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ABSTRACT OF THE DISSERTATION

The Physics of RNA-Protein Binding

by

Zachary Gvildys

Doctor of Philosophy in Chemistry

University of California, Los Angeles, 2023

Professor Robijn F. Bruinsma, Chair

RNA-protein binding is important in many biological processes. These processes depend on

the structural properties of the RNA, DNA and proteins involved. In this thesis we have

investigated the nature of these interactions at the scale of coarse grained interactions, in

atomistic detail and with analytical continuum theories. By exploring the dynamics of these

biopolymers at these different scales, we hope to shed light on the important phenomena

and characteristics that govern the biological processes involved.

First we show that the structural flexibility of these polymers affects he binding energy

measured in MD simulations and can help understand the different packaging scenarios in

in-vitro viral reconstitution. Then using analytical models we show how flexibility can aid it

non-specific binding given the strength of interaction compared to thermal energy between

the binding of polymers.

We finish this thesis by looking at coarse grained brownian dynamics simulations for the

bonds in a chain to represent the non-linear viscoelastic behavior of proteins deforming under

force. We see both equilibrium mechanical induced melting of the chain and a dynamical

phase transition in the response of the chain under a varying drive amplitude and frequency

of and AC applied force out of equilibrium. Using the model to understand the dynamics

of a deformable chain under force, we explore how this model can provide insight into the
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binding of deformable structure forming chains that mimic biopolymers like RNA, DNA and

proteins.
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CHAPTER 1

Introduction

1.1 Protein-RNA Interactions

RNA-protein interactions are involved in a wide variety of cell-regulatory processes[3, 4,

5, 6]. Following synthesis, RNA transcripts are covered by RNA-binding proteins (RBPs)

that regulate subsequent RNA splicing, editing, transport and localization. RBPs have

different amounts of RNA sequence specificity. The zinc-finger and RNA-recognition motifs

are important examples of specific RNA-protein interactions.

There is an interesting distinction between the interactions of proteins with single-

stranded (ss) RNA molecules and with double-stranded (ds)DNA or ssDNA molecules[7].

For protein/ds DNA interaction there is a clear distinction between specific, sequence-

sensitive interactions, involving the matching of particular protein residues with particu-

lar nucleic acid bases, and non-specific protein-dsDNA interactions between the negatively

charged phosphate groups of the DNA sugar-phosphate backbone with positively charged

protein residues. The non-specific protein-DNA affinity plays a distinct role in keeping

DNA-associating proteins in proximity of the DNA and in nucleosome-DNA interaction. In

actuality, the distinction between specific and non-specific interaction is not quite sharp.

The ”induced-fit mechanism” refers to the fact that the DNA sequence in the proximity of

a protein binding site may code for DNA deformation in such a way that the protein can fit

more easily to the DNA near a binding site through its non-specific interactions.

1



1.2 Protein-RNA interactions in viral self assembly

The role of non-specific interactions between ssRNA molecules and proteins is not so well un-

derstood. The complicating factor is the much greater structural flexibility of single-stranded

nucleotide sequences as compared to double-stranded sequences. However, the interplay be-

tween non-specific and specific RNA/protein interactions have been studied experimentally

for the case of the packaging of ssRNA viral genome molecules by capsid proteins during

viral assembly. The electrostatic affinity of negatively charged ssRNA genome molecule for

positively charged groups of the capsid proteins is a key thermodynamic force driving vi-

ral assembly. On the other hand, specific RNA-protein interactions between RNA hairpins

(“packaging signals”) and capsid protein play a key role in terms of distinguishing viral

RNA molecules from cellular mRNA molecules during packaging. In a systematic series of

experiments by the group of Gelbart and Knobler[8, 9, 10] on the bromoviruses it was demon-

strated that purified viral capsid pro-teins of Cowpea Chlorotic Mottle Virus (CCMV) and

Brome Mosaic Virus (BMV) are capable of completely packaging non-viral and non-native

RNAs, sometimes even more efficiently than the viral genome! They also carried out packag-

ing competition experiments between single-stranded polyU and polyA sequences as well as

between single-stranded and double-stranded hybridized polyU and polyA sequences. The

total number of nucleotides was the same while the RNA structural flexibility systematically

decreased from PolyU to PolyA to dsPolyU-PolyA. Based on simple electrostatic arguments,

one would expect that the binding affinity should be comparable for these three cases but

in actuality single-stranded sequences out-compete double-stranded sequences while polyU

outcompetes polyA. This indicates that structural flexibility of RNA nucleotide sequences

indeed plays an important role during protein-RNA interactions.

With the recent SARS-CoV-2 pandemic, the need for a greater understanding of the life

cycle and assembly of viruses has become even more relevant. CoVs have four structural

proteins; the envelope, spike, nucleocapsid and membrane protein. We are interested in un-

derstanding the nucleocapsids protein’s interactions with the viral genome because it plays

an important role in the assembly and disassembly of the virus particle and potentially every
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step in the viral life cycle. There are three highly conserved regions of the nucleocapsid (N)

protein across different CoVs; the N-terminal domain (NTD), the C-terminal Domain (CTD)

and an intrinsically disordered linker region comprised of many positive charges (LKR) con-

necting the other two domains. Though the disordered region has been called the RNA

binding domain, all three domains have been shown to bind the genome [11]. The LKR also

has a serine/arginine (SR) rich region where it is believed phosphorylation occurs, which

could decrease the affinity for nucleic acid and be important for disassembly and release of

the genome [11]. Within the N protein there are IDRs (intrinsically disordered regions),

regions of the protein that do not have a fixed 3D structure, that are conserved between

different CoVs. It has been shown that the IDR’s in the N protein play an important role in

increasing the binding affinity for the N protein to nucleic acids and the structural locations

of the IDR’s in the N protein are similar for different CoVs despite having varying amino acid

sequences[12]. Though it is thought that the IDRs provide an allosteric cooperativity that

enhances binding affinities, little is known about what physical properties of the IDR allow

for enhanced binding to nucleic acids. There has also been evidence strongly suggesting a

region of the genome, the Psi region, that first binds the disordered LKR region and may

act as the initiator sequence for the organization of the genome. In general, intrinsically dis-

ordered proteins (IDPs) have evidence supporting that they are important for transcription,

translation and cell-signaling [11]. We believe our knowledge of understanding the nature of

binding between the CCMV capsid protein tail, an IDR, and various RNA’s can also provide

insight into the role of the IDR’s in other IDP-RNA binding complexes.

The N protein has both specific and nonspecific interactions with genetic material and is

involved in every step of the viral replication process. Understanding these interactions can

lead towards the production of antivirals to help treat patients who are infected with CoVs.

Using PMFs we can find small oligomers of RNA and small molecules that may bind stronger

to the N protein than the viral genome which could interfere with the assembly process of

the virus. We can also use markov-state modeling to find the binding mechanism of the IDR

regions of the N protein. This could more broadly shed light on what about IDRs enhance

3



binding strengths. Unveiling the mechanism of binding could also lead to theraputics that

interfere with specific conformational changes that are critical for the binding to viral RNA.

We hypothesize that the IDR region could order upon binding, or move between metastable

ordered states that strengthen the effective interaction while allowing an initial extension of

the IDR to ”grab” the binding partner.

1.3 Continuum electrostatics for polyelectrolyte binding

The theory of aqueous electrostatics in a continuum model is widely applicable to many

problems in computational chemistry, problems in relation to biochemistry and materials

science[13]. It provides a simplified yet insightful approach to studying electrostatic phe-

nomena in aqueous solutions, the environment where almost all biology occurs. One of the

key strengths of the continuum model is its ability to consider water as a homogeneous

medium with uniform dielectric properties, significantly reducing computational complexity

when compared to explicit solvent models such as molecular dynamics simulations. This

enables researchers to explore large systems and complex biomolecules without compromis-

ing the overall accuracy of the calculations. It is effectively a level of ”coarse graining” a

simulation. Or decreasing the resolution of the system of interest to focus on the problem of

interest. This is not applicable in every situation, since in some instances higher resolution is

needed, as is the case in the effective attraction of polyelectrolyte binding [14, 15]. Addition-

ally, the continuum model incorporates the concept of solvation, allowing for the inclusion

of the solvent effects on molecular behavior, a crucial aspect in understanding biochemical

processes and interactions.

The success of the continuum model in describing aqueous electrostatics lies in its foun-

dation on the Poisson-Boltzmann equation.

∇2ψ =
coe

ϵϵo
(e

e ψ
kBT − e

− eψ
kBT ) (1.3.1)

Here ∇ is the differential operator, kB is the Boltzmann constant, T is the temperature, co

is the initial concentration of the ionic species, e is the electron charge, ψ is the electrostatic
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potential, ϵ is the dielectric constant of the solvent and ϵ is the permittivity of free space.

This partial differential equation characterizes the electrostatic potential in the presence of

charges and ionic species, and it takes into account the distribution of ions surrounding

the charged species. Usually analytical solutions are not available to this highly non-linear

equation and numerical solutions are needed.

The continuum model has been widely validated against experimental data. Despite

its merits, the continuum model does have limitations that need to be acknowledged. One

primary concern arises from neglecting atomic details of the solvent molecules, which could

be vital in certain situations where explicit solvent models or molecular dynamics simulations

are better suited. The continuum model might not capture the subtle changes in solvent

structure and dynamics that occur during specific interactions.

Additionally, the accuracy of the continuum model relies on the correct determination of

solute charges and radii, which can be challenging, especially for large biomolecules or exotic

species. This introduces uncertainties that may propagate through the calculations and lead

to deviations from experimental results.

1.4 Effects of structural rigidity on biopolymer binding

One of the aims of this thesis is to explore the effect of the structural flexibility on RNA-

protein interaction using all-atom molecular dynamics(MD) simulations [16]. This is done

for the specific case of short polyU and polyA ssRNA sequences, as well as hybridized polyU-

PolyA sequences, that interact with short (ten residue) positively charged peptide sequences

of CCMV capsid proteins that are known to associate with ssRNA molecules. The sequence

of calculated binding affinities agree with the observed sequence of packaging competition

experiments. The variation of the binding affinity for different degrees of structural ssRNA

flexibility is comparable in magnitude to the binding affinity and has been shown to ac-

count for binding affinity experimentally as well [17]. Next, we find that the counter-ion

release mechanism – involving the negatively charged phosphate groups and Na+ ions –
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plays an important role for protein-ssRNA binding, as it does for protein-dsDNA interac-

tions. However, we also encounter substantial variation between the spatial distribution of

the small ions further away from the phosphate groups. In contrast with the case of non-

specific protein-dsDNA interactions where electrostatic interactions dominate, we find that

hydrogen bonding and hydrophobic interactions also make significant contribute contribu-

tions to non-specific protein-ssRNA interactions. We with a discussion of viral assembly in

the context of our results.

1.5 Intrinsically Disordered Proteins

Intrinsically Disordered Proteins (IDPs), identical to the IDR regions we have mentioned

above, are of significant interest due to their unique characteristics, primarily their lack

of stable three-dimensional structures. These flexible proteins possess an array of binding

sites and can interact with multiple partners in a dynamic way, transitioning between many

metastable states. This poses a problem for traditional methods of calculating things like

binding energies, where thermal equilibrium is usually required, because there are long-lived

states that are not the minimum free energy structure.

The binding properties of IDPs stem from their structural plasticity. Unlike well-folded

proteins with rigid tertiary structures, IDPs exhibit an ensemble of conformations that en-

able them to adapt their shape to that of their binding partners. This inherent flexibility

facilitates both high specificity and diversity in their interactions with other biomolecules[18].

In cases such as that of the disordered N-termini of CCMV, this can be advantageous for

packaging non-indogenous RNA and other charged macro molecules for the purpose of drug

and gene therapy delivery methods. IDP binding regions often contain short linear motifs,

which can be recognized by their partner’s binding domains, such as SH3, SH2, and PDZ

domains, among others[19].

IDP binding interactions play crucial roles in various cellular processes, including cellu-

lar signaling, transcriptional regulation, and post-translational modifications. By acting as
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molecular switches, IDPs can rapidly transition between disordered and ordered states upon

binding to different partners [20]. This ability allows IDPs to participate in diverse signaling

pathways, where they mediate signal transduction and cellular responses to environmental

changes. Moreover, IDPs are frequently involved in complex formation and assembly, where

their flexible nature enables the formation of large macromolecular complexes with high

specificity.

Dysregulation of IDP binding interactions has been linked to numerous diseases, including

cancer, neurodegenerative disorders, and viral infections[21, 22]. In some cases, IDP bind-

ing may lead to uncontrolled cell proliferation, misfolding of proteins induced by the IDP

binding, or impaired immune response. Understanding the binding properties of IDPs and

their dysregulation in disease settings has provided new insights into potential therapeutic

strategies.

Studying IDP binding presents various challenges, including the lack of well-defined struc-

tures and the transient nature of interactions. Advanced biophysical techniques, such as

NMR, surface plasmon resonance (SPR), and molecular dynamics simulations, have been

instrumental in investigating IDP binding kinetics and thermodynamics[23, 24, 18]. Here we

hope to expand on general knowledge of general phenomena of proteins and IDPs. The abil-

ity to exist in an ensemble of structures that are not well defined posits a challenge in defining

things like classical flexibility when dealing with these systems. We propose highly nonlinear

models that can reproduce experimental results that may be of use in understanding binding

dynamics of IDPs.
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CHAPTER 2

All-Atom Molecular Dynamics Simulations of

protein-RNA binding

The viral encapsidation process and RNA-protein binding systems have been investigated

by many mean-field continuum theoretical models, coarse-grained molecular dynamics sim-

ulations and by in vitro experiments[25, 26]. With the large improvements of empirically

derived force fields over the past twenty years, all-atom molecular dynamics(MD) simula-

tions have greatly improved their ability to mimic real systems and provide resolution not

attainable from experiment. We investigate how viral capsid protein binds to different RNAs

and different RNA motifs, focusing on the case of Cowpea Chlorotic Mottle Virus (CCMV),

a small single-stranded genome plant virus that is especially well-characterized experimen-

tally. We aim to explain the different protein-RNA interactions and packaging scenarios

observed experimentally for ”normal-composition” RNAs with extensive duplex formation

and single-stranded loops, versus single-letter RNAs like polyU, for which no intramolecular

base-pairing is possible.

2.1 Simulation details

Prior to performing simulations, most of the structures used in the MD simulations were

built in the Chimera[27, 28] molecular visualization tool. Due to the disordered nature of

both the protein and the RNA in these simulations, crystal structures were not readily avail-

able to use. This meant the structures were in some predefined geometry that was often not

of biological relevance. The structures where then paired together in the docking software
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Figure 2.1.1: Schematic of thermodynamic path to estimate binding energy.

NPDock[29] that took the two structures and paired them in the best possible binding con-

figuration in accordance with some scoring algorithm. Once the best binding structure had

been assembled, that PDB file was used as the starting point for the subsequent MD simu-

lations. All simulations were performed using the GROMACS 2018.1 software package[30].

The AMBER99SB forcefield was used and a particle mesh ewald (PME) method was used to

compute electrostatics. A TIP3P representation of water molecules was used with a Noose-

Hoover thermostat. simulations were carried out at 310K and a NaCl concentration of 0.1

mM (physiological conditions) with periodic boundary conditions. We have measured the

binding energy of the CCMV CP N-terminus with various RNAs: polyU, polyA and an AU

duplex. Each RNA was chosen to be long enough such that the number of phosphates along

the RNA backbone matched the number of charged of the protein tail. The binding configu-

rations were determined by constructing the RNA and protein sequence in CHIMERA, then

using patchdock to generate a binding configuration between the two structures. The bound

structures were then simulated for 100 nanoseconds to allow for relaxation to an equilibrium

binbding structure. The structures after 100 nanoseconds were then used to compute binding

energies.

9



2.2 Calculation of Binding Energy

Potential-of-mean-force (PMF) calculations is the choice method as it allows us to simplify

the reaction coordinate down to a simple separation of binding partners. We estimate the

binding energy to be the difference between the maximum and minimum points on the

PMF curve. However, the flexible nature of the RNA and protein poses problems for a

traditional PMF due to the slow orthogonal degrees of freedom. Thus, an alchemical path

that includes a PMF was developed to measure binding energies. The orthogonal degrees of

freedom (orientation of nucleobases with respect to the phosphate backbone, conformation

of the phosphate backbone and translational and rotational motion) are restrained during

the PMF calculation. Due to the large number of interactions that can change in the pulling

process, it is necessary to restrain the molecule since the distributions measured in the PMF

would not be equilibrium distributions in the umbrella potential. Once restrained, each

umbrella window was simulated for 20ns since all slow degrees of freedom in the RNA are

removed. The free energy of restraining the system was in the bound and unbound states

were calculated via thermodynamic integration. Since the restrains are harmonic, a simple

form of the free energy of the system is given by the following relation (details in appendix).

