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ABSTRACT OF THE DISSERTATION 
 

Computational Methods Based on the Linearized Landau-Lifshitz-Gilbert Equation for 

Linear and Non-linear Micromagnetic Modeling 

 

by 

 

Zhuonan Lin 

 

Doctor of Philosophy in Materials Science and Engineering 

University of California San Diego, 2022 

Professor Vitaliy Lomakin, Chair 

 
 

Nanoscale magnetic materials and devices are at the heart of memory and recording 

technologies ranging from magnetic hard drives to spintronic devices, such as magnetic random 

access memory (MRAM) and spin transfer torque oscillators. Advanced development of these 

technologies requires comprehensive computational tools. This dissertation presents a 

theoretical and micromagnetic study of challenges faced when considering interactions between 
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applied fields and spin-polarized currents with nanomagnetic materials. The study is about 

solving the generally non-linear Landau-Lifshitz-Gilbert (LLG) equation using its linearized 

version. The approaches include using a linearized eigenvalue framework, solving a source-

excited linearized LLG equation, and using a harmonic balance approach for the study of the 

higher-harmonic generation in weakly-nonlinear magnetization dynamics problems. The 

dissertation starts with an introduction to micromagnetics and modeling of spin-torque-driven 

devices. The following chapters present the eigenvalue based micromagnetic framework for 

spin-torque-driven devices. It presents an analysis related to the MRAM switching properties, 

including the critical current, switching time, and magnetization time evolution. It also 

introduces an optimization approach based on the eigenvalue analysis to reduce the critical 

current in MRAM. It then extends the eigenvalue analysis to the Fokker-Planck equation 

framework to study of non-switching probability, namely write error rate, under finite 

temperature. Next, the dissertation presents a solver for the linearized LLG equation with under 

time-harmonic applied fields, describing its formulation, numerical implementation, results, 

and analysis. The linearized LLG equation solver is finally extended to create a harmonic 

balance solver, which represents the solution as a set of multiple frequency components with 

an iterative process, which allows computing the excitation coefficients of these components. 

All the codes are developed in the finite element method framework, which is flexible in 

handling complex materials and devices, and it is integrated with the high-performance 

micromagnetic FastMag framework.  
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INTRODUCTION 
 

Technologies based on magnetic materials are used in various aspects of our daily life. 

Applications such as magnetic hard drives play an essential role in modern computer and other 

electronic devices. Over the past decades, the demand for storage capacity is constantly increasing, 

e.g., for the modern large data consumption and cloud services. Microelectronics is confronting 

the stagnation of their computational power scaling, which is a major threat to the future growth. 

Spintronic devices are envisioned as the next-generation technology to revolutionize the 

electronics industry. Unlike the electronic devices which employ circuits that uses the electric 

charge to represent information, spintronic technology manipulates the electron spins, and it 

usually requires less energy and provides the non-volatility. These properties are important for 

many modern applications, such as the energy-constrained cases for Internet-of Things (IoT), fast 

non-volatile memories for next generation database system designs. The field of spintronics was 

born in 1988 with the discovery of Giant Magnetoresistance (GMR), and extensive research has 

been done over the years. Recent progress suggests that magnetic random access memory 

(MRAM) devices are the major candidate for future memory technologies. Among MRAM 

devices, the spin-transfer-torque (STT) MRAM prototypes use perpendicular magnetic anisotropy 

(PMA) magnetic tunnel junctions (MTJ) as the storage elements. Spin polarized currents are 

injected to the MTJ and transfer the spin-torque to the free layer for operation. The spin-orbit-

torque (SOT) MRAM uses PMA-MTJ with a layer of heavy metal. The in-plane charge current is 

injected into the heavy metal layer, and the spin Hall effect generates a spin current, which imposes 

a torque on the free layer of the MTJ for operation. These spin-torque-driven MRAMs have high 

sensitivity, low power consumption, non-volatility, fast read and write operation, and high 
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endurance. These properties provide several advantages over the currently used static RAM for 

high-speed applications, flash for non-volatility, and dynamic RAM for low energy consumption.  

This dissertation presents mathematical formulations of using the Landau-Lifshitz-Gilbert 

(LLG) equation in its linear approximation to study the linear and non-linear magnetization 

dynamics in complex nanomagnetic materials and devices. The mathematical formulations are 

implemented in numerical codes that are integrated with the FastMag micromagnetic framework, 

which is a high-performance general micromagnetic simulator developed at UCSD. The developed 

formulations and numerical solvers are used for the analysis and design of MRAM elements. The 

dissertation is divided into seven chapters. 

Chapter 1 presents a summary of the fundamentals of Micromagnetics focusing on the most 

important interactions that are considered in general models, and how these interactions are 

accounted for in the FastMag framework.  

Chapter 2 introduces spin-torque-driven spintronic devices, with an emphasis on STT 

MRAM. The basic architectures of MTJs, STT, and SOT MRAM are presented, and the major 

problems of these devices are discussed.  

Chapter 3 presents the construction of an eigenvalue framework based on the linearization 

of the LLG equation, which is used to study switching of spin-torque-driven devices, including the 

calculation of the critical current, switching time, and magnetization dynamics.  

Chapter 4 studies the switching current reduction using a nonuniform current density 

distribution in MTJs. It presents an optimization approach for minimizing the critical current based 

on the eigenvalue framework. 
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Chapter 5 introduces the Fokker-Planck (FP) approach based on the eigenvalue framework. 

The probability density function is calculated from the FP equation and is used to study the write 

error rates with finite temperature for STT-MRAM.  

Chapter 6 introduces a finite element method based solver for solving the linearized LLG 

equation in the frequency domain for complex magnetization amplitude when the system is excited 

by a time-harmonic applied field, including a preconditioner required for a high computational 

performance. 

Chapter 7 introduces a harmonic balance solver to account for higher-harmonic generation 

due to the non-linear behavior of the magnetization dynamics under time harmonic excitations.  

Finally, Chapter 8 contains conclusion and remarks.  
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CHAPTER 1 

Concepts of Micromagnetics 

The magnetic properties of materials are fundamentally described by the quantum theory. For 

instance, the Pauli paramagnetism and Landau diamagnetism theories give the susceptibility of 

paramagnetic and diamagnetic materials using quantum theory and statistical physics. The 

quantum theory of ferromagnets is described as a many-body problem, and the complexity grows 

exponentially with the number of involved bodies. Therefore, analytical and numerical 

calculations in this scheme are limited to small systems only. Micromagnetics, on the other hand, 

is a continuum theory that describes magnetic interactions in materials and devices on a few 

nanometers to hundreds of micron scales. The original theory is described by Brown [1] who 

developed a continuous theory predicting the equilibrium magnetization state. Micromagnetics can 

leverage the computation power of modern computers to perform simulations to study various 

magnetic materials and devices, such as magnetic hard drives for magnetic recording and MRAM. 

This chapter discusses fundamentals of the micromagnetic theory. It starts with the governing 

equation, viz. the LLG equation. It, then, describes how the major magnetic interactions are 

modeled in Micromagnetics. Then, it discussed thermal effects and energy barrier calculations in 

Micromagnetics. Finally, it discusses uses of the micromagnetic formulations for computational 

model. 

