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Abstract

Microbial eukaryotes are integral components of natural microbial 
communities, and their inclusion is critical for many ecosystem studies, yet 
the majority of published metagenome analyses ignore eukaryotes. In order 
to include eukaryotes in environmental studies, we propose a method to 
recover eukaryotic genomes from complex metagenomic samples. A key 
step for genome recovery is separation of eukaryotic and prokaryotic 
fragments. We developed a k-mer-based strategy, EukRep, for eukaryotic 
sequence identification and applied it to environmental samples to show that
it enables genome recovery, genome completeness evaluation, and 
prediction of metabolic potential. We used this approach to test the effect of 
addition of organic carbon on a geyser-associated microbial community and 
detected a substantial change of the community metabolism, with selection 
against almost all candidate phyla bacteria and archaea and for eukaryotes. 
Near complete genomes were reconstructed for three fungi placed within the
Eurotiomycetes and an arthropod. While carbon fixation and sulfur oxidation 
were important functions in the geyser community prior to carbon addition, 
the organic carbon-impacted community showed enrichment for secreted 
proteases, secreted lipases, cellulose targeting CAZymes, and methanol 
oxidation. We demonstrate the broader utility of EukRep by reconstructing 
and evaluating relatively high-quality fungal, protist, and rotifer genomes 
from complex environmental samples. This approach opens the way for 
cultivation-independent analyses of whole microbial communities.



Introduction

Microbial eukaryotes are important contributors to ecosystem function. Gene
surveys or DNA “barcoding” are frequently used to identify eukaryotes in 
microbial communities and have demonstrated the breadth of eukaryotic 
diversity (Pawlowski et al. 2012). However, these approaches can only detect
species and are unable to provide information about metabolism or lifestyle 
in the absence of sequenced genomes. The majority of fully sequenced 
eukaryotic genomes are from cultured organisms. Lack of access to cultures 
for a wide diversity of protists and some fungi detected in gene surveys has 
resulted in major gaps in eukaryotic reference genome databases (Caron et 
al. 2008; Pawlowski et al. 2012). Single-cell genomics holds promise for 
sequencing uncultured eukaryotes and has generated partial genomes for 
some (Cuvelier et al. 2010; Yoon et al. 2011; Monier et al. 2012; Vaulot et al. 
2012; Roy et al. 2014; Mangot et al. 2017). However, multiple displacement 
amplification limits the completeness of single-cell genomes (Woyke et al. 
2010). Alternatively, metagenomic sequencing reads from environmental 
samples are mapped against reference genomes to detect organisms and 
constrain metabolisms, but this approach is restricted to study of organisms 
with sequenced relatives.

Many current studies of natural ecosystems and animal- or plant-associated 
microbiomes use an untargeted shotgun sequencing approach. When the 
DNA sequences are assembled, tens of thousands of genome fragments may
be generated, some of which derive from eukaryotes. Exceedingly few 
metagenomic studies have systematically identified such fragments as 
eukaryotic, although some genomes for microbial eukaryotes have been 
reconstructed (Sharon et al. 2013; Kantor et al. 2015, 2017; Quandt et al. 
2015; Mosier et al. 2016; Raveh-Sadka et al. 2016). In almost all cases, these
genomes were recovered from relatively low-diversity communities where 
binning of genomes is typically less challenging than in complex 
environments. Here, we applied a new k-mer-based approach for 
identification of assembled eukaryotic sequences in data sets from diverse 
environmental samples. Identification of eukaryotic genome fragments 
enabled their assignment to draft genomes and improvement of the quality 
of gene predictions. Predicted genes on assembled metagenomic contigs 
provide critical inputs for further binning decisions that incorporate 
phylogenetic profiles as well as classification of the reconstructed genomes 
and assessment of their completeness. Our analyses focused on biologically 
diverse environmental samples, many of which came from groundwater. In 
addition, we investigated previously published metagenomes from infant 
fecal samples and a bioreactor community used to break down thiocyanate. 
Because the approach works regardless of a predetermined phylogenetic 
affiliation, it is now possible to reconstruct genomes for higher eukaryotes as
well as fungi and protists from complex environmental samples.

Results



Crystal Geyser community structure

The deep subsurface microbial community at Crystal Geyser, Utah has been 
well characterized as being dominated by chemolithoautotrophic bacteria 
and archaea, including many organisms from candidate phyla (CP) (Probst et
al. 2014, 2016; Emerson et al. 2015). It is our current understanding that a 
wide diversity of novel bacteria and archaea are brought to the surface by 
geyser eruptions (Probst et al. 2018). Such deep sedimentary environments 
are unlikely to have high organic carbon compound availability. Thus, we 
hypothesized that organic carbon addition to this system would profoundly 
shift the community composition by selecting against the novel geyser 
microorganisms and enriching for better known heterotrophs. To test this 
prediction, we analyzed a sample of wood that was added to the shallow 
geyser and had decayed in the groundwater conduit (hereafter referred to as
CG_WC). This sample and a wood-free sample (CG_bulk) that was collected 
the day before CG_WC were subjected to metagenomic analysis. We 
identified 124 and 316 distinct strains in the CG_WC and CG_bulk samples, 
respectively. The CG_WC sample contained abundant eukaryotic sequences 
(Fig. 1A) that were not present in the surrounding geyser water (Fig. 1B). 
Twelve strains were present in both samples (Fig. 1C), including the 
archaeon Candidatus“Altiarchaeum hamiconexum” (Probst et al. 2014), 
which dominated the CG_bulk sample. A phylum-level comparison of the 
microbial communities is presented in Figure 1D. The presence of decaying 
wood strongly enriched for Actinobacteria and Proteobacteria, as well as 
eukaryotes such as Ascomycota, Basidiomycota, and an organism classified 
as part of the Arthropoda. A low abundance alga from the class 
Bacillariophyta was detected in both samples.



