
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Computer-Driven, Yet Human-Controlled: The Runtime-Editable, All-Digital TTRPG

Permalink
https://escholarship.org/uc/item/0r9246gd

Author
Joslyn, Maxwell

Publication Date
2023

Supplemental Material
https://escholarship.org/uc/item/0r9246gd#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0r9246gd
https://escholarship.org/uc/item/0r9246gd#supplemental
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

COMPUTER-DRIVEN, YET HUMAN-CONTROLLED:
THE RUNTIME-EDITABLE, ALL-DIGITAL TTRPG

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTATIONAL MEDIA

by

Maxwell Joslyn

December 2023

The Thesis of Maxwell Joslyn
is approved:

Professor Michael Mateas, Chair

Professor Noah Wardrip-Fruin

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Maxwell Joslyn

2023

Table of Contents

List of Figures vii

List of Tables ix

Abstract x

Dedication xii

Acknowledgments xiii

1 Introduction 1

2 Background and Motivation 7
2.1 The Basics of RPG Play . 8
2.2 Two Gameplay Principles . 10

2.2.1 Principle 1 . 11
2.2.2 Principle 2 . 11

2.3 Rules and Facts . 13
2.3.1 Definitions . 13
2.3.2 Precursors to Rules and Facts . 16
2.3.3 Analyzing Chess in Terms of Rules and Facts 18

2.4 Trusting the GM: Exceptions to Principle 2 19
2.4.1 Exception #1: Hidden Procedures 20
2.4.2 Exception #2: Allowances for Improvisation 21
2.4.3 Consequences of the Exceptions 22

2.5 Malleability . 23
2.5.1 An Example of Malleability . 27
2.5.2 When Should the GM Exercise Malleability? 28

2.6 Quantitative Characteristics of RPG Systems, and Their Connections to
the Gameplay Principles . 30
2.6.1 Fundamental Characteristics . 30
2.6.2 The Relative Importance of the Fundamental Characteristics . . 31

iii

2.6.3 Depth and Granularity Create Coverage 33
2.6.4 Depth Creates Breadth . 34
2.6.5 Connectedness Creates Immersion and Difficulty 35
2.6.6 Immersion and Difficulty Create Tension 36

2.7 The Perils of High DCG, and the Promise of Computers 37
2.7.1 Increases to DCG Run Into Human Limitations 37
2.7.2 Computer Augmentation . 38

2.8 Why Aren’t Computer-Augmented RPGs
Already Widespread? . 41
2.8.1 Mainstream Game Design Space is Constrained by Commercial

Realities and User Reluctance . 41
2.8.2 Fixed-Theme Games Trade Principle 1 for Lowered DCG 43
2.8.3 Storygames Don’t Require High DCG 45
2.8.4 A Comparison with Videogame Progress 46

2.9 Research Questions Revisited . 47

3 Related Work 49
3.1 Hybrid and Augmented Games . 51

3.1.1 Commercial and Academic Examples 53
3.1.2 Observations . 56

3.2 RPG Support . 57
3.2.1 Commercial and Open-Source Work 57
3.2.2 RPG Support in Academia . 61
3.2.3 Observations . 65

3.3 Virtual Tabletops . 65
3.3.1 VTTs in Academia . 66
3.3.2 VTTs Outside Academia . 68
3.3.3 Observations . 75

3.4 Videogames . 76
3.4.1 CRPGs . 76
3.4.2 Games with a GM Mode . 78
3.4.3 A Curious MUD . 81
3.4.4 Observations . 86

3.5 Summary . 87

4 Speculative Design Goals for Computer-Augmented, High-DCG RPGs 89
4.1 Five Goals . 90
4.2 Summary . 96

5 The ROLEPLAYINGGAME System 97
5.1 Features Which Were Out of Scope . 98
5.2 Implementation Details . 99

5.2.1 Language and Architecture . 99

iv

5.2.2 Key Implementation-Level Concepts 100
5.3 Game World Content . 105
5.4 Features Supporting Malleability . 107

5.4.1 Malleability of Substantive Facts 107
5.4.2 Malleability of Taxonomic Facts 108
5.4.3 Malleability of Rules . 109

5.5 Functionality and Design of User Interfaces 109
5.5.1 Core UI Elements . 109
5.5.2 Differential Display . 116
5.5.3 GM’s Inspector . 118
5.5.4 Game World Tab . 118
5.5.5 Gallery Tab . 123
5.5.6 Explore Tab . 125
5.5.7 Social Inventory Tab . 125
5.5.8 Market Tab . 128
5.5.9 Character Tab . 128

5.6 Summary . 128

6 Community Feedback 131
6.1 Study Design . 132
6.2 Connections to Game Design and Software Development 134
6.3 ROLEPLAYINGGAME Presents a Compelling Vision for Introducing

Computer Augmentation to RPGs . 135
6.3.1 Complexity and Subgames . 136
6.3.2 Task-Specific Informational Interfaces 140
6.3.3 Generating Game Content . 143
6.3.4 Testing and Refining Game Designs 144

6.4 Computer Augmentation as a Learning Aid 145
6.5 Criticism and Concerns . 148

6.5.1 Feasibility and Costs of Using Computer Tools 148
6.5.2 Potential for Distraction . 152

6.6 Summary . 153

7 Discussion and Conclusion 155
7.1 Reflection and Analysis . 156

7.1.1 Research Question 1 . 156
7.1.2 Research Question 2 . 157
7.1.3 Research Question 3 . 159

7.2 Future Theoretical Work . 160
7.2.1 Connections to Fields Beyond Game Design 160
7.2.2 Diagnosing and Repairing the Causes of Unexpected System Out-

comes . 162
7.3 Future Technical Work . 164

v

7.3.1 Formal Content Schemas . 165
7.3.2 More Malleability, Culminating in Reprogrammability 166
7.3.3 Widespread Use of Differential Display 167
7.3.4 Rule Design Languages and Story Sifting 169

7.4 Conclusion . 171
7.4.1 A Defense of a Philosophy . 172
7.4.2 A Classification of Components 172
7.4.3 A Method for Quantitative Analysis 172
7.4.4 An Account of Malleability . 173
7.4.5 A Set of Design Criteria . 174
7.4.6 An Innovative Artifact . 174
7.4.7 A Shared Vision . 175

Bibliography 177

A Interview Transcript Excerpts 198
A.1 Interview Excerpts from P1 . 199
A.2 Interview Excerpts from P2 . 201
A.3 Interview Excerpts from P3 . 202
A.4 Interview Excerpts from P4 . 207
A.5 Interview Excerpts from P5 . 210

vi

List of Figures

2.1 A level from Baba Is You. In its current state, because one of the active
phrases is “FLAG IS WIN” (top right), the level can be won by touching
the flag object (center right.) If, for instance, the player moved the word
“ROCK” (bottom right) to where the word “FLAG” is now, forming the
phrase “ROCK IS WIN”, then the game rule for winning would change
such that touching a rock object (center) would win the level. Source: [60]. 26

3.1 Planning a token’s movement in Roll20. The path begins on the right,
at the dimmed copy of the token which represents its initial position.
Source: [119]. 73

3.2 A GM creates a vignette within Divinity: Original Sin 2. Source: [88]. . 80
3.3 The SID Controller (analogous to a GM) works on a level. Source: [136]. 81
3.4 The SID Controller creates a new game object. Source: [137]. 82

5.1 After picking the move action, this PC can click any of the green hexes
to fill the “coord” parameter shown in the sidebar. 110

5.2 The GM uses toggle-rule to see the rules governing each action. From

here, he deactivates the one called within-movement-range? (at bottom.)111
5.3 Once the GM has deactivated within-movement-range?, the PC’s UI

will update to show all non-occupied hexes as green (i.e. targetable.) . . 112
5.4 The GM’s UI in ROLEPLAYINGGAME, with the nav bar and tab se-

lector at top, sidebar at left, and main area at right. 113
5.5 Before choosing a character with whom to equip an item, the slot

parameter cannot yet be chosen. 115
5.6 After the GM has chosen a character for the actor parameter, that char-

acter’s valid choices for the slot parameter automatically become avail-
able in the corresponding dropdown menu. 115

5.7 Alice (as Arvak) is on the Explore tab, viewing the Cavern zone. She
sees bonus information (highlighted in yellow) through differential display.117

5.8 Birimor is also in the Cavern, but his player, Bob, doesn’t see the bonus
text that Alice saw as Arvak. 117

vii

5.9 The GM is hovering his mouse pointer (not shown) over Arvak, causing
that PC’s battle map avatar to glow purple (bottom right.) This indicates
interactable content. 119

5.10 After the GM clicks Arvak, his name appears in the Inspector (at left.) 120
5.11 Clicking Arvak’s entry in the Inspector shows the GM every command

that can operate on a PC, and what parameter the PC would fill for
that command. Each item in this list is interactive, and will highlight in
purple when hovered (not shown.) . 121

5.12 The GM clicks the item for relocate . This sets the GM’s sidebar to
begin specifying that command, and fills in Arvak as the target-entity
parameter. 122

5.13 The GM views a location, Murkwood, in his Game World tab. Notice
the button which allows him to relocate all PCs to this location. 123

5.14 The GM views a zone, Cavern, in his Game World tab. 124
5.15 The GM views locations on the Gallery tab. Zones are colored in red. . 124
5.16 A PC, Arvak, views the Social Inventory. His pane is displayed in green,

which is used throughout ROLEPLAYINGGAME to mean “owned by or
related to the logged-in user.” . 126

5.17 Arvak filters to include just those items whose names contain the string
“bo.” Matching items are labeled with a checkmark; non-matching items
are dimmed, and labeled with an X. 127

5.18 A PC, Arvak, visits the Market tab for the location Redport. 129
5.19 Alice checks the Character tab for Arvak, her PC. 129

6.1 The Skyrim lockpicking UI. Source: [118]. 139

viii

List of Tables

5.1 User commands in ROLEPLAYINGGAME. In running text, commands
link back to this table, and are highlighted (e.g. toggle-rule) to dis-
tinguish them from actions. 102

5.2 Character actions in ROLEPLAYINGGAME. In running text, actions
link back to this table, and are highlighted (e.g. move) to distinguish
them from commands. 104

6.1 Interviewees’ professional backgrounds; the number of years they’ve spent
participating in RPGs; and the portion of those years they’ve spent GMing.132

ix

Abstract

Computer-Driven, Yet Human-Controlled:

The Runtime-Editable, All-Digital TTRPG

by

Maxwell Joslyn

Tabletop roleplaying games (TTRPGs) are set apart from other interactive art

forms by the core assumption that their game worlds and game systems can change even

during play. This quality, which I call malleability, underpins free choice of action by

players, and runtime redesign by Game Masters (GMs.) Despite the importance of this

unique quality, on the eve of TTRPGs’ 50th anniversary, there are still no computer

adaptations of the medium which both retain full malleability, and make meaningful

use of modern computers’ processing power.

Computer roleplaying games (CRPGs) use modern computers’ storage and

processing capabilities to present large worlds and deep gameplay mechanics, while

keeping large amounts of information manageable with slick interfaces and audio-visual

feedback. However, because they are completely mediated by the computer, they give

up all malleability.

Virtual tabletops (VTTs) offer somewhat more malleability than CRPGs by

only partially mediating gameplay. Nevertheless, much of what would be malleable

in traditional play is static during VTT play. Furthermore, because VTTs focus on

faithfully recreating game systems and accessories which evolved in an analog context,

x

their gains from existing as software are mainly limited to networked play and improved

graphics.

In this thesis, I present a novel software system which supports complex game-

play mechanics and information-rich user interfaces, while also offering malleability of

a game’s rules and world at runtime. As part of my justification for developing this

system, I give the first comprehensive account of malleability and its importance to the

design and play of TTRPGs, and I propose and defend a novel method for quantitatively

analyzing the complexity of TTRPG systems.

xi

For Alexis D. Smolensk, who showed me a path.

xii

Acknowledgments

I thank my advisors, Michael Mateas and Noah Wardrip-Fruin, for letting me

work on such a niche project, and for giving me endless counsel during both the hacking

and writing phases of creating this work. Any flaws herein are my fault, not theirs.

Andrew Fribush, Kyle Littler, Ryan C. Wright, and Orion J. Anderson gener-

ously contributed brain-expanding suggestions to the design, implementation, and anal-

ysis of ROLEPLAYINGGAME, and Wynn Tranfield, the McHenry Library’s STEM

Librarian, discovered a trove of related work that I’d overlooked.

Each player I’ve GMed for has taught me something, and granted me the

satisfaction of seeing my work enjoyed. Thanks to Jeremy, Patrick, Nate, Shea, Jon,

Cat, Chelsea, Donald, Nic, Mike, Nicole, and Thorsten; Peter, Stephanie, Ieva, Jonas,

Mitchell, Nick, and Cecelia; and above all Rachel, Chandler, Brook, Jñani, and Tori.

My parents have always supported my creative efforts. Among other things,

they let a dozen friends and I make a tremendous RPG-session racket in the living room

until midnight, once or twice a week, throughout two years of high school. The journey

that led to this thesis started there. (Thanks, and I love you both.)

Finally, I would not be devoted to reshaping the roleplaying game if I hadn’t

met Alexis Smolensk ten years ago. In the course of our friendship, his blog, The Tao

of D&D, has completely transformed my understanding of what an RPG can offer its

players, and how a GM can work to provide that offering. I can’t thank him enough.

xiii

Chapter 1

Introduction

Roleplaying games (RPGs) are a form of intellectual entertainment nearly half

a century old. As with the war games they descend from, RPGs are traditionally played

at a table, for which reason they are commonly called “tabletop RPGs” (TTRPGs.) In

this form, they are accessible to all, requiring no equipment beyond pencils, paper, dice,

a set of rules, and the participants’ imaginations.

The first RPG, Dungeons & Dragons [55] (AKA D&D), defined a large and

byzantine set of rules to govern gameplay and suggest many possibilities for player ac-

tion. Early competitors like Rolemaster [23] were cut from the same cloth. However, in

more recent years, RPG design trends have changed to emphasize games with smaller,

more abstract rule systems which primarily value player improvisation and collabora-

tive storytelling, or which deliberately constrain game content to that which fits within

specific fictional genres. In other words, the RPG ecosystem has refocused on elicit-

ing the uniquely human behavior of spontaneous creativity. Meanwhile, complex rule

1

systems reminiscent of earlier RPGs are increasingly found only in videogames, which

take advantage of computers’ perfect suitability for storing detailed game worlds and

consistently applying nuanced rules.

On the other hand, by being implemented inside a computer, a given videogame

offers a fixed range of play experiences. Videogames can use procedural generation to

create an enormous variety of in-game content, but only within predetermined domains,

such as vehicles or guns; furthermore, even theoretically-endless content can start to feel

bland over time. A weapon subsystem in a first-person shooter (FPS) which can generate

a trillion different guns will hardly improve a player’s experience if he or she can’t

perceive meaningful variation in the generator’s last hundred results1. Furthermore,

games are generally limited to the content and gameplay that they ship with, and while

nowadays, while games can be updated after release with patches and expansions, the

time required to ship updates to a game is measured in weeks, at best.

By contrast, because most RPGs’ core game loop involves players issuing com-

mands to a human Game Master (GM), the scope of an RPG is negotiable and ex-

pansible even while it is being played. The GM, being intimately involved in play and

tasked with serving the players, is empowered to alter game rules or the game setting

as needed to accommodate player desires and actions. These alterations are typically

made in a matter of seconds. Under this arrangement, no aspect of the game need be

totally immutable, and the game system can sprout countless details and refinements

just as they are needed. The only limit to this process of organic growth is the feasibility

1Kate Compton aptly refers to this as the “10,000 Bowls of Oatmeal” problem [27].

2

of employing human brains and analog tools to manage game rules and game state.

Feasibility may be the only limit on RPG scope, but it’s a tricky limit to over-

come; the difficulty of accurately playing by earlier RPGs’ rule systems is probably a

key reason for the turn toward less complex games. However, fifteen years of devotion

to Game Mastering has taught me that complexity engenders gameplay with valuable

characteristics which more abstract games lack2. Thus, I believe that it is worth pre-

serving and advancing the art of designing complex RPGs, even though they require

extra effort to create and play. The time seems ripe to reinvigorate an earlier culture

of RPGs with complex rules, by introducing computers as a central, indispensable sup-

port system for play. Such integration has the potential to blend the best aspects of

RPGs and videogames into something new: a “hybrid” system that takes advantage

of what humans do best and what computers do best. The successes of projects that

hybridize simulation and performance, such as Bad News [140], have shown that such

combinations can be uniquely compelling.

This thesis explores answers to several research questions. For the purposes

of this introduction, the research questions can be understood as follows;

their canonical forms will be given in more precise terms later3.

1. How can one design and implement software which processes complex rules, like a

videogame, but which permits runtime alterations to those rules, like in traditional

RPG play? If both of these goals cannot be achieved simultaneously, what trade-

2I discuss those characteristics and argue for their value in Chapter 2.
3See Section 2.9.

3

offs can be made to achieve one at the expense of the other, and how should we

value each quality when making those trade-offs?

2. How can software support the GM in doing game design; support the players in

developing plans and goals for their characters; and support all participants in

comprehending game rules and game state?

3. What new frontiers in RPG design can be reached when computers, having been

made essential for gameplay management, allow game system creators to surpass

the complexity ceiling imposed by human limitations?

No small number of hybrid systems have been built in academia and in indus-

try, for RPG purposes and otherwise. But these systems vary along multiple axes, and

the multidimensional design space implied by those axes contains countless hypothetical

systems which have not yet been built. The central research contribution of this thesis is

the design, implementation, and analysis of ROLEPLAYINGGAME4, a prototype

hybrid system from an under-explored area of that space. The results comprise a ver-

tical slice of client and server functionality offering proof-of-concept support for novel

features, including on-the-fly, persistent modification of both a game system and a game

world governed by that system. ROLEPLAYINGGAME enables users to suspend the

evaluation of existing game rule; create new rules; expand game-world taxonomies; cre-

ate, remove, relocate, and equip game entities; expose information to only those players

whose characters possess certain attributes; and efficiently search and filter character

4RPG Operation, Learning, and Execution Platform Laden with Advantages for Yielding Infinitely
Nitty-Gritty Games that Allow Malleable Evolution.

4

equipment5. It also provides dynamic GUI feedback on a user’s available commands; the

targets available for a chosen command; and the current status of character attributes

like location, stats, and equipment.

The rest of this thesis is structured as follows:

In Chapter 2, I explain two game-design principles which I follow while de-

veloping and GMing my RPG, and which produce a game containing an aesthetic of

self-reliance which I want my players to experience. I give a novel account of mal-

leability, a unique and central quality of the RPG medium, and discuss its critical role

in supporting my design principles. Thereafter, I propose a method for quantitatively

analyzing the complexity of a game system, and argue that increases in a system’s com-

plexity (as measured by that method) will engender qualities of my desired experience

in gaming done under that system.

Armed with definitions of complexity and malleability, and arguments for the

desirability of each, I discuss difficulties that arise when playing complex and malleable

RPGs. I propose integrating computers with traditional RPGs in a novel fashion which

surmounts those difficulties, creating a new form of game that inherits both the mal-

leability of traditional RPGs and the complexity of videogames. I finish with revised

versions of the research questions from page 4.

In Chapter 3, I review commercial and academic projects which blend com-

puter mediation, human judgment, and sandbox play in varying proportions. Prior

5An example of “expanding a taxonomy” would be adding a new race of creatures, which can
immediately be used to generate player- or non-player characters. The word “taxonomy” has a particular
definition here, which will be covered under Section 2.3.

5

art in this area spans multiple decades, and includes everything from player-editable

videogames, to user studies of RPG participants, to academic work involving custom

hardware, to the broad categories of virtual tabletops and RPG support software.

In Chapter 4, I analyze the areas of the hybrid-system design space covered

by prior work. I show that existing hybrid systems’ focus on certain game designs and

play styles have left them ill-suited to capturing the particular flavor of high-complexity

game designs which I work on. I establish several characteristics which would make a

hypothetical hybrid system more suitable for designing or playing high-complexity game

systems.

In Chapter 5, I detail the design and implementation of the ROLEPLAY-

INGGAME software system, explain its affordances and capabilities, and demonstrate

that it possesses characteristics established in the previous chapter as necessary for

supporting high-complexity RPGs.

In Chapter 6, I describe a pilot study in which I conducted interviews to

solicit Game Masters’ feedback about ROLEPLAYINGGAME and related topics. I

analyze the interview transcripts for recurring topics, surprising insights, and actionable

critiques.

In Chapter 7, I assess the successes and shortcomings of ROLEPLAYINGGAME

with regard to answering the research questions of the thesis. I then lay out plans for

my future development of ROLEPLAYINGGAME, as well as future exploration of this

research area by other scholars. Finally, I summarize the thesis’s contributions to the

academic literature.

6

Chapter 2

Background and Motivation

As one author put it some fifteen years ago, the theory of RPGs “has reached a

basic level of academic acceptance, but exists in a state of chaos” ([58], quoted in [128].)

My own research experience leads me to believe this is largely still true. Therefore, to

make some of this chapter’s points about RPG design and GMing, I cannot help but

draw on my own design and play practices, as some of these ideas seem to have few or

no antecedents in academic or popular literature. Despite this, please be assured that

this is not an artist’s subjective treatise, and that the technical contribution described

in Chapter 5 has something to offer even for an RPG practitioner whose game-design

style dramatically differs from mine.

In this chapter, I explain the guiding principles which shape how I design and

GM my RPG to produce certain experiences for my players. I give a novel account of

malleability, a quality of RPGs which allows them to change over time, and which distin-

guishes them from nearly all other games. I then propose a novel taxonomic framework

7

for game system elements which permits quantitative analysis of a system’s complex-

ity. I use that method’s terminology while arguing that increases to a game system’s

complexity will engender, in the player’s experience of that system, qualities which are

desirable for my design principles. Thereafter, I discuss difficulties that arise when play-

ing complex and malleable RPGs, and which seem to have contributed to a turn away

from complexity in RPG design. I propose that said difficulties could be overcome by

implementing RPGs as programs, in a fashion which retains their malleability (unlike

videogames and other digital RPG systems.) I conclude with definitive versions of the

research questions posed on page 4.

2.1 The Basics of RPG Play

I assume that the reader has some familiarity with RPGs, so I’ll give only a

brief description of play1. A group of RPG participants consists of multiple players and

one Game Master (GM). Each player controls a player character (PC) as her avatar in

the game world2. The PCs work as a team to establish and pursue goals. The Game

Master does not control a PC; instead, he fills multiple roles related to defining the

game and keeping it running. I characterize the GM’s roles as follows:

• Designer — The GM establishes the rules of the game system and the contents

1This description of play is rooted in the classic gameplay conventions ofD&D, which best matches my
style of GMing. Many other RPGs have experimented with different core gameplay loops and different
distributions of power between players and the GM. Some of these are covered in Subsection 2.8.2 and
Subsection 2.8.3.

2I use “he” throughout to refer to the GM, and usually use “she” to refer to any individual players.
This avoids ambiguities arising from attempting to use “they” for both the party (a group) and particular
players or the GM (individuals.) This usage is emphatically not a statement or assumption about the
actual genders of RPG enthusiasts.

8

of the game world. He uses his taste and game-design skills to continually expand

and refine the rules and the world3. While the GM is the ultimate authority over

the game’s system and setting, he is well-advised to consider players’ opinions on

potential changes.

• Coach—The GM introduces new players to the rules of the game, and continually

answers all players’ questions, especially when they apply to the party’s current

situation.

• Executor — The GM correctly, completely, and impartially applies all rules of

the game system, taking into account all relevant facts about the world.

• Describer — The GM presents the game world as perceived by the PCs, using

a judicious mix of improvised theatrics and straightforward explanations.

• Moderator — The GM intervenes to restore order if a conflict or disagreement

amongst the players grows too heated.

An RPG’s core game loop proceeds as follows: the GM describes the PCs’

surroundings and what they can perceive. The players deliberate amongst themselves

and ask questions of the GM, then declare what actions they want to take as the PCs.

The GM describes how the world changes as a result, and the changed world is used as

the “next” set of surroundings. If players never deliberated or asked questions, gameplay

3Some common goals for this expansion and refinement include inciting particular player behaviors,
placing foes and obstacles to test the players’ wits and courage, establishing new rules for future resolu-
tion of a scenario that unexpectedly arose during play, or offering players the chance to engage in new
in-game activities.

9

could be summarized as an endless cycle through roughly these steps:

1. GM: “You see X. What do you do?”

2. Players: “We do Y.”

3. GM: “Z happens.”

2.2 Two Gameplay Principles

As a GM, I provide a game which offers players the chance to earn a particular

kind of satisfaction for themselves. The aesthetic, experiential qualities of my game

stem from two key principles I follow both while designing my game system, and while

making rulings on the fly during live game sessions4. The two principles combine into a

style I call “zero-ego GMing.” I am willing to let the players pursue any course of action

as they see fit. I guarantee that as we game out that course of action, we will follow

logical procedures that are, to the greatest extent possible, worked out in advance. And

I will never cheat the players by rejecting the results of the dice.

In one sentence, zero-ego GMing places player-driven action above all else,

without diminishing the GM’s dual roles of worldbuilding auteur and impartial executor.

The player in a zero-ego game must find it within herself to be a builder and a creator.

The zero-ego GM must care deeply about the game system and the game world. Yet,

4Because I’m treating these principles as idiosyncratic design goals, I don’t feel the need to defend
them at length. In particular, this thesis contains no discussion of the precise kind of agency that the
principles are meant to foster. That said, there’s a substantial body of academic writing about theories
of agency in videogames, and much of that might be applicable to defending these principles or making
them more nuanced.

10

in a seeming paradox, he must not care at all what the players do with the system’s

rules, in the system’s world. In its best moments, zero-ego GMing produces gameplay

that appeals to something deeper than merely having fun. This kind of gaming asks the

players to try imposing their will on the GM’s world. It encourages them to be clever,

confident, and cooperative. And, in stark contrast to real life, it offers everyone a fair

playing field, and the promise that victories, once earned, are for keeps.

2.2.1 Principle 1

Players should be totally free to choose what course of action to pursue.

The GM must not mandate what players are to do in the game. Players set

their own goals as a team. They are free to modify or abandon these goals, and attempt

to achieve them through any methods that fit within the existing rules and world; they

are also free to argue, within reason, that the rules should function differently. The

game is “about” whatever the players want it to be about. I will happily run a game

where the players try to become corsairs, found an orphanage, murder innocent men

and women, construct a stone tower, research magic, travel to distant lands, or dig an

enormous hole. They could try all those things, if they wanted.

2.2.2 Principle 2

The game mechanics are predictable,

but the game world must be discovered.

11

The game system’s prescriptions must be followed at all times by all partici-

pants, including the GM. To confidently set goals or make plans — to strive to reshape

the game world as they see fit — the players must trust that the GM, and the world

he presents, will follow the established rules. However, the world that operates by

those rules can contain countless unforeseen elements, which the players can only gain

knowledge of by playing, and playing well.

Consider this analogy. When you drive your car, you want the steering wheel,

the tires, the windshield wipers, the blinkers, the headlights, the seatbelts, the accelera-

tor, and all the other parts of the vehicle to function as they should. A part’s failure to

perform as expected degrades your ability to operate the car within predictable bounds,

which may have severe negative consequences — because, even if the car is perfectly

predictable, the environment in which you drive the car is not.

You can never know all the road conditions in advance. Will there be traffic?

Will a child run into the street? Will construction block your usual route to work?

You want your car to be predictable, because roads are unpredictable. You want to

eliminate the sources of error or accident that you can control, because there are some

that you can’t.

In my style of RPG, the game system is the players’ car, and the game world

is the road. The players deserve to know exactly how the game mechanics function

at all times. However, the GM has free reign to make the game world uncertain and

unknown, filling it with obstacles the players must assess and overcome to reach their

goals. Finally, although Principle 1 is absolute, Principle 2 must admit of a few practical

12

exceptions. Describing those exceptions in Section 2.4 will first require classifying the

components of an RPG system, which is the subject of the next section.

2.3 Rules and Facts

For the purposes of this thesis, I consider each element of an RPG system to

be one of three things: a rule, a taxonomic fact, or a substantive fact. This section

defines those terms. I use the analytical lens of rules and facts throughout this thesis,

especially in this chapter. Section 2.4 relies on the definitions of rules and facts to

illustrate a tension between my design principles and the act of GMing (which in turn

demonstrates why a player must trust her GM, and how a GM can, in part, build that

trust by adhering to my design principles.) My discussion in Section 2.5 of the inherent

mutability of RPG worlds and systems also requires having previously established defi-

nitions for rules and facts. Most importantly, Section 2.6 proposes rule- and fact-based

metrics for quantifying an RPG system’s complexity, then uses those metrics to argue

that increasing a game system’s complexity will improve its potential to structurally

endow gameplay with desirable properties, such as emergence and tension. Said metrics

are referred to extensively throughout the rest of the thesis.

2.3.1 Definitions

Rules are procedures delineating how the game world can change over time

(such as through player action), and how the effects of such changes are to be calculated.

13

I refer to the result of following a rule as its outcome5. In a typical game system, the

bulk of the rules govern the actions the PCs can take, and when those actions can

be taken. Examples include how the attack action is resolved, how poisons affect a

character, methods of manufacturing magic items, how long it takes to put on armor,

and how frequently new equipment will be available for purchase at a market.

Facts, or declarations about the world, fall into two subcategories. The first

of these is taxonomic facts. These collectively describe the vocabulary of conceptual

objects which are the fundamental, discrete ingredients of the game system. Taxonomic

facts also declare key-value attributes possessed by conceptual objects, and the ranges

of values which attributes may take on. The above examples of rules made reference

to actions, attacks, poisons, characters, magic items, armor, equipment, and markets;

these keywords, and the details of each, would all be defined by taxonomic facts. When

analyzing a game system, taxonomic facts must be defined first, since they establish the

terms used when defining rules and declaring substantive facts. For convenience, I refer

to the whole collection of a game system’s taxonomic facts as that system’s domain

model.

The second fact subcategory is substantive facts. These declare the actual

details of the game world content classified by taxonomic facts. Representative substan-

tive facts include the name of the planet on which the game takes place, the existence of

a kingdom on that planet, the extent of the kingdom’s lands, the name of its monarch,

5An outcome might be anything, such as a change in game state, a decision about whether a certain
action is allowed, a Boolean value, or a number. Since both facts and rules vary so widely between game
systems, a precise analysis or taxonomy of rule outcomes is beyond the scope of this thesis.

14

the monarch’s current and maximum hit points, the trade goods the kingdom produces,

key events in the kingdom’s history, and so on. Note that while a given game session

might not lead to the introduction of new rules or taxonomic facts, it is guaranteed

to produce new substantive facts, firstly because many rule outcomes will prescribe

alterations to substantive facts, and secondly because a GM can hardly avoid either de-

scribing new pieces of game world content, or updates to existing content6. Substantive

facts also represent the current values of all the entity attributes declared by taxonomic

facts.

Proposing that game world content is part of the overall game system may

seem strange, but I think it’s reasonable. First, I’m not the only one to think that a

setting should be part of a system, because there are game systems which include the

details of a preordained game setting that is assumed for play: Pendragon [154] is an

especially good example7. Second, although there are also game systems8 intended for

generic use with a variety of game worlds — which include lots of rules and taxonomic

facts but no substantive facts — the quantity and distribution of substantive facts

which a GM uses to flesh out his world will be just as consequential to a player as the

rules and taxonomic facts are. If the reader and I were to GM for the same group of

players, using the same generic game system with different homebrew game worlds, our

6For more on how and when such updates take place, see Section 2.5.
7On the one hand, published game systems can’t possibly address every detail about a game world, so

the GM is still free to fill in the gaps as he sees fit, or reject some or all of the substantive facts included
in the game system. On the other hand, while it would be easy to customize the premade setting of
Blades in the Dark [56] (which is deliberately described in broad strokes to allow wide latitude for GM
creativity), it would take quite a bit more work to do the same with Pendragon, which is narrowly
focused on gamifying the experience of being a knight in Arthurian Britain.

8Examples include D&D, GURPS [70], and Savage Worlds [61].

15

players would be justified in making different judgments about what actions might be

considered prudent or foolish, and what plans they ought to make. For these reasons, I

believe that the term “game system” should be taken to include the game world — and

that what I called generic systems above are, in my terms, not complete systems at all,

but rather chassis waiting to be fitted with a world.

2.3.2 Precursors to Rules and Facts

The terms “rule” and “fact” in this thesis are not wholly my invention. First,

the basic sense of how I use those terms is borrowed from their usage in logic pro-

gramming9, in which facts are propositions, and rules define valid inferences that can

be drawn on the basis of those propositions. Second, Richard Bartle’s How to Be a

God [11] — a technical and philosophical treatise on the design of “realities” (MMO

game worlds) — includes much discussion of “physics,” or the rules by which a (game)

world operates. Bartle proposes a tripartite analysis of the functionality of a world’s

physics, and the categories of his analysis resemble my division between game system

rules, taxonomic facts, and substantive facts:

A reality isn’t a free-for-all space where anything goes: each one adheres

to a set of physical rules individual to it that define its characteristics.

Collectively, these characteristics are a reality’s nature. The rules them-

selves are its physics. ... The physics of a reality affects its nature in three

ways:

9Thanks to Michael Mateas for suggesting I employ these terms.

16

1. It determines what the components of the reality are. Everything

in Reality is either matter, energy or (quite possibly) both. [= taxo-

nomic facts]

2. It manifests these components in an ongoing configuration. The

atoms in Reality that comprise your body were doing other things

a thousand years ago. [= substantive facts]

3. It determines how the current configuration is transformed to give

a new configuration. In Reality, gravity encourages objects to move

towards each other, meaning their positions tend to change dynami-

cally. [= rules]

The consequences of a reality’s physics are the nature of that

reality. Gods of a reality have power over its nature, so that’s equivalent

to saying they have power over its physics. What, then, in practice, can

they do?

