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ARTICLE

Label-free characterization of organic nanocarriers
reveals persistent single molecule cores for
hydrocarbon sequestration
Terry McAfee1,2, Thomas Ferron1, Isvar A. Cordova 2, Phillip D. Pickett 3, Charles L. McCormick3,

Cheng Wang2✉ & Brian A. Collins 1✉

Self-assembled molecular nanostructures embody an enormous potential for new technol-

ogies, therapeutics, and understanding of molecular biofunctions. Their structure and func-

tion are dependent on local environments, necessitating in-situ/operando investigations for

the biggest leaps in discovery and design. However, the most advanced of such investigations

involve laborious labeling methods that can disrupt behavior or are not fast enough to capture

stimuli-responsive phenomena. We utilize X-rays resonant with molecular bonds to

demonstrate an in-situ nanoprobe that eliminates the need for labels and enables data

collection times within seconds. Our analytical spectral model quantifies the structure,

molecular composition, and dynamics of a copolymer micelle drug delivery platform using

resonant soft X-rays. We additionally apply this technique to a hydrocarbon sequestrating

polysoap micelle and discover that the critical organic-capturing domain does not coalesce

upon aggregation but retains distinct single-molecule cores. This characteristic promotes its

efficiency of hydrocarbon sequestration for applications like oil spill remediation and drug

delivery. Such a technique enables operando, chemically sensitive investigations of any

aqueous molecular nanostructure, label-free.
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A grand challenge in medicine and other technologies is
resolving the interactions and ordering of biological or
synthetically designed supramolecular structures1–5. For

this reason, polymeric micelles have become increasingly utilized
for many applications, including targeted drug delivery1,2,6–9,
environmental remediation10,11, and engineered molecular
lattices12,13. Self-assembly originates from linking two polymer
species, often one hydrophilic and the other hydrophobic for
aqueous applications. In water, the hydrophobic segments
aggregate into nanoparticles surrounded by a hydrophilic shell or
corona, enabling the capture of other molecules within the core.
Some micelles possessing additional stimuli-responsive triggers
embedded into their structure behave as molecular
machines1,14,15. Such technologies are of great current interest,
both fundamentally and clinically, for targeted cancer
therapies16–19. It is clear that the size and shape of the nano-
particles critically impact the properties and performance of such
materials20,21.

One category of these molecules is polysoaps, which contain a
random distribution of hydrophobic moieties along a water-
soluble backbone11,22,23. Their main advantage is the ability to
form single-chain (unimeric) micelles without a critical micelle
concentration, making possible their use as nanodispersants
under highly dilute conditions for environmental/water treatment
and targeted drug delivery applications10,11,24. However, the
internal structure is not well understood for polysoaps, in parti-
cular, whether micellar domains coalesce when aggregated or
retain separate, high surface area unimeric cores. These distinc-
tions are important in governing sequestration efficiencies. For
example, if applied in large concentrations at an oil spill location
(typically at the wellhead), micelles will initially be aggregated in
solution and will remain so until the micelles are agitated.
Whether unimeric cores are retained at both high and low con-
centration determines the polysoap’s effectiveness for hydro-
carbon nanosequestration throughout the remediation process.
Thus, the persistence of the nanocore remains an important
unresolved question that is critical to understand for the imple-
mentation of such technologies.

Unfortunately, resolving the structure and dynamic interac-
tions of assembled (co)polymers is impossible in many cases due
to the lack of nanoprobes sensitive to molecular identity. In
response, researchers turn to laborious super resolution fluor-
escent probes19,25–27, transmission electron microscopy (TEM)
staining25,28, or small angle neutron scattering (SANS) with
deuterium labeling29,30, but such tagging can modify the phe-
nomena of interest31. Even simply replacing H2O with D2O alters
hydrogen bonding interactions and micelle structure
significantly32,33, impeding studies of bioactivity34. In addition,
current neutron techniques require long data collection times
(minutes to hours) that limit their measurement capability to
only static samples. Optical light scattering can be used without
labeling and can probe dynamic solutions but is resolution lim-
ited, while cryo-TEM techniques preclude measurements of
dynamics and interactions25,35,36. Altogether, what is needed is an
in situ nanoprobe with sensitivity to molecular identity that
resolves the structure and dynamics of molecular assembly,
evolution, and function of chemically distinct nanodomains.

