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ABSTRACT OF THE DISSERTATION

A Statistical Approach to Detecting Patterns in Behavioral Event Sequences

By

Kevin Andrew Heins

Doctor of Philosophy in Statistics

University of California, Irvine, 2014

Professor Hal Stern, Chair

The identification of recurring patterns within a sequence of events is an important task in

behavior research. In this thesis, we develop a probabilistic framework for identifying such

patterns from behavioral data. This framework allows us to distinguish between events that

belong to a pattern and events that occur as part of background or unstructured behavior.

Stochastic processes are introduced to describe the incidence of both background events and

events that belong to recurring patterns. The behavioral events are modeled together using

a competing risks framework combining the stochastic processes. We develop an inference

procedure to detect the sequences present in observed data. The motivation for this work

comes from a large scale longitudinal study to assess the impact of fragmented and unpre-

dictable maternal behavior on emotional and cognitive development of children. We describe

our results on both simulated data and the maternal data.

We also consider extensions to our model. We develop a model to study population level

behavior, allowing us to compare separate populations as well as pool information across

individuals. To perform this analysis, we describe how to extend both our model and infer-

ence procedure to a hierarchical setting. We describe results for both simulated data and

the maternal data.

Finally, we explore the distributional assumptions inherent in our model. We consider a

xiii



variety of parametric forms for our model, as well as a nonparametric approach that is both

flexible and computationally efficient. In addition to improved model fit, these approaches

allow us to better describe background behaviors, such as behaviors that occur in bursts

or with strict regularity. We also explore the effect of distributional assumptions on both

simulated and real data.
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Chapter 1

Introduction

The study of behavior plays an important role in a variety of fields, such as psychology, neu-

roscience, sociology, and zoology. However, most behavior studies are qualitative in nature,

as quantitative constructs describing behavior have proven difficult to find. In particular, a

great deal of subjectivity is often needed when determining what does or does not consti-

tute an interesting or scientifically relevant behavior, and when attempting to differentiate

between various types of behaviors. Researchers often want both to predict when an ac-

tor will exhibit various behaviors, and to use past behavior to predict other characteristics.

Thus a quantitative construct of behavior would be beneficial to help drive these fields when

investigating behavior.

One possible approach to the study of behavior that has proven popular is the identification of

recurring behavioral patterns, which are repeated sets of events that occur in a specific order.

These have proven useful for characterizing temporal streams of behavior (Eibl-Eibesfeldt,

1970). Most analyses identify patterns of interest a priori, and then attempt to locate these

patterns in a behavioral record. Approaches to automatically detect relevant patterns are in

their infancy. In this thesis, we present a probabilistic model which attempts to model some

1



of these intricacies of behavior by identifying repeated patterns within a sequences of events.

We posit that such patterns describe characteristic elements of the behavior of an individual

or individuals. Once identified, the patterns can be utilized in additional analyses.

To establish some terminology for our problem of interest, let a behavioral sequence be

defined as a series of events performed by an actor or actors, with each event occurring at

some point in continuous time. The data we consider can be represented as a sequence of

time-event pairs, including the type of event and the time that it occurred. Event types are

defined from a fixed set of possible behaviors identified by subject matter experts. Patterns

are defined as an ordered set of specific events occurring relatively close together in time,

which occur multiple times within a behavioral sequence.

Figure 1.1 provides a graphical representation of a behavioral sequence. The upper plot

displays the initial data, with no patterns identified. Time in seconds is represented on the

horizontal axis. Different events types are denoted by integers on the vertical axis. The

point process for each value on the vertical axis represents the events for that particular

event type. The lower plot displays the same data, but includes lines representing patterns.

For example, the pattern consisting of event types 11, 14, and 15, which we denote 11 → 14

→ 15, occurs three times.

One might hope that patterns would be easy to detect, perhaps through visual inspection

of the data. However, as noted in Magnusson (2000), it is relatively difficult to identify

patterns from this type of data via visual inspection alone. Typically analysts resort to

guessing which patterns they expect may exist, often based on past research or observation,

and then note how often the expected patterns occur. However, this has obvious drawbacks,

as proposed patterns may not actually exist, and more importantly, patterns may exist that

are not hypothesized.

The aim of this thesis is to provide a principled approach to automatically identifying pat-

2



Figure 1.1: Displays of behavior data. There are 15 events types, here denoted by integers,
which are indicated on the vertical axis. The horizontal axis gives time in seconds. Each dot
represents a recorded event. Top and bottom panels are the same, with patterns identified
in the lower plot.
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terns from behavioral sequences without the need for prior definition of relevant patterns.

We achieve this by introducing a probabilistic model that can automatically extract these

repeated patterns in sequences of time-indexed events. The existence of such patterns, as

well as their features, often carry scientific significance, such as in behavior studies.

1.1 Pattern Detection Models

There are a range of techniques for identifying patterns in sequences of observations. Many

of the methods focus on identifying patterns in observed data from among a candidate set

of patterns that are specified a priori. This allows a more focused analysis and enables the

inclusion of more complex behaviors, but limits the ability to fully capture the behavior of

an individual. If a pattern is not hypothesized a priori, then it will not be included in the

analysis. We do not discuss finding known patterns further; see Marcum & Butts (2014) for

additional details.

We want to explicitly learn all the patterns that exist, as well as detect their occurrence

for certain individuals. Methods for this purpose often assume that time is discrete, which

allows the analysis to focus solely on the order of events. A small but growing literature also

exists for methods that identify patterns in continuous time, which is what we consider for

our model. We describe a number of such techniques below, and evaluate their suitability

for our applications and data.

1.1.1 Pattern Detection in Discrete Time

We first discuss a number of methods for detecting patterns in discrete time. For example,

one could consider a set of behavioral events that occur in order, and discard the time the

occurs between events. Then the focus is on a set of ordered events and not on the time at

4



which they occur. Indeed, in many such cases, time does not actually exist in the traditional

sense. For example, DNA and protein sequences exist as an ordered set of events but contain

no time component.

A rich literature exists on pattern finding within DNA and protein sequences. Repeated

patterns, known as motifs, are important for understanding gene expression (Kellis et al.,

2004; Liu et al., 1995). A motif finding algorithm typically operates by first establishing a

background model, where each state (such as a base or residue) is assigned some probability

from a zero or higher order Markov process. Motifs are then found using a variety of strate-

gies. For instance, the expected frequency of all motifs of a certain length can be calculated,

and motifs that occur more often than expected from the background model will be included

in the final set of motifs. However, this requires one to enumerate all motifs of a given length,

which is often impractical. An alternative strategy is to only enumerate motifs with shorter

lengths, and then build up longer motifs using either an expectation maximization or Gibbs

sampling algorithm.

Data compression methods can be applied to discrete time series to identify recurring pat-

terns, such as the Lempel-Ziv algorithm and its derivatives (Welch, 1984; Ziv & Lempel,

1978). The goal of these methods is lossless compression, whereby the original sequence

is represented with fewer bits without a loss of information. The algorithm first creates a

dictionary of recurring patterns from the data. Then, whenever a given pattern occurs in

the sequence, the algorithm replaces the pattern with a new event type to represent the

pattern’s occurrence. This ultimately decreases the number of bits required to represent a

full sequence of events, as several events are subsumed into pattern events.
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1.1.2 Pattern Detection in Continuous Time

The study that motivates our work attempts to search for patterns in sequences of events

measured in continuous time. In cases like this one where continuous time points exist,

discrete time series methods could be implemented by simply removing the time element,

and modeling the order in which the event occur. Alternatively, time could be discretized into

equally sized time bins, with several ’no action’ events assigned to bins where no events are

recorded. Both of these approaches have limitations. For example, the former method could

fail when the time differences contain useful information, and different scales of discretization

could have significant effects on the results obtained by the latter approach.

Time series pattern finding for continuous time data (e.g., looking for change points) usually

occurs in the context of continuous measurements made at regular time points. This allows

the use of standard time series models as the foundation for a model. However, our data are

categorical measurements occurring at irregular time points. This type of data could instead

be modeled as a series of states, such as a Markov process, but this would be insufficient

for addressing our scientific questions. Instead, we would like to model each action as an

instantaneous event, and then identify temporal relationships between several events.

There are a growing number of models that attempt to model events in this way, but most do

not have a component that explicitly accounts for patterns. For example, a range of models

have been developed from Hawkes processes, which are similar to Poisson processes, but

have an excitatory feature (Hawkes, 1971). Each event increases the rate of future events,

either of the same event type (self-exciting) or different event types (mutually-exciting).

Hawkes process models have been used in many different application areas, such as models

of financial transactions, earthquakes, and crime (Engle & Russell, 1998; Ogata, 1988; Mohler

et al., 2011).

Simma & Jordan (2010) model events based on cascades of Poisson processes, which retains
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the excitatory feature in an attempt to identify which events trigger other events. They

consider a background Poisson process as a baseline, as well as numerous triggered Poisson

processes, which are initialized after certain events and feature a decay function. They

consider a number of applications, such as social networks where one event (e.g. a posted

message) may trigger several resulting events. While similar in spirit to the model we

describe in Chapter 2, where we model patterns as processes triggered by background events,

their model focuses on improving model fit to the observed sequence of events rather than

identifying specific recurring patterns.

We know of one existing method to specifically extract patterns from continuous data: the

software package Theme (Magnusson, 2000). Theme partitions the data into time bins, and

assumes that the events occur uniformly in those bins. Then, using a bottom up search

procedure, it identifies patterns that appear more often than expected under the uniform

model via repeated hypothesis testing. The number of patterns identified in this way depends

of the significance level. Our experience is that for the default significance level, there are

many false positives. To account for this, Theme includes a permutation procedure which

provides a distribution for the number and length of patterns that would be expected under

randomized data. We can then compare the distribution of the patterns in the original data

to determine how many were due to random error, such as from the hypothesis testing.

However, the assessment of which specific patterns are genuine and which are false positives

is not explicit in Theme’s output. Our model aims to be more explicit about which patterns

are discovered, while not relying on hypothesis testing or discretization.

1.2 Maternal Data

The motivation for our model comes from a study on the effect of maternal sensory signals

on child development. Previous experimental research has identified fragmented and unpre-
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dictable maternal behavior in rodents as a risk factor for outcomes that are analogous to

emotional and cognitive disorders in humans (Baram et al., 2012). However, how to best

characterize fragmented and unpredictable behavior in humans in clinically meaningful ways

remains an open research question. One proposed method is to identify the patterns that

a mother follows in her behavior. Fragmented and unpredictable behavior would then be

defined by statistics derived from each mother’s set of patterns, such as the number and

length of recurring patterns.

In this context, we think of consistent behavior as being characterized by long repeated

patterns, whereas fragmented behavior likely has few, if any, long repeated patterns. Un-

predictable behavior is characterized by the inability to determine the mother’s next action

after considering the previous actions performed by her and the child.

Our data comes from a longitudinal study conducted by the NIMH-funded Conte Center

on Brain Programming in Adolescent Vulnerabilities at UC Irvine, which is attempting to

examine the impact of early life interactions between a mother and her child on the child’s

development through adolescence. The center is collecting data from both humans and

rodents, and using a wide array of data types, including behavioral data, genetic data, and

brain imaging data. In this thesis, we only consider behavioral data. We will focus primarily

on human data, but also consider rodent behavioral data in Chapter 3.

For the human studies, our collaborators invited the participant mothers and their children

to the lab, where our collaborators video recorded the mothers playing with their children.

The data derives from these short videos, each about 10 minutes long. Each video was

annotated by the researchers to include the type of each event and the time when it occurs.

Event types include changes in the mother’s expression or emotional state (smiling, content,

bored), where she is looking, and physical interactions (hug, play with toy, pick up child,

speak).
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The human data that we consider comes from an initial cohort of individuals that was

collected using an earlier funded study, prior to the Conte Center. The initial data that is

available to us is comprised of 121 mothers playing with their 12 month old child. Further

data is currently being collected, including repeated observations from the same mothers

and children. One of the goals of this thesis is to identify recurring patterns from this data,

which can then be used to derive numerical summaries of maternal behavior. Ideally, these

summary statistics would help characterize each mother for the duration of this study.

An additional goal of the Conte Center is to validate measures of fragmented behavior on

rodents, where fragmented behavior can be experimentally induced. We will not focus on

this issue in this thesis, but will explore the rodent data in Chapter 3 to help illustrate one

of our techniques.

Data was collected from rats in a fashion similar to human mothers. Fragmented behavior

was induced in experimental rats by providing them with limited bedding materials. This

causes the mother rats (dams) to become extremely stressed, causing abnormal erratic be-

havior. Both control and experimental dams were observed, but not video recorded, for a

total of two hours each day, for a total of eight days. A total of seven event types were

recorded for the dams, such as eating, grooming her pups, or nursing. Observations were

made from days two through nine after the birth of the pups, which are roughly analogous

to early childhood in humans. We currently have data from a total of twelve dams, including

six controls and six experimental rats. We will briefly explore the differences in behavior

between the two populations of rats in Chapter 3.
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1.3 Outline

In Chapter 2, we present a renewal process model for identifying patterns from behavioral

data. We also describe the inference procedure that we use to detect patterns and estimate

the parameters that characterize their behavior. The rest of this thesis considers various

extensions of the basic model. Chapter 3 presents a hierarchical version of our model, to

allow for a population level analysis of patterns. Chapter 4 evaluates the strengths and

weaknesses of using various probability distributions to characterize interarrival times in our

model, as well as propose a nonparametric alternative. Finally, in Chapter 5 we present

concluding remarks and discussion.
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Chapter 2

A Renewal Process Model for Pattern

Detection

In this chapter, we develop a renewal process model (RPM) for the detection of patterns

within behavioral time-event data. We develop the model by specifying a data generating

process with the properties we expect in our data. The first component of this process

assumes background (i.e. non-pattern) events occur randomly in time, with the occurrences

of each type of event governed by an independent stochastic process. The second component

of the data generating process incorporates stochastic processes that generate patterns of

events. Essentially, our model seeks to detect pattern sequences by identifying a sequence of

events that occur together more often than would be expected according to the background

model.

First, we briefly review details from event history analysis that are important to our model.

Next we describe the model in detail, followed by a description of our inference procedure.

We then explore results from both simulation experiments and our maternal data. We finish

this chapter with a discussion on possible future directions. A portion of the content of this
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chapter follows Heins & Stern (2014).

2.1 Event History Analysis

Before we describe our model, we first describe concepts from event history analysis, one

possible framework to model a discrete set of events that occur in continuous time. Event

history analysis, or survival analysis, is a general statistical framework used in a multitude

of areas, such as medical studies. We focus on a stochastic process formulation of survival

analysis models (Aalen et al., 2008).

The stochastic process framework assumes that events occur according to a point process.

The time between events is known as the interarrival time, and for the purposes of this thesis,

we assume each interarrival time is independent of other interarrival times. Processes with

independent time increments are known as renewal processes, and are uniquely characterized

by the distribution of the time increments.

We denote the time that event i in the point process occurs as Ti. Because the times Ti

are strictly increasing, such that Ti > Ti−1, we then define the random interarrival times as

ti = Ti − Ti−1.

Renewal processes are typically specified by the probability density of the interarrival times.

Alternatively, they may be specified by transformations such as the hazard or survival func-

tions, which are all unique to a given distribution. All three functions are instrumental to

our model, so we next discuss them.

The distribution function is the probability that an event occurs before some time t. The

distribution function of an interarrival time, ti, can then be defined as F (t) = Pr (ti < t). The

survival function is the complement of the distribution function, and hence the probability
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that an event occurs after some time t. The survival function is defined as S(t) = 1−F (t) =

Pr(ti > t).

If we know that t0 time units has passed since the last event, then we can define the con-

ditional survival function. This is the conditional probability that a time increment ti > t,

given that we also know ti > t0. We denote the conditional survival function as S̄ (t|t0), and

define it as:

S̄ (t|t0) = Pr (ti > t | ti > t0) =
S (t)

S (t0)
(2.1)

The hazard function λ (t) is defined as the instantaneous rate of events, given that an event

has not yet occurred by time t. Hence it can be defined as λ (t) = f(t)/S(t). It can also be

derived via the survival function, such that λ (t) = − d
dt

log (S (t)). Given both this definition

of the hazard function and the definition of the conditional survival function in Equation

2.1, it is straightforward to show that conditioning on ti > t0 does not affect the hazard

function.

The probability density of a interarrival time f(t) = F ′(t) is equal to the product of the

survival and hazard functions, which is clear from the first definition of the hazard function

given above. Thus, the density of the interarrival times is f (t) = λ (t)S (t).

2.2 Model Description

We describe our model and our approach to inference by focusing on the model’s data

generating process. Events are assumed to be generated by competing renewal processes,

which we classify as either background or sequence processes. The model assumes most
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observed events occur independently of other recent events; these are assumed to belong to

the background processes. Other events are assumed to occur as part of a sequence; these

events are generated by sequence processes.

First, we establish a model with only background processes. We then discuss sequence

processes independent of background processes, and finally explain how to combine the two

into a single model.

We consider data comprised of a set of n events that occur over some period of time. Events

are observed as time-event pairs {Ei, Ti} with occurrence times Ti ∈ R+ and event types

Ei ∈ Q, where Q = {1, 2, ..., J} is a set of possible event types. Occurrence times are

strictly increasing, so Ti > Ti−1, and we define event interarrival times as ti = Ti − Ti−1.

While events are observed as {Ei, Ti}, our model is most easily described in terms of the

equivalent interarrival time-event pairs {Ei, ti}.