∆Fres =

∫ kumax

0

1

2
⟨(Θ − Θ∗)2ku⟩dku (2.2.1)

Where ku is the force constant used for harmonic restraints, Θ is the coordinate representing

the conformation of the molecule and Θ∗ is the configuration of the molecules in the bound

state. A schematic for the total binding energy is shown in figure 1.

10



2.3 Results and Discussion

RNA Binding Energy (kT) SASA(nm2) Hydrogen Bonds Na released Cl released

polyU 38 14.71 15.93 2.7 2.72

polyA 30 14.00 14.53 2.2 3.13

AU Duplex 23 8.95 8.17 1.8 2.66

Table 2.1: Binding energies for different RNAs along with quantities that contribute to the

binding energy.

The binding energy was largest for the highly flexible polyU despite having the same

charge density as polyA and half that of an AU duplex (tentative). Most likely when binding

energies are redone, the order will be polyU > polyA > duplex. The new duplex being used

has half the number of phosphates and is more representative of an expected duplex length

in single stranded RNA. The large binding energy can be the result of a number of different

molecular characteristics that are the result of polyU being a more flexible homopolymer.

PolyA, and other polypurines, exhibit strong single stranded base stacking interactions that

effectively increase the stiffness of the polymer [31]. The duplex has the bases involved in base

paring, holding both chains together, keeping a more rigid structure than the polypyrimidines

and polypurines. Do to the highly flexible backbone of polyU, the molecule can adopt a large

(a) (b)

Figure 2.3.1: (a) Averagem minimum distance between charged groups of protein and

RNA.(b) Electrostatic energy for various bound RNAs
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number of different conformations. Since the polyU backbone is able to bend easier than

other homoRNAs, and certainly moreso than RNAs containing any secondary structure, it

is better able to bring the negatively charged phosphates closer to the positively charged

lysines and arginines located on the N-terminus of the protein. Table 2 and figure 2 shows

that polyU brings the phosphate groups closest when compared to polyA and the duplex

and has a higher average estimated electrostatic energy.

RNA Average Minimum Distance (nm) Average Electrostatic Energy (nm−1)

polyU 0.58 ± 0.01 1.55 ± 0.5

polyA 0.64 ± 0.02 1.32 ± 0.2

AU Duplex 0.7 ± 0.1 1.13 ± 0.4

Table 2.2: Average minimum distance between charged groups of protein tail and RNA and

corresponding average approximate electrostatic energy (
∑

1
|ri−rj |).

The small differences in the distances is also supported by the relative small difference in

number of released counterions between the RNAs. Surprisingly, polyU is able to further

stabilize these highly deformed structures as well due to non-canonical U-U transient base

pairing. Another feature of this larger flexibility , polyU can rotate its bases about its

backbone, and this feature allows for intramolecular hydrogen bonding similar to how single

stranded hetero RNA folds. In comparison with polyA, which possesses single stranded

base stacking characteristics in its coil configuration (pH > 6, the nucleobases prefer to stay

aligned in helical order, due to the pi orbital interactions between the pyrimidine rings.

This extra interaction stabilizes ordering of the bases and reduces the change the base will

rotate about the phosphate backbone. Shown in figure 3 are two typical configurations for

polyU and polyA while bound to the protein (with the protein not shown). The bases in

polyA prefer to stay aligned with one another while the bases in polyU are more widely

distributed around the backbone. The AU duplex is the most rigid structure, held in stable

configurations by the base pairing between the A and U strands of RNA. Therefore its

ability to neutralize charge is the most limited by the native structure of the RNA, fitting
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through rotations and translations rather than deformations of the RNA. Table 1 shows

that the polyU and polyA do better at neutralizing charge through release of counterions,

maximizing the number of intermolecular hydrogen bonds and maximizing the change in

solvent accessible surface area upon binding than the duplex. PolyA and polyU release

on average 1 more counterion thn the duplex and average twice the number of hydrogen

bonds. The also go through greater conformational changes upon binding the protein tail

allowing them to maximize the difference in solvent accessible surface area between bound

and unbound states, increasing the difference by around 5 nm2.

Figure 2.3.2: Illustration of a ”cation-pi” interaction found in the protein-RNA complex

between the N-termini and polyU. The long ribbon is the protein backbone, the multicolored

structure with the blue hexagon is one residue from the polyU and the blue arginine, only

one of the protein residues, is shown extending from the protein backbone.

We also found that the ability for polyU to more easily rotate the bases about the

backbone allows for ”cation-pi” interactions between the bases of the RNA and the positive

charges on the protein. The quotations around cation-pi interactions are there because

though these interactions are not explicitly modeled in molecular mechanics force fields,

they can roughly be accounted for through the lennard-jones interactions. Force fields have
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been well parametrized to account for base stacking interaction in nucleic acids[32], but

explicit terms that would model cation-pi interactions would require knowledge of where

the cation is around the nucleic acid ring (which to my knowledge has not been done yet).

Both the guanidinium group on the arginine and the uracil ring on the polyU RNA in figure

3 have larger surface areas to interact to maximize the dispersion attraction term in the

force field[32]. This could be the reason we see these apparent ”cation-pi” interactions in

simulation where the guanidine group and uracil group are lined up co-planarly as seen in

figure 3. In figure 2 it is apparent how polyU can make its bases available to the protein tail

and then the positive charge of the arginine finger can interact with the base of the RNA. It

suffices to inform us that these types of interactions can and do happen in the case of a highly

flexibly single stranded RNA. These interactions were not observed in polyA and the duplex

case, though they are possible, because cation-pi interactions would have to compete with

pi-pi interactions that are all ready present from the double stranded and single stranded

base stacking in the duplex and RNA respectively.

(a) (b)

Figure 2.3.3: (a) Configuration of polyU in bound state and (b) configuration of polyA in

bound state.

Rigidity plays a strong role not only in the ability to align the phosphates with positive

charges, but also to increase the frequency of other intermolecular forces. The protein-RNA

14



complex has many possible hydrogen bonding partners. Having a more flexible backbone

can increase the number of hydrogen bonds between RNA and protein to further stabilize

the RNA-protein complex and increase the the binding energy. The number of potential

hydrogen bonding partners between the RNA and protein is roughly the same for each of the

RNAs. However, a large portion of the hydrogen bonding partners in the duplex are occupied

in hydrogen bonding between the two strands of RNA. That is why the duplex has an average

number of hydrogen bonds around half of that of the homopolymers. This is consistent with

existing theories suggesting that nonspecific binding sequences in viral assembly bind to

hairpins, which contain single stranded regions of RNA. PolyU has more hydrogen bonds on

average than polyA because of the stiffness of polyA in regards to rotations of the bases

around the backbone and deformation of the backbone itself making hydrogen bonding

partners slightly harder to find each other. Similarly to how hydrogen bonding can be

optimized by deformation of the RNA, solvent accessible surface area (SASA), can also be

optimized from deformation of the RNA. This was calculated by looking at the difference in

SASA before and after binding, giving a rough measure of van der waals contacts between the

RNA and protein. It is a rough estimate because it is not exclusively given by hydrophobic

contacts, but also charge neutralization and formation of hydrogen bonds. The same trend

seen in hydrogen bonds is seen with SASA.

2.4 RNA characteristics

We find that polyU decreases in size upon binding the N-terminus of CCMV capsid protein.

The change is only a difference of about half a nanometer in the radius of gyration. Since

polyU and polyA are linear polyelectrolytes, this could suggest that there exists some level

of condensation of RNA around the highly charged protein tails. The degree of condensation

could depend on the effective flexibility of the homopolymer and could affect the geometry of

the fully formed capsid. On a more macroscopic scale, we know that the viral RNA (duplex

forming) has a smaller radius of hydration (Rh) when compared to the homopolymers as

seen in figure 4[9]. It has also been shown that unlike DNA in the presence of sufficient salt
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Figure 2.4.1: Size distributions of B1 RNA compared with those of polyA and polyU given

by dynamic light scattering(DLS) of similar length RNAs.

concentration, RNA undergoes a continuous transition in size.

2.5 Stiffness dependent counterion release

In non-specific binding of RNA to protein in viruses, aqueous electrostatics plays a dominant

role. The driving force for these binding events is the entropy release of bound counterions

for the protein upon binding. In our simulations we have shown that counterion release

does play a prominent role in binding and that the different RNAs exhibit different levels of

counterion release that are consistent with experimental results. Figure 4 shows that upon

binding of RNA to the protein tail, the distinct peaks of the coutnerion probability density

for both sodium and chlorine start to diminish and approach a uniform distribution. Thus

in binding the protein, the RNA neutralizes the positive charges on the protein.

We can see in figure 5 the radial distribution functions(rdf) for the different RNAs in

bound vs unbound states, that polyU does the best job at both binding counterions and

unbinding them upon complexing with protein. The rdfs are representative of the distance
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(a) (b) (c)

(d) (e) (f)

Figure 2.5.1: (a)-(c) Counterion probability density for RNAs in the bound state.(d)-(f)

Counterion probability density for RNAs in the unbound state

of sodium atoms from the phosphates along the backbone of the RNA, and the distance

of the center of mass of the charged groups on the protein (mostly nitrogen atoms on the

lysine and arginine groups) and the chlorine atoms. The enhanced counterion release is

due to the larger flexibility of polyA and polyU, which are better able to charge match the

positive charges along the protein tail. Interestingly, the discrepency in bound counterions

are largely due to a difference in binding the 0.7-2nm regime. These are counterions that are

not tightly bound to the phosphates along the backbone of the RNA, but rather counterions

that are loosely bound to the RNA. Investigating the trajectories, we find that in both the

bound and unbound cases, there is usually one sodium bound closely (0.2-0.5nm) to the

RNA represented by the first peak in the rdf. This sodium atom is usually transient and

invariant among the different phosphates along the backbone, meaning that it can be found

at any phosphate group and usually does not persist for long. In the bound case, we see that

there is still a tightly bound sodium, but since the number of available negative charges is

smaller due to the binding of charged groups from the protein, the frequency of observing

this sodium is lower. By integrating the radial distribution function and multiplying by
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(a) (b)

(c) (d)

Figure 2.5.2: (a) and (b) Counterion structure around RNA.(c)-(d) Counterion structure

around protein

the density(generating the cumulative distribution function(cdf)), we can see the average

number of sodiums around the RNA and chlorines around the protein. By comparing the

cdf’s before and after binding to the RNA, we can see how many counterions are released

upon binding. The results are shown in table 2.1.

2.6 Concluding remarks

We have shown that for short homonucleotide RNAs binding to an unstructured disordered

protein, the RNAs with more flexibility bind more favorably. The work of Lui[26] showed that

in the case of packaging of branched and linear polymers with associated stiffness, flexible

polymers only when in the case of shorter chain length. Though it would be irresponsible to

assert that the rational for stiffer polymers binding less favorably would lead to preferential

encapsidation, it is interesting that on a molecule-molecule level of interaction the trend we
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see is similar. At the very minimum, more favorable binding of the biopolymer would at least

kinetically favor the preferential encapsidation of the more flexible polymer. In a multistep

assembly process, like those performed in-vitro, the initial step is the binding of the RNA

to the capsid protein. Then the solution conditions are changed to allow for reorganization

to form the assembled capsids. It is understood that the mechanism of capsid formation

can affect the nature of the formed capsid [25], to the best of our knowledge, it has not

been investigated whether or not the mechanism of assembly affect which polyelectrolyte is

preferentially packaged. If the reorganization occurs on a timescale larger than that of the

unbinding process, the mechanism of assembly could be biased towards the preferred binding

partner rather than the lower free energy of the fully formed capsid.

We have also shown that the counterion condensation is enhanced for the more flexible

polyelectrolytes. It has been shown that for polyelectrolytes there is an effect on the effective

persistence length of the polymer due to effective screen of intrachain repulsion and effective

attractions due to correlations in the fluctuations of bound counterions [33]. In future work

it would be interesting to investigate if the inverse were true; flexibility of the polymer and

fluctuations in the conformation of the polymer, related to polymer stiffness, affect the ability

for counterions to bind.
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CHAPTER 3

Analytical Models for the Non-specific and Specific

Binding of Polymers

In Section II we found that when an RNA sequence binds to a peptide sequence then the

binding energy to DNA of an RNA sequence with shorter persistence length is larger than

that of an RNA sequence with longer persistence length. A number of papers in the soft-

matter literature have discussed the problem of the adsorption of polymers onto rigid rods[34,

35].

In general, decreasing the stiffness of the polymer increases the role of thermal fluctuations

causing unbinding of the polymer from the rod. An interesting way to see this is by using

the mapping between a directed polymer and a quantum particle, as first developed by de

Gennes, where thermal fluctuations in three dimensions translate to the quantum fluctuations

of a quantum particle in two dimensions[36].

For the present case, the binding of a polymer to a rigid rod translates to the interaction

of a quantum particle moving in two dimensions with an attractive potential well at the

origin. The adsorption of the polymer to the rod corresponds to appearance of a bound

state. Decreasing the stiffness corresponds to decreasing the mass of the particle and hence

increasing the role of fluctuations, causing unbinding. This type of fluctuation-induced

unbinding is quite general. The physics of the adsorption of a polymer to a surface shows

the same effect[37, 38].

This well-established body of literature seem to be in conflict with our simulation results!

The more flexible ssRNA has a higher binding energy than the more rigid duplex forming

RNA and the more flexible ssRNA (polyU) has a higher binding energy than polyA which 19
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has increased rigidity due to single stranded base stacking. In this section we discuss simple

statistical models that show that there are competing physical mechanisms in terms of the

effects of flexibility when both specific and non-specific interactions are included.

3.1 Semi-flexible polymers interacting with a rigid rod via non-

specific and specific interactions.

We start with a model where a semi-flexible polymer interacts with a rigid polymer, first for

the case where only non-specific interactions are included

3.1.1 Semi-flexible polymer interacting with a rigid rod via non-specific inter-

actions

Consider a semi-flexible homo-polymer of length L interacting with a long rigid rod. The

system is confined to two-dimensions. The “bending energy Hamiltonian” of a semi-flexible

polymer is given by

Hb =
1

2
κ

∫ L

0

(
dθ

ds

)2

ds (3.1.1)

L represents the total length of the polymer. Next, κ is the bending modulus, which is

connected to the persistence length, lp, by the relation κ = kbT lp, where kb is the Boltzmann

constant and T is the temperature. As shown in figure 3.1.1, θ is the angle between the

tangent vector of the polymer and the x-axis and s is the arc length coordinate that goes

from 0 to L. The derivative of θ w.r.t to s, dθ
ds

= 1
R(s)

has the meaning of the local curvature

of the polymer with R(s) the curvature radius, as can be seen in figure (INSERT IMAGE).

The figure shows how the infinitesimal segment length of a circle of radius R is given by

Rdθ = ds, which leads to the relation between the curvature radius, R(s), and the derivative

of θ above. This Hamiltonian can be rewritten in therms of the curvature as

Hb =
1

2
κ

∫ L

0

1

R(s)2
ds (3.1.2)
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Figure 3.1.1: Diagram of system.

This expression has the same form as the elastic energy of a rod that has been bend in a

particular shape. It has been extensively used as a description for the deformation energy

cost of bio-polymers such as DNA and RNA on large length-scales[39].

For double-stranded DNA and RNA, the persistence length is in the range of 50 nm

while for single-stranded DNA and RNA it is in the range of one nm. One can add a term to

include a “preferred curvature”, for bio-polymers like RNA and DNA that are heterogeneous,

by subtracting a curvature function, f(s), from the inverse of the radius of curvature in

equation 3.

The Hamiltonian Hb must be viewed as the continuum, or long wavelength, limit of a

more detailed microscopic model. It will be necessary for the calculation of partition sums

and free energies to discuss this. Suppose a polymer is modeled as a sequence of rigid links

– the monomers – that are joined into a chain via joints that have a limited amount of

rotational degrees of freedom. Saturated hydrocarbon chains can, for example, be described

in this way. Confine this chain again to two-dimensions and let θn be the angle of the n’th

link of the chain with respect to the x-axis. A possible microscopic Hamiltonian for such

a chain would be HX−Y = −(κ/a)
∑Nm

m=0 cos(θm+1 − θm) with θm restricted to the interval
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[0, 2π]. This is a well-studied Hamiltonian, known as the one-dimensional X-Y model. Note

that the angular degrees of freedom are properly periodic with period 2π. The partition

sum of the model is Z =
∏m=N

m=0

∫ 2π

0
dθm exp−βHX−Y with β = 1/kBT . The free energy

has the form FX−Y = −kBT lnZ = NkBTf(βκ/a) with f(x) a dimensionless function. The

important feature here is that the microscopic length scale a – the monomer size –, which

does not appear in Hb, does enter in an essential way in the free energy expression.