Well, a god of a reality has the ability to change any and all

aspects of physics for that reality. If you were the god of a reality made up

of bottles of soda water, you could decide to allow it also to contain ping-

pong balls. If you were the god of a reality made up of sounds, you could

spontaneously create (or, if your composition skills aren’t great, recreate)

a symphony within it. If you were the god of a reality with colours, you

17

could make their saturation automatically cycle every Sunday.

The non-god inhabitants of a reality can perform none of these

activities. They can make changes to the reality’s configuration if its

physics allows them to do so, but they can’t change the physics itself.

— Bartle [11], p. 9–11

2.3.3 Analyzing Chess in Terms of Rules and Facts

The following rules-and-facts analysis of chess should be enough to illustrate

how to begin doing the same for a game system with much higher complexity, such as

an RPG.

Beginning with taxonomic facts, “pieces” and “the chessboard” would be con-

ceptual objects. “Squares” of the chessboard ought to be their own individual conceptual

objects as well (albeit ones that can only exist relative to a specific chessboard.) I’ll

also include the “turn” as a conceptual object, not least because the en passant captur-

ing rule for pawns only applies if a particular board state was reached exactly on the

previous turn, through a particular move. Finally, not wanting to assume anything, I

will include “player” as a conceptual object, too.

Pieces would have a “color” attribute, with a value of either “white” or “black,”

and a “type” attribute, such as “pawn” or “rook.” The chessboard might have one

attribute per square, or a “squares” attribute naming a two-dimensional array of squares;

the difference is immaterial here. Squares themselves would have a “color” attribute.

Turns have the attributes “player” (whose turn it is), “piece,” and “move.”

18

As for substantive facts, since a chessboard resets after each round10, it seems

defensible to call each round of chess a self-contained game world. Each new turn taken

by a player can be thought of as appending to a list of turns which is part of the

substantive facts. The current state of the chessboard is also a set of substantive facts,

with one fact per square indicating whether that square is empty or occupied, and if so,

by what.

Finally, there are rules. One rule would describe the procedure for placing a

piece of a given color onto a fresh board at the beginning of the round. Another, higher-

level rule would stipulate that beginning a round requires following the aforementioned

procedure until all pieces are placed onto the board. There would be a rule or rules for

how each piece can move, and others about capturing, capturing en passant, castling,

promotion, being in check, verbally declaring “check,” checkmate, draws, and so on.

There would also be rules about how many pieces can be moved per turn, whether or

not a player can take back a turn, and whether a turn must be made within a time

limit, as in competitive chess.

2.4 Trusting the GM: Exceptions to Principle 2

Having established the terminology of rules and facts, I can now explain some

exceptions to the first half of Principle 2, which stipulates that the game system should

always be fully known to the players. I’ve identified two cases where it is acceptable to

10I use “round” here to indicate a game of chess because I want to avoid confusion with terms such
as “game system.”

19

keep the players in the dark about certain rules or facts. Both cases illustrate why it is

crucial that the players trust the GM if a game under the two principles is to function.

Given that I’ve previously claimed that following the principles will build the

players’ trust in their GM, it may seem paradoxical to say that player trust is required

for a game using those principles to operate. If the way to “bank” player trust is by

following Principle 2 in all situations other than the ones described below, yet trust is

required to play under the two principles, then how can a game ever get off the ground?

The solution to the paradox is to further stipulate players must, at least at first, trust

the GM on faith — without having yet seen whether he will uphold the principles11.

2.4.1 Exception #1: Hidden Procedures

The first exception to Principle 2 arises when rules or facts concern aspects of

the world that the players have not yet discovered for themselves. If the players haven’t

learned of certain world details, it’s up to the GM’s discretion whether they are entitled

to know how the game operates with regard to those details.

For example, suppose that my game world contains a secretive organization

called the Phoenix Guardians. Although it is common knowledge that Phoenix Guardians

possess esoteric magic formulas of great power, the party has never encountered a

Phoenix Guardian, and doesn’t know what they do, how their organization operates,

how to become one, or even how to find one.

As GM, I am not obligated to tell the players how to become Phoenix Guardians,

11In my experience, if a player distrusts her GM, it usually stems from having had her initial trust-
on-faith broken by the GM’s failures to follow the principles.

20

nor reveal any other knowledge about them, until such time as the players have earned

that knowledge through in-game actions. That said, I am obligated to have some idea

of how the Phoenix Guardians operate — what their secret magic does, how someone

becomes a Phoenix Guardian, etc. — and treat those concepts as facts and rules which

I conform to like any others. In other words, I need to pre-commit to rules or facts that

cannot yet be revealed to the players. If a verifiable guarantee of that commitment was

required, I could mail myself a letter and leave it unopened, or share with the players

an encrypted text file containing the pre-committed information.

In practice, I don’t need such technologically-backed guarantees, because I have

my players’ trust — a trust which I continually earn and renew by always respecting

established game rules and facts. Exception #1 to Principle 2 shows how the “pre-

dictable rules“ portion of Principle 2 earns the player trust that is required to operate

by the “unknown world” portion. A steadfast adherence to the first half of Principle 2

for all matters of which the players are aware will assure the players that the GM will

also adhere to it for matters of which they are not aware.

2.4.2 Exception #2: Allowances for Improvisation

The second exception to Principle 2 comes up when a rule includes a clause

that defers to improvisational GM decisions. I call such a clause an escape hatch: a

section of a rule that is deliberately designed to require the GM to make a judgment

call while resolving it. Allowing this exception makes it permissible to design bounded

ranges of unknowability in rules otherwise fully known to players, granting the GM

21

a measure of flexibility in handling circumstances that defy being detailed ahead of

time. Because escape hatches offer an explicit transition from procedural resolution to

case-by-case judgment, they exemplify game processes that “only humans can do,” as

mentioned on page 1.

For instance, RPG design guru Alexis Smolensk uses a rule which states that

if a character takes 15 or more damage in one hit, she also receives an injury [150].

All injuries have certain mechanical penalties in common, such as decreased movement

speed and absorbing a certain amount of healing (which would otherwise restore hit

points.) However, the injury rule also states that the GM can, and must, invent the

precise nature of the injury, because circumstances that can lead to 15 damage at once

are so varied that a random table would produce unsatisfying and illogical results. Fur-

thermore, when appropriate for the injury in question, the GM may impose additional

mechanical penalties beyond the standard ones. Both the invention of the injury and

the discretionary imposition of penalties are escape hatches.

Upholding the established rules and facts, and expanding the rules to cover as

many scenarios as possible, is how a GM gets players to trust him when their current

situation is altered by facts or rules of which they are unaware. Like Exception #1 to

Principle 2, Exception #2 needs player trust to function.

2.4.3 Consequences of the Exceptions

If a GM exercises goodwill, taste, and restraint while operating portions of the

game system unknown to players, or when employing the discretion afforded to him by

22

escape hatches, he will have no trouble in getting players to accept the ultimate escape

hatch: the GM’s prerogative to create or change rules and facts on the fly. A GM who

wishes to wield that ability to reshape the game on the fly must prove to his players

that he can be trusted. That ability, which is the key to RPG’s unparalleled potential

to provide endless gameplay in an ever-growing scope, is treated in detail in the next

section.

2.5 Malleability

As previously mentioned, a GM can extend and change an RPG at “runtime”

or “playtime,” i.e. as the game is being played. I call this quality malleability. I chose

my own term to describe the flexible and fluid nature of RPG systems because I’ve

been unable to find much treatment of this topic in the academic literature. The closest

antecedent I’ve found is from Richard Bartle [11], in a discussion of strategies for imple-

menting a world’s “physics12.” Though Bartle is talking about programming a computer

to represent a game world, his description of an “interpreted physics” (i.e. game system),

the third item below, bears a strong resemblance to how GMs can wield malleability13.

There are three main ways a virtual world’s physics can be so embodied:

1. Hard-coded. The physics of the virtual world’s reality never changes

and can be implemented directly in an efficient systems-programming

12See Section 2.3.
13Throughout this thesis, I will use “substantive malleability” as a shorthand for “malleability of/for

substantive facts;” the same goes for rules and taxonomic facts.

23

language. Only the current state of the reality needs to be stored as

data.

2. Soft-coded. The physics can’t itself be changed, but some of its prop-

erties can be. Gravity’s strength (represented as a number) could be

increased or reduced, or even made negative, but gravity will always

have the same functionality. It can’t be made to apply only to liquids,

for example.

3. Interpreted. The physics can be changed even while being applied.

The laws of physics are objects of the virtual world, and could them-

selves be subject to laws of physics if the designer so decided.

— Bartle [11], p. 70

Malleability is indispensable for upholding Principle 1 in my own game. Since

I invite my players to pursue any course of action they can think of, I have to be

prepared to create rules and facts that harmonize with existing rules, make sense within

the existing world, and satisfy players’ desires to know whether, and how, some new

plan might be achieved.

Judicious application of this GM ability is also essential for running a game

under Principle 2. A game system which is expanded to cover unforeseen circumstances

offers its participants increased predictability when those circumstances reoccur14. Ev-

14It’s acceptable for rules made on the fly to be minimal, and only treat details of the scenario that
gave rise to them. What’s important, for a game governed by my Principles 1 and 2, is that the GM
makes decisions in a jurisprudential manner — thereby also implicitly promising that, should the same
circumstances arise again, the newly-invented rules will be applied again. However, not every GM

24

ery time I make a new rule or fact, or (with a justification) alter the game system from

how it worked up until that moment, I am solidifying the player’s conception of how the

game world functions and of their place in it. This increases players’ confidence that I

will not accept or reject their chosen actions purely on a whim.

Even GMs who don’t subscribe to my principles constantly make use of mal-

leability. I’ve already covered the unavoidability of making changes to substantive facts

while a game is being played (Subsection 2.3.1.) Furthermore, the sentiment of “no

matter how much preparation I do, the players always do something I didn’t expect”

is so widely shared by GMs as to be a trope. An effective response to the unexpected

requires the GM to be able to swiftly decide on the unforeseen actions’ results (or create

a rule to determine them), then smoothly incorporate those results into the game world

in a logical manner. Both of those GM maneuvers exercise the quality of malleability.

Malleability is nearly unique to RPGs, but I’ve found a few examples of it

in other types of games. For instance, if a player of the card-based drinking game

King’s Cup draws a certain card, she is empowered to establish a new rule that will be

followed for the rest of the game by all players. A more elaborate example of malleability

outside RPGs can be found in the board game Nomic15. This game is noteworthy not

would agree that judgments about novel scenarios should become part of the ongoing game system.
Some GMs prefer to make one-off, situation-specific judgment calls with no promise of reuse, rather
than committing to establishing a new rule (however provisional.) GMing in this way is usually called
“rulings, not rules.” When a GM is totally uncertain about how a rule ought to be designed, and
wants to signal to players that they should not depend on a procedure working the same way in the
future, “rulings, not rules” is a reasonable move. However, GMing this way as a matter of course means
that GM responses to novel scenarios neither equip the players with more information to exploit, nor
improve the depth of the rule system (see Section 2.6) As such, following Principles 1 and 2, I avoid
one-off rulings. Rather, I accept that rules created by exercising malleability will always start off limited
and incomplete.

15The author of Nomic published the game’s rules as an appendix to a book [160], but it was first
described in the literature eight years earlier by Hofstadter [67], who had read the book in draft form.

25

Figure 2.1: A level from Baba Is You. In its current state, because one of the active
phrases is “FLAG IS WIN” (top right), the level can be won by touching the flag object
(center right.) If, for instance, the player moved the word “ROCK” (bottom right) to
where the word “FLAG” is now, forming the phrase “ROCK IS WIN”, then the game
rule for winning would change such that touching a rock object (center) would win the
level. Source: [60].

only because its rules exhibit near-total malleability, but also because Nomic gameplay

is about malleability and how best to employ it. Its rules lay out procedures for altering

the rules by voting, and play itself consists of artful jockeying to approve or deny

additional rules through that voting process16. Finally, the videogame Baba Is You [59]

uses a limited form of malleability as a player-facing game mechanic. To solve the

game’s puzzles, players activate or deactivate rules and alter facts by pushing objects

that represent verbs and game-world nouns into new configurations (Figure 2.1.)

Examples like these are very much the exception to the rule in non-RPG game

16An adaptation of Nomic is used to power the player-driven democratic legal system of A Tale in
the Desert, a long-running MMO [158] that is still active as of 2023.

26

design. On the other hand, in RPGs, malleability is ever-present, allowing the GM

to alter how the game functions, adapt to player activity, and increase the number of

possible scenarios the game system can address. It can be deployed at any time to

address shortcomings or flaws in the structure and function of the system.

The assumption of game system malleability, and the GM’s right to exercise

it, means that there are no hard limits on the scope or substance of an RPG’s gameplay.

An RPG system can always be adapted to make its existing gameplay more detailed,

or expand it with a new type of gameplay altogether. Virtually all other types of game

impose predefined limits on player actions, or the environment in which those actions

take place. RPGs need do neither, and one reason I believe strongly in Principle 1

is because it leans into this deep-seated and defining characteristic of the RPG as a

distinct medium.

2.5.1 An Example of Malleability

Suppose my game has rules for riding on horseback, but I have not yet gotten

around to creating rules for fighting on horseback. Further suppose that a player asks

me what would happen if she mounted her horse, rode at an enemy, and attacked with

a sword. I may not be able to create fully general or fully satisfying rules to govern

that scenario, but I must create some rules. Something as simple as “apply the charging

rules as if you were making a charge on foot, then add an attack bonus which scales

with your horse’s speed” would be enough to start.

By adding this nascent rule for horse combat, I have just expanded the range of

27

things a player can predict about the operation of the rules. They can strategize about

how best to deploy a horse charge, and how best to defend against enemies performing

such a charge against them. Most importantly, we didn’t have to stop playing to expand

the game system with this new content. An RPG’s scope of player activity can change

dynamically, and those scope changes often take almost no time or effort to enact.

By contrast, if the designers of the videogame Mount and Blade [38] had some-

how included horseback fighting mechanics for almost every weapon, but had run out

of time to do so for swords, they wouldn’t be able to fix it without doing some more

programming, adding new animations, and possibly altering the AI so that it knows

it can use swords on horseback. Finally, all that work can be released to players as a

patch.

Those tasks require considerable expenditures of time and effort, as do all

aspects of videogame development. Thus, videogames often have mechanics and scopes

of possible player activity very similar to previous games. As we will see in our later

survey of related work, adaptations of roleplaying games which substitute the computer

for a GM must sacrifice most or all malleability. Computer tools/assistants for human

GMs to run RPGs fare little better.

2.5.2 When Should the GM Exercise Malleability?

Consider how a car manufacturer designs next year’s model, then puts the car

through real and simulated stress tests. As the testing reveals defects in the design, the

manufacturer must try to understand why the defects have appeared, and then change

28

the design to remove them. Similarly, the GM must watch how his rules shape player

behavior, and adjust the rules if they are not having the desired effect. Determining

whether the rules are achieving what is desired is, naturally, only possible if the GM

has a philosophy of design that determines what desirability means.

The aforesaid rule adjustments must be done transparently and openly, with

good taste as a designer, and with respect for the players — who are voluntarily engaging

in a difficult hobby which is information-rich, collaborative, analytical, and imaginative;

and who have spent hours of play earning steadily more powerful characters. Thus, if

players have committed themselves to a mounted expedition on horseback, for the GM

to radically change the horseback riding rules would be a violation of Principle 2. He

should assume that the players understood and took into account the existing horseback

riding rules while making their plans.

Malleability is not carte blanche. The GM should at minimum put forth his

rationale for changing the rule, and hear arguments for or against. He is still the final

arbiter of the game’s design, but once the players have played for a while and invested

themselves in the GM’s game, they’ve at least earned the right to speak their minds,

with the assurance that the GM will listen.

29

2.6 Quantitative Characteristics of RPG Systems, and Their

Connections to the Gameplay Principles

In this section, I establish provisional metrics for measuring, in terms of rules

and facts, what I’ve previously called the “complexity” of an RPG system. To explain

why these metrics are meaningful, I then show how altering an RPG system to increase

these metrics can induce a desirable increase in the intensity of certain elements of the

player experience.

2.6.1 Fundamental Characteristics

In developing my design theory, I’ve identified three simple numeric charac-

teristics that quantify game system complexity: depth, connectedness, and granularity.

For convenience, throughout this thesis I refer to this trio of complexity metrics as

DCG.

Depth signifies the grand total of rules and facts which a game system de-

fines. It is the simplest and most important characteristic, as will be discussed in

Subsection 2.6.2.

The connectedness of a given rule signifies the count of its direct dependen-

cies on facts or other rules, as measured by the number of inputs required to determine

the rule’s outcome. For example, the rule for resolving the “attack” action in a system

like D&D depends on the stats, class, level, and current and maximum health of both

the attacker and the defender; the terrain on which each of them is standing; the at-

30

tacker’s armor, and the defender’s weapon; the attacker’s skill with her chosen weapon;

and miscellaneous buffs, debuffs, and special characteristics which either directly alter

the chance of a successful attack, or alter one of the other characteristics already men-

tioned. Assuming that each character has three stats relevant to the attack action, I

count 19 inputs (before considering buffs, debuffs, and special characteristics, which in

most game systems are myriad), giving this rule a connectedness of 19.

Finally, granularity signifies the number of distinct values that an element

of game state can take on. For instance, if game characters have an optional attribute

called “character class,” the granularity of that attribute is N + 1, with N being the

number of classes defined by the system (plus one for the case of not having a value for

that attribute, which is often the case for NPCs.) Taxonomic facts directly influence

granularity because they establish the set of acceptable values for each attribute an

in-game entity can possess.

2.6.2 The Relative Importance of the Fundamental Characteristics

Of the three fundamental characteristics, depth is king. A rule creates rela-

tionships between inputs and outcomes, and a fact declares details about a game world.

Without a healthy stock of both, there’s nothing to play.

Connectedness has an influence on how players subjectively experience game-

play, because changes to this characteristic alter the difficulty of comprehending the

game world and game system (see Subsection 2.6.5.) However, without rules (i.e. depth),

there are no rule inputs with which to measure connectedness. Furthermore, although

31

a game system with low connectedness will lack its drivers of game difficulty, a game’s

design can make up for that by requiring players to manage a large number of discrete

rule subsystems.

Granularity is, in isolation, the least necessary of the three fundamental char-

acteristics17. A GM can run perfectly good RPG sessions with a system in which

game-entity attributes have little or no granularity. Suppose that all PCs and NPCs

are warriors; the only weapons are sticks (dealing moderate melee damage) and stones

(dealing low damage in melee or at range); and the setting consists entirely of a square

plain 10 miles on a side, dotted with deposits of power-up crystals that improve a

character when consumed.

The limitations of this game world, especially its physical geography, would

hamper the longevity of such a game, but I could certainly run at least a year of

weekly gameplay sessions with it18. Given procedural rules for attacking, sneaking,

befriending and angering NPCs, extracting crystals, and building earthworks and other

fortifications, the players could create and pursue numerous goals. Further possibilities

would arise as I established answers (i.e. rules and facts) for questions that immediately

spring to mind (e.g. “How quickly do crystals grow? Do new deposits occasionally form?

How long has this bizarre area existed? How many NPCs are here besides the PCs, and

how long have they been here? What are those NPCs’ personalities?”)

17The next two sections will show how granularity and depth, taken together, allow the derivation of
two additional characteristics with vital importance to games run by Principles 1 and 2.

18It’s no coincidence that this simplistic world resembles the setup for a war game. D&D did, after all,
grow out of its creators’ decision to play iterative war games where units that survived battles increased
in power for subsequent ones.

32

The players’ tastes, and their assessments of this world as it evolves, would lead

to the emergence of behavioral patterns. They would decide whether to fight, retreat,

hide, spy, infiltrate, use guerilla tactics, bargain, broker alliances, betray friends, or

launch good old-fashioned frontal assaults. No granularity necessary.

2.6.3 Depth and Granularity Create Coverage

Coverage denotes the number of possible game scenarios that can be resolved

using a particular game system. For the purposes of this thesis, a scenario is a tuple

(S,L), where S is a game state, and L is an action that a character wants to perform

which is allowed in S. For a game running under Principles 1 and 2, higher coverage

is desirable: it means players can make more predictions about what will happen if

they get themselves into a situation with such-and-such characteristics. In an open-

ended or “sandbox” game (such as Principle 1 dictates), the total number of possible

game scenarios is infinite. No matter how many scenarios you enumerate, you could

add another by taking a previously-counted one and tweaking the position of a single

character, item, or other element of the game world. Luckily, the infinitude of possible

scenarios is not a problem for considering how DCG contributes to coverage.

An increase in depth which expands a game system with additional actions

will increase the number of scenarios which are possible under that system. Increases in

granularity add additional ways to “tweak” a scenario, as mentioned above19. Therefore,

19For instance, suppose that the taxonomic facts of a game system declare that there are five possible
kinds of magic potion. When a sixth kind of potion is added, then, to any set of five imaginable scenarios
which differ only in which original potion is present, one can add a sixth scenario containing the new
kind of potion. And that’s just the simplest case. Consider a scenario in which a character declares

33

if some system X has higher degrees of depth and granularity than some system Y, then

X will generally have higher coverage than Y.

2.6.4 Depth Creates Breadth

Breadth is the potential for emergence in gameplay, as game events unfold

in unexpected ways. If W is a game world state, then the breadth of that state equals

the branching factor of W , denoted B(W). B(W) is the number of possible states

W ′
1,W

′
2, . . .W

′
N that can be reached from W through the application of game rules. In

theory, one could measure the breadth of a whole game system by averaging the branch-

ing factors of all possible game states. In practice, as with coverage, the calculation of

the true breadth of a game rules system is infeasible — but, also as with coverage, I have

no need for a precise accounting of a system’s breadth. It’s enough for my purposes to

demonstrate that increases to DCG will also increase breadth.

Breadth increases with depth: higher depth means more applicable game rules

for any given state, and thus more possible transitions out of that state. For a game

run according to Principle 2, higher breadth is desirable for a designer because it has

the effect of increasing the unpredictability of the world. That unpredictability is itself

desirable because it drives the players to seek control over their surroundings — which

they can best pursue by exercising organization, clear thinking, tactics, and creativity;

cleverly wielding their character strengths and capabilities; and building up mastery of

she’s drinking a potion while her inventory contains three of them. Choosing each potential potion at
random with replacement, and with order not mattering, there are 35 possible combinations before the
taxonomy update, and 56 possible combinations after it. The update added 21 new scenarios.

34

the game system and its implications.

2.6.5 Connectedness Creates Immersion and Difficulty

I’ve shown how increased coverage improves players’ ability to understand how

the game system will function for them while engaging with the game world on their own

terms, which accords with Principle 1 and the first half of Principle 2. I’ve also shown

how increased breadth accords with the second half of Principle 2, by enlarging the

space of unknown or unpredictable situations in which the players can find themselves.

The two derived characteristics above made no mention of connectedness, but

the final member of the DCG trio has important effects on the feel of gameplay all on

its own. When it matters whether you attack with a sword or a laser, whether your

opponent is wearing armor, how fast you can move, where your allies are positioned, or

whether your stomach agreed with what you ate for breakfast — then, if you wish to

play well, and succeed at your aims, you will pay attention to each of those factors as

closely as you are able. This goes hand-in-hand with Principle 2.

If the players want to succeed at the goals they have set, and the game rules

are highly connected, then developing a plan to reach some goal will require the players

to consider numerous input factors. As the average connectedness of the game system’s

rules increases, the players will run up against limits on how well they can assess every

input factor, forcing them to make hard choices. “Engage with this area of the world,

or ignore it? Attempt to influence these strange creatures, or stay out of their way?

Doggedly pursue an elusive enemy, or accept that he’s escaped?” Debating answers to

35

questions like these is the essence of planning toward a goal, and high connectedness

increases the effort required to carefully consider such questions — while simultaneously

eroding the attraction of analysis paralysis by ensuring that exhaustive exploration of

all options is too costly in real-world and in-game time to be feasible.

2.6.6 Immersion and Difficulty Create Tension

A further consequence of designing an RPG system with high DCG is the

infusion of practically every player decision with some potential for emotional tension.

For instance, suppose that the party has been fighting a pitched battle. A

PC who primarily uses a bow for combat has been firing steadily. When an enemy

charges her, the player realizes she is down to her last arrow. At this moment, emotions

will run high for the whole gaming group, because it is easy for all participants to

comprehend the stark facts of the character’s desperate situation, and imagine the

potential consequences of making a poor choice.

I contend that a game which does not require the players to explicitly track

pieces of ammunition cannot produce the specific flavor of tension which the players in

this example would experience. A game which abstracts away ammunition management

with a rule like “after every shot, roll d20. If you get a 1, next time roll d12 . . . once

it’s a d4, if you get a 1, you’re out of arrows,” has far less potential to create a wide

spectrum of subtly-varied emotions in the players. Numerous rules and facts (D), high

interdependence between rules and facts (C), and high variability of facts (G) combine to

give high-DCG RPG systems a richly textured expressive range. Or, from an alternate

36

perspective, a high-DCG RPG system constitutes an enormously fecund procedural

content generator20.

2.7 The Perils of High DCG, and the Promise of Comput-

ers

2.7.1 Increases to DCG Run Into Human Limitations

High depth means more rules to remember and apply. High connectedness

means more processing-time overhead in the application of a given rule. High granularity

means more choices per attribute. Each of us has limits on the size of his working

memory, the length of his attention span, his capacity for repeatedly making difficult

analytical choices, and his reserves of energy. These human factors must impose some

upper bound on what quantities of DCG are feasible.

As a game’s DCG increases, it becomes harder for players to play. And a given

increase in difficulty for the players corresponds to an even larger increase in difficulty

for the GM, given the much wider scope of his roles, and given the fact that any decision

that players have to make on the behalf of PCs is a decision that the GM will have to

make many more times on the behalf of NPCs. Higher difficulty for players and for

the GM also means that the game can take longer to play, necessitating longer play

sessions, an acceptance that less ground will be covered per session, or more vigorous

20For more on the notion of considering RPGs as procedural content generators, see [54]. It might
also be profitable to consider the output of RPG rules to be the space of player emotions and behavior
they induce, rather than the space of game states they can represent.

37

efforts (primarily by the GM) to commit the rules to memory.

Finally, there are areas of game rule design space which would be infeasible

to include in a game, no matter how quick-witted the GM or how patient the players.

A rule with a connectedness of 1,000 input factors is unlikely to be employed at any

gaming table, no matter how satisfying its effects on player behavior.

2.7.2 Computer Augmentation

Enter computers. They have functionally infinite storage capacity, and a per-

fect recall of whatever they store. They can calculate on large numbers of operands

at speeds millions of times faster than a human. And they are tirelessly indifferent to

the number of inputs or manipulations needed to perform a calculation. With these

characteristics, computers could be used to massively raise the upper bound on DCG

which human factors would otherwise impose.

Some kinds of general-purpose productivity software are readily applicable to

expanding the limits of RPGs. Wikis can be used to create a hypertext rulebook with

infinite pages, freeing game designers from the need to limit the depth of a game system

just so that it can fit into a hard-copy book. Spreadsheets can be used to implement

custom forms for evaluating rules with high connectedness and granularity, with a user-

editable field for each input factor, and dropdown lists, data validation procedures, or

simple textual reminders to ensure that what the user enters is an appropriate value for

the input in question.

But those are just RPG-specific applications of two widespread and flexible

38

pre-existing types of software. Now imagine a purpose-built RPG app, which allows

for creating, editing, and examining all rules and facts. Such a system would offer

interactive interfaces that reduce the mental decision-making load imposed by games

with high DCG, and would support malleability in a way that typical computer games

simply cannot. Such software could do more than improve our RPGs; it could transform

our play experiences and the expectations we have for them.

The punchline here is that I and others have already built custom computer

tools to enhance our games. For instance, Alexis Smolensk [149] has created a economic

simulator system which establishes raw material production quantities for all the areas

in his game world, determines a price per unit for each material, and then combines

those raw material prices into calculations for hundreds and hundreds player-purchasable

trade goods, in such a way that the prices of all items will be different when purchased

at different settlements.

I’ve built my own version of such an system, following in Smolensk’s footsteps,

and it’s made a drastic increase to the quality of my game. The system spurs players to

take into account the geography of the game world and the relative local prevalence of

certain manufactures and industries when equipping their PCs, or members of the PCs’

retinue. This in turn drives them to set goals such as traveling to distant lands with

exotic resources, targeting NPC merchant caravans for heist operations, attempting to

engage (legally or illegally) in profitable business dealings, and seeking out locations in

the world which have yet to be exploited for their material resources. In other words,

with this computer program fulfilling the “predictable system” aspect of Principle 2,

39

the players are emboldened, and more thoroughly embrace the freedoms of Principle 1.

None of this would be feasible if I didn’t have a software system capable of

doing millions of calculations. Crucially, the system runs so quickly that it can still

support malleability: if a player asks to buy an item which doesn’t already exist on

the equipment table, it’s the work of a minute or two to program it in and rebuild the

system with the new item available.

My goal in describing this system to the reader is not to claim that computationally-

assisted gaming will allow for a more “objective” game with no room for a GM’s judg-

ment. As long as RPGs admit of malleability, there will always be a need for GM

judgment to create necessary rules and facts on the spot. I bring up the trade system

and its effects on my home campaign as a case study. I consider it evidence that if a

GM implements a game subsystem as an external artifact, and commits to obeying that

artifact’s results, his players will come to trust that what the artifact says, goes. This

is true whether the artifact is a set of dice or a computer program — but one of those

tools can lend far more horsepower to my quest to transcend human limitations.

40

2.8 Why Aren’t Computer-Augmented RPGs

Already Widespread?

2.8.1 Mainstream Game Design Space is Constrained by Commercial

Realities and User Reluctance

RPGs have traditional tools for managing certain aspects of gameplay. The

most common ones are maps, dice, and pencil and paper. Each game uses these tools

differently, if at all, but we can generalize away from individual games by characterizing

what each tool offers to the game designer.

A map is a physical tool for understanding a physical environment and track-

ing precise positioning within that environment. The existence of a map affords the

inclusion, in a game’s design, of rules which take precise positioning as input. One

frequently-used type of map is a battle map, which portrays a location at a scale small

enough to support tactical combat rules.

Dice are a tool for random number generation (RNG.) RNG affords the design

of rules that give a known range of results, but where the result of a single application

of the rule is unknowable until runtime. Other RNG tools include spinners, drawing

from a shuffled deck of cards, and drawing from a box full of labeled chits (a particularly

old-school method predating widespread availability of plastic dice.)

Pencil and paper together form a tool for storage and recall of arbitrary game

state; this affords the design of rules which take various aspects of the current state

of the game as input, i.e. which have some measure of connectedness. Even more

41

importantly, pencil and paper can be used to write21, which means that they can be

used to “implement” RPG rules. By defining procedures, drawing up tables, or sketching

diagrams, the rules of the game can take shape as fast as the GM can write. Obviously,

pencil and paper readily support malleability. The two components of this tool are also

widely available and extremely cheap.

Since pencil and paper can be used to replace the other two most common

tools (by sketching a map, or create paper chits used for random draws), it is the only

one of the three which is fundamental. Accordingly, I assume that traditional play can

be and is performed only with pencil and paper.

Given the advantages of pencil and paper, it’s only rational that commercial

game designers assume that gamers want game systems requiring no other equipment.

It would be exceedingly difficult to profit from a rule set which mandated GM and/or

player use of custom software.

Assuming for the moment that gamers really are reluctant to use computers

for gameplay, that reluctance is also rational, given the current landscape of computer-

support tooling for RPGs. Most existing computational interventions on (or augmenta-

tions to) RPG play suffer from severe limitations in their rule design language, data mod-

eling, interface affordances for comprehending complex game states, user-friendliness,

and malleability (especially this last one.) If gamers perceive computer tools as insuffi-

21I must assume that all participants are literate. It is difficult to imagine an illiterate person suc-
cessfully playing in any complex RPG, although she might possibly succeed if her gaming group was
extremely patient. This is an instance of a more general observation that physical mechanisms for game
input usually assume certain normative standards for players’ physical and mental capabilities. Sadly,
addressing this issue in more detail is beyond the scope of my thesis.

42

ciently user-friendly, powerful, or malleable, they will not accept those tools, regardless

of any other advantages they offer.

The consequence of these two groups’ rational assumptions is that commercially-

available RPGs currently inhabit only that small section of the space of possible rulesets

which is realizable using good old-fashioned pencil and paper. The way to break this

cycle is to build game-design software which is directly aimed at those GMs who are

seriously committed to their role as designers. Once it becomes possible to use such

software to redesign an RPG even while it is being played, as defined by malleability,

then hopefully more gaming groups will be willing to embrace computer mediation of

game rules.

Note that it’s not entirely true that gamers are reluctant to introduce comput-

ing to their games. Chapter 3 explores a wide range of computational support tools for

RPGs, some of which have seen widespread adoption. My analysis of these tools finds

them lacking in features needed to support my preferred style of high-DCG, Principles-

1-and-2-driven RPG. However, gamers with different tastes have adopted, en masse,

virtual tabletop (VTT) software, as well as amateur- and professional-made tools which

enable users to look up the rules of a game system, roll large numbers of dice, or create

maps using a fixed or fluid library of visual assets.

2.8.2 Fixed-Theme Games Trade Principle 1 for Lowered DCG

Some game systems are designed with deliberate limits on DCG which restrict

the actions and events of gameplay to fit within an established fictional genre. These

43

games are commonly said to be “about” playing out (or subverting) the tropes and

narrative arcs of that genre. I refer to such games as having a fixed theme. Examples

of fixed-theme games include Call of Cthulhu [122], Night’s Black Agents [66], Blades

in the Dark [56], Pendragon [154], and Dogs in the Vineyard [7].

