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Abstract

Protein networks have become a popular tool for analyzing and visualizing the often long lists of 

proteins or genes obtained from proteomics and other high-throughput technologies. One of the 

most popular sources of such networks is the STRING database, which provides protein networks 

for more than 2000 organisms, including both physical interactions from experimental data and 

functional associations from curated pathways, automatic text mining, and prediction methods. 

However, its web interface is mainly intended for inspection of small networks and their 

underlying evidence. The Cytoscape software, on the other hand, is much better suited for working 

with large networks and offers greater flexibility in terms of network analysis, import, and 

visualization of additional data. To include both resources in the same workflow, we created 

stringApp, a Cytoscape app that makes it easy to import STRING networks into Cytoscape, retains 

the appearance and many of the features of STRING, and integrates data from associated 

databases. Here, we introduce many of the stringApp features and show how they can be used to 

carry out complex network analysis and visualization tasks on a typical proteomics data set, all 

through the Cytoscape user interface. stringApp is freely available from the Cytoscape app store: 

http://apps.cytoscape.org/apps/stringapp.
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INTRODUCTION

Modern high-throughput technologies, including proteomics, produce an ever growing flow 

of new data on individual genes and proteins, which need to be interpreted in light of cellular 

context and existing biological knowledge. Protein network resources, in particular the 

STRING database,1 have proven highly useful for providing such context. Indeed, such 

networks are very frequently shown in proteomics publications.

The STRING database provides known and predicted protein−protein associations data for a 

large number of organisms, including both physical interactions and functional associations 

with confidence scores that quantify their reliability. In addition to integrating available 

experimental data and pathways from curated databases, STRING predicts interactions 

based on coexpression analysis, evolutionary signals across genomes, automatic text-mining 

of the biomedical literature, and orthology-based transfer of evidence across organisms. 

However, the STRING web interface is not intended for large networks and provides limited 

flexibility in terms of network analysis and visualization, and accessing it without using the 

graphical user interface requires familiarity with programming.

The Cytoscape software,2,3 on the other hand, is designed to analyze and visualize very large 

networks and provides much greater flexibility in terms of import of additional data and 

visualization of these onto networks. Moreover, Cytoscape has hundreds of apps, which 

users can install to add further functionality, such as clusterMaker24 that implements 

numerous clustering algorithms and PTMOracle5 that allows PTMs to be analyzed in the 
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context of protein networks. However, Cytoscape is a general network tool, not a network 

database, and as such needs to import its networks from elsewhere.

Together this makes STRING and Cytoscape a perfect match, especially for analysis of 

proteomics data; indeed, more than thousand papers in PubMed Central mention both 

STRING and Cytoscape, clearly demonstrating a strong need to integrate them into a single 

workflow. We have done exactly that by developing the stringApp, a Cytoscape app that 

facilitates import of STRING networks into Cytoscape and integration with additional user-

provided data. At the same time, the app provides the look and many of the features of the 

STRING web interface within Cytoscape. The app supports several types of queries to 

retrieve networks starting from either a list of proteins, a disease of interest from the 

DISEASES database,6 or a PubMed query. Moreover, it provides access to additional data 

from associated resources, namely small molecule interactions from STITCH,7 subcellular 

localization from COMPARTMENTS,8 tissue expression from TISSUES,9 and drug target 

information from Pharos.10 Together, these features enable users to easily carry out complex 

network analysis and visualization tasks, all through the graphical user interface of 

Cytoscape. In a typical use case, we demonstrate how a proteomics data set can be analyzed 

and visualized with the help of the stringApp and Cytoscape.