The next step is to specify the interaction of the polymer with the rod, which will be

assumed to lie along the x-axis. Assume a non-specific interaction potential v(x, y) per unit

length that is independent of x and that has a minimum with respect to y at y=0. Expansion

in a Taylor series gives

v(x, y) ≃ vo +
1

2
ky2 + .... (3.1.3)

with k = d2v(x,y=0)
dy2

and with vo the binding energy per unit length for the case that the

polymer also lies along the x-axis. The binding energy vo is estimated as has kbT/nm while

the quantity k, which has dimensions of energy per unit volume ([k] = [E]
[L]3

), is estimated as

kbT/nm
3. The interaction contributes a term to the Hamiltonian given by

Hint ≃ −voL+
1

2
k

∫ L

0

y(s)2ds (3.1.4)

where y(s) is understood as the local displacement from the x-axis for a monomer that is

located at an arc distance s along the polymer.

We must combine the bending and interaction energies. We used two notations to rep-

resent the conformation of the polymer: θ(s) and y(s). The θ(s) representation is, as noted,

convenient to compute the free energy of the polymer that is unbound and free in solu-

tion. On the other hand, for a nearly straight polymer located close to the x-axis, the y(s)

representation could be replaced by a y(x) representation. This is known as the ”Monge

Representation” and this representation happens to be very convenient to compute thermal

fluctuations for the case where the polymer is bound to the rod. However, our aim is to

compute the free energy of assembly. The Monge representation is known to lead to serious

errors in the computation of free energies and heat capacities.
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Figure 3.1.2: Diagram of system.

For this reason we must do our calculation in the θ(s) representation, which requires

us to express x(s) and y(s) in terms of θ(s). Following the schematic of figure 3.1.2, and

assuming that the potential is small so that θ(s)2 is small, we can transform our coordinates

to

ds = (dx2 + dy2)
1
2

pulling out dx2, we get

ds = dx

(
1 +

(
dy

dx

)2
) 1

2

Taylor expanding and inserting dy ≈ θdx ≈ θds

ds ≈ dx(1 +
1

2
θ(s)2)

Solving for x(s) we then get

x(s) = xo +

∫ s

0

1

1 + 1
2
θ(s′)2

ds′

Taylor expanding the integrand and integrating we finally reach

x(s) ≃ x0 + s− 1

2

∫ s

0

θ(s′)2ds′ (3.1.5)
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with x0 the x-coordinate of the s = 0 end of the polymer. Doing the same with y we have

y(s) ≃ y0 +

∫ s

0

θ(s′)ds′ (3.1.6)

with y0 the y-coordinate of the s = 0 end. We will compute the free energy for fixed x0

and y0, which can be viewed as a potential of mean force. Plugging equation 7 into the

expression for Hint gives to lowest order

Hint ≃ −voL+
1

2
k

[∫ L

0

ds

(∫ s

0

ds′θ(s′)

)2

+ y0

∫ L

0

ds

∫ s

0

ds′θ(s′) + y20

]
(3.1.7)

The boundary conditions are determined by the fact that there is no bending torque applied

at the ends of the polymer, which means that κdθ
ds
|s=0 = κdθ

ds
|s=L = 0. Since this expression is

a quadratic functional of θ(s) it is natural to expand the interaction Hamiltonian in a mode

expansion. Rewrite

θ(s) =
Nm∑
n=1

An cos qns (3.1.8)

Where qn = 2π
λn

= nπ
L

is the wavenumber of the mode. The two modes corresponding to rigid

body translation are included separately by retaining x0 and y0 as two separate degrees of

freedom. Note that each term in the expansion obeys the zero torque boundary condition.

Next, Nm is the number of monomers, equal to L
a

with a the monomer spacing of the polymer

and L still the polymer length. It is easy to check that∫ s

0

θ(s′)ds′ =
Nm∑
n=1

An

qn
sin qns (3.1.9)

Using this result and plugging it into the terms of equation 8 we have∫ L

0

ds

∫ s

0

ds′θ(s′) =
Nm∑
n=1

An

q2n
(1 − cos qnL)

Since the expression in the parenthesis is equal to 0 when n is even and 2 when n is odd, we

can simplify to ∫ L

0

ds

∫ s

0

ds′θ(s′) = 2
Nm∑
n=1

An

q2n
(3.1.10)

Plugging equation 10 into the square term in the interaction Hamiltonian we get∫ L

0

ds

(∫ s

0

ds′θ(s′)

)2

=

∫ L

0

ds

(
Nm∑

n,n′=1

AnAn′

qnqn′
sin qns sin qn′s

)
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The term in the parenthesis simplifies to −1
2

∑
n,n′

AnAn′
qnqn′

[cos (qn + qn′)s − cos (qn − qn′)s].

Integrating this with respect to s from 0 to L then gives

−1

2

∑
n,n′

AnAn′

qnqn′

(
1

qn + qn′
sin (qn + qn′)L− 1

qn − qn′
sin (qn − qn′)L

)
(3.1.11)

The terms in the sum are equal to 0 unless n = n′ which then simplifies everything to∫ L

0

ds

(∫ s

0

ds′θ(s′)

)2

=
L

2

Nm∑
n=1

A2
n

q2n
(3.1.12)

Rewriting the interaction Hamiltonian in the mode expansion gives

Hint =
1

2
k

(
y2oL+ 4yo

Nm∑
n=odd

An

q2n
+
L

2

Nm∑
n=1

A2
n

q2n

)
− voL (3.1.13)

If we plug the mode expansion into equation 2 to get the bending energy of the polymer, we

get

Hb =
1

2
κ
∑
n,n′

AnAn′

∫ L

o

dsqnqn′ sin qns sin qn′s =
κL

4

Nm∑
n=odd

A2
nq

2
n (3.1.14)

Thus, the total Hamiltonian for the system is

H =
L

4

∑
n

A2
n[κq2n + kq−2

n ] + 2kyo

Nm∑
n=odd

An

q2n
+

1

2
ky2oL− voL (3.1.15)

The Hamiltonian is expressed in terms of the An and y0 coordinates, which are coupled

because of the cross term. We can rewrite the Hamiltonian in terms of uncoupled coordinates

by defining αn = An −A∗
n where dH

dA∗
n

= 0. Plugging this into equation 14 and solving for A∗
n

we arrive at

A∗
n = −4kyo

L

1

k + κq4n
(3.1.16)

Inserting this back into equation 16 we get

H = −voL+
L

4

Nm∑
n=odd

[
κq2n +

k

q2n

]
α2
n +

[
kL

2
− 4k2

L

Nm∑
n=odd

1

q2n

(
1

k + κq4n

)]
y2o (3.1.17)

Where we now have the decoupled modes αn and yo. Define the function g(z) with z = κπ4

kL4

where

g(z) = 1 − 8

π2

Nm∑
n=odd

1

n2 + zn6
(3.1.18)
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Figure 3.1.3: Plot of g(z)

Note that g(0) = 0. The limiting relations for small and large z are

g(z) ≃


c0z

1
4 z → 0

1 − c1
z

z → ∞
(3.1.19)

with c0 ≃ 0.45 and c1 ≃ 0.81. This function can be seen in figure 3.1.3 This lets us rewrite

the Hamiltonian as

H = −voL+
kL3

4π2

Nm∑
n=odd

(
zn2 +

1

n4

)
α2
n +

1

2
kLg (z) y2o (3.1.20)

It follows from this expression that in the presence of a series of harmonic modes, the

polymer continues to interact with the rod via a parabolic potential when displaced along

the y direction as a rigid body. The spring constant has however changed from kL to

kLg(z). Since g(z) is an increasing function of z and since increased flexibility decreases z,

increased flexibility weakens the harmonic restoring force. It is clear from this expression

that the length scale ξ =
(
κ
k

)1/4
plays an important role. If the polymer length L is small

compared to ξ than the effective spring constant is close to kL while in the limit that L is

large compared to ξ, the spring constant is ”renormalized” to, roughly, kξ. In the statistical

physics literature, this is known as a scaling relation with L/ξ as the scaling variable. The
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length ξ is similar to the Odijk deflection length [40], which is the length scale at which a

polymer collides with the wall of a confining cylinder. In our case the confining cylinder is

represented by the binding potential and its curvature k, while κ is related to the persistence

length of the polymer. Thus the effectiveness of the binding is dependent on the statistics

of a confined polymer. Note that there are now three length scales: the microscopic length

scale a, the persistence length κ/kBT , and the effective Odijk length ξ. The scaling variable

z is proportional to
(
ξ
L

)4
.

The free energy of a system of decoupled harmonic degrees of freedom can be calculated

from the partition sum. Note that the mode amplitudes An are dimensionless. The resulting

potential of mean force

FT (y0) =
1

2
kbT

Nm∑
n=odd

ln

(
n2π3lp/L

(
1 +

1

zn4

))
+

1

2
kLg (z) y2o − voL (3.1.21)

does not depend on x0. We will define the binding energy of the system as the difference

between the free energy when it is bound to the rod and when it is free in solution. In

the latter case, only the bending energy contributes to the Hamiltonian, which is equal to

1
2
kbT

∑Nm
n=odd ln (n2π3lp/L) This gives, after thermal averaging, over y0

∆F =
1

2
kbT

Nm∑
n=odd

ln (1 +
1

zn4
) +

1

2
kbT ln(βπkLδ2g(z)) − voL (3.1.22)

where δ is a microscopic length that does not depend on κ (hint: take the classical limit of

the free energy of a quantum harmonic oscillator).

We can now examine the effects of flexibility on the binding energy in different limiting

cases. Note that the flexibility only enters in ∆F through the scaling variable z.

The first regime will be the limit where z >> 1. This is the ”stiff” limit where the Odijk

length ξ is large compared to the polymer length L. The first term can be Taylor expanded

for any n since z is large compared to one. This comes down to having to evaluate the

sum
∑∞

n=1
1
n4 = γ ≃ 1.06, which leads to γ

2
kbT
z

. In this limit g(z) ≃ 1 − c1
z

. The second

term in equation 24 is the sum of a term independent of z plus a negative term −1
2
c1kBT/z

proportional to kBT/z. The two terms are both proportional to 1/z, which produces a net
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positive contribution to the binding free energy of about 0.25kBT/z. Increasing the flexibility

means decreasing z. This reduces the magnitude of the binding free energy ∆F , so flexibility

indeed decreases the binding affinity, as well as the restoring force, in accordance with the

earlier studies cited above. However, the 0.25kBT/z contribution is small compared to the

thermal energy scale so this correction term is in general negligible compared to the bare

binding energy −voL.

In the second regime one assumes the opposite, namely z << 1 so where the Odijk length

ξ is small compared to the length L of the polymer, but we will also assume that z still is

larger than 1/N4
m. Physically, this means that the Odijk length is large compared to the

monomer size a. In this regime, one can split the sum in equation 24 as

∆F (z) ≈ 1

2
kbT

( 1
z )

1
4∑

n=1

ln

(
1

n4z

)
+

Nm∑
n=( 1

z )
1
4

(
1

n4z

)+
1

2
kbT ln

(
doz

1
4

)
− voL (3.1.23)

with d0 a constant independent of z. Turning summation into integration gives the estimate

∆F (z) ≈ 1

2
kbT

[(
1

z

) 1
4

ln

(
1

zd1

)]
+

1

2
kbT ln

(
d0z

1
4

)
− voL (3.1.24)

with d1 a numerical constant of the order of one. The first term is proportional to the

polymer length L since z is inversely proportional to 1/L4. The correction term no longer

can be neglected with respect to the bare binding energy. The second term in the expression

is not extensive and can be neglected, which gives

∆F (z) ≈ 2

π
kbT

(
L

ξ

)
ln

(
L

d2πξ

)
− voL (3.1.25)

with d2 a numerical constant of the order of one. Assuming the logarithm to be of the order

one, leads to the estimate that thermal fluctuations produce unbinding of the polmer from

the rod when kBT/ξ is larger than the v0.

In regime three, one looks at the case where z << 1/N4
m, which is when the Odijk length

is small compared to the monomer size a. Under this assumption one can approximate the

binding free energy as

∆F ≈ 1

2
kbT

Nm∑
n=1

ln

(
1

zn4

)
+

1

2
kbT ln g(z) − voL (3.1.26)
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One can again estimate ∆F (z) by treating the logarithms as quantities that are of the order

of one. The first two terms are together of the order of kBTL/a. Now, one expects thermal

fluctuations to produce unbinding when kBT/a is larger than v0. In each of the three regimes,

(a) ∆F as a function of z for z << 1. (b) ∆F as a function of z for z− > ∞.

the bound state becomes less favorable when the bending modulus κ is reduced as seen in

the plots of figures 3.1.4a and 3.1.4b plotting (3.1.22). The polymer is bound better when

the bending cost is large so it can stay in a straight configuration and best line up with

the rigid rod. If a polymer has a large amount of curvature due to thermal fluctuations

then this pushes the polymer farther up the potential well and further from the bound

state. This is related to concept of the Odijk length ξ as the length at which the polymer

collides with a confining tube after touching the wall once. Every collision decreases the

entropy by an amount of the order of kB and increases the free energy by an amount of

the order of kBT . As the Odijk length gets smaller, more ”collisions” with the confining

potential happen causing the system to lose about kbT in free energy per collision. The

entropic cost of confining the polymer gets larger and a bound state gets less favorable. As

the Odijk length gets larger, the more favorable binding should be. That is to say that

given similar potentials, the stiffer polymer should bind more favorably with non-specific

interactions due to entropy loss of confining a flexible polymer. This argument leads one to

estimate that binding the polymer to the rod reduces increases the entropic free energy −TS

by an amount kBTL/ξ with every collision reducing the entropy by an amount kB. Recall

that that is exactly what we found in the second regime where the Odijk length was small
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compared to the polymer length L but large compared to the monomer size a. We conclude

by noting, first, that the concept of the Odijk length loses validity when the Odijk length

exceeds the persistence length, which happens in the limit of very small k, because in that

case the polymer can coil up in between the collisions and, second, that a more quantitative

theory of the polymer/rod unbinding unbinding transition requires including in the partition

sum the appearance of ”loops” where a section of the polymer moves outside the range of

the attractive potential. With these caveats in mind, the concept of the Odijk Length still

provides us with an important tool for the analysis of the molecular dynamics simulations

of the previous section.

3.1.2 Specific Interactions and the Quenched Average

The interaction between the polymer and the rod did not include in any way local molecular

structure or specific interactions. In this section we extend the model by including these

effects. This will be done in a minimalistic way by generalizing the interaction potential

v(x, y). Specifically, assign again Cartesian coordinates x(s), y(s) to a polymer segment

located an arc-distance s along the polymer. The segment now experience a potential per

unit length given by

v(x, y) = −vo +
1

2
k (y(s) − ys(x(s)))2 (3.1.27)

with ys(x) a certain function. The first interpretation is to view ys(x) as a lateral displace-

ment of the straight rod of the previous section in the y direction that varies along the x

direction. An alternative interpretation is obtained by expanding the square:

v(x, y) = −vo +
1

2
ky(s)2 − f(x(s))y(s) +

1

2
kys(s)

2 (3.1.28)

where f(x(s)) = kys(x(s)) has dimensions of force per unit length. In this case we maintain

the straight rod configuration of the previous section but introduce a specific local interaction

in the form of a force f(x) that varies along the rod. Note that we can drop here the last term

since it does not affect the interaction between the rod and the polymer. In the following

we will retain this second interpretation
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Assume that the polymer is in a solution that contains rod-like molecules with a wide

variety of specific force distributions f(x). Our aim is to compute the binding energy for

a generic force function f(x). The free energy will be computed for an unspecified force

function f(x) after which the typical free energy is obtained by an unbiased average over

a range of different force functions. In the physics literature this procedure of computing

statistical averages in random environment is known as a ”quenched average”. Performing

quenched averages often leads to a considerable mathematical complication known as ”replica

symmetry breaking”. The averaging step is done by treating the force function f(x) as

a random variable with zero mean and with no correlations between different locations.

Specifically, the force-force correlation is ⟨f(x)f(x′)⟩ = ∆δ(x−x′) with ∆ having dimensions

of the square of force divided by a length or energy squared divided by length cubed. This

quantity should be compared with the second derivative k of the non-specific interaction,

which has dimensions of energy divided by length cubed. It follows that ∆/k has dimensions

of energy, which suggests that the specific interactions become important when this energy

scale exceeds the thermal energy scale kBT

The specific force per per unit length introduces a new term in the Hamiltonian denoted

by Hf , given by

Hf ≃ −yo
∫ L

0

dsf(xo + s) −
∫ L

0

dsf(xo + s)

∫ s

0

ds′θ(s′) (3.1.29)

Note that Hf now depends on the initial location of the polymer along the x direction, which

was not the case when we had only non-specific interactions. As in the previous section, we

switched from Cartesian to polar coordinates and assumed θ(s) to be small compared to one.