In my own game, it’s not a problem that events might go in all manner of

directions with no clear theme, but that’s because I have embraced a picaresque, natu-

ralistic unfolding of events which, like real life, doesn’t have a genre. Gamers who are

more interested in exploring the tropes, themes, narrative arcs, or character archetypes

of a specific genre will rationally prefer a game system with an appropriate fixed theme.

There are other rational reasons to prefer fixed-theme game systems. Some

such systems employ a small set of abstract, thematic mechanics to resolve all possible

game scenarios22. Both the amount of up-front effort needed to design such a system,

and the amount of ongoing GM effort required to run one, are much lower than those

needed for a high-DCG system. For instance, when abstract mechanics fail to cover a

novel scenario, the GM can make do with ad hoc judgments, rather than slow down

the game’s tempo with an approach more resembling jurisprudence. That said, even a

high-DCG game requires less effort to run when it has a fixed theme, because the theme

is ever-present to guide the GM as he designs content or fields player questions.

For players and GMs who are willing to limit the scope of gameplay for the

sake of a fixed theme, there is no need for a game system to tend toward ever-higher

22But by no means all. Call of Cthulhu is considerably less abstract than the other three games named
above, and Pendragon, a game about Arthurian knights, is known for having rules and facts addressing
such topics as the thirteen aspects of chivalric conduct, the acceptability of marrying into specific social
classes, and the chance of a horse surviving the winter while stabled.

44

DCG. Without the pressure of running up against human limits on managing DCG,

these gamers, in turn, are unlikely to feel a need for computational mediation.

2.8.3 Storygames Don’t Require High DCG

No discussion of RPG-adjacent design practices would be complete without

touching on the storygame. Aaron A. Reed notes that the term has multiple conflicting

meanings in popular use ([128], p. 18); for this thesis, I use the term to refer to games

in which the goal of play is to produce a satisfying story. This usually entails rules

that generate or stipulate plot fragments, or which are designed to spur players into

improvising elements of a narrative.

Apart from that commonality, storygames are a diverse bunch. They may

or may not have a gameplay loop that resembles the one I outlined in Section 2.1.

Some storygames contain RPG elements (Apocalypse World [8]), and some do not (Fi-

asco [112].) Some storygames have a fixed theme (My Life With Master [32]), and some

do not (Microscope [133].) Even when a storygame has RPG elements, it will usually

also embrace a trend in RPG design which transfers, from the GM to the players, some

of the power to act as ultimate arbiter of the game system and world. Some storygames

don’t even have a GM at all, a condition referred to as being “GMless” or “GMful” (in

the sense that when all players are empowered to act in a GM-like capacity, the game

is “full” of GMs.)

I have nothing against storygames, but every example I’m aware of has rela-

tively low DCG. I believe this is because storytelling (or story generation) is itself the

45

object of play, which leads storygame designers to see a wealth of rules and facts as re-

ducing the number of opportunities players will have to creatively shape the developing

story.

2.8.4 A Comparison with Videogame Progress

The RPGs available today, whether released as commercial products or created

by amateur enthusiasts, are not substantially higher in DCG than the first RPG (the

original “White Box” edition of D&D released in 1974.)

This stands in stark contrast to the evolution of videogames over the same

time period. The computers of 2023 have literally billions of times more processing

speed, random-access memory (RAM), and hard disk space than the computers of the

1970s. Videogames have consistently been at the forefront of this hardware revolution,

as game designers pushed new systems to their limits23.

Today’s videogames fully employ the capabilities of today’s computers, but

RPGs have barely even begun to incorporate them — and even where they have, such

incorporations have been limited by designer and gamer expectations that comport with

the limits of pencil and paper, as well as by the sheer difficulty of implementing software

which can be altered at runtime as easily as a traditional GM can alter the prose which

defines a traditional game system.

Therefore, one reason to pursue the computational mediation of RPG play is

23It’s beyond the scope of this thesis to offer a full discussion of the link between advances in
videogames and advances in computer hardware. Interested readers are referred to the discipline of
platform studies, as well as [184] and [104] (neither of these are chiefly concerned with those links, but
both touch upon it in numerous ways.)

46

to drastically expand the space of feasibly-realizable RPGs. I wish to claim for the

RPG some of the success of the videogame, by melding the best parts of both art forms.

From the videogame, we take full computational mediation of gameplay. From the

RPG, we take malleability and the human GM. The following chapter will show that a

veritable army of hybrid systems have tackled this problem from different angles, and

that for every necessary software component, at least one system has met the bar for

fully realizing RPG capabilities in the computer. Even RPG-type total malleability has

been achieved by game developers24. The problem now is to coherently implement such

capabilities in one common system. Then, game designers and academic researchers

could experiment with more radical enhancements to RPG design made feasible by an

all-digital game.

2.9 Research Questions Revisited

To conclude this chapter, I’ll revisit the research questions given in Chapter 1,

and restate them using the theoretical terms of art which I’ve introduced throughout

this chapter. The new versions below are the canonical research questions for

this thesis. Phrases which are substantially changed from their original formulations

are marked in bold.

1. How can one design and implement software which processes a high-DCG

RPG system, without sacrificing the malleability of rules and facts which

is central to RPG play? If both of these goals cannot be achieved simultaneously,

24Once.

47

what trade-offs can be made to achieve one at the expense of the other, and how

should we value each quality when making those trade-offs?

2. How can software support the GM in doing game design, including the on-the-

fly redesign that characterizes malleability? How can it support the players

of a Principle-1-based game in developing plans and goals for their characters?

How can it support all participants in comprehending the rules and taxonomic

facts of the game system, and the substantive facts of the game world?

3. What new frontiers in RPG design can be reached when computers, having been

made essential for gameplay management, allow game system creators to surpass

the DCG ceiling imposed by human limitations?

This chapter has described my background in RPGs and my motivation for

pursuing computer-driven operation of game systems. In the next chapter, I review

works which embody answers to research questions related to mine.

48

Chapter 3

Related Work

There is a staggering number of works which can be said to blend RPGs and

computers. Some of these use custom hardware, while some are implemented entirely

in software. Some have a GM, some are fully mediated by the computer, and some offer

a mix. Some are intended as accessories to an otherwise analog game; still others are

intended to replace all analog action. The design space which these works inhabit is mul-

tidimensional, which has engendered a remarkable variety and diversity of approaches

to combining computing with analog gaming.

The bulk of this chapter is a survey of projects which apply computing specif-

ically to RPGs1. Many of these belong to the burgeoning field known as “RPG sup-

port,” examples of which include virtual tabletops (VTTs), dice rollers, improvisation

aids (e.g. name generators), digital rulebooks, campaign management apps, and map-

making programs. I’ll also briefly trace the evolutionary path from RPGs to computer

1I deliberately refrain from proposing any firm taxonomy for these projects. That would be a valuable
direction for future work, but is not necessary for my purpose of reviewing capabilities and limitations.

49

roleplaying games (CRPGs) to contextualize a discussion of CRPGs which offer playing

modes designed to mimic traditional RPG play. Finally, I’ll cover academic research

studying the relationship between RPGs and computing, such as surveys of GM interest

in, and desires for, computational gameplay support. This broad survey will establish

the boundaries of the space of previous computational interventions into RPG play and

design practices.

I also use this chapter to present no small number of prior works which aren’t

directly related to RPGs, but nevertheless have relevance to design decisions needed

to make RPG-specific software. These projects from further afield include computer-

augmented board games, social simulations, drama managers, companion apps for story

and board games, interactive digital narratives (IDNs), augmented games, “tangibles,”

and mixed-initiative design tools. Projects in these areas have features which could

enhance RPG-specific software, but which have rarely or never surfaced in that domain.

Some of them also offer gaming experiences with higher degrees of DCG than the RPG-

specific projects; thus, these are important pieces of prior art for the goal of using

computers to present gaming experiences with higher DCG than can be offered by

analog games.

In this chapter, I aim to stake out the current dimensions of the design space

of RPG support software, and provide evidence for my claim that high-DCG gaming

is not well-supported in that space. I also inform later consideration of appropriate

software architectures and features for applications that implement both high-DCG

RPG systems, and the user interfaces for designing and playing them.

50

3.1 Hybrid and Augmented Games

Hybrid game is a catch-all term used in academia to any technological en-

hancement of an existing analog game, or any game made possible by technology but

not fully mediated by it. In [77], Kankainen et al. remind the reader that “technol-

ogy,” in this context, does not always mean computers, for the history of hybrid gaming

stretches back further than the history of computing:

There were already games, such as Code Name: Sector, using microchips

with physical board games released in late the [sic] 1970s, and during the

eighties such games as Milton Bradley’s Dark Tower gained some popu-

larity. Even prior to microchip technology, since 1910s [sic], there seem to

have been board games which had electric devices, such as small lamps,

merged with physical game boards, e.g. Electra. These games can be con-

sidered as ancestors to modern hybrid board games, which utilize the ever

increasing computing power of mobile devices.

— Kankainen et al. [77], p. 1–2, in-line references omitted

Kankainen et al. go on to discuss the fluidity of the terminology in this area.

Their claim that “there seems to be no rigid hypernym encasing [all forms of physical-

digital games]” (p. 3) matches what I have seen in the literature2.

Bergström and Björk [13] present a distinct but related characterization of

games which include computation as part of their functioning. These authors argue for a

2For a thoughtful discussion of the shortcomings of a simple “physical plus digital” or “physical plus
electronic” characterization of hybrid games, see the rest of [77].

51

broader view of how computers can be used to realize what they call augmented games.

They say “computers are today mostly used to encase and mediate games” ([13],

p. 3, emphasis mine), rather than supplement human-centered gameplay not focused on

computer interactions. They go on to showcase six games which employ computing for

processing, display, and storage of game-affecting information, but which do not center

the computer itself as the sole interface or tool of gameplay.

Bergström and Björk’s analysis culminates in a typology of features (ibid.

p. 16–18) which cogently characterize the design space of augmented games. These

features are:

• “player-agreed” vs. “artifact-encased” game logic

• “limited” vs. “rich” audiovisual content

• “fluid” vs. “fixed” game content

• “manual” vs. “automatized” excise

• “low-effort” vs. “high-effort” modification of rules

• “low-effort” vs. “high-effort” modification of game state

I include the Bergström and Björk typology here only so the reader can keep

the above design space tradeoffs in mind while reading the rest of this chapter. With

so many pieces of related work for me to cover, it is beyond the scope of this thesis

to thoroughly analyze any of them through this typological lens. However, rigorously

assessing some subset of the works in this chapter would be a valuable contribution to

52

the design and development of augmented games, even (or especially) if that assessment

tested the value of this typology for classifying games that could arguably fall outside

of Bergström and Björk’s original definition.

3.1.1 Commercial and Academic Examples

False Prophets [102] combines custom software, a tabletop equipped with light

sensors, a projected map grid, and optical-signal-emitting play pieces to deliver a gam-

ing experience encompassing both computer-mediated and person-to-person interplayer

interactions. The system reads game piece positions to supply hidden information to

each player: a task that would otherwise be impossible without a GM, who could im-

partially reveal the correct information. False Prophets exemplifies the application of

computers to tasks which would otherwise require a non-player moderator, without de-

emphasizing or eliminating desirable a characteristic (face-to-face play) by opting for

full “artifact encasement” (in Bergström and Björk’s terms.)

Weathergods [9] describes a board game with a digital screen displaying the

game scenario, which gives visual feedback as players move their physical pieces atop it.

Most such feedback is purely digital, but in the case of a game piece that marks hidden

treasure, a light projector illuminates the piece such that only the player who controls

the piece can see the change. A feedback mechanism by which a physical system triggers

digital processing, which in turn causes change in the physical system, is so mundane as

to be forgettable when driving a car or operating factory equipment — yet, it is unusual

in the world of game design, and worth noting.

53

These key early works in hybrid gaming explore concerns such as how to pro-

vide effective game state feedback, and how far to take computational mediation of

player action3. That said, their physicality or tangibility is relatively minor: they

would not change appreciably if they had been implemented as pure videogames. Both

systems are also devoid of malleability: each implements a single game in which player

actions, and the scope of gameplay possibilities, are strictly limited by preset rules.

Thus, they are of limited relevance to the development of systems aimed at capturing

the advantages of RPGs.

TViews [109] is a multi-user interactive digital tabletop which can track RFID-

tagged physical objects, and which has novel “puck” rotary controllers which users

employ to select options from radial menus. Different game rule systems can be imple-

mented before gameplay time, but malleability is absent.

The ReacTable [76] is a multi-touch input and display surface4. Academic

publications on the ReacTable focus on using it as a novel method of live music produc-

tion, and its creators fostered a community around this use case [91]. However, a demo

video [181] based on the bachelor’s thesis of a member of the research group [182] also

shows its potential as an RPG support tool, with live creation and editing of scenario

maps.

TrueSight [124] is a set of 3D plastic pieces for building representations of RPG

scenario terrain. The built terrain can be connected to a laptop for use by a GM, and

3Another work in the same vein as these two projects include Asterocks [187].
4Don’t confuse the ReacTable (also spelled “Reactable”) with the “InteracTable,” part of the STARS

system (see below).

54

the pieces will light up in patterns corresponding to GM-selected information, such as

a magic spell’s area of effect.

Tilt Five [175] is an augmented reality system, sold to consumers for tabletop

use, which projects holograms visible through a pair of accompanying glasses5. Bryan

Versteeg has built a light projector system connected to an ordinary tablet device, which

lets him “paint” dynamic lighting onto a physical board-gaming scene [180].

All the systems discussed so far require participants to gather around a table,

as in traditional boardgame or RPG play. STARS ([100], [99]) presents a different, more

comprehensive notion of augmented gaming. STARS is a multimodal gaming augmen-

tation platform, comprising the “InteracTable” (a touch-sensitive table), headsets worn

by the players, a loudspeaker, player PDAs, a projector system, and an overhead object-

tracking camera. Available features include dynamic display (such as for fog of war)

and RFID-based position tracking. Integration of all these components is particularly

impressive given how early this system was developed.

The creators of STARS recognize the importance and potential of digitizing

game rules: “[C]omplex game rules are put into the digital domain, so that an accurate

simulation of the game world can be realized without slowing down the game flow.”

([100], p. 3) However, while the STARS system can import different code-based rules

systems, its capabilities don’t extend to design: neither rules nor taxonomic facts are

malleable while the system is in use.

5See the online comment chain at [113] for criticism of Tilt Five, including responses from the system’s
creators.

55

3.1.2 Observations

Where Weathergods, False Prophets, TViews, and TrueSight primarily differ

is in their scope. Weathergods and False Prophets each offer one game only. TViews

allows playing out a range of roleplaying scenarios, within the limits of its included

software assets.

TrueSight is more general still. Not only could users play out any scenario

which is compatible with the pre-programmed rules, the physical pieces could also be put

to satisfactory use as RPG props sans software, where the rules proved insufficient. This

demonstrates how physical equipment with a computational component can gracefully

degrade into ordinary, non-computationally-assisted play equipment6. Furthermore,

TrueSight could be used outside normal gameplay, as a memory or measuring aid for

those learning the game.

These works show a trend of using object tracking (whether through RFID

tagging or camera-based detection) as a way to bridge the gap between physical tokens

and digital processing. Object tracking affords a degree of malleability for substantive

facts: each repositioning of a piece is equivalent to declaring that some game world

fact has changed. However, the projects in this section universally lack malleability for

rules and taxonomic facts. In some cases, this stems from the system arriving early

on the scene of augmented gaming; in other cases, for the creators having spent their

“complexity budget” in other areas. For instance, it’s understandable that STARS

6The term “graceful degradation” goes at least as far back as 1987, where Herlihy and Wing [62] used
it in the context of software systems remaining useful even when unable to work optimally (e.g. when
under a heavy processing load.)

56

doesn’t incorporate runtime rule redesign, because that work was focused on using

custom hardware to integrate multi-modal interactions into a gaming experience.

All in all, prior work in hybrid gaming has focused on systems which combine

custom software with tangibly-interactive custom hardware, including RFID tokens,

LEDs, push-buttons, and terrain tiles. From my survey, I conclude that when systems

require custom hardware, they preclude offering the malleability of a traditional RPG.

This conclusion informs the new design criteria I present in Chapter 4.

3.2 RPG Support

The term “RPG support” can cover everything from mapping tools to char-

acter generators to dice rollers. I’ve done my best to survey a representative sample of

the subcategories which get lumped under this label.

3.2.1 Commercial and Open-Source Work

D&D Insider, and its successor D&D Beyond, are official RPG-support tools

from Wizard of the Coast, the owners and designers of D&D since 1997 [5]. D&D Be-

yond originated with a different company7. After eventually being acquired by Wizards

of the Coast, it has received more internal support and development than Insider ever

had, which has resulted in Beyond’s features being a superset of those found in Insider.

Conclusions about RPG support tooling which might be reached from an analysis of Be-

7D&D Beyond was originally developed by Curse. The tool was later acquired by Fandom [17], then
sold to Wizards of the Coast for USD $146.3 million [186].

57

yond are, accordingly, a superset of those which could be drawn from Insider. Therefore,

I only discuss the former here.

D&D Beyond offers access to an online compendium of D&D game rules; tools

for creating PCs, monsters, and encounters (premade collections of monsters and other

obstacles); a 3D character designer; a limited form of virtual tabletop; and even a Twitch

streaming integration, inspired by the popularity of “real play” RPG podcasts such as

Critical Role [165]. Beyond also lets GMs create and upload (private or public) custom

content which fits into the predefined categories the software can recognize, including

PC races and classes, monsters, magic spells, and special abilities.

Initiative.sh [121] is an open-source web application which supports both con-

sultation of D&D 5e game rules, and a form of inspirational PCG similar to that of

Imaginarium ([68], discussed below):

To generate a random thing, simply describe it. This can be simple, as in

typing the name of the thing you’re looking for, or more complex, describ-

ing details of that thing.

> a human boy named Roger

Roger human child, he/him Species: human

Gender: masculine

Age: 2 years

Size: 2’9”, 27 lbs (small)

58

— Initiative.sh help command output, showing a sample CLI interaction

[121]

The most unique characteristic of Initiative.sh is that it only offers a command-

line (CLI) interface8. While its interaction affordances are thus bounded by the limits

of CLI design, Initiative.sh embodies a novel answer to this question: “How far we

can reduce the amount of user effort needed for a game support tool to return useful

information?” Or, as the README for its code repository states:

[I]nitiative.sh’s design philosophy is to minimize the time and effort be-

tween the question (“Is there a blacksmith nearby?”) and the answer

(“Yes, it’s called Frosthammer & Sons, and Fenrik Frosthammer is at the

forge.”).

— Initiative.sh README [120]

Dice rollers replace the rolling of physical dice with the results of random

number generation (RNG) algorithms. These are most frequently employed when when

a large number of dice need to be rolled quickly, or when the number of possible die

results doesn’t match the number of faces on any of the usual physical dice. Auxiliary

functionality includes storing rolls (and descriptions) for reuse, e.g. “Orc Damage Roll:

1d4+1”, or calculating and visualizing probabilities of obtaining certain results on the

dice.

A worldbuilding wiki (e.g. LegendKeeper [93]) is a piece of software similar

to MediaWiki [103] (the software behind Wikipedia), but enhanced with features that

8More specifically, a web browser simulation of a command-line interface.

59

allow the user to track family trees, timelines, and other aspects of a fictional world.

Use of these tools is not limited to GMs: “Our users have created sci-fi campaigns,

planned epic novels, organized LARPs, and scaffolded open-world games” [92]. By con-

trast, campaign managers (e.g. Obsidian Portal [168], World Anvil [172]) are apps

specifically aimed at RPG GMs and/or players. They usually incorporate a worldbuild-

ing wiki for the GM’s use, but may also enable users to track the events of each game

session, schedule upcoming sessions, or send chat messages during or between games.

If a GM wants to map out part of his game world, he has a wide choice of

software to aid him. Besides generic image-manipulation software like Photoshop or

Inkscape [79, 26], there is also a whole family of special-purpose mapping programs

with which a user can create free-form or gridded representations of fictional terrain.

Examples include Campaign Cartographer, Wonderdraft, and Inkarnate [96, 171, 166].

These may come with placeable icons which imitate map styles found in classic fantasy

works such as The Lord of the Rings [176], or which depict naturalistic or fantastic

features likely to be found in a fictional world, from caves, to castles, to wizards’ towers,

to sea monsters.

Ordinary mapmaking programs are essentially image creation software special-

ized for the domain of fantasy maps, but there’s also a burgeoning genre of generative

mapmaking tools, which use PCG to create and render whole game areas from scratch.

One example is Dungeon Alchemist [34], which uses a mixed-initiative design paradigm.

After Dungeon Alchemist creates an initial 3D map of a location, such as a fantasy

house, the user can revise the results by moving or deleting rooms, changing connec-

60

tions between areas, or even passing control back to Dungeon Alchemist to regenerate

a section of the map.

Another example is Neverending Dungeon (NED) [152], which goes further

than Dungeon Alchemist by also creating a scenario to accompany the generated map,

including the reason the players have come to the generated dungeon and the goals that

they should pursue there. NED’s scenarios are simplistic and transparently make use

of templated text, so they come off as more of a proof-of-concept than the NED’s map

generator does. Still, the concept of whole-scenario generation is suggestive of the topic

of quest generation, as well as the wider field of generative narrative. All three of those

fields could usefully influence the design of RPG support software which includes game

design capabilities for the GM to employ.

3.2.2 RPG Support in Academia

Undercurrents [14] is a “tool for providing additional communication channels

and media streams during tabletop roleplaying sessions”. It offers secret messaging,

audiovisual playback synchronized between all players’ devices, and note-taking capa-

bilities like those of a wiki. Game rules and facts are not part of Undercurrents’ data

model.

Imaginarium [68] gives its user an interface for specifying a natural-language

ontology of game entities, their qualities, and constraints on both. These ontologies are

explicitly inspired by the extensive natural-language world-modeling capabilities of the

Inform 7 programming language [117]. A sample ontology looks like this, where “can

61

be” denotes an optional constraint, and “is/are” denotes a mandatory one:

Cats can be large or small. Persian, tabby, and Siamese are types of cat.

Cats are longhaired or shorthaired. Cats are grey, white, black, or ginger.

— Imaginarium [68]

Having entered this ontology, the user can then prompt Imaginarium to “imag-

ine a cat.” Imaginarium will then use a SAT solver to generate constraint-satisfying

entities, and return responses such as “the cat is a large Persian” or “the cat is a grey,

longhaired Siamese.” Imaginarium is specifically intended for use as an imagination aid

that can be expanded with new information on the fly. The ease with which a user can

switch between using and editing the ontology is worthy of imitation by future RPG

support systems meant for use in live gameplay.

Alexander Mayben’s MS thesis [108] describes both a novel pattern language

for creating storygames conforming to the Powered by the Apocalypse design framework

[8], and a computer tool for designing games within the constraints of said language.

Designing a storygame, Reed writes, is heavily dependent upon the game’s

facilitation of one or more of four key activities: generation, negotiation,

administration, and what he refers to as “storywrighting;” the process

by which ideas are “combined and shaped into an ongoing, coherent, and

compelling story”. According to Reed, storygames occur at the midpoint

of a “simulative spectrum” between world simulation and storytelling, and

a “performative spectrum” between authorship and improvisation. Reed

62

also characterizes the game master role as unique to storygames in partic-

ular, imposing a level of mediation between simulation and performativity.

— Mayben [108], p. 8, discussing work by Reed [128];

in-line citations omitted

Mayben’s work reifies the design space which Powered by the Apocalypse offers

to game designers. While this reification puts hard limits on the types of games that can

be explored by users of the accompanying software, the notion of encoding game design

patterns directly into game designers’ tools could lead to valuable UI/UX advances in

design-support tools, whether those tools are intended for asset creation between games,

or the gameplay-time design activities that define malleability.

Devi Acharya’s MS thesis [3] involved carrying out extensive interviews about

GMing practice with experienced GMs, inquiring on such topics as the kinds of improvi-

sation and editing each participant would engage in when adapting prewritten content to

his own game. These interviews were conducted to establish an empirical, user-focused

basis for the consideration of desirable qualities in future work on computational GM

support. Acharya’s results establish two primary directions for said future work, which

I summarize here from [3], p. 90–99:

• Tracking, visualizing, and editing game information corresponding to what I call

substantive facts, such as relationships between characters. These capabilities

could be used to give the GM the context they need to accurately describe a

game scenario, spur improvisation while conforming to numerous facts already

established about the game world, or update information being tracked by the

63

software tool to maintain correspondence with events taking place in otherwise

analog play.

• Generating game content tailored to the GM and his gaming group. In particular,

beyond the usual idea of creating content conforming to the game rules and game

world being used, Acharya also suggests (p. 95–96) content creation strategies that

take into account the PCs and their capabilities, or choices that the players have

previously made.

The question that naturally arises in response to Acharya’s findings is how

exactly PC capabilities, player choices, character relationships, and myriad other game

facts might feasibly be represented in software, manipulated and inspected by the GM,

and deployed for generative purposes. Following that question, one must also ask what

the consequences of representing those things in software would be.

For instance, suppose that a hypothetical GM support tool can do game world

content generation while taking past PC actions into account. It would not be feasible,

during live gameplay, to track PC actions by having the GM do manual data entry;

therefore, this tool would require players to declare their character actions through

a computer UI. If that computer UI only accepted a pre-determined list of actions,

gameplay using this tool would not offer the players the freedom of Principle 1. And if,

to counter that, the tool was changed to accept any freeform text as the PC’s action

declaration, it would become difficult for the tool to use that freeform text for content

generation according to patterns which might be desired by the GM, such as narrative

64

arcs. My pursuit of a malleable, yet augmented game is an attempt to resolve this

conundrum.

Shoelace [4], a GM support application for use during play of the RPGGUMSHOE

One-2-One [90], is explicitly inspired by Acharya’s conclusions in [3]. It “helps game

masters keep track of story events with a graph-based game world visualization, while

also providing creative suggestions using Prolog queries over a database of game infor-

mation (p. 1.)” Said capability for creative suggestion is inspired by the wider research

area of story sifting9, in which a system pattern-matches sequences of game or simulation

events and surfaces them to an observer [139, 83, 82, 81, 141, 86, 84, 25].

3.2.3 Observations

3.3 Virtual Tabletops

A virtual tabletop (VTT) software system, in its most basic form, digitally

replicates key items of tabletop play equipment, such as battlemaps and character

sheets. Some VTTs go further by enhancing those items with features unachievable

in an analog context (e.g. dynamically revealing portions of a scenario map as the play-

ers explore it), or bundling content management features (e.g. allowing the GM to select

and play appropriate dramatic music.) The most advanced VTTs also integrate soft-

ware adaptations of RPG rulesets so that rules can be checked and processed by the

computer.

9See Subsection 7.3.4 for a longer discussion of story sifting in the context of future directions for
work on ROLEPLAYINGGAME.

65

The VTT field has existed since the 1990s, beginning with the release of Virtual

Advanced Squad Leader (VASL) in 1996 [179]. At first, VASL could only run a digital

adaptation of the war game Advanced Squad Leader [52], but by 2002 it had been rebuilt

into Vassal, a generic VTT for all war gaming [179].

OpenRPG, the first RPG-specific and generic (system-agnostic) VTT, was

released in 2000 [33]. Fantasy Grounds, the earliest VTT still in active development,

was released in 2004; its homepage claims it has had over 400,000 users [147]. The former

is open-source10, and the latter is commercial; other VTTs have come from academic

research.

Though there are VTTs intended for war gaming (e.g. Vassal) and board gam-

ing (e.g. Tabletop Simulator [42]), today the term generally implies software specialized

for RPG support. Because VTTs are designed for RPGs, are fully implemented in

software, and have adapted RPG rules into software without turning them into fully

computer-encased videogames, VTTs are closest to realizing the sort of vision I have

for hybrid RPGs. Thus, for this thesis, it is vital to accurately explore the current

capabilities and limitations of state-of-the-art VTTs.

3.3.1 VTTs in Academia

Tisch [57] is “a generic tool capable of enhancing a wide range of analog games,

making use of the Microsoft Surface to supplement the analog game with digital feature

10All free (“libre”) software is open-source software, but not all open-source software (OSS) is free
software. The differences have to do with copyright and the permissibility of commercial use. For con-
sistency, I’ll refer to all VTTs with available source code as “open-source software,” without specifying
whether or not they are also free software.

66

sets.” Its primary feature set revolves around sketching on top of prepared visual assets,

typically battle maps. Physical objects tagged with RFID emitters enable various user

interactions, such as drawing and erasing lines while sketching. Tisch also supports

physical play tokens that have been similarly tagged; for instance, the screen can vary

what’s displayed with the presence of certain tokens:

[P]laygrounds [are] rectangular screen sections which act the same as win-

dows in most operating systems [and] can easily be created, moved, scaled,

and hidden. They can also be tied to a tagged object, being dis-

played only when and where the tagged object is put down. The

reasons for using playgrounds are primarily for users who want to take

notes or when users venture in split directions or do different things, with

each user/group getting a segment of the total screen, possibly interacting

with completely separate feature sets or under different conditions.

— Hartelius et al. [57], p. 200–201, emphasis mine

Tabula Imaginarium [71] is an iPad application with “the purpose of aiding

a player of a tabletop roleplaying game that is spatially separated from the other par-

ticipants.” It allows for creating battle maps from a predefined tile set; placing and

moving virtual character tokens (unlike the physical tokens used in Tisch); and tracking

character statistics.

Judging both by year of release and the number of products available, most ad-

vances in the VTT field have been made in industry, not academia. Tabula Imaginarium

67

and Tisch (both released in 2012) are the exceptions. Both of these academic projects

predate most commercial VTTs (including industry giants Roll20 and Foundry), and

yet, they share similar intended use cases and functionality. The primary difference

between them is that Tisch is more concerned with preserving the physical dimension

of analog play, while Tabula Imaginarium leans into more computer-mediated play (as

befits that system’s goal of supporting remote players.)

Tabula Imaginarium’s authors include a brief survey ([71], p. 21-23) of VTTs

which were available at time of publication, including D20 Pro [114], RPG Cartogra-

pher11, Battle Map [126], Dungeon Mapp12[151], Fantasy Grounds, and Tisch. D20

Pro and Fantasy Grounds are still active; furthermore, double-digit numbers of new

VTTs have sprung up in the decade since Tabula Imaginarium and Tisch were created

(see Subsection 3.3.2.)

3.3.2 VTTs Outside Academia

Nearly all available VTTs originate outside academia. An incomplete but

representative list of VTTs in development as of 2023, arranged in a rough order of

sophistication from large commercial offerings to one-person hobby projects, runs as

follows: Fantasy Grounds, Roll20 [169], Foundry VTT [46], MapTool [138], Vassal,

Arkenforge [163], Let’s Role [167], Tabletop Simulator, TaleSpire [35], Tableplop [155],

Shmeppy [161], Owlbear Rodeo [174], Rolz [143], PyVTT [21], gTove [132], and Mirk-

11I couldn’t find a citation for this app, but see [40] for a review of of it, which also gives a good idea
of the feature set which VTTs had achieved by that time.

12“Mapp” with a double “p” is correct.

68

wood Engine [115].

The three most well-established VTTs are Fantasy Grounds, Roll20, and Foundry

VTT (hereafter just “Foundry.”) I refer to this trio as the “big three.” Here are some

metrics for the size and success of these platforms:

• Fantasy Grounds claims its users played 328,377 game sessions in Q4 of 2020

alone [148].

• “[In] Q3 of 2020, more than 100 million hours were played across Roll20” [170].

• Until recently, Foundry did not collect user or game system statistics, but we can

turn to financial measures of success. As of August 2nd, 2023, Foundry’s Patreon

page has 1,819 members who donate a total of USD $7,583 per month ($90,996

per year) [44] — and that’s on top all the money made to date by selling Foundry

itself, at USD $50 per license13.

For this thesis, I’ll primarily draw on the big three for evidence when making

claims about the extent of commercial VTT capabilities. The big three have received

the most funding, user testing, and development time, while smaller VTTs have far

fewer resources. As such, capabilities which the big three possess may well be missing

from smaller VTTs, and limitations of the big three are almost certain to also be present

in smaller VTTs. Thus, restricting analysis to the big three should not meaningfully

affect the validity of any claims about VTTs in general.

13A single license owned by a GM is sufficient for the rest of his gaming group to use Foundry as
players.

69

All of the big three are generic: a given VTT can be used to play any game

system which has been implemented as a package for that VTT. To achieve genericness,

the codebase of each big-three VTT defines fundamental conceptual objects which ab-

stract over certain elements of all possible domain models an RPG could have. Recall

from Section 2.3 that the taxonomic facts of a game system constitute its domain model;

analogously, I provisionally refer to a VTT’s restricted set of generic conceptual objects

as its metadomain model.

Glossing over minor feature-set and terminology differences, the metadomain

model of each of the big three contains roughly the following conceptual objects:

• Dice: a variety of dice can be thrown. Some VTTs accompany dice rolls with a

simulated display of those dice rolling. Die roll expressions can be written in a

language familiar to gamers, e.g. “2d10k1+3” for “roll 2 10-sided dice, keep only

the better one, and add 3 to its result.” Those expressions can be saved for reuse.

• Actor: animate, volitional creatures.

• Item: anything not represented by an Actor.

• Scene: a map image with associated contents, usually but not always at battlemap

scale.

• Token: a battlemap-compatible representation of an Actor or Item.

• Adventure: a collection of Scenes prepared ahead of time.

70

• Playlist: a sequence of music or video content, used to add ambience or share

information.

• Status Effect: a game-system-defined temporary alteration to Actor or Item char-

acteristics.

• Macro: a player- and GM-authorable sequence of VTT user commands issuable

as one unit, e.g. “send this chat message, then perform the ‘attack’ action.”

• Rollable Table: a weighted list of thematically linked results which can be picked

from with a die roll or other randomizer.