1.1 Landau-Lifshitz-Gilbert equation 

The magnetization dynamics and interactions in magnetic systems are described by the Landau-

Lifshitz equation: 
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 ( )eff eff

s

d

dt M


 = −  −  

M
M H M M H , (1.1) 

where   is the gyromagnetic ratio, M  is the magnetization vector, sM  is the saturation 

magnetization, effH  is the effective magnetic field, and   is the phenomenological damping 

parameter [2]. In 1955 Gilbert replaced the damping parameter in the Landau-Lifshitz equation by 

a term that depends on the time derivative of the magnetization, which resulted in the LLG 

equation  [3]: 

 
eff

s

d d

dt M dt


= −  + 

M M
M H M , (1.2) 

where   is the unitless damping factor. The LLG equation has the form of the LL equation if the 

gyromagnetic ratio   in the Landau-Lifshitz equation is replaced by the modified gyromagnetic 

ratio 2/ (1 )   = + , and  =  [3]: 

 ( )eff eff

s

d

dt M


  = −  −  

M
M H M M H , (1.3) 

where (1.2) and (1.3) are usually referred as implicit and explicit forms of the LLG equation. The 

right hand side of (1.3) consists of two terms. The first term, effM H , describes the precession of 

magnetic vector M  about the effective field effH , and the second term, ( )eff M M H , describes 

damping, which leads the magnetic vector M  to align with the effective field effH . The illustration 

of these two terms is shown in Figure 1.1. The LLG equation is often written in a normalized form 

for the normalized magnetization sM=m M   

 ( )eff eff

d

dt
   = −  −  

m
m H m m H , (1.4) 

The LLG equation is a non-linear differential equation where the effective field effH  is a 
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function of magnetization vector M . The major interactions considered in Micromagnetics that 

contribute to the effective field effH  are discussed in Sec. 1.2. 

 

 

Figure 1.1: Illustration of the magnetization with (a) precession term only and (b) damping term of the LLG 
equation. 

 

 

1.2 Major interactions in micromagnetics 

The effective magnetic field effH  in the LLG equation can be expressed as the sum of magnetic 

fields originating from different interactions. Several major interactions are generally considered 

in micromagnetic systems: 

 eff a ms ex anis= + + +H H H H H , (1.5) 

where aH  is the Zeeman or applied field, msH  is the magnetostatic field, exH  is the exchange 

field, and anisH  is the magnetocrystalline anisotropy field. In general, the magnetic field from each 

interaction H  can be calculated from the functional derivative of the magnetic energy E  with 

respect to the magnetization vector M  [4]: 

 
dE

d
= −H

M
. (1.6) 
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This section discusses the physics background of magnetic fields in (1.5).  

1.2.1 Zeeman interactions 

The Zeeman interactions are between an external applied field (Zeeman field) ( )aH r  and the 

magnetization vector. The Zeeman energy is given by 

 ( ) ( )Zee aE dV


= − M r H r , (1.7) 

where   denotes the magnetic domain of interest. As indicated by (1.7), the energy ZeeE  is lowest 

when the magnetization vector M  is oriented along the field aH . 

1.2.2 Magnetostatic interaction 

To introduce the magnetostatic interactions, consider two magnetic dipole moments, 1μ  and 2μ , 

that generate the corresponding magnetic fields, 1H  and 2H . By the reciprocity theorem [5], the 

total energy of the two magnetic moments, denoted as magnetostatic energy msE , can be expressed 

as: 

 
2 1 1 2

1
( )

2
msE = −  + μ H μ H , (1.8) 

where the factor of 1 2  excludes the self-interaction. For the general magnetic materials that 

contain multiple magnetic moments,  (1.8) generalizes to 

 
1

2
ms i j

i j i

E


= − μ H . (1.9) 

For a continuum representation in terms of the magnetization vector ( )M r , similar to (1.7),  the 

magnetostatic energy msE  is given by 

 
1

( ) ( )
2

ms msE dV


= − M r H r , (1.10) 



8 

 

where ( )msH r  is the magnetostatic (demagnetization) field generated by the magnetization. The 

magnetostatic field can be found by using the magnetic charge density 

 
( ) ( )

( )
| | | |

M M
ms

S

dV ds
 



 
 = − −

 − − 
r r

H r
r r r r

, (1.11) 

where S  is the surface of  , and ( )M r  and ( )M r  denote the volume and surface magnetic 

charge densities 

 
( ) ( )

ˆ( ) ( ) ( )

M

M





= − 

= 

r M r

r n r M r
, (1.12) 

and ˆ ( )n r  is the outward unit normal vector on surface S . 

 

Figure 1.2: Illustration of the magnetostatic interaction of (a) an array of uniform magnetic pillars, and (b) 
long magnetic nanowire. 

 

The magnetostatic interactions play an important role in the static and dynamic properties 

of magnetic materials. Figure 1.2 shows effects of the magnetostatic interaction in several 

configurations. Figure 1.2a shows the magnetization configuration of an array of uniform magnetic 
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pillars, each pair of neighboring pillars is anti-paralleled to minimize the magnetostatic energy. 

Figure 1.2b shows the magnetization configuration of a magnetic wire, where the minimum 

magnetostatic energy is achieved when the magnetization aligns with the long axis. More 

generally, unless other effects dominate, the magnetostatic interaction promotes the magnetization 

to align in the longer direction of the sample, since this configuration minimizes the surface 

magnetic charge ( )M r  (see (1.12)), which is the effect called shape anisotropy. 

In the general micromagnetic systems, calculating the magnetostatic field can be 

expensive, since the complexity of computation scales quadratically with the number of the 

magnetic moments in the system. Consequently, the calculation of the magnetostatic field may be 

the bottleneck in micromagnetic simulations, especially for large magnetic systems. Several 

algorithms have been proposed to decrease the computation complexity, such as using the 

nonuniform fast Fourier transform (NUFFT) [6]. On the other hand, when consider the macrospin 

approximation, i.e., when assuming that the magnetization is uniform within the entire volume, 

the demagnetization factor, N , is usually used to calculate the magnetostatic field. The 

demagnetization factor is a tensor used to represent msH  in terms of M  as 

 

xx xy xz

ms yx yz yz

zx zy zz

N N N

N N N

N N N

 
 

= − = − 
 
 

H NM M , (1.13) 

where the component ijN  indicates contribution of the magnetization component jM  to the 

magnetostatic field component ,ms iH . The value of elements in N  depends on the geometry of the 

system, and sometimes can be gained from the symmetry of the system. For example, for a sphere, 

N  has equal elements on its diagonal, where 4 / 3xx yy zzN N N = = =  and zero elements 

elsewhere, which means that the sphere does not have a preferred direction of the magnetization. 
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For an infinite thin film in the xy  plane, N  has only a single non-zero element 4zzN = . The 

demagnetization factors of some other commonly used shapes are discussed below. First, the 

demagnetization factor N  of a finite length cylinder with the z  axis of height h  and radius r  

is [7] 

 

2

,

4 (1 1 ), /

2 / 2

0

zz

xx yy zz

ij i j

N l l l r h

N N N

N







= + − + =

= = −

=

. (1.14) 

 

Figure 1.3: Demagnetization factors , ,xx yy zzN N N  as a function of aspect ratio l  for (a) circular cylinder 

and (b) prolate spheroid. 

 

For a prolate spheroid with axis of length a b c=  , where c  is in the z  axis [8], the 

demagnetization factor is 

 

( )2

2 2

,

4
ln 1 1 , /

1 1

2 / 2

0

zz

xx yy zz

ij i j

l
N l l l c a

l l

N N N

N







 
= + − − = 

− − 

= = −

=

. (1.15) 
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Figure 1.3 shows the demagnetization factor components as a function of the aspect ratio l  for a 

cylinder and prolate spheroid.  

1.2.3 Magnetocrystalline anisotropy interaction 

Anisotropy interactions describe the effect of the magnetic material having different properties in 

different directions, which leads the anisotropy magnetic energy to have minima directions in 

which the magnetization tend to stay. Two common types of magnetocrystalline anisotropy are 

uniaxial and cubic. The uniaxial anisotropy has a single easy axis so that the magnetization has 

two opposite favorable directions. This property is used, e.g., for representing a bit element in data 

storage, where the two preferential directions are used as 0 and 1. The uniaxial anisotropy energy 

and magnetic field are written as  [9,10] 

 

( ) ( )

( )( )

2
2 2

1 2

21 2

ˆ ˆ1 ( ( ) ) 1 ( ( ) )

2 4ˆ ˆ ˆ ˆ ˆ( ) ( ( ) ) 1 ( ( ) ) ( )

uniaxial U U

anis

U U
uniaxial

anis

s s

E K K dV

K K

M M



 = −  + − 
  

=  + −  

 m r k m r k

Η r m r k k m r k m r k k

， (1.16) 

where k̂  is the uniform anisotropy easy axis vector and 
U

iK  is the i -th order uniaxial anisotropy 

energy density.  