METHODS

Data Sources Used by StringApp

The stringApp retrieves information collected from several source databases. The protein 

network is imported from the current STRING v10.51 and augmented with protein− 

chemical and chemical−chemical associations from the current STITCH version 5.7 This is 

complemented by drug-target classification from the current release of Pharos10 and 

information on disease associations, tissue expression, and subcellular localization from the 

weekly updated databases DISEASES,6 TISSUES,9 and COMPARTMENTS.8

Although these databases all provide Application Programming Interfaces (APIs), we mirror 

the data from the current production versions of STRING and STITCH in a dedicated 

PostgreSQL database on the same server that already hosts DISEASES, TISSUES, and 

COMPARTMENTS. This is done both to provide additional functionality over the existing 

APIs and to allow stringApp to efficiently retrieve all information for a protein network with 

a single API request.

Algorithms Implemented at the Database Level

Another major benefit of having all data available in a single database is that it allows us to 

implement certain algorithms, as described below, at the database level. Instead of first 

loading large amounts of data from one or more databases into memory and then executing 

the algorithms, we were able to implement the algorithms in Structured Query Language 

(SQL) and execute them directly within the PostgreSQL database engine. We made use of 

this approach for two algorithms used by stringApp.

Network Expansion.—This algorithm adds N additional nodes to the network based on 

their total connectivity to a current selection of nodes (X) relative to their overall 
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connectivity in the STRING database (if no nodes are selected, the complete network is 

considered as the selection). All nodes not currently in the network are ranked according to 

the following score:

Si = ∑
j ∈ X

si j/ ∑
k

sik

α

where sij is the confidence score between the node i (to be considered for inclusion in the 

network) and the node j (in the current selection of nodes (X)), while the sum over sik 

captures the connectivity of node i to all other nodes k in the database. The parameter α is 

called the selectivity in the stringApp user interface (Expand network option) and has a 

default value of 0.5. This value gives a good trade-off between choosing nodes that have 

high confidence links to the selection but possibly also to many other proteins (low 

selectivity), and choosing nodes that are specifically linked to the selected nodes but with 

lower confidence (high selectivity). The sum in the enumerator is calculated on-the-fly using 

SUM aggregate function in SQL, whereas the sum in the denominator has been 

precalculated for all nodes in the aforementioned database. We can thus with a single SQL 

command score all candidate nodes, rank them, and return the top N.

PubMed Query.—The second algorithm implemented in SQL is used to retrieve a network 

based on a PubMed query. The app sends the user-specified query to the PubMed API to 

retrieve the set (X) of matching PMIDs, selects the top N entities that are preferentially 

mentioned in X, and finally retrieves the network for them. To rank the entities, we use the 

following scoring function:

Ti = ∑
j ∈ X

δi j/ ∑
k

δik

β

where δij is 1 if the molecular entity i is mentioned in abstract j and 0 otherwise, while δik is 

1 if the molecular entity i is mentioned in any abstract k in PubMed and 0 otherwise. The 

parameter β is fixed to a value of 0.4 based on previously published text-mining 

experiments.6 It serves a similar purpose to the selectivity described above, controlling the 

trade-off between choosing entities that are mentioned in as many of the selected abstracts as 

possible but possibly also in many other abstracts vs choosing entities that are specifically 

mentioned only in the selected abstracts. Given the similarity of this formula to the one used 

for network expansion, it should come as no surprise that it too can be implemented as a 

single SQL command that calculates the enumerator using the COUNT aggregate function, 

whereas the denominator has been precalculated for all pairs of entity and abstracts in the 

aforementioned database.

Implementation of the App

The stringApp is implemented in Java utilizing the Cytoscape 3.6 App API. The app has two 

main functions: (1) to serve as a bridge between Cytoscape and the web service APIs of 

STRING and the related databases, and (2) to provide visualizations resembling the ones on 

Doncheva et al. Page 4

J Proteome Res. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the STRING web server as well as additional features like the side panel and enrichment 

visualizations. These two functions work together to bring much of the richness of the 

STRING website into Cytoscape, which then allows the network and all associated data to 

be analyzed with Cytoscape and its hundreds of other apps. For instance, the clusterMaker2 

app4 can be very useful for clustering STRING networks, as shown in the use case below.