Resonant soft X-ray scattering (RSoXS) combines the mole-
cular bond sensitivity of near-edge X-ray absorption fine struc-
ture (NEXAFS) spectroscopy with the nanometer spatial
sensitivity and statistical sampling of scattering. The technique
has been used to identify electronic and magnetic spin states in
topological materials37,38 as well as measure polymer morphology
and molecular orientation in solid-state organic nanostructures
and devices39–42. In many of these cases, the unique chemical and
electronic sensitivity of RSoXS has enabled measurements of

(noncrystalline) ordering not possible with any other technique.
Importantly, tuning the X-ray energy to a bond absorption
resonance essentially labels the bond, similar to fluorescent tag-
ging but without the need for disruptive chemical modification.
Vacuum requirements of soft X-rays, however, impede mea-
surement of liquid samples, especially at the carbon absorption
edge—of strategic importance to organic materials. Thus, RSoXS
has, to date, only been accomplished with hydrated pocket cells
where success rate is low, non-repeatable sealing makes proper
background data collection impossible, beam damage can be an
issue, and rigorous quantitative analysis has not been
developed43,44.

We present here the construction and use of a liquid flow and
mixing cell during RSoXS experiments enabling rapid data col-
lection while solution conditions are changing. We utilize our
microfluidic RSoXS instrument to measure a model drug delivery
micelle system as proof of concept for this technique and
demonstrate a 3-component spatiochemical analysis without the
need for labeling. Such analyses have not been accomplished
before by any technique on a single sample of aqueous polymer
nanostructures. In addition, we investigate a polysoap nanocarrier
to reveal that it uniquely exhibits a single-molecule structure that
does not coalesce at high concentration—a characteristic critical
to its application. This is the first use of X-ray scattering to probe
polysoap nanostructure and dynamics. Even more, we char-
acterize a single dynamic event occurring on the order of 30 s.
Our label-free, in situ, and chemically quantitative RSoXS method
has unlimited potential to probe dynamic solutions of stimuli-
responsive and self-assembled systems, making it a significant
advancement for the characterization of materials for biomedical
and environmental applications.

Results and discussion
Creating label-free bond contrast in situ. The scattering
instrument is based on a TEM flow cell (shown in Fig. 1a, b)
customized for insertion into the soft X-ray scattering
endstation45. A commercial system was also employed for in situ
TEM characterization. Both instruments flow a ~0.5-µm thick
liquid channel between two 50 nm silicon nitride membranes to
enable soft X-ray or electron beam penetration through the
sample to an in-vacuum area detector. Dynamic mixing is pos-
sible via two inlet flow ports and one outlet port as pictured in
Fig. 1a. This allows for solution conditions to change while the
measurement is being taken.

We first demonstrate the technique on the Pluronic F127
micelle drug delivery platform6,18, which has been chosen for its
well-characterized structure and recent interest for biomedical
applications like nano-scaffolding in live tissue bioprinting46.
This provides for a means to compare our proof of concept
results to already established literature observations. F127 is a
triblock copolymer molecule with two hydrophilic polyethylene
oxide (PEO) blocks separated by a hydrophobic polypropylene
oxide (PPO) block (structure Fig. 1a inset). We investigate the
micelle structure in both dry state (Fig. 1c) and aqueous (Fig. 1d)
using the commercial TEM fluidic cell. Profiles of selected
micelles represented in Fig. 1e show the hydrophilic micelle
exterior extending into the surrounding water, but when dry, the
structure collapses into a disc-like shape. This sensitivity of the
nanostructure to its environment necessitates in situ studies.
Although a careful survey could reveal the average micelle
diameter, the micelles’ internal chemical ordering cannot be
ascertained, and it is uncertain whether these images are
representative of the population.

Contrast in TEM is due to differences in electron densities. The
failure of the TEM analyses to reveal the internal micelle structure
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originates from the similar electron densities of the two polymer
blocks. RSoXS circumvents this issue via enhanced contrast at a
molecular resonance specific to a unique chemical bond. The
scattering intensity is proportional to the energy-dependent
contrast function I / jΔnðEÞj2 where Δn is the difference of
index of refraction between two chemical moieties parameterized
by real and imaginary components nðEÞ ¼ 1� δðEÞ þ iβðEÞ.
These components were determined at the carbon absorption
edge for each polymer block via NEXAFS spectroscopy of pure
PPO and PEO films (Fig. 1f). Near the edge (~290 eV), bond
resonances can be seen in β(E). In particular, the methyl group in
PPO results in an extra absorption peak at 287 eV and reduced
intensity of the backbone peaks at 289 eV. This enables RSoXS
chemical contrast even without elemental differences. The
contrast between each block (and water) is shown in Fig. 1g,
with values continuously varying through four orders of
magnitude. PPO contrast with water dominates below the edge
and PEO contrast dominates at the resonance at 289 eV. This
enables differential bond sensitivity varied continuously via the
photon energy on one unmodified sample. Such intrinsic contrast
variation in a nanoprobe is quite unique.