 

Figure 1.4: Anisotropy field illustration for (a) uniaxial and (b) cubic anisotropy 
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For the macrospin approximation, for which the magnetization is uniform,  (1.16) 

simplifies to 

 

2 4

1 2

21 2

sin sin

2 4ˆ ˆ( ) cos sin cos

uniaxial U U

anis

U U
uniaxial

anis

s s

E K V K V

K K

M M

 

  

= +

= +Η r k k
, (1.17) 

where   is the angle between m  and k̂  (Figure 1.4a). 

 

For cubic anisotropy, the magnetocrystalline energy is expressed as a power series of the 

directional cosines of the magnetization vector m . The directional cosines are defined as  

1 2cos , cosa b = =  and 3 cos c = , where , ,a b c  are the angles between the magnetization 

vector and the principal crystallographic axes (Figure 1.4b). Here, for simplicity, assuming the 

macrospin approximation, the cubic anisotropy energy and field can be expressed as  [9,10] 

 

2 2 2 2 2 2 2 2 2

1 1 2 2 3 1 3 2 1 2 3

2 2 2 2

1 1 2 3 2 1 2 3

2 2 2 2

1 2 1 3 2 1 2 3

2 2 2 2

1 3 1 2 2 1 2 3

( )

( )
2

( )

( )

cubic C C

anis

C C

cubic C C

anis

s C C

E K K

K K

K K
M

K K

        

     

     

     

= + + +

 + +
 

= − + + 
 + + 

H
, (1.18) 

where 
C

iK  is the i -th order cubic anisotropy energy density. 

1.2.4 Exchange interaction 

Exchange interactions are the source of ferromagnetism, antiferromagnetism, and ferrimagnetism 

since they maintain the magnetic order. The exchange interaction is a quantum effect that leads to 

an energetically favored parallel alignment of the neighboring spins in magnetic materials. 

Considering the Heisenberg model [11], the energy ,i jE  between two neighboring spins ,i jS S  is 

given by 

 ,i j ex i jE J= − S S , (1.19) 
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where 
exJ  is the exchange integral. The sign of 

exJ  determines whether the parallel or anti-parallel 

alignment of the neighboring spins has a lower energy. When 0exJ  , a parallel alignment 

between ,i jS S  has a lower energy, which leads to ferromagnetism, and when 0exJ  , an anti-

parallel alignment between ,i jS S  has a lower energy, which leads to either antiferromagnetism or 

ferrimagnetism, depending on whether the total magnetization is zero or not. Figure 1.5 shows the 

type of the strong magnetic material and the corresponding alignment of the spins. 

 

Figure 1.5: Magnetic moment order of (a) ferromagnetic and (b) anti ferromagnetic materials. 

  

Equation (1.19) presents the quantum effect of exchange interaction between two spins. In 

Micromagnetics, the continuous theory represents the exchange interaction energy and magnetic 

field as 

 

( )
2

2 2 2

2

( )

2
( ) ( )

ex ex

ex
ex ex

s

E A dV

A
l

M



= 

=  

 m r

H m r m r

, (1.20) 
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where 
exA  is the exchange energy density that depends on 

exJ  [11]: 2 21
6 ex jj

A nJ S r=  , where 

n  is the number of nearest neighbors, S is the spin magnitude, and jr  is the distance to the nearest 

neighbor. The parameter 2ex ex sl A M=  is usually referred as the exchange length. The 

micromagnetic expression in  (1.20) is an approximation, which assumes that the magnetization 

varies slowly in space, and the rate of the variations is given by the exchange length. To 

characterize the exchange interaction numerically, these slow variations need to be resolved, which 

means that the spatial discretization of the system should have a mesh size sufficiently smaller 

than exl . 

 The exchange interactions discussed above are referred to as bulk exchange. There is another 

type of exchange interaction, referred to as surface exchange, which originates from the 

Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions [12]. 

1.3 Thermal effects and stochastic LLG equation 

Thermal effects have a large impact on the properties of magnetic materials, and it is necessary to 

consider the thermal effect in theoretical and numerical studies. When the environment 

temperature is high, it may break the magnetic order, which is associated with the Curie 

temperature  CT . The temperature also influences the susceptibility   of the magnetic material, 

which for CT T , can be expressed via the Curie-Weiss law: 

 
C

C

T T
 =

−
, (1.21) 

where C  is Curie constant that depends on the material properties (Figure 1.6). 
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Figure 1.6: (a) Magnetic moments order under (top) and above (bottom) Curie temperature. (b) Magnetic 

susceptibility vs. temperature above Curie temperature following Curie-Weiss law. 

 

In Micromagnetics, for sufficiently low temperatures, thermal effects can be expressed as 

an additional term in the effective field effH  in  (1.5). This thermal field thH  can be expressed as 

a Gaussian white noise (GWN) [13] 

 
2 B

th

S

k T

VM




=H G , (1.22) 

where Bk  is the Boltzmann constant and G  is a three dimensional normalized GWN with 

0 =G  and 2 1 =G , where x   denotes the expectation of x . Adding the thermal field 

thH  to the LLG equation (1.3), we obtain the stochastic LLG equation 

 ( ) ( )eff th eff th

st M


 


 = −  + −   +



M
M H H M M H H . (1.23) 

 Note that (1.23) is only applicable when CT T . When T  is close to CT , the total 

spontaneous magnetization decreases significantly, and  (1.23) is not valid. In that case, the 

Landau-Lifshitz-Bloch (LLB) equation should be used instead [14]. 
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1.4 Nudged elastic band method 

In general physics systems, it may be important to know the minimum energy path and barrier 

between two equilibrium states. In Micromagnetics, knowing the minimum energy path is 

important for the study of the switching properties of devices, and the energy barrier is also critical 

for understanding the thermal stability. The thermal stability lifetime   for a magnetic structure is 

related to the ratio between the energy barrier bE  and the temperature [15]: 

 0

b

B

E

k T
e = , (1.24) 

where 0  is inverse of the attempt frequency, with typical values on the order of 1010 s− . The 

lifetime  exponentially increases with b BE k T . As an example, for 20b BE k T = , the lifetime 

1s  . For 45b BE k T = , the lifetime 10  years, which is the minimum requirement for 

retaining information in magnetic recording. For  100b BE k T = , the lifetime is greater than the 

age of the universe. The typical value of b BE k T  for current magnetic recording or memories is 

about 80, which accounts for the possibilities of the lifetime reduction due to imperfections in 

fabrication and parameter distributions. 

Nudged elastic band (NEB) method is a widely used method for finding the saddle points 

to find minimum energy path and energy barrier [16].NEB method works by optimizing a number 

of intermediate magnetization states { }nM , referred to as image to lead to the energy to follow the 

minimal path. The path is found by an energy gradient descent method  [16–18] 

 

( )

1 1

1 1|| ||

n
n n n n

NEB

n n
n

n n

d
E E

d

+ −

+ −

= −  −    

−
=

−

M
τ τ

M M
τ

M M

, (1.25) 
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where 
nE  is the gradient of energy for image n  associated with magnetization state 

nM , 
NEBd

is an integration parameter and, 
nτ  is the unit tangent vector to the energy path. The initial guess 

path can assume a uniform switching or any approximation to the minimal energy path. 

1.5 Micromagnetic modeling 

The Computational Electromagnetics and Micromagnetics group at UCSD has developed a high-

performance micromagnetic simulator FastMag  [19]. FastMag is a finite element method (FEM) 

based micromagnetic simulator, 

 

Figure 1.7: Finite element mesh of (a) a general case and (b) one tetrahedral element. 

 

which can run on multicore CPUs and GPUs to efficiently handle highly complex structures [19]. 

The codes developed in the framework on this dissertation use various modules of FastMag. This 

section describes several relevant aspects of the FastMag based computations. 