• Handout: a hypertext document (authorable by the GM, and sometimes by play-

ers too) describing some aspect of the game world. Common features include

embedded media and triggerable die rolls.

• Package: a collection of assets (code, data, or images) which define a game system

for use with a VTT. Said assets often include specializations of VTT metado-

main objects, especially the Actor, Item, Dice Roll and Status Effect. It’s also

common to include code implementing rules such as leveling up or equipping a

character, and UI code for specialized windows or panels in which such activi-

ties are performed. Packages also implement custom character sheets for tracking

or calculating character attributes, subject to (the package’s realization of) the

game system’s domain model. Character attributes can be sent into calculations,

including die rolls.

71

VTT features outside the metadomain model for representing game systems

include marketplaces for utility extensions and game system packages; text, voice, and

video chat messages; visual effects such as rain and snow (which don’t interact with

game system rules); and a broadcast log of events, such as die rolls or in-game actions.

All of the big three have sophisticated presentational capabilities for use with

battlemaps, including fog of war, which obscures areas from view until characters have

entered them, and dynamic lighting, which realistically casts areas of light and shadow

based on point sources (such as a carried torch or flashlight.) Battlemaps can also

include walls and doors, which the GM can draw out to block movement and visibility

while also concretely representing aspects of a game world location. When carrying out

combat or other small-scale tactical movement activities, users can move the tokens they

control to desired positions. A user can measure point-to-point distances with a virtual

ruler, or observe a distance readout while dragging a token (Figure 3.1.) Battlemaps may

also display a grid overlay for precise movement and positioning. Finally, to draw others’

attention to a battlemap position of interest, users can issue “pings,” or audiovisual

alerts centered on a chosen point.

All in all, these features demonstrate that the big three VTTs are comprehen-

sive tools for playing existing tabletop RPG systems as written, with some computer-

enhanced calculation and visualization added on. They gain an advantage over analog

tools by bringing together digital versions of those tools into a one-stop software suite.

Their primary shortcomings are a failure to innovate beyond the affordances of analog

tabletop-gaming equipment, and a failure to accommodate malleability besides moving

72

Figure 3.1: Planning a token’s movement in Roll20. The path begins on the right, at
the dimmed copy of the token which represents its initial position. Source: [119].

individual character tokens on battlemaps (which is a way of altering substantive facts.)

Regarding malleability support, a GM who wants to make even a tiny change

to the rules or domain model of his chosen game system has to jump through numerous

hoops. For Foundry, the steps are as follows. First, if the GM is currently running

a session for his players, he must shut the server down. Assuming he has access to

the package files for his game system, he must open them in an external editor, create

or edit code to implement some change, increase the version number of the package,

upload the package to the server, and restart the server. When the players reconnect,

they download the new package.

What’s more, if the changes require altering the attributes of entities which

already exist in the game world (e.g. updating all characters to correct a misspelled

attribute), the GM must also write code to correctly perform that task. To my knowl-

edge, Foundry does not give the GM any help with this. This alteration similar to a

database migration, and would be a good place for designers of future VTTs or hybrid

systems to intervene, perhaps by generating migration code from changes to attributes

73

that the GM specifies.

As for innovation, with the exception of dynamic lighting, most VTT features

could be achieved by supplementing analog play with everyday software14. You don’t

need a VTT to play music or videos, create hyperlinked wiki text, design a rollable table,

or move things around on a battle map. What VTTs offer, in all these other areas, is

a reduction in the manual toil of tracking the myriad attributes of a typical RPG’s

domain model, and the bundling together of all those capabilities in one application.

Toil-reduction and bundling are certainly innovations, but they’re innovations

within a fundamentally un-innovative paradigm: VTTs digitize RPGs almost exactly as

they’ve always been played. This is a rational aim for a commercial software platform

which sells to an audience of gamers seeking an easier way to play games they already

enjoy, and which presents RPG publishers with a golden opportunity to re-sell gamers

VTT-compatible implementations of their favorite systems and supplements. But with

VTT developers, gamers, and publishers all seeking to digitally replicate existing RPGs

and their manner of play, VTTs hardly seem poised to enable a reimagining of RPG

designs to take advantage of the strengths of the computational medium15.

As evidence for VTT capabilities failing to drive innovation in RPG design,

one need look no further than Burn Bryte [53] and Crucible [47]. These are game

14Note that works earlier in this chapter, e.g. TViews, have used software-hardware communication
to offer dynamic lighting. Furthermore, at least one VTT is pursuing a more hardware-integrated niche:
Arkenforge can display its battlemaps on a touchscreen tablet such as an iPad, and use the touch sensors
to track physical tokens as they move across the battlemap [164].

15Late in the thesis-writing process, I learned that members of the VTT community have begun
experimenting with more radical interface additions and upgrades [20, 1, 127, 110]. I ran out of time to
more thoroughly explore this phenomenon; at first blush, while they don’t counter my assertions about
the deeper problems with VTTs’ metadomain models and mimicking of traditional gameplay, they do
seem to point to a new wave of innovation in VTT interface affordances.

74

systems created by the VTT makers themselves: Roll20 and Foundry, respectively. The

marketing material for these games emphasizes that they have been designed for the

ground up to work with their respective VTT platforms, e.g. “From the ground up,

Crucible is designed to leverage the unique capabilities of Foundry VTT [47].”

Despite such claims, both Burn Bryte and Crucible are game systems that

could just as easily have been released as ordinary rule books for traditional analog

play. be played analog. None of their subsystems make use of computers’ storage or

processing capabilities to achieve a degree of DCG higher than would be feasible in a

traditionally-played game. However, there is one way in which Burn Bryte explores how

computing can enable new forms of interactivity in an RPG. That game has a spaceship

creator (somewhat like the house builder in The Sims [107]) which allows players to

drag and drop ship parts while a total accounting of spaceship capabilities and costs

is maintained. This excellent idea, reminiscent of countless videogame interfaces for

character or item customization, uses computer interactivity to turn a task that would

require tedious analog guess-and-check into an exploratory and creative exercise16.

3.3.3 Observations

VTT systems have proven that traditional game systems which are relatively

high in DCG can successfully be converted into computational artifacts. They’ve also

shown that gamers are willing to use computer-augmentation systems when they offer

16For more discussion of how RPGs can learn from videogames, especially when it comes to interface
design, see Subsection 6.3.2. For examples of how ROLEPLAYINGGAME incorporates videogame-
inspired interfaces, see Subsection 5.5.2 and the figures in Subsection 5.4.3.

75

sufficient advantages over analog gaming. I owe VTT creators a debt for making it

more common to use computer systems while GMing and playing RPGs, because that

migh t mean I’ll encounter less resistance when trying to convince potential users to

make the leap to full computer mediation. However, the VTT ecosystem seems to

have spurred little innovation in the design of new RPGs, and they haven’t done much

more to support malleability than the hybrid systems covered above, even without the

constraints of physical hardware.

3.4 Videogames

There are a variety of videogames inspired by the traditional RPG. Full com-

puter mediation tends to limit the range of player actions and the size of the domain

model that a videogame can support, meaning most RPG-esque videogames can be

considered to have fixed themes17. That said, there are several extant videogames that

provide a user experience quite similar to that of the VTT. I will also cover a striking

and unique work from the world of MUDs which, to the best of my knowledge, is the

only computer game which is just as malleable as a traditional RPG.

3.4.1 CRPGs

Computer games inspired by the rules and playing experiences of traditional

RPGs began to appear within months of the release of D&D in 1974 ([130], [16].) The

earliest of these computer roleplaying games (CRPGs), such as The Dungeon and dnd,

17See Subsection 2.8.2.

76

were text-based games which imitated a subset of D&D ’s gameplay [130]. These were

soon updated to take advantage of nascent computer networks, evolving into multiplayer

virtual worlds so compelling that some people would just hang out inside them and talk,

rather than work toward game goals [16]. In 1980, a few years after the breakout success

of Zork ([69], neé Dungeon), Richard Bartle and Roy Trubshaw released a text-based

multiplayer CRPG which gained so much popularity that its name, Multi-User Dungeon

(MUD), became a metonym for this burgeoning game genre18 [131].

From that time on, advances in computing technology permitted an ever-

increasing proportion of CRPGs to incorporate full-fledged graphical interfaces and

representations of game content. Today, in 2023, that proportion is nearly 100%, so

this section will be concered only with graphical CRPGs. 1981 saw the releases Wiz-

ardry [51] and Ultima [48]. Jimmy Maher, videogame historian and author of the Digital

Antiquarian blog, describes the magnitude of their influence:

[Wizardry and Ultima] stand as the archetypes for two broad approaches to

the CRPG that would mark the genre over the next decade and, arguably,

even right up to the present. The Ultima approach emphasizes the fictional

context: exploration, discovery, setting, and, eventually, story. Combat,

although never far from center stage, is relatively deemphasized, at least

in comparison with the Wizardry approach, which focuses on the process

18Note that Multi-User Dungeon was not the first MUD; dnd and other games were earlier [130, 131].

77

of adventuring above all else . . .

— Maher [101]

Countless other CRPGs could be considered historic developments, from Pool

of Radiance to Final Fantasy to Star Wars Galaxies19 [146, 153, 37]. Whether turn-

based or real-time, whether single-player or massively multiplayer, CRPGs today boast

beautiful graphics, enormous worlds, and hundreds of thousands of words of dialogue.

Furthermore, their mechanics (even when adapted for real-time play) are almost uni-

versally the unmistakable descendants of traditional RPG rulesets.

In almost all cases, CRPGs are unable to completely capture the open-endedness

of traditional RPGs. It may seem overly simplistic to sweep, into one bucket, nearly

50 years’ worth of games with dramatically different interfaces and levels of technical

sophistication. But lumping them all together is not without justification. As CRPGs

are encased in the computer20, i.e. fully mediated by computer processing, they almost

universally lack malleability.

3.4.2 Games with a GM Mode

There are outliers which blur the line between traditional RPGs and videogames.

Divinity: Original Sin 2 [159], Sword Coast Legends21 [116], and both Neverwinter

19For a full history of CRPGs, see [12].
20This apt term is from [13].
21A digression: In Sword Coast Legends’ GM mode, while the PCs explore a dungeon, the GM spends

“thread” — a resource invented for this game with no apparent antecedents in any edition of D&D —
to perform GM “moves” such as placing monsters and traps, or remove such elements which he has
already placed. Additionally, the GM gains thread when the PCs succeed, such as by killing monsters;
he loses thread when players fail, such as when a PC dies (and on a total party kill [TPK], all thread is
lost.) This attempt to gamify the practice of GMing is worthy of further study, perhaps in contrast to
how GMing is partially gamified by Powered by the Apocalypse game systems. For now, note that the

78

Nights games [15, 36] (henceforth DOS2, SCL, and NWN) can be played as single-

player CRPGs, but all of them also contain a multiplayer mode which repurposes the

single-player mode’s interfaces, assets, and mechanics for traditional-RPG-like play. In

this mode, a GM uses game assets to create an RPG adventure environment, then sets

up his copy of the game to work as a server. The players connect to the server from

within their own copies of the game, and can then explore whatever the GM has created

for them.

In all respects, these videogame GM modes are essentially VTTs with 3D

graphics. Their rules and taxonomic facts are not malleable at runtime, and while those

elements can be edited by a GM outside of normal gameplay, separate applications are

required for that task, and it requires substantial time and effort22

All that aside, GM-mode CRPGs are not devoid of innovation. Most notably,

Divinity: Original Sin 2 includes a system of “vignettes,” which are choices that pop

up on the player’s screens separately from the rest of the game interface (Figure 3.2.)

GMs can create vignettes on the fly and even link them together. This is a laudable

design of thread makes rigid assumptions about what it means to GM well. First, by punishing the GM
by taking away thread when a PC dies, Sword Coast Legends implies that PC death must be a failure
on the GM’s part. Second, making the GM spend thread to remove previously-placed elements implies
that the GM should stick with a dungeon design once it has been chosen. While that is commendable
as a way of upholding Principle 2, it also patronizes and straitjackets the GM by not allowing him
to correct mistakes, nor adapt the dungeon to changing circumstances (i.e. exercise malleability of
substantive facts.) The thread cost to remove existing dungeon elements sadly also precludes using a
certain total starting amount of thread to characterize the difficulty of a dungeon, which would have
been an interesting innovation beyond the entirely ad hoc “challenge rating” measure of individual
monster/threat difficulty (which has received little critical examination or revision in official editions of
D&D.)

22DOS2 comes with Divinity Engine 2, a standalone content-creation program with which GMs can
create textures, explorable levels, NPC models, new stat calculations, and even entire mods. Both NWN
games offer similarly full-fledged mod tools. SCL, to my knowledge, offers no modding capabilities
whatsoever.

79

Figure 3.2: A GM creates a vignette within Divinity: Original Sin 2. Source: [88].

exploration of a new UX paradigm for computer-augmented RPGs. Unfortunately,

vignettes have no interaction whatsoever with the rest of the game system; the GM

must manually carry out any effects which he intended the vignette to trigger.

Finally, there’s at least one game which offers a GM mode, but is outside the

realm of CRPGs proper: an unusual title called Sleep is Death ([135], hereafter SID.)

SID is played by exactly two players. One of the players perceives an explorable graphi-

cal environment, with objects, characters, and other interactive features. What’s unique

about SID is that the game world is controlled by the other player, the “Controller,”

who can not only edit and change the world, but also design new game elements for it

— all from within SID itself, using multiple graphical content-creation interfaces (Fig-

ure 3.3, Figure 3.4.) On the one hand, the parallel with players and GMs is obvious,

80

Figure 3.3: The SID Controller (analogous to a GM) works on a level. Source: [136].

and the support for substantive and taxonomic malleability is impressively thorough.

On the other hand, SID achieves its open-endedness by having no computer-mediated

game system whatsoever, instead foisting the creation and interpretation of any system

onto the GM. Nevertheless, its integration of game-design tools with a GM interface is

worthy of imitation by future RPG support software.

3.4.3 A Curious MUD

It is time to discuss an important subject mentioned in this section’s opening

paragraph. There exists a MUD with malleability rivaling that of a non-computer

RPG: 1990’s LambdaMOO [29]. Reed [129] summarizes its inventor’s stroke of genius

81

Figure 3.4: The SID Controller creates a new game object. Source: [137].

82

as follows:

[Original creator Stephen White] realized that for players to truly be cre-

ative in a virtual world, the power to make new rooms and objects wasn’t

enough. They would need the ability to create new rules and systems, too.

But that would require a true programming language capable of altering

the very world its user was immersed in, and a consistent ontol-

ogy allowing that world to be changed in a simple and consistent manner.

[W]hite decided to build a system where everything in the world—from

players, to items, to rooms, to the exits connecting those rooms—was

represented as an object that could be created or modified by special com-

mands.

— Reed [129], emphasis mine

Reed continues with a description of the commands available to any Lamb-

daMOO player, which could be used to reprogram the game world from inside itself :

For instance, a popular in-game coding tutorial would teach you how to

create your own pet rock. To program the ability to pet your pet rock,

you needed to type in three commands at the prompt: commands no

different, from the system’s perspective, than any other player

input like look or go north:

@verb rock:pet this none none rxd

@program rock:pet

player:tell("You pet the rock. Nothing happens."); .

83

The words this none none in the first line would define the speci-

fication of the pet verb from the rock’s perspective: it takes a single direct

object this (the rock) and no preposition or indirect object. rxd indicates

the verb is readable by others (anyone can pet the rock), callable by other

verbs like a function, and will show a traceback if its program crashes.

The dot at the end of the third line indicates the program being entered

is finished. A player might weave these instructions into a stream

of chatting with friends and interacting with the existing envi-

ronment: programming the world turned into just another fun-

damental part of existing within it.

— Reed [129], bold emphasis mine

While every player in LambdaMOO possessed such abilities, it’s easy to imag-

ine how, with some tweaking, this game could have formed the foundation of a digital

equivalent to the traditional RPG. Reed’s description of a LambdaMOO player seam-

lessly switching between design (reprogramming) and play (chat and world interaction)

is almost exactly analogous to the mix of behaviors exhibited by a GM running an RPG

session.

Given that LambdaMOO is the high-water mark for malleability in computer

games, it’s reasonable to ask whether LambdaMOO itself would be a good medium in

which to build a malleable roleplaying game. I believe the answer is no.

There are two ways in which one could use LambdaMOO to implement a mal-

leable RPG. The first is reshaping LambdaMOO itself into an RPG (whether from inside

84

the game or using an external editor.) This runs into problems almost immediately:

1. As a collaborative MMO of building and socializing, all LambdaMOO players have

access to the commands that can reshape the game’s reality. That might work for

a GMless RPG, but not for a GMed one, where player characters typically possess

well-defined limits on their ability to alter the game world. Furthermore, as a non-

graphical, parser-input MUD, the LambdaMOO interface would be considered

rather out of date by most gamers today. A textual interface would also be

less than ideal for traditional logistical gameplay (e.g. moving characters on a

battle map) and for novel user interfaces supporting non-traditional player goals

(e.g. choosing where to plant crops on a farm, or designing a PC’s house in a

Sims-like editor.)

2. LambdaMOO and RPGs impose different standards on how the passing of real-

world time relates to in-game time. Although player actions in LambdaMOO are

expressed as discrete commands, gameplay is more aptly called real-time than

turn-based, since players can act as fast as they can type. RPGs, in contrast,

need specify no fixed relation between real-world and game-world time. Some-

times gameplay is resolved in a turn-based fashion, with characters having limited

freedom of action in a given time span; at other times, an action might require

skipping forward by hours, weeks, or even larger chunks of in-game time. These

latter possibilities would be difficult to reconcile in LambdaMOO ’s real-time play.

3. It’s typical for the GM to confirm that players can actually take the actions

85

they have declared. When performing this responsibility, the GM is essentially

intervening between the declaration and the execution of an action. LambdaMOO

does not, to my knowledge, have a phase in its interpretation loop where the GM

could glance at submitted commands from players and accept or reject them.

There’s another approach which could be used to implement an RPG in terms

of LambdaMOO. Users implemented sophisticated simulation logic inside LambdaMOO,

as well as turn-based games like a functioning chess set [131]. One could conceivably

embed an RPG into LambdaMOO, using internal logic separate from LambdaMOO to

govern play, just as the chess set operates by the rules of chess. A user could log in

to LambdaMOO, find the room or object granting access to the RPG area, and then

“log in” to the RPG. This approach would effectively be using LambdaMOO as a user

interface to the game of interest, which seems problematic not only for the UI-related

reasons given above, but also, for the endless task of reconciling the LambdaMOO “host”

(however fluid) with the endlessly growing “client” codebase inside it. At some point,

it would become more rational to incorporate LambdaMOO-style malleability into a

different, purpose-built platform.

3.4.4 Observations

In general, videogames which include playstyles inspired by the traditional

RPG seem to offer more full-fledged editing tools than VTTs do. While these sometimes

suffer, like VTTs, from not integrating tools for malleability directly into the runtime-

accessible UI, there does generally seem to be more experimental interface work coming

86

from videogames than from VTTs.

My chief concern with using 3D action videogames as the basis for a malleable

RPG system is that 3D animated assets require substantially more design effort to create

than symbolic 2D assets. Without strong user-facing, runtime-accessible generative tools

to make up for that deficiency, I don’t think that future RPG augmentation work should

strive to offer realistic 3D representations of the game world. ROLEPLAYINGGAME

sticks to symbolic 2D representations of game world content, as VTTs do.

Finally, it’s hard to overstate how tantalizing I find the LambdaMOO approach

to world modeling and user interaction. Its inheritance from the interactive fiction tra-

dition gives it clear, understandable divisions between user commands and PC actions,

as well as between what I call rules and facts23. With ROLEPLAYINGGAME, I de-

signed an interactive-fiction-style command/action distinction to try and achieve the

same clarity in my own work. Finally, LambdaMOO ’s architecture and user-facing af-

fordances give it a level of malleability not seen before or since in any software of which

I am aware. This makes it an intensely important object of study for anyone looking to

translate RPG malleability into a digital environment.

3.5 Summary

My goal with this thesis is to offer an alternative to existing works which have

tried to capture aspects of the traditional RPG in a computer-mediated fashion. Having

23Rules which govern user commands and character actions are indeed attached to in-game items (the
existence of which I would call substantive facts.) But that is just a consequence of the LambdaMOO
implementation model; it doesn’t make it hard to tell what’s a fact and what’s a rule.

87

reviewed prior art from four areas of the multidimensional design space containing the

overlap between software and RPGs, I’ve identified gaps in all four of those areas with

regard to supporting malleable system redesign, as well as assisting players and GMs

with comprehending complex game states. In the next chapter, I’ll synthesize some of

the observations I’ve made throughout the present chapter into a set of design goals

for RPG augmentation software. These design goals stake out a section of design space

which has not been heavily explored by the overarching categories of prior art seen in

this chapter.

88

Chapter 4

Speculative Design Goals for

Computer-Augmented,

High-DCG RPGs

The works reviewed in Chapter 3 contain implementation decisions and as-

sumptions about game system content making them unsuitable as a foundation upon

which to build towards this goal. For that reason, this thesis’s technological contribution

to the literature — the ROLEPLAYINGGAME software system detailed in Chapter 5

— is standalone, rather than an extension or plugin for existing RPG-support software.

That’s not to say that those systems are bad or wrong. Furthermore, although

those related works can’t provide me with a starting point for software development,

they still offer both a background against which to contrast the precise ways in which

ROLEPLAYINGGAME is novel, and an ecosystem of design decisions which can be

89

investigated and potentially applied to ROLEPLAYINGGAME. As such, I will ground

my discussion of specific system architecture and user interface concerns in the features

and characteristics of the work presented in Chapter 3. This also ensures that ROLE-

PLAYINGGAME can properly be called a response to those works of prior art, rather

than just an idiosyncratic invention.

In this chapter, I consider desirable properties of a hypothetical hybrid sys-

tem for playing, GMing, and designing RPGS that are malleable and high-DCG. After

proposing each property, I give examples of related works that possess or lack it. Then,

I discuss how the decision to endow a system with that property might constrain the im-

plementation of said system. While developing ROLEPLAYINGGAME, although there

were limits on how much I could do as a master’s student working solo on experimental

software, I tried to include as many of these properties as I could.

For brevity’s sake, throughout this chapter I use “a new application” to mean

“a new computational system for supporting the play and design of malleable, high-DCG

RPGs.”

4.1 Five Goals

A. A new application should require a minimal amount of contingent hard-

ware, ideally no more than the computers used to run and access it.

If a new application requires hardware beyond the computer(s) used to run

and access it, the aspects of the new application which use that hardware will be less

90

amenable to malleability.

A software application can not only exhibit many behaviors, but also alter

its behavior over time, whether by modifying its own source code or input data, or by

responding to external inputs like user commands. As a medium of expression, software

is therefore uniquely suited to representing, or recreating, the malleability of RPGs. The

more non-software ”material” which is used in the construction of a new application,

the more constraints must be imposed on the game designs which can be realized with

that application.

For example, consider a system which tracks the movements of game characters

by using a scanner to read RFID tags attached to plastic miniatures. Game scenarios

played using this system would only be able to contain as many characters as the users

have RFID tags, and manufacturing additional RFID tags can hardly be done at the

drop of a hat.

The difficulty of manufacturing additional RFID tags is an instance of a more

general problem with contingent hardware, which is that every piece of special-purpose

hardware used in a new application increases the authoring burden of developing new

game content, and therefore limits the ability of a GM to exercise malleability on the

fly. For example, even if the STARS system software were changed to offer game-system

malleability, a GM designing game content on the fly would have to consider how that

content interacted with such hardware peripherals as the object-tracking camera and

the player headsets.

Finally, sticking to software, and the familiar interfaces of the personal com-

91

puter, ensures that a new system can reach the largest possible audience. For commercial

systems, the software-only approach also minimizes the system’s cost to end users, as a

system requiring idiosyncratic hardware would have to include in its sale price both the

direct cost of hardware development, and the indirect cost of the longer development

period needed to make software and hardware work in unison.

B. A new application should retain the malleability of traditional RPG play.

Therefore, it should computationally model both facts and rules.

If a new application is to allow for malleability, it must enable GMs to (re)design

rules and facts during play. A system with the ability to receive alterations to rules and

both kinds of facts would be critical to supporting Principle 1. to permitting players to

declare actions that don’t yet have code implementations (because the GM could then

either implement those actions on the fly, or manually enact the appropriate changes to

game world state, i.e. substantive facts.)

Given the unusual degree of user-driven flexibility that such software would

possess, attempting to achieve malleable RPG play in computerized form will concomi-

tantly require addressing issues such as how rules and facts should be stored; whether

and how rules and facts should be versioned (so that they can be rolled back to previ-

ous states); and what UI affordances1 will best allow GMs to quickly and easily exercise

malleability.

I showed in Chapter 3 that non-VTT RPG support tools don’t computerize

1As one of the participants in the user study put it, developing user interfaces for the design and
play of malleable, high-DCG malleable RPGs is a juicy HCI problem. I couldn’t agree more. A whole
thesis could be spent just on characterizing that problem, much less solving it.

92

rules as executable procedures, and usually don’t store facts in a machine-manipulable

format, either. While campaign managers and worldbuilding wikis have advantages2

over pencil-and-paper notes and rulebooks, they are still limited to representing rules

and facts as prose.

By contrast, VTTs and GM-mode videogames do computerize game rules and

game facts. These applications also generally offer malleability for substantive facts,

allowing such actions as placing a new NPC or altering the values of a PC’s stats.

However, even for the smaller population of videogames and VTTs which allow users

to add packages of custom rules and taxonomic facts, the GM must design such content

outside normal gameplay3, and load it before the program launches. As such, even state-

of-the-art systems from these two fields cannot be said to support runtime malleability

of rules or taxonomic facts.

C. A new application should make minimal assumptions about, or imposi-

tions on, the domain model of a game system.

Taking Foundry as representative of VTTs, apart from bookkeeping activities

like managing character inventories or creating new PCs, it can only support game

scenarios dealing with precise placements of in-game physical entities (e.g. characters,

items, walls, doors) for the purpose of movement, exploration, and combat on a tactical-

scale map. A look at the Foundry documentation shows that its notion of a game system

consists of character sheet templates, visual assets (e.g. battlemap tokens), and a bundle

2Such as infinite writing space, full-text search, and easier, faster storing and sharing of game content.
3In the case of VTTs, this design work may even take place in an entirely separate program. For

instance, a GM who writes code or creates map tokens for a VTT extension will do so in a text editor,
like Visual Studio Code, or an image editor, like Photoshop.

93

of JavaScript code that defines game rules (as well as the functionality of numerous UI

components.) There’s nowhere to include or define concepts (taxonomic facts) for other

types of gameplay which might credibly be included in an RPG.

For instance, some dedicated soul would have to create a truly elaborate ex-

tension for Foundry to offer a wargaming interface where masses of characters can be

moved at once, or where a single unit on the battlemap represents a number of dis-

tinct characters. And the implementation of that extension would be an endless uphill

battle against Foundry’s presupposition that RPG support can be reduced to character

bookkeeping and single-character-scale battlemap scenarios.

All of this shows that a game run under Principle 1 will find Foundry to be of

little use outside its core use cases. Even if that game’s GM generally prefers to reuse

existing taxonomic facts (e.g. character stats, or types of dice roll) when modeling a new

aspect of gameplay, Foundry’s runtime capabilities at best allow him to create a dice

roll macro drawing on certain stats from an input character. He can’t declare a new

rule which participates in all the other operations of the VTT, just like the rules loaded

in at startup time. Nor can he invent and name a new stat which, for each character,

should take on a value derived from two existing stats. He can’t create a new action

for characters to take, and he can’t add a new attribute to all existing sword items plus

the data template which defines default stats of newly-created swords.

In summary, VTT and videogame domain models are rigid, and rigidity pre-

cludes malleability. I understand that the creators of an app must make a firm decision

about what domain it operates in, lest development come to a standstill under the

94

weight of a thousand wild ideas. But, as it stands today, the fact that VTTs (and

GM-mode videogames) impose a rigid domain model ensures that they cannot hope to

computationally support traditional-RPG malleability.

These domain-model limitations have engendered a state of affairs where, for

instance, all third-party game systems available for Foundry [45] replicate pre-existing

RPGs, such as D&D, which were designed under the constraints of traditional tabletop

play4. Their rules have been ported wholesale into Foundry-compatible JavaScript,

but they don’t have any game mechanics which could only executed by a computer.

A hypothetical lightweight VTT, or even an image-drawing program, could be used

to support many kinds of gameplay: one might declare that a particular battlemap

represented the layout of a player’s house, or the goods available at a store. But,

without explicit modeling of rules and facts, the computer could not be used to make

high-DCG gameplay feasible.

D. A new application should enhance users’ thinking about the current game

scenario, rather than draw attention away from it.

Bergström and Björk [13] make good points about players of computer-mediated

games attending more to their computer interfaces than to the game. I’ve noticed this

tendency myself ever since I began augmenting my RPG play with computer systems.

Even an ordinary wiki which stores images or rule text can distract players to such a

4Around February 2023, I remember seeing exactly two Foundry-compatible game systems which
were not pre-existing RPG rulesets. One doesn’t count because it wasn’t actually a game system: it
turned Foundry into a tool for designing character sheets. The other, however, was someone’s own
personal RPG. That would put the lie to my claim of “all,” above, but at time of writing, I can’t find
that personal game system listed at the Foundry Community Extensions link anymore.

95

degree that other participants must nudge them back into the game session.

However, part of the appeal of computational interfaces for complex games

is that the computer can provide information-dense, automatically-updated displays of

game state. Furthermore, one of my goals is to enable designers to increase the DCG

of their game systems. Thus, accepting a software-mediated player view of the game

world (or more generally, a software-mediated RPG) seems unavoidable. Given those

considerations, a new application should explore how software-mediated play interfaces

can foster immersion and comprehension, rather than distraction.

E. A new application should prioritize co-located play.

Years of GM experience have trained me to pay attention to players’ emotions,

facial expressions, tones of voice, and body language. Gauging players’ moods and stress

levels is critical for, among other things, determining whether to press them with more

challenges or let them recover for a while. I don’t think it’s feasible to meaningfully

monitor and manage players over video chat, where each participant is reduced to a

low-resolution face, and some amount of lag is unavoidable.

4.2 Summary

This chapter has presented key design criteria that, when taken together, pick

out a portion of the design space of RPG augmentation software which has, to date,

fostered little or no activity. In the next chapter, I discuss the design, implementation,

and features of ROLEPLAYINGGAME, an app within that area of design space.

96

Chapter 5

The ROLEPLAYINGGAME System

In this chapter, I present ROLEPLAYINGGAME, a prototype software system

for RPG design and play. It possesses properties from the previous chapter which I ar-

gued would be key for supporting high-DCG, malleable gaming operating on Principles

1 and 2. This chapter begins by discussing key ROLEPLAYINGGAME implementation

details, as well as important decisions during the development process. Next, I showcase

ROLEPLAYINGGAME’s support for malleability of rules, taxonomic facts, and sub-

stantive facts. After that, I give the reader a tour of ROLEPLAYINGGAME’s major

user interface components, showing how a fully computer-mediated system can not only

enhance traditional aspects of RPGs with affordances not achievable via analog tools,

but also expand the set of tasks and activities that can feasibly take place at playtime.

As a master’s student working solo1, I had to accept limits on what features

1Of course, throughout my thesis year I received valuable guidance from my thesis advisors, and
advice from several other people; however, I was the only person who worked on actually designing and
implementing ROLEPLAYINGGAME.

97

I could develop in the development time available for my thesis project (approximately

ten months.) Despite this, I believe ROLEPLAYINGGAME represents an advance in

the fields of RPG support and human/computer hybrid systems, and offers capabilities

which are novel for the field of RPG support software systems.

5.1 Features Which Were Out of Scope

A computer-augmented RPG system suitable for use by a real gaming group

should certainly include some form of character sheet and tactical battle map. To

provide evidence that achieving ROLEPLAYINGGAME’s novel features didn’t require

abandoning the familiar features of existing systems, I implemented minimal versions

of a character sheet (Subsection 5.5.9) and a battle map (Subsection 5.5.6). Thereafter,

I left the character sheet alone, and only added to the battle map when that additon

would supporting novel capabilities.

There are a number of beneficial user experience (UX) or “quality of life”

(QOL) features which would be desirable in a fully-fledged system, but which I did not

pursue for ROLEPLAYINGGAME. For instance, I didn’t implement drag-and-drop

interactivity for placing items into inventories, or moving characters around. Drag-and-

drop support would be an unskippable step in giving a production system an intuitive

and familiar UX — but, precisely because it is familiar, implementing it would not be

research, only ordinary software engineering. I’ll return to the subject of desirable QOL

features in Section 7.3.

98

5.2 Implementation Details

5.2.1 Language and Architecture

ROLEPLAYINGGAME is written in Clojure, a language in the Lisp fam-

ily [64]. One reason for choosing Clojure was that, as a hosted language, it has compilers

targeting both the Java Virtual Machine (JVM) and JavaScript2; this means that much

of the source code written for the JVM backend of an application can be reused in a

JavaScript frontend3. This was vital for avoiding duplication of code used to handle

key game concepts like rules. Another key benefit of using a Lisp is that the GM can

connect a REPL to a running instance of ROLEPLAYINGGAME, allowing him to ex-

ecute arbitrary queries and commands against game state when the UI is not sufficient

for his needs4. This capability came in handy countless times during development; it

seems likely to be both useful and necessary for handling the unexpected questions and

scenarios which arise so often in play.

ROLEPLAYINGGAME uses a client-server architecture. Given the design

goal of co-located play, the GM is expected to run the server on his computer, and

both the players and the GM are expected to interact with it using laptop computers.

2Since the JVM-hosted Clojure differs in some respects from the JavaScript-hosted one, the latter is
referred to as ClojureScript (CLJS).

