 represented 

forest density during the 2nd Period. We used the LT-GNN AGB data set created using LT-

GNN imputation that combines Forest Inventory and Analysis (FIA) observations and 

annual time series of 30-m Landsat data (Kennedy et al., 2018). The LT-GNN AGB was 

validated with comparisons to AGB derived from > 6000 FIA plots (R 2 = 0.78) and airborne 

LiDAR (Kennedy et al., 2018). The data were most reliable when forest AGB was ≤ 450 Mg 

ha-1 and data was aggregated from 30-m to a larger spatial scale, both of which are true for 

our study (Kennedy et al., 2018).  

1.2.5 Statistical Analysis.  

We first compared observations of die-off (ADS, dNDMI, and FIA Mortality) and potential 

predictors of die-off (four-year Pr-ET, AGB, Tmax, and FIA BA) between four experimental 

groups: 1st Period of the Both Droughts sample, 2nd Period of the Both Droughts sample, 1st 

Period of the 2nd Drought Only sample, and 2nd Period of the 2nd Drought Only sample. For 

the categorical ADS die-off data set, we compared the four experimental groups using a Chi-

Squared Test. For all other variables, we compared observations between the 1st Period and 

2nd Period within the Both Droughts and 2nd Drought Only samples using paired t-tests. For 

these same data sets we compared the four experimental groups using Two -Way ANOVA 

and Tukey Honestly Significant Difference (HSD) tests. To conduct statistical tests we used 

base R (R Core Team, 2020). 

http://emapr.ceoas.oregonstate.edu/pages/data/viz/index.html
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We next compared four-year Pr-ET, AGB, Tmax, drought sequence, time period and 

time period x drought sequence as predictors of dNDMI die-off severity using multiple 

linear regression and relative weight analysis (Groemping, 2006). We conducted the 

relative weight analysis using the relaimpo package (Groemping, 2006; Groemping & 

Matthias, 2018). To correct a sampling imbalance between drought exposure groups before 

applying the relative weight analysis we under-sampled the 2nd Drought Only drought 

exposure group by 20% using the caret package (Kuhn et al., 2020) resulting in a sample 

size of 9,839 grid cells.  

We next compared four-year Pr-ET as a predictor of dNDMI die-off severity within 

the four experimental groups using piecewise linear regression. We calculated the 

piecewise linear regression with an automated estimate of the breakpoint (Muggeo, 2003) 

using the segmented package (Muggeo, 2008). We tested for spatial autocorrelation in our 

data by creating semi-variograms with our geospatial data with a 5% random sample of 

each drought sequence using the gstat package (Pebesma, 2004).  

For general data analysis and processing we used the tidyverse (Wickham, 2017), 

raster (Hijmans et al., 2015), sf (Pebesma, 2018), RSQLite (Wickham et al., 2015), and rFIA 

(Stanke et al., 2020) packages. To create figures and tables we used the tidyverse, 

RSToolbox (Leutner et al., 2017), patchwork (Pedersen, 2019), ggpubr (Kassambara, 2020) 

and kableExtra (H. Zhu, 2019) packages and base R (R Core Team, 2020).  
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Figure 1.2. Time series of indicators of die-off extent, intensity, and drought stress for the two 

drought sequences. Panel (a) shows the proportion of grid cells with forest die-off, (b) shows 
dNDMI (c), and (c) shows annual Pr-ET for the region. The line in panel (a) is the proportion of grid 

cells with die-off according to Aerial Detection Surveys (ADS). The lines in panels (b) and (c) are the 
annual region means for dNDMI and Pr-ET. The uncertainty bars in (b) and (c) are 95% confidence 

intervals (CI). The red shading in each plot indicates the 1999-2002 and 2012-2015 water years. 
The sample size Both Droughts is N = 8,933. The sample size for the 2nd Drought Only is N = 40,922. 

 

1.3 Results 

1.3.1 Spatial and Temporal Patterns of Die-off  

Forest die-off was more widespread during the 1st Period for the Both Droughts 

sample and during the 2nd Period for the 2nd Drought Only sample according to aerial 

detection surveys (ADS) of die-off extent. In the Both Droughts sample, die-off observed 

with ADS was significantly more widespread during the 1st Period (30.7% of grid cells) than 
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in 2012-2015 (13.3% of grid cells), while in the 2nd Drought Only sample, die-off was 

significantly more widespread during the 2nd Period (50.7% of grid cells) than during the 1st 

Period (2.6% of grid cells) according to a Chi-Square test (p < 0.001; Fig 1.2a; Fig. A.5; Fig. 

A.6).  

Forest die-off was more severe during the 1st Period for the Both Droughts sample 

and during the 2nd Period for the 2nd Drought Only sample. Negative dNDMI is a proxy for 

decreased live forest leaf area and die-off (Goodwin et al., 2008; Goulden & Bales, 2019; 

Hardisky et al., 1983), while forest inventory observations are a direct measure of dead 

trees. Positive values of dNDMI are a proxy for increased live leaf area (Goodwin et al., 

2008; Goulden & Bales, 2019; Hardisky et al., 1983). In the Both Droughts sample, die-off 

severity quantified with dNDMI was significantly less negative during the 2nd Period 

compared to the 1st Period by 63 to 70% (95% CI; p < 0.001) using a paired t-test (Fig. 1.2b; 

Fig. 1.3; Fig. A.7; Table A.1). In the 2nd Drought Only sample, dNDMI was significantly more 

negative during the 2nd Period compared to the 1st Period by 8.3 to 8.7-fold (p < 0.001) using 

a paired t-test (Fig. 1.2b; Fig 1.3; Fig. A.4; Table A.1). During the 2nd Period, dNDMI was 

significantly less negative in the Both Droughts sample than the 2nd Drought Only sample by 

68 to 74% (p < 0.001) using a Tukey Honestly Significant Difference (HSD) test (Fig. 1.2b; 

Fig. 1.3; Fig. A.7; Table A.2). According to forest inventory observations, forests in the Both 

Droughts sample had significantly lower die-off by 17 to 154% during the 2nd Period 

compared to the 1st Period (95% CI; p < 0.01), while forests in the 2nd Drought Only sample 

had significantly increased die-off by 13 to 30-fold during the 2nd Period compared to the 1st 

Period (p < 0.001) according to Tukey HSD tests (Fig. 1.4a, b; Table A.3).  
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Figure 1.3. The distribution of forest die-off (dNDMI) arranged by SPI48 exposure. Panel (a) shows 

die-off and SPI48 exposure in the 1st Period and panel (b) shows the 2nd Period. In the color bar, red 

represents negative values of dNDMI or severe forest die-off, cream represents no change in dNDMI 
or forest condition, and blue represents positive dNDMI or possible forest regrowth. The sample 
size for both panels is N = 62,887. 

 

Pine and fir mortality was greatest during the 1st Period for the Both Droughts 

sample and during the 2nd Period for the 2nd Drought Only sample. Pine mortality was 

significantly greater (p < 0.05) than fir, oak, juniper, or cedar mortality during the 1st Period 

for the Both Droughts sample, while fir mortality was not significantly greater than oak, 

juniper, or cedar mortality (p > 0.9). In the Both Droughts sample, pine mortality 

significantly decreased by 23 to 151% during the 2nd Period compared to the 1st Period (p < 

0.01; Fig 1.4c, d; Table A.4) according to a Tukey HSD test. In the 2nd Drought Only sample 

pine mortality significantly increased (p < 0.001) by 8 to 25-fold during the 2nd Period 

compared to the 1st Period, while fir morality significantly increased (p < 0.001) by 11 to 

48-fold during the 2nd Period compared to the 1st Period according to Tukey HSD tests (Fig 

1.4c, d; Table A.4, Table A.5). 
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Figure 1.4. Comparison of needleleaf conifer mortality, from forest inventory observations, in 1st 
Period and 2nd Period and between locations exposed to Both Droughts and drought in 2nd Drought 

Only. Panels (a) and (b) represent mortality for all tree species combined, while panels (b) and (c) 
represent mortality separated by tree genera. Tree mortality is reported in units of basal area (m 2 

ha-1). The letters represent comparison with a significant difference (p<0.05) using a Tukey 
Honestly Significant Difference Test. The n-values represent the number of forest inventory plots 
available to calculate the mortality for each time period and drought sequence combination.  

 

3.2 Potential Biophysical Controls of Die-off Severity 

Cumulative moisture deficit is a useful predictor of die-off because it allows for a test of 

whether changes in leaf area and therefore water use led to changes in water availa bility 

which altered die-off severity. Cumulative moisture deficit, quantified as negative four -year 
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water input (Pr) minus four-year water use (ET; four-year Pr-ET overdraft), was extreme 

during both the 1st Period and 2nd Period for the Both Droughts sample and during only the 

2nd Period for the 2nd Drought Only sample (Figure 1.2c; Fig. A.8; Fig. A.9). In the Both 

Droughts sample, annual moisture deficit (Pr-ET) was also negative in 2004-2005 and 

2007-2008 but was positive when combined into four-year cumulative moisture deficit 

(Figure 1.2c). Maximum temperatures (Tmax) were higher during the 2nd Period than the 1st 

Period for the Both Droughts and 2nd Drought Only samples (Fig. A.10; Fig. A.11). Four-year 

Pr-ET overdraft was significantly more negative during the 2nd Period than the 1st Period by 

130 to 140 mm 4 yr-1 (p < 0.001) in the Both Droughts sample and by 1,020 to 1,030 mm 4 

yr-1 (p < 0.001) in the 2nd Drought Only sample using a paired t-test (Figure 1.2c; Fig A.8; 

Fig. A.9; Table A.1). Tmax significantly increased during the 2nd Period compared to the 1st 

Period by 0.46 to 0.48 ֯C (p-value < 0.001) in the Both Droughts sample and by 0.829 to 

0.834 ֯C (p-value < 0.001) in the 2nd Drought Only sample according to paired t-tests (Fig. 

A.9, Fig. A.10; Table A.1). Tmax was significantly greater (p-value < 0.001) in the Both 

Droughts sample than the 2nd Drought Only sample by 1.1 to 1.4 ֯C during the 1st Period and 

by 0.8 to 1.1 ֯C during the 2nd Period according to Tukey HSD tests (Table A.2). 

There was little apparent change in forest density between the 1st Period and 2nd 

Period for the 2nd Drought Only sample and mixed results for the Both Droughts sample (Fig. 

A.12; Fig. A.13; Fig. A.14). In the Both Droughts sample AGB significantly decreased during 

the 1st Period compared to 2nd Period by 4 to 5 Mg ha-1 or 3.3 to 4.0% (p < 0.001), while in 

the 2nd Drought Only sample AGB significantly increased by 0.02 to 0.3 Mg ha-1 or 0.0 to 

0.2% (p < 0.05) according to paired t-tests (Fig. A.12; Fig A.13; Table A.1). In the Both 

Droughts sample BA varied during the 2nd Period compared to the 1st Period from 6 m2 ha-1 
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greater to 19 m2 ha-1 less or 30% greater to 95% less (p = 0.537) sample, while in the 2nd 

Drought Only BA varied from 5 m2 ha-1 greater to 6 m2 ha-1 less or 17% greater to 19% less 

(p = 0.998) sample according to Tukey HSD tests (Fig. A.14; Table A.3).  

Both AGB and BA were greater in the 2nd Drought Only sample compared to the Both 

Droughts sample. AGB was significantly greater by 54 to 60 Mg ha -1 during the 1st Period 

and by 57 to 63 Mg ha-1 during the 2nd Period (p < 0.001; Table A.2; Fig. A.11; Fig. A.12). BA 

was significantly greater by 2 to 19 m2 ha-1 during the 1st Period (p < 0.05) and by 7 to 28 

m2 ha-1 during 2nd Period (p < 0.001; Fig A.14; Table A.3) according to Tukey HSD tests.  

3.3 Comparing Predictors of Die-off Severity (dNDMI) 

Cumulative moisture deficit (four-year Pr-ET overdraft) and severe die-off (dNDMI) were 

similarly correlated during the 1st Period for the Both Droughts sample and the 2nd Period 

for the 2nd Drought Only sample, but for the Both Droughts sample four-year Pr-ET 

overdraft was not correlated with dNDMI during the 2nd Period. We modeled die-off 

severity (dNDMI) using multiple linear regression (R2 = 0.234, p < 0.001) with the 

following predictors: four-year Pr-ET, time period (1st Period or 2nd Period), drought 

sequence (Both Droughts or 2nd Drought Only), AGB, Tmax, and the interaction between time 

period and drought sequence (time period x drought sequence; Fig. 1.5; Table A.6). Time 

period x drought sequence accounted for 45.8% of the explained variance in dNDMI, while 

four-year Pr-ET accounted for 36.6%, Tmax accounted for 9.3%, time period accounted for 

3.7%, AGB accounted for 2.7%, and drought sequence accounted for 2.0% in a relative 

weight analysis (Table A.6). There was a small amount of spatial autocorrelation in our 

data (Fig. A.15). We explored the effects of this spatial autocorrelation by taking a 5% 

random sub-sample from each drought sequence (Fig. A.14). The sub-sampled data 
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produced very similar results to the full data set (Fig. A.16); therefore, we used the full data 

set for further analysis. We explored differences in the drought sequence  samples by 

comparing the responses of forests in the Sierra Nevada and Southern California regions. 

We found no evidence of differences in forest response by region (Fig. A.17). 

Forests responded differently to predictors of die-off during the 1st Period and 2nd 

Period in the Both Droughts samples. In the Both Droughts sample, four-year Pr-ET 

overdraft was a strong predictor of die-off (negative dNDMI) during the 1st Period (R2 = 

0.42, p < 0.001, piecewise linear regression; Figure 1.5a) while four-year Pr-ET was a weak 

predictor of lack of die-off or possible regrowth (positive dNDMI) during the 2nd Period (R2 

= 0.095, p < 0.001, piecewise linear regression; Figure 1.5b). In the 2nd Drought Only 

sample, four-year Pr-ET overdraft was a strong predictor of die-off (negative dNDMI) 

during the 2nd Period (R2 = 0.23; p < 0.001, piecewise linear regression; Figure 1.5d), but 

there was almost no relationship between four-year Pr-ET overdraft and dNDMI during the 

2nd Period (R2 = 0.021, p < 0.001, piecewise linear regression; Figure 1.5c). As illustrated by 

four-year Pr-ET, in the Both Droughts samples the relationships between Tmax and AGB with 

dNDMI were also different during the 1st Period and 2nd Period (Fig. A.18, Fig. A.19).  

 



 

30 
 

 

Figure 1.5. Comparison of four-year Pr-ET as a predictor of forest die-off severity (dNDMI) in four 
combinations of drought exposure and time period. The top two panels show the relationship 

between four-year Pr-ET and dNDMI for locations exposed to Both Droughts in the 1st Period (a) and 
2nd Period (b). The bottom two panels show the relationship between four-year Pr-ET and dNDMI in 

locations exposed to drought in 2nd Drought Only in the 1st Period(c) and 2nd Period (d). The solid 
black line in all panels shows the piecewise linear fit four-year Pr-ET as a predictor of dNDMI. The 

gray shaded ribbons are the 95% confidence intervals. The partially opaque blue squares represent 
combinations of dNDMI and four-year Pr-ET with less than 5 grid cell observations. The sample size 
for the top two panels is N = 8,933. The sample size the bottom two panels is N = 40,922. 
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1.4 Discussion 

1.4.1 Observed Patterns of Die-off 

We found that forests with previous drought exposure had dampened die -off severity 

during subsequent drought. Forest stands in the 2nd Drought Only sample exhibited severe 

die-off during the 2nd Period, as quantified with dNDMI, whereas stands in the Both 

Droughts sample experienced severe dNDMI during the 1st Period but not the 2nd Period 

(Fig. 1.2a, b; Fig. 1.3). Four-year Pr-ET overdraft was similarly correlated with dNDMI 

during the initial drought experienced by both samples (Figure 1.5a, d). This is consistent 

with previous studies showing that needleleaf conifers experience severe drought-induced 

die-off (Brodrick & Asner, 2017; Paz-Kagan et al., 2017; Stovall et al., 2019), especially in 

forests with high density (AGB or BA (Young et al., 2017); Fig. A.18), when exposed to high 

Tmax (Goulden & Bales, 2019), and four-year Pr-ET overdraft (Goulden & Bales, 2019; 

Madakumbura et al., 2020). It is important to note that the 2nd Drought Only sample occurs 

primarily in the Sierra Nevada and the Both Droughts sample occurs primarily in the 

Southern California Mountains (Fig. 1.1a, Fig. A.2). Forest density in the Sierra Nevada is on 

average greater than in the Southern California Mountains (Fig. A.12, Fig. A.13, Fig. A.14a, 

b), but the two regions do contain the same semi-arid conifer forest types and tree species 

(Fig. A.14c, d). Higher average forest density in 2nd Drought Only sample could explain some 

of the greater die-off during the 2nd Period in the 2nd Drought Only sample compared to the 

Both Droughts samples. However, comparisons between the 1st Period and 2nd Period within 

each drought sequence are not impacted by these differences in forest density. Forest 

stands in the Both Droughts sample experienced similarly severe four-year Pr-ET overdraft 

during both the 1st Period and 2nd Period (Fig. 1.2c; Fig. A.2), but severe and widespread die-

off only during the 1st Period (Fig. 1.2a, b; Fig. 1.3; Fig. 1.4; Fig. 1.5a, b), implying that during 
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the 2nd Period die-off had become decoupled from precipitation shortfall and cumulative 

moisture deficit.  