Figure 1.

Comparison of CG_WC and CG_bulk community composition. The relative abundances of taxonomic 
groups in CG_WC (A) and CG_bulk (B) are depicted. Abundance was determined as the average 
coverage depth of the scaffolds containing annotated ribosomal protein S3 (rpS3) genes. Abundances 
were normalized for comparison across samples by multiplying the average coverage depth by the 
sample read count and read length. (C) Normalized coverage of rpS3 containing scaffolds of strains 
common to both samples. The number of additional strains detected in each sample is listed below the
respective sample heat map. (D) Log2 ratio of normalized coverage of taxonomic groups from A and B. 
Taxonomic groups identified in only one sample are indicated by the darker yellow and blue bars.



As predicted, the CG_WC sample contains very few CP bacteria and archaea, 
with the notable exception of three members of Saccharibacteria (TM7). Two 
Saccharibacteria genomes were >90% complete, and one 1.01 Mbp genome 
was circularized and curated to completion. To evaluate for the accuracy of 
the complete genome, we ruled out the presence of repeat sequences that 
could have confounded the assembly and carefully checked the consistency 
of paired reads mapped across the entire genome (Supplemental Data 1). 
The cumulative GC skew was used to identify the origin and terminus of 
replication (Brown et al. 2016). Although the skew has generally the 
expected form (consistent with genome accuracy), the origin defined based 
on GC skew was offset from the dnaA gene by ∼46 kbp (Supplemental Fig. 
S1A). Short repeat sequences often associated with the origin were absent 
both from the predicted origin and the region encodingdnaA, although they 
were identified close to the origin for another candidate phyla radiation 
bacterium (Anantharaman et al. 2016). We identified the origin region for a 
previously reported complete Saccharibacteria RAAC3_TM7 genome using 
cumulative GC skew and showed that repeats were not present in this 
genome either and that the predicted origin is 7.6 kb from the dnaA gene 
(Kantor et al. 2013).

EukRep tested on reference data sets

Typically, only prokaryotic gene prediction is performed on metagenomic 
samples, as these are the only algorithms specifically designed for this 
application (e.g., MetaProdigal) (Hyatt et al. 2012). For samples containing 
both prokaryotic and eukaryotic DNA, such as CG_WC, obtaining high-quality 
gene predictions for eukaryotes is complicated by the fact that distinct gene 
prediction tools are used for prokaryotic vs. eukaryotic sequences due to 
differences in gene structure. Specifically, eukaryote genomes have more 
complex promoter regions, regulatory signals, and genes spliced into introns 
and exons, variable between species. For this reason, it is not surprising that 
we found that prokaryotic gene predictors underperform when used on 
eukaryotic sequences. This can impact binning by affecting taxonomic 
profiling of scaffolds and bin quality metrics such as the presence or absence
of single-copy genes (Supplemental Fig. S2). To address this issue and obtain
high-quality eukaryotic gene predictions from metagenomes, we present 
EukRep, a classifier that utilizes k-mer composition of assembled sequences 
to identify eukaryotic genome fragments prior to gene prediction (Fig. 2A). 
When previously used to taxonomically classify metagenomic sequences, 
machine learning algorithms have shown promise, but their success was 
limited when samples contained many different species (Vervier et al. 2016).
We hypothesized that a supervised classification method could be applied to 
accurately classify sequences at the domain level for gene prediction 
purposes, avoiding complications from having a large number of taxonomic 
categories.



Figure 2.

Identification of scaffolds for eukaryotic gene prediction with EukRep. (A) Schematic of the analysis 
pipeline used to identify and bin both eukaryotic and prokaryotic genomes within this paper. (B) A 
subset of genomes from Supplemental Table S2 was used to compare prediction accuracy of linear-
SVM models trained on k-mer frequencies of k-mers ranging in length from 4 to 6 bp. For each 
sequence size category, sequences longer than the specified length were fragmented to the specified 
length and sequences shorter were excluded. (C) Accuracy of EukRep domain prediction on a per-
genome level for both eukaryotes and prokaryotes. Percent of the genome correctly classified is 
defined as the percent of base pairs within a given genome predicted to belong to the genome's 
known domain. Each bar represents the percent of a single genome that was classified correctly. 
Genomes used for training and testing of EukRep along with their prediction results are listed in 
Supplemental Tables S1 and S2.

The EukRep model was trained using a diverse reference set of bacterial, 
archaeal, opisthokonta, and protist genomes (3.40 Gbps of sequence) 
(Supplemental Table S1). The k-mer frequencies were calculated for each 5-
kb interval, resulting in 581,376 individual instances that were used to train 
a linear-SVM (scikit-learn) (Pedregosa et al. 2011). We found that 5-mer 
frequencies represented the best compromise between speed and accuracy 
for classifying eukaryotic scaffolds and that sequences can be classified with 
high accuracy at lengths of 3 kb or greater (Fig. 2B; Supplemental Fig. S3). A 
validation set of 486 independent genomes (Supplemental Table S2) was 



assembled to test the prediction power of EukRep. An important goal of 
EukRep is to be able to classify novel as well as known eukaryotic sequences
and to avoid overfitting for existing eukaryotic sequences. Thus, the training 
and validation sets were chosen so as to taxonomically overlap at a 
maximum of genus level. Using the described validation set to test EukRep, 
we found that the classifier was able to accurately predict the domain of 
97.5% of total tested eukaryotic sequence length and 98.0% of prokaryotic 
sequence length.

An important note is that EukRep is designed so as to miss as little 
eukaryotic sequence as possible. To ensure this, the program classifies every
sequence in a sample, even sequences whose composition signals will be 
weak because the sequences are relatively short. Further, given the 
continuum between confident and less confident classification of eukaryote 
sequences, we chose settings that maximized classification outcomes 
(recall). The 2% of incorrect classifications of prokaryote as eukaryote 
sequences represent false positives that can be removed using standard 
binning methods (especially those that include phylogenetic signal).

