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Abstract

Fluorescence imaging represents cornerstone technology for studying biological function at the 

cellular and molecular levels. The technology’s centerpiece is a prolific collection of genetic 

reporters based on the green fluorescent protein (GFP) and related analogs. More than two decades 

of protein engineering have endowed the GFP repertoire with an incredible assortment of 

fluorescent proteins, allowing scientists immense latitude in choosing reporters tailored to various 

cellular and environmental contexts. Nevertheless, GFP and derivative reporters have specific 

limitations that hinder their unrestricted use for molecular imaging. These challenges have inspired 

the development of new reporter proteins and imaging mechanisms. Here, we review how these 

developments are expanding the frontiers of reporter gene techniques to enable nondestructive 

studies of cell function in anaerobic environments and deep inside intact animals—two important 

biological contexts that are fundamentally incompatible with the use of GFP-based reporters.
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INTRODUCTION

Genetically encoded reporters such as the green fluorescent protein (GFP) provide one of the 

most powerful techniques for molecular imaging in living systems. However, GFP and 

related proteins strictly rely on oxygen to activate fluorescence, which makes these reporters 

unreliable in anaerobic conditions.1–3 Furthermore, as biological systems scale in 

complexity from cultured cells and transparent organisms to warm-blooded animals, the 

utility of GFP (and optical reporters in general) is increasingly curbed due to inadequate 

penetration of light through deep tissues.4–6 As a result, GFP-based reporters come up short 

against the capabilities required for studying biological function in anaerobic cell cultures 

and within opaque animals. This is a serious limitation as anaerobic organisms and animal 

models have immense value in both basic research and emerging biotechnologies such as 

sustainable biomanufacturing, cellular therapies, and cell-based diagnostics.7–24 To 

effectively tackle these challenges, new classes of genetic reporters have been introduced 

that employ various modalities—fluorescence, magnetic resonance (MRI), ultrasound, and 

photoacoustics—to visualize cellular function in the aforementioned in vitro and in vivo 
environments where GFP-based fluorescence is stifled.25–27 While these reporters have yet 

to attain the pervasiveness of GFP, they represent a major advance toward breaking long-

standing barriers in molecular imaging. Importantly, the study of complex cellular 

communities that thrive in low-oxygen milieu (e.g., the gut microbiota, which is comprised 

largely of anaerobic microbes) would benefit tremendously from the availability of these 

nontraditional reporter mechanisms that can be used synergistically to interrogate biological 

function across cellular and organismal scales.28 In this Topical Review, we summarize 

recent developments in two such classes of biomolecular reporters—oxygen-independent 

fluorescent proteins and tissue-penetrant MRI reporters—that respectively enable biological 

function to be visualized in the context of anaerobic cells and intact research animals. In 

addition, we identify key avenues where innovative engineering solutions are needed to 

empower these nontraditional reporters so as to parallel or even rival the capabilities of GFP.

LOV-BASED FLUORESCENT PROTEINS: KEEPING CELLS GLOWING WHEN 

OXYGEN RUNS OUT

Reporters derived from GFP have limited utility for studying gut microbes, hypoxic tumors, 

and other systems that thrive in low oxygen conditions.29–33 To this end, efforts to build 

oxygen-independent fluorescent proteins have led to the discovery of biomolecular reporters 

derived from flavin-binding photoreceptors known as light, oxygen, and voltage (LOV) 

sensing proteins.34,35 LOV proteins are photochemists by cellular profession. Using flavin as 

their photoactive cofactor, wild-type LOV proteins convert blue light excitation into 

conformational rearrangements to modulate effector functions such as kinase activity and 

DNA binding.36 Wild-type LOV is dimly fluorescent because the energy from 

photoexcitation is expended to coordinate electronic and structural changes in the protein. 