Previous studies have proposed that reductions in forest leaf area from past die -off 

increase water availability (makes cumulative moisture deficit less negative) and therefore 

decrease subsequent die-off severity (Goulden & Bales, 2019; Young et al., 2017). Forest 

stands in the Both Droughts sample had an increase in cumulative moisture deficit in the 

2nd Period (~60 to 67% more negative four-year Pr-ET overdraft). If die-off severity is a 

function of changes in cumulative moisture deficit, we would have expected to see a ~60 to 

67% increase in die-off severity (Fig. 1.5; Table A.4). This was in stark contrast to the large 

decreases we observed in die-off severity according to both geospatial (~63 to 70% 

decrease in dNDMI) and forest inventory data (~31 to 144% decrease). Pines shifted from 

severe mortality during the 1st Period to negligible morality during the 2nd Period (~31 to 

150% decrease in pine mortality). Based on the severe mortality in the Both Droughts 

sample during the 1st Period (~3 m2 ha-1) we expected to observe a decrease in forest 

density during the 2nd Period. In the Both Droughts sample, we observed a small decrease in 

forest density from geospatial data (~3 to 4% in AGB) and no significant change in forest 

density from inventory data (30% increase to 95% decrease in BA). While forest density 

must have decreased due to die-off in the 1st Period, tree growth following the 1st Period 

and limited sampling in the Both Droughts region made decreases in forest density difficult 

to detect during the 2nd Period. Despite this potential decrease in forest density, forest leaf 

area and water use remained high during the 2nd Period. We interpret the decoupling of 

water availability from die-off severity as evidence for a dampening effect from recent tree 

mortality that reduced forest susceptibility to the subsequent drought.  
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1.4.2 Plausible Mechanisms 

There are several potential mechanisms that could explain the dampening effect in the Both 

Droughts region. The simplest mechanism would result solely from a decrease in the 

number of trees to kill after initial die-off. It is true that forest stands in the Both Droughts 

region experienced tree mortality during the 1st Period which must have decreased leaf 

area and the number of trees to kill. This relatively simple explanation likely accounts for at 

least some of the dampening effect we observed. However, three considerations illustrate 

that additional mechanisms likely also play a role: 1) mortality was species dependent; 2) 

there was negligible die-off regardless of remaining forest density; and 3) cumulative 

moisture deficit remained extreme. If a decrease in the number of trees to kill explained the 

protective effect we would have expected random die-off by tree species, continued 

mortality in high density forests, and decreased forest leaf area and therefore less negative 

cumulative water deficit. Instead, both initial mortality and decreases in mortality were 

greater in pines than among other tree species, in the Both Droughts sample there was 

negligible die-off during the 2nd Period regardless of remaining living forest density, and 

cumulative moisture deficit remained extreme due to remaining forest leaf area.  

Dampening effects may be caused by more nuanced mechanisms including 

decreased pathogen host density, physiological acclimation in surviving trees, decreased 

competition between surviving trees, or elimination of susceptible individuals (Anderegg et 

al., 2020b; McDowell et al., 2019; Seidl et al., 2017). We found that the greatest mortality 

occurred in pine and fir trees, which is consistent with past work showing the importance 

of tree species as a predictor of mortality (Fellows & Goulden, 2012; Fettig et al., 2019). 

One potential reason for this pattern is that some pine and fir species serve as hosts for 
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bark beetles that are implicated in drought-induced tree mortality, such as large Ponderosa 

pine for the western pine beetle (Das et al., 2016; Fettig et al., 2019). Past mortality may 

have decreased  the density of bark beetle host trees so that there were fewer hosts to 

support a beetle outbreak and severe die-off during the 2nd Period (McDowell et al., 2019). 

Alternatively, trees that survived the drought may have become less susceptible to die -off 

through physiological acclimations such as increased allocation to pathogen defense, root 

growth, or carbohydrate storage, and decreased allocation to stem and lea f growth (Allen 

et al., 2015). In addition, despite low overall water availability there may be reduced 

competition for water between trees in forest stands with reduced density and therefore 

more water available to individual trees (Young et al., 2017). Finally, pine mortality may 

have preferentially killed drought-susceptible trees so that the remaining living pines were 

intrinsically less susceptible to drought-induced die-off (Anderegg et al., 2020b; DeSoto et 

al., 2020). The limited number of forest inventory samples in the Both Droughts region and 

limited geographic scope of the region experiencing multiple droughts make it difficult to 

further differentiate between these possible mechanisms. Continued severe drought across 

the Southwestern United States will likely make it possible to further understand how 

widespread these types of dampening effects are across semi-arid conifer forests, and 

whether forest density will recover or persist at lower densities with repeated drought 

exposure. Regardless of which mechanism is correct, the existence of dampening effects 

will influence the long-term impact of drought stress in forests.  

1.4.3 Implications 

In forests where past tree morality reduces die-off severity in response to extreme drought, 

dampening effects will contribute to maintaining future forest density and ecosystem 
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services despite increased drought frequency and intensity. Forests that exper ience less 

severe die-off with drought as a result of previous exposure may better maintain long-term 

carbon stocks (Pan et al., 2011). However, in the short term the dampening effect was 

associated with carbon loss from recent tree mortality which is consistent with a recent 

projection of reduced carbon storage in California forests under climate change (Coffield et 

al., 2021). Die-off has been linked to increased fuels and wildfire risk, therefore changes to 

die-off severity may change wildfire risk, though the details of this effect are uncertain 

(Hicke et al., 2012; Stephens et al., 2018). Less severe needleleaf conifer die-off may 

maintain the current balance between pine and oak habitat in California forests (McIntyre 

et al., 2015). Similarly, forests with less severe die-off may maintain current water quality 

and quantity from mountain run-off (Goulden & Bales, 2014).  

Past die-off that dampens forest disturbance during extreme drought has 

implications for projecting the impact of climate change. Ecological models that don’t 

account for dampening effects project 50% or greater mortality in needleleaf evergreen 

forests by 2100 (Jiang et al., 2013; McDowell et al., 2016). However, if a dampening effect 

like the one we observed reduced die-off severity by ~63 to 70% during all future droughts 

we would expect ~15 to 19% mortality in needleleaf evergreen forests by 2100. 

Considering dampening effects that reduce die-off severity would improve prediction of 

drought-induced conifer forest die-off. Nonetheless, important uncertainties remain, such 

as how dampening effects dissipate with time and whether other disturbance type s (e.g., 

wildfire) also dampen susceptibility to drought exposure. There is a near consensus that 

forests around the world will continue to experience increasing climate change -linked 
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drought stress; dampening effects of the type we identified will have a transient and 

perhaps long-term limit on the impacts of repeated drought exposure on forests.  
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Recent fire history enhances semi-arid conifer forest drought resistance 
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Norlen, C.A., Hemes, K.S., Wang, J.A., Randerson, J.A., Goulden, M.L. Recent fire history 
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2.1 Introduction 

Changes to fire regimes are impacting forests around the world in conjunction with other 

climate change amplified threats such as drought induced tree mortality or die-off (Anderegg, 

Trugman, Badgley, Anderson, et al., 2020; McLauchlan et al., 2020). Forests are essential for 

humans as they regulate climate, provide water, and store carbon among many other ecosystem 

services (Bonan, 2008; Fargione et al., 2018; Griscom et al., 2017; McDowell et al., 2020; Pan et al., 

2011). Fire is a fundamental ecological process in forests that has large impacts on each of these 

ecosystem properties (Bowman et al., 2009; McLauchlan et al., 2020). Climate change is driving 

increases in fire weather around the world and burned area in mesic forests where fire has been 

excluded for decades due to human fire suppression (Abatzoglou et al., 2019; Iglesias et al., 2022; 

M. W. Jones et al., 2022; MacDonald et al., 2023). This changing fire regime has large immediate 

initial impacts on forest structure and recovery (Hemes et al., 2023; Wang et al., 2022). While it is 

possible that initial climate change impacts from fire could lead to feedbacks (Lloret et al., 2012; 

Seidl et al., 2017) on subsequent drought induced forest die-off (Allen et al., 2015; McDowell et al., 

2011), there is limited understanding of the feedbacks due to interactions between initial and 

subsequent disturbances. 

2.1.1 Disturbance Interactions  

Initial climate change amplified impacts on forests due to disturbances such as wildfires and 

drought induced forest die-off are well documented (Anderegg, Trugman, Badgley, Anderson, et al., 

2020; McDowell et al., 2020). The changes to forest structure caused by initial climate change 

impacts can translate into ecological feedbacks  which can either amplify or dampen subsequent 

disturbances (Lloret et al., 2012; Seidl et al., 2017).  Emerging research shows that past drought 

induced forest die-off dampens the severity of subsequent drought induced die-off in semi-arid 

conifer forests (Anderegg, Trugman, Badgley, Konings, et al., 2020; Norlen & Goulden, 2023) . 

Increases to California fire size over the last few decades and especially the last few years (Williams 
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et al., 2019) increase the possibility of interactions between past fires and subsequent disturbances 

like drought induced die-off (Anderegg, Trugman, Badgley, Anderson, et al., 2020). Drought 

followed by fire resulted in destructive impacts in mature conifer forests in the Sierra Nevada (Steel 

et al., 2022).  

2.1.2 Fire Impacts on Forests in California 

California conifer forests represent diverse forest types that are currently experiencing the 

effects of initial climate change impacts. Recent changes to the California fire regime are driven by 

both climate change (Williams et al., 2019) and other factors such as fuels and human settlement 

(Keeley & Syphard, 2016). Before European colonization frequent fire due to both wildfire and 

Native American practices was an important driver of vegetation heterogeneity across the 

landscape, with a fire interval of less than 50 years in ecosystems below 2500 meters (Fites-

Kaufman et al., 2007). However, since the early 1900s western forest practices focused on fire 

suppression have increased fire return intervals at lower elevations and have contributed to 

changes in forest composition including a greater dominance of intermediate age forest patches 

across the landscape (Fites-Kaufman et al., 2007). In recent years climate change is reversing some 

of the trends produced by fire suppression by driving increases to fire size (Gutierrez et al., 2021; 

Turco et al., 2023) and rate of spread (Hantson et al., 2022). In addition to reducing the fire return 

interval in some forests, this changing fire regime has large impacts on forests such as reducing 

evapotranspiration (ET) following fire, with fires that produced that greatest reductions in forest 

basal area also producing the greatest reductions in ET (Ma et al., 2020). Fires are also driving a 

decrease in tree cover across California (Wang et al., 2022) and decreases in the ability of forests to 

take up carbon following fire (Hemes et al., 2023). At the same time, following decades of fire 

suppression people are attempting to reintroduce historical levels of high frequency and low 

severity fire (Fites-Kaufman et al., 2007; Knight, Anderson, et al., 2022) through increased 

application of prescribed fire (Hankins, 2015; Knight, Tompkins, et al., 2022). Prescribed fire and 
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other forest management treatments also change forest structure by reducing ET and tree cover 

(Roche et al., 2018) and reducing wildfire risk (Stephens, Moghaddas, Hartsough, et al., 2009; van 

Mantgem et al., 2011; Walker et al., 2006).  

2.1.3 Influence of Fire History on Forest Drought Vulnerability  

Fire history has been hypothesized to either act as a dampening feedback that reduces the 

impact of drought or an amplifying feedback that increases the impact of drought. The dampening 

hypothesis could operate through a mechanism where more frequent fire history changes forest 

composition and structure (Bernal et al., 2023) to be more heterogenous and less susceptible to 

drought (Minnich, 2000; Minnich et al., 1995; Savage, 1994, 1997). Alternatively the dampening 

hypothesis could operate through a mechanism where exposure to low severity fire produces 

physiological induced defense responses that increase drought tolerance and resistance to 

herbivory in surviving trees (Hood et al., 2015). The amplifying hypothesis could operate through a 

mechanism where injury from fire increases susceptibility to mortality from bark beetle attack for a 

few years after burn (Fettig et al., 2010; Nelson et al., 2016). Alternatively, the amplifying 

hypothesis could operate through a mechanism where fire history favors the growth of fire 

resistant trees such as ponderosa pine which are particularly susceptible to drought induced die-off 

(Fettig et al., 2019; Fites-Kaufman et al., 2007). Increasing severe wildfires have well documented 

impacts on forests through reductions in tree cover, water use, and carbon uptake compared to 

similar unburned forests. Changes in forest properties such as the number of susceptible trees, 

number of bark beetle host trees, and forest water could explain potential post-fire feedbacks. 

Whatever effect fires have on subsequent disturbances, these impacts could vary depending on the 

type (e.g., wildfires or prescribed fires) and severity of fires.   

2.1.4 Research Questions and Hypotheses 

Semi-arid conifer forests in the Sierra Nevada of California provide a useful study system to 

investigate how forest water use and structure change following fires and the implications of those 
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changes for forest drought sensitivity as they have experienced both extensive fires and 

widespread drought induced die-off during a severe 2012-2015 drought. We used the well-

documented forest die-off episode in the Southern Sierra Mixed conifer forests during the 2012-

2015 drought as our study system (Asner et al., 2016; Byer & Jin, 2017; Goulden & Bales, 2019; Paz-

Kagan et al., 2017; Young et al., 2017). We constructed a forest chrono-sequence by combining 

geospatial information on historical fire with satellite data on die-off, vegetation cover, and water 

use (evapotranspiration, ET). We measured vegetation cover with a peer-reviewed data set created 

by scaling Landsat observations with field observations. We measured forest water use as annual 

ET calculated by scaling satellite-based Normalized Difference Vegetation Index observations with 

flux tower ET.  We measured forest die-off with aerial detection surveys (ADS) of forest die-off 

performed by the United States Forest Service (USFS) and tree cover time series derived from 

satellite remote sensing. We used these data sets to answer three research questions: 1.) How 

does water use and forest structure change following exposure to prescribed fire compared 

to wildfire? 2.) How do changes in water use and forest structure following fire vary 

according to fire severity? 3.) How do changes to forest structure and water use following 

fire alter forest sensitivity to drought? 
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Figure 2.1. Fire area in the South Sierra from 1987-2010. The locations of fire perimeters are 
shown in panel a, annual area burned is shown in panel b, and annual burned area for different 
classes of wildfire severity are shown in panel c.  
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2.2 Materials & Methods 

2.2.1 Study Design 

We used a combined chrono-sequence and time series analysis approach to isolate 

the effects of fire history on vegetation cover, water use, and forest die -off. We used spatial 

controls to account for the changes to the characteristics of forests across time and 

between fire types and severity levels. We used temporal controls to account for variations 

in the growth of forest vegetation due to climatic conditions.  

Semi-arid conifer forests in the south Sierra Nevada region provide a useful study 

system because they have a history of wildfires of varying severity, prescribed fires, and 

drought induced forest die-off (Figure 2.1; Figure B.1). The entire south Sierra region 

contains 2,530,236 hectares and intersects with 547 wildfire perimeters, 463 prescribed 

fire perimeters, and 206 wildfire perimeters with additional fire severity information 

during our study period of 1987 to 2010. We re-gridded all data to 300-meters by 

calculating the mean of all intersecting 30-meter pixels using Google Earth Engine (Gorelick 

et al., 2017). After random sampling from these fire perimeters and their 2-km buffers and 

matching between treatments and controls, we used 10,763 grid cells from the wildfire 

treatments and 13,332 from controls, 1,515 grid cells from the prescribed fire treatments 

and 1,913 from controls, and 12,257 grid cells from the fire severity treatments and 15,05 4 

grid cells from controls.  