The bridge functionality of the stringApp uses several RESTful11 web service APIs to query 

the databases and retrieve networks. In case of protein and protein/compound queries, the 

app first resolves the entered query terms to the internal database identifiers using the 

standard STRING and STITCH API. For disease queries, it instead contacts the API of the 

DISEASES database twice, first to resolve the entered disease name to a disease identifier, 

and second to retrieve the list of proteins associated with the disease. For all three types of 

queries, stringApp provides the user with the ability to manually resolve any ambiguous 

names. The handling of PubMed queries was described in the previous section. Irrespective 

of the type of query, these steps result in a list of nodes, for which stringApp retrieves all 

node and edge data by calling the web service API of the dedicated PostgreSQL database. 

The latter API is also used to retrieve any node or edge data required when expanding an 

existing network, lowering the confidence cutoff, or adding additional nodes to a network.

The stringApp retrieves functional enrichment analysis results for a whole STRING network 

or a selected subset of it by sending a request to the STRING enrichment API. The results 

are stored and shown in a Cytoscape table called STRING Enrichment, which lists all 

enriched terms along with their gene counts, corresponding FDR values, and gene sets. 

Since the list of enriched terms can become very long, especially for large networks, the app 

allows the user to filter the enrichment results to show terms from any combination of six 

term categories as well as to eliminate redundant terms, which represent similar sets of 

genes.

The redundancy filtering takes the list of enriched terms sorted by FDR value and removes 

the terms that are too similar to any of the previous, better scoring terms that were not 

themselves removed (also referred to as the Hobohm 1 method12). The similarity between 

two terms is measured by the Jaccard index of the sets of genes annotated by the two terms. 

A term is added to the filtered list only if it has Jaccard similarity less than the user-specified 

redundancy cutoff to any other term already in the filtered list.

To retain the look and feel of STRING networks, the stringApp adds a new STRING Visual 

Style to the already existing set of Cytoscape styles. This style enables the glass ball effect 

and the optional visualization of the protein or compound structures within the nodes. These 

visual properties can be enabled or disabled by the user from the stringApp menu. The initial 

node colors are assigned arbitrarily by the app but can be easily substituted by a node color 

mapping of any node attribute. In addition to the node visual properties, the STRING style 

also includes a mapping of the interaction confidence scores to edge color and thickness.

Specific Data and Software for the Use Case

The proteomics data used in the case study were obtained from a phosphoproteomics study 

of ovarian cancer13 (specifically Supplementary Table 3 of the study). The list of proteins 
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used to retrieve the network was extracted from the significantly regulated phosphorylation 

sites listed in this table. Furthermore, log-ratios of abundance in disease versus healthy 

tissues were computed based on the average abundance values over the samples listed in the 

same table. To facilitate the subsequent visualization in Cytoscape, we also modified the 

Supplementary Table 3 by keeping only the significantly regulated phosphorylation sites and 

sorting them by significance. This modified version of the table, which was imported into 

Cytoscape, is provided as Table S1.

During import of the associated log-ratios and phosphorylation cluster assignments, the most 

significant phosphorylation site was chosen whenever multiple sites were found on the same 

protein (by first sorting the table based on “Gene name” and then on “adj. p-value”).

All analyses were performed on the 12th of April 2018 using Cytoscape version 3.6.1 and 

stringApp version 1.3.2 and are provided in a Cytoscape session (https://doi.org/10.6084/

m9.figshare.7258235). Additionally, we used clusterMaker2 version 1.2.1 to perform 

Markov clustering (MCL)14 of the protein network and EnhancedGraphics version 1.2.015 to 

enable stringApp visualization of enriched terms as circular plots onto the network nodes.

RESULTS

Presentation of the StringApp

The stringApp was designed to serve as a bridge between two well-known and widely used 

resources, the STRING database for quality-controlled protein−protein association networks 

and the Cytoscape software platform for network data integration, analysis and visualization. 