Quantitative spatiochemical analysis. Scattering patterns, shown
in Fig. 2a, were acquired at photon energies in the range that
maximizes the relative contrast between the three contrast func-
tions shown in Fig. 1g and encompasses the desired variation

typically achieved by laborious chemical labeling. Two features
appear in the patterns: a peak at q ffi 0:22 nm�1 and a shoulder at
q ¼ 0:49 nm�1 (see arrows). Notably, the peak position varies
considerably with energy in the range q ¼ ½0:19; 0:25� nm�1. The
scattering signal from each feature also varied independently with
energy, indicating that each has a chemically distinct source
within the structure. Measurements were acquired both with and
without flow occurring to confirm that shear forces within the cell
did not affect the structure. It was found that using channel
spacers >20× the nanoparticle size resulted in no difference in the
scattering pattern with and without flow.

Although continuous contrast tuning in RSoXS has been
demonstrated qualitatively, to date, quantitative spectral analysis
has only been accomplished on integrated profiles that ignore the
structure42. We developed a spectral scattering model to extract
the full spatiochemical information of the nanoparticles. The
model contains an energy-dependent, spherical, polydisperse
core-shell form factor, Pcsðq; EÞ, describing the chemically
resolved internal structure (statistics of core and shell radii) and
a Percus–Yevick hard-sphere structure factor, SHSðqÞ, describing
the packing behavior of the micelles (the closest approach and
volume fraction occupied in solution). The core and shell are
assumed to be homogeneous. Although the model’s energy
dependence based on a complex index is key to chemical sensitivity,
the structural model is typical for scattering of micelle nanoparticles
including Pluronics30,47,48. The Reduced 1-dimensional RSOXS

Fig. 1 Microfluidic instrument enables multimodal characterization. a Schematic of the instrument showing the microfluidic flow and mixing stage
positioned with respect to the X-ray (electron) beam and CCD area detector containing a sample scattering pattern partially occluded by a protective
beamstop. On the left, microfluidic lines (two in and one out) mix in the cell at the tip of the instrument. The metal fins to the left, top, and bottom enable
mechanical mounting. Inset is the molecular structure of F127 with the unique methyl group of PPO indicated by the red arrow. b Cut away of the
instrument tip showing the double silicon nitride membrane cell that enables liquid samples to flow through a 0.5-µm thick channel (determined by
lithographically patterned spacers) vertically, while X-rays or electrons penetrate the channel horizontally. c Dry TEM images of F127 micelles acquired by
allowing a ~0.1 wt. % aqueous solution to dry on a silicon nitride membrane. d TEM images of aqueous F127 micelles measured in solution under flow. Both
image scale bars are 100 nm. e Cross-sectional profiles from the TEM-imaged micelles. Signal to noise is enhanced by averaging 180 radial profiles. f
Optical constants Delta and Beta as a function of energy for PPO, PEO and water. g X-ray scattering contrast functions (jΔnj2) between each of the
components PPO, PEO, and H2O, required to determine chemical composition of the nanostructure components.
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profiles were fit to Eq. (1):

Iðq; EÞ ¼ A � TðEÞ � Pcsðq; EÞ � SHSðqÞ þ Ibkgðq; EÞ ð1Þ

where q is the momentum transfer vector, E is the photon energy, A
is a global scale parameter, TðEÞ is an attenuation parameter, and
Ibkgðq; EÞ is an energy-dependent background. Details of these
functions and fitting procedure can be found in the Supplementary
Methods. This model was simultaneously fit to all scattering profiles
shown in Fig. 2a, with a schematic representation of the average
extracted structure parameters inset (all physical parameters in
Supplementary Table 2, separate Structure Factor and Form Factor
contributions shown in Supplementary Fig. 12). These parameters
could not be resolved by fitting any individual scattering profile but
required a simultaneous fit for success.