2.2.2 Data Set Creation and Processing 

2.2.2.1 Generating Water Flux Datasets 

To create annual gridded data sets of ET and Precipitation minus ET (Pr -ET), we 

combined the record of Landsat from 1984-2021 with observations of ET from a network 
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of ten eddy covariance flux towers across California (Goulden et al., 2012; Goulden & Bales, 

2014). We used the U.S. Geological Survey Collection 2 surface reflectance product 

screened for clouds, sensor saturation and other quality issues for the Landsat 5 Thematic 

Mapper, Landsat 7 Enhance Thematic Mapper+, and Landsat 8 Operational Land Imager 

(Wulder et al., 2012). We retrieved all 1984-2020 USGS Collection 2 Landsat 5, 7, and 8 

scenes intersecting a state of California perimeter. We masked for clouds, cloud shadows, 

and snow using the FMask layer provided by USGS (Zhu & Woodcock, 2012). As a proxy for 

vegetation leaf area we calculated the Normalized Difference Vegetation Index (NDVI) 

surface reflectance index (Tucker, 1979) for each Landsat scene. We harmonized the 

surface reflectance bands and NDVI across the Landsat 7 and 8 by applying linear models 

calculated for all the Landsat 7 and 8 surface reflectance pixels across the continental 

united states (Goulden & Bales, 2019; Roy et al., 2016). We calculated the Tasseled Cap 

Brightness index for each Landsat pixel as a measure of total surface reflectance (Crist & 

Cicone, 1984; Crist et al., 1984). We removed pixels that were three standard deviations 

darker (shadows) or brighter (clouds or snow) than the time series mean Tasseled Cap 

Brightness (Goulden & Bales, 2019; Norlen & Goulden, 2023; Zhu & Woodcock, 2014). We 

calculated monthly NDVI for each Landsat pixel across California as the mean of the NDVI 

values for each calendar month using the masked and harmonized Landsat 5, 7, and 8 

stack. 

To calculate maximum monthly ET, we created a linear model of monthly NDVI from 

Landsat and monthly ET from eddy covariance data for each of the nine upwind Landsat 

pixels at each eddy covariance flux tower site. We applied the linear model of ET based on 

gridded NDVI to create monthly ET for all of California. We first analyzed the relationship 
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between monthly NDVI and monthly ET at the ten eddy covariance locations (Goulden et 

al., 2012; Goulden & Bales, 2014) for the 130 site years of data (eddy covariance towers 

were in operation from 2006-2018). We then applied the relationship between ET and 

NDVI to convert monthly NDVI across California to ET from 1984 to 2021. We then 

calculated the annual water year summed ET by taking the sum of the twelve months (Oct 

1 – September 30) for each water year at each pixel for both the predicted and observed ET 

data sets (Fig B.2, R2 = 0.8). We assigned the end year of each water year as the year. We 

used annual water year precipitation from PRISM from 1984-2021 (Daly et al., 2015). We 

converted the PRISM data from 4-km to 30-m resolution using linear interpolation. We 

retrieved PRISM precipitation from: https://developers.google.com/earth-

engine/datasets/catalog/OREGONSTATE_PRISM_AN81m. 

We define annual water stress (WS, Eq. 3) as current year precipitation (Pr) minus 

current water year evapotranspiration (ET). We summed annual water stress over the 

2012-2015 water years (October 1, 2012 to September 30, 2015) to align with a four-year 

time scale that is related for forest drought stress (Goulden & Bales, 2019; Madakumbura 

et al., 2020). 

(𝐸𝑞. 1) 𝑊𝑆 = ∑ 𝑃𝑟𝑡 − 𝐸𝑇𝑡

𝑡

𝑡+3

 

2.2.2.2 Generating Forest Die-off Datasets 

We measure forest die-off in two different ways: 1) as the sum of aerial detection 

surveys of die-off (ADS Die-off) conducted from 2015-2018, and 2) the change in tree cover 

between 2010-2011 and 2017-2018 (ΔTree Die-off). The two metrics of forest die-off had a 

moderate correlation with each other (Fig B.3, R2 = 0.22). 

https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81m
https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81m
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Vegetation Cover 

We used a gridded vegetation cover (tree, shrub, annual grass, perennial grass, 

litter, and bare ground) both to assess the presence and relative presence of trees and 

shrubs in forest stands and to detect decreases in tree cover following the 2012 -2015 

drought as a measure of forest die-off. The 30-meter annual (1984-2021) data set was 

generated by training Landsat data with vegetation percent cover from the Bureau of Land 

Management rangeland monitoring field data (Allred et al., 2021; M. O. Jones et al., 2018). 

The full data set can be retrieved as GeoTiffs from 

http://rangeland.ntsg.umt.edu/data/rap/rap-vegetation-cover/ or with Google Earth 

Engine (Gorelick et al., 2017) as an Image Collection at ‘projects/rap-data-

365417/assets/vegetation-cover-v3’. 

Die-off (ΔTree) 

 We calculated forest die-off from tree cover as the difference between pre-drought 

and post-drought tree cover. We calculated pre-drought tree cover as the mean of 2010 

and 2011 tree cover. We calculated post-drought tree cover as the mean of 2017 and 2018 

tree cover. We calculated die-off (ΔTree) as post-drought tree cover minus pre-drought 

tree cover (Eq. 2). 

(𝐸𝑞.2) 𝛥𝑇𝑟𝑒𝑒 = 𝑚𝑒𝑎𝑛(𝑇𝑟𝑒𝑒2017 , 𝑇𝑟𝑒𝑒2018) − 𝑚𝑒𝑎𝑛(𝑇𝑟𝑒𝑒2010 , 𝑇𝑟𝑒𝑒2011 )  

Die-off (ADS) 

We USFS used aerials detection surveys (ADS) of forest die-off intensity as a 

measure of forest die-off. The observations include both polygons that enclose areas with 

detected die-off and larger polygons that represent the entire area surveyed which 

included areas without detected die-off. We rasterized the ADS polygons for each year 

http://rangeland.ntsg.umt.edu/data/rap/rap-vegetation-cover/
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2010-2019. We rasterized both the layers with the total area surveyed and the polygons  

enclosing areas where die-off was detected. We assigned a value of zero dead trees ha-1 to 

the survey area polygons. For each grid cell, we took the sum of the die-off detection and 

survey areas pixels for the rasterized layers from 2015-2018. That means that areas that 

were surveyed but did not overlap with mortality areas were assigned a die-off severity of 

0 trees ha-1. We assigned grid cells that were not surveyed a value of -9999 to represent no 

data. We retrieved ADS data from https://www.fs.usda.gov/detail/r5/forest-

grasslandhealth/?cid=fsbdev3_046696. 

2.2.2.3 Processing Fire Perimeter Datasets 

We used fire perimeters from the California Department of Forestry and Fire 

Protection (CAL FIRE) and the United States Forest Service (USFS) to identify fire history, 

years since the last wildfire, and the severity of the previous wildfire (Figure 2.1). We used 

the fire perimeters provided by CAL FIRE to identify where and when wildfires and  

prescribed fires had occurred in our study region. We rasterized each year of the wildfire 

and prescribed fire data using GEE. We retrieved the wild and prescribed fire perimeters 

from https://frap.fire.ca.gov/media/ly2jyr4j/fire21_2.zip. We used the fire perimeters 

generated by USFS to identify the severity of a subset of fires from 1984 -2017. The USFS 

fire severity perimeters contain calibrated burn severity with the following categories: 1 = 

lowest, 2 = low, 3 = moderate, and 4 = high (Miller et al., 2009; Miller & Quayle, 2015). We 

retrieved the USFS fire perimeters from 

https://www.fs.usda.gov/detail/r5/landmanagement/gis/?cid=STELPRDB5327833 . The 

calibrated burn severity is based on the Relative change in Normalized Burn Ratio 

calculated with Landsat combined and field measurements of the actual proportion of 

https://www.fs.usda.gov/detail/r5/forest-grasslandhealth/?cid=fsbdev3_046696
https://www.fs.usda.gov/detail/r5/forest-grasslandhealth/?cid=fsbdev3_046696
https://frap.fire.ca.gov/media/ly2jyr4j/fire21_2.zip
https://www.fs.usda.gov/detail/r5/landmanagement/gis/?cid=STELPRDB5327833
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vegetation killed by fire (Miller & Thode, 2007). We rasterized each year and severity 

category of the data using GEE.  

2.2.3 Experimental Design and Statistical Analyses 

2.2.3.1 Experimental Design 

We used the combination of a traditional chrono-sequence or space for time 

approach with time series analysis to isolate the effect of fire history on vegetation cover, 

water use, and forest die-off. We used controls of spatial variability to address non-random 

patterns of wildfire and prescribed fire occurrence and controls of temporal variability to 

address changes in forest growth in our study period from 1987-2010. Annual wildfire 

burned area varied year-to-year according to weather and other factors and has been 

increasing. Prescribed fire varies widely year-to-year depending on federal and state 

funding availability and has tended to be applied in forests that are denser than average. 

The biases and trends in wildfire and prescribed fire occurrence from 1987-2010 across 

our study area create issues for identifying statistically comparable burned and unburned 

control forests stands due to large fire years dominating our sample and decreases in 

sample size for older fires due to lower burned areas in previous decades (Figure B.3, 

Figure B.5). We used temporal controls to address variations in forest growth due to 

interannual temperature and precipitation variability that can be mistaken for changes due 

to disturbance recovery. This hybrid approach allows us to control for both changes in the 

composition of forests in our sample over time due to changes in the fire regime as well as 

variations in forest growth due to interannual climatic variability so that we can isolate the 

effect of forest recovery following fire. 

Controls of Temporal Variability 
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Where wildfires occur, and the severity of fire at specific locations, is related to 

forest density. For example, historically fires in higher density conifer forests are typically 

less severe as many trees in these forests are resistant to fire which leads to less severe 

ground fires. However, under climate change this dynamic appears to be changing with 

severe crown fires occurring in dense conifer forests (Steel et al., 2022). We used a spatial 

matching approach between samples in burned and unburned control forest stands  to 

control for temporal variability. To sample potential unburned spatial matches for burned 

forest stands we added a 2-km exterior buffer to each fire perimeter for the FRAP wildfire, 

FRAP prescribed fire, and USFS wildfire severity. We sampled from these unburned buffers 

by using two stratification layers: 1) the pre-fire tree cover and, 2) fire year. Our tree 

stratification layer had 20 five-percent tree cover bins (e.g., 0-5%, 6-10%, 11-15%, etc.) 

calculated as the tree cover two-years before the fire year (see Equation 3) for each of the 

three fire data sets with the reported fire year (fyr), and the two years before the fire (fyr – 

1, fyr – 2). We based our spatial controls approach on previous studies in California 

ecosystems (Coffield et al., 2022; Hemes et al., 2023).  

(𝐸𝑞.3) 𝑃𝑟𝑒 − 𝐹𝑖𝑟𝑒 𝑇𝑟𝑒𝑒 = 𝑚𝑒𝑎𝑛(𝑇𝑟𝑒𝑒𝑓𝑦𝑟−1 + 𝑇𝑟𝑒𝑒𝑓𝑦𝑟−2)  

The fire year stratification layer used the 1987-2010 fire years for the FRAP 

wildfire, FRAP prescribed fire, and USFS wildfire severity data sets. We excluded locations 

with a fire recorded from 2011-2019 to avoid considering the impacts of drought induced 

die-off in our analysis of fire history impacts on vegetation cover and water use. For the 

combined tree cover and fire year stratification, we drew a random sample of 500 grid cells 

from each bin for fire locations as burned grid cells, and 2-km fire buffers as unburned grid 

cells. For unburned stratification bins with fewer pixels than the corresponding burned 
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stratification bin, we used all available unburned grid cells and a random sample of the 

same number of burned grid cells. We then randomly drew the same number of unburned 

pixels from each stratification bin of the unburned 2-km buffer for each of the three fire 

datasets.  

Controls of Spatial Variability 

As described previously, the fire regime in California is changing, which leads to 

systematic positive trends in burned area and changes the geographic footprint of fires 

over our study period. For that reason, we subtracted the pre-fire vegetation cover (see Eq. 

3, 4, and 5) for each burned and unburned control stand time series to calculate the post-

fire deficits of tree cover, shrub cover, and ET in burned forests and growth in unburne d 

control forests. We calculate these deficits by calculating the average pre-fire tree cover, 

shrub cover, and ET as the mean of the last two observed years before a fire (See Eq. 3, 4, 

and 5). For example, for a fire that occurred in 1987 (fyr) we used the mean of the 

observations for 1985 (fyr – 1) and 1986 (fyr – 2) as the pre-fire conditions. We then 

subtract the pre-fire conditions for each pixel from all the other observations for tree cover, 

shrub cover, and ET for that location.  

(𝐸𝑞. 4) 𝑃𝑟𝑒 − 𝐹𝑖𝑟𝑒 𝑆ℎ𝑟𝑢𝑏 = 𝑚𝑒𝑎𝑛(𝑆ℎ𝑟𝑢𝑏𝑓𝑦𝑟−1 + 𝑆ℎ𝑟𝑢𝑏𝑓𝑦𝑟−2 )  

(𝐸𝑞. 5) 𝑃𝑟𝑒 − 𝐹𝑖𝑟𝑒 𝐸𝑇 = 𝑚𝑒𝑎𝑛(𝐸𝑇𝑓𝑦𝑟−1 + 𝐸𝑇𝑓𝑦𝑟−2 )  

Recovery after fire includes both variability in growth due to annual variations in 

the conditions controlling growth, such as precipitation and temperature, as well as 

changes in the composition of years since fire samples due to changes in the fire regime. 

For that reason, we calculated the mean and standard deviation across burned and 

unburned forest stands for each fire year (Figure B.4, Figure B.6). We then subtracted the 
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unburned control values from the burned values for each fire year and calculated the 

combined standard error as the sum of squared errors (Eq. 6). To assess pre -drought fire 

recovery, we plotted the fire recovery through 20-years post fire using the 1987 – 2012 

observation years before the drought. 

(𝐸𝑞. 6) 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 = √
𝑠𝑑𝑏𝑢𝑟𝑛𝑒𝑑

2 + 𝑠𝑑𝑢𝑛𝑏𝑢𝑟𝑛𝑒𝑑
2

𝑛
  

Statistical Analysis 

To understand the impact of fire type (wild or prescribed) and fire severity, we 

compared the tree mortality, pre-drought evapotranspiration (ET), pre-drought tree cover, 

and water stress between fire type and fire severity levels using one -way analysis of 

variance (ANOVA) and Tukey Honestly Significant Difference (HSD) test.  

We quantified the recovery of tree cover, shrub cover, and ET following wildfire, 

prescribed fire, and within fire severity categories by calculating the deficits of tree cover, 

shrub cover, and water use at the following post-fire intervals: fyr + 1, the year of greatest 

change after fire, and fry + 20.   
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Figure 2.2. The impact of wildfire and prescribed (Rx) fire on tree cover (a), shrub cover (b), and 
ET (c) following exposure to wildfire or prescribed fire. The lines show means across fire pixels 
across the Sierra Nevada. The error bars show the 95% confidence intervals. 
 
 

2.3 Results 

2.3.2 Recovery of Vegetation Cover and Water Use Following Fire   

Tree cover decreased and shrub cover increased due to wildfire and prescribed fire 

compared to unburned controls, with wildfire producing more considerable reductions in 

vegetation cover (Figure 2.2a, b). Tree cover in forest stands exposed to wildfire compared 

to unburned controls was 7.6 to 8.1% (95% Confidence Interval) lower after one year, 10.8 

to 11.4% lower after two years, and 7.3 to 8.7% lower after 20 years. Tree cover in forest 

stands exposed to prescribed fire compared to unburned controls was 2.2 to 3.3% lower 
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after one year, 5.0 to 6.6% lower after seven years, and 0.9 to 4.0% lower after 20 years. 

Visible shrub cover in forest stands exposed to wildfire compared to unburned controls 

was 0.4 to 0.6% greater after one year, 2.7 to 3.0% greater after two years, and 1.2 to 1.9% 

greater after 20 years. Visible shrub cover in forest stands exposed to prescribed fire 

compared to unburned controls was 1.7 to 2.3% greater after one year, 2.3 to 3.2% greater 

after seven years and 1.0 to 2.6% greater after two years.  

ET decreased following both wildfires and prescribed fires compared to unburned 

controls, with wildfires producing larger decreases in ET (Figure 2.2c). ET in forest stands 

impacted by wildfire returned to pre-fire levels after 17 years whereas ET in stands 

impacted by prescribed fire returned to pre-fire levels after 7 years. ET in forest stands 

exposed to wildfire compared to unburned controls was 96 to 101 mm yr-1 lower after 1 

year and 2 to 12 mm yr-1 lower after 20 years. ET in forest stands exposed to prescribed 

fire compared to unburned controls was 24 to 33 mm yr-1 lower after 1 year and from 1 

mm yr-1 lower to 2 mm yr-1 greater after 20 years. 