3In ROLEPLAYINGGAME’s case, the 4,636-line codebase contains only 43 “reader conditionals,”
which are instructions to evaluate an expression differently (or not at all) depending on whether the
JVM or JavaScript compiler is being used. 18 of those are trivial, e.g. loading a library which is named
differently in its Clojure and CLJS versions; the other 24 are mostly deployed to prevent the CLJS
compiler from loading back-end functionality which the front-end won’t need. If each reader conditional
guards an average of 15 lines of source code, then 4, 636 − 360 = 4, 276 lines are reusable across both
host languages — 92% of the codebase.

4Since the frontend client was implemented in ClojureScript, a REPL could be attached to that
separately; this would be useful for testing display or visualization subroutines which are only available
in the frontend codebase.

99

ROLEPLAYINGGAME provides a web-based GUI client, which changes its appearance

and affordances based on whether the logged-in user is the GM or a player. The web

client is implemented using ReactJS [183] to efficiently re-render the UI in response to

game state changes which are sent from the server to the client5.

This thesis was written with respect to the ROLEPLAYINGGAME codebase

as of May 2023. The code is not currently open-source or otherwise publicly available.

5.2.2 Key Implementation-Level Concepts

The key abstractions used in ROLEPLAYINGGAME are game state, kinds,

commands, actions, rules, and events.

Game state is the heart of ROLEPLAYINGGAME. It consists of a large

key-value map which contains all the code and data to define both the current status

of both the game world (substantive facts) and the game system (rules and taxonomic

facts, e.g. “what actions are possible and how do they function?”) The world and the

system are themselves deeply nested key-value maps. Outside both those maps, but

still inside game state, is player data, consisting of each player’s name, ID, available

characters, and active character.

During gameplay, game state is contained in a Clojure “atom,” a wrapper

data structure which automatically enforces safe, concurrent multi-threaded read/write

access to the underlying primitive or compound type. Manipulating an atom is faster

than manipulating a database since atoms are in-memory structures, but game state

5The ReactJS was not written directly, but was instead compiled from ClojureScript expressions via
the Re-frame library [173].

100

must be stored in a database for persistent storage between play sessions. ROLE-

PLAYINGGAME automatically performs a database-to-atom loading operation during

startup, and does the opposite during shutdown.

Commands, listed in Table 5.1, are operations performed by players or the

GM6. Most commands are “exposed,” i.e. directly usable by an end user; the few outliers

exist to simplify implementing other user-facing commands which offer a better UX7. At

time of writing, all commands alter game state; future work could add ones that don’t,

for tasks like setting user preferences (e.g. toggling between light and dark display

themes.) Players have access to only one command, take-action , with which they

issue an action for their active PC; the other parts of the player GUI provide information

with which players decide what actions to take next8. The GM has access to about a

dozen commands, which expose useful manipulations of game state without regard for

rules. GM commands disregard rules for several reasons:

1. Malleability requires that the GM be able to create or edit rules at runtime; if

commands are able to alter rules, they must exist “outside” the rules.

2. Rules are only intended to apply to character action. How the GM manipulates

and extends the world during play is a matter of his taste as a game designer.

6While this list would be insufficient to run a real game using ROLEPLAYINGGAME, it’s enough
to demonstrate the generality and extensibility of this approach.

7For instance, if activate-rule and deactivate-rule were directly exposed to a user, he would
have to know whether the rule was currently active before choosing to use the former or the latter.
That imposes unnecessary cognitive burden on the user, and addressing that burden would force me to
build an interface component outside the sidebar just to visualize rule status. To avoid both issues, I
implemented the higher-level command toggle-rule in terms of those lower-level ones. Then, in the

GM sidebar, I gave toggle-rule an idiosyncratic UI which displays the status of all rules at a glance,

and allows toggling them on or off with one click.
8See Subsection 5.5.1 and onward for user interface screenshots.

101

Name Exposed? Description

activate-rule no
Activate an inactive rule, imposing an additional
constraint on character actions.

add-coord-based-flavortext yes Enhance a zone hex with differential display text.

create-npc yes Make a new NPC and adds it to the game world.

deactivate-rule no
Deactivate an active rule, removing a constraint
on character actions.

define-race yes
Add a character race to the game system’s
domain model (i.e. its taxonomic facts.)

define-rule yes Add a rule to the game system.

describe-npc yes
Generate a 2nd-person description (“you see...”)
hinting at an NPC’s stats, using a custom
ChatGPT prompt.

dislocate yes
Set entity’s :location attribute to nil,
meaning its precise location is undetermined.

equip yes
Put an item into a character’s equipment slot,
e.g. :left-hand.

give-item yes Place an item into a character’s inventory.

relocate yes Move an entity to a location.

take-action yes

Order a character to take an action. This is the
only command available to players. The GM can
use it to act as an NPC without violating the
active rules.

toggle-rule yes
Activate a rule if it’s currently inactive, and
vice versa.

unequip-by-id yes
If the item with a given ID is in any of a given
character’s equipment slots, remove it (but leave it
in their inventory).

unequip-by-slot yes
Empty a particular equipment slot of a specified
character.

ungive-item yes Remove an item from a character’s inventory.

Table 5.1: User commands in ROLEPLAYINGGAME. In running text, commands link
back to this table, and are highlighted (e.g. toggle-rule) to distinguish them from

actions.

102

3. When a GM declares that an NPC is taking action, he uses take-action on

that NPC, just as a player does for her PC. This ensures that rules apply equally

to PCs and NPCs. In cases where the appropriate action is not yet implemented,

ideally the GM would exercise malleability by using a command to add that action

to the system, then having the NPC take that newly created action. However,

there is not yet a command to add an action; furthermore, some actions would be

infeasible to code in real time. In those case, the GM can still use commands to

edit the world as if that action were available, as long as he takes care to manually

make all necessary game-state changes9.

Actions, listed in Table 5.2, are in-world activities carried out by a PC or

NPC. The availability of a given action for a given character depends on the current game

state10. For instance, the pick-up action is only available when the character has a free

hand and is positioned next to an item. The connections between action availability and

the current game state are established by rules. Each rule definition declares a predicate

function implementing a concrete implementation of Boolean-valued statements like

“has a free hand” or “is positioned next to an item.” Each action specification, in turn,

declares which rules govern its own availability, and how the action’s parameters should

be passed as arguments to those rules’ predicate functions.

The arguments and effects of each command and action are defined by a cor-

responding “interpretation function.” When a user issues a command with a chosen set

9Making it easy for the GM to take care of all the details of these exceptional cases is a UI-design
and system-architecture challenge, one which I didn’t have time to try characterizing or solving during
the development of ROLEPLAYINGGAME.

10See Subsection 5.5.1 for screenshots of the player UI for selecting actions.

103

Name Description

buy Purchase an item from a location that has a market.

move Move between hex coordinates in a zone.

pick-up Pick up a nearby item.

Table 5.2: Character actions in ROLEPLAYINGGAME. In running text, actions link
back to this table, and are highlighted (e.g. move) to distinguish them from commands.

of arguments from his or her GUI, the ROLEPLAYINGGAME server re-validates the

command11. Assuming the validation check passes, the server executes the command’s

interpretation function, which processes the input arguments and returns a sequence of

events12.

Events are data structures specifying minimal meaningful changes which can

be made to the world. Just as each command has an interpretation function, each event

has an update function, which alters game state when executed.

Kinds are the categories of game world content which an instance of ROLE-

PLAYINGGAME can process13. Every piece of game world content in ROLEPLAY-

INGGAME is represented as a key-value map. Each such map must at minimum contain

the :kind attribute, the value of which must be one of the kinds defined by the game

system14.

ROLEPLAYINGGAME’s kinds are arranged in a hierarchy (concretely, a key-

11This is standard practice in web development to guard against malicious or broken clients that send
incorrect data.

12The interpretation function for the take-action command treats its first argument as the name of
an action, and passes remaining command arguments down to that action’s interpretation function —
which processes the arguments and returns a sequence of events. The parallels between action processing
and command processing are deliberate.

13The term “kind” here has no relation to the concept of “kinds” in programming language theory’s
study of type systems.

14Using maps where other languages might use objects or structures, and including a key-value pair
identifying what domain-specific content the map holds, are both standard Clojure practices.

104

value map) which can be used to determine whether one kind is considered a child

of another15. Both the set of allowable kinds, and the relations between them, are

instances of taxonomic facts in a game’s design; accordingly, these are included in the

game system portion of game state16.

5.3 Game World Content

Having discussed how kinds are implemented, I can now explain the kind

hierarchy, the members of which equate to the types of game world content that ROLE-

PLAYINGGAME can process and represent. Kinds can be abstract (never directly in-

stantiated) or concrete (directy instantiated.) The most fundamental kinds supported

by ROLEPLAYINGGAME are entities, trade goods, and locations.

Entity is an abstract kind. It has one concrete subkind, item, and one abstract

subkind, character. The intended distinction between items and characters is that

items are generally inanimate and characters are generally animate17. The character

kind is divided into two concrete subkinds, PC and NPC.

A trade good is not an individual item existing in the world. Rather, it is

a template of the attributes, including the price, of one type of ideal, brand-new item

being sold at an in-game market, such as a sword, a cake, a glass jar, or a bucket of blue

15Clojure’s notions of hierarchy and inheritance are similar to those of OOP, save that (a) hierarchical
relations can be defined between heterogeneous values (e.g. keywords or strings), not just between OOP
classes; and (b) programmers can freely create new hierarchies, with each embodying a different set of
child-parent relations.

16At present, no ROLEPLAYINGGAME features exercise the malleability of the kind hierarchy. I
spent a little time on it anyway in the hopes of laying a foundation for future work.

17I say “generally” because these divisions might not hold up in a fantasy-game context.

105

paint. When a character takes the buy action on a trade good, a new piece of content

(i.e. key-value map) is created to represent the actual thing existing in the world. That

key-value map has :kind set to :item, but otherwise inherits many of the trade good’s

attributes.

ROLEPLAYINGGAME distinguishes between an item template (i.e. trade

good) and a particular in-game item created from that template because I have done

extensive prior work on a generative economy system for my personal game system

(see Subsection 2.7.2.) ROLEPLAYINGGAME partially integrates with that economy

system by reading its output database during startup; for more on that, see Subsec-

tion 5.5.8.

Finally, virtually all game systems need a way to play out precise character-

scale movement, but otherwise games vary widely in the level of detail assigned areas of

the game world not used for that purpose. As such, ROLEPLAYINGGAME provides

two concrete types that a GM can mix together to represent broad and specific areas of

his game world. These are locations and their subtype, zones.

All of the locations and zones in the game world together form the location

tree (see Subsection 5.5.4.) Zones are leaves in that tree. They represent areas of the

game world with a known extent, and which are suitable for character-scale movement

and positioning. As such, zones are ROLEPLAYINGGAME’s equivalent to battlemaps.

Locations are non-leaf nodes in the location tree. They represent areas of

the game world which are large enough that the game system is insensitive to their

precise extent. Zones can serve as battlemaps for precise positioning because they are

106

subdivided into hexes: cells representing character-sized chunks of 2D terrain. Thus,

when a character is in a zone, or when the GM is viewing a zone, that zone can be

rendered in a battlemap-style display.

ROLEPLAYINGGAME distinguishes locations and zones to demonstrate how

a platform could support game systems with radically different approaches to modeling

game-world space. A “globetrotting spies” game system might start with a “Planet

Earth” location, with the GM then adding locations for countries, provinces, cities,

and buildings, and zones for individual floors in a building. A storytelling system

about Chinese rural migrants might only need “Beijing” and “The Countryside” as two

distinct locations, with no zones whatsoever because precise character movement is not

part of the game system. A game setting consisting of a single apartment building might

have one top-level “Building” location for bookkeeping purposes, with zones for each

apartment — or it might have locations for each floor of the building, with the central

hallways and the apartments on each floor being zone children of the floor location.

ROLEPLAYINGGAME can handle all these cases.

5.4 Features Supporting Malleability

5.4.1 Malleability of Substantive Facts

Malleability of substantive facts is fairly common across VTTs and RPG sup-

port software. I included this feature in ROLEPLAYINGGAME to show that imple-

menting novel features did not preclude the addition of standard ones.

107

The GM has several commands at his disposal for manipulating substantive

facts. For instance, he can relocate entities to different locations in the game world.

He can also dislocate them, which keeps them in the game world, but without a

specified location. This is useful for preparing entities to be used at a future time, and

for modeling the fact that an entity is no longer present in a location without forcing

the GM to make an up-front decision about exactly where the entity went.

With the create-npc command, the GM can insert new non-player charac-

ters into the world, i.e. he can add one kind of substantive fact. He can also put items

into characters’ inventories with give-item , and place items into characters’ equip-

ment slots with equip ; both of these have counterparts that do the opposite. Finally,

the GM can use add-coord-based-flavortext add descriptions which become visible

to players if they move to certain parts of the game world (see Subsection 5.5.2, below.)

5.4.2 Malleability of Taxonomic Facts

As a proof of concept, I implemented a command which allows the GM to

expand the game system’s domain model at runtime. With define-race , the GM can

add a new race (i.e. species) of characters to the game world. In terms of DCG, this

increases the game system’s granularity, because it expands the range of legal values for

the :race attribute of characters. The design of define-race could be reused for other

commands, each of which would make a new aspect of a ROLEPLAYINGGAME-based

game system malleable. See Section 7.3 for more.

108

5.4.3 Malleability of Rules

The GM can suspend or resume the automated checking of particular game

rules, with corresponding changes in action availability being immediately apparent to

the players. For instance, Figure 5.1 shows a player’s UI after choosing the move action.

She can now click on the specific hex to which she wishes to move her PC; green hexes are

valid choices, and gray ones are not, as determined by the evaluation of one of the rules

governing the move action. If the GM uses his toggle-rule command to switch

off the rule-governing PC movement speed (Figure 5.2), the player’s UI immediately

changes to show every non-occupied hex as green (Figure 5.3.)

It is also possible for the GM to add new rules at runtime, using the define-rule

command. The current implementation requires the GM to type in Clojure code, which

will be converted into a string, sent to the server, and evaluated to create the body of

the new rule’s predicate function18.

5.5 Functionality and Design of User Interfaces

5.5.1 Core UI Elements

ROLEPLAYINGGAME’s GM and player UIs are divided into three elements:

the sidebar, the main area, and the navbar, the most important part of which is the tab

selector (Figure 5.4.) Each tab surfaces a different set of facts from the current game

state. Because this information is presented or visualized in the UI’s main area, what

18See Section 7.3 for discussion of potential improvements to this paradigm.

109

Figure 5.1: After picking the move action, this PC can click any of the green hexes to
fill the “coord” parameter shown in the sidebar.

110

Figure 5.2: The GM uses toggle-rule to see the rules governing each action. From

here, he deactivates the one called within-movement-range? (at bottom.)

111

Figure 5.3: Once the GM has deactivated within-movement-range?, the PC’s UI will
update to show all non-occupied hexes as green (i.e. targetable.)

112

Figure 5.4: The GM’s UI in ROLEPLAYINGGAME, with the nav bar and tab selector
at top, sidebar at left, and main area at right.

is seen in the main area changes from tab to tab. The sidebar, however, stays the same

regardless of what tab is open. The sidebar is used while deciding what command19 to

take next, and what parameters to pass to that command. Because the sidebar retains

state across tabs, a user can gather information from multiple tabs while deciding what

to do next. She can also change her mind about what command to issue without losing

the work she put into picking parameters. Parameters specified for command X will be

retained even if she switches to picking parameters for command Y, so if she switches

back to command X, her previous parameter choices will appear.

While the sidebar offers drop-down menus to choose commands and their pa-

rameter values, one of the key functions of the main area for each tab is to visualize

clickable elements that can be used to populate the the sidebar’s menus. Choosing a

parameter in this way, or changing to a different parameter, is faster than selecting

19The sidebar works exactly the same for actions as for commands; for simplicity, throughout this
subsection I say “command” rather than “command or action.”

113

from the dropdown menus. It’s also more intuitive for the user because he or she can

directly interact with the visualized ROLEPLAYINGGAME entities; in a dropdown,

by contrast, a richly-detailed entity object must be reduced to a textual name or de-

scription20. The dropdown menus serve as a fallback option for selecting entities not

being visualized by any of the tabs. For instance, the GM can use the dropdowns to

select and operate on a character which can’t be interacted with in a visualized location

because the character has has been dislocated , i.e. had its :position attribute set

to nil.

The information display in a tab’s main area is sensitive to parameters that

have already been chosen for a particular command or action. For instance, as covered in

Subsection 5.4.3, when a PC or NPC has selected the move action while in a zone, the

hexes which are valid movement targets will light up with a gently-pulsing green, while

the others dim to gray. The valid values for a command or action’s yet-unchosen pa-

rameters are also dependent (where appropriate) on the already-chosen parameters. For

instance, when the GM selects the equip command (Figure 5.5), the possible choices

for the slot parameter will depend on which character is to receive the item (Fig-

ure 5.6) because characters don’t necessarily possess the same equipment slots: perhaps

one character has lost a hand, for instance.

20This might be improved with extensive customization of the HTML <select> tag that creates the
dropdowns, or a JavaScript replacement of the same.

114

Figure 5.5: Before choosing a character with whom to equip an item, the slot pa-

rameter cannot yet be chosen.

Figure 5.6: After the GM has chosen a character for the actor parameter, that charac-
ter’s valid choices for the slot parameter automatically become available in the corre-
sponding dropdown menu.

115

5.5.2 Differential Display

Differential display is a means of displaying information only to players

whose characters have particular stats, skills, or sensory capabilities21. It is intended

to immerse the player in the experience of being a character that’s quantitatively and

qualitatively different from the other characters; foster cooperation between players;

and encourage players to attend to the game UI instead of getting distracted by other

computer apps. The GM can add information (and predicates which must be satisfied

to display it) to items, locations, and specific coordinate hexes within zones. At present,

differential display only works by adding information; it can’t take anything away.

Figure 5.7 and Figure 5.8 demonstrate the appearance of differential display

text in a player’s UI. The former shows a section of the main area of the explore tab, as

seen by a player named Alice, whose PC is Arvak (top left.) The italicized text is the

GM’s pre-written description of Arvak’s location, the Cavern. Some of the italicized text

is also highlighted, and this highlighting indicates the presence of differential display.

Alice can only see that portion of the Cavern’s description because her PC has some

particular attribute or characteristic22. Compare this with Figure 5.8, in which a second

player’s UI does not show the information which was displayed (and highlighted) for the

first player. It’s up to Alice to communicate this information to the rest of her party.

21The term I originally used instead of differential display was “quality-based rendering,” after one
of its inspirations, “quality-based narrative.” Quality-based narrative is a mechanism for interactive
narrative systems which allows player access to chunks of a story only if the game state or character state
matches certain predicates. Emily Short says [144] that the term was coined by Failbetter Games (the
developers of Fallen London [43].) It has since been adopted by industry and academia for discussions
of interactive narrative systems — though [144] also notes that Failbetter has ceased use of the term,
since it seems to imply that other kinds of narrative structure are low-quality.

22In this case, it’s because Arvak has points in the Beast Hunter skill.

116

Figure 5.7: Alice (as Arvak) is on the Explore tab, viewing the Cavern zone. She sees
bonus information (highlighted in yellow) through differential display.

Figure 5.8: Birimor is also in the Cavern, but his player, Bob, doesn’t see the bonus
text that Alice saw as Arvak.

117

5.5.3 GM’s Inspector

The GM’s sidebar contains an area called the Inspector. This is a quick-

access menu to which the GM can “pin” entities which he plans to interact with soon.

With the Inspector, the GM can rapidly switch up the parameters he wants to use for a

given command. Throughout the ROLEPLAYINGGAME interface, on-hover highlight-

ing (Figure 5.9) is used to indicate UI elements that are interactive23. When the GM

clicks a UI element representing a game object, it gets pinned to the Inspector (Fig-

ure 5.10.) From there, the GM can view all the command parameters which accept

that object’s kind; parameter names here and in the upper area of the GM sidebar are

colored with the same hashing algorithm to aid in visual identification. (Figure 5.11.)

Clicking a parameter listing will both make that command active in the GM’s sidebar,

and set that parameter to the object in question (Figure 5.12.).

5.5.4 Game World Tab

The GM’s Game World tab shows him the containment relations between

larger and smaller locations, and enables him to to view any of the game world’s locations

and zones. Of particular importance is the fact that the code which renders a zone

on this tab is almost identical to the code that renders a zone for players on their

explore tab. This is useful to the GM in several ways: it ensures that he can easily

add PCs and other zone contents to his Inspector; it allows him to observe the PCs

as they take actions within the zone; and it makes it convenient to pick a coordinate

23This convention is not used when interactivity is obvious from the element type alone, e.g. buttons
and hyperlinks.

118

Figure 5.9: The GM is hovering his mouse pointer (not shown) over Arvak, causing
that PC’s battle map avatar to glow purple (bottom right.) This indicates interactable
content.

119

Figure 5.10: After the GM clicks Arvak, his name appears in the Inspector (at left.)

120

Figure 5.11: Clicking Arvak’s entry in the Inspector shows the GM every command that
can operate on a PC, and what parameter the PC would fill for that command. Each
item in this list is interactive, and will highlight in purple when hovered (not shown.)

121

Figure 5.12: The GM clicks the item for relocate . This sets the GM’s sidebar to
begin specifying that command, and fills in Arvak as the target-entity parameter.

122

Figure 5.13: The GM views a location, Murkwood, in his Game World tab. Notice the
button which allows him to relocate all PCs to this location.

for the add-coord-based-flavortext command, with which the GM can author new

differential-display text on the fly.

5.5.5 Gallery Tab

The Gallery is a tab on which the GM can view substantive facts, i.e. entities

or locations (and subtypes of both) that have been declared to exist in the game world.

The visualization in this tab is merely a placeholder: at-a-glance display of entity or

location attributes would be desirable. However, at present the Gallery does allow the

GM to switch between different kinds of substantive facts, and clicking on one will add

it to his Inspector.

123

Figure 5.14: The GM views a zone, Cavern, in his Game World tab.

Figure 5.15: The GM views locations on the Gallery tab. Zones are colored in red.

124

5.5.6 Explore Tab

The Explore tab (see Figure 5.7–Figure 5.8) represents a PC’s immediate sur-

roundings, i.e. the location or zone named by her :position attribute. PCs, items, and

NPCs in the same location are visible to her on this tab, as are hex coordinates if the

location is a zone. The Explore tab is most useful when players wish to move around

inside a zone, traveling from hex to hex with the move action.

5.5.7 Social Inventory Tab

The Social Inventory tab (Figure 5.16) displays what each PC is carrying. It’s

called “social” because each PC (and the GM) can see the whole party’s possessions.

This design is intended to model the familiarity that each PC would have with each

other, and with each other’s possessions, after much time spent adventuring together24.

This tab does more than just visualize possessions, however. It also offers

information-retrieval functionality which addresses a complaint raised by players in my

home campaign. My players use Excel spreadsheets to track their PCs’ inventories,

but they felt that searching those spreadsheets was error-prone and time-consuming.

For instance, finding out whether someone in the party had a particular item required

getting everyone’s attention to do a party-wide search through PC inventories.

Therefore, as shown in Figure 5.17, the Social Inventory allows users to filter

the party’s inventories, making matches more visually salient than non-matches. Filters

can select for items having a certain category tag, items which match a text string, or

24Thanks to Alex Bakker for originally suggesting, in private correspondence, the idea of using a
shared inventory to represent intra-party familiarity.

125

Figure 5.16: A PC, Arvak, views the Social Inventory. His pane is displayed in green,
which is used throughout ROLEPLAYINGGAME to mean “owned by or related to the
logged-in user.”

126

Figure 5.17: Arvak filters to include just those items whose names contain the string
“bo.” Matching items are labeled with a checkmark; non-matching items are dimmed,
and labeled with an X.

items which have a weight equal or greater than a chosen value. This feature, though

simple, is nevertheless beyond the reach of a pencil-and-paper game, and would be

tedious to mimic even in a game where players used computers but didn’t have a central

platform for info management.

Informal user testing with two players from my home campaign revealed that

they were excited about the possibilities presented by this interface. Those two players

said that, aside from lessening the burden of manual inventory review, this unfettered

view of the whole party’s possessions would allow them to more easily make suggestions

to other players. As one player put it, “It’s easy to know what my own character has,

127

but I rarely remember what everyone else is carrying. This would be super helpful for

thinking of plans which could make use of several characters’ equipment.”

5.5.8 Market Tab

The Market tab (Figure 5.18) is where a player can buy new items for her

PC (as long as the PC’s current :position is a location with a market.) The Mar-

ket tab demonstrates that ROLEPLAYINGGAME can readily integrate with external

information sources. As mentioned in Subsection 2.7.2 and Section 5.3, the data for

this tab comes from an economic simulation project which I developed for my home

campaign before writing this thesis. The output of that simulation gets stored in a

SQLite database file; when ROLEPLAYINGGAME starts up, a Clojure function loads

trade good information from that database into game state.

5.5.9 Character Tab

The Character tab displays a PC’s attributes. Both players and the GM can

access this tab for any of the PCs in the party. I created this tab for completeness’ sake,

but it’s little more than a placeholder, because displaying a character sheet is hardly

novel.

5.6 Summary

With this chapter, I’ve given a comprehensive overview of the user-facing fea-

tures of ROLEPLAYINGGAME, and shown that it has both user interface affordances

128

Figure 5.18: A PC, Arvak, visits the Market tab for the location Redport.

Figure 5.19: Alice checks the Character tab for Arvak, her PC.

129

and a level of malleability support which are unprecedented in fields which combine

elements of computer gaming and traditional RPGs. In the next chapter, I present

the results of a user study with RPG GMs and players, in which I get their feedback

on ROLEPLAYINGGAME, and discuss topics including computer augmentation, user

interface woes, opinions of VTTs, and the desirability of high-DCG game systems.

130

Chapter 6

Community Feedback

To receive feedback on ROLEPLAYINGGAME, I conducted freeform inter-

views with RPG enthusiasts of my acquaintance. This preliminary user study was in-

tended to determine whether ROLEPLAYINGGAME’s features were comprehensible,

useful, and intriguing for GMs, players, and/or game designers whose tastes, back-

grounds, and experience levels differed from mine. In this chapter, after discussing

the design of the study and the interviews, I identify key themes that arose while the

interviewees and I discussed ROLEPLAYINGGAME and related topics.

Interviewees’ reactions to ROLEPLAYINGGAME and its capabilities were

generally positive, ranging from partial acceptance to genuine exuberance; each of them

found multiple aspects of ROLEPLAYINGGAME to be exciting and intriguing. The

interviewees felt that ROLEPLAYINGGAME offered a compelling vision for RPG sup-

port software, and showed unambiguous advantages over existing tools for assisting with

such tasks as forming plans; understanding the current game state and changes made

131

Interviewee
ID

Background
Years

RPGing
Years
GMing

Familiar
Game Systems

P1 math, CS, data viz (PhD) 14 11 (79%) >5

P2 astrophysics (PhD) <2 none 1

P3 history, library science (MA) 20 15 (75%) >5

P4 anthropology, theater (BA) 20 10 (50%) >5

P5 mechanical engineering (PhD) 9 7 (78%) 2–3

Table 6.1: Interviewees’ professional backgrounds; the number of years they’ve spent
participating in RPGs; and the portion of those years they’ve spent GMing.

thereto; employing game rules with high connectedness; and sharing secret information

with select players. Interviewees also felt that ROLEPLAYINGGAME, or a future ver-

sion of it, could help them reach their own RPG design goals. Interviewees also gave

frank critiques: they said the UI needed more work to be table-ready for players and

GMs, and one was particularly concerned about the feasibility of the GM keeping the

in-system game state updated during full-speed live gameplay.

6.1 Study Design

There were 5 interviewees in total. All but one of them (P2) had substantial

experience with roleplaying games in general, and as GMs specifically1. Two of them

(P1 and P5) had also spent time developing personal or academic software projects in

the realms of RPG support and game data visualization. A summary of interviewees’

RPG experiences are given in Table 6.1.

Each interview was conducted over Zoom, and lasted about 90 minutes. Key

1P2 not only had no GMing experience, but was also relatively new to being an RPG player. That
was my mistake: I misunderstood P2’s background during recruitment. However, P2’s feedback still
proved valuable as a gauge of whether inexperienced RPG players (not GMs) might see potential in
ROLEPLAYINGGAME.

132

quotes from those interviews, and an explanation of how transcripts were created, are in

Appendix A; full transcripts are available in the supplement to this thesis. After getting

informed consent for the interview to be recorded and transcribed, each interview began

with showing the interviewee two videos, both about five minutes in length. I named

these videos Motivation and Demo.

Motivation’s content echoed Chapter 2 of this thesis: it briefly introduced

my game design philosophy (with example rules and images from my home game),

then segued into describing RPG characteristics which have been difficult to capture

in a computer. The goal of showing interviewees the Motivation video was to help

them understand the kinds of games for which ROLEPLAYINGGAME was originally

envisioned as a support tool.

Demo was a pre-recorded demonstration of numerous ROLEPLAYINGGAME

features within a frame narrative (delivered by an accompanying voiceover) of a GM

using ROLEPLAYINGGAME to run a game scenario for four players. The goal of show-

ing interviewees the Demo video was to showcase ROLEPLAYINGGAME’s capabilities,

demonstrate ROLEPLAYINGGAME’s applicability to common gameplay tasks, and il-

lustrate that ROLEPLAYINGGAME’s novel architecture and design had permitted the

development of features not found in similar programs, especially VTTs.

In the Appendix A interview transcripts, I have annotated key points from

each interview with bracketed numbers. Hereafter, whenever I characterize specific

interviewees’ responses, I cite those key points for support. The citation convention

is that [P1:12] indicates the 12th key point in P1’s interview, to which I’ve appended

133

a “[12]” annotation. In the PDF copy of this thesis, those citations are hyperlinked

to their corresponding transcript locations; alternatively, that citation can be found

manually by visiting the P1’s transcript, then searching for a “[12]” note at the end of

a line.

6.2 Connections to Game Design and Software Develop-

ment

One of the largest perspective changes which I got from these interviews came

from P1’s proposal that ROLEPLAYINGGAME’s actions and events, taken together,

form something like a storylet system [P1:17]. A storylet comprises a piece of game

world content, prerequisites for presenting that content, and updates that will be applied

to the game world state after the content is presented2. In the case of ROLEPLAY-

INGGAME, the piece of content is the action itself; the prerequisites are the rules

(predicate functions) about game world state which must be satisfied for an action to

be presented in a player’s UI sidebar; and the state updates are calculated by the ac-

tion’s interpretation function after the player has used take-action to submit the

action (and any arguments) to the server.

P1, being steeped in the academic literature on game design, had other sugges-

tions for how to view ROLEPLAYINGGAME in the context of certain areas of study,

and how to frame future publications about ROLEPLAYINGGAME:

2See [144] for an introduction to storylets and a discussion of how storylets can be used to structure
interactive narratives. See [85] for a comparison of storylet-based design systems.

134

1. They suggested that the DSL-like aspects of ROLEPLAYINGGAME (e.g. com-

mand and action definitions) could pave the way for publishing ROLEPLAYINGGAME-

related material as an HCI study in making DSL-based design accessible to non-

programmer GMs [P1:12], or as an application of PL theory to game design [P1:13].

2. The flip side of the prior proposal would be to publish in the game design literature,

showing its practitioners some uses of DSLs and other aspects of PL theory [P1:14].

3. They pointed out a direct correspondence between the design of ROLEPLAY-

INGGAME’s actions, and the verb-definition facilities of the Inform 7 language [P1:18].

4. After pointing out commonalities between LambdaMOO, Inform 7, and assorted

ongoing efforts to develop the virtual-reality metaverse, P1 suggested that this

thesis could support arguments for including malleability as a foundational com-

ponent in a metaverse ([P1:19], [P1:20].)

5. They observed that the concept of malleability helps identify and define an un-

derexplored, or even unexplored, aspect of what GMs do and say while running

RPGs [P1:22].

6.3 ROLEPLAYINGGAME Presents a Compelling Vision

for Introducing Computer Augmentation to RPGs

Between interviewees’ responses to ROLEPLAYINGGAME’s features, and

their explanations of what tasks they would like to delegate to computers during play,

135

it seems clear that the interviewees considered ROLEPLAYINGGAME’s conception of

the future of RPGS to be at once fascinating and believable. Most notably, everyone

loved the notion of differential display, and it was frequently the first thing an interviewee

would comment on (e.g. [P3:1], [P2:1].) P3, P4, and P5 also found my examples of “more

widespread differential display” desirable and intriguing for their potential to guide the

act of roleplaying with hard systemic constraints ([P3:17], [P5:21], [P5:22].) Our dis-

cussions left me convinced that computer augmentation would serve needs, voiced by

ordinary GMs, that span all roles a GM fills in an RPG session3. Although there is still

much work to be done in this field, the interviewees felt that ROLEPLAYINGGAME

represents a step in the direction of meeting their needs as designers and GMs.

6.3.1 Complexity and Subgames

One topic I brought up with my interviewees was whether they had ever de-

signed or found RPG systems which they wanted to use, but which seemed too complex

to feasibly play. I raised this topic to assess whether real-world GMs felt unable to

achieve their game-design goals, and to start a conversation about how software could

aid them in reaching those goals. I found out that interviewees had indeed come across

rules which seemed desirable, yet impractical. Furthermore, they had also encountered

the converse situation, finding themselves struggling with the task of rule design even

in cases where the finished rule would be no trouble at all to run at the table.

P4 had much to say on this subject, starting with a desire for a live-updating

3See Section 2.1.

136

world economy for which even attempting an implementation seemed futile: “that would

never have gotten started [P4:11].” After that, P4 explained that they and P3 both like

the game Traveller [111], but that the two of them have never run it, due to the difficulty

of making science-fiction settings that the players find both realistic and compelling

[P4:13]. P4 also suggested that Traveller ’s complex rule subsystems would be a perfect

use case for components of a software app that each deal with one aspect of gameplay

which is so deep that it feels like a game within the game [P4:14]. They felt that “having

many games in a game ... expands a world or makes it seem more real [P4:15].”