2.2.1 Background Processes

We first describe the background process corresponding to a single event type. For the event

type j, we define its background process as a continuous time renewal process with inde-

pendent and identically distributed interarrival times from some arbitrary strictly-positive

distribution ti ∼ F j (ti). For example, if F j (·) is defined as an exponential distribution, the

resulting process would be a Poisson process. For subsequent sections, we assume that F j (·)

is arbitrary, but only consider F j (·) to be exponential in the simulation experiments and

applications of this chapter. We explore more general distributions in Chapter 4.

Our data are assumed to include J possible event types. For each event type, we assume the

events belong to an independent background process, each with its own unique interarrival

time distribution. Thus we consider a multi-event model with several independent processes,
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each one corresponding to an event in Q. We will distinguish the interarrival times of each

of these processes by a superscript, so for event type j ∈ Q we have tji ∼ F j (ti).

We consider a competing risks framework to generate the event sequence {Ei, ti}i=1,...,n from

the independent renewal processes. In this scenario, each of the possible actions in Q is

a competing event, where the first to occur will be labeled as the next event to occur in

our observed sequence. The competing risks framework will prove especially useful when we

incorporate sequence processes in the next subsection.

Let the initial time be T0. Then we want to know the first event-time pair {E1, t1} to occur

in the sequence. The data generating mechanism generates initial interarrival times from

the J event processes, denoted
{
t11, ..., t

J
1

}
. The events are sorted into a schedule according

to increasing times, and we observe the first scheduled event next. Thus the time until the

next event can be modeled as the minimum over the interarrival times t1 = min
j∈Q

{
t j1
}

and

the corresponding event type is labeled the next event E1 = arg min
j∈Q

{
t j1
}

. Once the pair

{Ei, Ti} has been established, we need to determine the next event {Ei+1, Ti+1}.

An illustration of how this happens in the competing risks approach can be seen Figure 2.1.

The left side of the figure shows three interarrival times active at time Ti−1 corresponding

to three different background processes. The smallest corresponds to event A, so the next

event Ei will be event type A. The corresponding time Ti will occur at Ti−1 + tAi .

After the time increment for event type A has been established as the next event to occur,

we need to draw a new time increment for event type A, as seen on the right side of 2.1.

The time increments for event types B and C remain unchanged. The next scheduled times

for both events B and C remain unchanged, but our model must address the fact that these

events did not occur between the times Ti−1 and Ti. We next explain how this is done.

Suppose we are at time Ti and have just observed the pair {Ei, ti}. Consider the process

by which {Ei+1, ti+1} is generated. Recall that the next event in each background process
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Figure 2.1: An example containing three background processes. The figure on the right
shows the three competing events at time Ti−1. The figure on the left shows the three
competing events at time Ti, including the newly drawn interarrival time for event A.

is already scheduled to occur at tji for j 6= Ei. We keep these other events that were already

scheduled,
{
tji , j 6= Ei

}
in the queue of possible events. However, two additional steps are

required before determining the next time-event pair. First we need to account for the fact

that these already scheduled events did not occur between times Ti−1 and Ti. We update the

corresponding interarrival times by decrementing each time by the value of ti, t
j
i+1 = tji − t

Ei
i

for j 6= Ei. Second, we need to incorporate the next event from the process corresponding

to Ei, so we draw a new interarrival time tEi
i+1 ∼ FEi (ti+1) and append it to the set of

interarrival times. The new set of active interarrival times
{
tEi
i+1,

(
tji − t

Ei
i

)
j 6=Ei

}
can now be

denoted as
{
t1i+1, ..., t

J
i+1

}
.

It is important to recognize that as a consequence of the decrement, tji+1 = tji − t
Ei
i is no

longer distributed according to F j (ti+1) for j 6= Ei. We can derive the correct distribution

for the modified interarrival times using the survival function. Let the survival function for

the original interarrival time for event type j be Sj(t). Then, for event types j 6= Ei, the

16



conditional survival function of the decremented interarrival time, tji+1, is

S̄j
(
t|tEi

i

)
= Pr

(
t ji+1 > t | j 6= Ei

)
=
Sj
(
t+ tEi

i

)
Sj
(
tEi
i

) (2.2)

We refer to the survival function of the next event Ei+1 as the multi-event survival function

S (t). Because we assume that the J processes are independent, the multi-event survival

function can be defined as the product of the relevant conditional survival functions and the

survival function for the next event in the process corresponding to event Ei,

S (t) = SEi (t)
∏
j 6=Ei

S̄j
(
t|tEi

i

)
(2.3)

To perform inference for our model (below), we need to derive the density of the interarrival

times. Recall that the density of the interarrival time, f (t), is the product of the survival and

hazard functions, f (t) = λ (t)S (t). Following the notation above, we use the superscript j

with the hazard function λj (t) to denote the hazard function for the process of the jth event

type, and let λ (t) denote the hazard function for the multi-event background process. Recall

from above that the hazard functions corresponding to both the survival and conditional

survival functions are identical. Then we can use the relationship of the hazard and survival

functions to establish that the multi-event hazard is λ (t) =
∑J

j=1 λ
j (t), and thus f (t) =∑J

j=1 λ
j (t)S (t) is the density of the interarrival times in our set of multiple background

processes.

The previous paragraph defines the density function for the interarrival time. We are inter-

ested in the joint density of the event type and the interarrival time, or the event-time pair
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{Ei, ti}. Because the probability density for the interarrival times marginalizes the joint

density over all possible events j, it follows that the background process time-event pairs

have the following density, where S (t) is as defined in (2.3):

fti,Ei
(t, j) = λj (t)S (t) (2.4)

Equation 2.4 establishes the density for a single time-event pair four our model when it

contains only background processes. To perform inference, we need the likelihood for all

data points. Due to the generative point process construction of the density, the likelihood

can simply be defined as the product over the densities of the time-event pairs LBG (t, E) =∏n
i=1 fti,Ei

(t, j).

In this subsection, we only described the model when no sequences are present. In the

next subsection we will describe the construction of sequence processes. This is followed

by a subsection describing how to augment the likelihood for the model containing only

background processes to accommodate the sequence processes.

2.2.2 Sequence Processes

In addition to background events, we also want to consider the possibility of recurring se-

quences, where sets of events tend to occur in sequence and close together in time. We model

these sequences of events as arising from sequence processes, which are assumed independent

of the background processes. Sequence processes will be identified by our model when events

occur in sequence more often than expected if they belonged to the background processes.

We require that all preceding events must have occurred to observe the next event in a

sequence process.
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Figure 2.2: An example of the data generating process for a model that includes the sequence
A→ B. On the left, the event type A just occurred at time Ti, which triggers the sequence
A→ B. On the right, a new time increment is drawn for both event type A as well as event
type B, which belongs to the sequence.

An example of how a sequence process can be interpreted as part of the data generating

process is shown in Figure 2.2. In this example, event type A just occurred at time Ti, as

seen on the left. If the sequence A→ B exists as part of the model, then the occurrence of

event type A would trigger the sequence, and hence an event B would likely occur soon after

A. Thus we draw both a new time increment for A, as well as a new time increment for B,

as part of the sequence A→ B. An example of both of these draws can be seen on the right

side of Figure 2.2.

Developing the sequence processes requires additional notation. Let s index a specific se-

quence. For example, if a sequence s consists of behaviors A → B → C occurring in that

order, then we need a way to identify which events in our observed data {Ei, ti} correspond

to events in the sequence. For sequence s, we define s {`} to be the event index in our

data corresponding to the `th event in that sequence, so that Es{1} = A, Es{2} = B, and

Es{3} = C.
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We expect that the events corresponding to consecutive indexes s {`} and s {`+ 1} will

frequently be consecutive events in the data, but this need not always be the case. We

want to allow for the possibility that unrelated events may occur in the midst of a sequence

by chance. We refer to these events as noise events, intervening events that occur during

a sequence but do not belong to that sequence. These events can occur as part of either

background processes or other sequence processes. Furthermore, our model allows a single

event to belong to multiple sequence processes.

An important aspect of a sequence is that the events should occur relatively close together

in time. To ensure this condition, we introduce parameters that govern the maximum time

allowed between events in a sequence. We include these parameters both because it is well

accepted that events occurring well in the past have much less direct influence on current

behavior, and also for computational convenience. However, no limit is placed on either the

number of events in a sequence or its overall duration, so it remains possible that events well

in the past can have indirect influence on current events.

For event s {`}, we denote the corresponding time parameter as τs{`}, a positive number that

represents the maximum amount of time that can elapse between events Es{`−1} and Es{`}

for each ` > 1. Hence we require that the `th event in the sequence s {·} must occur within

the time window
[
Ts{`−1}, Ts{`−1} + τs{`}

]
. If Es{l} does not occur by the end of this window,

then the sequence does not occur. Given events Es{1}, ..., Es{`−1} have occurred, there is

positive probability that event Es{`} does not occur, and thus neither does the sequence

s {·}.

An example of how a maximum time parameter can be included is displayed as a dotted line

on the right side of Figure 2.2. Had the dotted line been shorter than the time increment for

sequence A → B, then the sequence would not have occurred, as thus the time increment

would be removed.
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The probability of non-occurrence for Es{`} that an event does not occur is equivalent to

the probability that the interarrival time is greater than τs{`}. Hence it can be denoted by

the survival function evaluated at τs{`}. To distinguish the survival function of the sequence

processes from the background processes, we denote Ṡs{`}
(
τs{`}

)
as notation for the survival

function of the next event in a sequence process. Then the probability that the `th event in

a sequence process does not occur is

Pr
(
Ts{`} > Ts{`−1} + τs{`}

)
= Pr

(
ts{`} > τs{`}

)
≡ Ṡs{`}

(
τs{`}

)
(2.5)

The censoring at τs{`} complicates the calculation of the survival distribution associated with

the sequence event s {`}. The survival function is right censored at τs{`}, with a nonzero

probability that the event does not occur. We define a new censored survival function S̃s{`} (t)

as

S̃s{`} (t) = Ṡs{`} (t) 1(t<τs{`}) + Ṡs{`} (τ) 1(t>τs{`}) (2.6)

The latter half of the sum in (2.6) refers to a point mass giving the probability that the

event does not occur. Let λ̇ (t) denote the hazard function associated with Ṡ (t). Then by

the properties of the density function described earlier, the probability density of the `th

sequence event can be derived as

fts{`} (t) = λ̇s{`} (t) Ṡs{`} (t) 1(t<τs{`}) + Ṡs{`} (τ) 1(t>τs{`}) (2.7)
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To model the noise events defined earlier, assume the `th event in the sequence occurs at Ti,

so s {`} = i and Ts{`} = Ti. The previous event in the sequence, Es{`−1}, occurs at some

time Ts{`−1} which is less than Ti−1 if intervening events are present, but equal to Ti−1 if

not. Hence Ts{`−1} ≤ Ti−1. Thus, the time of the intervening event can be represented as

Ti−1 = Ts{`−1} + r where r ≥ 0 is the time between the previous event in sequence and the

noise event. If no noise event is present, then r = 0, but if a noise event is present, then

s {`− 1} < i− 1 and r > 0. The interarrival time for the sequence can then be represented

as Ts{`} − Ts{`−1} = t + r, where t is the time between Ti−1 and Ts{`}, and r is the time

between Ts{`−1} and Ti−1. Here we considered the noise event occurring directly before Es{`},

but the argument above can be easily generalized to handle any number of noise events that

may occur between events Es{`−1} and Es{`}.

The hazard function λ̇ (t) remains unchanged, so the new density for event s {`} can be

expressed as

fts{`} (t|r) = λ̇s{`} (t+ r)
Ṡs{`} (t+ r)

Ṡs{`} (r)
1(t+r<τs{`}) + Ṡs{`} (τ) 1(t+r>τs{`}) (2.8)

This defines the density for a single event in a particular sequence process. Using this

density, we next describe now to add multiple sequence processes to the previously established

likelihood function for background processes LBG (t, E).

2.2.3 Combining Background and Sequence Processes

Our model assumes that background and sequence events occur independently, which allows

us to combine them in a relatively straightforward manner. We assume that all sequence

events are initialized by a background event as their initial event, thus s {1} effectively
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belongs to both a background process and a sequence process.

As before, assume the current time is Ti and we have observed {Ei, ti}. Now the pool of

possible next events is comprised both of the next events in all background processes as well

as the next events for all live sequences. We define a live sequence as any sequence such that

all prior events in the process have occurred, and a requisite amount of time since the last

event in the sequence has not yet passed. Mathematically, a live sequence is any process for

which s {1} through s {`− 1} have occurred previously and Ts{`−1} < Ti < Ts{`−1} + τs{`}.

Let B = {1, ..., J} denote the background processes, and S = {s1, ..., sK} denote the K live

sequence processes at time Ti, so the next event must occur from either B or S.

From our independence assumption, SB (t) =
∏J

j=1S̄
j (t) and SS (t) =

∏K
k=1S̃

sk (t). Further-

more, from the definition of the sequence process, we have

S (t) = SB (t)SS (t)

= SB (t) ṠS (t) 1(t<τ) + SB (t) ṠS (τ) 1(t>τ)

(2.9)

where ṠS (t) =
∏K

k=1Ṡ
sk (t).

At time Ti, fix the current event to be Ei = e . If there are K live sequences, then there

are K∗ ≤ K sequences that are both live and the next event in the sequence is e, hence

s {`} = e. Denote the set of these sequences as S ′. Finally, define λ̇e to be the sum over all

the hazard functions corresponding to the sequences in S ′, λ̇e (t) =
∑

s∈S′ λ̇
s (t).

Finally, we get the following density, inserting the modification for noise events from (2.8)
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as needed:

fti, Ei
(t, e)

=
(
λe (t) + λ̇e (t)

) J∏
j=1

S̄j (t)
K∏
k=1

Ṡsk (t) 1(t<τsk)

+ λe (t)
J∏
j=1

S̄j (t)
K∏
k=1

Ṡsk (τ) 1(t>τsk)

(2.10)

Finally, we can calculate the likelihood of the model by taking the product of the densities

for all time-event pairs: L (t, E) =
∏n

i=1 fti, Ei
(t, e).

2.3 Inference

Section 2.2 derives the likelihood function for an observed series of events. The notation

of that section refers only to the unspecified interarrival distribution of each process in the

model. In practice it is natural to assume that these processes may depend on unknown

parameters. We are now interested in performing inference on these parameters. To this

point, we have made no assumptions on the distribution of the time increments, allowing

the functional form of the survival and hazard functions to remain arbitrary. Because of

this, we will consider a general inference procedure that can accommodate a wide variety of

functional forms.

We assume that each background process j depends on a set of parameters θj, and each

sequence process k depends on a set of distribution parameters θk and time parameters τk.

Note that the sequence process parameters are each vectors of length `−1, so each level of a

sequence has its own distribution parameters and time parameter. Then both the background
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and sequence processes have their respective supersets of parameters ΘB = {θj, j = 1, ..., J}

and ΘS = {(θk, τk) , k = 1, ..., K}. We denote the entire parameter set as Θ = {ΘB,ΘS}.

We take a Bayesian approach to learning the parameters in our model. In this context, all

parameters are assumed to be random, and our goal is to describe a posterior distribution.

Furthermore, in addition to the likelihood, we must place a prior distribution on all param-

eters. Then the posterior distribution is defined as Pr (Θ|t, E) ∝ L (t, E|Θ) Pr (Θ), and the

parameters can be sampled from the posterior distribution via a Markov Chain Monte Carlo

(MCMC) procedure (Brooks et al., 2011).

While we do not consider the possibility of finding MAP estimates, such a procedure would

be of practical interest. A conditional maximization algorithm is probably feasible, where

parameters are obtained by maximizing the conditional probabilities rather than sampled

from the conditional probabilities.

2.3.1 Prior Distributions

Prior to sampling parameters, it is necessary to describe prior distributions for each pa-

rameter. For the application later in this chapter, we only consider renewal processes with

exponentially distributed increments. In this case, each process has a single rate parameter,

so here we discuss prior distributions for the exponential rate parameter. This can clearly be

modified for other assumptions. The higher the rate parameter, the more often that event

occurs. In chapter 4, we consider more general distributions for the time increments, and

provide further discussion on prior distributions.

In the case that some prior knowledge is available, informative priors can be straightforward

to include. For example, consider the rate parameters λj for background processes, although

a similar prior distribution could be used for sequence process parameters. An expert could
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specify how often they expect event j to occur in a given amount of time. For instance, let

1/φj be an estimate for the number of times that event j occurs, then we could assume the

prior distribution follows from an exponential distribution with rate λj ∼ Exp (φj). While

informative prior distributions are appealing in some situations, we do not consider them

further in this chapter. Instead, for the background processes, we simply place exponential

prior distributions on all background rate parameters.

Our goal for this dissertation is to accurately identify patterns from behavioral data. In

the case that some patterns are known to exist, then we consider a prior distribution for

the pattern rates with low mass around zero. For example, we could consider a gamma

distribution with parameters a and b, such that the mode a−1
b

is equivalent to our prior

guess variance a
b2

is relatively small. Otherwise, we assume the prior distributions have

high mass around zero to ensure regularization. In this case we could consider a gamma

distribution with shape parameter a < 1, which will ensure most of the mass is around zero.

For the application we consider, we do not expect any particular patterns in our data, so we

will not consider this prior structure either.