Tree cover decreased due to all fire severity categories compared to unburned 

controls, with the highest severity fires producing the strongest decreases in tree cover 

(Figure 2.3a). Tree cover in forest stands exposed to high severity fire compared to 

unburned controls was 20.0 to 20.6% lower after one year, 24.9 to 25.6% lower after two 

years, and 10.9 to 13.6% lower after 20 years. Tree cover in forest stands exposed to 

moderate severity fire compared to unburned controls was 12.2 to 12.8% lower a fter one 

year, 16.8 to 17.5% lower after two years, and 5.9 to 8.0% lower after 20 years. Tree cover 

in forest stands exposed to low severity fire compared to unburned controls was 6.0 to 

6.5% lower after one year, 9.9 to 10.5% lower after four years, and 4.4 to 6.4% lower after 
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20 years. Tree cover in forest stands exposed to the lowest severity fire compared to 

unburned controls was 0.9 to 1.6% lower after one year, 2.3 to 3.2% lower after four years, 

and 1.1 to 3.4% lower after 20 years.  

 

 

Figure 2.3. The impact of low, moderate, and high severity fires on tree cover (a), shrub cover (b), 
and ET over time. The lines show means across fire pixels across the Sierra Nevada. The error bars 
show the 95% confidence intervals. 
 

Shrub cover increased due to all fire severity categories compared to unburned 

controls, with the highest severity fires producing the largest increases (Figure 2.3a). 

Visible shrub cover in forest stands exposed to high severity fire compared to unburned 

controls was 5.0 to 5.5 lower after one year, 10.3 to 10.9% greater after six years, and 1.1 to 
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2.6% greater after 20 years. Visible shrub cover in forest stands exposed to moderate 

severity fire compared to unburned controls was 1.5 to 1.9 greater a fter one year, 7.1 to 

7.6% greater after three years, and 0.9 to 2.2% greater after 20 years. Visible shrub cover 

in forest stands exposed to low severity fire compared to unburned controls was 1.4 to 1.6 

greater after one year, 2.4 to 2.7% greater after four years, and 1.1 to 2.1% greater after 20 

years. Visible shrub cover in forest stands exposed to the lowest severity fire compared to 

unburned controls was 0.2% lower to 0.2% greater after one year, 0.1 to 0.6% greater after 

three years, and 0.3% lower to 1.0% greater after 20 years. 

ET decreases in all fire severity categories, with the most severe fires producing the 

largest decreases (Figure 2.3c). ET in forest stands impacted by higher severity fires had 

not returned to pre-fire ET levels by 20 years, in forest stands affected by moderate and 

low severity fires had first returned to pre-fire ET levels after 17 years and in forest stands 

affected by the lowest severity fires returned to pre-fire ET after 14 years. In forest stands 

exposed to high severity fire ET compared to unburned controls was 23 3 to 238 mm yr-1 

lower after one year, and 25 to 43 mm yr-1 lower after 20 years. In forest stands exposed to 

moderate severity fire ET compared to unburned controls was 151 to 156 mm yr -1 lower 

after one year, and 7 lower to 8 mm yr-1 greater after 20 years. In forest stands exposed to 

low severity fire ET compared to unburned controls was 72 to 77 mm yr-1 lower after one 

year and 4 to 17 mm yr-1 lower after 20 years. In forest stands exposed to the lowest 

severity fire ET compared to unburned controls was 19 to 24 mm yr-1 lower after one year, 

19 to 25 mm yr-1 lower after four years, and 13 lower to 1 mm yr-1 greater after 20 years.  
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Figure 2.4. Tree mortality (a), tree cover (b), and ET (c) over time burned and unburned control 
locations from prescribed fires (Rxfires) and wildfires. The red bands across the 2012-2015 water 
years represent exposure to severe drought. The unburned controls are spatial controls matched to 
have similar to pre-fire burned pixels. 
 
 

2.3.3 Wildfire versus Prescribed Fire Impacts on Forest Die-off  

According to both ADS and ΔTree metrics for drought induced die -off, stands 

previously exposed to fire had lower levels of tree mortality following the 2012-2015 

drought than unburned controls. Wildfire also conferred greater resistance to drought 

induce tree mortality than prescribed fire. (Figure 2.4a, b Table 2.5, Table B.1). According 

to the ADS die-off metric, die-off was lower in forest stands exposed to wildfire compared 

to unburned controls by 35.2% to 45.9 (29.9 to 39.0 trees ha-1 ) according to a Tukey HSD 

test (p < 0.001). Die-off was lower in forest stands exposed to prescribed compared to 
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unburned controls by 12.1 to 28.7% (14.4 to 34.0 trees ha-1) according to a Tukey HSD test 

(p < 0.001). According to the change in tree cover die-off metric, die-off was lower in forest 

stands exposed to wildfire than unburned controls by 45.7 to 55.5% (3.9 to 4.8% in 

absolute tree cover) according to a Tukey HSD test (p < 0.001). Die-off was lower in forest 

stands exposed to prescribed fire compared unburned controls by 24.9 to 38.3% (3.6 to 

5.6% in absolute tree cover) according to a Tukey HSD test (p < 0.001).  

Tree cover and ET also decreased in forest stands exposed to fire compared to 

unburned controls, which was greater in stands exposed to wildfire than in stands exposed 

to prescribed fire (Figure 2.4b, c, Figure 2.5, Table B.1). Tree cover was lower in forest 

stands exposed to wildfire compared to unburned controls by 25.6 to 30.1% (9.2 to 10.8% 

in absolute tree cover) according to a Tukey HSD test (p < 0.001). Tree cover was lower in 

forests stands exposed to prescribed fire compared to unburned controls by 14.8 to 22.3% 

(7.2 to 10.8% in absolute tree cover) according to a Tukey HSD test (p < 0.001). ET was 

lower in forest stands exposed to wildfire compared to unburned controls by 10.7 to 13.7% 

(49 to 62 mm yr-1) or according to a Tukey HSD test (p < 0.001). ET was lower in forest 

stands exposed to prescribed compared to unburned controls by 0.0 to 5.2 % (0 to 30 mm 

yr-1) or according to a Tukey HSD test (p < 0.05).  

Four-year Pr-ET was less negative in forest stands exposed to wildfire compared to 

unburned controls, but not in forest stand exposed to prescribed fire (Fig B.8b; Figure 2.5; 

Table B.1). Four-year Pr-ET was less negative in forest stands exposed to wildfire 

compared to unburned controls increased by 3.6-to-5.1-fold (136 to 190 mm 4yr-1) 

according to a Tukey HSD test (p < 0.001). Four-year Pr-ET varied from more negative to 

more positive in forest stands exposed to prescribed fire compared to unburned controls 
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from 3.4% lower to 31.5% greater (12 mm 4yr-1 more negative to 110 less negative mm 

4yr-1) according to a Tukey HSD test (p = 0.165). 

 
Figure 2.5. Comparisons of post-drought die-off (ADS), die-off (% tree cover), pre-drought tree 
cover, pre-drought ET, and four-year Pr-ET between forest stands exposed to wildfire and 

prescribed fire and matched to unburned control pixels using a Tukey Honestly Significant 
Difference test. The error bars represent 95% confidence intervals. The values shown between the 
two bars in a panel report the p-value from a Tukey Honestly Significant Difference test.  

 

2.3.4 Fire Severity Impacts on Forest Stands 

According to the ADS die-off metric, die-off decreased in stands exposed to fire 

compared to unburned controls, with greater decreases in locations exposed to higher 

severity fires (Figure 2.6 a, Figure 2.7a, Table B.2). Die-off was 60.3 to 86.1% lower 

(decrease of 36.4 to 52.0 trees ha-1) in forest stands exposed to high severity wildfire 
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compared to unburned controls by according to a Tukey HSD test (p < 0.001). Die -off was 

lower in forest stands exposed to moderate severity wildfire compared to unburned 

controls by 39.1 to 62.4% (25.1 to 40.1 trees ha-1) according to a Tukey HSD test (p < 

0.001). Die-off was lower in forest stands exposed to low severity wildfire compared to 

unburned controls by or 31.8 to 47.4% (24.8 to 37.0 trees ha -1) according to a Tukey HSD 

test (p < 0.001). Die-off was lower in forest stands exposed to the lowest severity wildfire 

compared to unburned controls by 10.5 to 36.6% (8.2 to 28.7 trees ha -1) according to a 

Tukey HSD test (p < 0.001).  

According to the tree cover change die-off metric, die-off decreased in stands 

exposed to fire compared to unburned controls, with greater decreases in locations 

exposed to higher severity fires (Figure 2.6a, Figure 2.7a, Table B.2). Die-off was lower in 

forest stands exposed to high severity wildfire compared to unburned controls by 94.2 to 

117.8% (5.1 to 6.4% in absolute tree cover) according to a Tukey HSD test (p < 0.001). Die -

off was lower in forest stands exposed to moderate severity wildfire compared to 

unburned controls by 67.6 to 88.1% (4.3 to 5.6% in absolute tree cover) according to a 

Tukey HSD test (p < 0.001). Die-off was lower in forest stands exposed to low severity 

wildfire compared to unburned controls by 37.4 to 51.4% (3.0 to 4.1% in absolute tree 

cover) according to a Tukey HSD test (p < 0.001). Die-off varied from lower to higher in 

forest stands exposed to the lowest severity wildfire compared to unburned controls from 

20.6 lower to 2.7% greater (1.6 lower to 0.2% greater in absolute tree cover) according to a 

Tukey HSD test (p = 0.256).  
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Figure 2.6. Tree mortality (a), tree cover (b), and ET (c) over time in burned and unburned control 

locations for different levels of fire severity. The red band across the 2012-2015 water years 
represents exposure to severe drought. The unburned controls are spatial controls matched to have 
tree cover similar to pre-fire burned pixels. 

 

Tree cover decreased the most in the highest severity fires compared to unburned 

controls according to a USFS fire severity data sets (Figure 2.6b, Figure 2.7c, Table B.2). 

Tree cover decreased in forest stands exposed to high severity fire compared to unburned 

controls by 59.3 to 67.4% (17.7 to 20.1% in absolute tree cover) according to a Tukey HSD 

test (p < 0.001). Tree cover decreased in forest stands exposed to moderate severity fire 

compared to unburned controls by 40.5 to 48.0% (13.2 to 15.7% in absolute cover) 

according to a Tukey HSD test (p < 0.001). Tree cover decreased in forest stands exposed to 

low severity fire compared to unburned controls by 23.0 to 28.6% (8.7 to 10.8% in 

absolute cover) according to a Tukey HSD test (p < 0.001). Tree cover decreased in forest 

stands exposed to the lowest severity fire compared to unburned controls by 1.2 to 8.3% 

(0.8 to 4.3% in absolute tree cover) according to a Tukey HSD test (p < 0.001).  
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ET decreased the most in the highest severity fires compared to unburned controls 

according to a USFS fire severity data set (Figure 2.5c, Table 2.2, Table B.2). ET was lower 

in forest stands exposed to high severity fire compared to unburned controls by 25.4 to 

30.9% (102 to 125 mm yr-1) according to a Tukey HSD test (p < 0.001). ET was lower in 

forest stands exposed to moderate severity fire compared to unburned controls by 15.5 to 

20.8% (66 to 88 mm yr-1) according to a Tukey HSD test (p < 0.001).  ET was lower in 

forest stands exposed to low severity fire compared to unburned controls by 12.0 to 16.3% 

(51 to 71 mm yr-1) according to a Tukey HSD test (p < 0.001). ET was lower in forest stands 

exposed to the lowest severity fire compared to unburned controls by 2.1 to 11.4% (6 to 38 

mm yr-1) according to a Tukey HSD test (p < 0.01).   

Four-year Pr-ET became less negative most drastically in forest stands exposed to 

the highest severity fires compared to unburned controls according to the USFS f ire 

severity data sets (Fig. B.9b, Table B.2). Four-year Pr-ET was less negative in forest stands 

exposed to high severity fire compared to unburned controls by 1.8 to 3.0-fold (134 to 226 

mm 4yr-1) according to a Tukey HSD test (p < 0.001). Four-year Pr-ET was less negative in 

forest stands exposed to moderate severity fire compared to unburned controls increased 

by 2.7 to 5.0-fold (107 to 200 mm 4yr-1) according to a Tukey HSD test (p < 0.001). Four-

year Pr-ET was less negative in forest stands exposed to  low severity fire compared to 

unburned controls by 9.0 to 14.5-fold (132 to 212 mm 4yr-1) or according to a Tukey HSD 

test (p < 0.001). Four-year Pr-ET was less negative in forest stands exposed to the lowest 

severity fire compared to unburned controls increased by 7.1% to 2.2-fold (5 to 138 mm 

4yr-1) compared to unburned controls according to a Tukey HSD test (p < 0.05).  
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Figure 2.7. Comparisons die-off (trees ha-1), die-off (Δ Tree %), pre-drought tree cover, pre-

drought ET, and four-year Pr-ET between forest stands into four fire severity groups and matched 

to unburned control pixels using a Tukey Honestly Significant Difference test. The error bars 
represent 95% confidence intervals. The values shown between the two bars in a panel report the 
p-value from a Tukey Honestly Significant Difference test. 

 

2.4 Discussion 

2.4.1 Fire Recovery Trends 

Recent fire history reduced tree cover, increased shrub cover, and decreased water 

use (ET) across all fire types and fire severities, with the largest post-fire changes observed 

for high severity wildfire fires. The reductions in ET were shorter-lived than reductions in 

tree cover because of rapid expansion of shrub cover and, therefore rapid recovery of ET 
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following fire. The reduction in ET led to greater water availability indicated by less 

negative four-year Pr-ET in all fire severities and in wildfires, but not in prescribed fires. 

The decreases in ET and tree cover led to dampened forest die-off severity according to 

both ADS and tree cover measures of die-off except for the lowest severity fires according 

to the tree cover change die-off metric. Die-off decreased the most in forests with a history 

of wildfire and high severity fire. These results support the dampening feedback hypothesis 

that decreases in tree cover and ET from fire history decrease the severity of forest die -off 

and increase the ability of semi-arid conifer forests to resist drought.  

2.4.2 Mechanistic Explanations 

The pattern of vegetation and ET recovery we observed follow theoretical patterns 

of forest succession following fire in conifer-dominated forests (Bonan, 2008). The post-

fire decreases in ET, tree cover and shrub cover in high severity fires follows the general 

pattern of recruitment and recovery following fire in temperate forests. According to 

classical theories of succession post-fire decrease in tree cover allows additional light to 

reach the understory along with reduced competition for water from trees which in turn 

allows for increases in shrub cover (Finegan, 1984; Odum, 1969). The rapid increase and 

later decline in shrub cover, which is replaced by tree cover , aligns with the rapid initial 

decline of ET following fire and later gradual recovery. Across much of the Western United 

States, a century of fire suppression has decreased the occurrence of this fire recovery 

pattern (Fites-Kaufman et al., 2007). As burned area increases due to climate change and 

human settlement, post-fire recovery may begin to shift from these observed patterns due 

to changing climate conditions, as has been observed with forest photosynthesis during 

post-fire recovery (Coop et al., 2020; Hemes et al., 2023; Rodman et al., 2020). 
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There are at least three plausible mechanisms that could explain how post-fire 

recovery dampens die-off in semi-arid conifer forests. First, forests recovering from fire 

may simply have fewer susceptible trees remaining to kill (Norlen & Goulden, 2023; Young 

et al., 2017). Second, forests recovering from fire may have fewer host trees available for 

bark beetles to inhabit, which then limits their ability to produce widespread forest die-off 

during drought (Allen et al., 2015; Anderegg, Trugman, Badgley, Konings, et al., 2020; Fettig 

et al., 2019; McDowell et al., 2019; Seidl et al., 2017). Third, forests recovering from fire 

may have reduced leaf area and therefore reduced water use and competition for water so 

that individual surviving trees have increased water availability when precipitation 

decreases during drought (Goulden & Bales, 2019; Greenwood et al., 2017).  

Our results support the idea that reductions in susceptible trees and forest water 

use (mechanisms one and three) dampen forest die-off following wildfire.  The reductions 

in forest die-off severity were in general greater than proportional reductions in overall 

tree cover and water use due to fire. This suggests that the combination of reduced tree 

cover (Fig 2.2a, Fig 2.3a) and reduced water use (Fig 2.2b, Fig 2.3b) due to fire enhances 

forest drought resistance more than either reduction would individually. Changes in host 

trees (mechanism two) do not seem to have played a role in the dampened die-off we 

observed. This is consistent with understanding of post-fire forest succession tree 

mortality due to fire does not kill drought vulnerable pines and firs at a disproportionate 

rate. As a result, it is not surprising that mechanism two is not a key driver of the 

dampening feedback due to fire. It is important to note that due to the lack of a gridded 

time series that measures forest species composition and tree size we were not able to 

quantify the potential contribution of hypothesis two to the dampening feedback.  
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2.4.3 Benefits and Limitations of Fire 

Both prescribed and wildfire history’s ability to dampen forest die -off highlights the 

importance of returning fire to western US semi-arid forests. Increased application of 

prescribed fire and low severity fire provides many well-known benefits, such as reducing 

wildfire risk (Stephens, Moghaddas, Edminster, et al., 2009) and increasing water yield 

(Roche et al., 2018), and appear to provide the added benefit of dampening forest die -off. 