I intend to discuss P4’s comments at length. Their opinion — that computer

augmentation would benefit RPGs by providing interfaces and tools specialized for

certain portions of gameplay — has connections to points raised by other interviewees,

and direct implications for the relevance of my research questions to RPG designers.

Before continuing, however, I will first ground that discussion in a more formal (albeit

provisional) definition of P4’s “game [with]in a game,” which I’ll refer to as a subgame.

Hereafter, I use “subgame” to mean part of the overall game’s gameplay which,

though connected4 the rest of the game, feels like a distinct mode of player interaction5.

Subsystems used within a subgame may or may not be specific to that subgame alone,

but the moves, actions, or operations available to players during the subgame almost

4In the DCG sense: see Subsection 2.6.1.
5At least within this thesis, I distinguish subgames from several other concepts that may seem similar.

Minigames are the subset of subgames which are completely divorced from the rest of the game: they
have zero connectedness to any game state outside themselves. A subsystem (of a game system) is a
collective term for rules that jointly govern one aspect of gameplay, but a subsystem is also a subgame
only if the player experience of using it feels like an activity distinct from ordinary gameplay. Finally,
a subgame differs from a scenario (see Subsection 2.6.3) because there can be many scenarios within a
given subgame: in a spaceship-building subgame where players decide how to outfit a ship chassis, new
scenarios can be created by varying the type of chassis or the collection of available parts.

137

certainly will be. In particular, a subgame within a videogame typically has its own

idiosyncratic user interface.

In my own experience, most RPGs lack subgames, possibly because, lacking

user interfaces like those of videogames, they can’t use sensory feedback to help make

a subgame feel distinct. Even relatively high-DCG RPGs with complex subsystems

don’t usually change the core assumption that players control the actions of individual

characters — but there are exceptions. In my experience, the most common type of RPG

subgame is a mass-combat subsystem, which is used to quickly resolve battles between

large armies by suspending or simplifying some of the DCG complexity normally found

in combat rules6. Fighting at the scale of individual characters has a tactical feel:

each individual choice matters, and could mean life or death for a cherished character.

Fighting in a mass-combat subgame, on the other hand, will feel “zoomed-out” and

strategic, with players directing companies, regiments, or entire armies in maneuvers.

With a working definition of subgames in hand, I can return to P4’s points.

Their example, the Elder Scrolls V: Skyrim ([157], hereafter Skyrim) lockpicking sub-

game, was aptly chosen. A Skyrim player who initiates lockpicking is transferred to a

UI showing a tumbler lock, as seen in Figure 6.1. The player’s challenge is to suss out

the angle at which to place a lockpick, and the degree to which to twist the lock’s body,

with success meaning an open lock and failure meaning a broken pick.

The lockpicking UI sits at a remove from the rest of Skyrim. The normal flow

of game time pauses while it is displayed; it occludes part of the default first-person

6Game systems which offer a mass-combat subgame include Pendragon and the Adventurer, Con-
queror, King System, or ACKS [97], to name just two examples.

138

Figure 6.1: The Skyrim lockpicking UI. Source: [118].

view of the game world; and the visuals are always the same, no matter whether the

lock protects a peasant’s house or an ancient dungeon. These abstractions isolate and

distinguish the lockpicking activity from all other gameplay — yet lockpicking is not

totally divorced from the rest of Skyrim. For one, the lockpicking UI is overlaid on the

player’s first-person view, but does not totally hide it; for another, character stats and

player skill7 both influence the chance of successfully picking a particular lock.

One way that P4’s comments contributed to this thesis is by uncovering a

shortcoming in Chapter 2’s theorizing. In my terms, the existence of a “pick lock” action

is a taxonomic fact, the action itself is a rule (with further rules possibly influencing

it), and the presence of a certain lock in the game world is a substantive fact. However,

neither breaking down a game system into rules and facts, nor quantifying the effects

7That is, skill at manipulating the pick angle and the lock twist.

139

of rules and facts with DCG, seems to account for the concept of a subgame, leaving no

way to formally reason about them, nor a way to quantify their contribution to game

feel. Even more importantly, P4’s comments open up a discussion about what real GMs

and players want from computer-augmented RPGs, which is my next topic for analysis.

6.3.2 Task-Specific Informational Interfaces

The game-within-a-game feeling of subgames makes them natural candidates

for purpose-built computational interfaces, but a computer-augmented RPG platform

like ROLEPLAYINGGAME could offer a specialized UI for almost any part of gameplay.

Such UIs could present particular subsets of game-state information, and allow GMs or

players to perform gameplay operations appropriate to just those pieces of information.

My home-campaign experiences have shown me that specialized tools and/or interfaces

are critical to GMing or playing in a high-DCG game8. Those experiences guided

key design decisions for ROLEPLAYINGGAME, such as splitting the UI into distinct,

task-specific tabs; ensuring the sidebar dropdown menu for choosing a given command

parameter would only be populated by entities of the appropriate kinds; and designing

the GM’s Inspector specifically to surface entity-appropriate commands in a quick-access

menu.

I was gratified to hear multiple interviewees not only agree with those design

decisions, but also express the opinion that specialized informational interfaces would

8In addition to the complex item-pricing system mentioned in Chapter 2, tools I’ve made include a
Python app for generating extensive character backgrounds, a spreadsheet for generating believable daily
weather patterns at real-world locations, and a calculator for character drunkenness which incorporates
character body weight (relative to the average for her race and sex) and the ABV and quantity of the
chosen beverages.

140

be a central benefit of computer-augmented RPGs. P4 asserted that game-content

generators9, on their own, wouldn’t be useful without an interface serving, to the GM,

generated content which was directly relevant to the game scenario at hand:

P4: I think the GM is like the bridge between the world — all of the

generation — and the players. It’s about enabling the GM. You could

generate all the characters with all details and have it as a giant list.

But that’s not easy for the GM to use, to suddenly pull someone out of

that pack and be this character. So while you could potentially generate

that stuff ahead of time, what the GM needs in the moment is what gets

pulled up [on screen]. ... So, it’s like, I don’t want to see everyone

in the town, I want to see who’s in this room. What about this

character do I need to know? What are his personality traits, or

how does he talk?

— [P4:22], [P4:23]

Similarly, P5 said, “Sometimes you just want to look at information. You

don’t need a map. You need a list of characters [P5:44].” They felt that ROLEPLAY-

INGGAME’s implementation of this style of interface was a success [P5:13]. They also

pointed out that complete isolation of different subsets of information would be un-

desirable, given participants’ need to maintain awareness of game state on multiple

levels [P5:41].

P3’s gaming group only recently began playing an RPG system with suffi-

9See Subsection 6.3.3.

141

ciently high DCG to require computers at the gaming table; despite this, P3 (like

P5) felt that ROLEPLAYINGGAME successfully demonstrated the utility of computer

augmentation10, and offered much commentary on the value of special-purpose com-

putational interfaces ([P5:13], [P3:6].) They expressed their appreciation for the fea-

ture of the ROLEPLAYINGGAME Explore tab that shows players valid positions for

the move action, then explained that existing VTTs require players to manually plan

out their movements, just like in analog play ([P3:9], [P3:10], [P3:11].) When I asked

what other videogame-like features would be a boon for RPGs, P3 said that it’s easy,

in traditional RPGs, for players to get bogged down in decision paralysis, whereas

videogame interfaces use feedback and visualization to bolster high-level thinking and

planning ([P3:13], [P3:14], [P3:15], [P3:16].) They felt that computer-augmented RPGs

should adopt those elements of videogame interfaces11, and that my home campaign’s

market-pricing system12 exemplified the value of such interfaces [P3:30]. Finally, P3 ex-

pressed a desire for an interface that would help their group understand the probable re-

sults of different dice pools, and saw utility in interfaces which present narrative patterns

that match against recorded game events, i.e. story sifting ([P3:25], [P3:27], [P3:39].)

Even P2 saw value and potential in specialized interfaces, despite generally

being skeptical13 of ROLEPLAYINGGAME’s suitability for general-purpose augmen-

tation of in-person play. They felt that ROLEPLAYINGGAME’s Explore and Gallery

10That said, they also had reservations about introducing computers to the table because of their
potential to distract players [P3:6]. I return to that topic in Subsection 6.5.2.

11This line of thinking was echoed by P5 [P5:45].
12I ported some of this pricing system to ROLEPLAYINGGAME. See Subsection 5.5.8.
13See Subsection 6.5.1.

142

tabs would be useful for tactical combat and looking up an NPC’s details while role-

playing as him, respectively; they also liked the idea of adding a rules editor ([P2:14],

[P2:15], [P2:21].)

6.3.3 Generating Game Content

Recall that P4 felt it difficult to create even one Traveller planet that felt

realistic and compelling to their players; what’s worse, Traveller ’s intergalactic setting

implies a need for many such planets. Furthermore, the technology available to science-

fiction PCs would probably permit rapid travel between multiple areas of a planet, or

multiple planets in a galaxy. These aspects of Traveller ’s setting massively increase the

scale of the content-creation burden a GM would face while running that system.

Procedural-generation tools which respect rules and taxonomic facts could be

a fertile area for future work in computer-augmented RPGs. A program that allowed P4

to generate a planet, populate it with inhabitants, and simulate its history — all while

respecting Traveller ’s taxonomic facts outlining, say, planet types, or acceptable stat

maximums for GM-designed alien species — would eliminate the content-authorship

problem posed by Traveller ’s setting. As P4 put it when I asked what they would want

from computational worldbuilding tools: “Especially for world building, it’s about filling

in the gaps of what you don’t want to create ... You don’t want to limit yourself. So

those tools [should] come in to fill in all those gaps you don’t have time to do [P4:18].”

Furthermore, interviewees seemed to specifically desire the ability to rapidly

add game world content (i.e. substantive facts) to the game world while the game is

143

being played. P3, P4, and P5 all liked the demonstration of using define-race to add a

new character race on the fly, i.e. exercise taxonomic malleability ([P3:2], [P4:4], [P5:4].)

P3 added that not only did this address a GM’s real need to react to the unexpected, it

also improved on shortcomings of existing VTTs [P3:3]. P3 said it “can be really hard”

to represent what they want in the game world just by manipulating character tokens

and data within a VTT: “more often than not [they] will write down what [they] want

it to be on paper notes and just play from that instead ([P3:2], [P3:3], [P3:4].)” For P3,

at least, VTT interfaces are too rigid: they lack the affordances a GM needs to rapidly

and effortlessly manipulate the game system and world, i.e. exercise malleability.

6.3.4 Testing and Refining Game Designs

When I posed the question of “rules too complex to feasibly employ,” which I

discussed at the beginning of this section, P3’s responses shed light on how computer

augmentation could also assist game design outside of live gameplay. Some time ago,

P3 and a friend began work on Mecha World, a Powered by the Apocalypse game system

inspired by giant robot anime. Although they had some initial successes with designing

character-creation rules that drew on tropes of the mecha genre, the two designers found

it difficult to develop rules for the gameplay proper, including rules of key subsystems

like combat and NPC interaction [P3:18].

To some degree, all GMs must commit themselves to the task of creating rules,

testing them through play, and refining them over time. That said, this “playtest-

and-see” feedback loop could be improved upon by employing computer simulations

144

of individual subsystems, which P3 and I discussed, and which P5 has constructed

to test his own game designs ([P3:21], [P3:22], [P5:45].) Furthermore, development of

fixed-theme games like P3’s Mecha World might be supported by the following process:

1. Construct a corpus of reviews or discussions of theme-relevant source material,

most likely various works of art.

2. Perform topic and clustering analysis to create a dataset extract genre conventions

and tropes, plus relations thereof.

3. Offer those results to the designer-GM, either as a data dump for sifting at will,

or behind a user interface offering features such as listing all the source materials

containing a given trope.

The information and/or tool resulting from such an undertaking would help a

designer explore dense quantities of inspirational material at his or leisure. There are

even pre-existing corpora which could be easily converted into a dataset to simplify the

first two steps; example corpora include the user-created content tags on the fanfiction

aggregator Archive of Our Own [39] and the TVTropes collection of categorized artwork

tropes [177].

6.4 Computer Augmentation as a Learning Aid

One of my research questions asks how computer-augmented RPGs can help

players comprehend the rules and facts of a game system while planning their next

145

moves in the game world. More than one interviewee believed that computer systems

like ROLEPLAYINGGAME would be especially useful for new players still learning

the ropes of how to play an RPG, let alone how to play skillfully. For instance, P4

felt that ROLEPLAYINGGAME would be useful for helping newcomers adjust to the

informational burdens of playing an RPG:

So I could see it being either something ... a little more UI-friendly [so the

players could use it directly]. So you can never have played a roleplaying

game before, but get in there and be like, “Oh, yeah, this is my character.

I know where the menu is [and] I can get to that quicker.”

— [P4:3]

P5 expressed more fleshed-out ideas along the same lines. They felt that using

computer augmentation to flatten the learning curve of a Principle-1-based game would

help players break out of the habitual passivity instilled by game systems which don’t

expect players to set their own goals. To P5, evaluating and seizing the opportunities

presented by a Principle-1 game world are habits that can be trained, and only through

training could there come to be a larger mass of RPG enthusiasts to appreciate such

games:

A 5e player can do nothing, essentially. Just kind of drift along. If you’re

trained to do that, it’s very difficult to break out of it. Even as a DM,

every word is planned out for you in advance [P5:11].

... [And] that’s why I like your system, is that you can

146

see all this data. The data is right there in the app, and I don’t

have to go to another screen or another app. If it’s all right there,

for these complicated inventory things, and I don’t have to add it up on

paper — I mean, there’s a certain kind of player that will do that. I do

that on paper when I play. But I’ve been in math disciplines my whole

life. That’s normal for me. If we’re gonna reach the normal person,

it has to be easy to do this stuff, so they can free up that brain

space to go and make these decisions that they haven’t ever had

to make before in a roleplaying game [P5:13].

... [T]he barrier to entry does weed out a lot of people who are

gonna be too lazy to play a game like this, but I think a lot of those people

can be trained. I think they’re lazy because it’s easy to be lazy. It’s so

much easier to be lazy that there’s no benefit to making the effort to go

up. And so if we can shave off some of the rough edges ... we’ll have more

of a chance with the person who can be convinced ([P5:15], [P5:17].)

In addition to the possibility of using computer augmentation to assist new

players, several interviewees were interested in my proposal that a computer-augmented

RPG could enable more seasoned players to review past gameplay, the same way athletes

will review footage of past games ([P2:6], [P3:25], [P5:32].) If ROLEPLAYINGGAME

were upgraded to record all in-game events14, users would be able to play them back

14At present, ROLEPLAYINGGAME records all past game states in a database, but it doesn’t record
the user commands and resulting events that actually caused those state changes.

147

while visualizing the accompanying changes to game state. This would permit players to

study battle tactics, practice using complex character abilities, or relive past moments of

glory in perfect fidelity. Event-level data recording would also help a developer working

on ROLEPLAYINGGAME (or a ROLEPLAYINGGAME-supported game system) to

debug his or her code.

6.5 Criticism and Concerns

6.5.1 Feasibility and Costs of Using Computer Tools

One argument in favor of computer-augmented RPGs is the possibility of au-

tomating away manual operations that don’t directly deliver a benefit to users. For

instance, the driving force behind the design and implementation of the social inven-

tory tab (Subsection 5.5.7) was my desire to relieve players from having to carry out

the manual task of searching through and comparing inventory spreadsheets. However,

sometimes it’s difficult to avoid creating a situations where the formal interfaces of a

computer system impose a higher cost to perform some task than was previously the

case in analog play.

For instance, in my home campaign, players use Google Sheets for recordkeep-

ing15. Sometimes they have to paste semicolon-separated strings from the market table

into their character sheets, then use a dropdown menu to split them into the required

column format. Each such copy-and-paste operation consumes a little of the time and

15My home campaign does not yet make use of ROLEPLAYINGGAME, which is still very much a
prototype.

148

mental energy which is so precious for playing high-DCG games. P4 was right when

they said that even a savings of a few minutes over the course of a game session can be

meaningful for adult players with real-world responsibilities [P4:10]. And, as P5 said,

knowing how to split strings in Google Sheets isn’t a core skill for engaging with the

RPG itself; rather, it’s an incidental chore imposed by my game making use of Google

Sheets [P5:38].

Section 6.4 explains why the study interviewees believed that ROLEPLAY-

INGGAME, or something like it, could enable more widespread adoption and enjoyment

of high-DCG, player-driven games. On the other hand, the interviewees also leveled crit-

icism against several elements of ROLEPLAYINGGAME’s user interfaces, revealing a

need to redesign those for improved end-user accessibility.

P2 had the most critical reaction to ROLEPLAYINGGAME. They acknowl-

edged that the tactical battlemap interface available to the players and the GM16 would

be valuable for precise combat movement [P2:12]. however, they weren’t convinced that

players or GMs would be able to successfully keep ROLEPLAYINGGAME’s internal

state abreast of game world changes resulting from the back-and-forth conversation that

drives gameplay17:

MJ: Could you see you and your group using a virtual tabletop, or my

thing — or even just Photoshop on someone’s computer with all of you

looking at it — to carry out more detailed game rule operations, and then

16On the explore and game world tabs, respectively. See Subsection 5.5.6 and Subsection 5.5.4.
17See Section 2.1, especially the conversational game loop described at the end.

149

[doing] the rest of the gaming [without that computational aid]?

P2: Not really, honestly, because that seems like too much overhead. I

think like I said, [for] the more rules-based, tactical parts of the game,

your tool makes perfect sense and seems like it’s a huge help there. But

then everything you do the rest of the time — having to make sure that

the computer’s state is consistent with all of the stuff you guys did just

by talking ... That seems like it might be real overhead, from a user

perspective: the player’s interaction.

— [P2:12], [P2:13]

That said, despite being unsure of the value ROLEPLAYINGGAME could

provide for playing with low-DCG game systems, P2 was interested in the possibility of

modifications to ROLEPLAYINGGAME that would allow a gaming group to pick and

choose what features they wanted to use ([P2:19]), e.g. opting into precise movement

tracking, and opting out of computational support for inventory management. Together,

P2 and I concluded that a la carte feature activation would expand the potential audi-

ence for ROLEPLAYINGGAME, by making its functionality useful even for players of

relatively low-DCG games [P2:20].

As a final note about P2’s comments, recall that my error in recruitment

meant that P2 had much more limited RPG experience than the other interviewees (see

Table 6.1.) They had only ever played in one campaign, and weren’t sure what edition

of D&D was being used in it [P2:5]. It would be unfair for me to expect a casual player

150

with no GMing experience not to struggle to connect with a tool aimed at supporting

high-DCG games, and which I probably presented with an emphasis on how it enables

a GM to do the runtime game design required for malleability. I absolutely am not

belittling P2 here. I value their opinions, and while they might not be the audience for

my kind of game, other aspects of computer augmentation seemed to appeal to them.

That puts us on the same “team.”

The other interviewee who gave substantial interface feedback was P1. Over-

all, though they were more enthused than P2 overall, they were also open with their

concerns about UI shortcomings, which made sense given their background in designing

interactive tools for data visualization and exploration. In particular, P1 identified a

flaw with the current implementation of differential display, which is that it doesn’t

inform a player why a given piece of text is being displayed [P1:1]. They also said that

it makes sense for ROLEPLAYINGGAME to eventually offer malleability even for its

UI design, as a spreadsheet allows users to reinterpret what cells mean, “but it can’t

actually promise that at the same level of fidelity for any arbitrary field you you might

add [P1:5]”.

P1 was also quick to identify troubles that might arise during future develop-

ment of ROLEPLAYINGGAME because it occupies a strange middle ground between

an administrative interface for complex tasks and a transaction processor for those tasks

— and that’s without getting into malleability.

151

P1: Yeah. The tension I’m seeing here is you are saying to the GM,

“Look, you can operationalize everything you’re doing. Here is a beautiful

language.” But code is scary. So you are going to have to build this

involved visual editor to round trip you from your [RPG design done on]

paper, to the database, through this ontology of transactions that you’ve

beautifully laid out here. And it’s very difficult to make progress on, just

because you have to spend all this time iterating on the representation,

and the ontology suffers. You end up with a toy ontology because the

representation is very hard to create.

— [P1:10]

6.5.2 Potential for Distraction

Recall that P3 has newly introduced computers at their gaming table. They

raised concerns that this could cause interruptions to gameplay if players got distracted

by non-game uses of the computer [P3:6]. On the other hand, P3 also suggested that

using an iPad or other tablet-form-factor computer, given its focus on performing one

task at a time, could help limit distractions without unduly impacting the usability of

a computer interface [P3:7].

152

6.6 Summary

Overall, the community feedback I received for ROLEPLAYINGGAME was

primarily positive, with individual reactions ranging from partial acceptance to total

excitement. The interviewees not only agreed that I had identified a real gap in the de-

sign space of RPG-support software systems, but also felt that ROLEPLAYINGGAME

was a real first step towards filling that gap. In the course of our conversations, I

learned that I’m not the only one disappointed with VTT affordances, nor the only

one thinking about how computers could support complex, crunchy games by learn-

ing from videogame development and human-computer interaction. At minimum, I

now know for sure that there’s an audience for the new class of software that I believe

ROLEPLAYINGGAME has founded — and I’m more confident that, though ROLE-

PLAYINGGAME is the first entry in this category, it won’t be the last.

P3 and P4 were strongly encouraging about the direction ROLEPLAYINGGAME

has taken, with the former concluding their interview by saying, “I think this is a really

cool project, and I think you’re asking the right questions [P3:40].” But of all intervie-

wees, P5 exhibited the most unbridled enthusiasm for ROLEPLAYINGGAME. After

the Demo video concluded, their first words were, “I’m not going to lie. I would play this

right now [P5:1].” As we wrapped up, they not only asked to read this thesis once it was

finished, but also offered to spread the word about ROLEPLAYINGGAME when it was

more ready for open sharing [P5:50]. Not everybody will agree, like P5, with my moti-

vations for wanting to explore this design space ([P5:24], [P5:25], [P5:26], [P5:27]), nor

153

with my characterization of the RPG ecosystem as lacking a “design culture [P5:28].”

But it’s reassuring to know that there are others out there who are willing to embrace

the computer as the perfect tool for reshaping this subculture’s decades-old assumptions

about what RPGs should contain, how they should played, and how they should be run.

154

Chapter 7

Discussion and Conclusion

This chapter begins with a reflection on the research questions posed in Sec-

tion 2.9. I consider how the ROLEPLAYINGGAME prototype, its development process,

and extensive feedback from members of the RPG community have all contributed to

answering those questions. After that, I propose directions for future research which

could take inspiration from this thesis, such as ROLEPLAYINGGAME enhancements

based on insights gleaned from the user study, and ways to connect my idiosyncratic

concepts of rules-and-facts analysis, DCG, and malleability with other areas of schol-

arly research and popular discourse. Finally, I conclude by summarizing what this thesis

contributes to the academic literature.

155

7.1 Reflection and Analysis

7.1.1 Research Question 1

My first research question was concerned with the feasibility of designing

and implementing a computational RPG platform which could support malleability

without restricting game system DCG. With the define-race , define-rule , and

toggle-rule commands, ROLEPLAYINGGAME offers malleability of rules and tax-

onomic facts for a computer-augmented RPG. These are firsts in the field of RPG

support.

Furthermore, although the toy game system which I wrote for ROLEPLAY-

INGGAME doesn’t approach the DCG of videogames or typical traditional RPGs, it

contains sufficiently many elements of typical RPGs (e.g. a domain model containing

races, weapons, equipment slots, skills, and character actions) that there appear to be

no obstacles preventing ROLEPLAYINGGAME from being upgraded to support the

further features1 needed to implement a game system at least as high-DCG as real,

published RPGs.

The ROLEPLAYINGGAME implementation also demonstrates the feasibility

of programming a malleability-supporting system using non-exotic technology. While

I did choose to implement ROLEPLAYINGGAME in a Lisp-family language, I didn’t

directly use any unique Lisp features such as general-purpose metaprogramming or treat-

1Such features include rules with outcomes other than Boolean values, and tracking the passing of
in-game time as character actions take place (or when the GM wills it.) For more on this subject, see
Section 7.3.

156

ing code as data. That said, such language features might be critical for expanding mal-

leability deeper into every corner of ROLEPLAYINGGAME itself: in Subsection 7.3.2,

I discuss how increasing the malleability of both a supported game system and ROLE-

PLAYINGGAME itself might culminate in exposing full-blown reprogrammability to

end users.

Of the five RPG enthusiasts who I interviewed for the user study, four had

both a long history of involvement with the art form and plentiful GMing experience2.

All four of these seasoned GMs agreed that malleability was crucial to RPG play, but

existing RPG support software lacked meaningful and effective affordances for exercising

it — to the point that one interviewee considered it easier to fall back on pen and

paper than fight the interface of a VTT3. As such, interviewees reacted positively to

ROLEPLAYINGGAME’s malleability support, and my contention that it should be the

chief design concern for creators of future RPG support software.

7.1.2 Research Question 2

My second research question was concerned with the affordances that a new

system in this area could present to its users. ROLEPLAYINGGAME demonstrates the

value of offering an interface which (for a particular task, subgame, or subsystem) groups

together a display of relevant game state information, and affordances for users to oper-

ate on that state. It also demonstrates the value of having these interfaces co-located in

one application with one game-wide data store. Finally, it shows the benefits of using

2See Table 6.1.
3See P3’s comments in Subsection 6.3.3.

157

videogame-style visual design to compartmentalize secret information, help users com-

prehend the current game state, and ease the cognitive load of decisionmaking. Multiple

user study participants said that a critical factor that made ROLEPLAYINGGAME ap-

pealing was its stance toward incorporating the whole of both game system and game

state into one application, as videogames do.

Feedback from the user-study interviewees indicates that GMs and players find

these offerings highly desirable, even for use with games that are relatively low-DCG.

Differential display, in particular, elicited strong positive reactions from all interviewees

(Section 6.3.) The interviewees also readily offered suggestions (Subsection 6.3.2) for ad-

ditional computer interfaces that would provide just-in-time assistance with comparing

dice-roll probabilities, refreshing memories of NPCs and other scenario-relevant details,

charting patterns of potential character actions that could further a narrative, and de-

signing and evaluating in-game objects with significant opportunities for customization

(such as spaceships.) Finally, there was a great deal of discussion (Section 6.4) around

using computer augmentation to help new players get their start in RPGs, or improve

existing players’ skill and confidence for player-driven, Principle-1-based gameplay.

The user-study interviews make it clear that applications of computing to

RPG design and play have placed insufficient emphasis on counteracting the information

overload that afflicts players and especially GMs. What’s more, the cognitive challenges

of GMing for relatively high-DCG RPG systems, and adding personal designs atop

them, were cited by interviewees as the reason they had not made meaningful use

of game systems which they otherwise found compelling. I hope that systems like

158

ROLEPLAYINGGAME can change this situation for the better.

7.1.3 Research Question 3

My third research question was concerned with degrees of DCG that could be

achieved only by an RPG system which, though run and designed by a human, was

fully implemented in a computer. I don’t believe ROLEPLAYINGGAME itself was

responsive to this question, but other systems I’ve already created4 have shown that

using RPG subsystems which require a computer to operate can deepen the complexity

of challenges facing the players, and, in turn, the potential satisfaction which players

will feel after besting those challenges. ROLEPLAYINGGAME, being extensible and

written in a general-purpose language, is not only compatible with my earlier computer-

driven subsystems, but could (in the future) combine all of their advantages under the

improved UX of a single monolithic application.

As I mentioned while reflecting on the second research question, it turns out

that even RPGs which were designed for analog play can still be too high-DCG for

experienced GMs to feel comfortable running them. It seems that, in addition to ask-

ing whether apps like ROLEPLAYINGGAME can let designers achieve greater heights

of DCG, researchers and software developers should also consider how such apps can

prevent an otherwise-promising RPG system from being something that gamers merely

aspire to playing, rather than an approachable, functional game system.

4See Subsection 2.7.2.

159

7.2 Future Theoretical Work

Because I wanted to argue as thoroughly as possible that ROLEPLAYINGGAME’s

features were novel, this thesis’s literature review was focused on software-based contri-

butions to RPG support and related fields. I needed a long time to gather and assess

that body of work, leaving me less time than I wanted to explore other areas relevant to

designing software for playing and designing high-DCG games, and to theorizing about

RPG design in general5 This section proposes a few ways in which the DCG framework

and computer augmentation could be connected out to other fields of study.

7.2.1 Connections to Fields Beyond Game Design

Dozens of areas of academic research could be brought to bear on developing

empirically-motivated theories of how to GM and design RPGs that will induce cer-

tain emotions in the players. Academics in literature, theater, and game design have

transcribed and studied RPG play sessions, which could be mined for clues as to how

digital tools might preempt conflict and miscommunication. Literary theorists have

put forward proposals for viewing RPG play as a form of meaning-making (e.g. [142],

which could suggest how game-rule descriptions might best be written to emphasize the

Principle 1 notion that the players control their own destinies. Psychological research

on how people form plans, act under stress, and respond to failure could be leveraged

to propose ways for the GM to fruitfully manage players at the table.

5For instance, there is surely prior art which somewhat prefigures my proposed concepts of DCG and
malleability — even though not much has turned up so far — and I regret not being able to properly
couch my formulation of Principle 1, and arguments for it, in the voluminous literature on player agency
in games.

160

For instance, here’s how empirical results from the psychology of creativity

could inform RPG design. Psychologists investigating whether the time-worn saying

“constraints breed creativity” has any basis in reality (e.g. [2], [156].) have attempted

to ascertain how many constraints can be imposed before they stop fostering creativity

and start stifling it. For the sake of argument, suppose the findings show that having

zero constraints means you get no work gets done because of the “fear of a blank

page,” and having too many constraints means you get no work done because you can’t

figure out how to satisfy all of them at once. Further suppose that, at a sweet spot

somewhere between those two extremes, the constraints are sufficiently numerous to

guide your work, but not so numerous as to otherwise inhibit your creativity. If that

were true, then that sweet-spot number could indicate a desirable value for the average

or maximum connectedness6 of a typical rule.

To see why that’s useful, consider the case of a highly-connected rule which has

300 inputs. Not only will the GM be hard-pressed to apply that rule accurately (which

defeats the first half of Principle 2), but also, the players will probably not feel like they

have agency in scenarios governed by that rule, because it would take an inordinate or

impossible amount of time to maneuver their characters so as to predictably control a

significant fraction of those inputs’ values. On the other hand, if that rule is revised

to take only a dozen inputs, the players will feel rewarded if they expend the time

and effort to control six or 10 of them, then participate in a game scenario where their

preparation causes that rule to frequently deliver favorable outcomes.. There’s no better

6See Section 2.6.

161

sign of players embracing Principles 1 and 2 than seeing them deliberately take actions

in the game world to get some rule to function the way they want, with the larger

goal of setting up a scenario where they can achieve success with the help of that rule.

Those hypothetical players have taken their fate in their hands, and have understood

the rewards of playing in a game strictly governed by rules.

7.2.2 Diagnosing and Repairing the Causes of Unexpected System

Outcomes

Personal correspondence with Orion J. Anderson, a graduate student in psy-

chology at the University of Virginia, led him to offer me a tentative taxonomy of

“anomalies,” or moments in RPG play where interactions between game system com-

ponents create an emergent outcome7 which takes the GM by surprise. Accompa-

nying this taxonomy was a lucid comparison of how those anomalies might be di-

agnosed and repaired by the GM of a traditional, analog game and the GM of a

ROLEPLAYINGGAME-esque, computer-encased one. With Anderson’s permission,

I paraphrase his taxonomy and proposal below.

1. Serendipity: The relevant rules, whether written or programmed, are working as

intended, and no data input errors have occurred. The surprising outcome was

always implicit in that combination of rules, but that outcome is desirable and

the GM need make no changes.

2. Revelation: As serendipitous, but the outcome is undesirable to the GM. The

7This specifically means the result of executing a rule, as defined in Section 2.3.

162

rules which led to the outcome must be adjusted so that they have the desired

effect in the future.

3. Bug: One or more rules are incorrectly implemented, such that their operation

deviates from the designer’s intentions. The surprising outcome reveals this flaw,

and spurs the GM to correct the implementation.

4. Mistake: The surprising outcome came from user error while recording data or

operating a computer system, such as erroneously transcribing a monster’s hit

points, or fat-fingering the wrong answer to a software prompt.

Anderson suspects that a traditional RPG and a computer-based, malleable

RPG are likely to differ with respect to how often they generate anomalies, the distribu-

tion of anomalies they generate, the GM’s ability to diagnose anomalies, and the GM’s

ability to either cope with or repair the anomaly.

His hypothesis is that traditional RPGs are typically not sophisticated (i.e. high

enough in DCG) enough to generate much serendipity or revelation, but in exchange,

bugs are rare. A computer-based RPG offers vastly increased sophistication, with con-

comitantly higher chances of serendipity, revelation, and bugs. He thinks that mistakes

will be more common in the traditional paradigm, because humans are less effective

at dealing with DCG than computers are; furthermore, given fallible human memory

and low-tech recording instruments, it may be difficult to remember what the correct

pre-mistake value should have been or when the mistake was made. On the computa-

tional side, without innovations in HCI specific to RPG support, even comparatively

163

few mistakes could have more severe consequences: automatic processes will happily

churn away on legal-but-incorrect values, propagating bad information to far corners of

the system and making it hard to recover from the mistake. On the other hand, logging

and other instrumentation may make it it easier to narrow down the point at which

the mistake happened, and various strategies are available for rolling back data to a

known-good state.

