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Numerical study of the temperature dependence of the NMR relaxation rate
across the superfluid—Bose glass transition in one dimension

Maxime Dupont
Department of Physics, University of California, Berkeley, California 94720, USA and
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
(Dated: February 21, 2019)

We study the nuclear magnetic resonance (NMR) spin-lattice relaxation rate 1/77 in random
one-dimensional spin chains as function of the temperature and disorder strength. In the zero tem-
perature limit, the system displays a disorder-induced quantum phase transition between a critical
Tomonaga-Luttinger liquid (TLL) phase and a localized Bose glass phase. The 1/77 is investigated
across this transition using large-scale simulations based on matrix product state techniques. We
find that this quantity can detect the transition and probe the value of the dimensionless TLL
parameter K. We also compute the NMR relaxation rate distributions for each temperature and
disorder strength considered. In particular we discuss the applicability of the stretched exponential
fit to the return-to-equilibrium function in order to extract the 1/7) experimentally. The results
presented here should provide valuable insights in regards of future NMR experiments in realistic

disordered spin compounds.

I. INTRODUCTION

Understanding phase transitions is one of the cor-
nerstones of condensed matter physics. Among these,
disorder-induced quantum phase transitions can lead to
fascinating phenomena with exciting new phases of mat-
ter. A famous example is the Anderson localization in the
absence of interaction [1, 2], where the electronic wave
function is spatially confined due to impurities and re-
sulting destructive quantum interferences. Here, the ran-
dom environment — disorder — can completely block the
transport and drive a metal-to-insulator phase transition.
The presence of interactions and its interplay with disor-
der can qualitatively change the picture and lead to the
many-body localization (MBL) phenomenon. Whereas
MBL commonly refers to high energy properties of in-
teracting disordered systems [3-8], low-energy physics is
also concerned with remaining open questions.

At zero temperature, this elusive quantum many-body
localized phase of matter is known as Bose glass (BG),
and first appeared in the context of “He in porous me-
dia [9, 10]. While no simple microscopic picture clearly
emerges, the set of properties defining this quantum
phase of matter, describing a bosonic fluid lacking su-
perfluid coherence in a random environment, is pretty
well-established: It has a finite compressibility, its low-
energy spectrum is gapless, correlations are short-ranged,
and there is no global phase coherence. Besides helium-4
in random media, the phase has been reported in vari-
ous experimental systems such as amorphous indium ox-
ide films with a transition from a superconducting to
insulator phase [11-13]. It has also been observed in
an array of quasi-one-dimensional samples of 3°K cold
atoms, subject to a quasiperiodic optical lattice [14].
Another type of systems in which the Bose glass phase
has been investigated are antiferromagnetic Mott insu-
lators [15-18] such as the spin-1/2 ladder compound
(CHg)QCHNHgCu(Clerl_x)g [19] and the Br doped
spin-1 system Ni(Cly_;Br;)2-4SC(NHz)s [20-27] to cite

but a few [28, 29].

In one dimension, the microscopic mechanisms driv-
ing the superfluid-to-Bose-glass transition are still con-
troversial [30-38]. Even in absence of disorder, in one
dimensional systems, quantum fluctuations prevent the
emergence of a global phase coherence that would result
from the spontaneous breaking of a continuous symmetry.
At best, one can expect a critical Tomonaga Luttinger
Liquid (TLL) phase with a finite superfluid density and
quasi-long-range order characterized by power-law decay-
ing transverse correlations oc 7~ /2K at large distance 7,
where K is the so-called TLL parameter [39]. In the
presence of disorder, the TLL phase is expected to be
unstable towards a Bose glass phase, unless K > 3/2.
In the latter case, a critical disorder strength is re-
quired to drive the system from a superfluid to a many-
body-localized phase. Giamarchi and Schulz have shown
in their seminal work that this transition belongs to
the Berezinskii-Kosterlitz-Thouless (BKT) universality
class [40-42] with K = K, taking a finite value at criti-
cality [43, 44]. The TLL parameter might take the uni-
versal value K. = 3/2 at weak disorder (compared to the
bandwidth) [33, 37] but the extension of this weak disor-
der regime remains unclear and other approaches [30-
32, 34-36, 38] based on strong disorder analysis sug-
gest a non-universal value. Only recently a numerical
study attempted to clarify the different scenarios pro-
posed and to precisely define the weak versus strong dis-
order regimes [45].