However, by mutating a key photoactive cysteine residue into alanine, it is possible to impair 

this photochemistry, thereby turning the resultant Cys → Ala mutant fluorescent.37,38 A 

hallmark of this fluorescence mechanism is that light emission is independent of oxygen 

(Figure 1A), spectral properties being largely determined by interactions between the LOV 
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protein and the noncovalently bound flavin cofactor. Building on this foundation, nearly 20 

LOV based fluorescent reporters have been derived from bacteria, plants, and environmental 

metagenomic libraries.37–42 To potentiate their utility as reporter proteins, engineering 

techniques such as DNA shuffling and site saturation mutagenesis have been applied to 

increase photostability, thermal tolerance, and quantum yield.43–45 Further more, using 

genome mining, we recently introduced new algal LOV reporters that are characterized by 

improved molecular brightness, photostability, broad pH range, and thermal stability.46 

However, all known LOV proteins share conserved spectral traits characterized by broad 

excitation and emission spectra with peaks at 450 and 495 nm, extinction coefficient of ~14 

mM−1 cm−1, and quantum yields in the 0.17–0.51 range.34,35,40,42

LOV reporters have found use for imaging a broad diversity of anaerobic bacteria, fungi, and 

hypoxically cultured mammalian cells.47–59 These applications have ranged from tracking 

horizontal gene transfer and cell division in anaerobic environments to screening promoters 

for metabolic engineering and genetic circuit designing in anaerobes.51,52,60–64 Other 

applications have harnessed the small size of LOV reporters (~13 kDa, half that of GFP) to 

translationally tag proteins in scenarios where the comparatively larger steric footprint of 

GFP interferes with protein function.38,55,65,66 In addition, several LOV reporters display 

remarkable pH stability (pKa ~ 3 for EcFbFP and CreiLOV), which has been exploited to 

develop pH sensors based on Förster resonance energy transfer (FRET) between LOV and a 

pH-sensitive GFP variant.46,67 Aside from FRET, LOV-based biosensors have also been 

constructed through the incorporation of unnatural amino acids in the flavin binding pocket 

to selectively modulate fluorescence via photoinduced electron transfer between the amino 

acid and flavin.68

KEY CHALLENGES WITH EXISTING LOV BASED FLUORESCENT 

REPORTERS

As with any technology in its infancy, the existing suite of LOV-based reporters comes with 

limitations as well as exciting opportunities for future research. First and foremost, even the 

brightest LOV reporters are considerably dimmer than GFP, achieving only 10% of GFP 

fluorescence upon expression in cells.2,46 Given that cellular brightness of any reporter 

depends on multiple factors such as protein stability, solubility, and effective fluorescent 

fraction, it is important for future engineering efforts to pursue integrated improvements in 

spectral and biochemical properties of LOV proteins. In principle, it should be possible to 

increase cellular fluorescence at least 4-fold by concurrently maximizing quantum yield (2-

fold increase theoretically possible) and solubility (soluble fraction in E. coli for most LOV 

reporters <50%, unpublished data from our lab) in the brightest available LOV reporters. 

This could be achieved either through rational structure guided mutagenesis or through 

directed evolution techniques. A second challenge stems from the lack of variously colored 

LOV reporters, particularly ones that are sufficiently red-shifted to avoid overlapping with 

cellular autofluorescence. A recent theoretical study suggested the possibility of red-shifting 

LOV reporters using specific mutations, but these predictions were contradicted by follow-

up experiments.69–71 To our knowledge, efforts to engineer spectral shifts in the existing 

LOV repertoire using directed evolution have also proved unsuccessful. Going by the 
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tremendous impact of multicolored GFP variants,72 it is clear that innovative approaches to 

diversify the LOV color palette should be a major focus of future research in this area. A 

final unexplored avenue relates to the possible effects exerted on a cell’s endogenous flavin 

pool due to overexpression of LOV proteins. LOV reporters bind flavins with moderately 

strong affinity (Kd ≈ 169–178 nM, unpublished data from our lab), which is sufficient to 

deplete free reserves of cellular flavin, estimated to be ≤4 μM in E. coli and mammalian 

cells.73–76 It has therefore been suggested (albeit not experimentally studied) that flavin 

sequestration by LOV reporters leads to an increase in flavin biosynthesis via feedback 

mechanisms.40 Could LOV reporters perturb flavin homeostasis sufficiently to affect cell 

physiology? Alternatively, could cellular fluorescence of LOV proteins be enhanced by 

augmenting flavin biosynthesis? Rigorous benchmarking of LOV reporters against 

complementary readouts of gene expression (e.g., lacZ based colorimetric assays) in 

different environments, across multiple cell types, and varying intracellular flavin levels 

should help address these questions.