Using the same mode expansion as before

θ(s) =
Nm∑
n=1

An cos qns

gives for the new term in the Hamiltonian:

Hf = −yo
∫ L

0

dsf(xo + s) −
N∑

n=1

An

qn

∫ L

0

dsf(xo + s) sin qns (3.1.30)
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Define the sine transform of the force profile as f̄n ≡
∫ L

0
dsf(xo + s) sin qns and f̄o ≡∫ L

0
dsf(xo + s). Note that the fn depend on the coordinate x0. We can rewrite the equation

as

Hf = −yof̄o(xo) −
N∑

n=1

An

qn
f̄n(xo) (3.1.31)

This gives us a full Hamiltonian

H =
L

4

N∑
n=odd

A2
n[κq2n + kq−2

n ] −
N∑

n=odd

An

[
f̄n
qn

− 2kyo
q2n

]
− yof̄o + (

1

2
ky2o − vo)L (3.1.32)

Using the same method as before definition An = A∗
n + αn such that dH

dA∗
n

= 0 we define A∗
n

in terms of the modes of the Hamiltonian.

A∗
n =

2

L

[
f̄n
qn

− 2kyo
q2n

]
[κq2n + kq−2

n ]
(3.1.33)

In terms of the αn, the Hamiltonian becomes

H =
L

4

N∑
n=odd

[κq2n + kq−2
n ]α2

n −
1

L

N∑
n=odd

[
f̄n
qn

− 2kyo
q2n

]2
[κq2n + kq−2

n ]
− yof̄o + (

1

2
ky2o − vo)L (3.1.34)

This equation shows that the quenched average will be straightforward because Hamiltonian

breaks up as a term that contains the thermal stochastic variables αn – namely the first terms

- and terms that contain the quenched stochastic variables fn without any cross-coupling.

The partition sum is the product of a term that involves the thermal stochastic variables and

a term that only involves the quenched variables. There is no need to perform a quenched

average of the logarithm of a partition sum that depends on the quenched variables, which

in other cases leads to the mathematical complications of the replica method.

Minimize the Hamiltonian with respect to the lateral displacement yo. The minimum

energy lateral displacement is y∗o with

y∗o =
1

Lkg(z)

[
f̄o −

4

L

N∑
n=odd

kf̄n
qn

1

κq4n + k

]
(3.1.35)
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The Hamiltonian can now be expressed as

H =
L

4

N∑
n=odd

[κq2n + kq−2
n ]α2

n − voL+
L

2
kg(z)(yo − y∗o)2

− 1

2Lkg(z)

[
f̄o −

4

L

N∑
n=odd

kf̄n
qn

1

κq4n + k

]2
− 1

L

N∑
n=odd

f̄n
2

[κq4n + k]

(3.1.36)

We first perform the partition sum over the αn and over yo. This reproduces the partition

sum Zo for the case that there are no specific interactions. The free energy is the free energy

of the system in the absence of specific interactions plus the last two term in the Hamiltonian

that do not depend on αn and yo. The specific interactions introduce an added term ∆Fs in

the free energy given by

∆Fs = − 1

2Lkg(z)

[
f̄o −

4

L

N∑
n=odd

kf̄n
qn

1

κq4n + k

]2
− 1

L

N∑
n=odd

f̄n
2

[κq4n + k]
(3.1.37)

that is negative definite. This term needs to be quench-averaged. The quenched average of

term linear in fn, and hence linear in f(x), are zero. The quenched average of quadratic

terms

⟨f̄nf̄m⟩ =

∫ L

0

ds

∫ L

0

ds′⟨f(xo + s)f(xo + s′)⟩ sin qns sin qns
′

= ∆

∫ L

0

ds

∫ L

0

ds′δ(s− s′) sin qns sin qms
′

=
L

2
∆δn,m

(3.1.38)

The exception is f0 in which case ⟨f 2
o ⟩ = ∆L. This gives

⟨∆Fs⟩ = − ∆

2kg(z)

[
1 − 8

π2

N∑
n=odd

1

n2

1

[zn4 + 1]2

]
− ∆

2k

N∑
n=odd

1

[zn4 + 1]
(3.1.39)

Using the fact that 8
π2

∑N
n=odd

1
n2 = 1, this reduces to a form that is again negative definite

⟨∆Fs⟩ = − 2∆

π2kg(z)

[
N∑

n=odd

zn2(2 + zn4)

[zn4 + 1]2

]
− ∆

2k

N∑
n=odd

1

[zn4 + 1]
(3.1.40)

Note that ⟨∆Fs⟩ has the form of the natural scale ∆/k times a function of z. The dependence

on the scaling variable z can be investigated in the same manner as before. In the regime
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of small z, or large L, we replace summation by integration. First set n = 2m − 1 with m

running over the positive integers. Define x = z1/4(2m+ 1) and dx = 2z1/4dm with dm = 1.

Then

⟨∆Fs⟩ ≃ −∆

k

(
z1/4

4π2g(z)

∫ ∞

0

x2(x4 + 2)

[x4 + 1]2
dx+

1

4z1/4

∫ ∞

0

1

[x4 + 1]
dx

)
(3.1.41)

both integrals converge. In the limit of small z, g(z) is proportional to z1/4 so the first term

inside the brackets goes to a constant but the second term diverges. In terms of the Odijk

Length, we can express this result as

⟨∆Fs⟩ ≃ −∆

k
(f1 + f2(L/ξ)) (3.1.42)

with f1 and f2 numerical constants of the order of one. Adding the contribution to the free

energy coming from the non-specific interactions, and including only the extensive terms

proportional to L, gives for the quenched-averaged binding energy

⟨∆F ⟩ ≈
[

2

π
kbT ln

(
L

d2πξ

)
− f2

∆

k

](
L

ξ

)
− voL (3.1.43)

Increased flexibility means reducing the Odijk length ξ. If the coefficient inside the square

brackets is positive, then this reduces the magnitude of the binding free energy. Note here

that if the Odijk length is changed by an order of magnitude then the logarithmic changes

by only a modest amount while L/ξ changes by an order of magnitude. If the coefficient

is negative increasing the flexibility increases the magnitude of the binding free energy.

The model leads to a simple result: if the thermal energy scale kBT is large compared to

the energy scale ∆/k of the specific interactions then increasing the flexibility promotes

unbinding. If kBT is small compared to the energy scale ∆/k then increasing the flexibility

promotes binding. Formally, thermal unbinding wins in the large L ”wins out” but this

somewhat academic.

3.1.3 Calculating Odijk lengths from simulation

To crudely calculate the Odijk length from simulation we can combine experimental results

for persistence length [41, 26]with the calculated PMFs to approximate the curvature of
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the binding potential k. Here we will assume the binding potential is similar to a parabolic

potential and use a least squares method to fit the curve and calculate k. Doing so we obtain

the following results.

RNA Odijk Length λ (nm)

polyU 0.20

polyA 0.31

AU Duplex 0.7

Table 3.1: The Odijk length calculated from experimental results for κ and results from

simulation for k

We see that as the polymer stiffness increases, so does the λ. However, interpreting

this in the context of the various forms of the binding energy we arrived at in equations

32, 29 and 25, it follows the opposite trend of binding energies we see in simulation. This

suggests that binding energy should always favor the stiffer polymer because temperature

effects destabilize the bound state for the more flexible the polymer.
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CHAPTER 4

Modelling MD simulations

In the past 20 years single molecule pulling experiments have become standard for under-

standing the nature and function of biomolecules. Interpretation of the data of the force

extension curves(FECs) and what is known and what can be determined from these exper-

iments is still being studied[1]. Work has been done to build on previous theoretical work

exploring FECs that exhibit ”force rips” or regions of negative slope in the FEC, explaining

the behavior through the bistable nature of different protein domains[42]. This has been at-

tributed to the temperature and force dependent melting temperature of the protein. Once

the critical temperature or force is reached, the protein will denature and give rise to these

force rips[43]. Using a simple double well model, Bonilla et al were able to reproduce exper-

imental behavior of the FECs for modular proteins and DNA hairpins. This is of particular

interest to us do to the nature of RNA-protein binding involving partners that exhibit these

interesting behaviors.To understand the response of proteins to mechanical force studied ex-

perimentally and theoretically[2, 44], we have attempted to connect the microscopic behavior

of a small protein segment under force to the macroscopic behavior of folded proteins and

duplex forming RNA/DNA in response to constant force, constrained length and an applied

AC force. We are exploring the possibility that the mechanical response of the protein is

predominantly determined by the hydrogen bonding dynamics within the protein. We have

performed MD simulations to generate force extension curves of a small alpha helical protein

(14 alanine residues) and have shown that there exist regions of the force extension curves

with a negative slope as shown in the experiments to produce figure 4.2.6. In figure 4.1.3

we see the same behavior in MD simulations for a simple alpha helical protein. We chose

an alpha helix as the model system because of its simple ”1D” structure and its ability to
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capture the important features of the force pulling dynamics of a much larger protein. We

also see non-exponential relaxation of the hydrogen bonding correlations within the pro-

tein. We choose alanine for its high propensity to form alpha helices, while also allowing for

non-canonical alpha helical hydrogen bonds to stabilize highly deformed structures.

A correlation function developed in the works of Chandler [45]was used to explore the

hydrogen bonding dynamics. Using a model system with a potential that under certain

tensions allows for bistable configurations of the monomers, we have recreated equilibrium

FECs similar to those calculated from MD simulations and dynamic FECs seen in experi-

ment. We see that the equilibrium distribution of the length of the chain is a many peaked

distribution with the peaks corresponding to the stable solutions to the force balance equa-

tion for the zero temperature case, or the minimum of the Gibbs/Helmholtz potential in the

force/length controlled cases. The initial response to the force and thermal exchange be-

tween the metastable states happen on different timescales and give rise to non-exponential

relaxation in the correlations of the extension. Then by exploring the compliance of the

response of the system under and AC force we are able to replicate the dynamical phase

transition seen in the experimental works of [46].

4.1 MD simulations reveal complex hyrogen bonding dynamics of

a small peptide under force

4.1.0.1 MD simulation details

The first tool we used to explore the system are all-atom molecular dynamics simulations.

The forcefield parameters and simulation’s set up is similar to the chapter two simulations

and were also performed in the GROMACS simulation software [30]. The AMBER99SB

forcefield was used and a particle mesh ewald (PME) method was used to compute electro-

statics. A TIP3P representation of water molecules was used with a Noose-Hoover thermo-

stat. simulations were carried out at 310K and a NaCl concentration of 0.1 mM (physiological

conditions and enough to ensure system neutrality) with periodic boundary conditions in a
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Figure 4.1.1: Image of the alanine residue chain. The teal colored sections are the alanines,

the red is the oxygens and the blue the nitrogens. The pinning and pulling potentials are

applied to the fourth and eleventh residues in the chain on the interior of the alpha-helix.

(a) (b)

Figure 4.1.2: Visualizations of the alpha helical state (a) and the extended state(b) after

being pull in a ribbon representations. The alpha helix has been destroyed in the extended

state.

rectangular box that was 6x6x12 nm. Simulation windows for both constant force and con-

stant length simulations were run for 20 to 40ns. To conduct constant force simulations,

umbrella sampling like in chapter 2 was used. A pinning potential of the form

V (x) =
1

2
kpin (XCOM(x) −Xpin)2 (4.1.1)
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was used. Where kpin is the harmonic potential stiffness, XCOM is the instantaneous center-

of-mass of the reside and Xpin is the location of the minima of the potential. It is important

here not to use a potential too strong, as restricting the motion so much will lead to inaccura-

cies in the measurements of the force on this potential. A potential stiffness of 1200Kcal/nm2

was sufficeint and used. A chain of 20 alanine resides was used and the protonation states

set in accordance with physiological pH. Alanine was chosen due to its propensity to form

an alpha helix[47]. Alpha helixes are primarily held together by intramolecular hydrogen

bond interactions, making this an ideal system to investigate hydrogen bonding dynamics.

The alanine chain was held at a fixed distance and a force distribution at each distance was

calculated. To perform constant force simulations, one peptide at an end of the peptide

chain is held in place by a strong harmonic potential on its center of mass, and the center

of mass of the peptide on the opposite side of the chain is pulled at a constant force and the

total end to end length of the chain is measured. For both the constant force and constant

length simulations, the 4th and 11th peptides were chosen as the residues to be pinned or

pulled. This was done because because in equilibrium the ends of the alanine chain were

denatured due to thermal fluctuations and allowed for deformation enough of the chain for

residues not under force to interact with part of the peptide that was of interest.

4.1.0.2 Force extension curves for small protein
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Figure 4.1.3: FEC of stretching a single 20 alanine residue alpha helix, by the 4th and 11th

residues, in MD simulations and holding at constant lengths while measuring the force.
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Figure 4.1.4: FEC of stretching (black dashed curve) and compressing(purple dashed curve)

a single 20 alanine residue alpha helix by the 4th and 11th residues. Generated from MD

simulations holding at constrained lengths while measuring the force. There is variation in

force due to the properties of the protein, and variation in the length due to the harmonic

potential holding the 14th residue’s center of mass allowing for small fluctuations.

Turning first to the MD simulations, we see in a realistic system, in a sample as small

as one short peptide, there exists regions where the protein exhibits behaviors similar to

what is shown in experiment. Without looking at an ensemble measurement [44], there still

exists regions of the constant length simulation FECs with regions of negative slope in figure

4.1.3. This simple system helps illustrate that the dynamical response of proteins seen in

experiments are largely driven by the hydrogen bonds that hold the secondary and tertiary

structures of the protein together.

Though it is often thought that proteins have a static structure, and while that may be the

case for many proteins, particularly globular proteins, it is also true that these biopolymers

are indeed polymers that exist in an ensemble of conformations. IDPs and proteins with less

structure exhibit even more ”ensemble” character since the hydrogen bonding pairs are not

as well defined. Looking at the constant length FEC (or force extension plot) from the MD
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simulations this becomes even more apparent. Looking at figure ?? we do see not the usual

force rips or regions of negative slopes shown in the previous FEC’s shown. Instead we see

that varying forces can have similar lengths measured. This is counter intuitive because we

would imagine that as the force is increased, the length should match, and in a purely elastic

system it does. However, in a non-linearly elastic system it is possible.

Due to thermal fluctuations in the system, it is possible for a smaller force to push a

particle out of a potential well, and it is also possible for a larger force to not escape the

well. Going back to the work of Evans and Ritchie [48], given an infinite amount of time,

a bond being pulled on by an external force will eventually escape the well. What this

implies for the constant length FECs we see in MD simulations, which are simulated at a

very short timescales, is that the bond breaking event is dependent on both the magnitude

of the pulling force and the length of the simulations.

Another thing worth noting to further validate the results seen in the MD simulations is

the reproduction of the existence of irreversible deformation. In the subsequent simulation

and theoretical framework and the work done by Fogle et al [2], there is always the possibility

of the system to return to elastic behavior upon lowering the applied force. In the work of

Wang [44] the observe the existence of a regime where the protein loses its linear elasticity

at all forces and frequency, and it is well known that upon a certain level of deformation,

proteins can become kinetically trapped and unable to find their thermodynamically stable

state again, leading to irreversible deformation [49]. What we have also found looking at the

MD FECs, is that the viscoelastic behavior for the system, even when irreversibly deformed,

can still persist. This is largely in part of non-canonical hydrogren bonds forming. Here, non-

canonical hydrogen bonding refers to hydrogen bonds that occur that are not in the natural

alpha helical state. Looking at figure 4.1.6, we see that the every four residue hydrogen

bond normally seen in alpha helices are intact for the first fifteen nanoseconds. Then with

the breaking of those bonds, irregular hydrogen bonds appear. Within the length of our

simulations, it is highly unlikely that these canonical hydrogen bonds will reform. These

irregular hydrogen bonds can also help in keeping the viscoelastic character of the protein.
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Figure 4.1.5: Contact map of hydrogen bonds within the alanine alpha helix. The numbers

refer to residue number. Blue squares refer to a hydrogen bond not in-tact and green refers

to an intact hydrogen bond. Shown is a simulations corresponding to one similar to figure

4.1.2(a)

Figure 4.1.6: Contact map of hydrogen bonds within the alanine alpha helix. The numbers

refer to residue number. Blue squares refer to a hydrogen bond not in-tact and green refers

to an intact hydrogen bond. This is a time trace of a simulation stretched to a distance.

The red marked labels on the y-axis are hydrogen bonds comprised of resides that are only

in the pulled part of the chain.

43



We see in figure 4.1.4 evidence that smaller extensions are needed to see the force rips

and that smaller forces are measured throughout the different distant simulations. When

compressing the peptide, it is forced to bend and twist in irregular ways that kinetically trap

it in these misfolded states. However, what keeps the peptide in kinetically trapped is what

also allows the peptide to retain its viscoelastic characteristic. Being forced into misfolded

states brings regions of the peptide backbone that are usually separated in its native state

close together and allows them to form a hydrogen bond. This would be advantageous

for disordered proteins to bind in a variety of environments like those seen in cell signalling

pathways. The plots in figure 4.1.7 are calculated by defining hydrogen bonds being intact or

(a) (b)

Figure 4.1.7: Plots of the correlation functions, equation 4.1.0.2,for a folded state(a) and a

stretched state(a). In both cases c(t) does not decay to zero and show long time correlations.

broken by a geometric criterion of donor-hydrogen-acceptor pair and and hydrogen-acceptor

distance. These distances and angle are set at 2.5 angstrom and 150 degrees respectively.