Spin compounds are one of the best candidates to ad-
dress these open issues experimentally. For instance,
the nuclear magnetic resonance (NMR) spin-lattice re-
laxation rate 1/77 has proven to be a formidable probe
for one-dimensional physics in Mott insulators [46] and
might be very well-suited for the purpose. The 1/T}
in a TLL phase is expected to diverge algebraically
oc TY/2K=1 at low temperature [47-50]. This prediction
has been perfectly checked against numerics in paradig-
matic (clean) S = 1/2 XXZ spin chains [51, 52] for



T/J < 10, where J is the antiferromagnetic exchange
coupling. Moreover, the parameter K has been reli-
ably extracted by fitting experimental 1/7; measure-
ments versus 7T in various quasi-one-dimensional spin
compounds, such as the spin—1/2 Heisenberg antifer-
romagnetic ladder (C;H;9N)2CuBry (DIMPY) [53-55].
The effect of inherent (albeit weak) three-dimensional
couplings Jsp on the 1/77 in spin materials has also been
recently studied in Ref. 56 where the authors could prop-
erly define a temperature window J3p /100 < T < J/10
for observing genuine one-dimensional physics. There-
fore, this quantity might provide a final experimental
answer to the disputed issue of K.. Indeed, strong-leg
ladders subject to an external magnetic field can real-
ize a TLL with K > 3/2 [39, 57, 58] and numerous ex-
amples of observation of the BG phase have been given
above, making us confident that, eventually, an ideal spin
compound combining a strong enough attractive regime
and controllable chemical disorder will be experimentally
available in the future.

In this work, using large-scale simulations based on
matrix product state, we study the 1/77 across the
superfluidBose glass transition in paradigmatic one-
dimensional XXZ spin—1/2 chains with a negative Ising
anisotropy and subject to a random magnetic field, as a
function of the temperature and disorder strength. The
results presented here should provide valuable insights in
regards of future NMR experiments.

The rest of the paper is organized as follows. In Sec. II,
we provide an overview of the studied model, the defi-
nition of the NMR spin-lattice relaxation rate 1/7} and
briefly present the numerical techniques. Results are then
discussed in Sec. III. Finally, we summarize our conclu-
sions in Sec. I'V.

II. MODEL, DEFINITIONS AND METHODS
A. Model

We consider the spin-1/2 XXZ chain in a random mag-
netic field described by the following Hamiltonian:

HzJZ[é(SjSHl—FH.c.)—i—ASf 2+ hSE|, (1)

with ¢ labeling the lattice sites, J the overall energy cou-
pling, set to unity in the following, and A € (—1,1] is the
Ising anisotropy. The random variables h; are drawn in-
dependently from a uniform distribution € [—h, h] where
h characterizes the disorder strength.

In the clean (h = 0) case, it is well-known that in
the low-energy limit, the model (1) can be described as
a Tomonaga-Luttinger liquid [39] with algebraically de-
caying correlations and a finite superfluid density (spin
stiffness). This description only relies on two phenomeno-
logical parameters: u, the propagation velocity of the ex-
citations in the system and K, the dimensionless TLL pa-
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FIG. 1. Schematic zero temperature “disorder strength h ver-
sus Ising anisotropy A” phase diagram of the Hamiltonian (1).
For h = 0 (no disorder) the model is in a critical Tomonaga-
Luttinger Liquid phase for A € (—1,1] (red stripes). From
this line, any amount of disorder drives the system to a lo-
calized Bose glass phase for A > —0.5. For smaller Ising
anisotropies, a finite amount of disorder is required to induce
a quantum phase transition (plain black line). The maximum
of the dome is around A = —0.75 with a critical disorder
strength h. ~ 0.37 [45]. This work focuses on the A = —0.75
line of the phase diagram (dotted black line) for various dis-
order strengths and temperatures.

rameter governing for instance the decay of correlations.
Here, u and K can be related to the microscopic pa-
rameter A from Bethe ansatz equations [59]. Through a
Matsubara-Matsuda transformation [60], the spin Hamil-
tonian (1) can be mapped exactly to a hard-core bosons
(HCB) model with A controlling the nearest-neighbor
HCB interaction. Precisely, A < 0 (K > 1) corresponds
to an attractive interaction between the bosons and this
part of the phase diagram is often referred to as the at-
tractive regime. In presence of disorder (h > 0), the
critical TLL phase is expected to be unstable towards a
localized Bose glass phase with exponentially decaying
correlations and a vanishing superfluid density. How-
ever, for strong enough attractive interaction, K > 3/2
(A < —0.5), a finite disorder strength h. is necessary
to drive the system from a TLL to a Bose glass phase,
with the TLL parameter K.(A, h.) taking a finite value
at the transition [43, 44]. A schematic phase diagram of
model (1) is shown in Fig. 1.