Instead, we consider a different type of prior distribution for the sequence process rate

parameters. When an event only occurs once in the observation period, especially when

following another rare event, the likelihood alone cannot clearly differentiate whether that

event belongs to a background or sequence process. This could plausibly lead to spurious

patterns being discovered. In cases such as this, we prefer to err on the side of the background

processes. To account for this, we place shrinkage priors on any sequence process rates but

not on background process rates, such that more mass is near zero for sequence processes

(Bhattacharya et al., 2012). In our application, we consider the mixture of two half normals,

both with a mode of 0, but one with much higher variance.

We also note that we consider weakly informative priors for the τ parameters. Because their

purpose is to constrain the amount of time between events in a sequence, we want to place
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most of the mass of the prior distribution greater than zero and centered around a reasonable

guess. Placing too much mass around zero or limiting the variance around a poor prior guess

will both impede pattern discovery, which we discuss in the experiments section. In practice,

the exact location of the prior mass would be determined by the application area. For our

particular application, we expect transitions between events in a pattern to take roughly

2-30 seconds on average. Hence we consider a gamma prior distribution with shape a = 2

and scale b = 0.2, which places most of the prior mass in the range 2-30 seconds.

2.3.2 MCMC

Our complete approach to inference uses the No-U-Turns Sampler (NUTS) for sampling the

parameters, with occasional birth-death steps incorporated for model selection (Hoffman

& Gelman, 2012; Stephens, 2000). First, we describe NUTS, implemented with the Stan

software package (Stan Development Team, 2013), and then describe the birth-death steps.

NUTS is a form of Hamiltonian Monte Carlo (HMC), an MCMC algorithm that avoids

the random walk behavior of several other popular MCMC methods (Neal, 2010). HMC

methods use an analogy to Hamiltonian dynamics to sample from a distribution. We consider

the joint distribution over the parameters of interest p (”position” variables) and auxiliary

”momentum” variables q. We can then simulate the evolution over time of the Hamiltonian

dynamics of the system via a leapfrog integrator. A total of L leapfrog steps are considered,

each of step size ε. More details can be found in Neal (2010).

However, standard HMC is sensitive the number of leap frog steps L and the step size ε, which

are user provided parameters. NUTS improves upon the standard HMC implementation

by eliminating the need to set either parameter. However, our implementation requires

that we set the step size, which we describe below. Furthermore, the Stan implementation

uses reverse-mode algorithmic differentiation to calculate the gradient for the conditional
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distributions, eliminating the need for us to calculate it by hand. Hence all that is needed

to run NUTS via Stan is the probability model itself, and step size in our application.

2.3.3 Model Selection

While NUTS is very effective for sampling from the posterior distribution, it does not ad-

dress model selection. Our model allows for a potentially unlimited number of sequence

processes to exist, so we need to determine which sequences actually exist in the observed

data. Including all possible sequences is impractical; when we consider sequences of increas-

ing maximum length, the number of possible sequences grows exponentially. Instead, we

only include a small subset of all possible sequences in our model at any given point in the

sampler, and use a birth-death MCMC technique to vary the subset of sequences.

Sequences that are very unlikely to occur will have a hazard rate near zero, and thus a

survival function constantly near one. When λ (t) ≈ 0 and S (t) ≈ 1 for all t, from (2.10)

we see that the sequence is effectively not included in the model. In this case, we fix the

sequence process parameters θ such that the hazard rate is fixed at zero. Furthermore, this

is equivalent to simply removing the sequence process from the model.

To determine which sequence processes belong in the model, we apply the birth-death process

of Stephens for model selection, an alternative to reversible jump steps. Stephen’s birth-death

MCMC views the parameters of the model as a point process, which allows the number of

components to vary by allowing new ones to be ’born’ and existing ones to ’die.’ At various

times within the overall NUTS chain, we perform a birth-death step by constructing an

easily simulated process that changes the number of sequences in the model. The births and

deaths both occur according to Poisson processes. Births occur at a constant rate, while

deaths occur at a low rate for sequences critical for explaining the data, and a high rate for

sequences that do not help explain the data.
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When a birth-death step occurs, we fix some simulation time W and run through a series of

birth or death steps until the simulated time exceeds W . Birth steps occur according to a

Poisson process with rate δB. Each sequence s currently in the model receives an independent

death process with rate δsD, described in the next paragraph. The overall rate of death steps

is δD =
∑

s δ
s
D. The time to the next step is exponentially distributed with rate δB + δD.

Times are generated until they pass time W , with a birth or death step occurring at each

time with probability proportional to the rate for the birth/death.

To ensure that important sequences are retained within the model, the death rate for a given

sequence s will be equal to the birth rate multiplied by the ratio of the time-event likelihoods

with and without sequence s included. Let Θs denote the parameter set with sequence s

and Θ−s the parameter set without sequence s. Then the death rate for sequence s would

be δsD = δB
L(t,E|Θ−s)
L(t,E|Θs)

. Thus sequences where the data suggests they belong in the model will

have very low death rates.

For the birth step, we choose a sequence not currently in the model, and draw parameters

from an appropriate distribution, e.g. the prior distribution for it. To choose the new

sequence, we pool all existing sequences in the model, randomly sample two of them and

combine them to form a new sequence. For these purposes, we include all single events as

sequences in addition to the multi-event sequences in the model. For example, assume the

model has background events A, B, and C, as well as the C→A pattern. We sample, with

replacement, two of those four possible events, and combine them to form the new pattern.

Possible new patterns include A→B, C→A→B, or C→A→C→A, among others.

A death step simply chooses an existing sequence process, and fixes its parameters such that

the hazard function is zero for all possible times t.

The simulated birth-death process proceeds as follows:

Finally, we describe how our model selection technique is integrated within the NUTS algo-
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Algorithm 1: Birth-Death Process

Fix δB,W ; // Birth Rate, Birth Death Sim Time

w ← 0;
while w < W :

δsD ← δB
L(t,E|Θ−s)
L(t,E|Θs)

; // Sequence Death Rate

δD ←
∑

s δ
s
D ; // Overall Death Rate

Sample u ∼ unif (0, 1);
if u < δB/δB+δD:

Birth Step
else:

Death Step
Sample t ∼ exp (1/δB+δD) ; // Next Jump Time

w ← w + t;

rithm. We initially run the HMC sampler for the background model (no sequence processes

included) for a large number of iterations, though not necessarily until convergence. After

that period, the birth-death process is run once every m iterations of the sampler, allowing

NUTS to explore the state space for every model. The standard implementation of NUTS

within Stan determines the step size needed for HMC during the warmup phase. To ensure

ergodicity, we estimate the step size via the results of the sampler for the initial background

model, and then fix the step size at this value when running NUTS for the model including

sequence processes.

2.3.4 Convergence

We monitor convergence of the MCMC by running multiple chains, and monitoring conver-

gence statistics. This is somewhat problematic when the size of the model can change, which

occurs for our model when a pattern is either added or removed. To handle this issue, we

use the convergence criterion developed in Sisson & Fan (2007). This method assumes that

the models change according to a point process, such as the birth death process that we

consider for model selection.
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At iteration i, the current set of model parameters is denoted Θ(i). We assume this parameter

set is comprised of parameters found in all possible models (background process parameters,

denoted here as Θ
(i)
BG) and those found only in certain samples (sequence process parameters,

denoted here as Θ
(i)
S =

(
Θ

(i)
s1 , ...,Θ

(i)
sK

)
).

This method first sets several reference points ν. These reference points are instances drawn

from the sample space of possible models and parameters, which can be used to compare

against each iteration of each chain. In practice, the reference points can be drawn from

the Markov chains themselves, so ν = Θ(j) for some random j. For each of the reference

points, we can define the distance x
(i)
ν as the minimum distance between ν and one of the

subsets of Θ
(i)
S . A subset of Θ

(i)
S refers to one of the combinations of parameters that are

found in it. For example, a set of one parameter would have two subsets (the parameter and

the null set); a set of two parameters would have four subsets (the null set, each individual

parameter, and both parameters); a set of three parameters would have eight subsets. In

practice, we consider Euclidean distance between ν and each subset, where parameters not

in a particular model are set as zero.

Let us consider a toy example. Our current sample consists of θ1 = 1.3 and θ2 = 1.7.

Our reference point is set as ν = {θ1 = 1.1}. The possible distances we consider are for

the parameter sets {∅}, {θ1}, {θ2}, and {θ1, θ2}. Respectively, the distances would be√
(1.1− 0)2 + (0− 0)2 = 1.1,

√
(1.1− 1.3)2 + (0− 0)2 = 0.2,

√
(1.1− 0)2 + (0− 1.7)2 =

2.0, and
√

(1.1− 1.3)2 + (0− 1.7)2 = 1.7. In this case, we would set x
(i)
ν = 0.2.

Using these distances, we can compute an analogue of the Rubin-Gelman statistic R̂ν for

each of the reference points (Gelman & Rubin, 1992). We can then declare that the chain has

converged if the value is sufficiently close to one for all of the reference points. By choosing

a set of reference points, each with a potentially different set of patterns, this method allows

us to examine various deviations in the model from both between and within chains to assess

whether further iterations are needed.
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2.4 Simulations

We consider a number of simulation experiments to explore the performance characteristics

of the renewal process model. All experiments assume that background and sequence pro-

cesses have a constant hazard function, and therefore the interarrival times are exponentially

distributed. We explore more general hazard rates in Chapter 4.

Our simulation experiments will focus on several aspects of our model. First we establish

that our model performs well on various types of simulated data. We then explore how

capably our model performs in various more difficult conditions, such as when limited data

exists and when especially long patterns are present.

We note that unless otherwise specified, we consider the following prior distributions for both

our simulation experiments and the following data analysis: an exponential prior distribution

with rate one for all background rate parameters; a mixture of two half normal distributions

for all sequence process rate parameters, both with mode zero, one with variance 5 and the

other with variance 0.01, and a mixing parameter of 0.5; and a gamma prior distribution for

all τ parameters with shape 2 and scale 0.2.

2.4.1 Proof Of Concept

We first consider the results for simulated data under a simple scenario, one with only

three possible event types which we label events 1, 2, and 3. We include only one sequence

process, a simple 2-event sequence: 3 → 1. This will allow us to test our model on a

simple data set, and compare the results directly with those obtained from Theme. We fix

the background exponential process parameters λ1 = 0.16, λ2 = 0.57, and λ3 = 0.40, the

sequence exponential process parameter λ3→1 = 0.25 and the corresponding time window

parameter as τ3→1 = 1.12. Using these parameters, we sample M = 100 data sets of length
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Figure 2.3: An example of simulated data for the proof of concept simulation. Three
different events are present, with patterns identified by lines.

Parameter True Value Post. Mean S. E. Cov.
λ1 0.16 0.16 0.03 0.97
λ2 0.57 0.57 0.08 0.95
λ3 0.40 0.40 0.06 0.97
λ3→1 0.25 0.23 0.08 0.97
τ3→1 1.10 1.14 0.18 0.95

Table 2.1: The parameter values for each of the five parameters in our first simulation exper-
iment. The estimated mean is the average over the posterior means across the simulations.
Standard error (S. E.) and coverage probability (Cov.) are also included for each parameter.

n = 500 events, and fit the model to each data set. An example of the simulated data, with

patterns identified, can be seen in Figure 2.3.

For each simulated data set, we run our inference procedure treating all parameters as

unknown. For each simulation we record the posterior mean, and report the average and

standard error of these values. Additionally, we calculate a 95% posterior credible interval for

each parameter. Table 2.1 summarizes the simulation results. The parameters are estimated

well and the coverage probabilities for the 95% posterior intervals for the parameters are all

0.95 or higher.
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Renewal Process Model Theme
# of Correct

Sequences
99/100 94/100

# of False
Positives

57 384

# of False
Negatives

1 6

Power/Recall 0.99 0.94
Precision 0.64 0.20

Table 2.2: Performance summaries for M = 100 simulated data sets

We also record which sequences were included by the model selection process for each data

set. This is done by including the patterns corresponding to all sequence processes with a

posterior probability greater than 0.5 of being nonzero. We record the proportion of trials in

which the correct sequence was identified (power), the number of null sequences incorrectly

identified as being present (false positives), and the proportion of declared sequences that

are true sequences (precision). The Renewal Process Model’s results for the first scenario

are in the first column of Table 2.2.

We also ran Theme with its default settings on each of the simulated data sets for the

first scenario, and recorded the same summaries. As described earlier, assessing significance

in Theme is not always straightforward, and not all patterns are assumed real. After the

patterns are identified, a permutation procedure can be used, which compares the results

with the results using randomized data. However, it does not indicate which patterns are

most important. Here we just summarize the patterns identified before the permutation test

was applied, recognizing that practiced Theme users would not consider all of these as real.

These results are also included in Table 2.2. Theme identified the correct sequence about as

often as our model, though as expected it often identified several other sequences that do

not actually exist.
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Figure 2.4: An example of simulated data consistent with a mother who is fragmented and
unpredictable. There are 20 possible events, with three short patterns.

2.4.2 Realistic Scenarios

Our first simulation scenario is not consistent with data from our motivating example, so we

would like to test our model on more complex data. Here we consider two simulations with

data more consistent with our application. Both simulations are comprised of 20 different

possible event types. The first has three 2-event sequences, which represents the type of ob-

servation expected from a fragmented and unpredictable mother in our motivating example.

An example of the data simulated in this scenario is shown in Figure 2.4

The second simulates data with both more patterns (six) and more complex patterns (up

to 4-events in one pattern). Again, we sample M = 100 data sets of length n = 500 events

for both of the more complex scenarios. An example of data from this scenario, along

with patterns identified, can be seen in Figure 2.5. Note that for this scenario, we consider

sequences 1→ 2 and 1→ 2→ 3 to be different patterns. However, the parameters for 1→ 2

are the same as the parameters for the first half of 1 → 2 → 3. Thus the parameter values

seen in Table 2.6 refer only to the parameters for the final part of the sequence process.
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Figure 2.5: An example of simulated data consistent with a mother who is consistent and
predictable. There are 20 possible events, with six patterns.

For these second and third scenarios, there are considerably more parameters. Results for the

background processes parameters in the second simulation scenario can be found in Table

2.3, along with the true values of the parameters. Results include estimates of the rate

parameter, as well as standard errors and coverage probabilities. Similarly, the same results

for both the rate parameters and the maximum time parameters for the sequence processes

from the second simulation scenario can be found in Table 2.4. The same results for both the

background processes and sequence processes of the third simulation scenario can be found

in Table 2.5 and Table 2.6.

The estimate for each parameter is the average over the posterior means from the different

simulations. The standard error is calculated as the standard deviation of the posterior

means. The coverage probability refers to the percentage of times that the true parameter

value was found in the 95% credible interval.

The estimated rate parameter is similar to the true parameter value in essentially all cases.

For sequence process parameters, when a simulation did not successfully identify the sequence

process, we did not include that simulation when calculating the average over the posterior
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Event Truth Est. S.E. Cov. Event Truth Est. S.E. Cov.
1 0.2 0.20 0.08 0.94 11 0.2 0.19 0.07 0.95
2 0.2 0.34 0.15 0.94 12 0.1 0.15 0.07 0.93
3 0.2 0.25 0.12 0.92 13 0.1 0.10 0.03 0.96
4 0.2 0.24 0.12 0.97 14 0.2 0.18 0.08 0.93
5 0.2 0.20 0.05 0.94 15 0.1 0.10 0.03 0.94
6 0.2 0.16 0.04 0.95 16 0.1 0.10 0.03 0.93
7 0.1 0.14 0.07 0.96 17 0.1 0.10 0.03 0.95
8 0.1 0.10 0.06 0.92 18 0.1 0.10 0.03 0.96
9 0.1 0.10 0.03 0.96 19 0.1 0.10 0.02 0.95
10 0.1 0.10 0.03 0.98 20 0.1 0.10 0.03 0.93

Table 2.3: Results for background process rate parameters in the second simulation scenario
(three simple patterns). The estimated mean is the average over the posterior means across
the simulations. Standard error (S. E.) and coverage probability (Cov.) are also included
for each parameter.

Pattern Param. Truth Est. S.E. Cov.
1 → 2 λ 0.38 0.33 0.04 0.92

τ 4.41 4.38 0.11 0.91
11 → 12 λ 0.22 0.19 0.03 0.96

τ 3.05 3.00 0.09 0.95
14 → 7 λ 0.35 0.36 0.05 0.91

τ 2.19 2.20 0.04 0.90

Table 2.4: Results for sequence process rate and time parameters in the second simulation
scenario (three simple patterns). The estimated mean is the average over the posterior
means across the simulations. Standard error (S. E.) and coverage probability (Cov.) are
also included for each parameter.