ALTERNATIVE BIOMOLECULAR REPORTERS FOR ANAEROBIC IMAGING

In addition to LOV proteins, at least three distinct classes of biomolecular reporters hold 

promise for further expanding the low-oxygen imaging toolbox. The first class consists of 

heme-based reporters, specifically phytochromes and UnaG, which generate fluorescence 

upon binding end-products of heme degradation such as biliverdin and bilirubin (Figure 1B).
77,78 Notably, UnaG and phytochromes have been used to engineer several fluorescent 

protein biosensors (albeit, yet to be demonstrated in anaerobic systems), which could be 

useful for probing kinase activity, calcium signaling, redox, protein–protein interactions and 

other aspects of cell function in varying oxygen settings.79–81 However, one key challenge 

with using heme-based reporters is that bilirubin and biliverdin are not native to all cell types

—for instance, bacteria do not typically synthesize either heme metabolite.3 In such cases, 

the chromophores need to be exogenously delivered, which is hindered by the poor 

permeability and limited aqueous solubility of heme compounds. As a workaround, 

phytochromes have been used in conjunction with heme oxygenase to directly synthesize 

biliverdin in cells via enzymatic breakdown of heme.82–84 However, the enzymatic 

conversion of heme to biliverdin requires oxygen, which makes this approach impractical in 

anaerobes. The second class of low-oxygen compatible reporters consists of fluorogenic 

proteins (e.g., derivatives of photoactive yellow protein or PYP) and RNA aptamers 

engineered to bind synthetic small molecule dyes (e.g., hydroxybenzylidene imidazolinone, 

coumarin) and activate fluorescence by suppressing fluorescence quenching intramolecular 

movements in the unbound dye.85–92 Although PYP-based fluorogenic reporter proteins 

have not yet been demonstrated in anaerobic systems, an RNA-based reporter was recently 

engineered to develop an anaerobically compatible biosensor for detecting the cellular 

second messenger, cylic-di-GMP (Figure 1C).88 While promising, PYP and aptamer-based 

reporters demand a steady supply of externally added fluorophores, which poses a potential 

problem in cell types where membrane permeability is low (e.g., Gram-negative bacteria) as 

well as in studies where intrinsic membrane permeability is affected by the experimental 

conditions (e.g., antibiotic use).93–97 Finally, a new class of fluorescent reporters has been 

recently developed based on microbial opsins that bind retinal or synthetic analogs as their 
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chromophore.98,99 While this fluorescence mechanism is likely to be oxygen-independent 

(although yet to be demonstrated experimentally), the poor solubility of opsin-based 

fluorescent proteins restricts expression to the plasma membrane, which potentially limits 

their broad utility as biomolecular reporters.98,99

MOLECULAR IMAGING IN VIVO: REPORTER GENES FOR MAGNETIC 

RESONANCE IMAGING (MRI)

Fluorescent reporters fail to achieve the depth and coverage needed to comprehensively 

study biological function in the context of intact, opaque animals.4,100–102 In contrast, MRI 

enables noninvasive tomographic imaging with excellent soft tissue contrast and 

spatiotemporal resolution. Small animal MRI scanners routinely acquire images of entire 

tissue sections at any depth in vivo and with a resolution of ~250 μm with acquisition lasting 

tens of seconds to minutes. Thus, MRI compatible reporter genes provide a promising 

approach for molecular imaging in living subjects. To this end, at least 25 proteins have been 

genetically encoded in cells and tissues to generate MRI contrast via at least 5 different 

mechanisms.27,103 Although not discussed in this review, prominent in vivo reporter genes 

have also been developed based on non-MRI mechanisms—notably, bioluminescence (e.g., 

luciferase) and positron emission tomography (e.g., thymidine kinase). These reporting 

mechanisms provide complementary advantages to MRI such as ease-of-use and detection 

sensitivity, albeit with associated trade-offs in penetration depth (bioluminescence), spatial 

resolution, and need for external substrates.