Thus, the core purpose of the stringApp is to retrieve network data from STRING, import it 

into Cytoscape and retain the look and most of the functionality of the STRING database, 

while at the same time allowing users to analyze the network with the full set of Cytoscape 

features and integrate it with their own data. Nevertheless, stringApp also imports protein

−protein interactions from STRING for a disease or PubMed query of interest as well as 

protein−chemical interaction data from STITCH. A list of the main stringApp features can 

be found in Table 1.

Currently, four different types of queries are supported by the stringApp, which allow users 

to retrieve a STRING network starting from (1) a list of one or more genes/proteins, (2) a list 

of chemical compounds, (3) a disease, or (4) a PubMed query. Additionally, the user can 

choose the species of interest and the confidence cutoff for the interactions to be retrieved. 

The STRING: protein query obtains a STRING network for an arbitrarily long list of 

proteins and can be used, for example, to retrieve a STRING network for a proteomics or 

transcriptomics study. In a similar manner, the STITCH: protein/compound query obtains a 

network for a list of protein or chemical compound names from STITCH as shown in Figure 

1. The STRING: disease query first queries the DISEASES for the top-N human proteins 

associated with the disease specified by the user and then retrieves a STRING network for 

these. The STRING: PubMed query allows users to get a STRING network for any topic of 

interest by first querying PubMed for abstracts pertaining to the topic, then using text mining 

on these abstracts to identify the top-N proteins associated with the topic, and retrieving a 

STRING network for these.
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Similar to the STRING database query interface, stringApp supports single- or multiprotein 

queries and many different types of names and identifiers, including gene symbols and 

UniProt identifiers/accession numbers. The STRING disambiguation service is used to map 

the query proteins to the internal STRING identifiers and the exact query term that matched 

each protein is stored as a node attribute in the resulting STRING network in Cytoscape. 

This is particularly helpful when querying with lists of proteins or genes coming from a 

proteomics or transcriptomics study, since it facilitates subsequent import of tabular data 

from the same study (as demonstrated in the use case and in Figure 2 and 3).

In addition to the interactions from STRING/STITCH, stringApp retrieves a variety of 

related information, which is stored as node and edge attributes for each protein/chemical or 

interaction, respectively. The node attributes include the STRING and UniProt accession 

numbers, which allow for cross-linking with other resources, a human-readable name for 

display purposes, the protein sequence or a chemical SMILES string, and a structure image 

where possible. The edge attributes include the overall confidence score of each interaction 

as well as the subscores from each individual evidence channel in STRING/STITCH. 

Whenever available for the organism in question, information on the tissue expression and 

subcellular localization of each protein is included from the TISSUES and 

COMPARTMENTS databases. Furthermore, stringApp fetches drug target information from 

Pharos. If a protein was retrieved through a disease query or PubMed query, the 

corresponding confidence score for the disease−gene association according to DISEASES or 

text-mining score (see Methods) are included as node attributes. As shown in Figure 1, 

stringApp also provides a results panel in Cytoscape, which shows the protein or compound 

structure of a selected node as well as links to other related resources, including UniProt,16 

GeneCards,17 COMPARTMENTS, TISSUES, and Pharos.

Once a STRING/STITCH network is in Cytoscape, it can be modified in several ways. First, 

users can expand the network with the nodes that are most strongly connected with the 

nodes currently in the network or with a selected subset of them (see Methods for details on 

the underlying algorithm). These new nodes can be either proteins from STRING or 

chemical compounds from STITCH. Second, it is possible to add specific new nodes to the 

network by providing their names just like in the original query. Third, users can change the 

confidence cutoff of the imported interactions; increasing it filters the current network to 

remove edges that do not pass the new cutoff, whereas decreasing it will requery the server 

to fetch the additional interactions, that did not pass the original cutoff.