Event Truth Est. S.E. Cov. Event Truth Est. S.E. Cov.
1 0.2 0.27 0.07 0.90 11 0.2 0.18 0.05 0.97
2 0.2 0.26 0.11 0.95 12 0.1 0.13 0.07 0.96
3 0.2 0.26 0.12 0.92 13 0.1 0.10 0.03 0.94
4 0.2 0.18 0.09 0.96 14 0.2 0.20 0.05 0.95
5 0.2 0.23 0.05 0.97 15 0.1 0.11 0.03 0.94
6 0.2 0.19 0.05 0.94 16 0.1 0.10 0.04 0.98
7 0.1 0.16 0.07 0.99 17 0.1 0.10 0.04 0.95
8 0.1 0.09 0.04 0.95 18 0.1 0.10 0.04 0.99
9 0.1 0.11 0.02 0.93 19 0.1 0.09 0.03 0.95
10 0.1 0.10 0.05 0.95 20 0.1 0.10 0.03 0.95

Table 2.5: Results for background process rate parameters in the third simulation scenario
(six patterns, including longer ones). The estimated mean is the average over the posterior
means across the simulations. Standard error (S. E.) and coverage probability (Cov.) are
also included for each parameter.
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Pattern Param. Truth Est. S.E. Cov.
1 → 2 λ 0.38 0.41 0.06 0.96

τ 4.41 4.45 0.06 0.95
1 → 2 → 3 λ 0.39 0.45 0.07 0.92

τ 4.42 4.16 0.08 0.93
1 → 2 → 3 → 4 λ 0.41 0.36 0.11 0.88

τ 4.49 4.70 0.16 0.91
11 → 12 λ 0.22 0.14 0.10 0.93

τ 3.05 3.27 0.18 0.92
14 → 7 λ 0.35 0.31 0.08 0.94

τ 2.19 2.36 0.11 0.95
14 → 7→ 8 λ 0.38 0.42 0.13 0.89

τ 2.34 2.25 0.08 0.91

Table 2.6: Results for sequence process rate and time parameters in the third simulation
scenario (six patterns, including longer ones). The estimated mean is the average over the
posterior means across the simulations. Standard error (S. E.) and coverage probability
(Cov.) are also included for each parameter.

means for the parameters. Thus we only averaged over simulations where the pattern was

successfully identified. The same method was used when calculating standard errors.

Coverage probability was calculated by the percentage of times that the credible interval

contained the true parameter values. For sequence processes, this means both that the model

successfully identified the sequence process, and the true parameter value was contained in

the credible interval. Because of this, the coverage probabilities of the sequence process

parameters were fairly low, ranging from 0.88 to 0.96, which tend to be lower than 0.95 but

are fairly close nonetheless. The coverage probabilities of the background processes were

generally quite good, all were over 0.90.

For the second simulation scenario, all 3 patterns were found in 91% of the simulations using

the RPM, with an average of 0.87 false positive patterns per simulation. In the final scenario,

all 6 patterns were found in 87% of all simulations with an average of 1.6 false positives per

simulation. Thus our method performs well for more complex data. Furthermore, these

simulations were designed to be consistent with our application (see below), and it does
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not appear that the complexity of the model, including the larger parameter space, has any

negative effects on our model.

2.4.3 Effect of Sample Size

The data in our motivating example, the maternal behavior study, is very difficult to obtain

because there is considerable labor involved in annotating the videotaped sessions. It is

therefore important to consider how the identification of patterns is effected by the amount of

collected data. For example, an individual who performs more events during their observation

period will have more data. It is plausible that such individuals will display more patterns

on average, even if the total time duration is the same for all actors (as it is in our motivating

example below). A small n individual has fewer events observed overall, so the likelihood

that a given pattern will occur often enough to be correctly identified is less than for a large

n individual.

To study the impact of sample size, we develop a single simulation scenario and then vary

the number of observations. As in the previous section, we use a set of 20 unique events. We

set 10 patterns to be active, all of length two events. The patterns have decreasing rates of

occurrence, such that some patterns are very rare and others are very common. These can

be seen in Table 2.7. Most of the sequences have equivalent time parameters τ (see Table

2.7), allowing a better comparison of the rate parameters. Each of the background rates is

fixed at 0.1. We consider four different sample sizes, each with data generated from the same

model, but the number of events varied from 100 to 700. Data is simulated a total of 100

times for each sample size.

The results for this experiment can be seen in Table 2.7. As the amount of data increases,

the ability to detect relatively rare patterns increases significantly, with only a slight increase

in the number of false positives. With at least 300 events, over half of the patterns were
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Seq True Rate True τ 100 300 500 700

1 → 2 0.40 2.5 0.57 0.82 0.84 0.96
3→ 4 0.40 1.0 0.30 0.70 0.92 0.83
5→ 6 0.35 2.5 0.41 0.92 0.88 0.85
7→ 8 0.30 2.5 0.33 0.85 0.95 0.87
9→ 10 0.30 1.0 0.20 0.51 0.72 0.78
11→ 12 0.25 2.5 0.28 0.74 0.96 0.86
13→ 14 0.20 2.5 0.28 0.63 0.72 0.67
15→ 16 0.15 2.5 0.42 0.51 0.52 0.65
17→ 18 0.10 2.5 0.24 0.29 0.48 0.65
19→ 20 0.05 2.5 0.16 0.36 0.44 0.61
Number of Detected Patterns 3.20 6.33 7.43 7.73

False Positives: 0.87 1.20 1.60 2.27

Table 2.7: The results of our sample size experiment. The true parameter values of the rates
for the 10 sequence processes are given. For each sample size, the percentage of times that
a pattern is identified, out of 100 simulations each, is also given. At the bottom, the total
number of detected patterns and the number of false positives for each sample size are given.

detected on average. As the amount of data increased, the rate of improvement in pattern

detection started to decrease. With 700 events, which is more events than any individual has

in our maternal data, our model still had difficulty detecting the most infrequent patterns

for a third of the simulations.

2.4.4 Detecting Longer Sequences

Our renewal process model works well for shorter patterns, as seen above. Fortunately, these

comprise the bulk of the patterns that we expect to detect in behavior data similar to our

maternal data. When the number of events is fairly small, finding longer patterns is difficult.

Nonetheless, we would like to show that our model is capable of finding such patterns when

they do exist.

For this simulation, we consider simulated data sets with varying numbers of events: 200,

500, and 1000 events per data set. We again have 20 unique event types. This time the
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Pattern Length 200 Events 500 Events 1000 Events

2 0.96 1.00 1.00
4 0.90 0.96 0.98
6 0.49 0.69 0.78
8 0.18 0.25 0.26
10 0.08 0.18 0.24

Table 2.8: Percentage of simulated data sets where the model correctly identified the pattern.
While longer patterns can be difficult to detect, there is some dependence on the size of the
data set.

data generating process contains a single pattern, but we vary the length of the pattern from

2 to 10 events in different simulation runs. The pattern rates will be set high to ensure

that the pattern occurs multiple times despite the small size of the data. Data for each

set of parameters is simulated 100 times. To ensure consistency, the smaller data sets are

comprised of the first 200 or 500 events of the respective 1000-event data sets.

The results are summarized in Table 2.8. The model does an admirable job detecting patterns

up to length four, before becoming much less reliable. However, there is a clear tendency to

better detect patterns when more data exists. This is a clear sign that longer patterns will

be difficult to detect when the total number of events is small, as hypothesized.

Furthermore, even in cases when the full pattern was not discovered, subpatterns were always

discovered. For example, consider a data set in which the pattern 1 → 2 → 3 → 4 → 5 →

6 is present. Our model often detects subpatterns such as 1 → 2 → 3 and 4 → 5 → 6, but

cannot successfully join the two together in the model selection phase. This is because the

proposed parameters for the full sequence are often sub-optimal compared to the previously

sampled parameters of the partial patterns. The posterior distributions for both the model

with the full sequence and the model with the partial sequences are often comparable, which

increases the importance of optimal parameter proposal. This is one of the outstanding

issues that is unresolved in this thesis, and a possible avenue for future work.
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Shape Scale P. Mode Cred Int
Gamma 0.1 1 ∅ ∅

2 0.2 2.37 (2.31, 3.52)
1 1 2.36 (2.31, 3.20)
30 10 2.37 (2.32, 3.32)
100 10 ∅ ∅

Half-Cauchy Scale = 10 2.37 (2.32, 3.49)

Table 2.9: On the left: The parameters for each of the six prior distributions that we
consider for the τ parameter. On the right: the posterior mode and 95% credible interval
for each of the posterior distributions.

2.4.5 Effect of Prior Distribution on Time Parameter

The posterior distribution of the τ parameter that dictates the maximum amount of time

between two events in a sequence may be especially susceptible to its prior distribution.

In particular, if the mass of the prior distribution is far from the true value, then the

posterior distribution may not correctly contain mass around the truth. Poorly specified

prior distributions could have negative effects for discovering patterns. In this section, we

will explore the effect of various prior distributions for the τ parameter, and their affect on

the analysis.

We consider a scenario with 20 possible events, all with background rates of 0.1. One

sequence process is also included, with a rate of 0.3 and a maximum time parameter of

2.4. We consider a total of six possible prior distributions: five gamma distributions and

a Cauchy distributions. The parameters that we consider can be found on the left side of

Table 2.9.

For the gamma prior distributions, we consider two prior distributions with high mass around

zero, one with low variance (shape 0.1, scale 1), and one with relatively higher variance (shape

1, scale 1). We also consider two distributions with mass well above the true value τ = 2.4:

one with low variance (shape 100, scale 10) and one with high variance (shape 2, scale 0.2).

We also consider a scenario where the mass is concentrated close to the true value, but with
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Figure 2.6: Density plots of the prior and posterior distributions corresponding to four
choices of prior distributions for the maximum time parameter τ . Note that the prior dis-
tribution for both plots on the bottom have been scaled for visibility.

low variance (shape 30, scale 10). Finally, we consider a half-Cauchy with scale parameter

equal to 10 as a purely non-informative prior.

For each of the six prior distributions, we fit the same simulated data set. Four of them

successfully identified the pattern, and both the prior and posterior densities can be seen in

Figure 2.6. The posterior mode and the credible interval can both be seen on the right side

of Table 2.9 for each of these four prior distributions. The other two prior distributions, the

gamma(0.1, 1) and the gamma(100, 10), were unsuccessful at identifying the patterns. We

briefly examine why this happens below.

As seen in Figure 2.6, while the prior distributions vary widely, the posterior distributions are

all fairly similar. Both the exponential and half-Cauchy prior distributions place the most

mass at zero, and then the mass decreases as τ increases. This is somewhat undesirable as we

43



expect τ to be greater than zero, though both distributions have heavy tails. The gamma(2,

0.2) prior distribution also has a heavy tail, but puts very little mass at zero. Even though it

places most of the mass well above the true value of 2.4 (the mean is 10 and mode is 5), the

wide variance allows us to consider a wide range of τ values and is likely the most desirable

in practice. The last successful prior distribution, the gamma(30, 10), places most of the

prior mass around the true value, and while it is successful in this case, the small variance

could be a problem when centered away from the true parameter.

In particular, the gamma(100, 10) prior distribution has similarly small variance, but is

centered far away from the true value. Finally, the gamma(0.1, 1) prior distribution, which

placed most of the mass at zero with fairly light tails, restricts the possible range for τ

too close to zero, making pattern identification difficult. For both of these cases, we ran 100

simulations and assessed how often we discovered the pattern of interest. For the gamma(0.1,

1), the pattern was identified occasionally, 14 out of 100 times, with no false positives. Even

with some success, placing too much prior mass at zero is clearly a bad idea. For the

gamma(100, 10), the pattern of interest was also found occasionally, in 9 out of 100, but

false positives were also quite prolific, with 3.4 false positives occurring on average. In this

case, restricting the range caused spurious patterns to appear, where even one occurrence of

an event following another within 10 seconds would signal a pattern given the low variance

of the prior distribution.

In the following section, where we discuss the results on our maternal data, we consider

the gamma(2, 0.2) prior distributions. This places 95% of the prior mass between 1 and

28 seconds, which is a reasonable transition time between events in patterns in the context.

This also provides a lot of variability with limited mass at zero, both desirable features.
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2.5 Maternal Behavior Analysis

The motivation for this research comes from a study on the role of fragmented and unpre-

dictable maternal behavior on various childhood outcomes. Rodent studies have suggested

that fragmented behavior, characterized by frequent shifts in attention, leads to poor out-

comes for the rodent pups. A key translational step is developing methods that can identify

fragmented behavior in humans. We believe that different behavior patterns may be relevant.

Our first step is to detect patterns in the maternal behavior. Then, summary statistics can

be derived from the patterns, which can then be used to characterize the behavior as either

fragmented and unpredictable, or not. For example, we might consider the longest pattern

for an individual or the number of patterns longer than two events as possible measures of

fragmentation.

To obtain the data, each mother was invited to the research lab and observed playing with

their child. There are a total of 121 mothers, with each recorded session lasting for 10

minutes. For this analysis, we consider data that was collected when the child was 12

months old. Video data was also collected at other times during the child’s development (6

months, 2 years, etc.), but this data has not yet been annotated.

The number of events in any particular session ranges from about 100 to 400 events. Table

2.10 lists the 24 different event types that were observed. An example of the data recorded

from a single mother-child session can be seen in Figure 2.7, where time is on the horizontal

axis, and events are on the vertical axis.

Exploratory Data Analysis

One possible method for verifying the plausibility of the patterns that the RPM detected

is to do an exhaustive search for patterns, and see if they occur more often than expected.
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Figure 2.7: An example of maternal behavior data. The three patterns seen in this example
include New Toy → Manipulating Toy, Instructive Speech → Instructive Speech, Positive
Speech → Positive Speech, and New Toy → Look at Toy → Look at Baby.

Event Types

Positive Speech New Toy Laugh
Negative Speech Manipulate Toy Smile

Instructive Speech No Toy in Hand Point
Looking at Baby Give Toy to Child Frown
Looking at Toy Remove Toy Bored

Not Looking Hold Baby Content
Affectionate Touch Restrain Child Hold Child in Lap
Functional Touch Pickup Child Support Child

Table 2.10: The possible event types in the maternal behavior data set. There are a total of
24 different event types.
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This can also be done as an initial exploratory step, which can help inform the direction of

the analysis. We will only briefly discuss this idea here, but we believe it is an important

area for future work.

For example, consider the pattern A→ B. We assume that events A and B occur according

to Poisson processes with rates λA and λB respectively. If the pattern A → B exists, then

event B will occur more often than expected in the τ seconds following A, for some fixed τ .

Assume there are nA instances of event A. If A→ B does not exist, then the probability of

observing a B event in the τ seconds following an A event is pB = 1 − exp (−λBτ). Of the

nA of these periods, we would expect to see a B in EA→B = pBnA of them, with a standard

deviation of SA→B =
√
nApB (1− pB).

If we observe B following A considerably more often than expected, then we can assume

that the pattern A → B exists. We denote the number of times that B follows A within a

fixed τ seconds to be OA→B. Then we can consider the normalized quantity OA→B−EA→B

SA→B
. If

this number is very large, then we can assume that the pattern exists. Furthermore, if this

quantity is very small, then we can say that A appears to inhibit B.

Let us consider the mothers as an example. We consider three different values of τ , 3, 10,

and 30 seconds, to examine how it affects pattern identification. We say a pattern exists if

the normalized statistic is greater than three. We only consider patterns of length two in

this exercise. For each mother, we identify a set of patterns, and then count the number of

times, out of 121, that each pattern was identified for a mother. Some of the more common

patterns are shown in Table 2.11. These patterns generally align well with the results from

the RPM analysis of the maternal data that follows in the next section. Note that τ seems

to play an important role in the discovery of patterns by this method. For τ = 3, the most

common patterns are New Toy→Manipulating Toy and Smiling→ Laughing, which become

increasingly less common as τ increases. Conversely, the pattern Smiling → Content never

occurs when τ is small, but is quite common when τ is large. Hence one clear advantage of
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Pattern τ = 3 τ = 10 τ = 30

New Toy → Manipulating Toy 107 58 7
Look at Toy → Look at Baby 42 99 105

Smiling → Content 0 78 73
No Toy → Manipulating Toy 27 72 47

Smiling → Laughing 50 25 7
Positive Speech → Positive Speech 38 40 3

Table 2.11: The number of mothers that display various patterns as identified with the
descriptive statistics method. Results are shown for three values of τ .

Number of Patterns 1 2 3 4 5 6 7 8 9 10 11
Number of Mothers 7 6 23 22 18 18 9 7 5 3 3

Table 2.12: Distribution of mothers who exhibited a given number of patterns.

our model over this method is that our model is capable of detecting a pattern regardless of

the optimal τ .

Fitting the RPM Model

For each of the 121 mothers, we fit the Renewal Process Model with exponentially distributed

interarrival times, and using the prior distributions presented in the beginning of Section 4.

For each mother, we identify a set of patterns than she performs as a product of our model.

The degree to which a mother’s behavior is deemed fragmented or unpredictable will be

determined from each mother’s set of pattern. In particular, we calculate several summary

statistics to describe fragmentation, which include the length of the longest repeated se-

quence, the percentage of sequences longer than two events, and the number of different

sequences identified. Note that our definition of fragmented and unpredictable behavior

does not consider whether the actions are positive or negative, but rather only considers the

structure of the behavior through these summary statistics.

The distribution of the three summary statistics we consider can be found in the following

tables: the number of patterns in Table 2.12, the longest pattern in Table 2.13, and the

48



Maximum Pattern Length 2 3 4 5
Number of Mothers 35 75 10 1

Table 2.13: Distribution of mothers who had a given maximum pattern length.

Percentage 0% 1-20% 21-40% 41-60%
Number of Mothers 35 38 42 6

Table 2.14: Distribution of mothers who had a given percentage of patterns that were longer
than two events. The highest percentage was 60%.

percentage of patterns greater than length two in Table 2.14. All three statistics are corre-

lated. In particular, the maximum pattern length and percentage of patterns greater than

length two have a correlation of 0.83. The number of patterns has a correlation of 0.05 with

maximum pattern length, and a correlation of 0.21 with the percentage of patterns greater

than length two.