We examined classifier accuracy on a per-genome basis to test whether the 
classifier performance varied for organisms of widely different types (Fig. 
2C). This metric differs from that reported above because it refers to the 
accuracy of classifying individual artificially fragmented genomes rather than
overall accuracy on all scaffolds tested from every genome. Ninety-four 
percent of tested eukaryotic genomes were classified with >90% accuracy, 
whereas 88% of tested prokaryotic genomes were classified with >90% 
accuracy. In a small number of prokaryotic genomes, more than half of the 
contigs were misclassified as eukaryotic. Notably, all of these were small 
genomes of organisms inferred to be parasites or symbionts. However, 
almost all of the sequences composing the eukaryotic genomes tested were 
correctly classified, indicating this method can successfully identify scaffolds 
whose analysis would benefit from a eukaryotic gene prediction algorithm.

In a complex metagenomic sample, obtaining sequences from novel lineages
is a relatively common occurrence, and EukRep's ability to classify novel 
eukaryotic sequences is critical. We tested the ability of EukRep to do this by
having it classify both eukaryotes (n = 18) and prokaryotes (n = 46) from 
phyla not represented in EukRep's training set (Supplemental Fig. S3). 
Although the genomes were fragmented into 3-kb pieces, EukRep 
maintained an overall accuracy of 90%. When tested on sequences 
fragmented to 20 kb, accuracy improved to 98%. Thus, we conclude that 
EukRep can be relied upon to correctly classify the majority of genomes from
potentially entirely new phyla, even when fragmented.

Other taxonomic binning algorithms such as taxator-tk (Dröge et al. 2015) 
rely upon alignment to reference databases to make taxonomic 
classifications. Although these algorithms are typically designed for 
classifying reads at the lowest taxonomic level possible (e.g., species), they 



can potentially classify scaffolds at the domain level and perform the same 
function as EukRep. In order to test whether EukRep represents a significant 
improvement in this specific area, we compared EukRep to taxator-tk by 
classifying genomes from phyla unrepresented in EukRep's training set at 
the domain level. taxator-tk was selected for comparison because it includes 
eukaryotes in its prebuilt reference data set. taxator-tk was run twice. In the 
first test, many of the fragments to be classified were present as genomes in
the reference data set (11/18), and it classified 47% of the total eukaryotic 
sequence tested as eukaryotic at 3 kb and 76% at 20 kb (Supplemental Fig. 
S3). In the second test, where the test genomes were removed from the 
reference set at the genus level so that the fragments represented genomes 
from novel genus level organisms at a minimum, the tool classified 24% at 3 
kb and 44% at 20 kb of total eukaryotic sequence as eukaryotic 
(Supplemental Fig. S3). Due to the fact that EukRep does not rely upon 
alignment-based methods, it also does not require a reference database and 
can process metagenomes quickly, at a rate of up to two Gbp an hour on a 
single core. Thus, we conclude that EukRep represents an improvement over
this approach for the purpose of identifying scaffolds for eukaryotic gene 
prediction.

Testing eukaryotic gene predictions on reference genomes

Eukaryotic gene prediction algorithms rely on a combination of 
transcriptomic evidence or protein similarity (AUGUSTUS [Stanke et al. 
2006]; SNAP [Korf 2004]) and sequence signatures (GeneMark-ES [Ter-
Hovhannisyan et al. 2008]) to make predictions. Given the frequent lack of 
sequenced close relatives to organisms identified in metagenomes and the 
lack of transcript data in many metagenomic studies, we tested how well 
eukaryotic gene predictors function in a diversity of eukaryotic genomes 
without transcriptomic evidence or homology evidence from close relatives. 
We applied the MAKER2 pipeline (Holt and Yandell 2011) with GeneMark-ES 
in self-training mode along with AUGUSTUS trained using BUSCO (Simão et 
al. 2015) to nine diverse eukaryotic genomes obtained from JGI's portal 
(Grigoriev et al. 2011) and NCBI's genome database (Fig. 3A; NCBI Resource 
Coordinates 2017). The proteomes of Chlamydomonas reinhardtii (Merchant 
et al. 2007), Neurospora crassa (Galagan et al. 2003), and Reticulomyxa 
filosa (Glöckner et al. 2014) were also used as homology evidence. In each 
case, MAKER2-derived gene predictions were compared to reference gene 
predictions that incorporate transcriptomic evidence. The majority of the 
gene predictions identified without transcriptomic evidence were supported 
by reference gene predictions (78%–98%), and the majority of reference 
gene predictions overlapped a MAKER2-derived gene prediction (75%–98%). 
Estimated completeness of the predicted gene sets was measured by using 
BUSCO (Simão et al. 2015) to search for 303 eukaryotic single-copy 
orthologous genes within the predicted gene sets. The number of single-
copy, duplicated, fragmented, and missing genes showed minimal 
differences with and without transcriptomic evidence (Fig. 3A). These results 



show the pipeline we assembled for eukaryotic gene prediction, even without
transcriptomic evidence, is capable of detecting near complete gene sets 
similar to those from reference genomes, with the exception of untranslated 
regions and alternative splicing patterns.

Figure 3.

Eukaryotic gene prediction on metagenomic scaffolds. (A) Gene predictions for nine diverse eukaryotic 
organisms including fungi, a Metazoa, a Stramenopile, an Archaeplastida, and a Rhizaria. Columns 
labeled “R” refer to reference gene sets, whereas M columns refer to gene sets predicted without 
transcript or close homology evidence. The top panel displays the proportion of total genes either 
overlapping (shared) or not overlapping (unshared) a gene model from the other respective gene set 
for a given genome. The bottom panel is an analysis of presence or absence of single-copy genes in 
each gene set as determined by BUSCO using the eukaryota_odb9 lineage set. (B) Proportion of a soil 
metagenome spiked with the genome of Choanephora cucurbitarum predicted to be either 
noneukaryotic, eukaryotic and belonging to the Choanephora, or predicted to be eukaryotic but has 
homology to prokaryotic sequences. (C) BUSCO analysis of the binned Choanephora cucurbitarum 
genome with protein sets from (left to right) the reference protein set, trained MAKER2 output, and 
whole metagenome MetaProdigal output.