In this work, we focus on A = —0.75 and vary the
disorder strength h from zero to 1/2, covering the TLL
and Bose glass phases with the transition happening at
he ~ 0.37 [45]. Importantly, the temperature will be a
parameter to be as close as possible to realistic experi-
mental setups. Although the model (1) is unrealistic to
describe spin materials because of the random fields with
no reasonable origin, the essential ingredients are: (i) in
the low-energy limit and in the clean case, a TLL de-
scription of the spin compound with a TLL parameter
K > 3/2, (ii) disorder whose microscopic origin is likely
compound-dependent but which drives the system to a
localized phase if sufficiently strong.



B. The NMR spin-lattice relaxation rate 1/T1

In experiments, the NMR spin-lattice relaxation rate
1/T1 is the inverse characteristic time that the targeted
nuclear spins, polarized through a static external mag-
netic field, take to relax back to their thermodynamic
equilibrium after a perturbation by an electromagnetic
pulse of frequency wyg, changing their polarization [61-
63]. The return-to-equilibrium process can be described
as function of time ¢ as

1— M(t) oce ¥/, (2)

where M(t) is the component of the nuclear spins
along the static magnetic field. Omne can show that
1/T; provides information on the electronic spins S; =
(S¥,8Y,57), i.e., those described by the Hamiltonian (1),
through the following expression,

1

T

N2

+oo )
Z A2, / dte"™Cop(t),  (3)

a,b€[z,y,z]

with « the gyromagnetic ratio, A, the hyperfine cou-
pling constant describing the interaction between nuclear
and electronic spins and C, 4 (t) the dynamical correlation
function

Cap(t) = (S(1)S;(0)) = (SF(#))(S7(0),  (4)

which is a local quantity because measured on the same
site i for both operators. Here () indicates the thermal
average and S¢(t) = e S%e "M i5 the time-dependent
spin operator in the Heisenberg picture. It is theoret-
ically justified to take the limit wy = 0 since the NMR
frequency is usually the smallest energy scale of the prob-
lem [64]. Moreover, due to the U(1) symmetry of the
Hamiltonian (1), the 1/7} can be reduced to the compo-
nents (a,b) = (£, F) and (z, z), where the = and y spin
components have been expressed using the raising and
lowering operators [65]. The definition (3) now reads

L 7/(:00 dt {AfEI Re {Ci,;(t)] +AZ Re [Oz,z(t)} },

Ty

(5)
where the first and second terms of Eq. (5) can be labeled
as transverse and longitudinal contributions respectively.
In the following, we only focus on the transverse contri-
bution which dominates over the longitudinal one from
intermediate to low temperatures and set the experiment-
dependent prefactor 'yAQijF to unity. For a TLL, the
transverse contribution to the NMR, relaxation rate has
been found for wy/T < 1 in the form [47-50]

1 Acos (F)Blge 1= o) (2T H
T m m ’

with B(z,y) the Euler beta function, v and K the TLL
parameters and A the prefactor of the static correla-
tion function (SF(0)S;(0)) at zero temperature. The

prediction (6) perfectly checks against numerics at low
temperature, T/J < 10, without any adjustable param-
eter [51, 52].

C. Numerical methods
1.  Finite temperature

To compute the local dynamical correlation func-
tion (4) at finite temperature, we use the Matrix Product
State (MPS) formalism [66]. Whereas a MPS represents
a pure state, it can also be used for mixed state through
the purification method [67]. The basic idea is to write
the density matrix as a pure state in an enlarged Hilbert
space with half physical and half auxiliary degrees of free-
dom (they can be taken as a copy of the physical ones).
From a practical point of view, the corresponding infinite
temperature pure state can be written down exactly as a
MPS of bond dimension m = 1: A product state of max-
imally entangled pairs of physical and auxiliary degrees
of freedom. One can show that the pure state at inverse
temperature 8 = 1/T is obtained by time-evolving the in-
finite temperature one with exp(—g8#/2), where H only
acts on physical degrees of freedom. We perform the
imaginary-time evolution using the time-evolving block
decimation (TEBD) algorithm [68] along with a fourth
order Trotter decomposition [69] and time-step dg = 0.1.