The simulations of Section 2.4 suggest that individuals with more recorded events are likely

to have more patterns identified. Thus there may be a concern that the number of patterns

that a mother displays may simply be an artifact of how active she was during the ten minute

observation window. However, we did not find that to be the case, as there was no significant

relationship between the number of events and the number of patterns (R = 0.02). Thus,

there is reason to believe that we have been able to identify most of the true patterns.

Pattern Number of Mothers
New Toy → Manipulating Toy 95
Look at Toy → Look at Baby 54

Smiling → Content 36
Instructive Speech → Instructive Speech 25

Smiling → Laughing 23
Positive Speech → Positive Speech 21

Affectionate Touch → Affectionate Touch 17
New Toy → Look at Toy → Look at Baby 7

Table 2.15: The most common patterns discovered in the maternal behavior data using
the Renewal Process Model. The number of mothers who exhibited a given pattern is also
provided (out of a total of 121 mothers).

The sequences that our model detects are largely quite sensible. Examples of detected
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patterns, with the number of mothers (out of 121 total) demonstrating each pattern, can

be found in Table 2.15. The most common patterns are not particularly surprising, and are

similar to the patterns identified with our exploratory data analysis. One might actually

expect these patterns to occur even more often. For example, all the mothers probably play

with toys, or manipulate them in some way, once they select a new toy. However, only about

80% of the mothers actually exhibited this pattern. Most likely, this occurs because the

remaining 20% of mothers did not pick up a new toy often enough during the ten minute

session for our model to detect the pattern. We will return to this point in the next chapter.

Another interesting point is that several of the most common patterns are characterized by

a mother performing the same action repeatedly. For example, an incident of instructive

speech is often followed by another incident of instructive speech and an affectionate touch

is often followed by another affectionate touch. Such bursts of action are interesting to

behavior researchers, though researchers may not characterize them as patterns in the same

sense as other patterns involving different event types. We return to this issue in Chapter 4.

There is still a lot of work to be done with the maternal behavior analysis. For instance,

as mentioned above, we only consider data recorded for children at 12 months old. At the

moment, only the videos for the 12 month old data have been annotated. Once the rest of

the videos have been annotated, considerably more work can be done using RPM to identify,

and validate, fragmented and unpredictable maternal behavior.

The mother-child interaction changes significantly as the child ages, which would significantly

alter the patterns. For example, at 6 months the child cannot walk, so mother-holding-child

events are far more common than later in the child’s life. While the patterns should change,

ideally we expect the characterization of the mother to remain consistent. To this end,

we expect significant correlation across the child’s age for the summary statistics that we

considered above.
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Furthermore, we only consider data for the mother’s actions. Our collaborators are also

recording data for the baby’s actions, which was not available in time for this thesis. The

baby’s actions will often dictate what the mother does, so seemingly random maternal be-

havior may actually be in response to her child. Modeling patterns for the mother while

accounting for the child’s actions will be a future direction for the Conte Center.

2.6 Discussion

In this chapter, we proposed a generative model, the renewal process model, and an inference

procedure for identifying recurring patterns from a stream of events in continuous time. Our

experiments show that our model correctly identifies patterns in simulated data, performs

admirably with increasing complexity, and finds fewer false positives than the current state of

the art algorithm. Furthermore our model identifies both interesting and intuitive patterns

in real data.

However, our current model as discussed in this chapter has several limitations. As witnessed

by our motivating example, behavior data can be very difficult to obtain and thus only exists

in limited quantity. This negatively impacts both inference and pattern detection. In settings

where multiple exchangeable observation sets occur, one possible solution is to pool the data

as part of a hierarchical model, which we discuss in Chapter 3.

While our model makes no distributional assumptions, we only considered Poisson processes

for modeling both the background and sequence processes in our experiments. This may

be a poor model in some applications. In Chapter 4, we consider both parametric and

nonparametric alternatives, and discuss the advantages and disadvantages of the alternatives.

While our model works well in practice, it does suffer from being fairly slow. MCMC is

notoriously slow due to the poor computational cost of sampling and the potentially large
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time required for convergence. While the HMC implementation that we used is relatively fast

for a sampling procedure, an optimization procedure may be preferable. We are currently in

the early stages of designing a mode finding algorithm to identify the most likely patterns,

but will not consider it further in this thesis.

Finally, our model assumes that all background processes are independent, and whatever

dependency might exist is completely accounted by the sequence processes. At the moment,

we have not examined the potential ramifications of this assumption. If this assumption

leads to issues in practice, then alternative models will need to be considered. We do not

discuss this further, however we believe that it is an important future direction for our model.
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Chapter 3

Population Level Pattern Analysis

Chapter 2 develops a model for mother-child behavioral data collected from a single obser-

vation period. However, data is often collected from a set of unrelated actors observed in

similar settings or via repeated observations of a particular actor. One approach in this case

would be to model each series of behavioral events independently. We adopted this approach

when examining the maternal behavior data at the end of the previous chapter. However,

modeling data independently like this can lead to poor inference when there are population

effects that may not be observed in a single observation period.

Patterns that are common across the population may not be evident for certain actors with

limited data, even if the patterns would be detected over a longer observation period. By

grouping the observation sets into a single model, we can pool across the actors to help

identify patterns common across the population, even when they occur insufficiently often

to be identified for a single actor (Gelman et al., 2013). This issue is particularly important

with data such as ours, where converting a video to data is expensive and time consuming,

limiting the amount of available data. Furthermore, the results of Chapter 2 suggest that it is

reasonable to expect similar patterns across the population of mothers, and this assumption
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will likely be valid for other behavioral situations as well.

In this chapter, we propose a hierarchical model to improve inferences by borrowing strength

across actors. The Renewal Process Model of Chapter 2 is applied to each observation period,

with each observation period having unique parameters. Those parameters are then modeled

as elements from a common population distribution. This has a number of advantages, most

notably that we may better identify sequences that tend to exist in the population, but are

not evident in each and every observation period.

Hierarchical models also provide a principled approach to assessing differences between pop-

ulations. The behavior of individuals from different populations often have qualitative differ-

ences, but such differences may be difficult to describe quantitatively. A hierarchical model

will provide population parameters for both populations, which can be compared to assess a

difference in behavior. Populations of interest might include demographic differences (such

as comparing younger and older mothers), or with experimental differences (for instance,

assessing the behavior of individuals after different stimuli).

In Section 3.1, we describe a hierarchical renewal process model for modeling behavioral data.

Section 3.2 develops a specific population model that allows for individuals to exhibit both

unique patterns and patterns common across the population. Our approach to inferences is

described in Section 3.3. Simulated examples are presented in Section 3.4 to illustrate the

power of a hierarchical model. We then apply the hierarchical model to examples from our

motivating study on fragmented maternal behavior in Section 3.5.

3.1 A Hierarchical Renewal Process Model

We consider a hierarchical renewal process model as an alternative to fitting the RPM model

of Chapter 2 independently to each observation period. We consider M different records of
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behavioral observations, and use the subscript m to note quantities relevant to the mth

observation period. For example, we assume that observation m contains of nm behavioral

events.

Denote an observed sequence of events for the mth record as {ti,m, Ei,m}, i = 1, ... , nm.

Then the RPM of Chapter 2 can be applied to the data with ΘBm denoting the background

process parameters and ΘSm denoting the sequence process parameters. As a shorthand for

the model, we write

{ti,m, Ei,m} |ΘBm, ΘSm ∼ RPM
(
ΘBm, ΘSm

)
(3.1)

The hierarchical model assumes that the parameters ΘBm and ΘSm are drawn from population

distributions. We will denote these population distributions as g (·), which are assumed

to depend on population parameters ΘB and ΘS for background and sequence processes

respectively. These parameters represent process parameters for the population, and are

thus indicative of the population level effects. The individual-level parameters are drawn

from the population distributions as such:

ΘBm|ΘB ∼ gB
(
ΘBm|ΘB

)
ΘSm|ΘS ∼ gS

(
ΘSm|ΘS

)
(3.2)

Finally, we assume that the population level parameters are drawn from prior distributions

h (·) that depend on hyperparameters ωB and ωS for background and sequence processes
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respectively. We represent these draws as follows:

ΘB|ωB ∼ hB
(
ΘB|ωB

)
ΘS |ωS ∼ hS

(
ΘS |ωS

)
(3.3)

To make things more concrete, let us consider a single parameter in more detail. For example,

consider the time parameter τ , which must exist no matter the assumed distribution for

interarrival times in RPM
(
ΘBm, ΘSm

)
. For the `th event in sequence s, we are interested in

the individual level parameters τs{`},m. For individual M, this gives the maximum amount

of time for the `th event to occur after event ` − 1 in sequence s. From 3.2, the set of

parameters τs{`},m, m = 1, ...,M are drawn from some distribution τs{`},m|τs{`} ∼ g
(
·|τs{`}

)
.

For example, we can fix f
(
·|τs{`}

)
to be a gamma distributions with parameters as follows:

τs{`},m|τs{`} ∼ gamma
(
c
(
τs{`} + 1

)
, c
)
. (3.4)

This is a gamma distribution with a mode at τs{`}, so the population level parameter rep-

resents the most likely outcome for an individual from the population. The parameter c

controls the amount that the τ parameters may vary in the population. In particular, the

variance is
τs{`}+1

c
, so a large c corresponds to small variance, while a small c corresponds

to large variance. Note that we can use an alternative parameterization with gamma shape

parameter cτs{`} to fix the population mean, rather than the mode, at the population level

parameter τs{`}.

Finally, we must also consider a prior distribution on the population parameters τs{`} and

c. As both of these are strictly positive quantities, we can simply assume they are drawn
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from positive distributions, such as gamma (aτ , bτ ) and gamma (ac, bc) respectively. The

parameters for both these distributions are determined by the researcher in practice to

reflect whatever prior information is known.

3.2 Population Distributions for Sequence Processes

The population model described in the previous section assumes that the parameters for all

individuals in the population are drawn from the distribution g (·). The distribution g (·) can

be very different for background and sequence processes. It is natural to assume background

processes are always present so g (·) would describe the distribution of the rate parameter.

However, for sequence parameters, a given pattern may only be observed in a fraction of the

population, so any specific sequence process parameter would only be present in that fraction

of the population. Thus we want to consider a population distribution for the sequence

process parameters that conforms to this assumption. The results of our study of maternal

behavior in Chapter 2 supports this approach. Patterns such as smiling→content were

common throughout the mothers, indicating that these are widespread in the population.

However, other patterns were exhibited by only a few mothers, and these may be difficult to

identify in a population model.

Our expectation is that a given sequence is present in some of the population, but not in the

rest of the population. We accommodate this by assuming the population distribution g (·)

for the sequence process parameters is a mixture of two distributions: the first corresponding

to the portion of the population where the sequence is present, and the second corresponding

to the other portion.

In this chapter, we again assume that the renewal processes for all individuals have expo-

nentially distributed time increments. Hence each sequence process is characterized by a
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rate parameter, which controls how often the corresponding sequence process occurs. For a

given sequence process s and individual m, denote the rate parameter for the `th event in

the sequence as θs{`},m. For individuals who display the sequence, θs{`},m is drawn from a

population distribution gs (·) that depends on population parameters Θs{`}. Otherwise, we

assume that the pattern may be present, but rare, for individual m and thus assign a second

population distribution gs0 (·) with heavy mass near zero.

We denote the weight for the nonzero portion as ps, where 0 < ps < 1, and thus the weight

for the zero portion is 1 − ps. We refer to ps as the prevalence parameter, indicating the

percentage of the population expected to display pattern s during a sequence of events. The

resulting population distribution is then

θs{`},m|Θs{`} ∼ psg
s
(
·|Θs{`}

)
+ (1− ps) gs0 (·) (3.5)

For example, we can consider a mixture model where one component is a gamma distribution

with mean θs{`} and the other is a gamma distribution with mode equal to zero and small

variance. We note that a gamma distribution with shape parameter α and scale parameter

β will have a mode or asymptote of 0 if α−1
β

< 0. An example of this distribution can be

seen in Figure 3.1. The population distribution for this example would then be

θs{`},m ∼ ps gamma
(
cθs{`}, c

)
+ (1− ps) gamma (α, β)

θs{`} ∼ gamma (a, b)

(3.6)

where α−1
β

< 0, and a and b are hyperparameters chosen by the researcher to reflect whatever

prior knowledge exists.
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Figure 3.1: The population level prior distribution that we consider for the sequence process
rates. It is a mixture model with two components, one near zero indicating no pattern is
present, and one centered around a nonzero rate.

In addition to providing the population prevalence, we can also determine the likelihood that

a sequence exhibits a given pattern by examining the posterior distribution of θs{`},m. When

the posterior distribution of θs{`},m is concentrated close to 0, then we can conclude that the

actor either does not exhibit pattern s or exhibits it only rarely.

3.3 Inference

Our inference procedure for the hierarchical renewal process model is similar to the inference

procedure described in the previous chapter. To build the posterior distribution, first recall

the form of the likelihood for a single individual m: L (t, E|Θ) =
∏nm

i=1 fti,m, Ei,m
(t, e). Hence

the likelihood for the entire sample of mothers is L (t, E|Θ) =
∏M

m=1

∏nm

i=1 fti,m, Ei,m
(t, e).

Finally, define the entire parameter space Θ as Θ =
{

ΘBm,Θ
S
m,m = 1, ...,M,ΘB,ΘS , ωB, ωS

}
.
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Then the posterior distribution is proportional to the following quantity:

P (Θ|t, E) =
M∏
m=1

nm∏
i=1

fti,m, Ei,m
(t, e) gB

(
ΘBm|ΘB

)
gS
(
ΘSm|ΘS

)
hB
(
ΘB|ωB

)
hS
(
ΘS |ωS

)
(3.7)

We again consider the No-U-Turns Sampler (NUTS) for sampling from the posterior dis-

tribution, with birth-death process steps occurring every several iterations of sampling to

explore the space of all possible patterns.

The birth-death process we consider for the hierarchical model has some slight modifications

from what we considered in the previous chapter. Most notably, when adding a pattern

during the birth step, we add the pattern for all individual observation periods. However,

this creates a problem when the pattern is only exhibited by a small number of individuals,

as the negative impact for the other individuals is likely to overshadow whatever positive

impact there is for the posterior distribution. One approach to addressing this issue is to

propose a small rate parameter (near zero) when adding a new sequence. This provides an

opportunity for the data to provide information on prevalence. For example, if we expect

the rate of a pattern to be around 0.1 to 1.0 (this is a typical range for rate parameters in

the mother-child data), we could propose a rate about a magnitude lower, such as 0.01. For

individuals who exhibit the pattern, this is generally provides enough signal not to remove

the pattern, while not significantly negatively affecting the likelihood for the individuals who

do not exhibit the pattern.
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3.4 Experiments

In this section we consider several simulation studies to experiment with the accuracy and

applicability of the hierarchical RPM model.

3.4.1 Efficacy of the Hierarchical Renewal Process Model

We first explore the hierarchical model with a simulated data set of ten individuals and

four sequence processes. We vary the number of events per individual to assess whether

the hierarchical model affects small data individuals differently than large data individuals.

The total number of events per individual is drawn from a negative binomial distribution

with mean 4.5 ∗m for m = 1, ..., 10. This ensures that the individuals range from very few

events to over 500, which is consistent with our maternal data. In this initial experiment,

all ten individuals perform all four possible sequences, and hence each sequence process

has a prevalence of one. All patterns contain only two events. All renewal processes have

exponentially distributed time increments.

Throughout our experiments and the data analysis in the following section, we will fix

the prior distribution for the sequence rate parameters to follow Equation 3.6 with fixed

c = 1. The prior distribution for the population rate parameters will be an exponential

with rate one. The prior distribution for the individual level time parameters τm will be

a gamma distribution centered at the population level τ , which will have a gamma(2, 0.2)

prior distribution, following from the results of Chapter 2.

In this scenario, we consider a total of 20 possible event types. The population rates for the

corresponding background processes have rates of either 0.1 or 0.2. The background rates for

individuals are sampled from a normal distribution centered around the population rate, with

a standard deviation of 0.02. This means that in addition to the 20 background processes,

61



Rate λs Max Time τs
Truth CI Truth CI

1→2 0.16 (0.15, 0.22) 2.01 (1.94, 2.81)
2→6 0.23 (0.17, 0.24) 2.49 (2.14, 2.95)
3→4 0.18 (0.18, 0.30) 2.49 (2.46, 3.12)

11→12 0.25 (0.25, 0.40) 3.05 (2.54, 3.08)

Table 3.1: Population parameters for the four patterns. All four patterns are assumed to
occur for each simulated mother, hence no prevalence parameter.

we consider a total of four sequence processes. The population rates and population τ

parameters for each of these processes can be found in Table 3.1. The individual level

sequence rates are drawn from a normal distribution centered at the population rate with

a standard deviation of 0.02. The maximum time parameter for each individual is also

drawn from a normal distribution centered at the population parameter, but with standard

deviation 0.5.

Our model performs well in this instance, with all patterns successfully identified. We will

first consider the results of the hierarchical model, and then compare them against the

individual-level results at the end of this section. Using the MCMC samples, we calculated

95% credible intervals for the population parameters, which appear in Table 3.1. The results

are very promising, indicating successful estimation of the population parameters.

As a second example, we vary this simulation to include prevalence values under one. Each

of the four patterns is given a prevalence between 0.5 and 0.8, indicated in Table 3.2, so

that each individual does not exhibit all four patterns. All model parameters are determined

exactly as in the previous simulation experiment.

The model performs well in this scenario as well, and successfully identifies all four patterns.