To ensure that our proposed methodology can result in improved eukaryotic 
gene predictions in the context of a complex metagenomic sample, we 
spiked the genome of Choanephora cucurbitarum (Min et al. 2017) into a 
complex, 15-Gbp, soil shotgun metagenomic sample (Fig. 3B). The genome 
of Choanephora cucurbitarum was used because it is a fragmented draft 
(N50 = 24,238 bp) with scaffold lengths similar to what is often encountered 
in a metagenome and because it has gene models with many introns that 
would particularly benefit from eukaryotic gene prediction. EukRep was run 



on this mock data set and recovered 40.6 Mbp of sequence classified as 
eukaryotic. Of this, 26.6 Mbp were theChoanephora genome (91.6% of the 
entire genome, 99.6% of the genome longer than the 3-kb minimum 
sequence length cutoff). Next, 93.2% of the identified genome was placed 
into a single bin. Training and running eukaryotic gene predictors on this bin 
substantially improved gene predictions, increasing estimated completeness 
via single-copy genes from 36% to 97% (Fig. 3C). The gene models were 
substantially more similar to reference gene models in terms of total gene 
count and gene length than those predicted using MetaProdigal 
(Supplemental Fig. S4).

Analysis of newly reconstructed eukaryotic genomes

After benchmarking EukRep on reference data sets, the algorithm was 
applied to the CG_WC sample, and 214.8 Mbps of scaffold sequence was 
classified as eukaryotic. Because eukaryotic gene predictors are designed to 
be trained and run on a single genome at a time, CONCOCT (Alneberg et al. 
2014), an automated binning algorithm, was applied to the identified 
eukaryotic scaffolds to generate two preliminary eukaryote genomes. In this 
way, GeneMark-ES and AUGUSTUS gene prediction could be performed, as 
described above, on each bin individually as if running on a single genome.

The availability of relatively confident gene predictions for eukaryotic contigs
enabled re-evaluation of genome completeness based on the presence or 
absence of 303 eukaryotic single-copy genes as identified by BUSCO (Table 
1; Fig. 4). An obvious finding was that one of the CONCOCT bins was a 
megabin. Using information about single-copy gene inventories, along with 
tetranucleotide frequencies, coverage, and GC content, we assigned the 
eukaryotic scaffolds into four genome bins. BLASTing gene predictions 
against UniProt identified three of the bins as likely fungi and a fourth as a 
likely metazoan. Gene prediction was redone on the new fungal bins with 
GeneMark-ES in self-training mode and AUGUSTUS trained with BUSCO. The 
bins ranged in size from 24.5 Mbps to 99.0 Mbps and encoded between 8947
and 18,440 genes. BUSCO single-copy orthologous gene analysis showed all 
four bins were relatively complete individual genomes based on gene 
content, with the lowest containing 243/303 (80%) and the highest 
containing 288/303 (95%) single-copy orthologous genes (Table 1; Fig. 4). 
Some genes expected to be in single copy were duplicated, as is often found 
with BUSCO analysis of complete genomes. The assembly quality of one bin, 
WC_Fungi_A, appeared to be quite high, with 50% of its sequences contained
in scaffolds longer than 599 kb. We reduced potential contamination of 
eukaryotic bins with prokaryotic sequence by BLASTing predicted proteins 
against UniProt and removing scaffolds with the majority of best hits 
belonging to prokaryotic genes.



Figure 4.

Overview of binned eukaryotic genomes. Genomes that share greater than 99% average nucleotide 
identity (ANI) are indicated by black bars. ANI comparisons are shown in more detail in Supplemental 
Figure S3. Genic regions refer to sequence located within predicted gene models whereas intergenic 
refers to all other sequence. Genes containing a PFAM domain were identified with PfamScan (Mistry et
al. 2007). Genome completeness is measured as the percent of 303 eukaryotic single-copy 
orthologous genes found within a genome in a particular form with BUSCO.



A phylogenetic tree constructed from a set of 16 predicted, aligned, and 
concatenated ribosomal proteins (Hug et al. 2016) placed three of the bins 
within the fungal class Eurotiomycetes (Fig. 5). Each of these three bins 
ranged in size from 24.6 to 39.2 Mbps and in gene count from 8963 genes to 
15,756 genes, within the range observed in previously sequenced 
Ascomycete fungi. The closest sequenced relative to all three bins was 
Phaeomoniella chlamydospora, a fungal plant pathogen known for causing 
Esca disease complex in grapevines (Morales-Cruz et al. 2015). The fourth 
bin, 99.7 Mbps in length and estimated to be 92% complete, was placed 
within the Arthropoda (Fig. 5). Its closest, although distant, sequenced 
relative is Orchesella cincta (Faddeeva-Vakhrusheva et al. 2016). Orchesella 
cincta is a member of the hexapod subclass Collembola (springtails), a 
diverse group basal to insects known primarily to be detritivorous inhabitants
of soil. Although ribosomal protein S3 (rpS3) sequences belonging to 
Dictyosteliida, Heterolobosea, and Basidiomycota were detected, there were 



no genomes reconstructed for these organisms, likely due to low abundance 
or genome fragmentation.

Figure 5.

Phylogenetic placement of binned eukaryotic genomes with maximum likelihood analysis of 16 
concatenated ribosomal protein alignments. Genomes from Crystal Geyser, infant-derived fecal 
samples, and thiocyanate reactor samples are identified with blue, red, and purple circles, 
respectively. Branches with greater than 50% bootstrap support are labeled with their bootstrap 
support. Reference ribosomal proteins were obtained from Hug et al. (2016), JGI (Grigoriev et al. 2011),
and NCBI (NCBI Resource Coordinators 2017).