For the analysis of hydrogen bond correlations, a correlation function similar to Luzar’s[45]

was used.

c(t) = ⟨h(0)h(t)⟩/⟨h⟩ (4.1.2)

Where h has a value 1 when a hydrogen bond is intact and 0 when it is not intact. In a

perfectly diffuse system, these correlations would decay exponentially to zero. In figure 4.1.7

evidence of long time correlations for hydrogen bonds in both elongated and folded states

44



are shown. It is reasonable to suspect that the protein under force exists in metastable state

and is not truly in equlibrium on the timescale of these simulations.

4.2 Brownian dynamics simulations to model MD results

Similar to the work done by [42] in the appendix to their paper, we use an asymmetric

potential that allows for bistable monomers when a force is applied. Instead of simulating

the postions of indidvidual monomers and the interactions between them, we simulate the

bonds themselves. Using the individual bonds as collective degrees of freedom where a bond

is defined as

xi = yi+1 − yi (4.2.1)

where xi represents the bond between the ith and i + 1 monomer and yi is the position of

the ith monomer. For the rest of the chapter, we will use this description of simulating the

bonds. We use a lennard-jones(LJ) potential coupled to a harmonic spring. The justification

for the combination of these potentials is that the hydrogen bonds in a protein create strong

short-range interactions, represented by the LJ potential, and that hydrophobic interactions

,which help keep the general 3D shape of the protein and holds the chain together when

the covalent bonds are pulled on as well, can be modelled as a soft harmonic spring. The

cooperative nature of hydrogen bonding in proteins [50] requires the inclusion of a coupling

potential to mimic cooperativity. We include a coupling harmonic potential that depends

on the state of the neighboring bonds. The neighboring bonds are coupled in a way that

there is a restoring force that holds the two bonds at similar lengths. If the neighboring

bond is in a stretched state, then it will pull on the ith bond until it has reached the same

stretched state. Thus, as the polymer chain becomes stretched, it will become easier to

further stretch the chain. The potential for the ith bond is defined for the force and length
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controlled simulations

U ({xi}) =
N∑
i=1

4ϵ((
σ

xi
)12 − (

σ

xi
)6)

+
1

2
k(xi − σ2

1
6 )2 +

1

2
ks((xi − xi−1)

2 + (xi − xi+1)
2)

+ VFC({xi}) ∨ VLC({xi})

(4.2.2)

Where {xi} is the set of bonds describing the system, ϵ is the depth of the LJ, σ is the

zero energy position of the LJ, k is the stiffness of the harmonic restoring force and ks is

the stiffness of the coupling potential to neighboring bonds. The minima of the harmonic

potential and the LJ potentials are placed on top of each other to distinguish a change in

state from intact to broken hydrogen bond once the system is placed under force. In the

instance of of no force on the system, the minima of both the potentials lie on top of each

other. When the system is pulled or held at constant length, however, the minima split

and the individual bonds can exist in an extended or compressed state. The potential is

then modified according to the thermodynamic nature of the system. For force controlled

simulations, or ones operating in the Gibbs potential, the extra potential is

VFC({xi}) =
N∑
i=1

−F (t)xi (4.2.3)

Where the time dependence of F (t) is given by F (t) = ±νFCt and νFC is the rate at

which the force is increased. For length controlled simulations, or ones operating in the

Helmholtz potential, we put a harmonic constraint on the total length of the chain, so the

added potential becomes

VLC ({xi}) =
1

2
K(
∑
i

xi − L(t))2 (4.2.4)

Where K is the stiffness of the constraint (or transducer in experimental settings) and

L(t) is the total length of the chain. Again, the time dependence for L(t) is given by

L(t) = ±νLCt where νLC is the rate at which the length is increased. If the rates in either

cases are equal to zero, then we observe the FEC corresponding to the equilibrium change

for Gibbs/Helmholtz potentials for the force/length controlled simulations respectively. The
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time dependence is only used when doing simulations of the dynamics of the polymer. For a

time independent simulation we replace the potential in equation 4.2.3 with a constant force

and the L(t) in equation 4.2.4 with a constant length. The governing equations then for the

langevin simulation, derived in the appendix, is then

γ
dxi
dt

= −∇U ({xi}) +
√

2kBTf(t) (4.2.5)

Where γ is the friction coefficient, kB is the Boltzmann constant, T is the temperature

and f(t) is a random fluctuating force. In simulation, the Boltzmann constant has been set

to unity along with the friction coefficient. Here we assume the system is heavily damped

and thus we ignore the acceleration term. The random force is chosen such that ⟨f(0)f(t)⟩ =

2kBTδ(t) and the fluctuation dissipation theorem is obeyed. As shown in the appendix, the

characteristic time and length are given by the physical constants in the langevin equation.

(a) (b)

Figure 4.2.1: FECs for the BD simulations. (a) plot of the different peaks for the length

distributions for a given force. (b) Equilibrium force extension curve measured with harmonic

potentials holding the chain at fixed lengths and measuring the force.

4.2.1 Equilibrium extension studies

We have used BD simulations to test the ideas of dynamic protein response in simulation

beyond what we are capable of doing in MD simulations. Using the potential and formal-
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ism described in the methods section we simulation a 1D polymer that is being stretched

and compressed in accordance with the force. Doing equilibrium studies identical to the

techniques used in the MD simulations we are able to recreate the same equilibrium mea-

surements.

In figure 4.2.1 the similar FEC and scatter plots are seen in the BD simulations. The force

extension curve in figure 4.2.1 (b) is also the same in the cases of stretching and compressing

the polymer. The polymer was pulled and compressed at different temperatures as well to

test the effects of temperature on the chain.

As the temperature gets larger we see a large increase in the variance of the length

measurements. This behavior is similar to the gas-liquid phase coexistence regime seen in

introductory thermodynamics courses[51]. In figure 4.2.2, we see the histograms of these

length distributions in the constant force simulations. Each curve is pulled with the same

force at a different temperature. The higher temperature distributions are many-peaked

with each peak corresponding to roughly an integer multiple of the possible total lengths

of the chain in accordance with the location of the minima of systems potentials. As the

temperature increases, the polymer under force starts to melt and the individual monomers

go into their extended states.

Figure 4.2.2: Histograms of the lengths for the constant force simulations and the peaks of

the distribution for a given temperature. The variation of the constant force is shown on

the inset legend. As the force increases distribution shifts towards larger lengths with peaks

centered at integer lengths of the minima of the potential.
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Figure 4.2.3: A time trace of all of the lengths of all monomers with spatial consistency

in a constant length simulation at a fixed temperature and fixed length. The numbers on

the y axis represent the monomer number and the numbers on the color bar represent the

extension of that monomer. The x-axis shows the number of time steps.

Using the system, we can look at how the hydrogen bonds fluctuate and behave in

individual force and length windows, similar to what was done for the MD simulations. In

the MD simulations, there are expected hydrogen bonds between the nitrogen and oxygens

along the peptide backbone around every four residues. In the BD simulations, the coupling

is a bit simpler and is between neighboring monomers in the chain. The appearance of bonds

that are not coupled to each other should appear as the ”native” structure of the polymer is

broken. In the BD simulation time traces, a native state will be a big chunk of blue in these

plots. Looking at figure 4.2.3 we see that as the structure is force into a specific length, the

appearance of single bonds breaking in isolation does occur.

These isolated bond breaks appear similarly to the non-canonical hydrogen bonds forming

in the MD simulations. Due to the coupling, one would expect that if multiple bond breaks

were to happen, then they would happen with neighboring monomers due to the decreased

strength of the bond as its neighbor breaks. In actuality, it appears that when bonds break

49



they seems to be at separated but different parts on the chain. Since this is also not an exact

two state system due to the ability for a monomer to extend or compress further than some

well-defined lengths, is it possible to have different values of bonds breaking for a similar

length. Thus, though the total length of the system is conserved, the extended state for an

individual monomer may be larger. This is seen in figure 4.2.3 where throughout the time

trace there are three, two then 4 extended monomers at a given total length. Though it is

minimal, when the system is only at two extended monomer states, the extension of those

monomers rises to their maximum value to compensate for the loss of length.

4.2.2 Dynamic force extension curves replicate experimental results
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Figure 4.2.4: Force extension cycle. Here a maximum force of 10 dimensionless force units

was used while pulling on the chain at a ramping force.

We first aim to recreate the experimental results with our model of the dynamic FECs

seen in experiments. Completing a force cycle where the chain is dynamically stretched and

then pulled back together we see force rips seen similar to those seen in figure 4.2.6. In

figure 4.2.4 we pull and compress on the chain at a constant rate and measure the resultant

length. Performing the simulation where instead the chain is held at a specified length that is

changed at a constant rate, a more accurate representation of the traditional force extension

experiments, the force rips are seen in figure 4.2.5.

For the case of a varying force on the system, we see the rupture force starts around six
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Figure 4.2.5: Force extension cycle where the length in the transducer potential is varied

with time. Here a maximum length of the chain was used as the halfway point for the

simulation and the force on the transducer is measured.

Figure 4.2.6: Force extension curves of stretching a single lg8 titin fragment with the dark

black line with sawtooth pattern the experimental data and the thin black line modeled with

the WLC model[1].

of the dimensionless force units. That is, once this force is reached, parts of the chain start

to extend. If we increase the ramping rate of the force, the rupture force becomes larger

better defined and more similar to a discontinuous transition. If the system is at a smaller

force, but one where in the time spent at that force, is able to escape the bound state, it

will slowly start to extend. If the force becomes larger faster, as is the case with the larger

ramping rate, then before the monomers have a chance to escape the well at smaller forces,

the force will become large enough to instantaneously break the bond. This is apparent in
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figure 4.2.7 where when a dimensionless force of 9 is reached, the system immediately starts

to extend.

In the previous figure, figure 4.2.4, we see that at a smaller force the system does start to

extend, however, the system will stay at specific lengths until the monomers start to escape

the bound state potential for a given period of time.
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Figure 4.2.7: Force extension cycle. Here a maximum force of 17 dimensionless force units

was used while pulling on the chain at a ramping force. The larger maximum force increases

the ramping rate of the force increase.

4.3 Dynamics and statics of the response of protein in MD and

BD simulations

In order to measure the response of the protein, similar to what was done in [2], a dynamic

force was applied to the protein. That is the force was changed in accordance with

F (t) = Fo sin

(
2πt

γ

)
(4.3.1)

Where Fo is the maximum force that is applied to the polymer and γ is the pull rate of

the transducer. However, in the case of MD simulations, the rate in which the the force is

modified in experiment is not achievable in simulation due to the timescale of the period of

oscillation.
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Figure 4.3.1: Example of a viscoelastic transtion looking at plotting the compliance vs force

amplitude[2]. The black line is the total compliance, red short dash is elastic compliance

and blue long dash is the dissipative compliance.

The experiments of Wang [44, 52, 46] show the existence of a dynamical phase transition

in globular proteins. By changing the drive amplitude of the transducer in their experiments,

they see a change in the dynamical response of the protein. They see that as the force in

increased, the response of the protein goes from elastic to viscoelastic. Subsequent theoretical

work by Fogle et al [2] showed that by reducing the system to a single collective variable

representing the displacement of the protein with a simple potential could describe this

viscoelastic transition as shown in figure 4.3.1. Using a potential which resulted in the

restoring force of the form

F (x) =


0 |x| ≥ xo

−kx |x| < xo

they were able to construct a phase diagram showing how the frequency and amplitude of the

oscillating force can define this transition, and how the dissipative and elastic components of

the compliances can define this transition. In addition, they also showed how the presence

of noise in a langevin formulation can turn the discontinuous transition in the a continuous

one akin to going from a first order to second order transition in familiar thermodynamics,

also shown in figure 4.3.1.

We explore using browning dynamics to find this transition using the model potential

above. Without the explicit inclusion of a constant restoring force beyond some cutoff
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Figure 4.3.2: A time trace of a BD simulation where the title is the given forcing amplitude.

Here a relatively small force amplitude is used. The blue is the drive force magnitude and

the red is the displacement of the chain.

Figure 4.3.3: A time trace of a BD simulation where the title is the given forcing amplitude.

A force amplitude in the transition region is used here.

distance, do you still see the emergence of viscoelastic behavior? Here, non-linearity comes

from the existence of a double-well-like potential that exists from the combination of a LJ

and harmonic potential that have some force applied to one end of the chain. This should

resemble the system physically as there should not be infinite deformation allowed by the

system. In the previous models in [44, 2], the system, once deformed, should be able to drift
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Figure 4.3.4: A time trace of a BD simulation where the title is the given forcing amplitude.

A force amplitude in the large displacement region is shown here.

off to infinity. In reality, though the tertiary and secondary structure of the proteins are

held together by intermolecular forces, after eventually breaking these interactions, you will

pull on the strong covalent bonds that hold the amino acids together. Thus it is interesting

to look at finding these viscoelastic regimes in displacement magnitudes where the system

is not fully deformed.

Looking explicitly at the time traces of the driven system, it is apparent that emergent

behavior occurs. In figure 4.3.2 we see that the system for a moderate forcing frequency and

small force, behaviors entirely elastically and follows the drive pretty uniformly. For this

small force region, the frequency is small enough that the system is able to adequately align

itself with the drive and the force is small enough such that the event of switching from a

bound to unbound state described in previous sections is not possible within the period of

the driving force. As we increase the force, keeping the the frequency of the force constant,

we see large extensions in the polymer that correspond to bond breaking. In figure 4.3.3 we

see that though it only occurs once, the breaking of bonds from the driving force results in

a large displacement from the minima of the LJ potentials. To look at observable quantities

in this region, we look at averages over many periods. In figure 4.3.3, for example, there are

slightly less than six periods of the driving force in the length of the simulation. To look at

something like average extension, we would average the extension over all the periods and

repeat the simulation multiple times. For slower drive frequencies, more simulations need to
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be done to achieve the same number of period averaging. In figure 4.3.3, where the larger

extension of the chain occurs, there is also a time lag of when the force starts to decrease

and changes sign to when the bond breaks. This lag is due to the relative escape rate from

hopping out of the potential well the monomer is in.

Once the drive the drive amplitude becomes large enough, we see time lag becomes

smaller and breaking and forming of bonds happen twice within every period of the driving

force. In terms of escape rate, the force becomes large enough that the force dependent

rate also increases to where the bond breaks almost instantaneously. The systems response

can be quantified in terms of the delay in the response (phase shift for a periodic one) and

the maximum extension reached. Traditional signal processing techniques that look at the

frequency dependence of the phase and magnitude of the response, such as bode plots [53],

cannot be used here due to the very noisy nature of the signal from thermal fluctuations.

(a) (b)

Figure 4.3.5: (a) Delay in response and force ramping rate plotted with extension for a di-

mensionless force of 1.0. (b) Delay in response and force ramping rate plotted with extension

for a dimensionless force of 10.0.

In figure 4.3.5 it is notable that as the rate is increased both the delay time and the

maximum extension of the chain decrease with increasing rate. In the case of the small

forcing regime, the magnitude of the delay time is also much larger than that of the larger
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forcing regime. This is due to thermal fluctuations as the chain is slowly pulled by a relatively

weak force. The monomers are in a relatively sharp and narrow LJ potential well and the

longer time spent being pulled at one side of the well, the larger chance for a random force

kick to push the monomer higher up the well. This can happen at relatively small deviations

from the middle of the well and much sooner than when the force has reached its maximum

value. It is also worth noting that as the frequency of the drive decreases, more simulation

time is needed to create adequate sampling for those values.

In the large force regime, where the dimensionless force is greater than 8, it is also seen

that the maximum extension of the chain is monotonically decreasing at higher frequencies.

Looking at some of the linear force ramps such as in figures 4.2.4 and 4.2.5, once all of

the monomers have been pulled out of the LJ potential, there is the familiar force-length

relationship for linear response. That is, as the force is increased, the length is increased in

a one to one ratio (F = kx). Thus, once the frequency becomes large enough where not all

monomers are being pulled out of the LJ potentials in the time of half a period of the drive,

then the system does not have adequate time to reach the equilibrium configuration for that

given force. In other words, the drive becomes so fast that it exceeds or is comparable to

the escape rate for monomers from the LJ potential.