Other studies have highlighted that pre-drought management strategies such as thinning 

and prescribed fire lead to other benefits such as improved habitat due to increased 

hardwood dominance (Young et al., 2020) and increased growth and resistance in forests 

exposed to severe drought (Bernal et al., 2023; Young et al., 2023). The ability of fire 

history to dampen the impact of forest die-off raises important unanswered questions, such 

as how fire history impacts forest die-off risk at time intervals greater than about 20 years 

and whether management techniques such as prescribed fire combined with thinning, 

repeated prescribed fire, or selective thinning also reduce tree mortality during drought. 

The fact that prescribed fires can act as a proxy for wildfire to dampen the effects of 

drought induced die-off highlight one of the many additional co-benefits that will arise 

from ambitious plans to reintroduce frequent prescribed fire to Western U.S. forests.  

Some trade-offs are inherent in selecting management strategies to improve overall 

forest health while also working to mitigate climate change. Even if ambitious plans to 

increase prescribed low severity fire to reduce fuel loads in western US semi-arid forests – 

such as the million-acre fuel treatment strategy in California – are successful, they will lead 

to reductions in overall tree cover and therefore greenhouse gas uptake (Crowfoot et al., 

2021). These benefits come at the cost of reduced forest density and thus, at least in the 
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short term, decreased greenhouse gas removals from forests. This cost should not diminish 

the importance of reintroducing frequent low severity fire through prescribed fire. In the 

absence of prescribed fire, drought induced mortality can be followed be high severity fire 

leading to massive overall mortality as was the case when drought-induced forest die-off 

was followed by high severity fire in parts of the Sierra Nevada (Steel et al., 2022). This 

highlights that managing ecosystems for climate mitigation and adaptation requires 

consideration of trade-offs across temporal scales such as short-term reductions in carbon 

uptake linked to increased drought resistance. 

2.4.4 Limitations 

 There are several limitations to this study including the two -decade timeline of our 

chrono-sequence analysis and comparison of ΔTree and ADS die-off metrics. Our study only 

considers the effects of fire followed by drought and spans includes a fire history record of 

about 20 years. How long it takes the dampening feedback from fire history to dissipate is 

an open question that could be answered by considering a longer fire history chrono 

sequence. This study only considers the effect of fire followed by severe drought. Other 

studies have shown that when the sequence is reversed and severe drought induced die -off 

is followed by fire massive overall tree mortality results (Steel et al., 2022). The two forest 

die-off metrics that we presented forest die-off in different ways and are presented as 

independent measure of die-off to increase confidence in our results. The ΔTree die-off 

metric indirectly measures forest die-off as a change in tree cover and therefore detects 

both increases in tree cover due to growth as well as some decreases that could be due to 

other land cover changes such as harvest. The ADS die-off metric is targeted to observe 

only tree mortality and forest die-off but has limited accuracy because it is collected 
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through digital sketch mapping in airplanes by human observers. It is encouraging and 

unsurprising that the two metrics are correlated, but at a modest level. The process for 

converting NDVI to ET is a useful approach, but likely saturates at LAI levels above 3.0 and 

especially above LAI of 5.0 (Granier et al., 2000). 

2.4.4 Implications 

Both prescribed and climate change induced wildfires produce a subsequent 

dampening feedback that enhances subsequent drought resistance in semi-arid California 

forests. This is in contrast to potentially catastrophic positive climate ecological-feedbacks 

that are hypothesized may lead to forest conversions into shrublands (Rising et al., 2022). 

The potential for initial climate change impacts to produce amplifying and dampening 

feedbacks raises important questions for research, modeling, and management. As climate 

change progress the ability of prescribed fire to increase forest drought resistance in semi-

arid forests highlights the need to better understand and quantify how prescribed fire and 

other land management can mitigate the effects of climate change. In semi-arid conifer 

forests and ecosystems that behave similarly, increases to burned area through climate 

change induced wildfire and prescribed fire will decrease produce decreases tree cover and 

water use during post-fire forests that in turn increases forest resistance to drought.  
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CHAPTER 3 
 

Where are forests most vulnerable to drought? 

Adapted from: 

Norlen, C.A., Randerson, J.T., Bhoot, V.N., Goulden, M.L. Where are forests most vulnerable 
to drought? (in preparation).  
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3.1 Introduction 

3.1.1 Global Implications of Forest Disturbance 

Global forests face significant threats from climate change amplified natural 

disasters like droughts (Allen et al., 2015; Anderegg, Trugman, Badgley, Anderson, et al., 

2020), but forest restoration and improved forest management are often viewed as 

potential natural climate solutions (Fargione et al., 2018; Griscom et al., 2017). Forests are 

rightly given high global importance for their global role in the carbon cycle (Pan et al., 

2011) and high regional importance for ecosystem services such as climate control, water 

production, and reduced fire risk (Ninan & Inoue, 2013). Forest disturbances due to fire, 

climate stress, and insect infestation are typically expected to increase as climate change 

progresses (Anderegg et al., 2022). Research has uncovered many potential die-off risk 

factors and frameworks for understanding forest die-off (Allen et al., 2015; Breshears et al., 

2005). The global importance of forests in our climate system and high potential of 

restoration and forest management to act as natural climate solutions make understanding 

longer term climate change impacts of critical importance to policy makers and land 

managers (Field et al., 2020).  

3.1.2 Die-off Risk Framework 

 The impact of natural disasters like droughts on human communities or ecosystems 

depends on a combination of exposure and the vulnerability or resiliency of the impacted 

community or ecosystem (Kim & Marcouiller, 2015). In assessing drought risk in a human 

community, social vulnerability factors such as the number of older adults and young 

children, the number of people with disabilities, and the number of people without access 

to transportation are taken into consideration (Essen et al., 2023; Zarghami & Dumrak, 
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2021). In forests, there are a variety of proposed vulnerabilities or risk factors that make 

the impact of drought induced die-off more severe such as: water balance, drought 

exposure, forest leaf area, climate conditions, and bark beetle host characteristics (Table 1). 

In both forests and human communities, drought exposure is a necessary initiating factor 

for drought risk (Brodrick et al., 2019; Madakumbura et al., 2020; Young, Stevens, Earles, & 

Moore, 2017). The density of trees (basal area) has been proposed as an indicator of 

competition for resources and a predictor of die-off (Young, Stevens, Earles, & Moore, 

2017). Tree height has been identified as a risk factor and predictor of die-off (Hemming‐

Schroeder et al., 2023; Stovall et al., 2019). Negative water balance during drought or water 

input that is less than water use can explain spatial patterns of forest die -off (Goulden & 

Bales, 2019). However, negative water balance alone is not enough to explain how repeated 

droughts impact forests (Norlen & Goulden, 2023). High forest leaf area called canopy 

overshoot area due to favorable growth conditions has also been proposed as a potential 

predictor of die-off (Jump et al., 2017). Forests loss has also been observed and predicted in 

locations that are near either their precipitation or temperature climate limits (Coffield et 

al., 2021; Hill et al., 2023). Tree characteristics that promote act by bark beetles and other 

forest pathogens are another key risk factor proposed r isk factor (Fettig et al., 2019; 

Robbins et al., 2022). Each of these risk factors likely contributes to forest die-off, but many 

are related to each other and there is limited understanding of which risk factors are most 

important and how they interact with each other which limits understanding of which 

forests have the highest vulnerability to drought. 
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Table 3.1. Die-off risk factors (predictors) with mechanistic explanations 

Die-off Risk Factor Potential Predictors Proposed Mechanism Supporting Literature 
Water Balance  
 

Pr – ET (mm yr‐1) Locations with greater water 
use (ET) than water input 
(Pr) experience high levels 
of die‐off 

(Goulden & Bales, 2019; 
Madakumbura et al., 
2020; Norlen & Goulden, 
2023) 

ET Fraction (%) Forests close to their 
climatic water limit are 
more vulnerable to die‐off  

(Madakumbura et al., 
2020; Wang et al., 2022) 

Forest Leaf Area  Pre‐Drought ET (mm 
yr‐1) 

 

High water use due to 
canopy overshoot could 
increase vulnerability to 
drought  

(Goulden & Bales, 2019; 
Jump et al., 2017; 
Madakumbura et al., 
2020; Norlen et al., 2023) 
 

Pre‐Drought Tree 
Cover (%) 

Canopy overshoot during 
favorable conditions could 
increase vulnerability to 
drought 

(Norlen et al., 2023; Wang 
et al., 2022) 

Drought Exposure Forty‐Eight Month 
Standardized 
Precipitation Index 
(SPI48) 

The four‐year precipitation 
anomaly is a biologically 
relevant indicator of drought 
severity due to water 
availability 

(Goulden & Bales, 2019; 
Madakumbura et al., 
2020) 

Twelve Month 
Temperature Anomaly 
(Temp Anomaly) 

High temperature anomalies 
combined with drought can 
amplify die‐off 

(Brodrick et al., 2019; 
Young, Stevens, Earles, 
Moore, et al., 2017) 

Forest Structure and 
Density  

Basal Area (m2 ha‐1) 
 

Forest density can be an 
indicator of competition for 
resources and vulnerability 
to insects 

(Young, Stevens, Earles, 
Moore, et al., 2017) 

Conifer Basal Area (m2 
ha‐1) 

Conifer trees die at higher 
rates due to drought induced 
die‐off than other trees in 
semi‐arid conifer forests 

(Anderegg, Trugman, 
Badgley, Konings, et al., 
2020; Goulden & Bales, 
2019; Norlen & Goulden, 
2023) 

Stand Height (m) Tall trees are more 
vulnerable to forest die‐off 
either due to increased 
hydraulic stress, species, or 
exposure to the atmosphere 

(Hemming‐Schroeder et 
al., 2023; Stovall et al., 
2019) 

Climate Conditions Climate Precipitation  
(mm yr‐1) 

Trees that are near their 
climatic limit in water 
availability or temperature 
have had high observed 
mortality 

(Coffield et al., 2021; Hill 
et al., 2023) 

Climate Temperature 
(C°) 

Bark Beetle Host 
Tree Characteristics 

Tree species and size 
distribution  

Pine trees, especially above 
a particular size threshold, 
tend to be bark beetle hosts 
and have high mortality 

(Fettig et al., 2019; 
Robbins et al., 2022) 
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3.1.3 Die-off Mortality Observation 

Many die-off risk factors have been proposed based on theory, but which of these is 

most important remains uncertain. This uncertainty is important because land managers 

do not have guidance on what practices could be beneficial for reducing forest drought  

vulnerability and promoting forest health. There has been a lot of great research describing 

how various combinations of risk factors can predict forest die-off (Brodrick & Asner, 

2017; Goulden & Bales, 2019; Madakumbura et al., 2020; Young, Stevens, Earles, Moore, et 

al., 2017). There have also been efforts to detect early warning signs of tree mortality due 

to drought stress using satellite data that appear promising (Anderegg et al., 2019; Liu et 

al., 2019; Rogers et al., 2018). Ultimately, process-based models will likely provide the best 

predictions of drought impacts on forest density in the long term and at a larger spatial 

scale. There has been progress in developing these models and making them relevant to 

California (Robbins et al., 2022). However, process-based models do not currently address 

the need for fast and high-resolution measurements of forest health that can be 

implemented for land managers to strategically plan efforts to mitigate the impacts of 

climate change.  

3.1.4 Research Approach 

California provides a useful system to study forest die-off risk due to the large suite 

of geospatial and forest inventory data sets available, the presence of a diverse area of high-

density forested ecosystems, and exposure to recent high-severity drought. Here we 

created a framework to diagnose patterns of die-off and used that framework to predict 

forest die-off risk using a statistical modeling approach. To build our statistical models we 

used the forest plot information available through the USFS FIA program, geospatial data 
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on forest die-off, and Landsat-derived data on water use and forest density. Through our 

analysis, we answered three research questions: 1.) What environmental variables are the 

most important predictors of historical patterns of forest drought vulnerability 2.) Which 

forests currently have the highest vulnerability to die-off? 3.) How has forest drought 

vulnerability changed?  

 

 
 

Figure 3.1. Spatial patterns of drought induced die-off intensity and risk factors for the Sierra 
Nevada and foothills for remote sensing and FIA data sets the Sierra Nevada and foothills. Panels a, 
b, c, and d show remote sensing data with N = 12,319 randomly selected pixels. Panel f shows FIA 
data with 4 = 409 plots from inventory years 2016-2019. Panels e and g show data from the nearest 
4-km grid cell to the publicly available FIA plot locations. The panels show drought severity (a, e) 
according to the forty-eight-month standardized precipitation index (SPI48), pre-drought stand 
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tree height (b, f), and pre-drought corrected evapotranspiration (ET) fraction (c, g), and die-off 
intensity (d, h).  

 

3.2 Methods 

3.2.1 Experimental Design 

Study Region 

We focused on the Sierra Nevada and foothills region that experienced severe 

drought in 2012-2015 in its southern extent. This region covers a wide range of forest 

habitats in California and potential responses to severe drought and covers 6,967,752 

hectares (Figure 3.1). We used FIA plots and a random sample 0.2% of 30-meter Landsat 

pixels in the Sierra Nevada and Sierra Nevada Foothill ecoregions as our study region 

(Figure 3.1). We excluded remote sensing grid cells with a record of harvest, wildfire, or 

prescribed fire from 2011-2019 from the remote sensing pixels. We excluded FIA plots 

with a history of wildfire from our samples. Our final analysis used 12,319 Landsat pixels 

and 409 FIA plots.  

FIA Analysis 

We selected FIA plots within the Sierra Nevada and Sierra Nevada foothills USFS 

Ecological Subsections (ECOSUBCD: M261Ea, M261Eb, M261Ec, M261Ed, M261Ef, M261Eg, 

M261Eh, M261Ej, M261Fa, M261Fb, M261Fc, M261Fd, and M261Fe) that were sampled 

during both the 2001-2009 inventory periods and 2011-2019 inventory periods. We 

included plots with a disturbance code relevant to drought-induced mortality (DSTRBCD1 

= 0, 10, 11, 12, 54, 70) with a mortality year (MORTYR) of 2013-2019. We removed plots 

with a fire disturbance code (DSTRBCD1 = 30, 31, or 32).  
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Remote Sensing Analysis 

 We selected a 0.2% random sample of 30-meter Landsat pixels from within the 

Sierra Nevada and Sierra Nevada foothills ecoregions. We masked pixels that burned or had 

a record of management from 2011-2019 using wildfire and prescribed fire perimeters 

from the California Department of Forestry and Fire Protection (CALFIRE) and forest 

harvest and management perimeters from the United States Forest Service’s (USFS) Forest 

Activity Tracking System (FACTS) and CALFIRE forest harvest and management perimeters 

(FACTS) from 2011-2019. 

3.2.2 Data Processing 

 We modeled and predicted drought induced forest die-off using a combination of 

geospatial and forest inventory and analysis (FIA) datasets. For datasets available in the 

FIA database or that can be derived from it (basal area, conifer basal area, tree cover, and 

dominant stand height) we used Landsat data translated into the same units for the remote 

sensing analysis. For geospatial datasets not available in the FIA data (SPI48, ET, Prclimate), 

we calculated 4-km grid cell versions of the 30-meter resolution data sets as the mean of all 

intersecting 30-meter pixels. Then we extracted the nearest 4-km grid cell for the “fuzzed” 

location of a FIA plot. The fuzzed locations of the FIA plots should be sufficient to find an 

appropriate 4-km value as fuzzing as reported fuzzing values are ± 0.8 to 1.6 km. The 

additional 20% plot swapping that the FIA program applies to the publicly available FIA 

data to protect private landowner information likely introduces extra noise into this data, 

which should be considered when interpreting our analysis. The relationships we report 
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with the FIA analysis would likely be stronger if we used the using 30-meter Landsat data 

and the absolute FIA plot locations. 