Whole-community analysis, including eukaryotes

To test whether the presence of organic carbon within the CG_WC sample 
would enrich for heterotrophic metabolic pathways (and against members of 
chemolithoautotrophic communities typically associated with the Crystal 



Geyser community), we searched the CG_WC and CG_bulk samples using 
HMMs for CAZymes grouped by substrate (Cantarel et al. 2009), lipase HMMs
from the Lipase Engineering Database (Fischer and Pleiss 2003), and a 
protease BLAST database from MEROPS (Rawlings et al. 2016). Predicted 
proteases and lipases were filtered to specifically identify putative excreted 
proteases and lipases by searching for proteins with secretion signals 
identified with SignalP (Petersen et al. 2011) and one or less transmembrane
domains with TMHMM (Krogh et al. 2001).

Pathways previously described as dominant within the Crystal Geyser such 
as the Wood Ljungdahl carbon fixation pathway and Ni-Fe hydrogenases 
were depleted in CG_WC as compared to CG_bulk. Instead, CAZymes 
targeting cellulose, hemicellulose, pectin, starch, and other polysaccharides 
were enriched in CG_WC, indicating an increased capacity for degradation of 
complex carbohydrates (Fig. 6). A strong enrichment for excreted lipases and
proteases was also detected, further indicative of an increase in the amount 
of heterotrophic metabolisms (Fig. 6). CG_WC also had a strong enrichment 
for methanol oxidation.



Figure 6.

Comparison of CG_WC and CG_bulk metabolic capacity. Log2 ratio of all annotated genes found within 
the CG_bulk sample against annotated genes found in the CG_WC sample. Annotated genes were 
grouped into categories based upon scores with a custom set of metabolic pathway marker HMMs 
(Anantharaman et al. 2016), CAZyme HMMs (Cantarel et al. 2009), and protease and lipase HMMs from
MEROPs and the Lipase Engineering Database, respectively. Putative proteases and lipases were also 
filtered to only those containing a secretion signal and less than three transmembrane domains (see 
Methods). Gene count (red) is the ratio of total number of genes in each category for each sample 
normalized by the total number of genes found in the sample. Relative abundance (blue) is the ratio of 
average read coverage depth of the contig containing a given annotated gene in each category 
normalized by the sample read count multiplied by read length.

The four binned eukaryotic genomes contributed substantially to the 
putative heterotrophic categories (Supplemental Table S3). Fungi are known 
to exhibit different CAZyme profiles based upon their lifestyle (Ohm et al. 
2012; Kim et al. 2016). An analysis of the CAZyme profiles of the three 
fungal bins focused on plant cell wall-targeting CAZymes supports the role of
these fungi as possible plant pathogens or saprotrophs (Supplemental Table 



S4; Floudas et al. 2012; Ohm et al. 2012; Kim et al. 2016). A profile of 
CAZymes found within the Arthropoda bin revealed a large number of chitin-
targeting CAZymes (Supplemental Table S3).

Testing EukRep in recovery of eukaryote genomes from other ecosystems

To test the broader application of EukRep, we applied the method to infant 
fecal samples and thiocyanate reactor samples in which eukaryotes had 
previously been identified (Sharon et al. 2013; Kantor et al. 2015, 2017; 
Raveh-Sadka et al. 2015, 2016). By using EukRep, we were able to quickly 
and systematically scan 226 samples for the presence of eukaryotic 
sequences. Six relatively complete fungal genomes were recovered from 
fecal samples from three infants (Fig. 4). Three are Candida albicans and 
were reconstructed from two different infants. The two genomes from the 
same infant are indistinguishable and very closely related to that from the 
third infant. All three are closely related to but distinguishable from the C. 
albicans reference strain WO-1 (Fig. 4; Supplemental Fig. S5A). The other 
three fungal genomes are strains of Candida parapsilosis that all occurred in 
a single infant. These are essentially indistinguishable from each other and 
from the C. parapsilosis strain CDC317 reference genome, with which they 
share >99.7% average nucleotide identity (ANI) (Fig. 4; Supplemental Fig. 
S5A,B; Sharon et al. 2013; Raveh-Sadka et al. 2015, 2016). C. albicans and 
C. parapsilosis are both clinically relevant human pathogens (Trofa et al. 
2008; Kim and Sudbery 2011).

Within thiocyanate reactor samples, genomes of a rotifer, Rhizaria, and a 
relative of the slime mold Fonticula alba had previously been identified 
(Kantor et al. 2015, 2017). With EukRep, we were able to rapidly identify 
these eukaryotic genomes and evaluate their completeness. Genome 
completeness analysis benefited from improved gene predictions for single-
copy orthologous genes and showed that the identified genomes ranged in 
completeness from 69%–91%. (Fig. 4). As previously reported (Kantor et al. 
2017), the rotifer was present in seven different samples (Rotifer_A-G) (Fig. 
4), consistent with its persistence in the thiocyanate reactor community. All 
seven bins shared greater than 99% ANI (Supplemental Fig. S5B) indicating 
they are likely the same species.

Discussion

Using a newly acquired and two previously reported whole-community 
metagenomic data sets, we demonstrated that it is possible to rapidly 
recover high-quality eukaryotic genomes from metagenomes for 
phylogenetic and metabolic analyses. The key step implemented in this 
study was the presorting of eukaryotic genome fragments prior to gene 
prediction. By training and using eukaryotic gene predictors, we achieved 
much higher quality eukaryotic gene predictions than those obtained using a
prokaryotic gene prediction algorithm on the entire data set (i.e., without 
separation based on phylogeny). This was critical for draft genome recovery 
and evaluation of genome completeness.