Figure 1.7a shows a tetrahedral discretization mesh example of a disc and Figure 1.7b 

shows one tetrahedral element of the mesh. The normalized magnetization vector is prescribed to 

the tetrahedral vertices, viz. the mesh nodes. The magnetization vector inside the tetrahedral can 

be expressed using the magnetization vector values at the nodes 
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 ( ) ( ) ( )l l l

p p

p

=m r r m r , (1.26) 

where l  denotes the tetrahedron number and p denotes its vertices (also, referred to as nodes). 

( ) r  is a linear basis function with 1 =  at the node and 0 =  at the opposite surface of the node. 

Also in FEM, the effective volume pV , surface area pS  and thickness pt  at node p  are defined as 

 

1

4

1

3

p

p

M

l

p

l

T

t

p

t

p p p

V V

S S

t V S

=

=

=



 , (1.27) 

where pM  and pT  denote the tetrahedrons and surfaces that contain the node p . 

 The magnetostatic, magnetocrystalline anisotropy field and exchange fields at the nodes can 

be calculated from the magnetization vector at the nodes. For exchange field, 

 

,

, ,

,

,

2 ex p l l

ex p p q q

l qs p

l
l l l

p q p q

p

A

M

V

V
 

= 

 = −  

H m

. (1.28) 

For the magnetocrystalline anisotropy field,  

 ( ),

,

2 p

anis p p p p

s p

K

M
= H m k k . (1.29) 

For the magnetostatic field 

 

,
| | | |

( ) ( )

ˆ( ) ( )

l t

ms p

l tp p

l l l

s p p

p

t t t

s p p

p

dV dS

M

M

 

 

 

 = − −
 − −

 
  = −  
 

  = 

  





H
r r r r

r r m

r n r m

. (1.30) 
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The magnetic parameter values at the node ( , ,, , ,ex p s p p pA M K k ) are computed by weighted 

averaging over the tetrahedral containing the node, e.g., 
,

p pM Ml l l

ex p exl l
A A V V=  . More details 

of the FEM representation of effective field components can be found in [20]. Using the effective 

field representations, the LLG equation can be solved in this FEM framework with a time domain 

integration [19,21]. 
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Chapter 2  

Spin-torque-driven devices 

Interactions described in Chapter 1 are basic interaction types and more interactions can be 

included, depending on the physics occurring in a particular material or device. Another class of 

interactions are related to the spin as considered in the general field of spintronics. The field of 

spintronics is related to the discovery of giant magnetoresistance (GMR). GMR is a quantum 

mechanical magnetoresistance effect observed in multilayers consisting of ferromagnetic and non-

magnetic conductive layers [22,23], which revolutionized the magnetic recording industry. The 

recent progress of spintronics suggests that MRAM devices are the major candidate for future 

memory technologies, especially the spin-torque-driven MRAM. In this chapter, we discuss the 

spin-torque (ST) driven devices, which are a central topic of this dissertation. We discuss spin 

transfer torque (STT) and spin orbit torque (SOT) types of ST mechanisms and describe effects of 

these torques in micromagnetic systems governed by the Landau-Lifshitz-Gilbert-Slonczewski 

(LLGS) equation. We also discuss several spin-torque-driven devices.  

2.1 Spin torque and LLGS equation 

2.1.1 LLGS equation 

To describe the magnetization dynamics including spin torque (ST) effects, an additional torque 

term in the LLG equation need to be added to result in the LLGS equation:   

 
eff s

s

d d

dt M dt


= −  +  +

M M
M H M τ , (2.1) 
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where 
sτ  is the spin torque. The torque 

sτ  can describe different types of spin torques, including 

spin transfer torque and spin orbit torque. For example, considering a spin valve or a magnetic 

tunnel junction, the spin transfer torque can be written as 

 ( ) ( )s a J b J=   + τ m m p m p , (2.2) 

where the first term is the damping term, the second term is the field-like term, p  is normalized 

magnetization vector of the polarizing layer, ( )a J  and ( )b J  are parameters dependent on the type 

of spin torque, i.e., STT or SOT, and J  is the density of the injection spin polarized current. Figure 

2.1 illustrates the effect of sτ  in LLGS equation.  

 

 

Figure 2.1: Illustration of the magnetization with spin torque of Landau-Lifshitz-Gilbert-Slonczewski 
equation. 

 

 

The LLGS equation with the ST term can also be written in an equivalent form, where the 

ST is considered as a part of the effective field, denoted as STH  

 ( ) ( ( ))eff ST eff ST

s

d

dt M


  = −  + −   +

M
M H H M M H H , (2.3) 

where ( ) ( )ST a J b J=  +H m p p . 
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2.1.2 Spin transfer torque 

When the current flows through the ferromagnet, the electron angular momentum can be 

transferred to the ferromagnetic lattice. Consequently, the spin unpolarized current can become 

spin polarized passing through the ferromagnet, and the spin polarized current can transfer its 

angular momentum and change the magnetization of the ferromagnet. This effect is known as spin 

transfer torque (STT). Figure 2.2a illustrates the STT effect in a simple five-layer structure. The 

current flows freely through normal metal (NM) layers and has an STT effect in the ferromagnet 

(FM) layers.  The FMs are soft (no magnetocrystalline anisotropy) with shape anisotropy resulting 

in the easy axis perpendicular to the current flow. Figure 2.2b shows the STT effect in 

NM/FM1/NM structure. The normal (spin unpolarized current) flows through the structure. The 

FM1 layer is thick with a large magnetic moment so that the angular momentum transferred from 

the electron is not large enough to change the magnetization in FM1, but the opposite interaction 

changes the polarization of the itinerant electrons. Such structure is called spin polarizer used to 

generate spin polarized current. Figure 2.2c shows the STT effect in a NM/FM2/NM structure. 

The injected current is spin polarized generated by NM/FM1/NM. The magnetization of FM2 layer 

can be switched by the angular momentum transferred from the spin polarized electrons. This 

effect is used in STT-MRAM devices. Here, we use a one-dimension quantum model of STT 

originally employed in [24] to illustrate the physics picture of STT. The FM layer imposes 

different effective potential on different injected current electron spin states. The interaction 

between the spin up state electrons with the FM can then be described by calculating the 

transmission and reflection wave functions inside and at the boundary of the potential wall. 

Considering a difference between the total wave function of spin up electrons in left and right NM 

layers, we can determine the transferred angular momentum from the electrons to FM layer. 
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Figure 2.2: (a) NM/FM1/NM/FM2/NM five-layer heterostructure. (b) NM/FM1/NM structure, the input 

unpolarized current is polarized by FM1 layer. (c) NM/FM2/NM structure, the input polarized current can 
switch the magnetization in FM2 layer. 

 

 

The parameters of the STT term in  (2.2) can be defined as  [24–26] 

 

( )
2

( )
2

STT

s

STT

s

a J J
eM

b J J
eM











= −

= −

, (2.4) 

where  is the reduced Planck constant, e  is the electron charge,   is the effective thickness of 

the surface where the current injects in,   is the strength of the field-like STT contribution, whose 

typical value is 0 to 0.2, and ( )  =  is angular dependent STT efficiency which is a function of 

the angle   between m  and p  (detailed expressions and discussion for ( )   can be found 

in [26]). 
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2.1.3 Spin orbit torque 

Consider a bilayer structure consisting of a FM layer and a non-magnetic heavy metal (HM) layer 

with strong spin orbit coupling, such as platinum. In this structure, the current flowing along the 

interface creates torque, referred to as spin orbit torque (SOT) in the FM side of the interface 

(Figure 2.3). 

 

Figure 2.3: Illustration of SOT in HM/FM structure. 

 

There are several models to describe the SOT effect in the HM/FM bilayer structure. The first 

model considers the HM and FM layers as thick so that they have bulk properties [27]. In this case, 

the electrons with different spin states in the unpolarized injection current flowing through the HM 

layer are separated based on the spin state, which is known as the spin Hall effect (SHE). SHE 

generates a spin polarized current perpendicular to the HM/FM interface. As a result, the spin 

polarized current flows through the FM layer and generate ST similar to STT discussed in Sec. 