The statistical distribution of core radii, exhibited in Fig. 2c,
reveals that 20–400 chains coalesce into one micelle (assuming

only PPO in the core). The mode of this distribution has a micelle
diameter of 27.8(1) nm, representing the most probable size of
micelle in the distribution, which is in good agreement with
previous reports36,48,49, and indicates the average micelle contains
90 polymer chains. Noteworthy is that the closest approach
between micelles is less than their diameter, which indicates an
interpenetration of adjacent micelles, as has been previously
hypothesized50. A geometrical argument explains why this is
possible. The (pure PPO) core radius and polymer block
molecular weights determine the quantity of PEO material in
the shell. The shell radius is quite large, however, requiring ~88%
H2O to balance the volume. This shell hydration enables
nanoparticle interpenetration.

This analysis not only reveals the internal structure and
packing of the micelle without the need for labeling but also the
quantitative molecular composition of that structure. Determina-
tion of the H2O content of the shell is also determined

a

d

b

10 20 40 60 10
0

20
0

40
0

60
0

80
0

Chains per micelle

0.20

0.15

0.10

0.05

0.00

Pr
ob

ab
ilit

y 
de

ns
ity

12108642

c

Fig. 2 Structure and chemical composition analysis of aqueous F127 micelles. a Simultaneous fit (black) of RSoXS profiles at selected photon energies
revealing structural statistics. Uncertainties from counting statistics. Inset is schematic of the F127 micelle structure, molecular composition, and packing
based on the fit results. See Methods for details. b Comparison of theoretical and measured contrast values from the structural fits for chemical analysis.
C:Sh is the contrast between the core and shell of the micelle, while Sh:Sol is the contrast between the shell and solvent (H2O). Uncertainties, represented
by vertical lines, are described in detail in the Supplementary information. c Statistical distribution of core radii from fit results translated into number of
aggregated chains within each particle, assuming a pure PPO core. d Rendering of the final micelle structures based on molecular dynamics simulations
showing the pink PPO segments concentrated in the core while the blue PEO segments makeup a hydrated shell. Water molecules are not shown for
clarity. The triblock nature of the molecules (PEO-PPO-PEO) is demonstrated by highlighting a single molecule as yellow.
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independent of the feature sizes extracted from the fit. We
accomplish this through contrast function analysis. For each
profile that is fit, a contrast jΔnj2 between each of the three
components of the nanostructure (core, shell, and solvent
regions) is extracted as a fit parameter for each photon energy
from within Pcsðq; EÞ. From our optical constants in Fig. 3f, we
calculate the expected contrast functions. A chemically mixed
region of the nanostructure is represented by a linear combina-
tion of optical constants (complex index) weighted by their
respective concentrations. These weights become fit parameters of
the chemical composition within the nanostructure components.
Details of the fitting procedures used in this analysis can be found
in the Supplementary Methods.

Figure 2b shows the results of this quantitative chemical
analysis to the extracted contrast values (symbols) and two
example scenarios of the chemical composition within the
nanostructure. The results of the analysis indicate a pure PPO
core (red region, <5% water) and a hydrated PEO shell (blue
region) with concentration of 9(1)% PEO in water, agreeing well
with the crude geometric estimate discussed above. For
comparison, contrast functions for a pure PEO shell (dashed)
are qualitatively different from the extracted values, and the
relative magnitudes are reversed. This indicates a high measure-
ment sensitivity for RSoXS to chemical composition. The scenario
of a PEO core and PPO shell can also be definitively eliminated
by this analysis. The sensitivity of this analysis is remarkable
given that there is only a single unique methyl bond distinguish-
ing PPO from PEO.

The power of this analysis lies in the ability to quantify any
number of n unique chemical moieties within a structure, which
only requires recording the scattering pattern at n photon
energies, strategically chosen based on the measured bond
resonances. A similar chemical analysis has been accomplished
using SANS with variable deuteration of the polymers to vary the
contrast. However, this requires multiple, uniquely labeled
samples for three or more chemical components. Deuteration is
both chemically laborious and has been shown to alter micelle
structure and dynamics31–33, degrading results. The instrument
and analysis presented in this work uniquely enables the complete
spatiochemical analysis on one, unmodified sample in situ.

We modeled the micelle with dissipative particle dynamics
(DPD) simulations starting with a random solution of the
polymers in water with an example rendering displayed in Fig. 2e.
A composition analysis of the simulated structure confirms a
water-free PPO core and a hydrated PEO corona with 78% H2O.