2. Real-time evolution

When the desired finite temperature state is obtained,
a real-time evolution with exp(—iHt) is carried out us-
ing the same TEBD algorithm as for the imaginary-time
evolution (fourth order and time-step J, = 0.1). This is
the most limiting part since the real time evolution of a
quantum state produces a rapid growth of entanglement
entropy [70] while the efficiency of the MPS represen-
tation relies on low entangled states. In practice, this
limits the maximum time ¢ one can reach in the simula-
tion. Some workarounds have been developed in order to
push the limits further like the linear prediction [71] or
evolving the auxiliary degrees of freedom with —# in real
time [72]. We have used the latter, which can be seen as a
local disentangling operation, of which the real time evo-
lution by —H is just one possibility [73]. In this work,
the maximum bond dimension of the MPS was set to
m = 500. Furthermore, the NMR relaxation rate being
a local quantity, the dynamical correlation (4) is com-
puted in the middle of the chain to avoid open bound-
ary and finite size effects. Indeed, at long time and at
finite temperature, the correlation decays exponentially
over time with a characteristic time 7(7, h) which makes
the choice of a sufficiently large system L(T,h) enough
to consider the results in the thermodynamic limit, i.e.,
w(T,h)r(T,h) < L(T,h) with u(T, h) some velocity ac-
counting for the spreading of the excitation SijE in the



chain. This is especially true in regards of the defini-
tion (5) for the NMR relaxation rate as an integral over
time of this exponentially decaying correlation function.
This integration is performed numerically using the stan-
dard Simpson’s rule.

3. Disorder sampling

In the following, the local dynamical correlation (4) is
computed over Ny ~ 500 independent samples for each
temperature and disorder strength considered. There-
fore, it is the most demanding part numerically since the
simulation of each independent sample is already quite
demanding itself.

III. RESULTS

A. Time dependence of the local spin-spin
correlation function

We first look at the real part of the transverse dynam-
ical correlation function Cx +(t) defined in Eq. (4) and
whose integral over time gives the NMR spin-lattice re-
laxation rate 1/T3 according to Eq. (5).

It is instructive to consider the disorder-free h = 0
and A = 0 case, which in the low-energy limit, also be-
longs to the TLL phase. At this specific point of the
phase diagram, an expression for Cy +(t) can be derived
exactly and expressed as a Pfaffian [74, 75]. In some
cases, it can be brought into a more explicit form, and
one finds three distinct regions in time. After a very
short time of order ~ O(1) (region A), the correlation
shows a power-law decay (region B) before displaying an
exponential decay o exp[—t/7(T)] at longer time (re-
gion C), where the decay time diverges algebraically with
temperature 7(T) < 1/T for T <« J. It is also well-
known that the thermal correlation length £(T") diverges
at low temperature in the same way,  u/T with u the
TLL velocity [76], so that in the end, one can relate
those characteristic thermal time and space quantities
through ur(T) ~ &£(T). The intermediate power-law re-
gion grows larger and larger as the temperature is re-
duced to eventually take over the long time exponential
decay at zero temperature, with no characteristic length
scale in this limit, the system being critical. We note
7«(T') the crossover time between regions B and C.

Away from the A = 0 point, no exact expression is
available, but no major qualitative difference is expected
at low temperature, with a finite thermal correlation
length &(T") o w/T and the existence of a characteris-
tic thermal time scale 7(7T'): Tt is still expected to follow
o 1/T [76], which we verified numerically at h = 0 for
BJ =z 5 (data not shown). At high temperature how-
ever, and as pointed out in Ref. 75, it might not be as
simple to relate the two quantities, displaying different
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FIG. 2. Average value of the real part of the dynamical corre-
lation function (Sz/2 (t)S, /2(0)) versus time for various values
of disorder strengths h at fixed inverse temperature 5J = 10.0
(panel a) and for various inverse temperatures 8J at fixed dis-
order strengths h = 0.2 (panel b) and h = 0.5 (panel ¢). The
average is performed over Ns =~ 500 independent samples, ex-
cept for BJ > 5 at h = 0.2 where only Ns =~ 200 samples are
available. The legend is the same for panels b and c. The dy-
namical correlation is measured in the middle of open chains
of length L(T, h). The integral of this quantity gives the NMR
spin-lattice relaxation rate 1/7 according to Eq. (5). After a
very short time tJ ~ O(1) (region A), the average real part of
the dynamical correlation displays an intermediate power-law
regime (region B) before undergoing an exponential suppres-
sion over time (region C). The crossover time between regions
B and Cis 7 (T, h) and the decay time of region C is 7(T, h).

temperature dependences: For instance at infinite tem-
perature £(c0) is zero while 7(c0) remains finite. In any
case there exists, for the transverse dynamical correla-
tion function in the TLL regime, characteristic thermal
length and time scales in the temperature window con-
sidered in this work. More generally, they also depend on
the disorder strength, i.e., (T, h), 7(T, h), 7(T, h), and
correspond in that case to the disorder averaged quantity.