Classification of assembled genome fragments at the domain level was 
surprisingly accurate, with 98.0% (Fig. 2C) of eukaryotic sequences being 
correctly identified as eukaryotic, despite no close relative in the training set 
in many cases (Supplemental Table S2). The high accuracy of separation 
suggests some underlying pattern of k-mer frequencies that is different in 
eukaryotes compared to prokaryotes. In part, the signature may arise from 
different codon use patterns associated with the different genetic codes for 
bacteria and eukaryotes.

We anticipate that reexamination of environmental metagenomic data sets 
using the same approach as implemented here will yield high quality 
genomes for previously unknown eukaryotes. An important benefit from this 
and future sequencing efforts will be an expanded knowledge of the 
diversity, distribution, and functions of microbial eukaryotes, which are 
widely acknowledged as understudied (Pawlowski et al. 2012). Increasing the
diversity of sequenced eukaryotic genomes would benefit evolutionary 
studies. Current eukaryotic multigene trees form a solid backbone of the 
eukaryotic tree of life (Parfrey et al. 2010) but suffer from sparse eukaryotic 
taxon sampling. Single-gene trees, which are possible to construct from gene
surveys, lack the resolution of multigene trees (Rokas and Carroll 2005). 
Comprehensive sequencing of full genomes would help diminish the sparse 
taxon sampling problem in multigene trees and improve eukaryotic 
evolutionary reconstructions, with implications for understanding of 
eukaryotic protein function. For example, Ovchinnikov et al. (2017) 
demonstrated that it is possible to accurately predict protein structure by 
utilizing residue-residue contacts inferred from evolutionary data, but such 
analyses require large numbers of aligned sequences. More diverse 
eukaryotic sequences could expand the utility of this method for eukaryotic 
protein family analyses. Furthermore, a broader diversity of eukaryotic 
genomes would provide new insights regarding gene transfer patterns and 
whole-genome evolution.

EukRep, applied in the context of metagenomics, may prove useful for 
genome sequencing projects where isolation of the organism of interest may 
be difficult or not technically feasible. For example, it could be applied to 
study populations of bacteria within the hyphae of arbuscular mycorrhizal 
fungi (Hoffman and Arnold 2010).

Eukaryotic cells frequently contain multiple sets of chromosomes (diploid or 
polyploid). These are often very similar but not identical and can result in the
genome assembly alternating between collapsing and splitting contigs 
representing homologous genomic regions (Margarido et al. 2015). If reads 
are only allowed to map to one location when determining genome 
coverage, this could lead to variation of coverage values across different 
portions of a genome. As differential coverage of contigs is a parameter 
commonly used to help bin genomes, ploidy can complicate genome 
recovery. Another potential problem could relate to contamination of 
eukaryotic genome bins with some bacterial fragments. This will occur to 



some extent, given that some bacterial and archaeal contigs were wrongly 
classified as eukaryotic. Phylogenetic profiling of the predicted genes can be 
used to screen out most prokaryotic sequences.

During development, we noted that the frequency of correct identification of 
bacterial genomes was improved by increasing the number and diversity of 
eukaryote sequences used in classifier training. Further improvements are 
anticipated as the variety of reference sequences increases. However, there 
may be biological reasons underpinning incorrect profiles. The small number 
of cases where EukRep profiled bacteria as eukaryotes or vice versa may be 
interesting targets for further analysis. Notably, almost all are inferred or 
known symbionts or parasites, raising the question of whether their 
sequence composition has evolved to mirror that of their hosts.

We demonstrated the value of EukRep-enabled analyses through study of an 
ecosystem that had been perturbed by addition of a carbon source. The 
results clearly show a large shift in the community composition and selection
for fungi. Of the binned genomes, the fungi have by far the most cellulose-, 
hemicellulose-, and pectin-degrading enzymes, consistent with their 
enrichment in response to high organic carbon availability from degrading 
wood. We also genomically characterized what appears to be a macroscopic 
hexapod that is related to springtails (Collembola), organisms known to feed 
on fungi (Chen et al. 1996). Given that the hexapod genome has a large 
number of chitin-degrading enzymes (Supplemental Table S3), we speculate 
that it may be part of the community supported by the fungi in the decaying 
wood. However, it is also possible that it was associated with the wood prior 
to its addition to the geyser conduit. Interestingly, the eukaryote-based 
community contains very few members of the candidate phyla radiation 
(CPR) and an archaeal radiation known as DPANN and other CP bacteria. 
These novel organisms are mostly predicted to be anaerobes and are highly 
abundant in groundwater samples that were likely sourced from deep 
aquifers under the Colorado Plateau (Probst et al. 2018). The results of the 
current study indicate that CPR and DPANN in the Crystal Geyser system are 
adapted to an environment relatively low in carbon availability, a finding that
may guide future laboratory enrichment studies that target these organisms.

Overall, the results reported here demonstrate that comprehensive, 
cultivation-independent genomic studies of ecosystems containing a wide 
variety of organism types are now possible. Examples of future applications 
include analysis of the distribution and metabolic capacities and potential 
pathogenicity of fungi in the human microbiome, tracking of eukaryotes 
(including multicellular eukaryotes) in reactors used in biotechnologies, 
profiling of the built environment, and natural ecosystem research.

Methods

Crystal Geyser sample collection and DNA extraction



Details of filtration of groundwater for sample CG_bulk is given in Probst et 
al. (2016) (sample CG23_combo_of_CG06-09_8_20_14). Groundwater 
containing particulate wood was collected in a 50-mL Falcon tube. All 
samples were frozen on site on dry ice and stored at −80°C until further 
processing. The sample with the particulate wood was spun down, and DNA 
extraction was performed as described previously (Emerson et al. 2015).