Network analysis and functional enrichment analysis are complementary methods to gain an 

overview of a long gene or protein list. The stringApp allows users to combine the two, by 

first performing an enrichment analysis and subsequently visualizing the results onto a 

STRING network. To do so, the user specifies the enrichment significance threshold (with 

default value of 0.05). Then, enriched Gene Ontology terms, KEGG Pathways, and protein 

domains are retrieved from the STRING enrichment web service and shown as a table (see 

example in Figure 1). From the table, the user can then optionally filter the enrichment 

results to reduce redundancy (see Methods for details) and visualize the top terms onto the 

network as donut or pie charts using ColorBrewer18 palettes to distinguish the different 

terms.
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Use Case: Analysis of a Phosphoproteomics Data Set

To illustrate some of the more important features of stringApp that are relevant to analysis of 

proteomics data, we have chosen a typical data set resulting from a phosphoproteomics 

study of ovarian cancer by Francavilla et al.13 published in 2017. In this study, the authors 

compare the phosphoproteome of primary cells derived from epithelial ovarian cancer 

(EOC) and two healthy tissues, namely ovarian surface epithelium (OSE) and distal 

fallopian tube epithelium (FTE). The aim of the study was to uncover cancer-specific 

changes in expression, phosphorylation state, and kinase signatures.

In the following sections, we will go through how this data set can be analyzed and 

visualized in a variety of ways using the stringApp and Cytoscape. Starting with the list of 

proteins with significantly regulated phosphorylation sites in the study, we first retrieve the 

corresponding STRING network in Cytoscape. Then, we import data from the study, namely 

the log-ratios of phosphorylation between disease cells and healthy tissues and the 

phosphorylation cluster assignments, to be able to visualize them on the network nodes. To 

gain insight from the resulting highly connected protein network, we partition it using a 

clustering algorithm and relay out the network. The largest identified cluster turns out to be 

highly relevant to the main findings of the study since it contains both CDK7 and POLR2A 

as well as many splicing related proteins. The study by Francavilla et al. showed that CDK7 

phosphorylates POLR2A and regulates EOC cell proliferation, and that peptides in proteins 

with splicing variants were over represented in the EOC proteome. We thus focus on this 

cluster, analyze it for enriched functional terms, and visualize selected terms on the network. 

Finally, we highlight the proteins from the study that are annotated as druggable targets in 

the Pharos database or associated with EOC according to the DISEASES database.

Network Retrieval and Data Import

The first step of the analysis is to retrieve a STRING network for the 541 unique proteins 

with significantly regulated phosphorylation sites. This is done by opening the Import 
Network from Public Databases dialog, choosing STRING: protein query, entering their 

UniProt accession numbers into the dialog, and leaving all query parameters at their default 

values. The resulting network retrieved from STRING 10.5 consists of 537 nodes and 3027 

edges with the default confidence score of 0.4 and above, which is consistent with the 

default of the STRING website. Four proteins in the data set, three of which were 

unreviewed TrEMBL entries, could not be mapped to STRING identifiers by the app and 

were thus not included in the further analysis. To simplify the figures, we also opted to 

delete the 78 singleton nodes, i.e., the proteins with no interactions in the retrieved network.

To add data from the proteomics study to the STRING network, we import the modified 

version of Supplementary Table 3 from Francavilla et al. (Table S1) using the built-in 

functionality of Cytoscape to import data columns from a tabular file. In this step it is crucial 

to correctly choose which column from the file should be mapped to which column in the 

Cytoscape node table; if the identifiers do not match, the data will not be imported. To 

facilitate this mapping, stringApp saves the user-provided query identifiers in the “query 

term” column in the Cytoscape Node table. In this use case, the UniProt identifiers from the 

“Uniprot” column in Table S1 were used to retrieve the STRING network and therefore, this 
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is the column that should be selected as the “Key” column in the table preview in the Table 
import dialog. Since these identifiers were stored in the “query term” column in the 

Cytoscape Node table, it should be selected as the “Key Column for Network” in the Import 
table dialog. Upon successful import of the data, the new columns are inserted at the end of 

the Cytoscape Node table. Here, we import the average log-ratios between disease and 

healthy tissue (“EOC vs. EOS&FTE” column) and the phosphorylation cluster assignments 

(“Cluster” column).