4.3.1 Dynamical phase transition can be seen in the compliance of the response

The transition can be quantified further by looking at the compliance of the chain in response

to the driving force under different conditions. For a system obeying linear response, we can

separate the signal into its storage and dissipative components such that

x(t) = xel + xdiss (4.3.2)

where the subscripts notate their respective components. In the language of linear mechan-

ical deformation, a system driven by a force A sin (ωt), this can be written as

x(t) = j1Acos (ωt) − j2A sin (ωt)
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where j1 is defined as the storage compliance, or the compliance due to elastic response,

and j2 is the loss compliance for the dissipative response. Due to the non-linear nature of

their governing equations, extracting the storage and loss compliances was more challenging

and also applicable to our simulations. To extract the respective components we adopt the

method and notation of Fogle et al [2]. We define the total compliance for a non-linear

system as
I2t
A2

=
ω

2π

∫ ω
2π

0

x(t)2dt (4.3.3)

Where x(t) is the signal of our system and ω is the driving frequency. Integrating the

signal over a period of the drive the portion of the signal that gives rise to dissipation can

be extracted such that if Yd is the dissipative part of the signal, then

x(t) = Yd cos (ωt) + [x(t) − Yd cos (ωt)] ≡ xdiss + xel (4.3.4)

where

Yd =
ω

π

∫ ω
2π

0

x(t) cos (ωt) dt

then the relationship between the total, storage and dissipative compliances are

I2t − I2d ≡ I2s (4.3.5)

where

I2d ≡ Y 2
d

2
(4.3.6)

Thus showing that in terms of the coefficients of equation 4.3.1, j1 = Is
A

and j2 = Id
A

Using

our simulations traces for x(t) we can then extract the compliance components of our signal.

They note in their paper that for when thermal noise is present x(t) should be replaced by

⟨x(t)⟩ = [x(t) − x
(
t+ π

ω

)
], however in our situation we do this by averaging the signal over

many periods.

In figure 4.3.6 the mechanical response of the system in its elastic, dissipative and total

compliance. There a number of interesting features of the response of the system. First, we

see the non linear response of the system after a dimensionless amplitude of six is reached.

This is in the same regime as where the mechanical denaturing of the system happens in the
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Figure 4.3.6: A plot of compliances for different simulations for varying drive amplitude A

and different drive frequencies. The drive frequencies are given by the different colors and

the total, dissipative and storage compliances are given for each frequency for the connected

dot, straight line and dashed line respectively.

equilibrium simulations. However, in this regime we also see a dissipative component of the

compliance grows as well, differing from the theoretical models shown in [2] where they were

inversely correlated. There also is a decrease in the dissipative component of the compliance

as the amplitude increases from the the thermodynanmic transition amplitude.

We also see that as the as the drive frequency increases the thermodynamic transition

becomes shifted towards larger forcing amplitudes. As the frequency becomes large, the

time spent what we will call the transition state, or pinned to a point in the LJ potential

where escape is possible from a thermal fluctuation, becomes smaller. Thus, for the same

forcing amplitude we see a decrease in the time spent near or at the transition state at

higher frequencies. A larger force is needed to compensate and tilt the monomer potential

to allow for quicker escape of the particle. As mentioned many times before, the escape

rate depends on the force applied to the monomer and is shown in the dynamical response

of the chain of monomers by shifting the increase of the total compliance to larger forcing

amplitudes. Along with the shifting of the melting transition, the transition goes from one

that is relatively abrupt to one that is more gradual. Something like a first order transition

changing to a second order transition. In previous theoretical work, it was seen that adding

noise to the system smoothed the transition out. Here we already have noise included with
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the nature of the BD simulations so the smoothing of this transition could not be attributed

to the inclusion of thermal fluctuations.

In previous works used a single collective variable to describe the response of the system.

Here we have many coupled non-linear oscillators where the addition of their lengths gives

the total response of the system. There is statistical variation in the number of monomers

in the bound or extended state. It is possible smoothing of the transition occurs due to the

variation in the number of monomers that make the transition. The longer time spent at

the transition state, the more monomers that will make the transition. Given enough time

near the transition state all of the monomers will make the transition whereas for shorter

times only a few monomers will make that transition.

It is also noticeable that in the low to moderate frequency regime, there are both dis-

sipative and elastic components to the total compliance. Though the major component is

still from the elastic component the dissipative part is not negligible and in the moderate

frequency regime equivalent to the storage compliance. We have found that this is attributed

again to the nature of having many non-linear coupled oscillators. In the thermodynamic

transition region and at lower frequencies, most if not all monomers make the transition to

the extended state. The force ramping happens gradually enough that most of the total

monomer potential is not extremely tilted towards the extended state and still has adequate

time to escape the bound state. In this force regime the potential still has double well

characteristics and a linear-like force regime between the two wells. The oscillating force

when stretching and compressing the chain is then ”dragging” the chain along this region

between the two states. This drag leads to a dissipative component of the compliance. At

larger forces and smaller drive frequencies this drag becomes smaller as the transition region

between the two wells becomes more harmonic.

Figure 4.3.7 shows the transition region after the bound state becomes more linear as

the tension on the chain gets larger. Once the critical force has been reached and the chain

starts to melt, the monomers move along this transition region in response to the drive and

encounter a type of drag force. This drag force then gives rise to the dissipation seen in the

60



(a) (b)

Figure 4.3.7: Plots of the potential energy curves for the individual monomers of the system.

(a) Examples of a small pulling force on the chain. The different colors represent the surface

under different tensions. (b) The same as the first plot except with a large tension curve

in red. This is to illustrate how the potential energy curve becomes linear in the transition

region of the potential.

system.

As the forcing frequency gets higher the dissipative component of the compliance in this

transition region becomes the major contributor of the total compliance. This would be

the transition from elastic to viscous material seen in the experiments and theory. In this

frequency regime, if the amplitude of the drive were to increase, the total compliance is still

mostly comprised of the dissipative compliance.

In figure ?? we see a phase diagram of the response of the chain. Taking the ratio of

the dissipative compliance to the total compliance we describe how elastic or dissipative

the system is responding. Based on figures ?? and 4.3.6, we divide the plot into 3 regions

describing the dynamic response of the chain. In region I we have what we see in the low

frequency low and forcing amplitude regime, and the large force low frequency region. Here

the response of the chain is purely elastic. In region two we have the moderate force force

amplitude and low to moderate drive frequency. In this regime the dissipative compliance of
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Figure 4.3.8: A phase diagram where the color indicated the fraction of the total compliance

that is due to the dissipative compliance. The frequency is plotted on a logarithmic scale.

Each labeled region represents a regime discussed in the text.

the chain is non-negligible and up to comparable to the elastic compliance, exhibiting both

dissipative and elastic behavior. Here the forcing amplitude corresponds to a coexistence

region of the stretching of the chain located in the force rips in figure 4.2.5. The chain has

coexistence in the thermodynamic and dynamic phases. This could be potentially insightful

into probing what conditions are suitable for molecular conformational changes in biological

processes since different motions occur at different length and timescales [54]. If for a specific

enzyme, for example, you could determine the thermodynamic mechanical properties of the

protein, you could use that to extract information about its dynamical response to stimuli

or the timescales and length scales on which its natural allosteric motions occur. The third

regime in figure ?? is the viscous regime of the chain. Here the compliance almost completely

dissipative and exists only in the very large frequency regime.

In the previous theoretical work [2], region II was described to be part of the smooth

transition from an elastic material to a viscous one. We have chosen to label it as its own

region in the phase diagram due to the possibility of re-entrance from this region to region

I where the response is purely elastic. In the context of protein deformation, this region

may correspond to one where there is viscous deformation of the material but it is still

reversible. Then region III would correspond to irreversible deformation. Here there is no

such irreversible deformation because a restoring force can always force the monomers back
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into the bound state. Perhaps the addition of another dimension, though complicating the

potential surfaces involved, would allow for irreversible deformation. In the following chapter

we discuss a model for a structured polymer binding that could be used to show how in a

similar situation, spatial ordering can lead to conformations where the native state of the

chain is not recoverable upon deformation.

Figure 4.3.9: A phase diagram where the color indicates the size of the lagtime (∆τ in

number of timesteps), as a function of the drive amplitude (A) and the drive frequency (ω).

Up to this point the type of response we have discussed is in the magnitude of the response

and the compliance of the chain. In figure 4.3.9 we show the lagtime, or the phase shift, as a

function of the different drive frequencies and amplitudes. The lagtime is calculated as the

difference between the time of the maximum of the response and the time of the maximum

of the drive. Though this phase diagram may seem slightly counter-intuitive and confusing,

it actually reveals some of the interesting behavior of our system. At low frequencies we

would expect the delay to be small and positive since the ramping rate is slow enough for

the response of the material to stay relatively close to the drive. Yet in the small force and

small frequency part of the phase diagram there appears to be a large negative lag time that

indicates a lead in the response of the material. Incidentally, when the force and frequency

are small, the system will not initially respond to the drive and thermal noise dominates

the extension as the deviation from the equilibrium state is smaller than the fluctuations

in the extension. However, there is still a small shift in the average of the response. To

find the origin in the shift of the average for these values of drive frequency and amplitude,
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we look back at figure 4.3.7(b). Though it is very small, there is a shift in the minima of

the LJ potential when the tension on the system is increased. Thus, the response of the

system here is not due to the response of monomers being pulled to the edge of the potential

well, but, in fact, is due to the minima of the potential being shifted. In figure 4.3.10 the

(a) (b)

Figure 4.3.10: Plots of the potential energy curves for the individual monomers of the system

plotted with the minima of the LJ portion of the potentials. (a) Examples of a small pulling

force on the chain with the vertical dashed line at the potential minima. (b) The same as the

first plot except with a larger tension on the curve. The difference in tension is comparable

to the discussion in the text.

potential energy surfaces with the relative difference in drive amplitude is plotted with the

local minima of the bound state shown. The result is a shift to the right of the potential

minima under force and of comparable magnitude of the change in average of the response

of the chain. Deviations larger than this can therefore be attributed to direct tension on the

monomer holding towards one side of the potential energy curve. There is also a notable

deepening of the potential well as tension is applied to the monomer. Despite the changing of

the potential energy curve, there still shows a lead in the response of the material that is still

attributed to the large thermal fluctuations in position compared to the shift of the average,

so the maximum extensions can be reached before the drive has reached its maximum value.

This unexpected behavior of the phase of the response led us to investigate the nature of
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the phase difference of the different areas of the phase diagram.

To investigate the phase behavior traces of the instantaneous phase difference were plotted

for each of the time traces of the response. To get instantaneous information about the phase

response of the chain a Hilbert transformation[55] was performed to plot the instantaneous

phase of the drive and the response where generated. Then the difference between the

instantaneous drive and response signal gives the instantaneous phase difference. A positive

difference in phase indicates a lag or delay in the response and a negative phase difference

indicates a lead in the response. In figure 4.3.11(b) the signal switches between lagging and

(a) (b)

Figure 4.3.11: Plots of the instantaneous phase difference (in orange) and instantaneous

phase of the drive (in blue) generated from hilbert transformations of the data at the response

for differing values of the drive frequency and amplitude which are shown in the title of the

plots.(a) For moderate drive frequency and small driving amplitude. (b) For moderate drive

frequency and moderate driving amplitude.

leading behind the drive. The early time behavior of leading the signal is coincidental as the

the monomers start at slightly smaller distances than the potentials equilibrium position.

Thus they move towards the equilibrium and in the direction of the drive force slightly faster

than the ramping rime of the drive and gives the illusion that the response precedes the drive.

In the higher frequency and force regimes the average shifts. Investigating the origin in the

switching of sign of the phase response reveals that the same shifting of the potential that
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leads to the lag in the small frequency and force regime is the same as the response attributed

to the small force small frequency time lag. As the chain is full extended, the monomers are

in the extended state where the minimum shifts farther right the larger the force is. As the

force starts to be reduced, the potential shifts back towards the minima being at a smaller

distance. The shift in the potential puts the monomer in an unfavorable state that then

pushes it to smaller distances. If the rate of change of the potential curve is faster than the

motion of the monomer, then the monomer will continue to drift towards the bound state

even when the force has reached zero. Looking again at the potential curves in 4.3.10, at

0 force the potential to the right of the LJ portion is positive and restoring. Once a single

monomer has entered the bound state, then its own potential and neighboring monomer’s

potentials will becomes stiffer due to the monomer-monomer coupling, accelerating the chain

entering a compressed state. This is why the instantaneous phase difference switches sign

once the force on the chain reaches zero. It is comparable to a snapping mechanism once

one monomer enters the bound state.

In figure 4.3.11(a) the phase difference for the response of the material is essentially zero.

Though it was not captured in the phase diagram for the lagtime, the hilbert transformations

show that the response of the shifting of the potential minima follow closely to the drive at

moderate frequencies. Though these plots are insightful, htey are mostly useful in these two

regimes, or regimes where the elastic response dominates. The hilbert transform assumes

local linearity in the response of the signal, even if the signal itself is non-linear, as is the case

in the response of our chain, but in the transition regions discussed previously, and shown in

the time traces of figure 4.3.3, the response can be largely non-linearly at high resolutions.

4.4 Using time varying rates alone can replicate system behavior

Maximum caliber (MaxCal) is a method of statistical inference derived from Shannon’s

information theory that produces distributions of dynamical trajectories near or far from

equilibrium similar to how the principal of maximum entropy (MEP) produces population

distributions at equilibrium[56]. The principle suggests that the path taken between two
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points in space and time is such that the action, a quantity derived from the Lagrangian

function, is minimized. The concept of MaxCal provides a framework for understanding the

behavior of dynamic systems and systems far from equilibrium. In traditional statistical

mechanics, the energy of a system is constrained and entropy maximized to understand

information about the distributions of its constituent parts. In MaxCal, a dynamic quantity

can be constrained while maximizing the shannon entropy [57] of the paths taken from one

point in the state space to another to learn information about the distributions of trajectories

of the dynamical process.

Here, we use MaxCal to constrain the transition rates between two states that represent

the elongated states and the bound states of the individual bonds. The dynamical partition

function of a single bond is related to the dynamical partition function for a series of coupled

or uncoupled bonds similarly to how the grand canonical ensemble are related in classical

statistical mechanics.

QM
1 (t) = QM(t) (4.4.1)

Where Q1(t) is the microcanonical dynamical partition function of a single bond and QM(t)

is the dynamical partition function for the entire system. This is then related to the proba-

bilities of being in one state, say A or B, as

QM(t) = [PA(t) + PB(t)]M (4.4.2)

By taking an associated rate matrix as an operator to a probability vector, where the elements

of the of the vector represent the probability of being in state A or B, we can accurately

propagate the system forward in time such that the time constraints on the rates. If we have

a rate matrix K such that  KAA KAB(t)

KBA(t) KBB


where the transfer rates between states time dependence is given by

gab

(
1 +

(
1

2

)
cos 4gabt

)
(4.4.3)

with gij is average transfer rates. Doing this for all of the individual bonds in the system

and summing them will give a distribution of the total length of the system.
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(a) (b)

Figure 4.4.1: The probability of a bond being in a given state as a function of time for (a)

a system with constant rates of exchange between the state and (b) for an oscillating rate.

In (b) the orange line is the oscillations of the rate.

We see that the inclusion of a time varying rate, like those that are expected under

dynamic loads on proteins, induces a response that is similar to the time traces we see in

the previous section and the solutions to the equations of motion described in Fogle et al

[2]. The same was done for a system of M particles and we can track the probability of n

particles being in state A, for example, for a given time. which is shown in figure 4.4.3.

Figure 4.4.2: Plot of the probability of being in state A for three times, 1, 10 and 1000 time

steps, for a constant rate matrix. The probability decreases to the steady state value as

expected.
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Applying this same procedure with the time dependent rates in equation 4.4, and looking

at the probability of the total extension, we see the similar traces to those of the noisy system

in Fogle et all [2]. We see the same time of time-delay for the extension that is in the model

system as well.

Figure 4.4.3: Time trace of the probability of the number of monomers being in state A as

a function of time. The sum of the probability of being in state A and state B will give the

length probability distribution of the entire chain.

4.5 Concluding remarks

Here we have shown using MD simulations a simple model for a series of collective variables

that represent the bond lengths of hydrogen bonds in a short peptide can recreate both

equilibrium and out of equilibrium results of deformable biopolymer dynamics. There is a

mechanical induced melting transition from equilibrium simulations that is show in the force

rips and variation of force measurements of the force extension curves. It is indicated that

it is the complex hydrogen bonding dynamics seen in the MD simulations inside the chain

that govern the mechanical response of the protein. The model system also shows long time

correlations in these dynamics which supports its use.

The model system is then tested to reproduce out of equilibrium measurements where

and AC force is applied to the chain to look for a dynamical phase transition represented as

the change in compliance of the response of the chain. The model shows a transition at high
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drive frequencies that corresponds to a transition from an elastic to a viscous solid. There

is a region where the response carries comparable dissipative and elastic components to the

compliance that we attribute to the region discussed in the work of Wang [46] of reversible

deformation of the protein. We find that the force regime of the dynamic phase transi-

tion of region two of 4.3.8 happens at drive amplitudes that correspond to the equilibrium

mechanical melting transition seen in the force rips of figure 4.2.5.