Plugging in disorder, the position of the crossover time
scale 7, (T, h) becomes more manifest with the decay time
7(T, h) being shorter as the disorder strength and tem-
perature are increased. This results in a steepest slope
of the long-time exponential decay, as visible in all three
panels of Fig. 2. By increasing these parameters, one
expects quantum coherence to be generally weaker over
time, hence the shorter characteristic and crossover times
7(T,h) and 7.(T,h). In the localized regime shown in
Fig. 2(c) for h = 0.5, the width of the intermediate
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FIG. 3. Probability distribution P(1/T}1) of the NMR spin-lattice relaxation rate for various disorder strengths: (a) h = 0.2,
(b) h = 0.3, (c) h = 0.4 and (d) h = 0.5. Note the log scale for the z axis. The different colors correspond to different
inverse temperatures 8J, as specified in (¢). The data have been shifted vertically for visibility. At zero temperature, the
disorder-induced quantum phase transition between the TLL and Bose glass phases happens at h. ~ 0.37 [45], see Fig. 1. Each
distribution is made of Ns &~ 500 independent disordered samples, except for h = 0.2 and 8J > 5 with only N5 = 200 available.

power-law region should be bounded, not only by ther-
mal, but also by localization effects. Indeed, taken sepa-
rately, both effects induce a finite length scale in the sys-
tem: A thermal length &y, (7T, h) or a localization length
&loc(T = 0,h # 0). The dominant effect will be associ-
ated to the smallest of the two length scales. Deep in
the localized regime, the disorder averaged localization
length follows &0c(T = 0, h # 0) oc h?/(2K=3) [43, 44] and
it diverges exponentially when approaching the transition
from the localized phase h — h., expected behavior for
a BKT transition [40-42].

Finally, the NMR spin-lattice relaxation rate is the in-
tegral over time of the real part of the dynamical cor-
relation function displayed in Fig. 2. Because it decays
exponentially with time, reaching a finite maximum time
tmax 1S actually sufficient numerically to get an accurate
estimate of the 1/T}.

B. NMR spin-lattice relaxation rate distributions

Computing the dynamical correlation (4) for indepen-
dent disorder samples (N; ~ 500) allows us to establish
the corresponding distribution fo the NMR relaxation
rate P(1/T}) for each temperature and disorder strength,
covering both TLL and BG phases as shown in Fig. 3.
Overall, it is at high temperature that the distributions
seem to be the narrower, independently of the disorder
strength. With a very short thermal correlation length
&(T/J > 1,h) < 1, one expects the effect of temperature
to be dominant over disorder surrounding the site 7 on
which the local dynamical correlation function is being
computed.

Interestingly, in the BG phase, see Fig. 3 (d), the 1/T}
distributions for SJ < 10 seem to be double-peaked.
This can be understood as a competition between ther-

mal and localization effects. At fixed temperature and
for a given disordered sample, the relevant characteris-
tic length £(h,T) surrounding the local site from which
the 1/T) is computed, is either going to be &y or Eoe,
whichever is the shortest one. The distribution of £(h,T")
over many samples is going to be a weighted combination
of the respective distributions of thermal and localization
lengths, leading to a bimodal structure of the overall dis-
tribution. As discussed previously, a finite length scale
induces a finite time scale, either through the decay time
7(T,h) or the crossover time 7.(T,h), in the local dy-
namical correlation function, which will be reflected on
the 1/T} distributions by also displaying a double-peaks
structure. In Fig. 3(d) for BJ = 16, we do not observe
two modes anymore because localization is dominant at
that temperature. For h = 0.4, see Fig. 3 (c), no double-
peaks structure clearly emerges despite being in the local-
ized BG phase. This is because we are very close to the
transition, h. ~ 0.37 [45], with the localization length
diverging exponentially, making it way larger than the
thermal length.