Network Layout and Visual Mapping of Data

Having imported the proteomics data, we can map it onto the nodes in the network using the 

Cytoscape Visual Styles functionality. Numeric data such as the log ratios between disease 

and healthy tissues are best shown using a continuous mapping of the values to a color 

gradient. Here, we use a blue− white−red color gradient to highlight nodes with low or high 

log ratios (Figure 2). Categorical data such as the phosphorylation cluster assignments 

should be represented by a discrete color mapping, which assigns a different color to each 

category (Figure 3). Mappings between visual properties and attributes can also be created 

for edges; the default STRING visual style uses this to show edges with higher confidence 

scores as thicker, darker lines.

Network visualization of large proteomics data sets is challenging for several reasons. First, 

these networks tend to be large, typically consisting of hundreds to thousands of proteins 

with thousands to tens of thousands of interactions between them as exemplified by Figure 

2. Visualizing large, dense networks in a way that reveals the patterns within them, such as 

groups of similarly regulated proteins, is inherently difficult.19 Second, whereas a single 

comparison of two conditions is easily visualized using a color gradient, many proteomics 

studies, including the one used in this example, compare multiple conditions or time points.

Using Clustering to Improve Visualization

Clustering can be a powerful strategy to visualize multidimensional data on large networks. 

In Cytoscape, a broad selection of clustering algorithms are available through the widely 

used clusterMaker2 app.4 This app can cluster the nodes in the network both based on the 

edges that connect them (network clustering) and based on numeric data from the Cytoscape 

Node Table (attribute clustering). We could thus have used the attribute-clustering 

algorithms in clusterMaker2 to identify groups of proteins that exhibit similar changes in 

phosphorylation. However, in this use case we instead opted to import the phosphorylation 

cluster assignments from the original study as described in the previous section.

To group the proteins in the network based on their interactions from STRING, we used 

clusterMaker2 to run Markov clustering (MCL).14 We increased the inflation value to 4.0 to 

reduce the cluster size, set array sources to use the STRING confidence score attribute as 

weights, checked the option to create new clustered network, and left all other settings at 

their default. The resulting network is greatly simplified and much easier to visualize, since 

only the 1058 interactions within clusters are retained (Figure 3). Finally, to visualize how 

the proteins are regulated, we color the nodes based on the phosphorylation cluster they 

were assigned to; cluster A (blue) is up-regulated in both healthy tissues (FTE and OSE), 
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cluster B (yellow) is up-regulated in one healthy tissue (FTE) and in disease tissue (EOC); 

and cluster C (red) is up-regulated in disease tissue (EOC). For comparison, we also provide 

the same network colored by log ratios between disease and healthy tissues (Figure S1).

Functional Enrichment Analysis

In the last parts of the use case we will focus on the largest cluster in the network, which 

consists of 62 proteins and relates several of the findings of the original study. We thus 

created a new, separate network in Cytoscape that consists only of this cluster.

To functionally characterize the cluster, we used stringApp to perform functional enrichment 

analysis with an FDR threshold of 5%, which resulted in a list of 129 statistically significant 

terms that span all six categories: GO Biological Process, GO Molecular Function, GO 

Cellular Component, KEGG Pathways, PFAM, and InterPro protein domains. We next used 

the filter functionality to eliminate redundant terms (using the default redundancy cutoff of 

0.5), thereby reducing the list to a more manageable 38 enriched terms. Of these, the two 

most significant terms were the GO biological process mRNA processing and the KEGG 

pathways Spliceosome, which covered 39 and 20 out of the 62 proteins in the cluster, 

respectively. To show which proteins are annotated with which of these terms, we used the 

stringApp to visualize them as a split donut charts around the nodes (Figure 4). These 

enrichment results fit well with the finding by Francavilla et al.13 that peptides from proteins 

with splicing variants were overrepresented among EOC-regulated phosphorylated peptides. 