METALLIC MRI REPORTER GENES

The dominant mechanism for engineering MRI reporters involves pairing a protein with a 

suitable paramagnetic metal ion (Fe2+/3+, Gd3+, Mn2+) or metallic substrate to produce 

contrast by speeding up spin–spin (T2) or spin–lattice (T1) relaxation rates of magnetically 

polarized water protons.103–105 MRI reporters that employ this mechanism include metal 

storage proteins (e.g., ferritins, bacterial encapsulins106–113), metallo-enzymes (e.g., 

cytochrome P450114), and metal transporters (e.g., transferrin receptor,115,116 Timd2117). 

Importantly, ferritin and related reporters have been shown to generate T2 contrast simply by 

accumulating endogenously available iron, thus avoiding a need for external metal delivery 

(Figure 2A). However, in vivo detection using ferritin-based proteins has often proved 

difficult due to inadequate magnetization in the cellular environment as well as interference 

from pathological conditions such as hemorrhage that produce identical signal changes to T2 

reporters.104,118–121 These roadblocks can be overcome through the use of Gd3+ and Mn2+ 

based metalloproteins that produce T1 weighted contrast (e.g., MntR,122 DMT1,123 

Oatp1,124 and ProCA32125). However, the challenge here lies in delivering Gd3+ and Mn2+ 

ions sufficiently and uniformly to target sites in vivo. Notably, exogenously delivered metals 

are known to distribute unevenly depending on structural heterogeneity (e.g., within a tumor 

microenvironment126) and physiological state (e.g., activated neurons selectively accumulate 

extracellular Mn2+ unlike resting neurons127,128). Furthermore, delivering metals to fortified 

tissues such as the brain might require sophisticated procedures for opening the blood brain 

barrier.128–130 Despite these limitations, metallic MRI reporter genes have been used with 
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some success for in vivo tracking of cells and cell-based therapies. Here, therapeutic cells 

(e.g., immune cells, stem cells, probiotic microbes) are transfected or transduced with a 

metal-based MRI reporter gene before transplanting the genetically labeled cells in an 

animal.109,131–133 If labeling is done ex vivo, the cells can be preloaded with a sufficient 

concentration of metal ions to achieve maximum contrast. Using MRI, the migration and 

distribution of cell therapies can then be tracked noninvasively inside a living subject (Figure 

2A). However, a fundamental challenge stems from the low sensitivity of MRI reporter 

genes, which limits in vivo detectability of transplanted cells except when delivered in large 

(often clinically unrealistic) concentrations. Finally, it is worth noting that any metal-based 

contrast mechanism is likely to interfere with natural metal homeostasis in cells and tissues, 

which circumscribes the safety window for using metallic MRI reporters.119,121,134

NONMETALLIC MRI REPORTER GENES

The above challenges have stimulated the development of metal-free MRI reporters, which 

leverage contrast mechanisms that avoid external substrates altogether. One such mechanism 

is chemical exchange saturation transfer (CEST), which is based on selective absorption of 

radiofrequencies by a contrast agent whose protons are chemically shifted from bulk water 

protons.135,136 By carefully matching this chemical shift with kinetics of proton exchange 

between the contrast agent and bulk water, it becomes possible to transfer magnetization 

from the agent to water, thereby encoding MRI contrast without a need for metals.137 