We again calculated 95% credible intervals for the population parameters, which can be

found in Table 3.2. Again, the credible intervals look good, and perhaps most importantly,

the model appears to accurately model the prevalence of each pattern.
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Rate λs Max Time τs Prevalence ps
Truth CI Truth CI Truth CI

1→2 0.16 (0.13, 0.17) 2.01 (3.27, 4.04) 0.6 (0.57, 0.63)
2→6 0.23 (0.21, 0.26) 2.49 (3.09, 4.02) 0.5 (0.46, 0.54)
3→4 0.18 (0.15, 0.21) 2.49 (2.04, 2.74) 0.7 (0.71, 0.79)

11→12 0.25 (0.29, 0.34) 3.05 (3.07, 4.16) 0.8 (0.79, 0.86)

Table 3.2: Population parameters for the four patterns. All four patterns are no longer
expected to occur for each mother, thus we estimate the prevalence of each pattern.

In addition to the population parameters, we want to see the effect of the hierarchical model

on the individual level parameters. In particular, we generated the data such that individuals

would range from almost no data to over 500 data points. For these simulations, the lowest

amount of data for an individual was 25 data points, ranging to 500 at the maximum. For

individuals with little data, we expect that the estimates, for both background and sequence

processes, would be poorly estimated for an individual level model as described in Chapter

2.

Because of this, we demonstrate the effect of partial pooling across the population on a

selection of individual level rates. In particular, we consider the background rate for event

type 1, and the sequence rate for the sequence 3→ 4.

For each of the ten simulated individuals, we recorded parameter estimates for the back-

ground and sequence processes. We then compared these estimates with the estimates ob-

tained using the hierarchical model. The results for the background rate of type 1 events

can be seen in Figure 3.2. In addition to the individual and hierarchical model results, the

true parameter values were also plotted. In most cases, there was clear evidence of shrinkage

towards the true values. The number of total events, and the number of type 1 events, are

both indicated. Some level of shrinkage is displayed, even for the simulated individuals with

relatively more data. Data containing about 500 events is comparable to the mothers with

the most data in our application, so we can assume that shrinkage is expected for most

mothers in our data set.
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Figure 3.2: Estimates (posterior mean) for the background rate parameter of the type 1
event. The figure includes results from the individual level analysis (left), results from the
hierarchical model (middle), and the true parameters (right). Most parameters display some
level of shrinkage under the hierarchical model. The number of total events, as well as the
number of type 1 events, are indicated on the far left.

Similarly, the results for the sequence process rate can be found in Figure 3.3. Out of the

ten simulated individuals, three of them never displayed the pattern. Unsurprisingly, the

individual-level RPM was unable to identify the pattern. For the hierarchical model, these

individuals had low rates, though due to limited data and a pooling effect, the rates were

much larger than the true value of 0.001. However, there is still clear separation between

these three and the rest of the simulated individuals, as we would expect.

In addition, two individuals displayed the sequence rarely enough that the individual model

was unable to identify it. However, for both of these individuals, the hierarchical model

was able to estimate rates much higher than the three no-pattern individuals, displaying

a successful pooling effect. These two individuals, who had a limited amount of data but

displayed the pattern nonetheless, clearly benefited from the hierarchical model.

Of the five simulated individuals where the standard individual-level RPM successfully iden-
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Figure 3.3: Estimates (posterior mean) for the sequence rate parameter for the 3 → 4
sequences. The figure includes results from the individual level analysis (left), results from
the hierarchical model (middle), and the true parameters (right). Most parameters display
some level of shrinkage under the hierarchical model. The number of total events, as well as
the number of patterns, are indicated on the far left.

tified the sequence, the hierarchical RPM displayed clear shrinkage for two of them, and a

similar value for the other three. For these individuals, who had more data and displayed the

pattern more often, the hierarchical model had less of an effect, though it was still positive.

3.4.2 Detecting Sequences with Varying Levels of Prevalence

While the model performed well with varying prevalence, we would like to get a better idea

of how prevalence affects model selection. For this task, we consider a simpler model, with

only 10 events types and only one pattern, but with a larger sample of 100 individuals.

To gauge the effect of prevalence, we vary the prevalence parameter for the patterns from

0.1 to 0.9 in increments of 0.1. The population-level background rates (λBG = 0.1) and

the population-level sequence rate (λS = 0.2) were held constant for each of the different

prevalence scenarios. These values were specifically chosen so that the pattern would eas-
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Prevalence 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Percentage 0.02 0.05 0.19 0.42 0.60 0.89 0.97 0.99 0.98

Table 3.3: For each of nine different simulation scenarios, each with a different prevalence
level, 100 simulations were run. The percentage of times a pattern was discovered out of
total of 100 simulations is displayed. with varying levels of prevalence.

ily be discovered with high prevalence, thus limiting the effect of rates on the simulation

experiment.

For each prevalence value, we simulate 100 data sets, each comprised of 100 simulated in-

dividuals. The percentage of time that the pattern was discovered is included in Table 3.3.

For scenarios where the prevalence of a pattern was over 0.6, the patterns were successfully

detected most of the time. However, pattern detection degrades quickly as prevalence de-

creases. For prevalence values between 0.4 and 0.6, the pattern was detected roughly half of

the time, and for prevalence values below 0.4, the pattern was rarely, if ever, detected.

This could be due to a number of reasons. The hierarchical model may not give much support

to rare patterns, making detection difficult. The more likely cause is due to poor parameter

proposals in the birth step. For rare patterns, if the birth step gives a large parameter value

to a sequence that never occurs for a mother, it has a significant impact on the likelihood.

When there are few mothers who actually display this pattern, a few poor proposals could

negatively affect the posterior distribution, so the pattern quickly is removed in a death step.

We are currently working on alternative proposal distributions for the birth step.

3.5 Maternal Behavior Analysis Revisited

In Chapter 2 we focused on data from human mothers interacting with their children. The

Conte Center research program includes both human and animal studies. We can apply the

hierarchical model in humans, and do so below. However, this is challenging because we do
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not have information about population heterogeneity with respect to fragmentation. Thus

the appropriate population distribution is not obvious. In animal studies it is possible to

induce fragmented maternal behaviors. Thus we have two clear populations, so we can fit

the hierarchical RPM to both and compare results.

3.5.1 Rodent Maternal Behavior Analysis

In addition to the human behavioral data that we examined in Chapter 2, we also have

rodent behavioral data. This data comes from observations of mother rats (dams) caring for

their offspring (pups) over a series of days. Rats were observed from days two through nine

after the birth of the pups, which roughly corresponds to the period of early childhood in

humans. Each rat was observed for two hours each day, for a total of 16 hours of observation

per rat. A total of seven possible behavioral events were recorded for the dams: carrying

pups (C), eating (E), nursing (N), self grooming (SG), licking or grooming the pups (LG),

nest building (NB), and off pups (O). Off pups indicates the dam is not attending to the

pups and not otherwise engaged in a behavior of interest.

To induce fragmentation, select dams were only given a single sheet of paper for bedding.

This provides the dam with inadequate bedding, causing her behavior to become erratic.

Ultimately, pups raised in a fragmented environment display negative outcomes. The control

dams are given adequate bedding, and thus display normal maternal behavior. Furthermore,

the offspring for the control mothers have been shown to display better outcomes.

The sample that we consider has a total of 12 rats: six raised their pups in a control

environment, and six raised their pups in a fragmented environment. All have 16 hours of

observation. For each of the two populations (control and fragmented), we fit the hierarchical

model assuming exponentially distributed time increments. We consider the same prior

distributions as those outlined in the simulation experiments, with one exception. Because
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Control Fragmented
Event Rate 95% Cred. Int. Rate 95% Cred. Int.

C 0.18 (0.13, 0.25) 0.29 (0.25, 0.32)
E 0.35 (0.29, 0.46) 0.34 (0.30, 0.40)

LG 0.37 (0.32, 0.43) 0.36 (0.24, 0.43)
N 0.35 (0.22, 0.48) 0.50 (0.44, 0.58)

NB 0.24 (0.21, 0.29) 0.36 (0.32, 0.41)
O 0.69 (0.55, 0.89) 0.64 (0.57, 0.74)

SG 0.49 (0.38, 0.66) 0.60 (0.48, 0.79)

Table 3.4: The population-level background rate parameters for all events in both control
and fragmented rats. Both the posterior mean and 95% credible interval are included. There
is overlap in the credible intervals for all events but nest building, indicating that the rates
are relatively similar.

the rats have much larger time between events than the humans do, the population level

prior distribution is set as a gamma distribution with shape 2 and scale 0.02.

Parameter estimates (posterior mean and 95% credible interval) for the background process

rates can be found in Table 3.4. The background rates for each of the seven event types

were similar for the two groups, though a number of events (nursing, carrying pups, and nest

building) appear to occur at a higher frequency in the fragmented rats.

The same six patterns were discovered for both the control and fragmented rats. For all six

parameters, population prevalence was nearly one, indicating that all the rats displayed each

pattern. The estimates (posterior mean) for the population level sequence process rates are

displayed in Table 3.5, and the estimates for the maximum time parameters τ can be found

in Table 3.6. The sequences themselves are displayed in both tables.

The maximum times for each pattern are comparable between control and fragmented rats.

However, the population sequence process rates are uniformly larger for the control rats

than the fragmented rats. Because the maximum time parameters are comparable, higher

sequence process rates indicate that the patterns occur more frequently. Thus the control

and fragmented rats display the same patterns, but the patterns occur more often in control
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Control Fragmented
Patterns Rate 95% Cred. Int. Rate 95% Cred. Int.
SG→O 0.33 (0.25, 0.42) 0.05 (0.03, 0.06)
O→E 0.21 (0.17, 0.24) 0.15 (0.12, 0.19)

LG→N 0.25 (0.16, 0.29) 0.09 (0.07, 0.10)
O→SG 0.17 (0.14, 0.21) 0.05 (0.04, 0.05)

NB→NB 0.10 (0.07, 0.13) 0.08 (0.07, 0.09)
SG→LG 0.10 (0.08, 0.13) 0.07 (0.06, 0.08)

Table 3.5: The population-level sequence process rate parameters for all patterns in both
control and fragmented rats. Both the posterior mean and 95% credible interval are included.
The rate parameters for the control rats are uniformly larger, indicating that the patterns
occur more often.

Control Fragmented
Patterns Time 95% Cred. Int. Time 95% Cred. Int.
SG→O 223 (177, 357) 307 (272, 355)
O→E 328 (234, 430) 233 (200, 263)

LG→N 320 (268, 370) 192 (154, 237)
O→SG 371 (300, 449) 450 (322, 543)

NB→NB 428 (311, 542) 412 (346, 511)
SG→LG 244 (185, 310) 342 (271, 402)

Table 3.6: The population-level sequence process time parameters for all patterns in both
control and fragmented rats. Time indicates the maximum amount of time between events
in a sequence in seconds. Both the posterior mean and 95% credible interval are included.
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Pattern Prevalence Ind. Model Percentage
New Toy → Manipulating Toy 0.86 0.79
Look at Toy → Look at Baby 0.79 0.45

Smiling → Content 0.68 0.30
Smiling → Laughing 0.65 0.19

Positive Speech → Positive Speech 0.57 0.17
Pointing → New Toy 0.42 0.11

Table 3.7: Each of the six patterns discovered by the hierarchical model. The prevalence
column is the posterior mean of the prevalence parameter. The individual model percentage
refers to the percentage of mothers, out of 121, who displayed that pattern according to the
individual level RPM from Chapter 2.

rats. This allows us to consider a new hypothesis; that pattern frequency, in addition to

complexity, may be an important indicator of the level of fragmented behavior.

3.5.2 Human Maternal Behavior Analysis

We next apply the hierarchical renewal process model to the human mother-child behavior

data. As a first step we apply the hierarchical model to all 121 mothers in our data set,

treating them as coming from a single population. The prior distributions we chose for

this analysis follow directly from the ones used in Section 4. A total of six patterns were

discovered, which are displayed in Table 3.7. All of the detected patterns are fairly common

patterns from the individual level model. In addition to the patterns themselves, the table

also displays hierarchical model prevalence and the percentage of mothers who exhibited the

pattern under the individual level model.

Prevalence was higher than the individual level percentage for all patterns. This indicates

that for each pattern, there seem to be mothers who display the pattern, but not often

enough for it to be detected from the individual level model alone. It is possible that other

patterns exist, but as shown in our simulation results, the ability for our model to detect

them degrades as the prevalence decreases.
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Figure 3.4: Estimates (posterior mean) of the background rate parameter for Instructive
Speech. The figure includes results from the individual level analysis (left) and results from
the hierarchical model (right). Most parameters display some level of shrinkage under the
hierarchical model.

In addition to better pattern detection, the hierarchical RPM is also capable of improved

inference. The estimated rate parameters (posterior mean) for the Instructive Speech back-

ground event are plotted in Figure 3.4. Estimates from both the individual level RPM and

the hierarchical RPM are included. As expected, some level of shrinkage occurs across the

sample. This particular event is fairly common, hence the relatively modest shrinkage effect.

Shrinkage results for one of the sequence process rate parameters can be found in Figure 3.5.

In particular, we consider the pattern New Toy→Manipulate/Play with Toy. The individual

level model discovered this pattern for 95 out of 121 mothers. Of the 26 mothers where the

pattern was not detected, the rate is increased from zero but remains small. However, the

distinction between mothers who display the pattern and those who do not, according to

the individual model, is blurred by the hierarchical model. The pattern does seem to occur

in the data for some of these mothers, but not often enough for the individual model to

properly detect.

Unlike the rodents, there is no natural way to split the human mother-child pairs into two or
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Figure 3.5: Estimates (posterior mean) of the sequence rate parameter for the pattern
New Toy → Play with Toy. The figure includes results from the individual level analysis
(left) and results from the hierarchical model (right). The rates are generally smaller for the
hierarchical model than the individual model. The mothers who did not appear to display
the sequence from the individual model results have estimated rates that indicate the pattern
might actually occur, just not as often.

more subpopulations. We have split the mothers into mothers of boys and mothers of girls,

and run the hierarchical RPM on both groups. However, there were no apparent differences

between the two groups. Our collaborators have suggested using depression (high and low

depressive symptoms) as well as parity (nulliparous and multiparous mothers, or mothers

with no previous children and mothers with previous children). This is currently an active

area of research.

3.6 Discussion

In this chapter, we presented a hierarchical renewal process model, allowing us to generalize

our model to obtain population level inferences. We consider a specialized population dis-

tribution for sequence process rates, which incorporates pattern prevalence into our model.

This allows patterns that exist widely across the population, but not in all individuals, to
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be found by our model. The model performed well on simulation data, and helped to reveal

interesting information about different populations of rodents. Our work with the human

mothers is ongoing.

However, the hierarchical model does suffer from issues similar to those for the individual

level model. In particular, efficient exploration of the posterior distribution is critical. As the

number of mothers included in the model increases, the MCMC scales poorly. Our current

inference procedure works well, but room for improvement certainly exists.
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Chapter 4

Renewal Processes with General

Probability Distributions

A renewal process is completely characterized by the distribution of the interarrival times.

Different distributions will result in data with different properties, which is important to

consider when attempting to model behavior. The probability distribution governing inter-

arrival times can be specified via the density, distribution, survival or hazard function. We

focus primarily on the hazard function because the likelihood of the renewal process model

is easiest to describe using the hazard functions of the underlying renewal processes, as seen

in Equation 2.10.

The Poisson process models that have been used in the analyses for Chapters 2 and 3 assume

exponentially distributed interarrival times. The exponential distribution has a constant

hazard rate, which means the likelihood of an event occurring, given that is has not yet

occurred, remains constant at any point in time. This is known as the memoryless property,

and an example of data generated from a Poisson process can be seen in the bottom row of

Figure 4.1.
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Figure 4.1: The plot shows simulated data from three distributions:

1. Data occurs haphazardly, with little structure (constant hazard).

2. Data is subject to bursts, with long periods between bursts.

3. Data occurs regularly, with little variance.

However, this may be a poor assumption in some cases. For example, some behaviors may

occur in bursts, where the same action is performed repeatedly in a short time window, and

then not performed again for a longer period of time. A renewal process with an interarrival

distribution that has this patten is illustrated in the middle row of Figure 4.1, to compare

against the Poisson process in the bottom row.

Another possible example of non-exponential data are behaviors that are performed cycli-

cally. Some behaviors, such as eating, often occur at similar times throughout the day, so the

interarrival times are relatively consistent. In such instances, once the behavior is performed,

it will be performed again predictably after some lag period. Again, this is poorly modeled

with the exponential distribution. An example of data illustrating this type of behavior is

included as the top row of Figure 4.1.

Other distributions for interarrival times are also possible. We would like our model to
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adapt to such variation to correctly model the behaviors of the background processes, and

to ensure patterns are successfully discovered. In the following section, we discuss a number

of parametric interarrival distributions, and the shapes of the corresponding hazards. In

Section 4.2, we discuss a nonparametric alternative that allows for a more flexible class of

hazard shapes. We explore the use of different interarrival distributions for simulated data in

Section 4.3, and for our maternal data in Section 4.4. Finally, we conclude with a discussion

of the use of different interarrival distributions. Note that in this chapter, we only consider

alternative distributions for the time increments of background processes, though we hope

to consider such alternatives for sequence processes in the future.