Experimentally, one does not have access to the 1/T;
distributions but, for a disordered system to the aver-
age value of the return-to-equilibrium function M(¢) of

Eq. (2),
- Foo
1—M(t) o e t/Tt = / AT P (T e YT (T)
0

from which the average NMR spin-lattice relaxation rate
1/T7 cannot be readily obtained. In order to access
it, one usually makes the assumption that the sum of
exp(—t/T}) originating from the disorder averaging in
Eq. (7) can be approximated by a stretched exponen-
tial [77],

exp(—t/T1) = exp|—(t/7ur)’]. (5)



with 6 and 74, two parameters fitted against the ex-
perimental data. Ome then considers that 74, = T7,
which is exact in the disorder-free case where 6 = 1.
Under the stretched exponential assumption, the distri-
bution P(1/7T}) corresponds to the stretched exponential
one [77]. Tt is clear that the distributions displayed in
Fig. 3 do not correspond to pure stretched exponential
distributions defined on the semi-infinite interval [0, +00].
For the disorder strengths considered, we do not observe
rare events in the 1/T value leading to very broad dis-
tributions, over orders of magnitudes, as it was for in-
stance observed in spin chains with random exchange
couplings [78]. Here, the NMR spin-lattice relaxation
rate seems to be bounded by its clean value at h = 0.
Moreover the stretched exponential distribution would
not capture the double peaks at high temperature in the
BG phase. Yet, surprisingly, the value of 1/74, extracted
from the approximation (8) is very close to the average
1/T; value, as discussed in the following.

C. Temperature dependence of the NMR
spin-lattice relaxation rate 1/T}

In the TLL regime, the NMR spin-lattice relaxation
rate 1/7; takes the form (6) in the low temperature
limit, with no free parameter. This expression has been
perfectly checked against numerics in clean XXZ chains
for various A anisotropies and for T'/J < 10 [51, 52).
For completeness, we display the disorder-free case at
A = —0.75 in Fig. 4(a), where the crossover towards
genuine the TLL physics with 1/77 « T1/2K-1 is indeed
recovered at low temperature. In presence of disorder,
but below the critical disorder strength h. ~ 0.37 [45],
we still expect a TLL phase and the algebraic tempera-
ture dependent expression in Eq. (6) should still apply.
However for h # 0, there is no exact expression for the
TLL parameters K, u or the prefactor A of the static
transverse correlation function at zero temperature, and
they must be computed numerically. These values are
reported in Tab. I for h = 0, 0.2 and 0.3. The techni-
cal details for their determination are explained in the
appendix.

We first focus on the average 1/T) value, which for
BJ 2 16 agrees with the TLL prediction combining
Eq. (6) and the parameters of Tab. I. The crossover
towards the TLL regime in presence of disorder hap-
pens at slightly smaller temperatures than the clean case.
This can be explained by the behavior of 7.(T,h # 0)
and 7(T,h # 0): They both decrease with disorder
strength, making the dynamical correlation drop much
faster than in the clean case, see Fig. 2(a). Nonethe-
less, the parameter-free TLL prediction makes it possi-
ble to precisely define the crossover temperature, even in
the disordered TLL regime, and this should be a key ele-
ment to be computed in a more realistically experimental
model in order to interpret carefully experimental mea-
surements.
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FIG. 4. Legend displayed in panel (c). (a) Log-log scale.
Temperature dependence of the average (circle symbol), me-
dian (cross symbol) and stretched exponential (plus symbol)
values of the NMR spin-lattice relaxation rate, versus tem-
perature T'/J for various disorder strengths h = 0.0 (clean
case, no disorder), 0.2, 0.3, 0.4, and 0.5. At zero tempera-
ture, the disorder-induced quantum phase transition between
the TLL and Bose glass phases happens at h. ~ 0.37 [45], see
Fig. 1. The purely algebraic temperature dependence of the
TLL prediction, valid in the “low-energy limit”, is displayed
by the bold straight line according to Eq. (6) and the param-
eter shown in Tab. I. (b) Stretched exponential exponent 6
versus the temperature. (c) Temperature dependence of the

gradient of the average value, —91In(7;')/01In T, versus tem-
perature T'/J. The gradient is computed numerically. The
transition between the TLL and Bose glass phases is marked
by a change in the slope of the gradient. In the TLL regime
T1_1 o« TY2?K-1 with K the TLL parameter, this quantity
should saturate to 1 — 1/2K. This is verified for the clean
case with 1 —1/2K (A = —0.75,h = 0) ~ 0.77. In presence of
disorder (h = 0.2, 0.3) the necessity to go to lower tempera-
tures to observe genuine TLL physics makes the gradient not
converged yet to the expected value of K reported in Tab. I.