Lastly we briefly discuss if using a simple two state system with time varying transfer

rates can be enough to capture the rich behavior of the system with no physical variables

in the language of MaxCal. We have shown that this extremely simple model can capture

the steady-state response of Fogle [2]. Further validation of the results need to be analyzed

to determine if from this formalism more interesting characteristics of the system can be

extracted from the results of simulation or experiments. It would be interesting to see if

physical properties of biopolymers could be extracted from the results of dynamic biopolymer

stretching experiments using a statistical inference method like MaxCal.
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CHAPTER 5

Deformable polymers in relation to biomolecular

binding

The binding of highly felxible and disordered proteins is important in many cellular signaling

pathways and the nature of this flexibility and disorder is advantageous for their respective

functions [58]. Insight into the underlying physics can be helpful in better understanding

the driving factors for these signaling pathways and aid in the treatment of certain prion

protein diseases such as Alzheimer’s disease, mad cow disease and many more[21, 59, 60].

Understanding the nature of binding driven structural transitions is largely important in

prion diseases where misfolding of a single protein can then induce the same conformational

change in other proteins. In the previous chapter we used a non-linear model to simulate

the behavior of deformable biopolymers under static and dynamic loads, and in chapter two

we discussed MD simulations that showed how flexibility for short chain RNAs can help in

forming stronger bonds when binding to a disordered protein. Here, we will investigate how

the flexibility paired with the ability to form structure can affect the ability for biopolymers

to bind. The term structure is used for interactions that model the secondary and tertiary

structures of proteins and nucleic acids usually comprised of electrostatic, hydrogen bonding

and hydrophobic interactions. Generally, like the work done in chapter three, flexibility is

treated as the energy required to bend a polymer to the intrinsic stiffness of the chain. How-

ever, in RNAs and proteins, this classification of rigidity may not be sufficient to understand

the interplay of flexibility and binding energy and mechanisms [26, 20].

The aim here will be to introduce a stiffness to the polymer in a highly non-linear way to

accurately model the behavior seen in the experiments and simulations of previous chapters
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and help understand the general type of binding seen in flexible and disordered systems.

Previous work has been done in classifying the different binding modes for disordered and

ordered systems. The work done by Fuxrieter [20] classifies these binding modes in disordered

proteins as disorder-to-order, disordered and ”fuzzy” binding. Where upon binding the IDP

becomes ordered, stays disordered or a mixture of both respectively. The work here is

especially relevant where both binding partners may be disordered. The emphasis on an

interaction of an ensemble with variation in the dominant structures present provides a

useful framework for how these structures interact, and will be used to describe the type of

binding we see in the BD simulations. Since the simulations of chapter four show that they

can accurately reproduce experimental data of the dynamics of proteins, it is a good starting

point to build a model for looking at the binding between flexible partners. We showed in

the previous chapter that the dynamical response of the system was closely related to the

thermodynamic phase change seen in equilibrium simulations and use this as justification for

applying the model to represent potentially highly out of equilibrium states seen in binding

transitions.

5.1 Methods of simulation and model

Simple simulations were used to help understand what physical properties play a role in

RNA-protein binding. The model system can be a bridge between the analytical theory and

MD simulations in understanding the fundamental phenomena which are present in RNA-

protein binding and the dependence of flexibility. The potentials used are coarse grained and

designed to mimic only the most important parts of the real system. The model is largely

adopted from chapter three with the addition of an extra dimension and here the individual

monomers of the chain are simulated and we are not dealing with a set of collective variables.

To model a deformable polymer we need at least two dimensions for them to interact. Instead

of an explicit double well potential that we have in our one dimensional (and bonila et al’s)

simulations, we use a LJ potential for next nearest neighbors to create a structure of our

choosing. We focus on a zig-zag like structure that is similar to a flattened alpha helix. On the
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axis along the direction of the primary axis of the polymer there is a lennard-jones for short

distances between next nearest neighbors and two harmonic springs between them, providing

two ”wells” along this dimension. The LJ interactions stable the secondary structure of the

system and harmonic wells act as the linker between different units. Using this system we

can recreate the same behavior we saw in the one dimensional system. For the interaction

between the two chains we have used both a peacewise harmonic potential and a gaussian

potential. The difference between both potentials in negligible so we use the gaussian for

easier comparison to analytical theories. The potential for the entire system is the following;

U({ri}) =
N∑
i=1

4ϵ

((
σ

ri,i+1

)12

−
(

σ

ri,i+1

)6
)

+ 4ϵ

((
σ

ri,i−1

)12

−
(

σ

ri,i−1

)6
)

+
1

2
kh
(
(ri − ri−1)

2 + (ri − ri+1)
2)+ Uinteraction({ri})

(5.1.1)

Where {ri} is the set of distances, ϵ is the potential depth of the monomer-monomer in-

teractions, σ is the distance of the minimum of the LJ potential, kh is the stiffness of the

neighboring harmonic bonds. Here the value of sigma is around one third of the length of the

harmonic minima between monomers to keep the ratio of distances between the nearest neigh-

bor interaction and the size of a single nucleic acid or amino acid realistic. Uinteraction({ri})

is the potential term for the interaction between polymers which can be one of the following:

Uhp({yi}) =
N∑
i=1


0 yi > yo

1
2
kb (yi − yo)

2 yi ≤ yo

Where ro is the cutoff distance for the piecewise harmonic potential, yo is the location of

the potential axis and kb is the stiffness of the interaction potential. We have the following

for the gaussian potential simulations;

Ug({xi}) =
N∑
i=1

−Dee
−(yi−yo)

2

2σ2g

Where De is the potential depth of the gaussian, yo is the location of the minima axis and

σg is the width of the gaussian potential. In these systems the width of the potentials give

a physical size of the interacting rod. The minima here is the x-axis of the system and the
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gaussian potential runs along its entirety to avoid edge effects from the stationary rod. The

governing equation and update rule for the system is then

γ
df

dxi
= −∇U(xi, xi+1, xi+1) +

√
2kBTf(t) (5.1.2)

the same as in the previous chapter where γ is the friction coefficient, T is the temperature

and kB is the Boltzmann constant. We use dimensionless units following the procedure

in appendix B. The temperature is set to around 310K in accordance with physiological

conditions.

5.2 Characterization of the system

To monitor the change in state of the system we track the eccentricity, size, number of

unbound monomers and spin number which will be discussed below. A combination of four

observable best characterizes the system because different states may be ”degenerate” in one

but distinguishable in another. For example, a state may be have a small radius of gyration

like a highly structured state, but instead is a disordered compact state. Therefore, to

distinguish metastable states, multiple observables are needed. The eccentricity of the chain

is used as a measure to determine how elongated the structure is. Both highly structured

and completely denatured states can have an eccentricity close to one and a perfect random

coil state will have an eccentricity of zero. The eccentricity is calculated by finding the

eigenvalues of the moment of inertia tensor

Ixx Ixy

Iyx Iyy

 where the elements are the summed

squared values of the x (Xi) and y (Yi) components of the positions of the monomers in the

chain, for example Ixy =
∑N

i=1Xi × Yi The eigen vectors of this matrix, λ1 and λ2, give the

principle axises of rotation weighted by the mass of the monomers. Here all the monomers

masses are equal so its an average of the square positions. The magnitude of these eigen

values tell us the which axis dominates. The eccentricity is then related to the eigenvalues

by

ξ =

√
1 −

(
λ2
λ1

)2

(5.2.1)

74



Where for monomers of equal mass the first eigenvale is equal to one and the second is

bounded by the first. Therefore the values of eccentricity go from 0 to 1, 0 being minimally

eccentric and 1 being maximally eccentric.

To measure the radius of gyration of the monomers we take the sum of the squared

differences of the x and y coordinates from the mean

R2
g =

N∑
i=1

(Xi −XCOM)2 + (Yi − YCOM)2 (5.2.2)

The number of unbound monomers is a measure of what fraction of the fluctuating polymer

lies within the bound state of the potential. This is determined by the cutoff for the harmonic

piecewise potential and close to the σ parameter in the gaussian one. For the gaussian

potential the cutoff is chose such that ycutoff− > −Dee

−(ycutoff−yo)
2

2σ2g ≤ 0.1kBT , or that the

depth of the potential well is only a fraction of the thermal energy. To measure the spin

quantity is given by

S =
N∑
i=1

N (Xi, Yi) (5.2.3)

Where

N (Xi, Yi) =


0 r > rcutoff

1 r < rcutoff

where r =
√
X2

i + Y 2
i . A spin that is equal to the N − 1 is having all spins of the system

intact.

In figure 5.2.1 we see examples of the simulated system in structured and non-structured

cases. The unstructured example has examples of an intact next neighbor bond and the

fully structured system has almost every bond intact and is in the zig-zag conformation

mentioned earlier. There is no inherent stiffness between neighboring units in the form of

an potential on the angle between monomers, so stiffness is introduced in the strength of

the LJ interaction. Thus the interesting parameters to observe the behavior of the system

would be varying De, the strength of the binding potential, and ϵ the strength of the nearest

neighbor interactions.

75



(a) (b)

Figure 5.2.1: Example configuration of the in the potential well. The blue connected dots is

the positions of the monomers and the red line is the edge of the piecewise harmonic potential

or the σ parameter in the guassian potential. The x and y axis are both dimensionless

positions.(a) Example of a low structure state. (b) Example of a almost fully structure

polymer

5.3 Simulations reveal existence of many metastable states

Using the above descriptions for observables, we vary σ and De for simulations of one million

time steps and a value of σ of about two, which roughly correlates to a width of the potential

about as large as as the distance between two monomers. Looking at figure 5.3.1 we see that

as the LJ gets stronger the average number of intact bonds (spins) grows as ϵ which follows

intuition. The average number of unbound monomers, for the most part, follows that as De

gets lower, more monomers leave the potential well.

There is also a portion of the heat maps that show for ϵ ≈ 4 and De ≈ 2− > 5, that the

number of spins goes down as ϵ increases, and that as De increases, the number of unbound

monomers also increase. In figure5.3.2, plots of the eccentricity and radius of gyration are

shown. There is a similar pattern in these plots. Generally the radius of gyration decreases

as ϵ gets smaller and the eccentricity follows. It is worth noting that the eccentricity values

are all very close together, indicating that even in highly structured cases they might be
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(a) (b)

Figure 5.3.1: Plots of the average spin (a) and the average number of unbound monomers

(b) for the σ = 2 simulations.

hard to distinguish from elongated states.

(a) (b)

Figure 5.3.2: Plots of the average eccentricity (a) and the average radius of gyration (b) for

the σ = 2 simulations.

To investigate the nature of these states, we show snapshots in figure 5.3.3 with their

associated simulation. States were chosen that in the various regions of the above heat maps.

First to note is the the states with the large radius of gyration in the center region of the

plots. They are very elongated structures with maybe a few intact bonds that are always
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in the direction of the force according to the binding potential, meaning they are spanning

the width of the potential and stabilized by it. The smaller radius of gyration states are the

more ordered states and a moderate radius of gyration corresponds to the random coil like

states or a ”broken” chain. Where a good fraction of the bonds are intact, but the overall

size is still small. The largest states are ones that correspond to states that have had almost

all of their spins destroyed and every monomer sits inside the binding potential.

Figure 5.3.3: Data points from the above heatmaps with corresponding states shown in the

insets connected to the data point with red lines.

As for the number of unbound monomers, we see that for low De, the majority of those

states are lying across or only partially in the potential. For the disordered states this

would be expected because as you see an unbinding transition, the size and number of

loops, the number of consecutive monomers that leave and then enter the cutoff region,

increases as the temperature rises or the binding potential depth goes down. Surprisingly,

from previous theory, we would expect that as the chain starts to stiffen, the binding would
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be less frustrated as the conformational entropy starts to decrease and the system moves to

the more enthalpically favorable bound state. We instead see that as the bonds stay intact,

the primary axis of the polymer rotates about the bonding axis and appears to favor only a

few monomers in the well. We will discuss this in more detail later. The two structures on

the top and bottom of the plot on the far right in figure 5.3.3 we also see what the states

that are on the edge of the region mentioned in the first paragraph of this section look like.

Unlike the elongated states, where only one bond is inside the potential well, here we see up

to 4 different bonds intact perpendicular to the binding axis. As the chain stiffens,and ϵ and

De become comparable in strength, it becomes even more difficult to ”denature” the chain.

Once the bonds have oriented themselves in this way, thermal fluctuations would need to be

relatively large for them to be able to remove themselves from this state. This is the first

evidence we see that these state can be very long lived kinetic traps.

In the large De for low values of ϵ the chain appears to collapse on itself. In the plots of

5.3.1, there appeared to be values in this region of moderate spin count, but in the case of a

collapsed state with distance criterion being the only thing that determines a spin, it would

appear that this is an artificial increase in the spin number. For the case of ϵ = 0 there will

be not spins intact because that potential no longer exists. For low values of ϵ and De, the

states are mostly random coil states that have very short lived transient bonds that form.

5.4 Metastable states gives rise to slight hysteresis

Figure 5.4.1 shows two plots of different starting configurations to look for evidence of hys-

teresis or dependence of observables on the initial condition of the system. The simulations

show the chains are similar in behavior for the most part, indicating that the model used

can help with determining binding mechanisms from out of equilibrium states as suspected

from the discussions of chapter 4. There does appear to be some slight hysteresis in the

regions of large binding potential depth and monomer-monomer interactions. When in the

large force regimes , the system becomes more depend on on initial conditions when thermal

fluctuations are not able to ”jostle” the system out of a metastable state. For example, for
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(a) (b)

Figure 5.4.1: Plots of the radius of gyration given two different starting configurations.(a)

An elongated configuration where the chain is laid along the x-axis.(b) A zig-zag starting

configuration.

large De, if the starting configuration is elongated at the base of the potential well, then very

large fluctuations would be needed to push the particles out of the well so they can become

available to form bonds with neighboring monomers. This is most notable when ϵ and De

are comparable in magnitude to each other.

5.4.0.1 Excluded volume aids in prevented trapped metastable states

The evidence of collapsed states where monomers may lie on top of each other suggests that

an excluded volume interaction may be necessary. Inclusion of excluded volume interactions

shifts the configuration space the chain may occupy by restricting the positions of monomers

to certain regions dependent on the positions of other monomers. To include excluded volume

interactions, a soft repulsive gaussian potential was added to the center of the position of

each monomer. The potential has the form

Ue({rij}) =
N∑
i=1

N∑
j=1

Aee
−(rij)

2

2σ2e (5.4.1)
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where {rij} is the set of monomer-monomer distances , Ae is strength of the excluded vol-

ume interaction and σe represents the physical size of the monomer.It is notable that this

interaction is summed over all potential pairs at all distances and thus greatly increases the

computational cost.

(a) (b)

Figure 5.4.2: Plots of the average number of unbound monomers(a) and the average sping

(b) for the system with excluded volume.

We see in figure 5.4.2 that the trends for included excluded volume interactions and

without excluded volume in 5.3.1 are similar. However, in the large De and large ϵ regime,

it appears that there is less variation in the observables between different values of these

parameters. It is shown that the inclusion of excluded volume effects are helpful in helping

the chain escape from metastable states. It also suggests that metastable states may be

avoided if you can restrict the configuration space of the chain.

5.5 Evidence of stiffening induced unbinding

Figure 5.5.1 shows that for small changes the binding energy per monomer, calculated as

detailed in appendix A, decreases as as a function of ϵ. The binding energy per monomer

increases as a function of ϵ for a chain of 100 monomers. Looking back to figure 5.3.3, in this

regime the structure is kept intact but the majority of monomers rotate outside of the well.
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(a) (b)

Figure 5.5.1: Plots of the free energy of binding per monomer for (a) a chain of 20 monomers

and (b) a chain of 100 monomers.

Thus rotational motion must be larger for short chains than it is for long chains and a finite

size effect. In the work of Li et al [61], they show for packaging high flexibly polymer chains

in an aqueous environment, the free energy of the packaged polymer is lower than that of a

branched system for highly flexibly chains only when they are short enough. It is possible

that these two phenomena are related.

Including the stiffness of the chain in this nonlinear provides an alternate mechanism for

how flexibility induced binding could occur. In classical elasticity theory, there is a bend-

ing energy penalty for deforming the chain and then a favorable change in configurational

entropy. Here the trade-off is the energy cost of the loss of a rigid for a favorable change

in configurational entropy. These ”kinks” can form and allow the two new sections of the

chain that have been created to bend without energy cost. For short chains, the gain in

configurational entropy is not enough to compensate for the loss of rotational entropy of

the short chain and the change in energy for breaking monomer-monomer bonds. Figure

5.5.2 displays a configuration of the long N = 100 chain where there is an example of this

happening.
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Figure 5.5.2: Configuration of a large ϵ state in a moderateDe potential well. The appearance

of a kink in the chain forms to maximize binding energy at the cost of losing a monomer-

monomer bond.