4.1 Parametric Renewal Processes

We first generalize from the Poisson process model of Chapters 2 and 3 by considering a

number of families of parametric hazard functions. While these models are not as general

as the nonparametric models that are considered in the following section, the parametric

models are simple to implement, well understood, and can conform to a variety of shapes

of hazard functions. There are several possible parametric distributions to consider in this

setting, including the Weibull, gamma, and lognormal distributions (Klein & Moeschberger,

2003). In this section, we discuss the advantages and disadvantages of these distributions.

The Weibull distribution is widely used for time to event models due to its flexibility and

simple parametric form. The Weibull distribution has two parameters, a shape and a scale

parameter, and includes the exponential distribution as a special case when the shape pa-

rameter is equal to one.

The hazard function of the Weibull distribution can be either decreasing, flat, or increasing,

see Figure 4.2. When the shape parameter is less than one, the hazard is monotonically
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Figure 4.2: The different shapes of the Weibull hazard function: Constant, Decreasing, and
Increasing.

decreasing. This indicates a higher likelihood for events soon after an event has occurred,

similar to the bursts example described above. When the shape parameter is greater than

one, the hazard is monotonically increasing. This indicates that the likelihood of a successor

event increases as more times passes without the event occurring. We explore the use of the

Weibull distribution as an alternative for the exponential distribution in the experiments

section of this chapter.

The gamma distribution can also support a monotonically increasing, decreasing, or constant

hazard function, as seen in Figure 4.3. However, both the survival and hazard function of

the gamma distribution are analytically intractable. This means they need to be solved

numerically, decreasing their practicality for our approach.

Parametric distributions that have hazard functions with non-monotonic shapes, unlike the

Weibull and gamma distributions, are also interesting for our purposes. For instance, the

hazard function for the lognormal distribution increases from 0 to a maximum, before de-
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Figure 4.3: The different shapes of the gamma hazard function: Constant, Decreasing, and
Increasing.

creasing. Some sample hazard shapes for the lognormal distribution can be seen in Figure

4.4. Such hazard functions may be of great interest in behavior, such as in the cyclic be-

havior example. We refer to these hazard shapes as upside down bathtub shapes. However,

using the lognormal for behavior modeling is restrictive because its hazard function does

not generalize well beyond the upside down bathtub hazard shapes. We will not explore

modeling with either the gamma or the lognormal distribution in the following sections.

If we want maximum flexibility in a parametric family, then there are two options. One is

to use even more general parametric distributions. These generally have intractable hazard

functions or are difficult to model. A second possibility is to consider mixture models,

such as a finite mixture of Weibull distributions, which allow a general form for the hazard

function. Furthermore, we could consider a Dirichlet process mixture process for a fully

nonparametric approach (Kottas, 2006). While this approach is viable when considering the

survival distribution, modeling the hazard of a mixture model analytically is more difficult.
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Figure 4.4: The different shapes of the lognormal hazard function: Constant, Decreasing,
and Increasing.

4.2 Non Parametric Renewal Processes

Determining the most appropriate probability distribution a priori for modeling renewal pro-

cesses is difficult. To avoid the need to choose between several potential distributions, such as

the examples described in the previous section, we now consider one possible nonparametric

approach for constructing hazard functions.

To achieve this goal, we consider modeling the hazard function as a step function. Step

functions were chosen due to their simplicity and the fact that they can easily be implemented

in our modeling framework. Step functions can model commonly considered shapes such as

decreasing, flat, and increasing hazards, as well as bathtub and upside down bathtub hazard

functions.

We next develop the notation for a general step-based hazard function. The interarrival

times ti occur according to a distribution on the positive real numbers. We partition the
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time axis into K intervals at jump times 0 < ξ1 < ξ2 < ... < ξK , and for the interval

[ξk−1, ξk), we set the hazard rate to be a constant λk. The jump times can either be fixed a

priori or treated as unknowns. The hazard function is thus given by

λ (t) =
K∑
k=1

λkI[ξk−1, ξk) (t) (4.1)

To define the cumulative hazard function at t requires that we identify the step in which t

lies, which we denote as step φ. Suppose that ξφ−1 < t < ξφ so that t in in step φ. We can

define the cumulative hazard function as

Λ (t) =

∫ t

0

λ (u) du

= λφ (t− ξφ−1) +
∑
k: ξk<t

λk (ξk − ξk−1)
(4.2)

Furthermore, from this we can define the survival function as S (t) = exp (−Λ (t)) and the

density function as λ (t) exp (−Λ (t)).

This model is especially convenient when calculating the density of interarrival times and

events for our model. Recall the density that formulates the Renewal Process Model likeli-
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hood, as presented in Chapter 2, is:

fti, Ei
(t, e)

= (λe (t) + λe (t))
J∏
j=1

S̄j (t)
K∏
k=1

Ṡsk (t) 1(t<τsk)

+ λe (t)
J∏
j=1

S̄j (t)
K∏
k=1

Ṡsk (τ) 1(t>τsk).

(4.3)

Now we can simply replace all the survival functions in (4.3) with S (t) = exp (−Λ (t)), where

Λ (t) is defined as in (4.1). Furthermore, we note that λ (t) is equal to exactly one of the

values of λk in (4.1): the one corresponding to step φ, λφ.

Such a model has other advantages as well. With a large number of steps, any smooth

function can be approximated to a desired precision. Using a large number of steps is

computationally expensive. However, even with a small number of steps, a wide variety of

hazard shapes can be estimated. Both increasing and decreasing hazard functions can be

modeled with only two steps. The bathtub and upside down bathtub hazard functions can

easily be modeled with three steps.

The shape of the step function is dictated both by the number of steps, as well as the height

of the steps λk. We next consider a probability model for the step heights. One approach

is to model the step heights as independent random variables a priori, such as in Walker &

Mallick (1997),where the prior distribution for each λk is an independent gamma random

variable. However, the independence assumption implies the height of a step is unrelated

to the height of neighboring steps. This is clearly a poor assumption if we assume that

the hazard functions are relatively smooth. While no step function will be able to model

a smooth function perfectly, we can consider an alternative prior distribution for λk that
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allows for a notion of smoothness between the steps.

A Markov gamma process for the prior distribution on the hazard rates λk proves useful

for smoothing the step function (Nieto-Barajas & Walker, 2002). The following description

of the prior distribution follows almost entirely from Nieto-Barajas & Walker (2002). We

no longer assume the hazard levels λk are independent, but instead assume the levels are

related according to a Markov process. First, we set the prior distribution on the initial

hazard rate as λ1 ∼ gamma (a1, b1). Then, the approach we use introduces a latent process

{µk : k = 2, ... , K} that depends on hyperparameters {ak, bk, ck : k = 2, ... , K}. Hyperpa-

rameters ak and bk can be interpreted as providing prior information for the location of λk,

with E (λk) = ak
bk

. The ck hyperparameters dictate the smoothness of the hazard functions,

which we describe below. The process {µk : k = 2, ... , K} is defined as:

µk−1|λk−1 ∼ Poisson (ckλk)

λk|µk−1 ∼ gamma (ak + µk−1, bk + ck)

k = 2, ... , K

(4.4)

When ck = 0, the prior process reduces to independent gamma distributions. For large ck,

E (λk|λk−1) ≈ λk−1, and V ar (λk|λk−1) ≈ 2λk
ck

which means that the λks tend to a constant,

forcing an exponential model.

Thus the larger the value of ck, the more the distribution of λk depends upon λk−1. We

refer to ck as a smoothness parameter which dictates how close λk and λk−1 will be to each

other. The parameter ck can also be thought of a prior sample size, though in this case it is

a sample size that dictates the strength of the influence of λk−1 on the distribution of λk.

Figure 4.5 displays several examples of the step function for different values of ck. In this
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Figure 4.5: Simulated step functions plotted for various values of the smoothness parameter
c.

example, the values of ck are equivalent for all k, so we will denote the parameter as c. In

each plot, we simulated the step function using the Markov gamma process. On the top

left, c = 0.1, and the steps appear roughly independent. For c = 1000, on the bottom

right, the steps are all roughly equivalent, implying a nearly constant hazard function. For

c = 10, shown on the bottom left, there appears to be an interesting shape to the hazard

function, with some notion of smoothness. In our experiments that follow, we will fix c = 10,

though allowing c to be random may be an interesting future direction with model selection

implications.

An advantage to this Markov process prior is that it is possible to describe the posterior

distribution for a single renewal process. First, we can describe the prior distribution of λk

dependent on both the preceding and succeeding values in the latent process, which is also

a gamma distribution:

λk|µk, µk−1 ∼ gamma (ak + µk−1 + µk, bk + ck−1 + ck) . (4.5)
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Now we can describe the posterior distribution for a single renewal process, such as the

background process for a single event type. First, we need to introduce some statistics that

depend on the data. Let nk denote the number of observations in the interval [ξk−1, ξk].

Additionally, define mk =
∑

i rki where

rki =


ξk − ξk−1 ti > ξk

ti − ξk−1 ξk−1 < ti < ξk

0 else

(4.6)

Given these statistics, we can now derive the posterior distribution as yet another gamma

distribution:

λk|µk, µk−1, data ∼ gamma (ak + µk−1 + µk + nk, bk + ck−1 + ck +mk) . (4.7)

If no data exists in the interval [ξk−1, ξk], then the distribution of λk is determined by the

prior distribution and the rates of the neighboring partitions. Thus even with an arbitrarily

large number of partitions, all the steps will still exhibit some smoothness even with no data,

which is a significant improvement over the independent steps model.

Once applied to our full model with sequence processes included, the posterior is not repre-

sented as easily, though it retains a similar form.

We also note that by letting the time intervals [ξk−1, ξk] collapse to 0, the discrete Markov

gamma process described above converges to a continuous variant, specifically a Levy pro-

cess kernel mixture model (Nieto-Barajas & Walker, 2004). While such a model is more
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generalizable than our discrete approximation, it is much more difficult to sample from that

model. In particular, it is necessary to simulate the Levy process every iteration. We do not

consider this alternative, though it is possible to consider it as a future direction.

4.3 Experiments

We consider the results of a variety of simulations to determine the effect of using different

probability distributions for the time increments. The primary aims of this section include

to demonstrate the efficacy of our nonparametric model, to demonstrate how well the various

parametric and nonparametric distributions perform, and to examine the robustness of the

RPM model results against a change in the assumed interarrival distribution.

For our experiments, we consider data that contains only background processes. We consider

four different hazard function types: exponential, Weibull with increasing hazard, Weibull

with decreasing hazard, and lognormal (upside down bathtub hazard). Throughout this

section we fit our model assuming that the interarrival times for the sequence processes are

exponential. For all experiments, the prior distributions for the sequence process parameters

follow directly from those used in Chapter 2.

4.3.1 Effectiveness of the Nonparametric Model for Point Process

Data

We first demonstrate that our nonparametric model is capable of approximating various haz-

ard functions. For each hazard type, we simulate a renewal process whose interarrival times

are distributed according to the respective distribution. In this initial study, we do not con-

sider multiple event types, but just a single renewal process. We fit each parametric renewal
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process with a nonparametric renewal process, to demonstrate how well the nonparametric

hazard estimates the parametric one.

We simulate a total of n = 500 data points per renewal process. The parametric distributions

that we consider are an exponential (scale/rate 1), a decreasing hazard Weibull (shape 0.5

and scale 1), an increasing hazard Weibull (shape 2 and scale 1), and a lognormal (log

mean 3.9 and log standard deviation 0.55). We approximate each hazard shape with a step

function hazard that has a fixed number of steps. In this case, we fix the number of steps

at eight.

The results can be seen in Figure 4.6. The posterior distribution for each hazard function

is plotted along with the true value. As seen in the figure, this method does a good job

of approximating the true hazard function, as the steps generally contain the true hazard

function. For the exponential case, the samples for each step have overlapping ranges that

seem to approximate the constant hazard well. For the decreasing hazard, the sample for

the leftmost step have a large range but a short step length, thus well approximating a steep

shape, and the following steps generally decrease. For the increasing hazard, the step heights

are generally increasing, with increasing variance in the range reflecting the decrease in the

amount of observed data. Finally, the lognormal demonstrates a steep increase, followed by

a roughly flat region, before decreasing again.

4.3.2 Fitting Different Distributions

In this section, we explore fitting the Renewal Process Model to data generated from a range

of distributions for the background process time increments. In this section, we return to

the scenario of several background processes, where our goal is pattern discovery. We will

discuss fitting the exponential, Weibull, and nonparametric model in cases where they are

both properly specified, and misspecified.

86



Figure 4.6: The results of fitting our nonparametric model for varying hazard functions.
The red line indicates the true hazard. The black lines are sampled draws from the posterior
distribution of the hazard function.
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Figure 4.7: Simulated data that incorporates a variety of background processes with differing
hazard functions, along with four different sequence processes.

For each case, we consider the same type of simulated data. The simulated data contains

12 different background processes, three for each of the hazard types described above. This

includes three exponential distributions (rates 0.1, 0.2, 0.3), three Weibull distributions for

both decreasing and increasing hazard functions (shape parameters 0.5 and 2, rates of 0.1,

0.2, 0.3 each), and three lognormal distributions (parameters chosen such that the mean and

variance were equivalent to the mean and variance of an exponential with rates 0.1, 0.2, and

0.3). We also include four different sequence processes, each of length two and exponentially

distributed (all four have rates of 0.2, and τ = 4). An example of simulated data of this

type can be seen in Figure 4.7.

Exponential Distribution

In Chapter 2, we discussed fitting the Renewal Process Model with exponentially distributed

time increments for experiments with Poisson processes. Here we will discuss in greater detail

88



Pattern Exponential Weibull Nonparametric

1 → 2 0.98 0.94 0.94
11 → 12 0.94 0.96 0.95
5 → 7 0.95 0.98 0.90
6 → 10 0.97 0.93 0.91

Table 4.1: For each of the exponential, Weibull, and nonparametric models, the percentage
of 100 simulations where a given pattern was successfully detected.

fitting the exponential model when the true underlying distribution is not exponential. All

prior distributions for this section are the same as those in Chapter 2.

For each of 100 simulations of the above data, we fit the exponential model. Despite the

misspecification of the background processes (i.e. nine of the background processes are

nonexponential), the model is quite successful at discovering the patterns, as seen in the left

side of Table 4.1. From this we can assert that discovering patterns in time-event data is

fairly robust to the misspecification of background processes.

However, because of the misspecification, the exponential model is prone to discovering

additional patterns that correspond to bursts in behavior from the Weibull data. Events

D, E, and F in Figure 4.7 all have time increments distributed according to a Weibull

distributions with a decreasing hazard function. For these events, the exponential model

identified burst patterns D→ D, E→ E, F→ F at proportions of 0.33, 0.49, and 0.54 of the

time, respectively. This does provide a powerful diagnostic for proper model specification.

Weibull Distribution

Again, for each of the 100 simulations of the above data, we fit the Weibull RPM to the

data. For the background process parameters, we place an exponential prior distribution

with rate one on both shape and scale parameters. Similar to the exponential model, the

Weibull model successfully detected all the patterns most of the time, see the middle column
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Exponential Decreasing Hazard Increasing Hazard
Shape Scale Shape Scale Shape Scale

True Value 1 0.2 0.5 0.2 2 0.2
Post. Mean 1.03 0.19 0.52 0.21 1.94 0.20

S. E. 0.13 0.02 0.11 0.03 0.17 0.02
Coverage 0.98 0.95 0.96 0.97 0.94 0.95

Table 4.2: The estimated shape and scale parameter determined using a Weibull RPM for
each of three background processes. Posterior mean refers to the average of the posterior
means over the 100 simulations. Standard error was calculated directly from the posterior
means, and coverage was calculated using the 95% credible intervals.

of Table 4.1.

Of the four different distributions that we consider in this data set, three of them can

be correctly modeled with a Weibull distribution. Thus we wanted to know how well the

Weibull model performed in these cases, as proof that our model was working correctly.

For each of the 100 simulations, we recorded the posterior mean for each of the scale and

shape parameters, as well as a 95% credible interval. For each of these, we calculated the

average over the means as our parameter estimate, and used them to calculate a standard

error. Additionally, we computed coverage probabilities using the credible intervals. Results

for three background processes (one for each a constant, decreasing, and increasing hazard

function, and each with equivalent scale parameters) can be found in Table 4.2. The coverage

probabilities are all relatively close to 0.95, and the estimated parameters are reasonably close

to the true parameters.

The fourth distribution that we consider is the lognormal distribution. While the Weibull

model is clearly inappropriate for correctly modeling this distribution, it has no apparent

effect on pattern discovery. The estimated rate parameters (posterior means of 0.11, 0.21,

and 0.30) are roughly 0.1, 0.2, and 0.3, as we chose the lognormal parameters to roughly

align to these cases. The shape parameters (posterior means of 1.23, 1.87, 1.46 respectively)

are all greater than one, so the Weibull model clearly attempts to conform to the initially

increasing region of the lognormal hazard.
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Nonparametric Distribution

We now want to examine the performance of the nonparametric model in this case. For

this experiment, we consider a step function with eight jumps to model the hazard function.

For the gamma Markov process prior distribution, we set the hyperparameters as a = 0.2,

b = 1, and c = 10. The prior distribution for the jump locations ξk was set as a uniform

between the previous and following jump locations. Thus the prior distribution is ξk ∼

Uniform (ξk−1, ξk+1) where ξ0 = 0 and ξK+1 is a reasonable large value (for example, the

total duration of the observation period).

Much like the other cases, the nonparametric model is successful at pattern detection, as seen

on the right side of Table 4.1. The nonparametric model with eight jumps was successfully

able to capture the increasing and decreasing nature of the processes, as well as the upside

down bathtub pattern of the lognormal processes.