As we cross the superfluid to BG transition at h. =~
0.37 [45], we observe that on the log-log scale of Fig. 4 (a),
the gradient of the average value of the NMR spin lattice
relaxation rate starts to decrease at low temperature as
the temperature is lowered, while it increases in the TLL
phase. The gradient is plotted in Fig. 4 (c) where this
effects is clearly visible and we believe is a signature of
the transition at low temperature. In the TLL phase,
the gradient should saturate to 1 — 1/2K as visible for
the clean case with 1 — 1/2K(A = —0.75,h = 0) ~ 0.77.
One would need to access lower temperatures in order to



h A (DMRG) u/J (QMC) K (QMC, DMRG)
0.0 (exact)  0.159572  0.429535 2.173408

0.2 0.13084(4)  0.419(2)  2.094(8), 2.0899(6)
0.3 0.12448(7)  0.404(2)  1.958(9), 1.953(2)

TABLE I. Tomonaga-Luttinger liquid parameters v and K
as well as the prefactor A of the static transverse correlation
function (S (0)SF (0)) at zero temperature. For the first line,
corresponding to the clean case, the parameters are known
exactly [59, 79, 80]. In presence of disorder, for h = 0.2 and
h = 0.3, the value of the parameters is determined numer-
ically using density-matrix renormalization group (DMRG)
and quantum Monte Carlo (QMC). See the appendix for tech-
nical details.

observe the saturation at A = 0.2 and 0.3.

In all cases, the average 1/Tj, as previously dis-
cussed, is not directly accessible in experiments where
a stretched exponential fit to the return-to-equilibrium
function M (t), as in Eq. (8), is usually used and the
parameter 1/74, interpreted as the “relevant” 1/T3. Nu-
merically, for each disordered sample, we can compute
M (t) and fit its disorder averaged value M(t) against
a stretched exponential, as it would be done in exper-
iments. The parameters 1/7, and 0 are reported in
Fig. 4 (a) and (b) respectively. Although it is clear that
the distributions P(1/77) shown in Fig. 3 are not those

corresponding to a stretched exponential M(t), the value
of 1/74, is in very good agreement with the exact average
1/T; value, in both the TLL and BG phases. Yet, we can
note that a discrepancy seem to appear as we go deeper in
the BG phase. For comparison, this is in sharp contrast
with results in spin—1/2 Heisenberg chains with random
exchange couplings, which realize in the low-energy limit
the so-called random singlet phase [78]: At low temper-
ature, it was for instance found that the average 1/T;
diverges while the stretched exponential estimate was
found to go to zero as the temperature was decreased.
In that case, the authors found that the stretched ex-
ponential did not capture the average value but rather
the typical value of the NMR spin-lattice relaxation rate,
characterized by the median value of the distribution. We
report the median value med(1/7}) in Fig. 4 (a) which
behaves similarly to the average and the stretched expo-
nential estimates. As thoroughly discussed in Ref. 77,
the physical interpretations of the stretching exponent 6
are not straightforward, although it is commonly related
to the width of the 1/T} distribution. The value of 6 dis-
played in Fig. 4 (c¢) decreases with the disorder strength
and seem to decrease with the temperature in the BG
phase while it remains roughly constant with tempera-
ture in the TLL phase.

IV. SUMMARY AND CONCLUSIONS

Using large-scale simulations based on matrix product
state techniques, we have computed the NMR spin-lattice
relaxation rate 1/77 in random spin chains displaying
a disorder-induced phase transition in the low tempera-
ture limit between a critical Tomonaga-Luttinger Liquid
phase and a many-body localized phase, known as Bose
glass. We have provided numerical evidences that this
quantity versus temperature detect the transition and
that it should be able to address the still controversial
value of the TLL parameter K at criticality, which might
be universal [33, 37]. One indeed expects at low temper-
ature that 1/7) o< TY/?K=1 where a clear identification
of the crossover temperature below which this algebraic
dependence becomes valid was possible.