Although the model is not quantitatively accurate, it supports our
results of a highly hydrated shell. Additional information on the
DPD simulation is located in the Supplementary Methods. The
extreme extent of the shell hydration that we measure here
explains why these materials are biocompatible and stable under
biological conditions, allowing for their use as drug delivery
vehicles. Such a capability for RSoXS to clearly and quantitatively
measure the composition based on a single unique bond moiety
will be powerful for investigations of drug loading, release rate,
and formulation stability of new smart medicine delivery systems.

Operando micelle dynamics. Although characterizing polymer
nanostructure and molecular composition in situ is powerful,
development of functional nanomaterials often requires mon-
itoring interactions dynamically. The dual flow design of the
instrument allows for continuous mixing and reaction of samples,
enabling titration and other concentration sensitive experiments.
Flow also greatly mitigates beam interaction and sample degra-
dation effects often associated with intense nanoprobes. Replacing
one sample with another is perhaps the simplest example of
dynamics and is demonstrated in Fig. 3a by an abrupt step-
function transition from H2O flow to that of the F127 solution.
The transition was monitored via sequential CCD exposures at a
constant scattering photon energy. At early times in the transi-
tion, the scattering increases and develops into an isolated
spherical form factor (dilute). With time, a structure factor peak
emerges, originating from scattering between micelles (steady)
due to the increased micelle-micelle interaction with concentra-
tion. Remarkably, less than 50 µL of liquid (0.5 µg dry material)
flowed through the cell for the entire experiment, rendering the
technique amenable to bioassays.

We accomplished a similar spatiochemical analysis as above
with only the volume fraction and overall intensity parameters
allowed to vary throughout the process. The resulting volume
fraction dynamics are shown in Fig. 3b, which in turn fits well to
a double exponential dynamical model with time constants τ1 ¼
34ð3Þ sec and τ2 ¼ 13ð4Þmin. The latter time is consistent with
the onset of dynamics t0 ¼ 15min, which is the lag time of the
microfluidics system based on tubing length and flow rate. The
shorter time is interpreted as the dynamics of fluid flow through
the cell rather than the dynamics of micelle assembly, which has
been previously characterized as 100 ms or faster51. Optimizing
cell area to the significantly larger X-ray beam and upgrading to
the planned higher sensitivity detector is expected to enable such
time resolution, which is also on the order of polymer aggregation

Fig. 3 Aqueous F127 micelle dynamics. a In situ RSoXS profile at 287 eV of 1 wt. % F127 replacing DI H2O within the flow cell. Fits of selected scattering
profiles overlaid involving a spherical form factor and hard-sphere structure factor. See Methods for details. The color of the trace represents 30 s time
intervals from brown (dilute) through red (mid purge) to pink (steady state). b Micelle solution volume fraction versus time from profile fits in (a).
A double exponential fit is overlaid starting at 15 min into the transition.
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and crystallization processes52. It is notable that the in situ
nanoscale dynamics measured here on unlabeled polymer
micelles is not possible with any other technique. In particular,
this time resolution is not possible with SANS. In addition,
concerns arising from fluorescent tagging8,21,53, nanoparticle
labeling54,55, or even deuteration31–33 that alter micelle structure
and dynamics are eliminated via RSoXS.

Unimeric cores within aggregates for hydrocarbon nanose-
questration. We now turn to the question of polysoap internal
structure of interest for oil spill remediation and drug delivery
applications10,11,24. A recent polysoap, Poly(AMPS-stat-DDAM),
a statistical copolymer of 2-acrylamido-2-methylpropane sulfonic
acid (AMPS) and n-dodecyl acrylamide (DDAM) (aPS50, mole-
cular structure Fig. 4b inset), has shown promise with uptake of
hydrocarbon molecules within the hydrophobic DDAM-rich core
domains11. We confirm hydrocarbon uptake in aPS50 using
pyrene as a spectroscopic model compound (see Supplementary
Methods and Supplementary Figs. 5 and 6). Both individual
unimeric micelles and large aggregates have been observed11,23,56,
but only limited information about the assembled structure has
been obtained. For example, light scattering and viscosity tech-
niques have been used to directly probe the overall size of
structures, and spectrophotometric probes have been used to
indirectly determine relative sizes and aggregation numbers of
microdomains using fluorescent labels57. No study has been
successful in resolving core dynamics and structure. Whether
aggregates retain unimeric cores or the cores coalesce into mul-
timers (as in the case of F127 shown above) has been a long-
standing question, and this distinction is critical to their perfor-
mance, since core coalescence drastically reduces surface area for
hydrocarbon capture. Figure 4a shows dry TEM images of aPS50
particles at low concentrations revealing ~20 nm diameters.
However, aqueous TEM measurements of the micelles were
unsuccessful. Our own dynamic light scattering (DLS) studies on
aPS50 reveals an increase in particle size with concentration
(Fig. 4b), ranging from a hydrodynamic radius of 36 nm at low
concentrations (0.1 g/L) to 98 nm at 10 g/L, consistent with
mesoscale aggregates. However, information on core coalescence
cannot be resolved.