2.1.2 (Figure  2.4a). The second model assumes that coupling between the magnetization in FM 

and the current in HM can be directly described by the Rashba-Edelstein model, which is similar 

to the model used to describe the spin orbit coupling in the two-dimensional electron gas [28] 
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(Figure 2.4b). These two models give qualitatively similar results, where the SOT contains both 

the damping like and field-like torque component. There is also a third model that attempts to unify 

the first two models based on the Boltzmann equation [29]. 

 

Figure 2.4: Illustration of SOT from (a) spin Hall effect model and (b) Rashba-Edelstein effect model. 

 

In this dissertation, we use the first model to express the SOT in  (2.2) as  [30,31] 

 

( ) ( )

( ) ( )

B
SOT d SH

s

B
SOT f SH

s

a J J
eM

b J J
eM


 




 



= −

= −

, (2.5) 

where B  is the Bohr magnetron, and ( )d SH   and ( )f SH   characterize the damping and field-

like contributions, and they both are functions of the spin Hall angle SH . ( )d SH   and ( )f SH   

are also related to the material properties, such as the spin diffusion length of the HM layer. 

Detailed expressions and discussions for ( )d SH   and ( )f SH   can be found in [30]. 

2.2 Spin-torque-driven devices 

Spin torques give rise to new opportunities to device designs. Spin torque driven devices are 

envisioned as a promising candidate for future fast memory and low power consumption 

applications. We discuss several of such devices in this section. 
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2.2.1 Magnetic tunnel junction 

Magnetic tunnel junctions (MTJs) are used in many of the current prototypes of spintronic devices. 

An MTJ has a multilayer structure consisting of two FM layers, such as Fe, Co and Ni, separated 

by a thin insulating layer. The left FM layer in MTJ is referred to as free layer (FL) and reference 

layer (RL), respectively. The magnetization of the RL is usually fixed, and the binary information 

that the MTJ stores is represented by the relative magnetization of the FL to RL. The MTJ structure 

has a greater electric resistance when the magnetization of FL anti-parallels to RL, and a lower 

resistance when they are parallel. This effect is known as tunnel magnetoresistance (TMR), which 

defines a binary state structure that can be used in storage and memory systems (e.g., large 

resistance represents state 0 and low resistance represents state 1). The origin of TMR is in  the 

electron energy band misalignment between the FL and RL. When magnetization of FL is parallel 

to that of RL (Figure 2.5a), the spin up and down energy band in FL aligns with that of RL, but 

misaligns when they are anti-parallel (Figure 2.5b). The energy band misalignment leads to the 

electron density of the state difference in FL and RL. According to Fermi’s golden rule, the electric 

resistance is large when flowing from the high electron density side to the low electron density 

side, and consequently results in the TMR effect.  

To quantify the TMR effect in MTJ the following ratio is usually used [32] 

 AP P

P

R R
TMR

R

−
= , (2.6) 

where APR  and PR  are electric resistances for anti-parallel and parallel states, respectively. High 

TMR  ratio can be achieved in MTJ devices. Julliere found the TMR  ratio was 14% at 4.2K in  

Fe/Ge(-O)/Co  in 1975 [33]. The development of the 2 3Al O  tunnel barrier layer led to the first 

TMR-based magnetic memory in 1995 [34] and reached 70% at room temperature over the years. 
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The next breakthrough was the development of the MgO  tunnel barrier layer with giant TMR  

ratio, which was first predicted in 2001 and observed in the Fe/MgO/FeCo  MTJ structure [35]. 

Later in 2004 and 2006,  [36] and [37] discover the TMR  in the Fe/MgO/Fe structure up to 200% 

and 180% at room temperature, respectively. 

 

 

Figure 2.5: Illustration of (a) parallel and (b) anti-parallel state of MTJ. 

 

2.2.2 Spin-transfer-torque MRAM 

Spin transfer torque MRAM (STT-MRAM) is a non-volatile memory technology envisioned as a 

promising candidate for future “universal” memories, including replacing the embedded flash at 

advanced technology nodes  [38]. Current STT-MRAM prototypes are based on MTJs. The 

reading operation of STT-MRAM is done by measuring the electron resistance of the MTJ. The 
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spin polarized current is used to exert STT and switch the magnetization state in FL to 

implement the write operation. Figure 2.6 shows the illustration of STT-MRAM structure. 

 

Figure 2.6: Illustration of STT-MRAM. 
 

 

 Schwee first proposed the concept of MRAM in 1972 [39]. Sony proposed the concept of 

STT-MRAM and demonstrated a 4-kbit functional STT-MRAM chip in 2005 [40]. A 2-Mbit STT-

MRAM was first demonstrated in 2007 [41]. Everspin Technologies shipped the commercial STT-

MRAM product first in 2012 with a capacity of 64-Mbit [42], and then with a capacity of 256-

Mbit in 2018 and 1-Gbit in 2021 [43]. 

2.2.3 Spin-orbit-torque MRAM 

Spin orbit torque MRAM (SOT-MRAM), like STT-MRAM, is also a promising candidate for 

next-generation non-volatile memories. The writing operation of SOT-MRAM is done by passing 

the current through the HM to generate SOT in FL and consequently switching the magnetization 

state. Figure 2.7 shows the illustration of SOT-MRAM structure. Compared to STT-MRAM, SOT-

MRAM may have a high and reliable speed at sub-ns levels [38]. This enables the SOT-MRAM 

to work both as working memories (like dynamic RAM) and cache memories (like static RAM).  
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Figure 2.7: Illustration of SOT-MRAM 

 

 The concept of SOT-MRAM was first proposed in 2011 by Miron [44] and 2012 by 

Buhrman [30]. In 2018, SOT-MRAM was first fabricated on 300mm wafers using CMOS 

compatible process by Imec [45]. Next, Intel demonstrated the next-gen CMOS-compatible SOT-

MRAM in 2020 [46], and ISI shipped the first SOT-MRAM tester system in 2021 [47]. 

2.2.4 Important properties of spin-torque-driven MRAM 

Some properties are critical in practical spin-torque-driven MRAM applications, which are one of 

the focuses of this work. One property is the thermal stability, which determines the life time of 

its magnetization state (see  (1.24)). Considering the FL as small thin disc, for which a macrospin 

approximation is valid, the energy barrier bE  can be given by  [48] 

 b effE K V= , (2.7) 

where effK  is the effective anisotropy energy density, including both the magnetocrystalline and 

shape anisotropy. Considering the perpendicular uniaxial magnetocrystalline anisotropy, with the 

assumption h D , where h  is the thickness and D  is the diameter of the FL, effK  is 

approximately given by  [49,50] 
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 22U

eff sK K M= − , (2.8) 

where UK  denotes the intrinsic anisotropy energy density, which can be due to bulk intrinsic 

anisotropy or due to surface anisotropy, in which case 
U

sK K h=  with the surface anisotropy 

energy density sK . For larger lateral sizes, when the thermal minimal energy path or switching is 

by domain wall, the energy barrier can be approximately given by [51,52] 

 4b eff exE hD K A= . (2.9) 

For more complicated cases, e.g., when accounting for effects of all the layers in the MRAM stack 

or for sop called bubble switching [53], the NEB method can be used to calculate the barriers (see 

Sec. 1.4 and [54]). To control the thermal stability, one can either change the geometrical sizes or 

the magnetic parameters. 

The second important property is the required current (density) needed to switch the FL 

magnetization state for infinite time, viz., the critical current (density). Lower critical current leads 

to lower energy consumption and faster writing speed for a given driving current. It is important 

to be able to accurately calculate the critical current. It is also important to be able to reduce the 

critical current. Under macrospin approximation, the critical writing current 0cI  can be given 

as  [50] 

 0

4
c eff

e
I K V




= , (2.10) 

From here, one can see that the critical current 0cI  is proportional to the damping factor  , 

suggesting that the material engineering plays an important role in making STT MRAM a viable 

storage solution at high bit densities. For general cases where complex switching behaviors such 

as domain wall or bubble state switching are involved, there are no rigorous analytical models 

predicting the switching currents and one needs to resort to numerical simulations based on solving 
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LLG equation (1.2). A typical method for obtaining the critical switching current 
0cI  is calculating 

the switching current at multiple switching times and extrapolating to the infinite time assuming a 

linear dependence of the switching current versus the inverse time [32]. Figure 2.8a shows an 

example of calculating 
0cI  using this method from [32]. This method has two major shortcomings. 