We were also able to access quantities which are not
experimentally, such as the 1/7; distributions for differ-
ent temperatures and disorder strengths in both phases.
From this, we discussed the applicability of approximat-
ing the disorder averaged return-to-equilibrium function
M (t) (the only quantity accessible in such NMR ex-
periments) as a stretched exponential o exp|— (/7 )?].
Through this approximation, 1/7, is usually referred as
the “relevant” NMR spin-lattice relaxation rate but there
is no guarantee that it is equal (or simply related) to the
actual disorder averaged value of 1/T;. To emphasize this
difference between 1/T; and 1/74,, it was found that for
spin—1/2 Heisenberg chains with random exchange cou-

plings [78], 1/T; diverges at low temperature while the
stretched exponential estimate goes to zero. Here, we
show that they both behave in a very similar way: A
decisive point for experiments to reliably extract K from
1/ 75t (T).

In the weak disorder regime (not considered in this
work, corresponding to the TLL phase close to A ~
—1/2), there might be a multiplicative logarithm cor-
rection to the 1/7; expression (6) in the TLL phase
since the static correlations have also been found to dis-
play such a correction in presence of disorder [81]. This
would be qualitatively similar to the one appearing in
the better-known isotropic A = 1 (and clean, h = 0)
case [49, 52, 82]. However, its effect in presence of dis-
order would probably be way smaller since it arises with
a log at the exponent 2/9 in the static correlations, very
difficult to capture numerically. For instance, there is
no mention of including this correction to fit the static
correlations in Ref. 45.

It would be interesting to consider next the dynamical
spin structure factor S(g,w), measured in inelastic neu-
tron scattering experiments. Though it would be much
more challenging numerically because involving dynami-
cal correlations at all distances in order to compute the
Fourier transform from real to momentum space. In com-
parison, the study carried out in Ref. 78 on the dynamical
properties of the random singlet phase, was performed
in the canonical ensemble (imposing SZ, = 0), more



amenable with the MPS techniques [83]. One possibil-
ity would be to use quantum Monte Carlo with analytic
continuation, where the disorder average could be done
before doing the continuation. For the Bose glass phase,
the equivalent to the dynamical structure factor in the
context of cold atom experiments and Bragg spectroscopy
has been investigated at zero temperature in Ref. 84, but
the nature of the excitations in this phase remains an
open question.
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Appendix: Determining the Tomonaga-Luttinger
Liquid parameters numerically

The TLL parameters v and K, as well as the prefactor
A of the static correlation function (S (0)S7(0)) at zero
temperature have no exact expression at finite disorder
strength and have to be determined numerically. The
parameters u and K can be related through the hydro-
dynamic relations to the uniform susceptibility x and the
spin stiffness ps [39],

(A1)

K =m/psx and u=+/ps/x

which are both readily computed in quantum Monte
Carlo (QMC) through the stochastic series expansion
algorithm [86, 87]. We compute these quantities for
N, =~ 10% independent random systems of size L = 256
with periodic boundary conditions at inverse tempera-
ture 8J = 2! using the B-doubling scheme [88]. The
temperature is sufficiently low to consider that the QMC
algorithm is only probing the ground state. Moreover,
these quantities do not show strong finite-size effects for
the disorder strengths considered here, hence L = 256
can be taken as the thermodynamic limit result. Similar
simulation parameters have been used in Ref. 45, pro-
viding very satisfactory results. The average of ps and
x over the Ny samples is then computed to extract the
values of K and w according to Eq. (A.1). The values for
h = 0.2 and h = 0.3 are reported in Tab. I in the main
text.

Independently, simulations were also carried out on
systems of size L = 256 with open boundary condi-
tions using the variational density-matrix renormaliza-
tion group (DMRG) algorithm [89, 90] at exactly zero
temperature, and enforcing S7,, = 0. Here, the suscepti-
bility and the spin stiffness are not as easily computed but
one can compute the transverse static correlation func-
tion (S’Zi(O)S;F(O)) versus the distance r = |i — j|. It has
been computed for Ny ~ 10% independent samples and
the average value has been fitted to the form,

— 1
2K

fli+4,20)f(i —j,2L)
2\/f(2i,2L) f(2j,2L)

F(i,j,L) =24 (A.2)

with f(i, L) = L|sin(wi/L)|/m. This corresponds to the
expected form of (S (0)S5(0))| in a finite system with
open boundary conditions, with ¢ and j far enough from
the boundaries, and with |[i — j| large enough [91]. In
practice, we only consider |i — L| > L/4, |j — L| < 3L/4
with ¢ < j and |i — j| > 10. The fitted values of K and
A are reported in Tab. I in the main text for A = 0.2 and
h = 0.3. The values of K extracted from the QMC and
the DMRG agree well with each others.
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