Moreover, the same cluster contains the protein POLR2A, the phosphorylation of which has 

been associated with both transcriptional regulation and alternative splicing.20

Annotation of Disease-Associated Proteins and Drug Targets

The stringApp automatically retrieves drug target information from the Pharos database into 

the “target development level” and “target family” columns of the Cytoscape Node table. 

The latter column includes annotations of known kinases and other drug target families. 

Using the discrete mapping functionality of Cytoscape, one can highlight the kinases (and 

other drug target families) by assigning different colors to the corresponding nodes (see 

Figure 4). The cluster contains 3 of the 22 kinases present in the full network, including 

CDK7 that the study showed phosphorylates POLR2A and thereby likely regulates the 

processes identified in the enrichment analysis.

Finally, to annotate the network with proteins already associated with EOC, we use the 

STRING: disease query functionality of stringApp to import a STRING network of the top 

500 candidate disease genes according to the DISEASES database. The confidence scores of 

the associations between these genes and EOC range from 0.69 to 2.66 on a scale from 0 to 

5. As a compromise between confidence and coverage, we decided to keep only genes with a 

disease confidence score above 1.0, resulting in a network of 222 genes likely associated 

with EOC. We then identified the proteins from the DISEASES network in the study 

network by first creating the union of the two networks using the Merge Networks tool in 

Cytoscape and then removed all nodes not coming from the study. In the resulting network, 

the node attribute disease score marks all proteins associated with EOC according to the 

DISEASES database, which we used to highlight them as bigger nodes (see Figure 3 and 4).
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DISCUSSION

Scope of the StringApp

In our use case, we have illustrated how many of the features of stringApp (see Table 1 for a 

more comprehensive list) and Cytoscape can be used to analyze and visualize a proteomics 

study of human cells. However, this does not showcase the full scope of the app.

The current version of STRING provides functional association networks for more than 

2000 different organisms, all of which can be accessed through stringApp. Moreover, the 

app can equally well be used to visualize other types of high throughput experiments that 

give rise to a list of genes or proteins. This is true for transcriptomics data, which can be 

imported and visualized on a network by following the same steps we showed for 

proteomics data, as well as for phenotypic screens and mutation data. For example, the 

stringApp has already been used in the literature for network analysis of microarray data on 

the mammalian circadian pacemaker21 and for comparing a coexpression network obtained 

from maize RNA-seq data to a network from STRING.22

One key feature of the stringApp, which was not used in the use case, is the ability to expand 

a network. This uses the STRING network as a whole to bring in additional proteins that 

were not initially identified, but which may be of interest because they are preferentially 

associated with the proteins on the initial list. In case of phosphoproteomics data, this can be 

used to identify proteins that may not themselves be regulated through phosphorylation, but 

which function together with proteins that are.

While users can import their own data, it is worth noting the stringApp also automatically 

augments the network with tissue expression data and information on protein subcellular 

localization. Without having to provide any data, it is thus possible for users to visualize 

which proteins localize to a certain tissue or part of the cell. The data can also be highly 

useful for filtering networks to produce, for example, a protein network for a specific tissue 

of interest.

The stringApp is thus also useful beyond analysis of user-provided high-throughput data. 

For example, one can easily perform a disease query to retrieve a network of proteins known 

to be involved in a given disease, use network expansion to obtain novel candidates, filter 

them by expression in disease-relevant tissues, and highlight the druggable targets from 

Pharos.