USFS Aerial Detection Surveys (ADS) Mortality  

 We used the USFS ADS data set as a measure of drought induced forest die -off. The 

major advantage of the ADS data set is that human observers screen for the likely cause of 

mortality and actively avoid measuring live tree removal due to fires or harvest. It is 

important to note that ADS data set has limited accuracy and has experienced a series of 

protocol changes over time (Hicke et al., 2020; Johnson & Ross, 2008). However, despite 

their higher accuracy in tracking changes in tree cover the lack of accurate drought induced 

die-off attribution in available remote sensing data sets is an even greater problem for 

predicting die-off (Koltunov et al., 2020; Slaton et al., 2021). We used rasterized ADS data 

sets from 1978 – 2022 at 30-meter resolution using the TPA_MORT field of ADS. We used 

only disturbance polygons with the “Mortality” disturbance class. We also rasterized the 

flown area polygons and assigned a tree mortality column (TPA_MORT) with a value of 0 

trees ha-1. We used the sum of three years of ADS data to calculate the mortality for each 

drought event. We used the sum of ADS 2015-2017 to track mortality for the 2012-2015 

drought (SPI48 2015). We retrieved ADS data from 

https://www.fs.usda.gov/detail/r5/forest-grasslandhealth/?cid=fsbdev3_046696. 

FIA Mortality 

 We used the basal area of dead trees to calculate mortality in the FIA data (Bechtold 

& Patterson, 2005; Burrill et al., 2018; Smith, 2002). We filtered the FIA mortality data to 

include only mortality that was labeled with mortality years (MORTYR) of 2013-2019 and 

https://www.fs.usda.gov/detail/r5/forest-grasslandhealth/?cid=fsbdev3_046696
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for inventory years (INVYR) 2016-2019. We used FIA plot data to measure mortality in 

units of basal area (m2 ha-1). 

Forest Structure and Density (LEMMA-GNN) 

We used basal area (m2 ha-1), conifer basal area (m2 ha-1), and dominant stand 

height (m) from LEMMA-GNN as predictors of die-off (Ohmann & Gregory, 2002; Ohmann 

et al., 2014). We used the conifer basal area divided by live basal area to calculate conifer 

fraction. We used the mean of 2010, 2011, and 2012 basal area (m2 ha-1), conifer basal area 

(m2 ha-1), and stand height (m) as pre-drought predictors for die-off induced by the 2012-

2015 drought. We used the 2017 versions of the same data sets as predictors for  current 

(2019) levels of die-off likelihood and magnitude because they are the most recent data 

layers available. We retrieved LEMMA-GNN data from: 

https://lemmadownload.forestry.oregonstate.edu/index.  

Tree Cover (Remote Sensing) 

We used the Landsat base tree cover data set to track pre-drought forest density 

and changes in forest density. This data set was created by training Landsat data with 

vegetation data from the Bureau of Land Management rangeland surveys (Allred et al., 

2021; Jones et al., 2018). We retrieved the data with Google Earth Engine (Gorelick et al., 

2017) as an Image Collection at ‘projects/rap-data-365417/assets/vegetation-cover-v3’. 

The data can also be data set can also be retrieved as GeoTiffs from 

http://rangeland.ntsg.umt.edu/data/rap/rap-vegetation-cover/. 

 

 

https://lemmadownload.forestry.oregonstate.edu/index
http://rangeland.ntsg.umt.edu/data/rap/rap-vegetation-cover/
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Tree Cover (FVS and FIA) 

 We used the Forest Vegetation Simulator (FVS) model to calculate tree cover for 

each FIA plot in our sample (Crookston & Dixon, 2005). The FVS model uses live trees to 

calculate tree cover. To avoid using tree cover reduced by die-off to predict die-off we used 

the tree cover values from the 2001-2009 inventory plots. We used tree cover calculated 

from the 2011-2019 inventory plots to calculate post-drought levels of die-off likelihood 

and magnitude. 

Fire Perimeters (FRAP) 

 We used fire perimeters from CALFIRE to identify where and when wildfires and 

prescribed fires occurred in our study region. We rasterized the fire perimeter to 30 -meter 

resolution using GEE. We calculate the most recent year of fire occurrence from 2011 -2019 

using the rasterized layers for each year. We used the locations identified with fire 

occurrence to exclude these pixels from our analysis to avoid confusion between  drought 

induced die-off and fires. We retrieved the fire perimeters from 

https://frap.fire.ca.gov/media/ly2jyr4j/fire21_2.zip 

Forest Management Perimeters (FACTS and CAL FIRE) 

 We used combined perimeters of forest management and harvest projects from 

CALFIRE and USFS to identify where harvest and forest management occurred in our study 

region (Knight et al., 2022). We rasterized the fire perimeters to 30-meter resolution using 

GEE. We calculated the most recent year of management from 2011-2018 using the 

rasterized layers for each year. We excluded the pixels where management occurred to 

avoid confusion between drought induced die-off and forest management.  

https://frap.fire.ca.gov/media/ly2jyr4j/fire21_2.zip
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Standardized Precipitation Index over 48-months (SPI48) 

 We used 4-km SPI48 as a measure of the four-year precipitation anomaly 

(Abatzoglou et al., 2017), which is an important indicator of drought stress for forests 

(Goulden & Bales, 2019; Madakumbura et al., 2020). We used the 4-km version of this 

dataset for our FIA analysis and for the remote sensing analysis , we converted this data set 

to 30-m resolution using bilinear interpolation. We used September SPI48 for 2015 to 

represent the precipitation anomaly for the 2012-2015 drought water years. We retrieved 

this data set from https://wrcc.dri.edu/wwdt/archive.php. 

Temperature Anomaly over 12-months (Tempanom) 

 We used 4-km Tempanom as a measure of the 12-month temperature anomaly 

(Abatzoglou et al., 2017), which has been highlighted as potential risk factor for die-off 

(Brodrick et al., 2019; Young, Stevens, Earles, Moore, et al., 2017). We used the 4-km 

version of this dataset for our FIA analysis and for the remote sensing analysis , we 

converted this data set to 30-m resolution using bilinear interpolation. We used September 

SPI48 for 2015 to represent the temperature anomaly for the 2015 water year. We 

retrieved this data set from https://wrcc.dri.edu/wwdt/archive.php. 

Evapotranspiration (ETPre-Drought) 

 We used annual evapotranspiration data created by combining flux tower data and 

Monthly NDVI, which is described in detail in the following manuscripts (Goulden et al., 

2012; Goulden & Bales, 2019; Norlen & Goulden, 2023; Norlen et al., 2023). For our FIA 

analysis we calculated the mean ET in each 4-km grid cell, while in the remote sensing 

analysis we used the 30-meter Landsat scale data set. We calculate Pre-Drought ET as the 

https://wrcc.dri.edu/wwdt/archive.php
https://wrcc.dri.edu/wwdt/archive.php
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mean of 2010, 2011, and 2012 ET for the 2012-2015 drought and the mean of 2017, 2018, 

and 2019 ET for current conditions. 

Climatological Mean Precipitation (Prclimate)Temperature (Tempclimate)  

 We used 4-km climate (1981-2010) precipitation (Prclimate) and temperature 

(Tempclimate) from the PRISM data set (Daly et al., 2008). We calculated Prclimate as the sum of 

the twelve climate precipitation months. We calculated Tempclimate as the mean of the 

twelve climate maximum temperature months.  For our FIA analysis we used the 4-km 

resolution data. For our remote sensing analysis, we converted the 4-km dataset to 30-m 

resolution using bilinear interpolation. We retrieved the PRISM data set from 

https://developers.google.com/earth-

engine/datasets/catalog/OREGONSTATE_PRISM_Norm91m. 

ET Fraction 

 We calculated how close forest stands were to their climate water limit by dividing 

Prclimate by ETPre-Drought. We used 4-km data for the FIA analysis and 30-meter data for the 

remote sensing data set.  

(𝐸𝑞. 1)𝐸𝑇 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  
𝐸𝑇𝑃𝑟𝑒−𝐷𝑟𝑜𝑢𝑔ℎ𝑡

𝑃𝑟𝑐𝑙𝑖𝑚𝑎𝑡𝑒

∗ 100 

Correct ET Fraction 

 We calculated a tree cover corrected version of the ET Fraction to account for the 

tree cover in each grid cell. For the remote sensing data, we multiplied the 30 -meter ET 

fraction by the fraction pre-drought tree cover. For the FIA analysis we used tree cover 

https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_Norm91m
https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_Norm91m
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derived from the FIA data using FVS, while for the remote sensing analysis we used 30-

meter tree cover data derived from Landsat data.  

(𝐸𝑞. 2) 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐸𝑇𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛  =  𝐸𝑇𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∗
𝑇𝑟𝑒𝑒 𝐶𝑜𝑣𝑒𝑟

100
 

Water Balance (Pr – ET)  

 We calculated Pre-Drought Climate Water Balance as an alternative method to 

calculate how close forest stand were to their climate limit. We calculated pre-drought 

water balance as Pr – ET (see Eq. 3). We used 4-km data for the FIA analysis and 30-meter 

data for the remote sensing analysis. 

(𝐸𝑞.3) 𝑃𝑟 − 𝐸𝑇 =  𝑃𝑟𝑐𝑙𝑖𝑚𝑎𝑡𝑒 −  𝐸𝑇𝑃𝑟𝑒−𝐷𝑟𝑜𝑢𝑔ℎ𝑡  

3.2.3 Modeling and Statistical Analysis 

Comparison of Predictors 

 To determine which variables to include in our models we calculated the 

correlations between potential die-off predictors and die-off magnitude. We also calculated 

the correlation between die-off predictors and each other to select predictor variables that 

were relatively independent from each other. We calculated correlations using the cor 

function from the stats package in R (R Core Team, 2020).  

Model Training 

Modeling forest die-off is difficult for a variety of reasons, including the high 

frequency of die-off absence or zero inflation in observations of die-off (Trugman et al., 

2021; Young, Stevens, Earles, & Moore, 2017). To address the zero inflation problem we 
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used a two-step or hurdle model approach where we first modeled the presence or absence 

of mortality, and then in locations where mortality was present, we modeled the magnitude 

of mortality (Young, Stevens, Earles, Moore, et al., 2017). The first step of the model is a 

logistic regression model created with the glm function from the stats package in R with the 

binomial family and a logit link (R Core Team, 2020). The second part of the model is a 

multiple linear regression model created with the lm function from the stats package in R 

(R Core Team, 2020).  

We trained both the remote sensing and FIA models using 60% of the data with the 

remaining 40% held out for testing. We used the tidymodels set of packages to create the 

training and testing datasets and train the models (Max Kuhn & Silge, 2022). For both the 

logistic regression model we also stratified the selection of testing and training data by the 

presence of die-off above background levels. We defined die-off above background using 

the definition used by the USFS ADS program or as > 2.5 trees ha-1 (> 1 tree acre-1). For both 

the logistic regression and multiple linear regression models we used the following 

predictors pre-drought stand height (m), ET Fraction (%), forty-eight-month standardized 

precipitation index (SPI48), the interaction between stand height and SPI48 (Stand Height 

x SPI48), and the interaction between ET Fraction and SPI48 (ET Fraction x SPI48).   

Model Testing  

 We assessed the overall performance of our models as well as the relative 

importance of the predictors in each model. We calculated the root mean square error 

(RMSE) and coefficient of determination (R2) to assess the linear regression models. We 

calculated the accuracy and for R2 to assess the logistic regression models. We tested the 
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models using 40% of the data held out for testing held out data and compared the 

predictions to observed values of die-off magnitude and occurrence. To calculate RMSE, R2, 

and accuracy we used the rmse, rsq_trad, and accuracy functions from the yardstick package 

(M. Kuhn et al., 2021). We calculated the importance of each predictor variable for the 

logistic regression and linear regression models using vip function from the vip package in 

R (Greenwell et al., 2020). 

Predicting Die-off Risk & Change 

 We used SPI48 set to -2.5 and forest conditions in 2012 and 2019 to predict die-off 

likelihood and die-off magnitude as well as change in die-off likelihood, Δ Die-off (%), and 

change in die-off magnitude, Δ Die-off (trees ha-1). We replaced the observed SPI48 with a 

value of -2.5 to consider the risk of severe drought. To calculate 2012 die-off likelihood and 

die-off magnitude, we used 2012 Stand Height and Corrected ET Fraction along with fixed 

SPI48 (Figure C.6). To calculate 2019 die-off likelihood, we used 2017 Stand Height and 

2019 Corrected ET Fraction (Figure C.6, Figure C.7). We calculated Δ Die-off (%) and Δ Die-

off (trees ha-1) as the 2019 predicted value minus the 2012 predicted value (Figure C.8). We 

also calculated changes in Stand Height, Corrected ET Fraction, Tree Cover, and ET using this 

same approach (Figure C.9).  
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Figure 3.2. Comparison of correlations between die-off magnitude and predictors of die-off 
magnitude. The left-hand panel (a) shows the correlations for remote sensing data sets. The right-
hand panel (b) shows the correlations for the FIA data sets. 

 

3.3 Results 

3.3.1 Relationships Between Potential Model Predictors 

 The relationships between each predictor with die-off magnitude were similar for 

the remote sensing and FIA analyses, with some variations in the relative strength of the 

correlations. For the remote sensing analysis, the strongest correlations with die -off 

magnitude were SPI48 (r = -0.31), corrected ET Fraction (r = 0.2), stand height (r = 0.18), 

basal area (r = 0.18), conifer basal area (r = 0.17), and ET (r = 0.17; Figure 2a). For the FIA 

analysis, the strongest correlations with die-off magnitude were basal area (r = 0.28), 

conifer basal area (r = 0.26), corrected ET fraction (r = 0.26), stand height (r = 0.24), and 

SPI48 (r = -0.22; Figure 3.2b).   
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All the predictors were correlated with at least one other predictor in both the 

remote sensing and FIA data sets (Figure 3.2). The forest structure density data sets (basal 

area, conifer basal, and stand height) were highly correlated with each other in both the 

remote sensing and FIA analyses. Tree cover was strongly associated with ET and 

corrected ET Fraction in the remote sensing analysis and moderately correlated with ET 

and corrected ET in the FIA analysis. Pr-ET was highly correlated with ET Fraction and 

Prclimate and moderately correlated with Tempclimate. Tempclimate was also moderately 

correlated with ET Fraction, ET, and Corrected ET Fraction. Tree cover was moderately 

correlated with all three forest density metrics in both analyses. ET was moderately 

correlated with ET Fraction and Prclimate in both analyses. Tempanom was moderately 

correlated with SPI48. 
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Figure 3.3. Predictions of die-off probability and magnitude based on logistic and linear regression 
models trained with remote sensing and FIA data. Each panel displays 40% of the original sample 
held out for model testing. The shading represents 95% confidence intervals. The first panel (a) 
shows the fit of a logistic model to predict the probability of die-off occurrence with a sample size of 
N = 4,822. The second panel (b) shows the fit of a linear regression model to predict the magnitude 
of die-off trained with locations with mortality present with a sample size of N = 1,498. The third 
panel (c) shows the fit of a logistic model to predict the probability of die-off occurrence with a 
sample size of N = 164. The fourth panel (d) shows the fit of a linear regression model to predict the 
magnitude of die-off from locations where die-off occurred with a sample size of N = 61. The blue 
line in the second and fourth panels (b, d) represents the one-to-one line. 
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3.3.2 Model Performance and Testing 

The two analyses produced similar models of die-off likelihood and die-off 

magnitude. The remote sensing model of die-off likelihood performed better (R2 = 0.23, 

accuracy = 0.67; Figure 3.3a) than the FIA model of die-off likelihood (R2 = 0.13, accuracy = 

0.59; Figure 3.3c). According to R2, the FIA model of die-off magnitude (R2 = 0.27; Figure 

3.3d) performed better than the remote sensing model (R2 = 0.19; Figure 3.3b), while 

according to RMSE the remote sensing model (RMSE = 58.53; Figure 3.3a) performed better 

than the FIA model (RMSE = 5.03; Figure 3.3d). The die-off magnitude values from the 

remote sensing and FIA analyses have different units, so they should be compared to the 

overall range of values in the observed data set before comparing them to each other. The 

models of die-off likelihood and magnitude created with the two analyses are similar. The 

models of die-off magnitude both tend to underpredict high levels of observed mortality 

and overpredict mortality that is close to zero. The models for magnitude of mor tality also 

generally agree with each other, with the remote sensing model producing slightly stronger 

correlations.  

After comparing the relationship between the predictors and die-off magnitude as 

well as with each other we selected relatively independent from each other and 

represented important potential risk factors for die-off (Table 3.1). We selected predictors 

for our final model that were correlated with die-off magnitude in both the remote sensing 

and FIA data sets, were relatively independent from each other, and that measured three of 

the important potential predictors of die-off documented in the literature: forest structure 

(Stand Height), water balance (Corrected ET Fraction), and drought exposure (SPI48). We 

did not include a term for forest leaf area or water use because those predictors were 
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highly correlated with either Stand Height or Corrected ET Fraction. We did not include a 

term to measure potential for bark beetle infestation because there were no appropriate 

metrics available at the forest stand level. It is possible that forest density metrics such as 

Stand Height provide some information about potential bark beetle hosts, but critical 

information about species and stand structure is missing. We also included the interactions 

of drought exposure with water balance and forest density in the final models (SPI48 x 

Corrected ET Fraction, SPI48 x Stand Height).  