Here, we present the first example of using an X-ray scattering
technique to characterize a polysoap system with the spatial
resolution to probe core structure and dynamics that have not
been observed prior. RSoXS scattering profiles of the dynamic
flow transition between H2O and an aPS50 solution are shown in
Fig. 4c. During the transition, the scattering profiles are consistent
with that of static concentration controls (see Supplementary
Fig. 8), indicating a quasi-equilibrium state of the structure
during the transition. In contrast to the F127 behavior, the
aPS50 scattering profiles exhibit a structure factor feature even at
dilute concentrations, strengthening and shifting to higher q
values as concentration increases. This plus the high intensity at
low q indicates a high propensity of the particles to form
aggregates. Analysis (Fig. 4d) reveals that throughout the entire
concentration range, the form factor provides a median radius of
2.8(4) nm, while the structure factor radius (i.e., particle spacing)
decreases dramatically from 22 nm under dilute conditions (0.1
wt. %) to 10 nm at 2 wt. %. The hydration of the structures results
in a nearly 30% volume fraction at maximum concentration, a
value near that of a hydrogel structure. It is of note that through
flow, the entire concentration series was measured within 5 min,
making such measurements capable of high-throughput
characterization.

Our results of a decreasing particle distance but constant form
factor radii indicate an increasing proximity of unchanging cores

as concentration increases. The light scattering data (Fig. 4b) and
strengthening RSoXS structure factor (Fig. 4d) indicate that these
micelles, unimeric under dilute conditions, are aggregated within
ever larger clusters as concentration increases. However, the
unchanging core size with concentration demonstrates that the
cores remain unimeric within the aggregates, forming a
hierarchical structure consistent with the model of flower-like
micelles56. This model, depicted in Fig. 4e, exhibits an open
structure with bridging chains that are outstretched at low
concentrations due to electrosteric repulsion between the charged
coronas11,23,56. These bridges compress during aggregation but
allow massive interfacial area of the cores for hydrocarbon access
and capture that is not available in structures such as F127. These
measurements provide the first direct experimental support for
unimeric micelle bridging rather than coalescence of micelle core
domains upon aggregation. Our results further determine that
such a structure persists from dilute to saturated volume
fractions, even when the micelles associate into larger multi-
micelle structures, which is important for their utility as organic
nanocarriers.

To date, the chemical and electron spin sensitivity of RSoXS
has proven powerful in solid-state materials. However, our
application to aqueous media paired with a spatiochemical
analysis now quantifies structure, composition, and dynamics of
polymeric or biological assemblies that is impossible in any other
way. With the elimination of labeling requirements and
sensitivity to even a single unique bond within a molecule,
characterization and engineering of molecular nanostructure
evolution and interactions is now much more accessible.
Specifically, in the case of polysoap micelle structures, the
revelation of a stable unimeric core from dilute to high
concentrations further validates their potential for applications,
such as targeted drug delivery and environmental/water remedia-
tion. The implications of being able to measure dynamic solutions
in situ and label-free expands to the study of pH-, salt-, and
analyte-responsive polymers and self-assembled materials that are
particularly important in biomedical and environmental
applications.

Methods
Materials and sample preparation. Pluronic F127, or just F127 for shorthand,
was purchased from Sigma Aldrich, and used as received. F127 is a block copo-
lymer of 100 ethylene oxide (EO) units followed by 65 propylene oxide (PO) units,
followed by 100 EO units, with an average molecular weight of 12.6 kDa. PPO and
PEO were purchased from Sigma Aldrich. AMPS (50% v/v in water), 2-cyano-2-
propyl dodecyl trithiocarbonate (CPDT) (>97%), and azobisisobutyronitrile
(AIBN) (98%) were purchased from Sigma Aldrich. DDAM (>97%) was purchased
from TCI America and used as received. The monomer, AMPS, was isolated and
purified via precipitation from acetone and collected via vacuum filtration and
dried under high vacuum. The initiator, AIBN, was purified by recrystallization
from methanol. The RAFT chain transfer agent, CPDT, was purified via column
chromatography prior to use.