Furthermore, by choosing contrast agents with different chemical shifts, multiple agents can 

be imaged in the same field of view, which provides a unique avenue for multiplexed MRI.
138 Robust CEST effect demands a sufficiently high reporter concentration to ensure an 

abundant supply of magnetized protons for exchanging with the substantially larger (~70 M) 

pool of intracellular water protons.27,135,139 As a result, CEST-based reporters require an 

unusually large density of exchangeable protons, which is not available in most natural 

proteins. Successful CEST reporters have thus made use of synthetic polypeptides with 

hundreds of exchangeable protons (e.g., polylysine, polyarginine) and highly cationic 

proteins such as protamine and supercharged GFP.140–144 Unfortunately, even at high 

expression levels, these reporters produce modest contrast (Figure 2B).139,141,145 Another 

challenge is that the chemical shift between water and reporter protons is typically not large 

enough to avoid overlapping with endogenous sources of exchangeable protons from native 

proteins, lipids, and cellular metabolites.146 Collectively, the aforementioned limitations 

lower overall detection sensitivity, which is one of the main challenges toward robust 

imaging using existing CEST-based reporter genes. To this end, an important engineering 

goal is the design of CEST reporters where the chemical shift of exchangeable protons is 

large enough (>5–6 ppm) to avoid overlapping with cellular background.

Recently, we introduced a new paradigm for genetically encoding MRI contrast without a 

need for metals or highly charged peptides.147 Our approach makes use of specific water 

channels known as aquaporins to facilitate water exchange across the cell membrane. Water 

exchange across lipid membranes is typically constrained by high activation energy (>10 

kcal/mol),148 which lowers overall water diffusion in tissues by 5–6-fold compared to 

unrestricted diffusion.149,150 By engineering cells to express aquaporins, it becomes possible 

to increase transmembrane water flux without affecting the cell’s osmotic state. The 
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resulting increase in diffusivity can be imaged using an MRI technique weighted to water 

diffusion. Using this approach, we were able to detect switchable gene expression in 

intracranial murine tumors engineered to express a human aquaporin known as AQP1 

(Figure 2C).147 Interestingly, in vitro experiments based on diffusion weighted imaging of 

AQP1 expressing cell lines established a detection limit of ~500 nM and demonstrated that 

micromolar concentrations of membrane AQP1 provided sufficient signal-to-noise for 

detecting down to 3 × 103 cells per MRI voxel.27,147 These attributes make AQP1 

considerably more sensitive compared to most MRI reporter genes. The increased sensitivity 

results from the rapid kinetics of water exchange (~109 water molecules/channel/s151), 

which allows low concentrations of AQP1 to effectively mediate exchange between the 

larger pools of intra- and extracellular water molecules. Shortly after this work, Brindle and 

colleagues reported a similar mechanism for producing MRI contrast using a urea 

transporter (UT-B) to exchange water across the plasma membrane.145 Leveraging the high 

sensitivity of this contrast mechanism, the authors demonstrated detection of lentivirally 

transduced gene expression directly in brain parenchyma. An important challenge with 

diffusion-based MRI reporters relates to unambiguously resolving reporter signals from 

background in anatomical regions where water diffusivity is high—for example, necrotic 

lesions, cysts, and healthy tissues, which natively overexpress aquaporins (e.g., glial cells). 

Engineering aquaporins for faster water exchange and developing techniques to separate 

aquaporin-mediated changes in diffusion from background diffusivity are important avenues 

for future research in this area.

The latest addition to the repertoire of genetic MRI reporters is a unique class of gas filled 

protein nanostructures known as gas vesicles.152 These ~10-aL-sized air-filled protein 

compartments perturb local magnetic gradients, which generates T2 weighted contrast. 

Although biogenic, gas vesicles are complex, multigene reporters encoded by clusters of 8–

14 genes in their native organisms.100 Genetic synthesis of gas vesicles in non-native 

platforms was recently demonstrated.153,154 However, MRI-based imaging of genetically 

encoded gas vesicles has thus far been feasible only in E. coli cells.152

CONCLUSIONS AND OUTLOOK

Despite innovative advances in reporter engineering, we are still missing clear go-to reporter 

genes that can be used with the ease and rigor of GFP for visualizing biology in anaerobic 

cells and intact living organisms. While LOV proteins are likely front runners for the former, 

concerted efforts are required to improve cellular brightness before LOV proteins can be 

routinely and reliably used as anaerobic reporters. Furthermore, as several anaerobes display 

high levels of autofluorescence (e.g., methanogens, anaerobic gut fungi), the need to 