SPI48 x Corrected ET Fraction was the most important predictor in all the models 

with the other predictors ranked in the same order in both the remote sensing and FIA 

analyses (Figure C.3). The other predictors in the logistic regression models were ranked in 

importance with SPI48 x Stand Height second most important followed by Corrected ET 

Fraction, SPI48, and Stand Height (Figure C.3a, c). The other predictors in the multiple 

linear regression models were ranked in importance with Corrected ET Fraction second 

most important followed by SPI48 x Stand Height, Stand Height, and SPI48 (Figure C.3b, d).  
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Figure 3.4. Observed and predicted patterns of drought induced die-off overall, probability and 
magnitude for remote sensing and FIA data sets the Sierra Nevada and foothills. The panels show 
observed drought induced die-off (a), predicted overall die-off (b), predicted mortality magnitude 
(c), and predicted mortality probability (d). Each cell represents the mean of pixels in one 0.3° 
latitude and 150-m elevation bin. We excluded bins with less than 5 pixels. All panels have N = 
12,319.  
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3.3 Spatial Patterns of Predicted Die-off 

 When using the inputs for the 2012-2015 drought conditions the models predict 

die-off in the South Sierra (Figure 3.4). The predictions of overall die-off and die-off 

likelihood have the most spatial agreement with die-off observations for both analyses and 

highest levels of die-off magnitude or die-off likelihood generally occur where Corrected ET 

Fraction nears the level of climate precipitation (100%) and SPI48 was most negative in 

the lower elevations of the south Sierra Nevada. The predictions of die-off magnitude are 

generally higher in the South Sierra Nevada where the 2012-2015 drought exposure was 

most extended, but do not show as much variation due to the other predictors.   

 Large areas of the Sierra Nevada continued to have high predicted die -off 

magnitudes and die-off probabilities when we predicted die-off risk with an SPI48 of -2.5 

and other (Figure C.5, Figure C.6). Die-off magnitude was relatively constant across the 

Sierra Nevada with somewhat higher values in the north Sierra in the 2019 predictions. 

Die-off likelihood was greatest in locations with high Corrected ET Fraction and in the 

North Sierra in the 2019 predictions.    

 Corrected ET Fraction decreased in locations where die-off was present, while there 

was little change in stand height across the Sierra Nevada (Figure 3.5, Figure C.7). In 

locations where die-off was present, Corrected ET Fraction decreased by 6.5 ± 0.1 %, while 

in places where die-off was absent Corrected ET Fraction decreased by 1.1 ± 0.1 % (Figure 

3.5a, Figure C.7a). In locations where die-off was present, Stand Height decreased by 0.2 ± 

0.06 m, while in locations where die-off was absent there was no observed change in Stand 

Height 0.0 ± 0.4 (Figure 3.5b, Figure C.7b).  
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Both die-off likelihood and die-off magnitude decreased in locations where die-off 

was present when we held SPI48 constant at -2.5 and updated the other predictors to 2019 

values (Figure 3.5, Figure C.7, Figure C.10). In locations where die-off was present Δ Die-off 

Likelihood decreased by 5.3 ± 0.1 %, while in locations where die-off was absent Δ Die-off 

Likelihood decreased by 0.9 ± 0.06 % (Figure 3.5c, Figure C.7c). In locations where die-off 

was present Δ Die-off Magnitude decreased by 5.5 ± 0.1 trees ha -1, while in locations where 

die-off was absent Δ Die-off Magnitude decreased by 0.9 ± 0.05 trees ha -1 (Figure 3.5d, 

Figure C.7d).  
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Figure 3.5. Observed changes (Δ) in Corrected ET Fraction, Stand Height, predicted die-off 
likelihood (%) and predicted die-off magnitude for the remote sensing analysis. The panels 
show Δ ET Fraction (a), Δ Stand Height (b), Δ Die-off Likelihood (c), and Δ Die-off Magnitude (d). 
Each cell represents the mean of pixels in one 0.3° latitude and 150-m elevation bin. We 
excluded bins with less than 5 pixels. All panels have N = 12,319.   
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3.4 Discussion 

3.4.1 Die-off Model Performance and Predictions 

All the potential predictors of die-off were correlated at least one other predictor. 

For our models we selected metrics of water balance (Corrected ET Fraction), forest density 

(Stand Height) and drought exposure (SPI48) that were relatively independent from each 

other and correlated with die-off magnitude. The models of die-off likelihood and 

magnitude we trained with Corrected ET Fraction, Stand Height, and SPI48 performed 

similarly when trained with either remote sensing or FIA data. The remote sensing model 

of die-off likelihood performed better (R2 = 0.23, accuracy = 0.67; Figure 3.3a) than the FIA 

model of die-off likelihood than the FIA model (R2 = 0.13, accuracy = 0.59; Figure 3.3c), 

while the FIA model of die-off magnitude (R2 = 0.27; Figure 3.3d) performed better than the 

remote sensing model (R2 = 0.19; Figure 3.3b). For the models of die-off likelihood SPI48 x 

Corrected ET Fraction followed by SPI48 x Stand Height were the most important 

predictors. For the models of die-off magnitude SPI48 x Corrected ET Fraction followed by 

Corrected ET Fraction were the most important predictors. Predicted die-off likelihood and 

magnitude using an SPI48 set at -2.5 and other predictors updated to 2019 values 

remained high across the Sierra Nevada. Predicted die-off likelihoods were greatest in 

locations with Corrected ET Fraction near 100% and high values of Stand Height which 

occur at moderate elevations in the south Sierra Nevada and more broadly across the north 

Sierra Nevada. Predicted die-off magnitudes were relatively high across the Sierra Nevada, 

with somewhat higher values in the north Sierra Nevada and at moderate elevations in the 

south Sierra Nevada. In locations where recent die-off occurred, there was a decrease in 
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Corrected ET Fraction of about 5% which led to predicted decreases of die-off likelihood by 

about 5% and die-off magnitude by about 5 trees ha-1 (Figure 3.5).  

3.4.2 Links to Mechanistic Explanations for Die-off 

The importance of drought exposure, forest structure and water balance to 

predicting die-off risk align with theoretical frameworks for forest drought vulnerability. 

One key predictor is the level of drought exposure according to SPI48 which appears to an 

initiating factor required for drought induced die-off to occur but is not sufficient to explain 

die-off on its own (Goulden & Bales, 2019; Young, Stevens, Earles, Moore, et al., 2017). 

Another important factor is the Corrected ET Fraction, which accounts for the level of pre-

drought water use (ET) and general water availability (Prclimate). It corrects for the overall 

abundance of trees (Tree Cover) in the forest stand. Locations with ETpre-drought close to 

Prclimate are more susceptible to die-off, while locations with low ET or high ET and higher 

Prclimate are less vulnerable (Goulden & Bales, 2019). Forest stand must also have trees 

present in order to produce die-off so correcting the ET Fraction for tree cover eliminates 

sites with ET close to Prclimate, but without sufficient trees present to produce die-off 

(Norlen & Goulden, 2023). Forest structure in general and Stand Height specifically have 

been repeatedly observed as predictors of drought induced die-off. Forest density metrics 

likely contribute to die-off prediction by ensuring that trees are present to kill, but also that 

the types of trees present are susceptible by being tall and therefore more exposed to 

hydraulic or atmospheric stress or densely packed and more susceptible to competition 

(Breshears et al., 2013; Hemming‐Schroeder et al., 2023; Stovall et al., 2019; Young, 

Stevens, Earles, & Moore, 2017). Other factors that we were not able to capture in our 

model due to a lack of ecosystem level metrics in the remote sensing record related to 
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properties important for bark beetle host selection such as the species and size distribution 

of trees are almost certainly also important (Fettig et al., 2019; Robbins et al., 2022). 

Continuing climate change impacts provide the opportunity to leverage advances in remote 

sensing and modeling to better understand the influence of species and size distribution in 

landscape scale analyses of forest drought vulnerability. 

3.4.3 Implications for Research and Modeling 

The continuing impact of climate change provides the opportunity to leverage 

advances in remote sensing and modeling to better understand the influence of species and 

size distribution in landscape scale analyses of forest drought vulnerability. Advances in 

predicting the risk of die-off are limited by the relatively low quality of die-off observation 

and complexity of ecology and physiology underlying the phenomenon (Slaton et al., 2021; 

Trugman et al., 2021). Part of this problem is due to the relatively heterogeneous and rare 

nature of forest die-off compared to other forest disturbances such as fires, land use 

change, and harvest. Current observations of die-off occurrence and magnitude and 

predictors of die-off allow for dynamic predictions but are not able to capture factors such 

as the species composition and size structure of forests which are known to be important 

factors in predicting die-off. Most current research on forest die-off either focuses on a 

broad landscape level or on granular plot-based analysis of individual trees. Future 

research using a combination of process-based models, field data sets, and next generation 

remote sensing that consider the both the characteristics of mortality at the individual tree 

level and that span across the landscape could allow for improved understanding die -off 

risk.  
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3.4.4 Current and Future Die-off Vulnerability 

Forest without recent disturbance, especially those at moderate elevations with 

relatively high tree cover and where water use and annual precipitation are similar in 

magnitude (Corrected ET Fraction near 100%) are currently have the highest probability of 

die-off. These vulnerability levels are dynamic and vary with changes to forest structure 

and density. In the future as temperatures continue to increase and precipitation regimes 

change forests that are not currently vulnerable to die-off will likely become vulnerable 

(Coffield et al., 2021; Hill et al., 2023). Increases in temperature and therefore ET are 

essentially inevitable over the next several decades. However, the precipitation regime is 

much more uncertain (Coffield et al., 2021). Whether California and other regions see 

increases, decreases, or essentially equivalent precipitation will determine a large portion 

of the level of die-off in the future. A key next step is a time evolving predictive model that 

estimates die-off risk at the end of the wet season for the upcoming dry season. This would 

allow managers to identify forests with die-off risk and prioritize land management actions 

to reduce risk. 

3.4.5 Implications for Ecosystem Services 

Forests provide well-known ecosystem service benefits on a global scale through 

carbon sequestration (Pan et al., 2011) and on a local scale through controls on wildfire 

risk, habitat, recreation, and production of fresh water (Ninan & Inoue, 2013; Thom & Seidl, 

2016). Forest die-off reduces tree cover, leads to lower forest carbon uptake (Swann et al., 

2018), and increases in the dead pool of sequestered carbon which will gradually be 

released into the atmosphere (Walden et al., 2019). Forest die-off also decreases water use 

which can either increase runoff and water yield (Zimmermann et al., 2000) or decrease 
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water yield in temperature and snow limited ecosystems (Biederman et al., 2015). An 

increases in water quantity will likely be linked to decreased water quality (Mikkelson et 

al., 2012).  

3.4.6 Implications for Land Management and Policy 

Predicted decreases in die-off likelihood and magnitude in areas that experienced 

die-off suggest that land management strategies may be able to increase forest resistance 

to drought. Reducing tree density can be beneficial for decreasing die-off risk as well as fire 

risk but should be weighed against the cost of reduced carbon sequestration. The ambitious 

million-acre annual fuel treatment strategy in California in addition to reducing fire risk 

may produce additional co-benefits of decrease the likelihood and magnitude of predicted 

die-off (Crowfoot et al., 2021; Norlen et al., 2023). This also means that efforts to increase 

forest density as a climate mitigation strategy can be counterproductive if the location of 

those efforts are not carefully considered considering potential threats from increased 

drought stress and disturbance under climate change. Natural climate solutions focused on 

improved forest management that reduces tree cover or forest density could decrease the 

risk of forest die-off, while forest management and restoration that increases forest density 

or tree cover could increase risk of drought induced die-off. Implementation of natural 

climate solutions in forests that considers climate change amplified risks from forest die-off 

as well as self-limiting feedbacks, will improve the likelihood that proposed forest climate 

mitigation projects provide long-term carbon sequestration benefits despite increased 

climate stress.  
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CONCLUSION 
 
Summary of Results 

Past disturbance whether they are due to drought (Chapter 1) or wildfire (Chapter 

2) can produce feedbacks that dampen or reduce the severity of drought induced forest 

die-off. Despite limitations on high-quality data to observe tree mortality, empirical 

modeling of forest drought vulnerability (Chapter 3) can provide guidance to land 

managers and policy makers on risks to current forests and proposed forest-based climate 

solutions. 

Future Research Directions 

Physical risk factors to ecosystems due to water availability and climate stress are 

important, but without consideration of ecological feedbacks and other biological 

processes, a large portion of the ability of the biosphere to sequester carbon is missed. 

Because these processes can be complicated to predict and often occur at relatively fin e 

spatial scales, they are understandably often left out of large scale climate models. Higher 

quality data sets for tracking tree mortality either based on LiDAR, aerial photos, 

multispectral remote sensing, or a combination of all of these will be of high value to better 

evaluating forest drought vulnerability (Hemming‐Schroeder, N. M., Gutierrez, A. A., Allison, 

S. D., & Randerson, J. T., 2023). Process based modeling can likely provide insights for some 

forest properties that may not be observable from space such as changes to vulnerability at 

the individual tree level due to changes in species composition, size distribution, or both 

(Robbins et al., 2022). Forest disturbance phenomena occur over long-time scales which 

are challenging for quantitative methods dominant in western science. Paleoclimatology 
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methods based on tree rings, burn scars, etc. (Knight et al., 2022) have been able to 

recreate some of the past of fire history and tree growth. Methods b ased on traditional 

knowledge and oral history may be better able to capture the full scope of these effects.  

The Risks and Benefits of Forests for Climate Change Mitigation 

The apparent ability of forests to quickly readjust to increased climate stress is both 

a blessing and a curse for human survival under climate change. Hopefully, forests will 

continue to provide important ecosystem service and store carbon (Ninan & Inoue, 2013). 

Fortunately, the ability of ecosystems like forests to readjust to increased stress may 

provide additional time for humans to mitigate climate change by eliminating reliance on 

fossil fuels and removing greenhouse gases from the atmosphere. Improved understanding 

of these forest vulnerability to drought will ideally lead to improved opportunities for 

forest management and restoration which would contribute to solving climate change 

through climate mitigation and adaptation (Fargione et al., 2018; Field et al., 2020). 

Increasing carbon storage in semi-arid forest locations like California may be a risky 

strategy as the risk of forest losses increases with warming and with increased likelihood 

of droughts. Land management that strategically links management actions that leverage 

forests vulnerabilities will provide a higher likelihood of successfully contributing one 

aspect of efforts to mitigate climate change. 
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APPENDIX A 
 

Supporting Information for Chapter 1 

Recent tree mortality dampens semi-arid forest die-off during subsequent 
drought 

Methods for Supplementary Figures 

We calculated hillshade from a Digital Elevation Model (DEM) using Earth Engine to 

create an elevation map base for supplementary Figures S1, S6, S7, S9, S11, and S13. We 

retrieved the 2012 version of the 1/3 arc second United States Geological Survey (USGS) 

DEM from https://developers.google.com/earth-engine/datasets/catalog/USGS_NED. 