The polysoap chosen for this study was synthesized according to previous
procedures utilizing the statistical RAFT copolymerization of equal molar ratios of
AMPS and DDAM11. A brief description of the synthesis is included in
the Supplementary Methods. Structural data for the aPS50 polymer were collected
using proton nuclear magnetic resonance (1H-NMR) spectroscopy (Supplementary
Fig. 10) for determining %DDAM content and gel permeation chromatography
(GPC) (Supplementary Fig. 11) for molecular weight and PDI information. 1H-
NMR measurements were collected using Varian MercuryPLUS 300MHz NMR
spectrometer in deuterated methanol with a delay time of 5 s. GPC measurements
were performed with a Viscotek TDA302 triple detector array of RI, low- and right-
angle light scattering, and viscosity detectors. The GPC system was equipped with
TOSOH Biosciences TSK-Gel columns (SuperAW3000 and SuperAW4000). The
eluent was 0.2 M LiClO4 in methanol at a flow rate of 0.6 mL/min.

Transmission electron microscopy. TEM data were collected at the National
Center for Electron Microscopy, part of the Molecular Foundry at Lawrence
Berkeley National Laboratory (LBNL). Bright field TEM images were collected on
an image-corrected Themis microscope with a high brightness XFEG source,
operated at 300 kV, and imaged on a high-speed Ceta camera.
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The Dry F127 image shown in Fig. 1c was collected on a sample prepared by
drop-casting a ~0.1 wt. % solution onto a 50 nm silicon nitride window and
allowing it to dry in air. In situ F127 TEM was measured using a Poseidon
Protochips TEM holder with two crossed 50 × 550 µm windows, 50 nm thick; 500
nm flow spacer was used. In situ TEM data on aPS50 were attempted, but we could

not resolve any micelles nor aggregates. Dry aPS50 micelles shown in Fig. 4a were
imaged by using the electron beam to drive the water rapidly out of the field of
view. The intensity vs radial distance plot in Fig. 1e was calculated by azimuthal
averaging of selected example particles from Fig. 1c, d. Consequently, the data at
the center of the cell remain rather noisy.
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Fig. 4 Multimodal investigation of aPS50 micelles. a Dry TEM images acquired by allowing a 2 wt. % aqueous aPS50 solution to dry within the
instrument. Scale bar is 100 nm. b Micelle hydrodynamic radius as a function of concentration of an aPS50 solution in water acquired by light scattering.
aPS50 Molecular structure is inset, where x ¼ 0:5. c Selected in situ RSoXS profiles at a photon energy of 287.3 eV of 2 wt. % aPS50 replacing DI H2O
within the flow cell. Fits of scattering profiles represent a spherical form factor with a hard-sphere structure factor, see Supplementary Fig. 13 for individual
Structure Factor and Form Factor contributions. d Fit results from (c) displaying the structure factor and form factor radii vs concentration, calibrated from
dynamic flow time using static concentration controls. e Illustration of the self-assembly of aPS50 based on the results. The blue shaded chains highlight
bridging tie chains between micelles.
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Liquid RSoXS instrument and experimental procedures. RSoXS was performed
at BL 11.0.1.245 of the Advanced Light Source (ALS) at LBNL using a custom
Protochips liquid flow cell. A back-illuminated Princeton PI-MTE CCD cooled to
−45 °C detected the scattering pattern with exposures between 30 and 120 s. One
drawback of soft X-rays is there need for high vacuum, making measurement of
liquids more challenging. We overcome this challenge by using a custom flow cell
created by Protochips based on their in situ TEM products and design help from
the authors. It utilizes a silicon nitride membrane window, supported by a silicon
wafer frame, to provide a barrier between the liquid sample and the vacuum
chamber, while allowing X-rays to be transmitted. Windows were purchased from
Protochips chips with 50 × 550 µm wide windows, which were crossed to provide a
50 × 50 µm transmission window—significantly smaller than the 250 µm X-ray
beam diameter. A 500 nm flow spacer was chosen to avoid confinement effects
when flowing the ~25 nm micelles, while also prevented unnecessary attenuation of
the X-rays from the increased path length through the sample. Syringe pumps are
used to provide reliable flow rates in the range of 25–600 µL/h, which can be all
through one inlet, or distributed between both inlets.