First, it is computationally expensive and time consuming to carry out multiple simulations. 

Second, the linear assumption can be invalid when the macrospin assumption does not hold. Figure 

2.8b shows the inaccuracy this method introduces when the linear assumption fails. Third, when 

the magnetization starts with precessing around the equilibrium state, it results in slow 

computations and inaccuracies due to the initial process. Figure 2.9 shows the simulation with 

different time tolerance of 910−  and 510− , demonstrating that a very tight computational tolerance 

may be required, which results in a long computational time. 

 

Figure 2.8: Critical current from time domain simulation extraction of (a) small size and (b) large size. 

For large size the linear assumption is invalid. 

 

The third property is the figure of merit ( FOM ) of the STT-MRAM. FOM  is defined as 

the ratio between the energy barrier and critical current 

 
0

b

c

E
FOM

I
= . (2.11) 
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FOM  is a useful parameter to characterize the scalability and efficiency of the devices. Larger 

FOM , indicating higher stability and smaller critical current, is desired. However, increasing the 

energy barrier usually increases the critical current, and can result in a decrease of FOM . Figure 

2.10 shows the lateral size dependence of the FOM  [54]. Increasing the size, according to (2.7) 

and (2.10), increases bE  and 0cI , and as a result, FOM  decreases with the diameter increase.  

 

 

Figure 2.9: Time dynamics difference using different time tolerance in the numerical time evolver of the 

LLG equation solver with small ST excitation. 

 

Another important characteristic of the MRAM operation is write error rate (WER). Since 

the devices operate at finite temperatures, spontaneous thermally driven switching or non-

switching effects occur. WER is the non-switching probability. The most straight forward way to 

calculate WER is to perform a large number of the simulations ( totN ) and count the number of 

non-switching events at a certain time t  ( ( )nsN t ). The WER, i.e., non-switching probability nsP  

as a function of time t  is given by  
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( )

( ) ns
ns

tot

N t
P t

N
= . (2.12) 

 

Figure 2.10: FOM for the disc as a function of the lateral size. More results can be found in [54]. 

 

 

This method is certainly expensive. Also, the accuracy of this method is limited by the total number 

of the system totN . The highest accuracy this method can achieve is bounded by 1 totN . An 

alternative method is to derive a FP equation, whose solution is the probability density function 

(PDF) of the system switching. The WER can be calculated from the PDF. This method has been 

introduced for the macrospin approximation [55,56], where ( )nsP t  with driven current I  and finite 

temperature T  is given by 

 
/2

0
( ) ( ; )sinnsP t t d



   =  , (2.13) 

where   is the angle between the magnetization and the equilibrium direction, and ( ; )t   is the 

PDF solved from the FP equation 
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 ( )2( ; ) 1 ( ; )
sin cos ( ; ) sin

sin

t t
i t D

t

   
    

  

   
= − − −    

, (2.14) 

where 

 
2

k s

I
i

e
H M V





= , (2.15) 

is the normalized current and 

 
2

B

b

k T
D

E
= , (2.16) 

is the thermal factor. Results from  (2.13) and (2.14) are shown in Figure 2.11. 

 

Figure 2.11: WER results from FP equation calculations. (a) PDF as at different normalized time steps. (b) 
Non-switching probability as a function of normalized time. More results are shown in later chapters. 

 

The FP equation based method can calculate the WER at any time by solving the FP equation only 

once and achieve much higher accuracy then the straightforward statistical method. However, this 

method cannot be easily, and has not been, extended beyond the macrospin approximation, where 

non-uniform switching occurs.  
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Chapter 3 

Eigenvalue-based micromagnetic analysis of switching 

in spin-torque-driven structures 

The LLG equation (1.4) provides time dependent solutions for the magnetization dynamics for a 

general case. In some important cases, the magnetization dynamics occurs as a perturbation around 

the equilibrium state, such that the dynamics can be considered as linear. For example, when a 

magnetic structure is driven by a weak dynamic magnetic field, the system response is 

approximately linear. Another example is the initial switching dynamics in an MRAM element. 

Such initial dynamics is due to the fact that the spin torque overcomes the system damping, which 

results in initially weak oscillations of the magnetization around the equilibrium state, which also 

occurs in the linear regime. Once such precessions start, they grow  in their magnitude, and 

eventually they become large, such that the system become non-linear and switching occurs. The 

initial dynamics is characterized by the precessional frequency, which is related to the 

ferromagnetic resonance at Larmor frequency [1], and more generally it is related to the resonant 

magnetic modes supported by the structure. The term resonant mode refers to an oscillation pattern 

where the system oscillates with a certain frequency, which is known as the resonant frequency. 

The resonant modes and frequencies are the eigenstates and eigenvalues of the system described 

by the linearized LLG (L-LLG) equation. 

In ferromagnetic resonance experiments, the power absorbed by the magnetic system has 

peaks when the external AC magnetic field frequency is close to the resonant frequencies. The 

determination of the generic resonant modes is an important step in the study of microwave driven 
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magnetization dynamics. Much research has been done on the theoretical description of 

magnetization resonance phenomena. For example, Walker analyzed the case of saturated 

ellipsoidal particles where the exchange interaction is neglected [57]. Aharoni considered a case 

of saturated magnetic nanospheres in which the exchange interaction was prevalent with respect 

to magnetostatics [58], and Brown analyzed the case of an infinite cylinder [1]. More recently, 

resonant modes in micromagnetic systems were studied via micromagnetic formulations and 

simulations [59–61].  

In this chapter, we show how to calculate these eigenstates and eigenfrequencies, and how 

to use them for the study of the switching behavior in spin-torque-driven structures. First, we 

introduce the eigenstates in magnetic structures. We discuss how to derive the eigenvalue problem 

of the system and construct the eigenvalue-based micromagnetic framework. Then, we show how 

this eigenvalue-based framework is used to study the spin-torque driven structures, and how to 

enable efficient and accurate calculations of the critical switching current. 

3.1 Eigenstates in magnetic structures 

In principle, there are two approaches to compute resonant states in micromagnetic structures, 

including the ringdown and eigenvalue problem methods. The idea of the ringdown method is to 

apply a short pulse to slightly perturb the system our of its equilibrium state and then calculate the 

time domain magnetization dynamics during the relaxation process. A discrete Fourier transform 

can compute the intensity of each frequency contribution to the relaxation oscillation and give a 

power spectrum. The peeks in the power spectrum correspond to the resonant frequencies. Once 

the resonant frequencies are determined, the Fourier coefficients belonging to these frequencies 

can be extracted and used to find the resonant modes. An example of this method is shown in 

Ref. [62], where the resonant frequencies of a thin permalloy film are calculated. The ringdown 



37 

 

method can be directly applied to any existing time domain LLG equation simulation framework, 

but it has several drawbacks. It is difficult to find all resonant modes because not all modes are 

coupled to a specific excitation. The ringdown method cannot distinguish the degenerate resonant 

modes because these modes contribute to the same peak in the power spectrum. The frequency 

resolution obtained by the ringdown method depends on the length of the relaxation phase, thus 

requiring potentially very long simulation times in order to obtain a fine resolution. Additionally, 

computing the imaginary part of the resonant frequency may be inaccurate as the overall response 

mixes multiple modes. 

The eigenvalue method is developed to overcome these drawbacks. In the eigenvalue 

method, the LLG equation is first linearized around on the equilibrium state of the magnetic 

structure. It is proven rigorously that such a linearization is an accurate approximation to the full 

non-linear LLG equation  [59]. The linearized LLG equation, when the external field is absent, 

can be viewed as an eigenvalue problem, and the eigenfrequencies and eigenstates to this 

eigenvalue problem are the resonant frequencies and modes of the system. We refer to the resonant 

frequencies and modes as to the eigenfrequencies and eigenstates in the rest of the dissertation. 