5.6 The inclusion of position dependence of the binding potential

highlights how flexibility can aid in binding to a variety of

environments

Up to this point the interactions between the monomers and the binding potential have been

invariant along the x-axis, or the binding potential axis. Since real proteins, and specifically

IDPs, can bind to a wide variety of targets, it is of interest to investigate how the ability for

a free chain to form rigid structure can aid or hinder the chains ability to bind. To include a

position depends of the binding potential we add it in two ways: (1) a varied gaussian that

is modulated by a sine wave to provide regions of repulsion and attraction and (2) a varied

gaussian that is modified by a squared sine wave to provide neutral regions and attractive
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regions. All of the simulations are have exluded volume effects from the previous section

included.

5.6.1 Position dependence of alternating repulsive and attractive regions

Using a binding of the potential of the form

Ubp({xi, yi}) =
N∑
i=1

−De sin

(
2πxi
λ

)
e

−(yi−yo)
2

2σ2g (5.6.1)

Where {xi, yi} are the set of x and y positions of the monomers and λ is the wavelength of

the sine wave. This parameter effective controls the spacing of the attractive parts of the

potential along the x-axis. The other parameters are the same as defined in the original

binding potential.

(a) (b)

Figure 5.6.1: Plots of the average unbound monomers(a) and spin(b) for a wavelength of

λ = 1 for an alternating attractive and repulsive potential. The majority of monomers in

these cases are largely unbound and the spins are intact for moderate to large values of ϵ.

In figure 5.6.1 we see that the monomers are largely unbound for these given parameters

and the monomer-monomer bonds are intact for moderate to large values of the ϵ. In figure

5.6.2 an example structure from these simulations is plotted. The x and y axis are the

coordinates of the positions of the monomer and the contour on the plot indicates the values

of the potential at that point.
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Figure 5.6.2: Configuration of an example structure of λ = 1 for large a ϵ. The color indicated

the value of the binding potential at that point indicated by the color bar on the plot.

The regions of repulsion force the monomer to rotated about the axis to try and maximize

the number of monomers that can be in attractive parts of the potential. The wavelength

is not an integer multiple of the next nearest neighbor bond distance, so the chain is not

perfectly perpendicular to the binding axis. Adding a position dependence smaller than the

bond distance severely restricts the number of configurations that the chain can adopt while

in a bound state.

In figure 5.6.3 the same plots are shown for a much larger wavelength than the monomer-

monomer bond distance. There are now even a larger fraction of the unbound monomers at

most values of ϵ. Only in the case of ϵ = 0 do we see any significant number of monomers

bound. The origin of this behavior is seen in figure 5.6.4. The chain has dissociated entirely

from the binding potential. The spacing between attractive and repulsive regions has become

so large that for larger values of ϵ the chain cannot deform in any way to adjust to the binding

potential.

For a smaller value of epsilon, ϵ = 2, we see in figure 5.6.5 that the bonds are able to

break and that the spacing between attractive regions of the potential are roughly around
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(a) (b)

Figure 5.6.3: Plots of the average unbound monomers(a) and spin(b) for a wavelength of

λ = 4 for an alternating attractive and repulsive potential. The majority of monomers in

these cases are largely unbound and the spins are intact for moderate to large values of ϵ,

the same as in the λ = 1 case.

Figure 5.6.4: Configuration of an example structure of λ = 4 for large a ϵ. The color indicated

the value of the binding potential at that point indicated by the color bar on the plot. The

resultant structure is completely unbound from the potential.
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the same length as the equilibrium distance between neighboring monomers. The chains is

then able to deform to accommodate the potential. The next nearest neighbor bonds are

also able to form within these attractive regions for certain configurations, as seen in the

−200 > y > −100 region. Three monomers are able to bind to each other in the attractive

well, which further stabilize the state when compared to a chain where no structure formation

is possible. For a purely elastic chain as well, this type of deformation would be too large an

energy cost, proving it to be advantageous to have this type of nonlinearity in the elasticity

of the chain.

Figure 5.6.5: Configuration of an example structure of λ = 4 for large a small ϵ. The color

indicated the value of the binding potential at that point indicated by the color bar on the

plot. The resultant structure is highly deformed but still bound to the binding axis.

5.6.2 Position dependence of strictly attractive potential

A system without repulsive regions along the x-axis is also chosen to simulation binding sit-

uations where the interaction between alternation wells is neutral. Using a binding potential

of the form

Ubp({xi, yi}) =
N∑
i=1

−De sin2

(
2πxi
λ

)
e

−(yi−yo)
2

2σ2g (5.6.2)

87



Where {xi, yi} are the set of x and y positions of the monomers and λ is the wavelength of

the sine wave. This parameter effective controls the spacing of the attractive parts of the

potential along the x-axis. The other parameters are the same as defined in the original

binding potential and the alternating repulsive potential. Here the sin2 allows for all the the

wells to be attractive and the regions between them neutral.

(a) (b)

Figure 5.6.6: Plots of the average unbound monomers(a) and spin(b) for a wavelength of

λ = 2 for a purely attractive potential. The majority of monomers in these cases are largely

unbound and the spins are intact for moderate to large values of ϵ, the same as in the λ = 1

case.

Unlike the previous potential, where the observables for these parameters showed that

the chain was mostly unbound, here the monomers are largely in the bound state for larger

values of ϵ. Figure 5.6.7 shows that for this spacing, which is equal to the bond distance

between next nearest neighbors, the chain can retain its structure and fit nicely into the

potential wells of the binding potential.

Here a large effective stiffness of the chain is inconsequential to the binding. Looking

at figure 5.6.8 We see that for small epsilon the structure is partially broken, but the chain

remains bound.

Seen from the spin plots in figure 5.6.6, even at small values of epsilon the spins remain
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Figure 5.6.7: Configuration of an example structure of λ = 2 for large ϵ. The color indicated

the value of the binding potential at that point indicated by the color bar on the plot. The

resultant structure a zig-zag structure that has fit half of its monomers into the potential

well.

largely intact. The potential helps stabilize these spin interactions in two ways. In figure

5.6.7 the bonds are stabilized by the matching of the potential well separation and the

equilibrium bond distance. However, this forces half o the monomers out of the minima

in the y direction of the potential. In figure 5.6.8, the bonds are stabilized by the being

perpendicular to the binding axis. In the y direction the potential is still gaussian and the

spacing between potential wells such that neighboring monomers can extend over 4 potential

wells such that in the direction of the harmonic force is parallel to the binding axis. Orienting

parts of the chain this way allows for the gaussian potential to push next nearest neighbors

together, stabilizing the bonds between those monomers.

In figure 5.6.9 the spin of the larger wavelength potential is relatively similar to that

of the smaller wavelength. However, for large epsilon we see that unbinding occurs when

the stiffness of the chain increases with ϵ. For all values of De there is stiffening induced

unbinding.
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Figure 5.6.8: Configuration of an example structure of λ = 2 for small ϵ. The color indicated

the value of the binding potential at that point indicated by the color bar on the plot. The

resultant structure is highly deformed and not bound as well as the larger ϵ case.

(a) (b)

Figure 5.6.9: Plots of the average unbound monomers(a) and spin(b) for a wavelength of

λ = 6 for a purely attractive potential. The majority of monomers in these cases are largely

unbound and the spins are intact for moderate to large values of ϵ, the same as in the λ = 1

case.
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Figure 5.6.10: Configuration of an example structure of λ = 6 for ϵ = 4. The color indicated

the value of the binding potential at that point indicated by the color bar on the plot. The

chain is highly structured and spacing between potential wells allows for rotation of the chain

perpendicular to the binding axis.

Figure 5.6.10 reveals that the structure of the chain remains intact and the equilibrium

configuration is one that is perpendicular to the binding axis resulting in a relatively frus-

trated structure as most of the monomers sit outside the potential well. As the chain becomes

softer and deforms, the monomers can extend parallel to the binding axis and find a lower

energy structure. Figure 5.6.11 shows an equilibrium configuration for the chain.

5.7 Concluding remarks

This section has shown that using the nonlinear elasticity model of chapter four helps in

understanding the binding scenarios seen in chapter 2. By introducing the elasticity in this

way, we are able to recreate a stiffening induced reduction in binding that is contradic-

tory to traditional theory of binding of deformable chains [36]. For small chains that can

form structure, like the RNA molecules in chapter two, an increase in the rigidity of this

structure induces unbinding and lowers the free energy of binding. When the length of the
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Figure 5.6.11: Configuration of an example structure of λ = 6 for ϵ = 1. The chain keeps a

moderate amount of its spins intact while deforming to sit along the binding axis.

chain is increased, rotational entropy becomes negligent to the overall free energy of binding

and stiffening of the chain increases the binding energy, which is predicted by the classical

theories.

Adding postion dependence of the binding potential along the axis of binding has shown

that, for short chains, moderate elasticity aids in the ability to bind. In the case of alternating

repulsive and attractive sections of the potential, binding becomes extremely hindered for

potential wavelengths that are not integer multiples of the bond distance or neighboring

monomer extensions. In this case softer chains will always bind more favorably to easier

deform to match pattern of the potential. In the case of only attractive wells stiffening

of the chain can help in binding when the bond distance is comparable to the wavelength

of the well separation. This resembles a lock and key mechanism for binding. As the

wavelength deviates from this value, the more elastic states are favored in binding up to a

point. Moderate stiffness introduced in this way can help in binding by further stabilizing

monomers in the bound state.

Further work would look into the effects of binding of longer chains to position dependent
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potentials and more quantitative ways of measuring the binding free energy. Introducing

system complexity such as the binding of two deformable polymers could reveal mechanisms

in cooperative binding mechanism that more accurately represent real systems.
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APPENDIX A

Thermodynamic integration for MD and BD

simulations

To get to the expression for equation 2.2.1 we start with the generalized expression for the

free energy of our system.

F = −kBT lnZ (A.0.1)

Where kB is the Boltzmann constant, T is the temperature and Z is the canonical partition

function given by

Z =

∫
e−βH(x1,x2,...,xN )dx1dx2 . . . dxN

β = 1
kBT

, xi being the generalized coordinates of the system and H being the Hamiltonian

of the system that depends on these coordinates. For any part of the Hamiltonian, we

can parameterize it by the mathematical parameter λ that goes from 0 to 1, such that the

partition function then becomes

Z =

∫
e−βH(x1,x2,...,xN ,λ)dx1dx2 . . . dxN

To then see how the free energy of the system then depends on this parameter, we can take

the derivative of the partition function w.r.t λ.

dF

dλ
= −kBT

∫ dH(x1,x2,...,xN ,λ)
dλ

e−βH(x1,x2,...,xN ,λ)dx1dx2 . . . dxN∫
e−βH(x1,x2,...,xN )dx1dx2 . . . dxN

(A.0.2)

We recognize the quantity to the right of kBT as the thermodynamic average of the quantity

in the integrand in the numerator. Thus the derivative is given by

dF

dλ
= −kBT ⟨

dH(x1, x2, . . . , xN , λ)

dλ
⟩ (A.0.3)
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Where the brackets ⟨·⟩ represent the thermodynamic average. Then by integrating both

sides of equation A.0.3 w.r.t λ we have

∆F = −kbT
∫ 1

0

⟨dH(x1, x2, . . . , xN , λ)

dλ
⟩λdλ (A.0.4)

Where the subscript λ after the brackets refers to averages w.r.t to different values of λ.

A.0.4 is the desired general result that tells us the free energy difference of the system with

and without the parameter λ. In the case of the MD simulations described in chapter 2, we

look to unbias the binding energy that has been altered by the restraints put on the system.

The restraints of the system are in the form of harmonic restraints and the parameter λ

tunes the strength of these restraints. Thus, the parameterized Hamiltonian for the system

is

H(x1, x2, . . . , xN , λ) = T (ẋ1, ẋ2, . . . , ˙xN)+λ
1

2
k(Θ(x1, x2, . . . , xN)−Θ∗)2+

∑
Ui(x1, x2, . . . , xN)

Where T (ẋ1, ẋ2, . . . , ˙xN) is the kinetic energy, the summation on the r.h.s of the equation

is the potential energy terms that do not depend on λ, k is the stiffness of the restrain-

ing potential, Θ(x1, x2, . . . , xN) is a function that represents the conformation of the RNA

molecule and Θ∗ is a reference conformation. Inserting this into equation A.0.4 we get

∆F = −
∫ 1

0

⟨k(Θ(x1, x2, . . . , xN) − Θ∗)⟩λdλ (A.0.5)

k is directly modified by λ, so the thermodynamic averages correspond to averages w.r.t

different spring constants for the restraining potentials, giving us equation 2.1.1.

In the Case of the BD simulations, the idea is the same. The binding energy is given

by integrating the thermodynamic average with λ modifying the binding potential so the

Hamiltonian becomes

H(x1, x2, . . . , xN , λ) = T (ẋ1, ẋ2, . . . , ˙xN) +
∑
i

λDee
y2i
2σ2 +

∑
i

Ui(x1, x2, . . . , xN)

Plugging this into equation A.0.4 we get

∆F = −
∫ 1

0

⟨
∑
i

Dee
y2i
2σ2 ⟩λdλ (A.0.6)

Thus by measuring the average quantity inside the brackets in 1.0.6 we should be able to

find the binding energy of the system.
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APPENDIX B

Numerical integration of the Langevin equation in

dimensionless units

We start from a general one-dimensional Langevin equation:

mẍ+ γẋ = F (x) + η(t) (B.0.1)

Here η is the white noise with zero mean and with an autocorrelation function < η(t)η(t′) >=

2kBTδ(t− t′). We next discretize this equation by integrating over a time interval ∆t with

tn = n∆t;xn = x(tn); vn = v(tn) (B.0.2)

This gives:

∫ tn+∆t

tn

d2x

dt2
dt+

∫ tn+∆t

tn

γ
dx

dt
dt =

∫ tn+∆t

tn

F (x)dt+

∫ tn+∆t

tn

η(t)dt (B.0.3)

This is approximated as

m(vn+1 − vn) + γ(xn+1 − xn) =

∫ tn+∆t

tn

F (x)dt+

∫ tn+∆t

tn

η(t)dt (B.0.4)

at time tn+1 the force is expanded in a Taylor expansion, F (xn)+F ′(xn)vn(t−tn)+...O(∆t2).

Inserting this into the integral we get:

∫ tn+∆t

tn

Fdt = F (xn)∆t+
1

2
F ′(xn)vn∆t2 + O(∆t3) (B.0.5)

Since η(t) & η(t′) are uncorrelated random variables, the integral of the white noise must be

a Gaussian random variable with zero expectation. Its variance can be calculated as:
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σ2
n =

∫ tn+1

tn

dt′
∫ tn+1

tn

dt′′ < η(t′)η(t′′) >= 2kBTγ∆t (B.0.6)

thus the magnitude of the integral of the noise is 2kBTγ∆t, we here name it as ∆n. This

expression indicates that the random force will dominant when time step is small enough.

With preparing all integral up to a range within time step, now the Langevin equation can

be translated to a update rule:

xn+1 = xn + vn∆t+ O(∆t2); vn+1 = vn − γ
vn∆t

m
− F (xn)∆t

m
+

∆n

m
+ O(∆t2) (B.0.7)

We now convert all quantities into a dimensionless manner. The important step is define

a characteristic time: τ0 = m
τ

. This selection guaranteed when ∆t < τ0, the inertial

effect would dominant, on the contrary the viscous effect will play a main role. Then the

dimensionless time step should be ∆̄t = ∆t
τ0

.

Then we define the characteristic energy by equipartition theorem: 1
2
m < v2 >= 1

2
kBT .

Thus the characteristic velocity and displacement can be derived as:

v0 =

√
kBT

m
;x0 = v0τ0 (B.0.8)

similarly the dimensionless quantities can be obtained by dividing the characteristic one from

raw value. This makes the updating rule in B.0.7 can be rewrite as follows:

¯xn+1 = x̄n +
vn∆t

x0
= x̄n +

vn∆t

v0τ0
= x̄n + v̄n∆t (B.0.9)

¯vn+1 = v̄n − γv̄n
∆t

m
τ0 −

F (xn)∆̄tτ0
mv0

+
∆n

mv0
= v̄n − v̄n∆̄t− F (xn)∆̄tτ0

mv0
+

∆n

mv0
(B.0.10)

the reorganization of the second term is hold by γτ0
m

= 1 which is the definition of τ0. Then

comparing the corresponding terms, we can further define characteristic force and random

noise:
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F0 =
mv0
τ0

=
mv20
τ0v0

=
kBT

x0
; ∆̄n =

∆n

mv0
(B.0.11)

the variance, that is the magnitude of the noise can be estimated as:

σ̄2 =
2kBTγ∆t

m2v20
=

2kBT∆t

mv20τ0
= 2∆̄t (B.0.12)
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