I think an empirical investigation into the correctness of Anderson’s taxon-

omy, and his conjectures about relative frequency severity and recoverability of different

anomalies, would be an excellent research program for a games researcher. To compare

traditional and computational methods of gaming, perhaps an RPG could be imple-

mented both as a set of written rules and a malleable computer program. Then, each

of a group of GMs (who are the study’s subjects) could run a preset scenario, with the

players being research collaborators who do their best to take the same in-game actions

each time.

7.3 Future Technical Work

In this section, I present several meaningful goals for additional development

work on ROLEPLAYINGGAME’s capabilities. Where possible, these goals are grounded

in suggestions or realizations from the user study.

164

7.3.1 Formal Content Schemas

Following established Clojure practices, each instance of a game-world kind is

represented by a key-value map defining its attributes. One could create schemas for

these maps which delineate required keys, optional keys, and the potential datatypes

or values permissible at each key. For instance, a partial schema for a game character

which constrains the :strength attribute might be expressed in English as “Characters

have a required key called :strength. The value at :strength must be an integer

greater than or equal to 0.” Such schemas would be (collections of) taxonomic facts, so

they ought to be made malleable by including them in the game state, as with the the

taxonomic facts that constitute the hierarchy of kinds.

Implementation-wise, “working with schemas for program data” is exactly the

use case for Clojure’s spec library [65], which can not only define such schemas, but

also validate a key-value map against a schema, and even generate maps which are

guaranteed to be schema-compliant. With spec-style schemas defined, ROLEPLAY-

INGGAME could offer procedural content generation (PCG) for anything in the kind

hierarchy, including characters, items, and locations; this would permit the implemen-

tation of high-level GM commands that both create and insert new content. Even more

promising would be subsequent investigation into mixed-initiative user interfaces for

ROLEPLAYINGGAME, with the computer system generating candidate content, and

the GM user selecting or rejecting candidates to determine what actually enters the

game world.

165

Finally, it might also be feasible to define schemas for implementation con-

cepts such as commands, actions, events, and rules, which would allow PCG to add to

both the game system and ROLEPLAYINGGAME itself. That steps somewhat out-

side traditional PCG, falling more closely under the header of automated game design

(AGD), an active research area studying computer systems that can generate entire

games (or subsystems thereof.) To my mind, the most successful and intriguing AGD

project is Ludi8 ([19], [18]) . The Ludi system applies numerous human-defined eval-

uation criteria for game rules (operationalized as programmed functions) to evolve an

initial rule set into one that better satisfies the criteria. Perhaps it would be possible

to operationalize DCG in a manner amenable to Ludi-style evolutionary techniques; if

so, ROLEPLAYINGGAME could then assist GMs with the act of game design itself.

7.3.2 More Malleability, Culminating in Reprogrammability

The GM command define-race suggests a family of other commands which

add to or alter the taxonomic facts of the game system, such as define-weapon or

define-tradegood . In general, any taxonomic fact which enumerates a set of al-

lowable values for an attribute, such as a weapon list or a catalog of magical spells,

could have a define-X command implemented for it. It’s also easy to imagine a

define-attribute command which stipulates an entirely new attribute, rather than

extending the range of an existing one. For instance, the GM might give all current and

future characters a :melee-attack-range attribute, complete with some calculation

8Not to be confused with its successor, the similarly-named Ludii [123]

166

for finding a default value for a given character. This define-attribute command

would allow the GM to act like a database administrator who migrates to a new schema,

giving a preexisting table a new column9.

Neither events nor commands have their definitions included in game state. If

that were fixed, one could implement define-event and define-command commands

to alter or extend those vocabularies as well. The latter, in particular, would greatly

extend a GM’s control over ROLEPLAYINGGAME by enabling him to reify and easily

trigger event sequences that change game state in a certain way (akin to the macro

system seen in certain VTTs, or even some MMOs.)

The above may sound like adding full-fledged programming capabilities to

ROLEPLAYINGGAME’s UI. Indeed, I think that making ROLEPLAYINGGAME into

a tool supporting on-the-fly malleable game design must eventually cash out in Lamb-

daMOO’s master stroke, i.e. the ability for a GM to (almost) completely reprogram

ROLEPLAYINGGAME from inside itself. Anything less would mean some sacrifice of

analog RPGs’ malleability.

7.3.3 Widespread Use of Differential Display

Differential display’s potential for fostering immersion extends far beyond con-

trolling the presence or absence of descriptive text. More radical alterations of players’

user interfaces would enshrine in software the requirement for players to work together

9One thing Foundry gets right is support for exactly this kind of “migration.” A Foundry game-
system designer, having changed how a game system works and bumped it from Version X to Version
X+1, can also include code that defines how to change entities to suit. While this is a wise design
decision, it’s not sufficient to establish taxonomic malleability: a game world using Version X cannot
be kept running during the migration to Version X+1.

167

if they want the best chance of succeeding at their goal. In addition, games such as

Artemis: Spaceship Bridge Simulator (in which each player performs a different role

to collectively operate a Star Trek -esque spaceship) [134] have shown that computer-

mediated doling out of drastically different information to each player can produce a

thrilling and satisfying cooperative play experience. Here are some use cases for differ-

ential display which go beyond descriptive text:

1. A character with a skill that grants knowledge of smuggling can see a bonus “Black

Market” merchant available on the market tab, where she can purchase items of

an unsavory nature that aren’t available elsewhere.

2. A character with knowledge of shipping and trade looks at the market tab, and

not only sees item prices for her current location, but also sees a readout of what

those prices would be at nearby markets.

3. A character with an eye for hidden passages notices a secret door connecting two

zones.

4. A character with sufficiently low intelligence is unable to accurately track the

amount of money she carries. Instead of getting a numeric count of the coins

she possesses, her character sheet simply says “a few” or “lots.” When she buys

items, she will overspend by a random amount. Barring a permanent change in her

intelligence score, the only way to counter this is for a smarter character to either

accompany her to market, or use the “count money” action on the unintelligent

character’s coins, which will temporarily allow the unintelligent PC to keep track.

168

Using differential display in this manner raises the question of whether the

software should permit a player to share differential-display information that she alone

possesses, or whether the players should have to pass that information between them-

selves. I think this would have to be handled on a case-by-case basis, depending on

the type of information being revealed through this mechanism. The aforementioned

character who sees the concealed pathway should be able to point it out to a second

character, at which point either of them might use the route. On the other hand, if the

differential information is the position of an invisible object, and only one character is

under a spell allowing her to see invisible things, then at best she should only be able to

mark, on other players’ UIs, the current position of the item. That information should

not get updated even if the object moves around, forcing the character with the spell

to spend time directing the other characters if she wants to give them the benefit of her

enhanced vision.

7.3.4 Rule Design Languages and Story Sifting

If ROLEPLAYINGGAME is to become accessible to GMs who are not pro-

grammers, it must at some point incorporate a domain-specific language (DSL) for rule

design, one which requires less skill to use than a full programming language. State-

ments in such a language could then be compiled into Clojure code equivalent to what

the GM must currently write for himself while using the define-rule command. One

good starting point for best practices in rule design might be game description lan-

guages (GDLs). A GDL is a formal language which describes a class of games; I believe

169

that files written in some GDLs can be directly executed by an appropriate interpreter.

These come from the field of automated game design (AGD), which, as an evolution of

PCG, seeks to generate entire games from scratch.

Another worthwhile starting point comes from the field of interactive digital

narrative (IDN.) Story sifting is the emerging practice of using logic programming

to extract partial or complete narrative patterns from a record of events created by a

game or simulation10. All story sifting systems possess some method for specifying (or

generating) patterns. Roughly speaking, a pattern consists of a set of logic variables,

a set of relations and predicates which the variables must singly or jointly satisfy, and

an outcome that will be reported by the sifter — if, within its event database, it can

find a set of events which, when bound to the logic variables, satisfies the relations and

predicates.

One way to conceive of a rule input is as a filter that selects the correct piece of

game state to feed into the rule. For instance, if a rule for lifting a heavy object takes as

inputs a particular character, that character’s strength score, an object, and the weight

of that object, then it’s possible to execute that rule for any pair of entities where

one is a character, one is an object, the character has a strength score, and the object

has a weight property. If we call “ability to execute the rule” an outcome, then this

formulation of a rule’s inputs is strikingly similar to the previously given formulation of

a story-sifting pattern.

10The term originates with James Ryan [139]. Max Kreminski and their collaborators have done
pioneering work in this area ([83], [82], [81], [86], [84]). Other work worth reviewing includes [72], [141],
and [25].

170

Therefore, it might be possible to equip ROLEPLAYINGGAME with a rule

design language and story-sifting capabilities at the same time, with one code module.

While it might be more prudent to try working on them separately, then fuse the two

modules if they prove successful and useful, I’m supremely curious about whether a

computer-augmented RPG could gain both of these features at one fell swoop.

Regardless of whether a rule DSL and sifting patterns can profitably be com-

bined, I wish I had had the foresight to design ROLEPLAYINGGAME to be compatible

with sifting from the get-go. When combined with a computer-augmented RPG that

stores the history of its game events and world states — especially if there is also some

simulation of NPCs’ daily routines, weather patterns, or other autonomous processes

that regularly change substantive facts — sifting has the potential to enable entirely

new kinds of GM assistance. One example is displaying suggestions for how a GM

should portray an NPC, based on sifter patterns for “revenge,” “gratitude,” or “double-

crossing” which match up with actions that the PCs have taken toward this NPC in

the past. Another is visualizing relationships between the major NPCs (based on a

simulated history) that dwell in a location the players have just entered. Several of the

story sifting works cited here are intended to support use cases like these.

7.4 Conclusion

In this thesis, I have made the following contributions:

171

7.4.1 A Defense of a Philosophy

In Chapter 2, I presented my concept of “zero-ego GMing,” a perspective

which seems inadequately explored by either academic or commercial discourse. I dis-

tilled zero-ego GMing into Principles 1 and 2, then argued that a game run by those

principles is worth pursuing because it cultivates, in its players, such virtuous behaviors

as creativity, cleverness, cooperation, and self-sacrifice. I explained how this philosophy

required me to pursue a certain style of system design, which in turn led to augmenting

my game with custom software. My goal for supplying this background information was

not to showcase the benefits I’ve reaped from my software, but rather to demonstrate

why existing RPG support software is inadequate for my needs.

7.4.2 A Classification of Components

In Chapter 2, I classified RPG components into rules, taxonomic facts, and

substantive facts. I asserted that elements of the game world (substantive facts) ought

to be on equal footing with the mechanisms governing their structure and evolution

(taxonomic facts and rules) because substantive facts also contribute to setting players’

expectations for gameplay. In effect, this classification erases the traditional distinction

between “game system” and “game world.”

7.4.3 A Method for Quantitative Analysis

In Chapter 2, I built on the aforementioned classification to propose a method

for quantifying the complexity of an RPG system. This method stipulated three funda-

172

mental system characteristics: depth, (average) connectedness, and (average) granular-

ity, collectively called DCG. I described how the DCG characteristics combine with each

other to produce tension, difficulty, and potential for emergence — qualities of gameplay

which I claimed were desirable because they increased the range of scenarios a system

could represent, and thus the range of subtly-different, scenario-specific emotions that

players could find themselves experiencing. I concluded that players’ reactions to those

scenarios and emotions would lead them to develop the virtuous behaviors mentioned

in Subsection 7.4.1.

7.4.4 An Account of Malleability

In Chapter 2, I gave what I believe to be the first academic definition of

malleability, a characteristic which is almost unique to traditional RPGs. I identified

malleability as the crucial feature of RPGs which frees them from having any limits on

the scope of their gameplay, and I connected this benefit of malleability with my own

belief in Principle 1. I also showed that GMs must constantly exercise malleability, since

they can’t avoid creating or alter substantive facts during a game session even if rules

or taxonomic facts don’t change.

In Chapter 3, I showed that work in and around the field of RPG support

has rarely taken malleability of all three parts of my system taxonomy as be a design

concern. Work in this area which has allowed malleability typically only did so for

substantive facts. Furthermore, even when malleability for rules and taxonomic facts

was an option, it was reduced to a design task that can’t take place during live gameplay,

173

and didn’t offer tooling beyond standard code and 3D-asset editors to assist GMs with

the art of game design.

7.4.5 A Set of Design Criteria

In Chapter 4, I laid out five design criteria that collectively characterize a

sector of the RPG support design space which Chapter 3 showed had had little prior

exploration. To recap, these criteria select for computer-augmented RPGs that do the

following:

1. Minimize or eliminate any hardware other than computers themselves.

2. Enable malleability of all rules and facts.

3. Impose minimal or no limitations on a game system’s domain model.

4. Enhance player and GM comprehension of rules and facts.

5. Prioritize co-located, in-person play.

7.4.6 An Innovative Artifact

In Chapter 5, I described ROLEPLAYINGGAME, the first representative of

a new class of software within the field of RPG support. ROLEPLAYINGGAME at

least partially fulfills all five design criteria from Chapter 4, and it possesses capabilities

which are novel for this field, including:

1. Malleability of rules.

174

2. Malleability of taxonomic facts.

3. Videogame-style interactive visuals.

4. Task-oriented interfaces which group game data together with relevant commands.

5. Cross-task interfaces (e.g. the Inspector) that permit changing one’s desired com-

mand without losing current context.

6. A general UI design which doesn’t privilege the battlemap over other methods of

rendering game state.

7. Integration of differential display of information into the user interface.

7.4.7 A Shared Vision

In Chapter 6, I described and analyzed the contents of interviews I conducted

with five RPG community members. I gauged their receptiveness to ROLEPLAY-

INGGAME specifically, and both high-DCG gaming and computer augmentation in

general.

These interviewees sensed that much of the potential of this art form had yet

to be explored. Those who yearned for more complex RPGs felt unable to overcome

the accompanying design and GMing challenges. Even those who preferred fixed-theme

or storygame systems readily identified aspects of play that would benefit from tech-

nological intervention. All the interviewees expressed coherent, realistic proposals for

valuable gameplay enhancements which computer augmentation could provide.

175

Happily, reactions to ROLEPLAYINGGAME were generally positive. The

interviewee with the least RPG experience was skeptical about the feasibility of using

a computer system during live play, but still recognized its value for certain use cases,

and proposed a couple more. Meanwhile, the other four interviewees, all having much

RPG knowledge, were enthusiastic about the novel features of ROLEPLAYINGGAME,

and felt that it represented a step into the future of how we learn, play, GM, and design

RPGs.

The computing systems which will bring us further into that future are not

beyond the ability of programmers to provide: proofs-by-existence can be found in

academia and especially in the world of videogames. Programming is not the only kind

of work needed to bring about the computational future for which I advocate, but it

is the most important kind. That said, if the traditional, malleable RPG is going to

survive its third attempt at being computerized (without collapsing into the CRPG

or the VTT), then ease of development must be subordinate to correctly and fully

embodying the RPG’s nature. Even after ROLEPLAYINGGAME is nothing but a

relic, I hope my definitions of rules, facts, DCG, and above all malleability will continue

to inspire new work which shares that goal.

176

Bibliography

[1] 1000Nettles. Introducing “hey wait!”: A module to give gms a bit of breathing

room. https://www.reddit.com/r/FoundryVTT/comments/

kizbt1/introducing hey wait a module to give gms a bit.

[2] Oguz A Acar, Murat Tarakci, and Daan Van Knippenberg. Creativity and in-

novation under constraints: A cross-disciplinary integrative review. Journal of

Management, 45(1):96–121, 2019.

[3] Devi Acharya. Computational support for game masters of tabletop roleplaying

games. Master’s thesis, University of California, Santa Cruz, 2021.

[4] Devi Acharya, Jack Kelly, William Tate, Maxwell Joslyn, Michael Mateas, and

Noah Wardrip-Fruin. Shoelace: A storytelling assistant for GUMSHOE One-2-

One. In Proceedings of the 18th International Conference on the Foundations of

Digital Games, page 1–9, Lisbon, Portugal, Apr 2023. ACM.

[5] Shannon Applecline. A brief history of game

#1: Wizards of the coast: 1990-present, Aug 2006.

http://www.rpg.net/columns/briefhistory/briefhistory1.phtml.

177

[6] Various Authors. Vassal 3.6.19, 2023. https://vassalengine.org.

[7] D. Vincent Baker. Dogs in the Vineyard. Lumpley Games, 2004.

[8] D. Vincent Baker and Meguey Baker. Apocalypse World. Lumpley Games, 2010.

[9] Saskia Bakker, Debby Vorstenbosch, Elise van den Hoven, Gerard Hollemans, and

Tom Bergman. Weathergods: Tangible interaction in a digital tabletop game. In

Proceedings of the 1st international conference on Tangible and embedded inter-

action - TEI ’07, page 151, Baton Rouge, Louisiana, 2007. ACM Press.

[10] Lionel Barret, Claudia Vance, and G. Michael Youngblood. Lessons in user in-

terface design in the procedural city generation for games tool Ürban pad. In

Proceedings of the 2nd International Workshop on Procedural Content Genera-

tion in Games, Bordeaux, France, Jun 2011. ACM.

[11] Richard A. Bartle. How to Be a God: A Guide for Would-Be Deities. NotByUs,

West Bergholt, Essex, 2022.

[12] Matt Barton and Shane Stacks. Dungeons and Desktops: The History of Computer

Role-Playing Games. A K Peters/CRC Press, [2nd edition]. — Boca Raton: Taylor

& Francis, [2018], 2 edition, Apr 2019.

[13] Karl Bergström and Staffan Björk. The case for computer-augmented games.

Transactions of the Digital Games Research Association, 2014.

[14] Karl Bergström, Staffan Jonsson, and Staffan Björk. Undercurrents: A computer-

178

based gameplay tool to support tabletop roleplaying. In Nordic DiGRA 2010,

2010.

[15] BioWare. Neverwinter nights, 2002.

[16] Chester Bolingbroke. Game 123: Orthanc (1975), Nov 2013.

https://crpgaddict.blogspot.com/2013/11/game-123-orthanc-1977.html.

[17] Adam “Badeye” Bradford. Curse media and fandom are joining forces!,

Dec 2018. https://www.dndbeyond.com/forums/d-d-beyond-general/news-

announcements/29976-curse-media-and-fandom-are-joining-forces.

[18] Cameron Browne and Frederic Maire. Evolutionary game design. IEEE Transac-

tions on Computational Intelligence and AI in Games, 2(1):1–16, 2010.

[19] Cameron Bolitho Browne. Automatic generation and evaluation of recombination

games. PhD thesis, Queensland University of Technology, 2008.

[20] buttonpushertv. Meet my roll20 macro pad.

https://www.reddit.com/r/Roll20/comments/

gk8e9w/meet my roll20 macro pad.

[21] cgloeckner. Pyvtt, 2021. https://github.com/cgloeckner/pyvtt.

[22] Y.-L. Betty Chang, Stacey D. Scott, and Mark Hancock. Supporting situation

awareness in collaborative tabletop systems with automation. In Proceedings of

the Ninth ACM International Conference on Interactive Tabletops and Surfaces -

ITS ’14, page 185–194, Dresden, Germany, 2014. ACM Press.

179

[23] Coleman Charlton, John Curtis, Pete Fenlon, and Steve Marvin. Rolemaster. Iron

Crown Enterprises, 1980.

[24] Adrian David Cheok. Art and Technology of Entertainment Computing and Com-

munication. Springer London, London, 2010.

[25] Ben Clothier and David E. Millard. Awash: Prospective story sifting intervention

for emergent narrative. In Lissa Holloway-Attaway and John T. Murray, editors,

Interactive Storytelling, pages 187–207, Cham, 2023. Springer Nature Switzerland.

[26] Inkscape Developer Community. Inkscape, 2003. https://inkscape.org/.

[27] Kate Compton. So you want to build a generator, Feb 2016.

http://www.galaxykate.com/buildagenerator-kcompton.pdf.

[28] Rui Craveirinha and Licinio Roque. Exploring the design-space: The authorial

game evolution tool case-study. In Proceedings of the 13th International Con-

ference on Advances in Computer Entertainment Technology, page 1–10, Osaka,

Japan, Nov 2016. ACM.

[29] Pavel Curtis. Lambdamoo, 1990.

[30] M. Cutumisu, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy, C. Onuczko, and

M. Carbonaro. Generating ambient behaviors in computer role-playing games.

IEEE Intelligent Systems, 21(5):19–27, Sep 2006.

[31] Maria Cutumisu, Curtis Onuczko, Matthew McNaughton, Thomas Roy, Jonathan

Schaeffer, Allan Schumacher, Jeff Siegel, Duane Szafron, Kevin Waugh, Mike

180

Carbonaro, Harvey Duff, and Stephanie Gillis. Scriptease: A generative/adaptive

programming paradigm for game scripting. Science of Computer Programming,

67(1):32–58, Jun 2007.

[32] Paul Czege. My Life with Master. Half Meme Press, 2003.

[33] Chris Davis. OpenRPG: Online virtual tabletop.

http://www.rpgobjects.com/orpg.

[34] Wim De Hert and Karel Crombecq. Dungeon alchemist, 2021.

https://www.dungeonalchemist.com.

[35] Bouncyrock Entertainment. Talespire, 2015. https://www.talespire.com/.

[36] Obsidian Entertainment. Neverwinter nights 2, 2006.

[37] Sony Online Entertainment. Star wars galaxies, 2003.

[38] TaleWorlds Entertainment. Mount & blade, 2008.

[39] Organization for Transformative Works. Archive of our own.

https://archiveofourown.org/.

[40] Johnn Four. ipad app review: Rpg cartographer, 2010.

http://www.campaignmastery.com/blog/ipad-app-review-rpg-cartographer/.

[41] Fulvio Frapolli, Béat Hirsbrunner, and Denis Lalanne. Dynamic rules: Towards

interactive games intelligence. Proceedings of the 12th International Conference

on Intelligent User Interfaces, 2007.

181

[42] Berserk Games. Tabletop simulator, 2015. https://www.tabletopsimulator.com/.

[43] Failbetter Games. Fallen london, 2010. https://www.fallenlondon.com.

[44] Foundry Gaming. Foundry gaming — creating foundry virtual tabletop — pa-

treon. https://www.patreon.com/foundryvtt.

[45] Foundry Gaming. Packages for foundry virtual tabletop.

https://foundryvtt.com/packages/systems.

[46] Foundry Gaming. Foundry virtual tabletop, 2020. https://foundryvtt.com.

[47] Foundry Gaming. Crucible, 2023. https://foundryvtt.com/packages/crucible.

[48] Richard Garriot. Ultima, 1981.

[49] Felix Gillette and Thomas Buckley. Breaking the curse. Bloomberg Businessweek,

Apr 2023.

[50] Marcello A. Gómez-Maureira, Giulio Barbero, Maria Freese, and Mike Preuss.

Towards a taxonomy of ai in hybrid board games. In International Conference on

the Foundations of Digital Games, page 1–6, Bugibba, Malta, Sep 2020. ACM.

[51] Andrew C. Greenberg and Robert Woodhead. Wizardry, 1981.

[52] Don Greenwood. Advanced Squad Leader. Avalon Hill Games, 1985.

[53] The Orr Group. Burnbryte, 2020. https://burnbryte.com.

182

[54] Matthew Guzdial, Devi Acharya, Max Kreminski, Michael Cook, Mirjam Elad-

hari, Antonios Liapis, and Anne Sullivan. Tabletop roleplaying games as procedu-

ral content generators. In International Conference on the Foundations of Digital

Games, page 1–9, Bugibba, Malta, Sep 2020. ACM.

[55] Gary Gygax and Dave Arneson. Dungeons & Dragons. TSR, Inc., 1974.

[56] John Harper. Blades in the Dark. Evil Hat Productions, 2017.

[57] Ulf Hartelius, Johan Fröhlander, and Staffan Björk. Tisch: Digital tools support-

ing board games. In Proceedings of the International Conference on the Founda-

tions of Digital Games, page 196–203, 2012.

[58] JT Harviainen. A hermeneutical approach to role-playing analysis. International

Journal of Role-Playing, 1:66–78, 2009.

[59] Hempuli. Baba is you, 2019. https://www.hempuli.com/baba.

[60] Hempuli. Baba is you press kit image 01, 2019.

https://www.hempuli.com/press/Baba Is You/images/image1.png.

[61] Shane Lacy Hensley. Savage Worlds. Pinnacle Entertainment Group, 2003.

[62] Maurice P Herlihy and Jeannette M Wing. Specifying graceful degradation in dis-

tributed systems. Proceedings of the Sixth Annual ACM Symposium on Principles

of Distributed Computing, pages 167–177, 1987.

[63] Emily Hery and Glenda Drew. Tool for map creation and map interaction during

183

tabletop game sessions. In Proceedings of the 2019 on Creativity and Cognition,

page 531–535, San Diego, CA, USA, Jun 2019. ACM.

[64] Rich Hickey. Clojure, 2007. https://clojure.org.

[65] Rich Hickey. clojure.spec - rationale and overview, 2016.

https://clojure.org/about/spec.

[66] Kenneth Hite. Night’s Black Agents. Pelgrane Press, 2012.

[67] Douglas R. Hofstadter. Metamagical themas: About nomic: a heroic game that

explores the reflexivity of the law. Scientific American, 246(6):16–33, 1982.

[68] Ian Horswill. Imaginarium: A tool for casual constraint-based pcg. Proceedings

of the AIIDE Workshop on Experimental AI and Games, 2019.

[69] Infocom. Zork, 1977.

[70] Steve Jackson. GURPS. Steve Jackson Games, 1986.

[71] Jonathan Johansson and Peter Lundberg. Tabula imaginarium - an ipad applica-

tion for aiding a spatially separated tabletop role-playing game. Master’s thesis,

Chalmers University of Technology, 2012.

[72] Shi Johnson-Bey and Michael Mateas. Centrifuge: A visual tool for authoring

sifting patterns for character-based simulationist story worlds. In The 17th AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment: Pro-

gramming Languages and Interactive Entertainment Workshop, 2021.

184

[73] Sergi Jordà. The reactable: tangible and tabletop music performance. In CHI ’10

Extended Abstracts on Human Factors in Computing Systems, page 2989–2994,

Atlanta, GA, USA, Apr 2010. ACM.

[74] Sergi Jordà, Günter Geiger, Marcos Alonso, and Martin Kaltenbrunner. The

reacTable: Exploring the synergy between live music performance and tabletop

tangible interfaces. In Proceedings of the 1st international conference on Tangible

and embedded interaction, page 139–146, Baton Rouge, Louisiana, Feb 2007. ACM.

[75] Jesper Juul. Half-Real: Video Games Between Real Rules and Fictional Worlds.

MIT Press, Cambridge, Mass, 2005.

[76] Martin Kaltenbrunner, Sergi Jordà, Gunter Geiger, and Marcos Alonso. The

reacTable*: A collaborative musical instrument. In 15th IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises

(WETICE’06), page 406–411, Manchester, UK, 2006. IEEE.

[77] Ville Kankainen, Jonne Arjoranta, and Timo Nummenmaa. Games as blends:

Understanding hybrid games. Journal of Virtual Reality and Broadcasting, 14(4),

2017.

[78] Ville Kankainen and Janne Paavilainen. Hybrid board game design guidelines.

Proceedings of the Digital Games Research Association, 2019.

[79] Thomas Knoll and John Knoll. Photoshop, 1990.

https://www.adobe.com/products/photoshop.html.

185

[80] Mehmet Kosa and Pieter Spronck. What tabletop players think about augmented

tabletop games: A content analysis. In Proceedings of the 13th International

Conference on the Foundations of Digital Games, page 1–8, Malmö, Sweden, Aug

2018. ACM.

[81] Max Kreminski, Melanie Dickinson, and Michael Mateas. Winnow: A domain-

specific language for incremental story sifting. In Proceedings of the AAAI Con-

ference on Artificial Intelligence and Interactive Digital Entertainment, 2021.

[82] Max Kreminski, Melanie Dickinson, Michael Mateas, and Noah Wardrip-Fruin.

Why are we like this?: The ai architecture of a co-creative storytelling game. In

Proceedings of the 15th International Conference on the Foundations of Digital

Games, FDG ’20, New York, NY, USA, 2020. Association for Computing Ma-

chinery.

[83] Max Kreminski, Melanie Dickinson, and Noah Wardrip-Fruin. Felt: a simple story

sifter. In Interactive Storytelling: 12th International Conference on Interactive

Digital Storytelling, ICIDS 2019, Little Cottonwood Canyon, UT, USA, November

19–22, 2019, Proceedings 12, pages 267–281. Springer, 2019.

[84] Max Kreminski, Melanie Dickinson, Noah Wardrip-Fruin, and Michael Mateas.

Select the unexpected: A statistical heuristic for story sifting. In Interactive

Storytelling, pages 292–308. Springer International Publishing, 2022.

[85] Max Kreminski and Noah Wardrip-Fruin. Sketching a map of the storylets design

186

space. In 11th International Conference on Interactive Digital Storytelling, ICIDS

2018, pages 160–164. Springer, 2018.

[86] Max Kreminski, Noah Wardrip-Fruin, and Michael Mateas. Authoring for Story

Sifters, pages 207–220. Springer International Publishing, 2022.

[87] Christina Köffel and Michael Haller. Heuristics for the evaluation of tabletop

games. Conference on Human Factors in Computing Systems: Evaluating User

Experiences in Games Workshop, 2008.

[88] Languard. Divinity: Original sin 2 - game master mode.

https://fextralife.com/wp-content/uploads/2017/09/divinity-original-sin-2-

video-screencap vignette.png.

[89] Andreas Larsson, Jonas Ekblad, Alberto Alvarez, and Jose Font. A comparative

ux analysis between tabletop games and their digital counterparts. In Extended

Abstracts of the 2020 Annual Symposium on Computer-Human Interaction in

Play, page 301–305, Canada, Nov 2020. ACM.

[90] Robin Laws. GUMSHOE One-2-One. Pelgrane Press, 2016.

[91] Reactable Legacy. Reactable community. http://community.reactable.com.

[92] LegendKeeper. Frequently asked questions, 2022.

https://www.legendkeeper.com/faq/.

[93] LegendKeeper. Legendkeeper, 2022. https://www.legendkeeper.com.

187

[94] Yannis Lilis and Anthony Savidis. An integrated development framework for

tabletop computer games. Computers in Entertainment, 12(3):1–34, Sep 2014.

[95] Craig A Lindley and Mirjam Eladhari. Narrative structure in trans-reality role-

playing games: Integrating story construction from live action, table top and

computer-based role-playing games. Proceedings of the Digital Games Research

Association, 2005.

[96] ProFantasy Software Ltd. Campaign cartographer, 1993.

https://www.profantasy.com.

[97] Alexander Macris, Greg Tito, and Tavis Allison. Adventurer, Conqueror, King

System. Autarch, 2011.

[98] Carsten Magerkurth, Adrian David Cheok, Regan L. Mandryk, and Trond Nilsen.

Pervasive games: bringing computer entertainment back to the real world. Com-

puters in Entertainment, 3(3), Jul 2005.

[99] Carsten Magerkurth, Maral Memisoglu, Timo Engelke, and Norbert Streitz. To-

wards the next generation of tabletop gaming experiences. Graphics Interface,

2004.

[100] Carsten Magerkurth, Richard Stenzel, and Thorsten Prante. Stars - a ubiquitous

computing platform for computer augmented tabletop games. Video Track and

Adjunct Proceedings of the Fifth International Conference on Ubiquitous Comput-

ing, 2003.

188

[101] Jimmy Maher. Playing wizardry, 2012. https://www.filfre.net/2012/03/playing-

wizardry/.

[102] Regan L. Mandryk and Diego S. Maranan. False prophets: Exploring hybrid

board/video games. In CHI’02 Extended Abstracts on Human Factors in Com-

puting Systems, page 640–641, 2002.

[103] Magnus Manske and Lee Daniel Crocker. Mediawiki, 2002. https://mediawiki.org.

[104] John Markoff. What the Dormouse Said: How the 60s Counterculture Shaped the

Personal Computer Industry. Penguin, 2005.

[105] Chris Martens. Ceptre: A language for modeling generative interactive systems.

In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment, volume 11, pages 51–57, 2015.

[106] Stacey Mason. Responsiveness in Narrative Systems. PhD thesis, University of

California, Santa Cruz, 2021.

[107] Maxis. The sims, 2000. https://www.ea.com/games/the-sims.

[108] Alexander Mayben. Tabletop role-playing game design through a pattern language

software model. Master’s thesis, University of California, Santa Cruz, 2020.

[109] Ali Mazalek, Basil Mironer, Elijah O’Rear, and Dana Van Devender. The tviews

table role-playing game. JVRB-Journal of Virtual Reality and Broadcasting, 5(8),

2008.

189

[110] mcglintlock. Dungeon draw: A new module to draw maps within foundry.

https://www.reddit.com/r/FoundryVTT/comments/

qtatzi/dungeon draw a new module to draw maps within.

[111] Marc Miller, Frank Chadwick, John Harshman, and Loren Wiseman. Traveller.

Game Designer’s Workshop, 1977.

[112] Jason Morningstar. Fiasco. Bully Pulpit Games, 2009.

[113] moron4hire, Jun 2023. https://news.ycombinator.com/item?id=36345851#36348918.

[114] Mesa Mundi. D20 pro, 2011. https://d20pro.com.

[115] Myu-Unix and dolanor. Mirkwood engine, 2021. https://github.com/Myu-

Unix/mirkwood engine.

[116] n Space and Digital Extremes. Sword coast legends, 2015.

[117] Graham Nelson. Inform 7 programming language.

https://ganelson.github.io/inform-website/.

[118] NimsTV. [skyrim] how to’s - the secret of lockpicking, Jun 2023.

https://www.youtube.com/watch?v=R5fZobDqQbU.

[119] Noppaseppele. Tips on playing ttrpg in roll20. https://noppaseppele.fi/playing-

ttrpg-online-roll20-tips/.

[120] Mikkel Paulsen. Introducing initiative.sh. https://github.com/initiative-

sh/initiative.sh/blob/main/README.md.