Crystal Geyser DNA sequencing and assembly

Raw sequencing reads were processed with bbtools (http://jgi.doe.gov/data-
and-tools/bbtools/) and quality-filtered with SICKLE with default parameters 
(version 1.21; https://github.com/najoshi/sickle). IBDA_UD (Peng et al. 2012) 
was used to assemble and scaffold filtered reads. IDBA_UD was chosen as it 
is a widely used, publicly available program designed for metagenomic 
assemblies. Unlike almost all other such assemblers, it includes a scaffolding 
step. This is important because longer sequences can be more robustly 
binned. Scaffolding errors were corrected using MISS (I Sharon, BC Thomas, 
JF Banfield, unpubl.), a tool that searches and fixes gaps in the assembly 
based on mapped reads that exhibit inconsistencies between raw reads and 
assembly. The two Crystal Geyser samples used for binning and comparison 
in this study, CG_WC and CG_bulk, resulted in 874 and 529 Mbps of 
assembled scaffolds, respectively.

Prokaryotic genome binning and annotations

Protein-coding genes were predicted on entire metagenomic samples using 
MetaProdigal (Hyatt et al. 2012). Ribosomal RNA genes were predicted with 
Rfam (Nawrocki et al. 2015), and 16S rRNA genes were identified using SSU-
ALIGN (Nawrocki 2009). Predicted proteins were functionally annotated by 
finding the best BLAST hit using USEARCH (UBLAST) (Edgar 2010) against 
UniProt (The UniProt Consortium 2017), UniRef90 (Suzek et al. 2007), and 
KEGG (Kanehisa et al. 2016). Prokaryotic draft genomes were binned through
the use of emergent self-organizing map (ESOM)-based analyses of 
tetranucleotide frequencies. Bins were then refined through the use of 
ggKbase (ggkbase.berkeley.edu) to manually check the GC, coverage, and 
phylogenetic profiles of each bin.

EukRep training and testing

EukRep, along with trained linear SVM classifiers, are available at 
https://github.com/patrickwest/EukRep. A diverse reference set of 194 
bacterial genomes, 218 archaeal genomes, 27 opisthokonta, and 43 protist 
genomes was obtained from NCBI and JGI (Supplemental Table S1). Hug et 
al. (2016), JGI Mycocosm database (jgi.doe.gov/fungi), and the NCBI 
taxonomy browser were used as references for selecting genomes from a 
broad taxonomic range. The contigs comprising these genomes were split 
into 5-kb chunks for which 5-mer frequencies were calculated (Anvar et al. 
2014). Contigs shorter than 3 kb were excluded. The 5-mer frequencies were
used to train a linear-SVM (scikit-learn, v. 0.18, default parameters with C = 



100) to classify sequences as either of opisthokonta, protist, bacterial, or 
archaeal origin. The hyperparameter C was optimized using a grid-search 
with cross-validation and accuracy on a subset of test genomes used for 
scoring. To classify an unknown or test sequence, the sequence was split 
into 5-kb chunks, and 5-mer frequencies were determined for each chunk. 
Contigs shorter than 3 kb were excluded. The trained classifier was then 
used to predict whether the sequence is of opisthokonta, protist, bacterial, or
archaeal origin. Once classified, the 5-kb chunks were stitched back together
into their parent scaffold, and the parent scaffold's taxonomy was 
determined based upon majority rule of its 5-kb chunks. Accuracy for a given
genome was considered to be the percent of total base pairs correctly 
identified as either eukaryotic or prokaryotic. To compare the effect of k-mer 
length on prediction accuracy, k-mer frequencies ranging in length from 4 to 
6 bp from the same training set were used to train separate linear-SVM 
models. To determine the minimum sequence length cutoff, test genomes 
were fragmented into pieces of nlength, and sequences shorter than n length
were filtered out.

To test EukRep, a separate set of 97 eukaryotic and 393 prokaryotic 
genomes was obtained from NCBI and JGI (Supplemental Table S2). Genomes
assembled into less than 10 contigs were fragmented into 100-kb pieces in 
order to better represent metagenomic data sets. EukRep was then run on 
each genome individually. Accuracy for a given genome was measured by 
dividing the total number of base pairs correctly classified by the total 
number of base pairs tested.

Eukaryotic genome binning and annotations

Scaffolds predicted to be eukaryotic scaffolds by EukRep were binned into 
putative genomes using CONCOCT (Alneberg et al. 2014). Eukaryotic 
genome bins smaller than 5 Mbp were not included in further analyses. Gene
predictions were performed individually on each bin with the MAKER2 
pipeline (v. 2.31.9) (Holt and Yandell 2011) with default parameters and 
using GeneMark-ES (v. 4.32) (Ter-Hovhannisyan et al. 2008), AUGUSTUS (v. 
2.5.5) (Stanke et al. 2006) trained with BUSCO (v. 2.0) (Simão et al. 2015), 
and the proteomes of C. reinhardtii (Merchant et al. 2007), N. crassa 
(Galagan et al. 2003), and R. filosa (Glöckner et al. 2014) for homology 
evidence. These gene prediction strategies were employed due to their 
ability to be automatically trained for individual genomes. Completeness of 
the combined MAKER2 predicted gene set as well as the individual gene 
predictor gene sets were compared, and the most complete based upon 
BUSCO analysis was used in future analyses. Phylogenetic classification of 
the predicted genes along with presence or absence of single-copy 
orthologous genes was then used to refine each binned genome. CAZYmes 
were detected in both eukaryotic and prokaryotic bins through the use of 
HMMER3 (v. 3.1b2) (Eddy 1998) and a set of HMMs obtained from dbCAN 
(Yin et al. 2012). The presence or absence of various metabolic pathways 
was determined by using a custom set of metabolic pathway marker gene 



HMMs (Anantharaman et al. 2016) and HMMER3. Protease and lipases were 
predicted by using lipase HMMs from the Lipase Engineering Database 
(Fischer and Pleiss 2003) and BLASTing against a protease database 
obtained from MEROPS (Rawlings et al. 2016). Putative excreted proteases 
and lipases were identified by searching for predicted proteases and lipases 
with secretion signals identified with SignalP (Petersen et al. 2011) and no 
more than one transmembrane domain with TMHMM (Krogh et al. 2001). To 
find potentially contaminating prokaryotic scaffolds, predicted genes were 
BLASTed against UniProt. Scaffolds in which the majority of best hits 
belonged to prokaryotic genes were removed.