Since this technique is developed for online monitoring of structural changes
during the experiment, both inlet feed lines are used. Specifically, in our initial set
of experiments, one inlet is for de-ionized (DI) water (H2O), and the other is for a
solution of F127 (1% by mass in DI H2O). To start with, the sample cell is loaded
with DI H2O to allow for background scattering measurements to be acquired. No
difference in scattering profile was observed between the static and flow
measurements of DI H2O. Also, all X-ray data shown in this manuscript are from
sample measurements under flow, which has the added benefit of preventing
possible X-ray beam effects, such as damaging the chemical bonds in the polymer
and causing sample degradation, as well as making sure the sample is
homogeneous. In order to generate a proper background, a large range of scattering
energies was measured while DI H2O was flowing. Once a stable background is
established in DI H2O, the solution flow is fully switched to the F127 solution feed
to establish a baseline scattering profile for 100% of the sample solution. During
actual data collection the flow from each inlet feed can vary, 100% DI H2O to 100%
sample solution, thus giving us a range of solution conditions that can be probed
online. Additional discussion of sample integrity considerations is in
the Supplementary Discussion.

RSoXS data processing. Raw RSoXS scattering patterns collected on the 2D area
detector were reduced to 1D scattering profiles via azimuthal averaging in the
NIKA processing package developed by Jan Ilavsky with a modified handling of the
energy dimension via a custom panel58 and processing functions in IGOR Pro 8
(Wavemetrics). This included standard processing for experimental geometry,
corrections for energy-dependent incident beam intensity, and dark background
subtraction.

All RSOXS model analysis was computed with the IRENA Modeling II package
developed by Jan Ilavsky59 with custom script modifications that allow for
simultaneous multi-energy fits. The built-in Levenberg–Marquardt algorithm in
the IGOR Pro 8 software environment was used for all fitting.

Optical constants. PPO was drop-cast from the as-received solution, and excess
solution was wicked off using a wipe. Due to the molecular weight of the PPO, it
remained as a liquid with a very slow evaporation rate, allowing it to be loaded into
the high vacuum chamber as a liquid. PEO was dissolved in H2O prior to being
spun-cast as a dry film. Total electron yield (TEY) NEXAFS spectrum of PEO was
collected at BL 6.3.260, and TEY NEXAFS of PPO was collected at BL 11.0.1.245 of
the ALS at LBNL. The measured fine structure was scaled to bare atom mass
absorption calculated from the CXRO database, enabling calculation of the ima-
ginary component of the index of refraction Beta. Beta for H2O was taken directly
from the CXRO database. The real component of the index of refraction (Delta)
was calculated from Beta using Kramers–Kronig transformation methods61. Since
water interactions with PPO or PEO involve only weak Vander Waals interactions,
the optical constants measured in this way are expected to be identical to those of
the polymer when dissolved in water.

Concentration dynamics. To monitor the dynamics of micelles replacing pure
water in the cell, repeated RSoXS scans were collected, as shown in Fig. 3a. A flow
rate of 75 µL/h was chosen to slow down the transition to an appropriate timescale
for our desired scan given that acquisition times of 30 s were needed for good signal
to noise. The scattering profiles were background corrected by subtracting the data
collected from the cell before flowing the micelle solution, when it was pure H2O.
Additional details are in the Supplementary information.

Dynamic light scattering. DLS measurements were collected using incident light
at 633 nm from a Research Electro Optics HeNe laser operating at 40 mW. The
time-dependent scattering intensities were measured from a Brookhaven Instru-
ments BI-200SM goniometer at 60, 75, 90, 105, and 120 degrees with an avalanche
photodiode detector and TurboCorr correlator.

Characterization of aPS50 in water via UV-Vis and fluorescence spectro-
scopy. UV-Vis spectroscopy and fluorescence spectroscopy for pyrene absorbance

and fluorescence were measured with a TECAN Safire 96-well plate spectrometer
running on integrated Microsoft Excel software. Absorbance was measured at 341
nm, as shown in Supplementary Fig. 5, and fluorescence was measured via emis-
sion scan from 350 to 550 nm with an excitation wavelength of 341 nm.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code that is used and developed in this study is available from the corresponding
author upon reasonable request.
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