The eigenvalue method can precisely compute all eigenfrequencies and eigenstates of the system 

and it also solves the degeneracy issue so that it is generally preferred over the ringdown method. 

Figure 3.1 shows the results of first six eigenstates of a thin permalloy film from the eigenvalue 

method, where the degenerate states 2 and 3 are clearly distinguished. In the remaining parts of 

the chapter, we discuss how we build an eigenvalue framework that computes the eigenfrequencies 

and eigenstates and extends the framework to study the switching behavior in spin-torque driven 

structures. 
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Figure 3.1: First six eigenfrequencies and states of a thin permalloy film from eigenvalue framework 

discussed below. 
 

 

3.2 Eigenvalue-based micromagnetic framework 

In this section, we present an eigenvalue framework (EVF) allowing for the study of switching 

properties in spintronic devices. We first derive the linearized LLG equation with effective fields 

including spintronic terms, which is the used to construct the EFV to find the eigenfrequency and 

corresponding eigenstate solutions to the system. We then invoke a perturbation theory to find the 

eigenfrequencies and eigenstates in the presence of spintronic excitations, allowing easily using 

the presented framework for cases with time dependent currents. These solutions are used to 

represent the LLG equation dynamic solutions as a sum over the damped or growing eigenstates 

modulated by time dependent coefficients for which simple equations are constructed.  

3.2.1 Linearized LLG equation 

To construct the EVF, the first step is to linearize the LLG around the equilibrium state. We start 

with the LLG equation with the spin torque term 

 ( ( ) ( )) ( ( ) ( ))eff st eff st
t

 


 = −  + −   +


m
m H m H m m m H m H m , (3.1) 

The effective field ( )effH m  excludes the ST field and it can be viewed as a linear function of m  
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 eff ms ex anis C= + + =H H H H m . (3.2) 

The term ( )stH m  is the spin transfer related field that using simplified models can be given by  

 st = H m p , (3.3) 

where we exclude the field-like ST field assuming that its effect is insignificant for the 

magnetization switching. The spin-like torque can be included in the derivations in the same way 

as the damping torque. The ST parameter   can be written as  Jb = , where J   is the electric 

current density and b  is a coefficient related to the spintronic excitation. For STT, the coefficient 

(2 )e sb eM = , where   is the effective thickness and the rest of the parameters are defined 

after (2.4) [24,25]. For SOT, B SH sb eM  = , where the parameters are defined after 

(2.5)  [30,31]. Note that   and p  can be functions of space and time. 

To linearize the LLG equation (3.1), we denote the equilibrium state 0m  for the system 

without an STT field. This equilibrium is given by the Brown condition [1]: 

 0 0( ) 0eff =m H m , (3.4) 

which corresponds to 0 0t  =m  when stH  is excluded in (3.1). The effect of the system 

excitation by spin torque can be considered as a perturbation from this equilibrium. 

We seek a solution for small magnetization deviations v  around the equilibrium state such 

that 

 0= +m m v , (3.5) 

and v  is normal to 0m , so that the normalization of m  is maintained. Because of the linearity of 

( )effH m , we can write 0( )eff C= +H m H v , where 0 0 0( )eff C= =H H m m  is the effective field at 

the equilibrium state. Insert the expansion (3.5) into (3.1), assuming that the damping constant 
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and spin-torque coefficient   are small, which is the case for materials for which spin-torque 

excitations are typically used, keeping only the first order terms that are linear in v ,   and  , we  

have the L-LLG 

 

( )

( )

0 0

0 0 0

0 0

C
t

C

 

 




= −  +  +   

−   +  +   

+  

v
m v v p v H

m m v v p v H

m m p

. (3.6) 

We can simplify the L-LLG (3.6) by using the cross-product operator  .   is defined as [59] 

 ( ) = v w v w . (3.7) 

Using operator  , the L-LLG (3.6) can be written as the matrix form 

 

( )

( )

0 0 0

0 0 0 0 0 0

0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

C
t

C

 

 




= −  −   −



−   −    − 

+  

v
m v m p v H v

m m v m m p v m H v

m m p

. (3.8) 

In view of the linearized LLG equation (3.8), the first term in the right hand side is linear in v  and 

it corresponds to the precessional torque of the effective field. The second term is also linear in v  

and it corresponds to the damping torque of the effective field and the linear component of 

the spin torque. The last term of (3.8) can be regarded as a forcing term corresponding to the STT 

torque, which is a term independent of v . The magnetization dynamics via the linearized LLG 

equation can be solved numerically using standard finite difference or finite element methods [19]. 

The linearization carried out above is generally allowed when the magnetization varies only 

slightly from its equilibrium state. Weak magnetization variations can be due to weak excitations, 

e.g., by weak applied fields or by spin-torque. The variations are also weak in the initial stages of 

the magnetization dynamics near an equilibrium state even when the system is driven by strong 

spin torque. The initial dynamics contains important information about the system behavior and 
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can be used to study the micromagnetic systems, e.g. the strip line ferromagnetic resonance 

response in ferromagnetic films [63], and the switching behavior in spin-torque driven structures 

discussing below. 

3.2.2 Eigenvalue problem formulation 

We can set up the eigenvalue problem from linearized LLG equation (3.8) by ignoring the last 

term on the right hand side for now 

 n n nA j  = , (3.9) 

where n  and n  are the n -th eigenfrequency and eigenstate of the system, respectively. The 

eigenfrequency n  comes from the time derivative / t v  with the phasor notation 

  ( , ) Re ( ) j tt e =v r v r , (3.10) 

where 1j = −  is the imaginary unit. The operator A  is defined following  (3.8) 

 ( )0 0 0 0 0( ) ( ) ( ) ( )A A A   =  +   − m m m p , (3.11) 

where 

 ( )0 0 0( )A I C=  −H m , (3.12) 

with the unit operator I  [59,60]. Note that as discussed before,   can be time-dependent so that 

the eigenvalue problem (3.9) is defined at a particular time t . 

 Note that the small deviation v  is normal to the equilibrium magnetization 0m , and it only 

has non-zero component in the tangent space ( )TM
0

m  [59]. In the tangent space ( )TM
0

m , we 

denotes the unit vectors of spatial basis as 1 2 3{ , , }e e e  [59] 
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3 0

2 0

1 2 3

z

=

= 

= 

e m

e e m

e e e

, (3.13) 

where 
ze  is the unit basis vector in the original space. 

Thus, the operator A  is not full rank and has zero eigenvalues, which results in difficulties in 

solving the eigenvalue problem. To eliminate this problem, we can project the vectors of the 

eigenvalue problem into ( )TM
0

m  using the projection operator P
0m  [59] 

 ( )P I= − 
0m 0 0

m m . (3.14) 

Applying the projection operator P
0m  to eigenvalue problem (3.9)-(3.12), noting that in ( )TM

0
m  

the operator 0( ) m  is linear, and anti-symmetric and invertible [59–61], i.e., 

 0 0( ) ( ) I  = −m m , (3.15) 

we obtain the projected eigenvalue problem 

 n n nA j  ⊥ = , (3.16) 

where 

 
( )0 0 0

0 0

( ) ( )

; ( ) ( )

A A A

A P A P

   ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥

=  + − − 

=  = 
0 0m m

m p

p p
. (3.17) 

Solving the eigenvalue problem (3.16)-(3.17) gives the eigenfrequencies and eigenstates of the 

system. 