Read data sets for previously published metagenomes are available under 
Sequence Read Archive (SRA) accession numbers SRA052203 and 
SRP056932 at (SRA; http://www.ncbi.nlm.nih.gov/sra) and BioProjects 
PRJNA294605 and PRJNA279279.

Eukaryotic gene set comparisons

Nine gene sets were obtained from JGI's mycocosm database (Grigoriev et al.
2011) and NCBI. For each genome, genes were predicted without 
transcriptomic evidence by running assembled sequences through the 
MAKER2 pipeline with AUGUSTUS trained with BUSCO and GeneMark-ES in 
self-training mode. Gene sets predicted with transcriptomic evidence were 
obtained from the JGI portal and NCBI. For comparison against eukaroytic 
MetaProdigal predicted gene sets, MetaProdigal was run with the ‘-meta’ 
flag.

Eukaryote genome completeness estimates

Genome completeness of predicted eukaryotic genomes was estimated 
based on the presence of conserved, low-copy-number genes. BUSCO (v. 
2.0) (Simão et al. 2015) was run with default parameters using the 
“eukaryota_odb9” lineage set composed of 303 core eukaryotic genes. 
Completeness was considered to be the percent of the total 303 core genes 
that were present in either single or duplicated copies. Additionally, the 
number of genes identified as duplicated was used as a way to estimate how
much of a given binned genome appeared to be from a single organism.

Mock metagenome analysis

Bulk soil was collected from the Eel River Critical Zone Observatory (CZO) in 
Northern California. DNA extraction was performed as described previously 
(Emerson et al. 2015). Raw sequencing reads were processed with bbtools 
(http://jgi.doe.gov/data-and-tools/bbtools/) and quality-filtered with SICKLE 
with default parameters (version 1.21; https://github.com/najoshi/sickle). 
IBDA_UD (Peng et al. 2012) was used to assemble and scaffold filtered reads.
The genome of Choanephora cucurbitarum was obtained from the NCBI 
genome database and spiked into the assembled soil metagenome. 
MetaProdigal was used to obtain gene predictions for the entire sample. 
EukRep was then used to classify scaffolds as eukaryotic. CONCOCT was 



used to bin predicted eukaryotic sequences, and gene predictions were 
reperformed on the Choanephora bin with the MAKER2 pipeline using 
GeneMark-ES and AUGUSTUS for gene prediction.

taxator-tk comparison

The microbial-full_20150430 database was obtained from the taxator-tk 
(Dröge et al. 2015) website and was used for mapping. Mapping of test 
genomes against the reference database was performed using BLASTN with 
default alignment parameters and output format described in the taxator-tk 
manual. In a second round of testing, scaffolds belonging to test genomes 
were removed from the test set to simulate genomes from novel organisms. 
Taxonomic assignment and binning were performed as described in the 
taxator-tk manual without filtering alignments.

Phylogenetic analyses

To determine ANI between genomes, dRep was used (Olm et al. 2017). To 
estimate taxonomic composition of Crystal Geyser samples, rpS3 proteins 
were searched against KEGG (Kanehisa et al. 2016) with USEARCH (UBLAST) 
(Edgar 2010), and the taxonomy of the top hit was used to assign identified 
rpS3s to taxonomic groups. Abundance of identified rpS3s was determined 
by calculating the average coverage depth of the scaffolds containing 
annotated ribosomal protein S3 (rpS3) genes. Average coverage depth was 
calculated by dividing the number of reads mapped to the scaffold by the 
scaffold length. Abundances were normalized for comparison across samples
by multiplying the average coverage depth by the sample read count times 
read length.

Four hundred sixty-one protein sets were obtained from binned eukaryotic 
genomes, publicly available genomes from the Joint Genome Institute's IMG-
M database (img.jgi.doe.gov; Chen et al. 2016), NCBI, the Candida Genome 
Database (http://www.candidagenome.org/), and a previously developed 
data set (Hug et al. 2016). For each protein set, 16 ribosomal proteins (L2, 
L3, L4, L5, L6, L14, L15, L16, L18, L22, L24, S3, S8, S10, S17, and S19) were 
identified by BLASTing a reference set of 16 ribosomal proteins obtained 
from a variety of protistan organisms against the protein sets. BLAST hits 
were filtered to a minimum e-value of 1.0 × 10−5 and minimum target 
coverage of 25%. The 16 ribosomal protein data sets were aligned with 
MUSCLE (v. 3.8.31) (Edgar 2004) and trimmed by removing columns 
containing 90% or greater gaps. The alignments were then concatenated. A 
maximum likelihood tree was constructed using RAxML (v. 8.2.10) 
(Stamatakis 2014), on the CIPRES web server (Miller et al. 2010), with the LG
plus gamma model of evolution (PROTGAMMALG) and with the number of 
bootstraps automatically determined with the MRE-based bootstopping 
criterion.

Data access



Sequencing data from this study have been submitted to the NCBI Sequence 
Read Archive (SRA; http://www.ncbi.nlm.nih.gov/sra) under accession 
number SRS2648722. Assembled eukaryotic genomes from Crystal Geyser 
have been submitted to DDBJ/ENA/GenBank 
(https://www.ncbi.nlm.nih.gov/genbank/) under the accession numbers 
PCFH00000000, PCFI00000000, PCFJ00000000, and PCFG00000000. EukRep 
along with trained linear SVM classifiers are available at 
https://github.com/patrickwest/EukRep and as Supplemental Data 2.
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