190

[121] Mikkel Paulsen. Initiative.sh, 2021. https://initiative.sh/.

[122] Sandy Petersen. Call of Cthulhu RPG. Chaosium, 1981.

[123] Éric Piette, Dennis J. N. J. Soemers Soemers, Matthew Stephenson, Chiara F.

Sironi, Mark H. M. Winands, and Cameron Browne. Ludii - the ludemic general

game system. CoRR, abs/1905.05013, 2019.

[124] Bas A. Plijnaer, Daisy O’Neill, Eloisa Kompier, Günter Wallner, and Regina

Bernhaupt. Truesight battle grid - enhancing the game experience of tabletop

role-playing through tangible data visualization. In Extended Abstracts of the

2020 Annual Symposium on Computer-Human Interaction in Play, page 103–107,

2020.

[125] Jan Pokorný. A framework for modelling tabletop game rules. Bachelor’s thesis,

Masaryk University, 2019.

[126] Razeware. Battle map 2. https://appadvice.com/app/battle-map-2/384800918.

[127] Realistic-Ad4965. Evolution of the kitchen table rpg.

https://www.reddit.com/r/FoundryVTT/comments/

o8bpq6/evolution of the kitchen table rpg.

[128] Aaron A. Reed. Changeful Tales: Design-Driven Approaches Toward More Ex-

pressive StorygamesE EXPRESSIVE STORYGAMES. PhD thesis, University of

California, Santa Cruz, 2017.

[129] Aaron A. Reed. 1975: dnd, Feb 2021. https://if50.substack.com/p/1975-dnd.

191

[130] Aaron A. Reed. 1980: Mud, Mar 2021. https://if50.substack.com/p/1980-mud.

[131] Aaron A. Reed. 1990: Lambdamoo, May 2021. https://if50.substack.com/p/1990-

lambdamoo.

[132] Rob Rendell. gtove, 2017. https://github.com/RobRendell/gTove.

[133] Ben Robbins. Microscope RPG. Lame Mage Productions, 2011.

[134] Thom Robertson. Artemis: Spaceship bridge simulator, 2010.

[135] Jason Rohrer. Sleep is death, Nov 2010. http://sleepisdeath.net/.

[136] Jason Rohrer. Sleep is death tutorial 1: Controller basics, 2010.

https://www.youtube.com/watch?v=BYdVDmfbwjI.

[137] Jason Rohrer. Sleep is death tutorial 5: Advanced object editor usage, 2010.

https://www.youtube.com/watch?v=ygUbKF1qKcU.

[138] RPTools. Maptool 1.13, 2023. https://github.com/RPTools/maptool.

[139] James Ryan. Curating Simulated Storyworlds. PhD thesis, University of Califor-

nia, Santa Cruz, 2018.

[140] James Ryan, Ben Samuel, Adam J. Summerville, and Michael Mateas. Bad news:

An experiment in computationally assisted performance. Lecture Notes in Com-

puter Science, Nov 2016.

[141] Ben Samuel, Adam Summerville, James Ryan, and Liz England. A quantified

analysis of bad news for story sifting interfaces. In Interactive Storytelling: 14th

192

International Conference on Interactive Digital Storytelling, ICIDS 2021, Tallinn,

Estonia, December 7–10, 2021, Proceedings 14, pages 142–156. Springer, 2021.

[142] René Reinhold Schallegger. The Postmodern Joy of Role-Playing Games: Agency,

Ritual and Meaning in the Medium. McFarland, 2018.

[143] Udo Schroeter. Rolz, 2011. https://rolz.org.

[144] Emily Short. Beyond branching: Quality-based, salience-based, and waypoint

narrative structures, 2016. https://emshort.blog/2016/04/12/beyond-branching-

quality-based-and-salience-based-narrative-structures.

[145] Emily Short. Storylets: You want them, 2019.

https://emshort.blog/2019/11/29/storylets-you-want-them/.

[146] Strategic Simulations. Pool of radiance, 1988.

[147] SmiteWorks. Fantasy grounds. https://www.fantasygrounds.com/.

[148] SmiteWorks. Fantasy grounds game system usage through 2020Q4, 2021.

https://www.fantasygrounds.com/reports/2020Q4/.

[149] Alexis D. Smolensk. Trade system, Apr 2018. https://tao-

dndwiki.blogspot.com/2018/04/trade-system.html.

[150] Alexis D. Smolensk. Injury, 2023. https://wiki.alexissmolensk.com/index.php/Injury.

[151] Ambitious Software. Dungeon mapp, 2011. http://www.ambitioussoftware.com.

[152] Spellarena. Never ending dungeon, 2021. https://neverendingdungeon.ai.

193

[153] Square. Final fantasy, 1987.

[154] Greg Stafford. Pendragon. Chaosium, 1985.

[155] Alex Stavrinou. Tableplop, 2020. https://www.tableplop.com/.

[156] Patricia D Stokes. Creativity from constraints: The psychology of breakthrough.

Springer Publishing Company, 2005.

[157] Bethesda Game Studios. The elder scrolls v: Skyrim, 2011.

[158] Desert Nomad Studios. A tale in the desert, 2003. https://www.desert-

nomad.com/.

[159] Larian Studios. Divinity: Original sin 2, 2017.

[160] Peter Suber. The Paradox of Self-Amendment: A Study of Law, Logic, Om-

nipotence, and Change. Peter Lang International Academic Publishers, Bern,

Switzerland, 1990.

[161] John Sullivan. Shmeppy, 2019. https://shmeppy.com.

[162] Philip Tchernavskij, Andrew M. Webb, Hayden Gemeinhardt, and Wendy E.

Mackay. Readymades & repertoires: Artifact-mediated improvisation in tabletop

role-playing games. In Creativity and Cognition, page 298–311, Venice, Italy, Jun

2022. ACM.

[163] Arkenforge Team. Arkenforge, 2017. https://arkenforge.com.

194

[164] Arkenforge Team. Arkenforge: Touch screen table support, 2017.

https://arkenforge.com/touch-screen-table-info.

[165] Critical Role Team. Critical role. https://critrole.com.

[166] Inkarnate Team. Inkarnate, 2018. https://inkarnate.com.

[167] Let’s Role Team. Let’s role, 2023. https://lets-role.com.

[168] Obsidian Portal Team. Obsidian portal, 2007. https://www.obsidianportal.com.

[169] Roll20 Team. Roll20, 2012. https://roll20.net.

[170] Roll20 Team. The orr group industry report Q4 2020: 8 million users edition!,

Feb 2021. https://blog.roll20.net/posts/the-orr-group-industry-report-q4-2020-8-

million-users-edition/.

[171] Wonderdraft Team. Wonderdraft, 2018. https://www.wonderdraft.net.

[172] World Anvil Team. World anvil, 2017. https://www.worldanvil.com/.

[173] Day 8 Technology. Re-frame, 2015. https://day8.github.io/re-frame.

[174] Nicola Thouliss and Mitch McCaffrey. Owlbear rodeo, 2020.

https://www.owlbear.rodeo.

[175] Inc. Tilt Five. Tilt five, 2022. https://www.tiltfive.com/.

[176] J. R. R. Tolkien. The Lord of the Rings. Allen & Unwin, 1954–1955.

[177] TVTropes. Tvtropes. https://tvtropes.org/.

195

[178] Elise van den Hoven and Ali Mazalek. Tangible play: Research and design for

tangible and tabletop games. In Proceedings of the 12th international conference

on Intelligent user interfaces - IUI ’07, Honolulu, Hawaii, USA, 2007. ACM Press.

[179] Vassal. What is vassal?, 2023. https://vassalengine.org/about.html.

[180] Bryan “spacehabs” Versteeg. https://twitter.com/spacehabs/status/

1577314692544233473?s=20.

[181] Ramon Viladomat Arró. ReacTable Role Gaming - RRG. 2008.

https://www.youtube.com/watch?v=QflrIK-m4Ts.

[182] Ramon Viladomat Arró. Reactable role gaming (rrg): Disseny, implementació i

avaluació d’un entorn pel desenvolupament de jocs de rol per a taules interactives.

Bachelor’s thesis, Universitat Pompeu Fabra, 2009.

[183] Jordan Walke and Meta Platforms Inc. Reactjs, 2013. https://react.dev.

[184] Noah Wardrip-Fruin and Nick Montfort, editors. The New Media Reader. MIT

Press, 2003.

[185] Andrew M. Webb and Pablo Cesar. Uncovering seams in distributed play of

tabletop role-playing games. In Extended Abstracts of the Annual Symposium

on Computer-Human Interaction in Play Companion Extended Abstracts, page

773–780, Barcelona, Spain, Oct 2019. ACM.

[186] Business Wire. Hasbro to acquire D&D beyond from fandom, Apr

196

2022. https://www.businesswire.com/news/home/20220412006151/en/Hasbro-

to-Acquire-DD-Beyond-from-Fandom.

[187] Christopher Wolfe, J. David Smith, and T. C. Nicholas Graham. A low-cost

infrastructure for tabletop games. In Proceedings of the 2008 Conference on Future

Play: Research, Play, Share, page 145–151, Toronto, Ontario, Canada, Nov 2008.

ACM.

[188] Chris Zimmerer, Philipp Krop, Martin Fischbach, and Marc Erich Latoschik.

Reducing the cognitive load of playing a digital tabletop game with a multimodal

interface. In CHI Conference on Human Factors in Computing Systems, page

1–13, New Orleans, LA, USA, Apr 2022. ACM.

197

Appendix A

Interview Transcript Excerpts

After each interview, I drafted a transcript while listening to a recording of

the interview. I removed occasional sections where discussion veered away from ROLE-

PLAYINGGAME, game design, or other relevant topics. I edited for clarity by adding

speaker labels to each line, and inserting editorial comments in brackets. I edited for

concision by removing filler words (e.g. “um,” “like”) and false-start sentences (e.g.

“What I think is that — My point is that RPGs are interesting.” became “My point

is that RPGs are interesting.”) Finally, for ease of reference in the main document, I

marked passages of particular interest with numbers in square brackets.

The full transcripts of these interviews are available in the supplement to this

thesis, which can be found on ProQuest or eScholarship. For brevity, here I have only

reproduced the key points which I specifically refer to in this thesis.

198

A.1 Interview Excerpts from P1

P1: So I don’t have a legend for this orange text [i.e. differential display text] ... but

then how am I going to tell which character has access to which information? Do they

each get a color? [1]

P1: Which is pointing me at — this wants to be the spreadsheet interface, but it can’t

actually promise that at the same level of fidelity for any arbitrary field you you might

add. [5]

P1: Yeah. The tension I’m seeing here is you are saying to the GM, “Look, you can

operationalize everything you’re doing. Here is a beautiful language.” But code is scary.

So you are going to have to build this involved visual editor to round trip you from your

[RPG design done on] paper, to the database, through this ontology of transactions that

you’ve beautifully laid out here. And it’s very difficult to make progress on, just because

you have to spend all this time iterating on the representation, and the ontology suffers.

You end up with a toy ontology because the representation is very hard to create. [10]

P1: And you can create an interface for — you have the proof of concept interface for

[those GMs to] use programming languages. This is very HCI and PL [programming

languages] kind of work, where you’re trying to basically improve on the IDE experience

somewhat, so that non-programmers can access the power of this transaction language

[ed: i.e. the collection of DSLs implied by ROLEPLAYINGGAME, one each for defining

actions, rules, items, etc.]. [12]

P1: Yeah, you’re formalizing the foundations of the game design and bringing it to

199

people who want to see game designers using their [PL theory] stuff in the wild some-

day. [13]

P1: The converse of that would be to go to game studies and say, “Here’s a DSL. You

want to know all of these aspects of programming language theory. I want to articulate

why a DSL is something valuable and interesting for designers [to] use.” So those are

two, you see, those are closely related papers, but they’re not the same one because you

have to assume different knowledge on either side. [14]

P1: Okay. Fantastic. So between the interpret function and the preconditions [of an ac-

tion to take place], you’ve essentially created storylets but for database transactions. [17]

P1: There’s a precondition. We don’t care about manually overriding the precondition

since that’s an interface consideration — wild! And the postcondition is decomposed

into these three units [i.e. events] that the database understands. So this is analogous

[to] what Inform 7 wants to do within its language for verbs. [18]

P1: But I think what you’ve done here is you’ve articulated some connections that

weren’t clear to me between Inform and LambdaMOO and your system. And that to

me is a compelling survey of the history of, frankly, the metaverse. The thing that

the metaverse promises, which is a perfectly extensible language of updates to a world

model. [19]

P1: It’s going to keep being done, which is why it’s more relevant than ever to create a

survey of: “Here is the history of how people have tried to kind of break databases over

their knee and make them into into frames that can be extended so that you can solve

your frame problem from good old symbolic AI.” [20]

200

P1: But you’ve identified an orthogonal element of what the GM does. [He] says things

[to the players] like, “I see you have 15 geese. Maybe it’s time to talk about how you’re

feeding 15 geese.” Even though the goose object did not previously have any special

relationship to seed objects [i.e. something the goose might eat]. [22]

A.2 Interview Excerpts from P2

P2: [time 19:30] The highlighted [i.e. differentially displayed] information only this

character knows: that’s pretty cool. The way I’m used to playing D&D, the DM

sitting right there will be like, “Oh, by the way, your character sees this thing in their

darkvision,” but everyone hears that, and has to pretend that their characters don’t

know. Which can be successful, but it’s cool that this way, it’s truly up to just that one

character whether or not they inform the other players. [1]

P2: [After MJ asked which D&D editions he’d played:] I don’t know. [5]

P2: Study the tapes. [ed: referring to what sports teams do when they watch their past

games to understand and improve their performance.] [6]

P2: Not really, honestly, because that seems like too much overhead. I think like I said,

[for] the more rules-based, tactical parts of the game, your tool makes perfect sense and

seems like it’s a huge help there. But then everything you do the rest of the time —

having to make sure that the computer’s state is consistent with all of the stuff you

guys did just by talking... [12]

P2: That seems like it might be real overhead, from a user perspective: the player’s

201

interaction. [13]

P2: This is kind of a different question, but is there any encyclopedia of NPCs or

something like that? Because that seems useful. [14]

P2: That seems useful that if some player mentions, like, “Oh yeah, where’s that guy

Bob we talked to?” and you [the GM] are like, “Who’s Bob? I forget.” Being able to

check there and see, “Bob is a 35-year-old elf who’s the mayor of this town and we got

in a fight with him about this.” [15]

P2: We’ve been talking about how different your game is from my game and that it

seems like this tool is being tuned for your style of game. Certainly. And having the

DM be able to decide what parts of the rules in logic and logistics are managed by the

computer, and what parts they’ll do analog, seems like a good way for them to be able

to accommodate their style of play with your tool. [19]

MJ: That’s a good point. It’s almost like it provides an adoption path. [20]

P2: Having a rules editor would be great. [21]

A.3 Interview Excerpts from P3

P3: I don’t have any questions yet, but I’m sure some will emerge. The first thing I

found really cool was the context-sensitive information distribution. For instance, if a

character has good skills, they’ll get info that others don’t. I thought that was cool, and

a good use of everyone having their computer. It allows for sharing information, not

secretly, but privately, and in a way predetermined by skills, which is more efficient than

202

writing it on a slip of paper and handing it over, making everyone else feel weird. [1]

P3: But yeah, I thought that that was really cool. I also liked — actually, there were a

lot of things that I liked. I did like adding the troll, Gluzznub, or whatever the troll’s

name was. [2]

P3: Yeah, I thought that was cool. I thought that it looked pretty straightforward.

And like you said, it’s a problem with prep for RPGs in general, where you can prepare

forever, and then the first thing that your players do will be something you didn’t

prepare for, even if it’s super minor. And, well, the decision-making process after they

throw whatever wrench at you is, I guess, the same [ed: between VTTs and analog

gaming]. [But] trying to represent it in Roll20 or something can be really hard. [3]

P3: Because it’s like, I have to get a token and then assign, but I can’t [pick a guy

and assign him a token, i.e. go the other direction]. And I feel like more often than

not, I just will write down what I want it to be on paper notes and just play from that

instead. [4]

P3: Watching the video, I think it definitely has some interesting utility that I hadn’t

really thought of. I feel like a professor who says, “No computers in the classroom,

because you won’t be taking notes, you’ll be looking at whatever.” I kind of feel that

way. Yeah, if I step back and think about it, it does have huge utility. There are a lot of

ways it can improve gameplay. You can do quick reference for things, take better notes,

have more information readily available and searchable. You’re not leafing through your

rulebook to find rules when you need them. But, as someone who’s GMed for a long

time, I know it can be easy for people to lose focus. And so, part of me having the

203

computer is worried, like, are you dialed in? [6]

P3: It’s harder to multitask on, yeah. [7]

P3: One good example from your video was clicking on move, and it just shows where

my guy can move. In Dungeons and Dragons, I have to remember I have a 30-foot

movement range, and if I’m wearing heavy armor, it’s restricted. Even in Roll20, you

have to use the measurement tool. [9]

P3: No, they don’t. [10]

P3: You have to measure to 30 feet. So having it pop up showing all the spaces you

could move to is a really great tool. [11]

P3: Right now, I think one of the big things that causes a lot of drag in tabletop

roleplaying games, and there’s not as much of in videogames, is decision paralysis and

possibility space. I get decision paralysis in videogames too, but with roleplaying games,

even in Baldur’s Gate 3, which I just started playing, and 5e D&D — same rule set

basically — you have a 30-foot movement range and can do one attack and one other

action on your turn. [13]

P3: Looking at a videogame, it often concisely shows where you can go, which guys you

can attack, which allies are in spell range. In contrast, playing on the table, it’s more

abstracted. You still have that 30-foot movement range, but it’s not visually represented

in the same way. It’s not doing that back-end [logic]. [14]

[ed: by back-end, P3 means the calculations performed by a videogame performs in

order to show the aforementioned visualizations, and other concise expressions of game

rules, which he was talking about prior.]

204

P3: I feel like the videogame lets you focus on higher-order thinking, deciding the best

course, not the back-end processing of calculating movement and actions: “If I can go

six squares here, I can do this.” [15]

P3: I think it’s a different kind, but similar. A big thing in planning is the info gathering.

It’s like not having all the information, which is okay, but deciding whether to buy a

bunch of bags of grain or one cool magic sword. And then figuring out, can we carry

all the grain? Can we buy the grain? Can we haggle the grain down? Can we even do

that? That exploration process can take a really long time. [16]

P3: [Regarding expanded differential display] Oh wow, that’s cool. That’s really

cool. [17]

P3: But we really ran into a wall with things beyond that, like rules for NPCs, how

much equipment people can have, and the length of an encounter. Deciding what’s fun

but not too much is where we hit our wall a bit. [18]

P3: Right. Another struggle is harm or damage, like how much people are taking,

dealing, healing in an encounter or session. That might be easier to automate or have

a tool help with. [21]

P3: We also have complexities, like a class that takes damage to do more damage.

Introducing that and accounting for how often players might use that is challenging,

especially with certain player styles. If we play with [a mutual friend], you know he’s

going to be doing that “take damage to do damage” move all the time, so how do you

account for that [in a simulation]? [22]

P3: [Regarding story sifting] That would be really cool. [25]

205

P3: Yeah, really cool. [27]

P3: I think you already have part of that informational side with your big trade table,

like, “Computer, tell me how much they could get for selling a million bags of rice right

now.” [30]

P3: And one cool thing about the trade table, because I’m a freak, is the “distance

from production” aspect. Like, if I’m Rogar the fighter and we’re near an iron mine,

and we’re going somewhere that doesn’t have a lot of iron, I might think of buying some

iron and selling it there for a profit. [31]

P3: And that can help you as a GM, too, because if your players are like, “What we’re

doing in this adventure is we are going to build the best farm in the world. Step one,

we’ve got to paint our barn red, because duh.” And then you [the GM] know where

they’re going to go, or you know where they might go to get the best deal on red paint.

You could provide them with that information. They can use it. [32]

P3: And that’s like a moderately complicated, conditional statistics problem. The

numbers are small, but when you add the condition “if the numbers come out this way,

then I want to do this,” it suddenly becomes something you can’t just do by multiplying

1 over 6 times itself a couple of times. We can figure out what adding another die to the

roll does probability-wise. Well, I can’t, because I’m not smart, someone at our table

can, or probability.com, or whatever. But I have nine of these resources I can spend.

What’s the best way to spend them? It would be cool if there was a reference tool for

that. [39]

P3: I don’t think so. I think this is a really cool project, and I think you’re asking the

206

right questions. [40]

A.4 Interview Excerpts from P4

P4: Fundamentally, [my reaction] is “useful.” I think, like you were just saying, obviously

this wouldn’t be the final layout [of] the UI ... like, a GM could maybe get familiar

with it, but I think that sometimes the GM’s role has to be making the game easier to

understand for the players. So I could see it being either something that the GM would

just have and communicate to the players, or it being a little more UI-friendly [so the

players could use it directly]. So you can never have played a roleplaying game before,

but get in there and be like, “Oh, yeah, this is my character. I know where the menu is

[and] I can get to that quicker.” [3]

P4: I was just talking about coding on the fly, right? And the troll was a great example

of that. Suddenly there’s a gap in your universe of something, and you need to fill it in.

How can you use this to quickly fill it in in the moment? [4]

P4: [time 44:05] Definitely. I would also say, coming at it from a theater perspective,

and also filmmaking, if you’re going to be putting a movie [or play] together, time

management is one of the most important things along with the story. It’s like, how

do you tell a story in 90 minutes? The first time you write out your screenplay, it’s

going to be like three hours long. Yo’ve got to make it as efficient as possible, which is

also why writing short stories can be harder than writing a full-length novel. And when

you’re an adult, [there’s also] time management: how much time do you actually have

207

with your group of players? There’s probably someone missing from the game, [or] who

needs to go pick their kid up from something. So five or ten minutes of looking in a

book for something [is] cutting into [more] valuable use of time. [10]

P4: We played around with, at least in high school, a different type of health system that

felt a little more realistic than having a certain number of points [before] you’re gone

... And then I think P3 might have tossed around the idea of having a living economy

where, depending on what happens in one town, the value of wheat or something might

increase or decrease in another one. But if you create a new town, how do you factor

all of that in? And that would never have gotten started. [11]

P4: Sure. So I would say that one of the great things about Traveller is — like in a

lot of sci-fi games or sci-fi stories, you’re trying to create a world that seems real and

lived in, that it has rules that you can relate to. So it feels like it could be the future

from now. So the choices and stuff that you make, or how the world is like at that time

feels more impactful because it’s almost like you’re creating a story in the future within

your actual timeline of your life, but you’ll be too old to actually see that happen in the

future. So you need something that feels robust. If you go to a new planet, you want it

to feel like there’s stuff that’s going on there, whether or not you ever landed there. [13]

P4: Some of the cool stuff that I like about Traveller [are the] many systems. I would

love for it to be on a virtual platform that I could just pick up. Like if I want to build

a spaceship from scratch, I almost [want] a side game to pop up. [14]

P4: Exactly, this idea of having many games in a game is something I think also really

expands a world or makes it seem more real. I’m thinking of Skyrim, right? You have

208

crafting, you can build your house, and there’s so many other things that have their

own little rule systems, even lockpicking. It’s not like some games where lockpicking

is literally you press a button and based on your skill points, you might get in or not.

[Instead] you’re actually trying to break in. Or oh my god, like GTA 4 when, what’s

his name? The guy calls you up and wants to play darts or go bowling. [15]

P4: Sure. Especially for world building, it’s about filling in the gaps of what you don’t

want to create. Like, if you want a big city, you might have some ideas of its biggest

resources, such as mining — something to add flair — but then you have to fill in the

gaps. You don’t want to limit yourself. So those tools come in to fill in all those gaps

you don’t have time to do. [18]

P4: Yeah, I think a contrast, if we’re talking about player experience, would be if you

have a system that pre-generates all the NPCs in a city, versus generating and affecting

the NPC generating system as it goes when you go into a new shop. So no NPCs were

created until you go to this new shop. That shop has these NPCs generated that are

curated for the specific role, and then that affects that system so that the next time

you generate an NPC, they won’t need another blacksmith. So they’ll take that out of

the equation. To the players, they don’t really notice the difference. It’s like as they’re

coming across these NPCs, they [begin to] exist. But you [ed: the player] can assume

that the rest of the world is filled with people because, when you go to this town or you

go here, there are people. Beforehand, there aren’t, but only the GM really has to deal

with that. [19]

P4: I think the GM is like the bridge between the world — all of the generation — and

209

the players. It’s about enabling the GM. You could generate all the characters with all

details and have it as a giant list. But that’s not easy for the GM to use, to suddenly

pull someone out of that pack and be this character. So while you could potentially

generate that stuff ahead of time, what the GM needs in the moment is what gets pulled

up [on screen]. [22]

P4: So, it’s like, I don’t want to see everyone in the town, I want to see who’s in this

room. What about this character do I need to know? What are his personality traits,

or how does he talk? [23]

A.5 Interview Excerpts from P5

P5: I’m not going to lie. I would play this right now. I know as the creator, you’re

always looking at something like, “Ah, man, this really sucks. I hate this. I wish I had

this feature.” But I think this is, at the very least, off to an excellent start. [1]

P5: OK, very nice. Yeah, I like this a lot, particularly the GM, or DM, being able to

fill in the gaps of the code. [4]

P5: As both, but particularly as the player. A 5e player can do nothing, essentially.

Just kind of drift along. If you’re trained to do that, it’s very difficult to break out

of it. Even as a DM, every word is planned out for you in advance. And those who

have deviated and try to make their own stuff are still kind of locked into those ways of

thinking. [11]

P5: And that’s why I like your system, is that you can see all this data. The data is

210

right there in the app, and I don’t have to go to another screen or another app. If it’s

all right there, for these complicated inventory things, and I don’t have to add it up on

paper — I mean, there’s a certain kind of player that will do that. I do that on paper

when I play. But I’ve been in math disciplines my whole life. That’s normal for me. If

we’re gonna reach the normal person, it has to be easy to do this stuff, so they can free

up that brain space to go and make these decisions that they haven’t ever had to make

before in a roleplaying game. [13]

P5: The barrier to entry does weed out a lot of people who are gonna be too lazy to

play a game like this, but I think a lot of those people can be trained. I think they’re

lazy because it’s easy to be lazy. It’s so much easier to be lazy that there’s no benefit to

making the effort to go up. And so if we can shave off some of the rough edges — [15]

P5: Yeah. Giving people a ladder, and eventually [some people will] try it and like it.

Not everyone will, but we’ll have more of a chance with the person who can be convinced,

if you don’t have to sit there and hold their hand with all of these, essentially, hacks

that you’ve had to cobble together to play the game. [17]

P5: Yeah, that’s simple. I like that a lot. So you’re actively manipulating the way the

character views the world, which is important because it’s hard to be anything other

than you. This has been a roleplaying challenge forever. [21]

P5: I’ve got a really dumb character, and I’m really smart. Or my character is really

smart, but I’m kind of a dumbass. So how do you work that? And if you have this layer

over everything where the computer, or the model, is filtering everything based on your

attribute — You know, I like that a lot. How things react. How the world around you

211

reacts to you, the party and things like that. [22]

P5: I think I can see what you’re describing, but I also don’t have the language. I don’t

think anyone does. But I think it’s a great goal to figure out the terminology. And, to

go back to adoption, maybe that is part of our job now, at this particular time, while

we’re building these tools: to figure out the terminology. How do we talk about these

things? [24]

P5: You know, the ontology of this space. And then, once that’s kind of worked out in

broad terms, that can kind of pick up other people to grab onto those tools that we’ve

created. Even though we didn’t push it to its edge, we got it to where other people

could grab it. Right now, you can feel it in your hands, but it’s ephemeral. We don’t

quite know what we have yet. We know it’s there, but we just have the vaguest contours

of what it is. And if we can describe it in enough detail, others can come along behind

us and figure it out. [25]

P5: Yeah, it’s not about what goes on in the games. When we have a rule and we want

to test how it works, that’s still subjective at some level. The games we play are more

objective than 5e or Dungeon World. But at some level, it still has to come down to,

“How do people react to the rule, and does it make their game experience better?” [26]

P5: Exactly. Exactly. That’s a very tough question. It’s easy sometimes when you

have some objectivity to be able to point to those effects, but I don’t think you can ever

escape fully the subjective nature of the player receiving the rule, or conversely, how

easy it is for the GM to implement [the rule]. [27]

MJ: Nobody’s actually trying to investigate those dissonances, which is why I like Alexis

212

so much. He cares about that stuff. If I pulled any five papers from my bibliography

right now and showed them to you, they would all open with phrases like, “RPGs are

collaborative storytelling exercise.” No one is talking about design. There’s no design

culture around RPGs! [28]

P5: That would be fantastic. [32]

P5: The same goes for anything you can make easier for the player to do. Knowing

how to type semicolon-separated values is not an essential part of the game, and there

comes a point at which that is just an obstacle. [38]

P5: A lot of things have to be happening at the same time, and I think this ties back

into something you said a half hour ago about different levels of detail. When you’re in

the battle map, the market doesn’t matter so much, but it doesn’t matter zero. [41]

P5: When you’re talking about other things going on in the background ... when you

open up Roll20, you see the battle map. And you can put other pictures in there on

different screens, but the whole thing is based on that view. The advantage of a web-

based app, or even one locally running, is that you can have all these different things

and toggle between them quickly and define whatever views you. Sometimes you just

want to look at information. You don’t need a map. You need a list of the characters.

Things like that. [44]

P5: So there’s a full distance. A maximum movement area. I should look at an individ-

ual hex and say, okay, you’re getting there somehow, and instead of trying to figure out

the valid combinations of AP to reach some hex, just [work backward from each desti-

nation hex to the source]. I don’t remember why exactly I found that unsatisfactory,

213

but it was a reasonable comment. And both of us were trying to think in kind of this

way, which is we need to apply videogame techniques. How much movement does your

character have, and how can we apply it to the game world? And we’re going to use

pathfinding to do it. I actually was using a modified pathfinding algorithm just with

step lengths of various sizes. But you’re right, none of these programs do this, and it

would not be that complicated to build, even if they had to build out a little battle map

maker. It’d be trivial. [45]

P5: Sure, this was great. I’m glad I could be of help. Let me know when your thesis

gets submitted. I’d love to take a look at it and read through it. And I think you’re on

a great track, so when the app comes out, drop me a link and I’ll get it and plug it. [50]

214

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Background and Motivation
	The Basics of RPG Play
	Two Gameplay Principles
	Principle 1
	Principle 2

	Rules and Facts
	Definitions
	Precursors to Rules and Facts
	Analyzing Chess in Terms of Rules and Facts

	Trusting the GM: Exceptions to Principle 2
	Exception #1: Hidden Procedures
	Exception #2: Allowances for Improvisation
	Consequences of the Exceptions

	Malleability
	An Example of Malleability
	When Should the GM Exercise Malleability?

	Quantitative Characteristics of RPG Systems, and Their Connections to the Gameplay Principles
	Fundamental Characteristics
	The Relative Importance of the Fundamental Characteristics
	Depth and Granularity Create Coverage
	Depth Creates Breadth
	Connectedness Creates Immersion and Difficulty
	Immersion and Difficulty Create Tension

	The Perils of High DCG, and the Promise of Computers
	Increases to DCG Run Into Human Limitations
	Computer Augmentation

	Why Aren't Computer-Augmented RPGsAlready Widespread?
	Mainstream Game Design Space is Constrained by Commercial Realities and User Reluctance
	Fixed-Theme Games Trade Principle 1 for Lowered DCG
	Storygames Don't Require High DCG
	A Comparison with Videogame Progress

	Research Questions Revisited

	Related Work
	Hybrid and Augmented Games
	Commercial and Academic Examples
	Observations

	RPG Support
	Commercial and Open-Source Work
	RPG Support in Academia
	Observations

	Virtual Tabletops
	VTTs in Academia
	VTTs Outside Academia
	Observations

	Videogames
	CRPGs
	Games with a GM Mode
	A Curious MUD
	Observations

	Summary

	Speculative Design Goals for Computer-Augmented, High-DCG RPGs
	Five Goals
	Summary

	The ROLEPLAYINGGAME System
	Features Which Were Out of Scope
	Implementation Details
	Language and Architecture
	Key Implementation-Level Concepts

	Game World Content
	Features Supporting Malleability
	Malleability of Substantive Facts
	Malleability of Taxonomic Facts
	Malleability of Rules

	Functionality and Design of User Interfaces
	Core UI Elements
	Differential Display
	GM's Inspector
	Game World Tab
	Gallery Tab
	Explore Tab
	Social Inventory Tab
	Market Tab
	Character Tab

	Summary

	Community Feedback
	Study Design
	Connections to Game Design and Software Development
	ROLEPLAYINGGAME Presents a Compelling Vision for Introducing Computer Augmentation to RPGs
	Complexity and Subgames
	Task-Specific Informational Interfaces
	Generating Game Content
	Testing and Refining Game Designs

	Computer Augmentation as a Learning Aid
	Criticism and Concerns
	Feasibility and Costs of Using Computer Tools
	Potential for Distraction

	Summary

	Discussion and Conclusion
	Reflection and Analysis
	Research Question 1
	Research Question 2
	Research Question 3

	Future Theoretical Work
	Connections to Fields Beyond Game Design
	Diagnosing and Repairing the Causes of Unexpected System Outcomes

	Future Technical Work
	Formal Content Schemas
	More Malleability, Culminating in Reprogrammability
	Widespread Use of Differential Display
	Rule Design Languages and Story Sifting

	Conclusion
	A Defense of a Philosophy
	A Classification of Components
	A Method for Quantitative Analysis
	An Account of Malleability
	A Set of Design Criteria
	An Innovative Artifact
	A Shared Vision

	Bibliography
	Interview Transcript Excerpts
	Interview Excerpts from P1
	Interview Excerpts from P2
	Interview Excerpts from P3
	Interview Excerpts from P4
	Interview Excerpts from P5