introduce bathochromic shifts in the anaerobic reporter spectrum is immediate and 

paramount. To this end, photo-responsive proteins that make use of unconventional biogenic 

chromophores (apart from flavins and hemes) with genetically encodable (oxygen-

independent) biosynthetic pathways could serve as new sources of fluorescent reporters. In 

contrast to fluorescence, a broader diversity of protein properties—paramagnetism, water 

diffusion, and air compartmentalization—have been employed to build MRI reporters. Of 

these, metal-based reporters are at a reasonably mature stage of development—but their 

dependence on metal cofactors curtails some of the key capabilities associated with genetic 
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reporters. CEST reporters elegantly solve the problem of metal/substrate requirement albeit 

at the cost of reduced sensitivity and a limited reservoir of native proteins that can serve as 

building blocks for reporter engineering. Newly introduced diffusional reporters such as 

AQP1 and UT-B are sensitive metal-free contrast agents with homology to multiple naturally 

occurring channels. In future work, homologous channels could be mined for new reporters 

with faster water exchange (for improved signal-to-noise) and/or biochemically gated water 

flux, the latter providing a molecular template to guide sensor engineering. Finally, if further 

advances in gene expression are forthcoming, gas vesicles could emerge as a uniquely 

powerful class of reporter genes for background-free MRI.

Alongside reporter and sensor engineering efforts, there is a clear need for studies that make 

use of the aforementioned reporter gene techniques beyond proof-of-concept experiments. 

Only then will it be possible to recognize practical limits of various emerging reporter 

mechanisms as well as identify vital avenues for improvement. From this standpoint, the 

alliance of oxygen-inert fluorescent proteins and tissue-penetrant MRI reporters can provide 

a comprehensive molecular window into a gamut of low-oxygen pathophysio-logical 

processes such as bacterial response to antibiotics in anaerobic infections, effects of tumor 

hypoxia on treatment outcome, and gut microbiology. To this end, one exciting area of 

research where we envision the use of LOV reporters to effectively synergize with MRI-

compatible reporter genes is in the study and engineering of intestinal microbes for 

diagnostic and therapeutic capabilities.28 Here, LOV-based proteins could be first applied to 

design, build, and test new genetic parts and gene networks in the context of anaerobic 

cultures of intestinal microbes. Subsequently, MRI-based reporters could be used to study 

the location, performance, and intestinal transit of the engineered microbes in animal models 

of gut function and dysbiosis, thus effectively bridging cellular scale studies with whole 

organism level understanding of biological function (Figure 3).
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Figure 1. 
Oxygen-independent biomolecular reporters. (A) Fluorescent proteins derived from LOV 

photoreceptors are characterized by 450 nm excitation and 495 nm emission. Anaerobically 

cultured E. coli cells expressing CreiLOV46 can be readily detected using fluorescence 

microscopy.(B) UnaG emits green fluorescence by associating with a heme end-product 

(biliverdin), which enables imaging of HeLa cells in 0.1% hypoxia (top panel).77 Under 

similar conditions, HeLa cells that express mCherry (bottom panel) are nonfluorescent.77 

(C) Spinach2 is a small molecule dye-binding aptamer that exhibits oxygen-independent 

fluorescence similar to iLOV, a LOV-based fluorescent reporter.88 In contrast, GFP is 

nonfluorescent in anaerobic conditions and needs oxygen to activate fluorescence.88
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Figure 2. 
Reporter genes for MRI. (A) Genetically encoded ferritin enables migrating neuroblasts to 

be tracked in vivo, as indicated by the white arrow.109 (B) Charged polypeptides, in this case 

polylysine, can be used to visualize gene expression from a tumor specific promoter, using 

CEST.141 (C) Aquaporins produce diffusion weighted MRI contrast, which can be used to 

dynamically monitor doxycycline (dox) induced changes in tumor gene expression.147
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Figure 3. 
Oxygen-independent fluorescent proteins can be used in conjunction with MRI reporter 

genes to provide a unique molecular window into gut biology across cellular and organismal 

scales.
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