 

  

https://developers.google.com/earth-engine/datasets/catalog/USGS_NED.
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Figure A.1. Masks for sequential drought exposure across California. Purple represents Drought 
exposure to SPI48 ≤ -1.5 in 2012-2015 only. Orange represents exposure to SPI48 ≤ -1.5 in both 
1999-2002 and 2012-2015. Both panels are masked to include only grid cells that are conifer 
dominated forests and that have no recorded fires since 1980. The sample size is N = 62,887. 
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Figure A.2. The distribution of SPI48 in 1999-2002 and 2012-2015 within the Sierra Nevada and 
Southern California Mountains. The color bar from black to gray represents the proportion of grid 
cells in the Southern California Mountains versus Sierra Nevada for a particular sequence of SPI48 
exposure. The sample size for panel (b) is N = 62,887.  
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Figure A.3. The distribution of SPI48 in 1999-2002 and 2012-2015 within the Sierra Nevada and 
Southern California Mountains. The color bar from pink to green represents the difference between 
1999-2002 and 2012-2015 drought exposure in units of SPI48 (dSPI48). The gray values represent 
dSPI48 > 1.2. The sample size for panel (b) is N = 62,887.  
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Figure A.4. The empirical relationship between annual mean NDVI from Landsat and total annual 
ET (mm yr-1) from ten California flux towers. The annual sum of ET and mean NDVI are calculated 
for each water year (October 1 – September 30). The sample size is N = 97 for All Ecosystems and N 
= 54 for Forest Only. 
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Figure A.5. The proportion of grid cells with forest die-off, observed with aerial detection surveys 
(ADS), arranged by SPI48 exposure in 1999-2002 and 2012-2015. In the color bar, cream 
represents 0 % of grid cells with die-off (ADS) and red represents 100 % of grid cells with die-off 
(ADS). The sample size for both panels is N = 62,887. 
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Figure A.6. Presence of forest die-off according to aerial detection surveys (ADS) in 1999-2002 (a) 
and 2012-2015 (b) in grid cells across the study region. Locations of study region sample pixels 
have been masked for conifer dominated forests that have no recorded fires since 1980. In the color 
bar, cream represents no mortality and red represents morality in each grid cell. Mortality is 
defined as ≥ 5 dead trees acre-1. The sample size for both panels is N = 62,887. 
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Figure A.7. Forest die-off (dNDMI) for 1999-2002 (a) and 2012-2015 (b) across the study region. 
Locations of study region sample pixels have been masked to include only conifer dominated 
forests that have no recorded fires since 1980. In the color bar, red represents negative values of 
dNDMI or severe forest die-off, cream represents no change in dNDMI or forest condition, and blue 
represents positive dNDMI or possible forest regrowth. The sample size for both panels is N = 
62,887. 
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Figure A.8. The distribution of four-year Pr-ET by SPI48 exposure in 1999-2002 and 2012-2015. In 
the color bar, red represents negative four-year Pr-ET or high drought water deficit, cream 
represents four-year Pr-ET near zero or moderate to no drought water deficit, and blue represents 
positive four-year Pr-ET or excess water availability. The sample size for both panels is N = 62,887. 
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Figure A.9. Cumulative Moisture Deficit (four-year Pr-ET) for 1999-2002 (a) and 2012-2015 (b) 
across the study region. Locations of study region sample pixels have been masked to include only 
conifer dominated forests that have no recorded fires since 1980. In the color bar, red represents 
negative four-year Pr-ET or high Cumulative Moisture Deficit, cream represents four-year Pr-ET 
near zero or moderate to no Cumulative Moisture Deficit, and blue represents positive four-year Pr-
ET or excess water availability. The sample size for both panels is N = 62,887. 
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Figure A.10. The distribution of maximum Temperature (Tmax) by SPI48 exposure in 1999-2002 
and 2012-2015. In the color bar, blue represents lower Tmax and red represents higher Tmax. The 
sample size for both panels is N = 62,887. 
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Figure A.11. Maximum temperature (Tmax) for 1999-2002 (a) and 2012-2015 (b) across the study 
region. Locations of study region sample pixels have been masked for conifer dominated forests 
that have no recorded fires since 1980. In the color bar, blue represents lower Tmax and red 
represents higher Tmax. The sample size for both panels is N = 62,887. 
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Figure A.12. The distribution of aboveground live biomass (AGB) by SPI48 exposure in 1999-2002 
and 2012-2015. In the color bar, brown represents lower AGB and green represents higher AGB. 
The sample size for both panels is N = 62,887. 
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Figure A.13. Aboveground live biomass density (AGB) for 1999-2002 (a) and 2012-2015 (b) across 
the study region. Locations of study region sample pixels have been masked for conifer dominated 
forests that have no recorded fires since 1980. In the color bar, brown represents lower AGB and 
green represents higher AGB. The sample size for both panels is N = 62,887. 
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Figure A.14. Comparison of needleleaf conifer basal area (m2 ha-1) from field observations, in 1999-
2002 and 2012-2015 and between locations exposed to Both Droughts and drought in 2nd Drought 
Only. Panels (a) and (b) represent the basal area of all trees in each plot, while panels (c) and (d) 
represent the basal area in each plot separated by the most common tree genera. The letters 
represent comparison with a significant difference (p<0.05) using a Tukey Honestly Significant 
Difference Test.  
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Figure A.15. Comparison of spatial autocorrelation measured with semi-variance by distance 
between grid cells for the 300-meter resolution data versus a random sub-sample of 5% of the 300-
meter data.  
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Figure A.16. Comparison of four-year Pr-ET as a predictor of forest die-off severity (dNDMI) in four 
combinations of drought exposure and time period using a random 5% sub-sample of the Both 
Droughts and 2nd Drought Only regions. The top two panels show the relationship between four-
year Pr-ET and dNDMI for locations exposed to Both Droughts in 1999-2002 (a) and 2012-2015 
(b). The bottom two panels show the relationship between four-year Pr-ET and dNDMI in locations 
exposed to drought in 2nd Drought Only in 1999-2002 (c) and 2012-2015 (d). The solid black line 
in all panels shows the piecewise linear (top left, bottom right) or linear regression fit (top right, 
bottom left) for four-year Pr-ET as a predictor of dNDMI. The sample size for the top two panels is 
N = 447. The sample size the bottom two panels is N = 2,046. 
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Figure A.17. Comparison of four-year Pr-ET and die-off severity (dNDMI) in eight combinations of 
drought exposure, time period, and region. The top four panels show the relationship between four-
year Pr-ET and dNDMI for locations exposed to Both Droughts in 1999-2002 (a, b) and 2012-2015 
(c, d). The bottom four panels show the relationship between four-year Pr-ET and dNDMI in 
locations exposed to drought in 2nd Drought Only in 1999-2002 (e, f) and 2012-2015 (g, h). The 
sample size for the panels a) and c) is N = 5,745. The sample for panels b) and d) is N = 3,178. The 
sample size for panels e) and g) is N = 4,070. The sample size for panels f) and h) is N = 45,152. 
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Figure A.18. Comparison of Aboveground Live Biomass (AGB) density as a predictor of forest die-
off severity (dNDMI) in four combinations of drought exposure and time period. The top two panels 
show the relationship between AGB and dNDMI for locations exposed to Both Droughts in 1999-
2002 (a) and 2012-2015 (b). The bottom two panels show the relationship between AGB and 
dNDMI in locations exposed to drought in 2nd Drought Only in 1999-2002 (c) and 2012-2015 (d). 
The dashed black line in all panels shows the linear regression fit for AGB as a predictor of dNDMI. 
The partially opaque blue squares represent combinations of dNDMI and four-year Pr-ET with less 
than 5 grid cell observations. The sample size for the top two panels is N = 8,933. The sample size 
the bottom two panels is N = 40,922. 
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Figure A.19. Comparison of Maximum Temperature (Tmax) as a predictor of forest die-off severity 
(dNDMI) in four combinations of drought exposure and time period. The top two panels show the 
relationship between Tmax and dNDMI for locations exposed to Both Droughts in 1999-2002 (a) and 
2012-2015 (b). The bottom two panels show the relationship between AGB and dNDMI in locations 
exposed to drought in 2nd Drought Only in 1999-2002 (c) and 2012-2015 (d). The dashed black 
line in all panels shows the linear fit for Tmax as a predictor of dNDMI. The partially opaque blue 
squares represent combinations of dNDMI and four-year Pr-ET with less than 5 grid cell 
observations. The sample size for the top two panels is N = 8,933. The sample size the bottom two 
panels is N = 40,922. 
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Figure A.20. Comparison of four-year Evapotranspiration (ET) as a predictor of forest die-off 
severity (dNDMI) in four combinations of drought exposure and time period. The top two panels 
show the relationship between AGB and dNDMI for locations exposed to Both Droughts in 1999-
2002 (a) and 2012-2015 (b). The bottom two panels show the relationship between AGB and 
dNDMI in locations exposed to drought in 2nd Drought Only in 1999-2002 (c) and 2012-2015 (d). 
The dashed black line in all panels shows the linear regression fit for AGB as a predictor of dNDMI. 
The partially opaque blue squares represent combinations of dNDMI and four-year Pr-ET with less 
than 5 grid cell observations. The sample size for the top two panels is N = 8,933. The sample size 
the bottom two panels is N = 40,922. 
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Table A.1. Comparison of various geospatial observations of ecosystem and climate properties 
between two time periods (1999-2002 and 2012-2015) for two drought sequences using paired t-
tests.  
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Table A.2. Comparison of various geospatial observations of ecosystem and climate properties in 
locations exposed to two drought sequence (Both Droughts and 2012-2015 Only) and two time 
periods (1999-2002 and 2012-2015) using two-way Analysis of Variance and Tukey Honestly 
Significant Different tests. 
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Table A.3. Comparison of field observations of mortality and basal area in locations exposed to two 
drought sequence (Both Droughts and 2nd Drought Only) and two time periods (1999-2002 and 
2012-2015) using two-way Analysis of Variance and Tukey Honestly Significant Different tests. 
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Table A.4. Comparison of field observations of pine mortality and basal area in locations exposed 
to two drought sequence (Both Droughts and 2nd Drought Only) and two time periods (1999-2002 
and 2012-2015) using two-way Analysis of Variance and Tukey Honestly Significant Different tests. 
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Table A.5. Comparison of field observations of fir mortality and basal area in locations exposed to 
two drought sequence (Both Droughts and 2nd Drought Only) and two time periods (1999-2002 and 
2012-2015) using two-way Analysis of Variance and Tukey Honestly Significant Different tests. 
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Table A.6. Parameters to predict die-off severity (dNDMI) using multiple linear regression and 
relative weight analysis of predictor variable contribution to explain variance in dNDMI. 
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APPENDIX B 
 

Supporting Information for Chapter 2 

Recent fire history enhances semi-arid conifer forest drought resistance 

 

 
Figure B.1. Fire perimeters in the South Sierra from 1987-2010. Fire perimeters for wildfire are in 
(a), perimeters for prescribed fires are in (b), and perimeters for wildfires with additional fires 
severity information are in (c).  
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Figure B.2. Relationship between observed ET (measured with flux towers) and predicted ET 
(scaled from NDVI). 
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Figure B.3. Comparison between die-off measured as change in tree cover (x-axis) and as with 
aerial detection surveys (ADS) from wildfire and prescribed fire samples and spatially matched 
controls. 
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Figure B.4. The impact of wildfire and prescribed (Rx) fire on tree cover (a), shrub cover (b), and 
ET (c) following exposure to wildfire or prescribed fire paired with spatially matched controls. 
Values are for each grid well were subtracted by the mean of the values immediately before the fire 
(stand age -1 and -2). The error bars show the 95% confidence intervals. 
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Figure B.5. The number of pixels, modal fire year, and modal vegetation index (VI) year for 
prescribed fires (Rxfire) and wildfire samples and their spatially matched controls.  
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Figure B.6. The impact of fire severity on tree cover (a), shrub cover (b), and ET (c) following 
exposure to fire with spatially matched controls. Values are for each grid well were subtracted by 
the mean of the values immediately before the fire (stand age -1 and -2). The error bars show the 
95% confidence intervals. 
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Figure B.7. The number of pixels, modal fire year, and modal vegetation index (VI) year for fire 
severity samples and their spatially matched controls.  
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Figure B.8. Precipitation (Pr) and Pr-ET over time in locations exposed to prescribed fire (Rxfire) 
and wildfire and their spatially matched controls. 
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Table B.1. Summary of comparisons die-off (ADS), die-off (% tree cover), pre-drought tree cover, pre-

drought ET, and four-year Pr-ET between forest stands in exposed to wildfire and prescribed fire and 

matched to unburned control pixels included absolute and relative (%) differences using a Tukey Honestly 

Significant Difference test. 
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Figure B.9. Precipitation (Pr) and Pr-ET over time in locations exposed to different fire severity 
levels and their spatially matched controls. 
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Table B.2. Summary of comparisons die-off (ADS), die-off (% tree cover), pre-drought tree cover, 

pre-drought ET, and four-year Pr-ET between forest stands in exposed to different fire severity 
levels and matched to unburned control pixels included absolute and relative (%) differences using 
a Tukey Honestly Significant Difference test. 
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APPENDIX C 
 

Supporting Information for Chapter 3 

Where are forests most vulnerable to drought induced die-off? 
 

 

Figure C.1. Spatial patterns of drought induced die-off presence and risk factors for remote sensing 
and FIA data sets in the Sierra Nevada and foothills. Panels a, b, c, and d show remote sensing data 
with N = 12,319 randomly selected pixels in each. Panels e, f, g, and h show FIA data with 4 = 409 
plots from inventory years 2016-2019. The panels show above background forest die-off (a, e), pre-
drought ET (b, f), 1981-2010 annual climate precipitation (c, h), and pre-drought tree cover (d, h).  
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Figure C.2. Predictions of die-off probability from logistic models trained with remote sensing and 

FIA data. Each panel displays 40% of the original sample held out for model testing. The shading 
represents 95% confidence intervals. The first through third panels (a, b, c) shows the fit of logistic 

models to predict the probability of die-off occurrence using three different predictors with remote 
sensing data with a sample size of N = 4,822. The fourth through sixth panels (d, e, f) shows the fit 

of logistic models to predict the probability of die-off occurrence with FIA data using three different 
predictors with a sample size of N = 164.  
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Figure C.3. Predictions of die-off magnitude for linear regression models trained with remote 

sensing and FIA data. Each panel displays 40% of the original sample held out for model testing. 
The shading represents 95% confidence intervals. The first through third panels (a, b, c) show the 

fit of a linear regression model to predict the magnitude of die-off trained with locations with 
mortality present using three different predictors with remote sensing data with a sample size of N 

= 1,498. The fourth through sixth panels (e, f, g) shows the fit of a linear regression model to predict 
the magnitude of die-off from locations where die-off occurred using three different predictors 
using FIA data with a sample size of N = 61.  
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Figure C.4. Comparison of the importance of predictor variables in linear regression and logistic 
regression models trained with remote sensing and FIA data. The first two panels (a, b) show the 
relative importance of the predictors for logistic regression models. The third and fourth panels (c, 
d) show the relative importance of predictors for the linear regression models. 

 

 

 

  



 

163 
 

 

Figure C.5. Spatial patterns of observed die-off, overall predicted die-off, predicted die-off 
magnitude, and predicted die-off likelihood for remote sensing and FIA data sets in the Sierra 
Nevada and foothills. Predicted values are based on observed conditions for the 2012-2015 
drought. Panels a, b, c, and d show remote sensing data with N = 12,319 randomly selected pixels in 
each. Panels e, f, g, and h show FIA data with 4 = 409 plots from inventory years 2016-2019. The 
panels show observed die-off (a, e), predicted overall die-off (b, f), predicted die-off magnitude (c, 
h), and predicted die-off likelihood (d, h). 
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Figure C.6. Spatial patterns of predicted die-off magnitude, and predicted die-off likelihood with 
SPI48 held constant at -2.5 and other conditions varying between 2012 and 2019 conditions for 
remote sensing and FIA data sets in the Sierra Nevada and foothills. Panels a, b, c, and d show 
remote sensing data with N = 12,319 randomly selected pixels in each. Panels e, f, g, and h show FIA 
data with 4 = 409 plots from inventory years 2016-2019. The panels show predicted die-off 
magnitude for 2012 (a, e), predicted die-off magnitude for 2019 (b, f), predicted die-off likelihood 
for 2012 (c, h), and predicted die-off likelihood for 2019 (d, h). 
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Figure C.7. Spatial patterns of drought induced risk factors under 2019 conditions for remote 
sensing and FIA data sets in the Sierra Nevada and foothills. Panels a, b, c, and d show 2019 remote 
sensing data with N = 12,319 randomly selected pixels in each. Panels e, f, g, and h show FIA data 
with 4 = 409 plots from inventory years 2016-2019. The panels show Tree Cover (a, e), ET (b), 
Corrected ET Fraction (c), and Tree Height (d). Each panel displays N = 12,419 randomly sampled 
30-meter grid cells. 
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Figure C.8. Spatial patterns of changes in die-off factors and die-off predictions between 2012 and 
2019 for remote sensing and FIA data sets in the Sierra Nevada and foothills. Panels a, b, c, and d 
show remote sensing data with N = 12,319 randomly selected pixels in each. Panels e, f, g, and h 
show FIA data with N = 409 plots. The panels show Δ Corrected ET Fraction (a, e), Δ Stand Height 
(b, f), Δ Die-off Likelihood (c, g), and Δ Die-off Magnitude (d, h).  
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Figure C.9. Spatial patterns of changes in die-off factors between 2012 and 2019 for remote 
sensing and FIA data sets in the Sierra Nevada and foothills. Panels a and b how remote sensing 
data with N = 12,319 randomly selected pixels in each. Panels c and d show FIA data with N = 409 
plots. The panels show ET Change (a, c), and Tree Cover Change (b, d).  
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Figure C.10. Observed die-off risk factor conditions and die-off predictions in 2012 for the remote 

sensing analysis. Die-off predictions were made with SPI48 held constant at -2.5. The panels show 
ET Fraction (a), Stand Height (b), Die-off Magnitude (c), and Die-off Likelihood (d). Each cell 

represents the mean of pixels in one 0.3° latitude and 150-m elevation bin. We excluded bins with 
less than 5 pixels. All panels have N = 12,319.   
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