Automation of Analyses

In addition to having a graphical user interface, which we have focused on in this paper, the 

stringApp also supports the Cytoscape Automation feature, which allows scripted execution 

of STRING analyses within Cytoscape. This command interface can be used in a variety of 

ways. First, it is accessible through the Command Tool, which provides an interactive 

command line as well as the ability to execute Cytoscape script files. Second, the commands 

can be used from web pages viewed in the built-in Cytoscape web browser, as illustrated in 

the online stringApp training material (https://jensenlab.org/training/stringapp/). Third, the 

cyREST app23 enables other programs to control Cytoscape through an API, which in turn 
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allows stringApp analyses to be scripted from R using the BioConductor package RCy324 or 

from Python using package py2cytoscape.23 A tutorial on the latter can be found in the 

Cytoscape Automation training material (https://git.io/RstringAppTutorial).

Open Challenges in Network Visualization of Proteomics Data

There are still several open challenges in network visualization of MS-based proteomics 

data, which are in no way specific to stringApp but also not addressed by it.

The proteolytic cleavage of the proteins, typically with trypsin, results in peptides that do not 

map uniquely to specific proteins. Instead, these peptides are generally mapped to so-called 

protein groups, which consist of multiple proteins from which the peptides could have 

originated. How to best represent this ambiguity in a protein network is not clear; options 

include choosing a single representative protein for each group, showing all proteins from 

each group, or constructing network nodes that fuse all interaction evidence for the proteins 

in a protein group.

Another challenge relates specifically to data on post-translational modifications. Since each 

protein can have multiple post-translational modifications on different sites, an MS data set 

may show that some sites on a protein are up-regulated while others are down-regulated. 

Since a protein network will have only a single node for each protein, visualization of site-

specific data requires multiple values to be shown on each node, for example, in the form of 

a donut plot. However, this visualization will result in information overload if used directly 

on large networks. Visualization of networks with complex data overlays, such as time 

courses or site specific data, might be achieved by separating the data from the network view 

and using interactive techniques to identify subnetworks of interest.25

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Highlighting various stringApp features in a screenshot of a small STITCH network in 

Cytoscape. Edge colors indicate type of interaction (green for protein-compound and gray 

for protein−protein interactions) and node colors are arbitrary. The results panel (right) 

shows the 3D structure of the currently selected node CDK7 (indicated by yellow node 

color) and provides links to other related resources. The STRING enrichment table panel 

(bottom) lists the enriched terms for this network (FDR-corrected p-value <0.05) with their 

category, term name description, FDR-corrected p-value and the enriched genes. The Filter 

STRING Enrichment table dialog (left) demonstrates the available options for filtering 

enriched terms by category and redundancy.
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Figure 2. 
STRING network of proteins with significantly regulated phosphorylation sites detected in a 

phosphoproteomics study of ovarian cancer.13 Log-ratios between disease and healthy 

tissues for the most significant site for each protein were mapped to the nodes using a blue− 

white−red gradient. Proteins without any interaction partners within the network (singletons) 

are omitted from the visualization.
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Figure 3. 
Clustered protein association network with proteins colored by the phosphorylation cluster 

to which they were assigned in the original analysis.13 Network clustering was performed 

using the Markov clustering (MCL) implementation in the clusterMaker2 Cytoscape app. 

The 13 proteins associated with Ovary epithelial cancer according to DISEASES are 

represented by bigger nodes. Clusters consisting of one node only are omitted from the 

visualization.
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Figure 4. 
Functional analysis of the largest cluster obtained by Markov clustering (Figure 3). The 

top-2 enriched terms after redundancy filtering were visualized as split donut charts around 

the nodes annotated with those terms. CDK12 is highlighted by bigger node size because it 

is associated with Ovary epithelial cancer according to DISEASES. The three kinases 

CDK7, CDK12, and CDK13 are highlighted in green based on annotations from the Pharos 

database.
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