4.3.3 Robustness Against Misspecified Sequence Processes

Thus far we have only considered models that contain sequence processes with exponentially

distributed interarrival times. The shape of the hazard for sequence processes is necessarily

decreasing around time τ due to the truncation feature of the RPM, and it is not clear

whether the shape of the hazard prior to τ will negatively affect our model’s ability to detect

patterns. As we have seen above, incorrectly specifying the distribution for background

processes has relatively little effect when searching for patterns. We now want to investigate

if the same is true for the sequence processes.

To explore this, we simulated data with a background structure identical to the previous

section (12 processes, three for each of the four different types of hazard functions). However,

the sequence processes had varying Weibull distributions. The scale parameter was held
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Pattern Shape Exponential Weibull Nonparametric

1 → 2 1.7 0.56 0.52 0.47
11 → 12 1.3 0.41 0.55 0.61
5 → 7 0.7 0.97 0.94 0.99
6 → 10 0.3 0.96 0.98 0.93

Table 4.3: The proportion of simulations where each model successfully identified each pat-
tern.

constant at 0.2 for each of the four sequence processes, but the shape parameter was allowed

to vary (0.3, 0.7, 1.3, 1.7) to allow for varying hazard structures. Data was simulated 100

times, as before. Data was then fit with models where the background interarrival time

distributions were each of the three variants that we have discussed (exponential, Weibull,

and nonparametric). Results of this analysis can be seen in Table 4.3. In particular, we

again calculate the proportion of simulations where the pattern was successfully identified.

The three models for the background process interarrival times performed similarly, indicat-

ing that the distribution of the background processes has little effect on the identification of

non-exponential sequence processes. As shown in Chapter 2, patterns were successfully iden-

tified when their sequence processes have exponentially distributed time increments. Here

we also see that sequence processes with decreasing hazards are successfully identified most

of the time.

However, when the hazard is increasing (the first two rows of Table 4.3), the results show

that the sequence patterns were only discovered half of the time. In such cases the data

is clustered relatively close to the maximum time τ , which makes it difficult to discover

patterns.

Overall, it appears that the exponential model for sequence processes is relatively robust in

the case where the next event in the sequence often occurs well before the maximum allowed

time (τ) has passed. However, when the next event in the sequence regularly occurs around

the maximum time parameter, pattern detection starts to break down. Clearly, this issue
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could negatively impact the results of an analysis, and should be explored in the future. Due

to complications arising from the τ parameter, we do not consider any distributions other

than the exponential for the sequence process interarrival times. In particular, for small τ ,

it is difficult to correctly distinguish between possible distributions.

4.4 Maternal Behavior Analysis Revisited

We now explore the effect of applying the RPM model based on alternative hazard functions

to our maternal data. We will consider results from a Weibull model and a nonparametric

model, and compare these results to the results obtained from the exponential model in

Chapter 2. In the sections for both the Weibull and nonparametric model, we will again

describe the distributions of the summary statistics derived from the patterns, and compare

them against the summaries obtained from the exponential model. We also explore the effect

of these models on the patterns themselves. Note that prior distributions for this section

will be the same as those used in the simulation experiments.

4.4.1 Weibull Model Results

First, we consider the results of the Weibull model. For each mother, we modeled all of the

background processes with a Weibull renewal process, each with its own shape and scale

parameter. We calculate the same summary statistics as we did in Chapter 2: the longest

pattern, the percentage of patterns longer than two events, and the number of sequences

identified. Ultimately, we find considerably fewer patterns, but much of this decrease can be

explained by the fact that we no longer identify patterns that demonstrate bursts (patterns

of the type A → A).

The distribution for the number of patterns per mother under the Weibull model can be
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Figure 4.8: The distribution of the number of patterns per mother for each of the three
models we consider in this section: the exponential, Weibull, and nonparametric RPM.

found in the middle of Figure 4.8. The most striking feature of this distribution is the

significant decrease in the number of patterns. Under the exponential model (on the left side

of Figure 4.8), mothers exhibited an average of 4.97 patterns. Under the Weibull model, the

average number of patterns has decreased to only 2.14 per mother. This is at least partially

attributed to the removed of bursts from the pattern set, which we discuss further below.

The distribution for the maximum pattern length for each mother under the Weibull model

can be found in the middle of Figure 4.9. Again, we can compare this distribution against

the distribution of maximum pattern length under the exponential model, found on the left

side of Figure 4.9. Several mothers (24 out of 121 total) simply did not have a pattern

detected. Of the mothers who did have a pattern detected, the maximum pattern length

was generally comparable to the results from the exponential model.

Finally, the distribution of the percentage of patterns greater than length two can be seen in

Table 4.4. Again, several mothers simply did not have any patterns detected. Beyond that,

the distribution differs significantly from the exponential model. The longer patterns are

relatively more common than in the exponential model. This is likely due to the fact that
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Figure 4.9: The distribution of the maximum pattern length per mother for each of the three
models we consider in this section: the exponential, Weibull, and nonparametric RPM.

Percentage 0% 1-20% 21-40% 41-60%
Number of Mothers 45 2 27 23

Table 4.4: Distribution of mothers who had a given percentage of patterns that were longer
than two events under the Weibull model. The highest percentage was 60%.

the event bursts that were detected under the exponential model as patterns were generally

two event patterns. Once they are removed, the percentage of longer patterns is increased.

The most common patterns were very similar to those observed under the exponential model,

as seen in Table 4.5. The three most common patterns in the exponential model were the

most common patterns in the Weibull model, although they occurred far less often in the

Weibull case. The more complex background process modeled much of what had been

considered patterns in the simpler model, making patterns far less common. In particular,

note that no patterns of repeating events, such as instructive speech → instructive speech,

are present in the list of the most common patterns.

As we noted in Chapter 2, one of the most predominant pattern types found was a pattern

comprised of repeated events of the same type. In our maternal data, this included repeated
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Pattern Number of Mothers
New Toy → Manipulating Toy 71

Smiling → Content 14
Look at Toy → Look at Baby 10

Set Down Toy → New Toy 4
Smiling → Laughing 2

Table 4.5: The most common patterns discovered in the mothers using the Weibull model.
On the right is the number of mothers who exhibited a given pattern, out of 121, which are
noticeably smaller than in the exponential model.

instances of speech (instructive, positive, and negative), as well as pointing and affectionate

touching. These are potentially relevant patterns, but they are conceptually different from

the patterns we are attempting to find. They describe the nature of a particular event (or in

our model, a single background process) rather than a particular behavioral pattern intrinsic

to the actor. As such, the Weibull model may actually be a superior model relative to the

exponential one, though clearly this information can be obtained from the exponential model

as well by removing such patterns manually.

Considering various different forms for the hazard functions provides an alternative approach

to the issue of burst-type patterns. While the burst patterns are no longer detected, we can

still identify similar structures in the data by examining the fitted Weibull shape parameters.

As mentioned earlier in this chapter, the Weibull distribution is characterized by a monoton-

ically increasing, monotonically decreasing, or constant hazard function depending on the

Weibull shape parameter. By taking advantage of this fact, we can sort each background

process into one of the three shapes.

For each background process, we calculated a 95% credible interval for the shape parameter,

which controls the shape of the hazard function, using the MCMC samples. If the interval

contained one, then we deemed there was insufficient evidence to conclude that the hazard

was non-constant. If the interval was entirely greater than one, we concluded the correspond-

ing process had an increasing hazard, and if it was entirely less than zero, we concluded that
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the process had a decreasing hazard.

A decreasing hazard would be characterized by bursts of a behavior, where the same event

would occur several times in succession. These bursts would be separated by an occasional

longer gap between. Several event types were characterized by a decreasing hazard. The

most prominent, with the number of mothers in parentheses, were as follows:

• Positive Speech (60)

• Affectionate Touch (49)

• Pointing (38)

• Functional Touch (26)

• Negative Speech (25)

• New Toy (20)

These occurrences are far more common than their respective patterns in the exponential

model. For example, Positive Speech → Positive Speech appeared in 21 mothers according

to the exponential model, and Affectionate Touch → Affectionate Touch appeared in 17

mothers.

Conversely, only two event types regularly had increasing hazards. Behaviors with an in-

creasing hazard are characterized by more regular occurrences with few if any bursts. The

two event types were Set Toy Down (40 mothers) and Instructive Speech (46 mothers).

These results are fairly intuitive. For example, positive and negative speech are likely linked

to the child’s behavior directly, and thus occur in bursts. Instructive speech will occur at

the mother’s discretion, and will likely be fairly regular without many bursts. Similarly,

touching (affectionate and functional) and pointing occur in bursts, likely to increase the

impact of the child’s reaction to the behavior.
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Furthermore, if each instance of a decreasing or increasing hazard was considered a pattern,

the average number of patterns per mother would increase to 5.61. This is much closer to

the 4.97 patterns on average per mother for the exponential model, further confirming that

this is a primary reason for the significant difference in number of patterns.

4.4.2 Nonparametric Model Results

Next, we consider the results of applying the nonparametric model. For the nonparametric

model, we fit a step function with a total of eight jumps to model the shape of the hazard

function. For each background process, this means we estimate eight jump times ξk, k =

1, ..., 8, and the heights of the nine steps λk, k = 0, ..., 8, in addition to the hyperparameters

µk, k = 1, ..., 8. We again calculate the summary statistics from applying the model to the

121 mother-child videos and compare them to the exponential.

The distribution for number of patterns can be seen in the right side of Figure 4.8, where

it is compared to the distribution under the Weibull and exponential models. Perhaps the

most noteworthy feature of this distribution is a tendency to discover more patterns than

the Weibull model. Overall, under this model, mothers averaged 4.00 patterns each, which

is considerably more than the Weibull model. While less than the exponential model, it is

worth noting that A → A type patterns were largely absent from the nonparametric model,

but made up a significant portion of the exponential model patterns.

The distribution for the maximum pattern length per mother can be seen in 4.9, and com-

pared against the other two models. According to the nonparametric model, fewer mothers

have no patterns than in the Weibull model, though the distribution of maximum pattern

length remains relatively unchanged. None of the models could detect patterns greater than

five events, and both four and five event patterns were relatively rare throughout.
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Percentage Patterns > 2 Events 0% 1-20% 21-40% 41-60%
Number of Mothers 49 31 25 6

Table 4.6: Distribution of mothers who had a given percentage of patterns that were longer
than two events under the nonparametric model. The highest percentage was 60%.

However, the increase in patterns is comprised almost entirely of simple patterns (those con-

taining two events), as revealed by the distribution of the percentage of patterns greater than

two events, seen in Table 4.6. These results directly mirror the results from the exponential

model. This hints at the fact that while the Weibull model removed the burst patterns, it

also suppressed other patterns found in the exponential model.

The patterns themselves are fairly similar to the previous models. Some of the most common

patterns from the nonparametric model can be found in Table 4.7. The top several patterns

are identical to those from the exponential and Weibull models, though the number of

occurrences for each pattern seem to be closer to the Weibull model.

Pattern Number of Mothers
New Toy → Manipulating Toy 93
Look at Toy → Look at Baby 33

Smiling → Content 23
Smiling → Laughing 24
Pointing → New Toy 10

Manipulating Toy → Instructive Speech 9
New Toy → Instructive Speech 8

Table 4.7: The most common patterns discovered from the mothers using the nonparametric
model. On the right is the number of mothers who exhibited each pattern, out of a total of
121 mothers.

Unfortunately, one drawback of the nonparametric model is the inability to easily discern

simple hazard shapes. The Weibull model is not nearly as flexible, but the ability of the

Weibull to extract information such as increasing or decreasing hazard, by examining the

shape parameter, is a significant advantage.

While it is difficult to extract such information, we can still explore the posterior distribution

of the hazard function to obtain useful information. Let us first consider a specific mother,
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Figure 4.10: The data for an example mother, including lines indicating patterns found
with the nonparametric model. The patterns include : New Toy (New) → Manipulating
Toy (Manip), Smiling (Sm) → Laughing (L), Set Down Baby (Set) → New Toy (New), and
Affectionate Touch (Aff) → Instructive Speech (Ins).

and compare her to the previous models. The data for our example mother can be seen in

Figure 4.10

Our example mother displayed four patterns under the nonparametric model: New Toy →

Manipulating Toy, Smiling→ Laughing, Set Down Baby→ New Toy, and Affectionate Touch

→ Instructive Speech. Under the exponential model, she displayed the first two patterns, as

well as Negative Speech→ Negative Speech. For the Weibull model, she only displayed the

first two patterns. However, Negative Speech, Positive Speech, and Looking at Baby all had

decreasing hazards, indicating they were subject to bursts of activity. Instructive Speech

had an increasing hazard.

Thus the nonparametric model displayed the same basic patterns, and found an additional

two patterns that neither of the other models were able to detect. Furthermore, the shape
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Figure 4.11: Samples from the posterior distributions of the hazard function for two back-
ground processes. Instructive speech shows an increasing hazard, while positive speech shows
a decreasing hazard.

of the hazard functions for all three of the speech categories resembled the Weibull hazard

function. The posterior distribution for the hazard functions of Instructive Speech and

Positive Speech can be seen in Figure 4.11. Both plots show several samples of the step

function from the posterior distribution. From these, we believe that the Weibull model

would be sufficient for many events.

However, the hazard functions for some other events appear to deviate from the Weibull

model. Laughing occurred 17 times, generally coming in bursts with little time between

instances of Laughing. However, the minimum distance between two Laughing events was

5 seconds, with several occurrences (9 of the 17) occurring between 5 and 10 seconds of the

previous Laughing event. The posterior distribution can be seen in Table 4.12. Because

none of the Laughing data occurred between 0 and 5 seconds, the hazard is likely increasing

in this duration, and so a decreasing hazard does not fit well. Because of this, the Weibull

model failed to identify it as a decreasing hazard.
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Figure 4.12: Samples from the posterior distributions of the hazard function for the back-
ground process corresponding to the event Laughing. The event Laughing generally comes
in bursts, but always with a small gap between the individual events, causing a spike in the
hazard function.

While such information can be acquired from the nonparametric model, it is still not clear

how to obtain it in an automated fashion. We are currently working on methods to eas-

ily summarize information from the nonparametric hazard function, similar to the shape

parameter for the Weibull distribution.

4.5 Discussion

In this chapter, we explored the implementation of different time increment distributions

as part of our renewal process model. In particular, we explored parametric families that

are more flexible than the exponential distribution, as well as a nonparametric alternative.

These alternative distributions provide further information about the behavior of the actors,

and should prove beneficial to behavioral research. Furthermore, we explored the robustness

of our model, and in many cases, we determined that patterns will be successfully discovered

even if the interarrival time is misspecified.
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In this thesis, we only considered modeling the hazard function with step functions as a

nonparametric alternative. Other alternatives to standard parametric approaches, such as

Gaussian processes and splines, may be one possible area of future work (Rosenberg, 1995;

Teh & Rao, 2011).

At the moment, we have only explored the use of alternative distributions for background

processes. Extending this framework to accommodate nonexponential sequence processes

may be beneficial to modeling the patterns, and thus may be a good direction for future

exploration.

In this chapter, we considered several possible potential models for the distribution of the

time increments, but we did not focus on model selection. This is another area ripe for

future research. In particular, the exponential model of Chapter 2 is a special case of both

the Weibull distribution (when the shape parameter is one) and the nonparametric model

(as the smoothing parameter c → ∞). This may be useful for exploring different models,

potentially as part of a reversible jump procedure.
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Chapter 5

Conclusion

In this thesis, our primary goal was to be able to identify recurring patterns in behavior,

even when they are not known a priori. To accomplish this, we proposed a generative model,

the Renewal Process Model, and an inference procedure for identifying recurring patterns

from a stream of events in continuous time. Our approach considers a competing renewal

process framework, which allows the patterns to be identified as distinct from background

occurrences of the different events.

We expanded the model to allow for numerous observation periods via a hierarchical model.

Such a model allows us to investigate how behavior and patterns differ across a population,

while simultaneously improving individual level inference by borrowing information from

other individuals in the population. Furthermore, we can investigate how subgroups differ

across the population. Our model explicitly allows some actors to exhibit a pattern while

others do not through our prevalence parametrization.

Our initial model assumes all interarrival times are exponentially distributed. We expanded

the model to permit alternative parametric families of interarrival time distributions and

nonparametric interarrival time distributions. These alternative distributions allow improved
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inference in a variety of settings, and also allow us to better describe certain aspects of

behavior.

The models we considered were fit using a fully Bayesian approach via an MCMC proce-

dure that interweaves sampling steps and model exploration steps. This approach proved

invaluable, as it allowed us to consider only a subspace of possible patterns, increasing the

efficiency of sampling considerably. However, scalability issues persist, as do convergence

concerns. Improvements to the model exploration procedure would likely help immensely,

and comprise one area of possible research. Improving the model exploration component is

especially important for our hierarchical model, which we believe has a difficult time picking

up patterns belonging to a small proportion of the individuals in a population.

The models described in this thesis are motivated by a research project to determine the effect

of fragmented and unpredictable maternal behavior on various childhood outcomes. While

this is an interesting application area, a multitude of other possibilities exist. For example,

researchers may be interested in patterns present during social interaction, whether it occurs

in person, online, or across some other medium. Another area of interest is user behavior

in online settings, where we want to model a user’s patterns when web surfing, making

purchases, taking online classes, or any number of other online activities.
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