3.2.3 Perturbation analysis 

The eigenvalue problem (3.16) is time dependent because the term   can be time dependent. This 

indicates the eigenvalue problem needs to be solved at each time, which is computationally 

expensive. To present important properties of the eigen-solutions and provide a practical method 

for solving the time-dependent eigenvalue problem, we present a perturbation solution. 
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For the perturbation solution, we note that we consider small damping cases where 1

. We note that the parameter   of the spin torque terms is usually on the same order as   [26], 

i.e., the linear STT term is small as well. Therefore, we can carry out a perturbation theory in which 

we define the base eigenvalue problem: 

 0 0( ) n n nA j  ⊥ =m , (3.18) 

which has eigenfrequencies n  and eigenstates n . The eigenfrequencies n  can be shown to be 

purely real and the eigenstates n , when normalized, can be shown to satisfy the weighted 

orthonormality condition [59] 

 *

0 0 '

1
,n n n n nn

c

A A dV
V

     ⊥  ⊥



  = = , (3.19) 

where ,      is the inner product defined as the integral over the entire domain   of the 

magnetic structure, the asterisk denotes the complex conjugation, and nn   is the Kronecker’s 

symbol. The base eigenvalue problem (3.18) has operators contain only values related to the 

equilibrium state so that it is time independent. The eigen-states n  form an orthonormal basis that 

can be used to represent more general eigen-solutions and time domain solutions. We recognize 

that the operator A⊥  in the eigenvalue problem (3.16) can be written as 0 0( )A A A⊥ ⊥=  +m , 

where 

 ( )0 0 0( ) ( ) ( )A A   ⊥ ⊥=   − m m p  (3.20) 

is the perturbation operator that has a first order small term compared to the base operator 

0 0( )A m . The eigenfrequencies and eigenstates of the original eigenvalue problem are obtained 

as n n n  = +  and n n n  = + . Implementing the matrix perturbation analysis and keeping 
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only the linear terms in the perturbations of the operators and solutions, the perturbation to the 

eigenfrequency is given by 

 
2, ( ) ,n n n n n n nj       ⊥=    +  p . (3.21) 

Note that 
n  is purely imaginary, which is due to the fact that n  and ,n n    are real, and 

the real and imaginary parts of the complex vectors ( ) n ⊥ p  and n   are perpendicular to each 

other. As a result, we understand that the eigen-frequencies are complex, i.e., 

 n n nj   = + , (3.22) 

where Re{ }n n  =  and Im{ }n n  = . In the perturbation approximation, n n  =  and 

n nj  = .  And the perturbation to the eigenstate is given by 

 
, ( ( ))

,

1
, ( ( ) )

2

n nm n

m

m n m m
nm

n m

nn n n n

j I
m n

j I

  

    


 

    

⊥ 

⊥ 

=

 +  
= 

−

=   + 



p

p

. (3.23) 

3.2.4 Time domain solutions based on the eigenvalue framework 

The eigen solutions in the previous section can be used to represent the solutions of the time 

domain problem of (3.8). To that end, we write v  as 2Re{ }=v v , where 

 n n

n

a v , (3.24) 

is the time domain complex solution expressed approximately given in terms of the base 

eigenstates n , complex eigenfrequencies n , and coefficients na  determining the excitation of 

the eigenstates. The factor of 2 accounts for the fact that the two modes are symmetric in the 

positive and negative frequencies. The base eigenstates n  are used instead of the actual 
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eigenstates 
n  assuming that the differences between 

n  and 
n  are insignificant, which is the 

case under the assumption of small  . Similar approximations were used in related applications 

of eigenvalue based solutions in Micromagnetics [59,61] and other areas of physics, e.g., 

electromagnetics [64]. Using n  has important benefits due to the fact that n  are time 

independent and have the orthogonality property of (3.19). 

           Substituting the representation of (3.24) into (3.8), using the eigenvalue problem with the 

perturbation solutions of (3.21) and (3.23), using the orthogonality in (3.19), and performing a 

weighted inner product with 0 ( )nA  r  in both sides of (3.24), we obtain the following set of 

independent time domain differential equations for na : 

 stn
n n n

da
j a P

dt
= + , (3.25) 

where 

 0 0 0( ) ( ) ,st

n nP A =   m m p , (3.26) 

relates to the last term in the right hand side of (3.8). Solution for na  can be given by analytically 

solving the ordinary differential equation (3.25) 

 0 0
( ) ( )

0
( ) (0) ( )

n n st

n n n

t
tj d j t dt

a t a e P de


   

 
−   

+ 
  

 =  . (3.27) 

Here, (0)na  is determined from the initial condition as 0(0) ( 0),n na t A= = v , where ( 0)t =v  

is the initial complex small deviation magnetization state, and the integrals in the power 

exponentials appear because n  is generally a complex time dependent function. The solutions of 

(3.27) are valid for any time dependence of the current, including constant and pulsed currents. 

When the current is constant, the solution can be simplified to 
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3.3 Switching analysis in spin-torque-driven structures 

The switching behavior in spintronics driven structures typically starts from one of the equilibrium 

states as small oscillations that increase in their magnitude to result in large oscillations, which are 

followed by the magnetization reversal to the other equilibrium state. Structures of a small size 

can be approximated by a single spin because the magnetization motion is mostly coherent in the 

macrospin approximation, switching properties, such as the switching current and time as well as 

the switching trajectory, can be obtained analytically. On the other hand, for larger structures, 

which are greater than the exchange or domain wall length, the magnetization dynamics is non-

uniform so that obtaining switching parameters numerically can be complicated and non-reliable. 

For example, obtaining the critical switching current, viz. the current required for switching at 

infinite time, is accomplished by calculating the switching current at multiple switching times and 

extrapolating to infinite time assuming a linear dependence of the switching current versus the 

inverse time. However, while such an extrapolation is accurate and efficient for small structures, 

for which a single-spin approximation is valid, it may be inaccurate and slow for larger structures. 

Additionally, relying purely on brute-force numerical simulations does not provide a clear physical 

picture as to why a certain type of switching occurs and how it is related to the operational 

parameters. 

 In this section, we present how to use the EVF introduced in the previous section to study the 

switching properties in spin-torque driven devices. The EVF allows reliably obtaining the critical 

current density required for switching in spintronic devices as well as the switching current and 

switching time for pulsed current excitations. The EVF can be also extended to simulate the 
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magnetization dynamics in time domain with and without finite temperature. This method based 

on EVF provides understanding of the switching dynamics behavior for structures of small and 

large sizes, including cases with non-uniform dynamics. In the following sections, we demonstrate 

the eigenvalue framework by considering switching in an STT-MRAM cell, comprised of a 

cylindrical free layer of 1 nm thickness and two diameters of 20 nm and 80 nm with 

3960emu/cmsM = , 1 erg/cmexA = , damping factor 0.01 = , and uniaxial anisotropy 

36.11 Merg/cmUK =  with easy axis perpendicular to disc. 

3.3.1 Eigenstates of spin-torque-driven structures 

We first solve the base eigenvalue problem (3.18) for n  and n . Figure 3.2 shows the first six 

eigenstates of an 80 nm diameter free layer of a perpendicular MTJ. We find that the first eigenstate 

has a more uniform distribution with the maximum in the middle. The rest of the modes have a 

more non-uniform distribution with maxima and minima modulation. The eigenstates can be 

classified according to the winding numbers [65]. Here, the first six modes 

have winding numbers of 0, 1, -1, 2, -2, 1, respectively. We also calculated the eigenstates of a 

smaller, 20 nm diameter, MRAM cell, and found that its eigenstates have an almost the same 

spatial distribution. On the other hand, the eigenfrequencies of the 80 nm and 20 nm cells 

are different. The eigenfrequencies of the 20 nm cell are higher and have a much greater separation 

for different n . Table 3.1 provides the corresponding eigenfrequencies with for 20 nm and 80 nm 

diameter cases. 

 

Figure 3.2: First six eigenfrequencies and modes for 80nm MRAM free layer disc. 
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Table 3.1: Eigenvalue framework parameters: eigenstate no n , / (2 )n nf   = , 
cnJ  and ST

nP calculated 

with 
1cJ J= and scaled with max| | /n n   to make it unitless and related to the magnetization values. 

 

D  (nm) n  
nf
  (GHz) cnJ (MA/cm2) 

max| / |ST

n n nP     

 

20 

1 8.13 0.85 7.57e-7 

2 29.17 3.10 3.94e-7 

3 29.81 3.11 1.99e-7 

4 65.55 6.82 7.61e-7 

5 65.61 6.83 1.03e-7 

6 94.18 9.93 2.78e-8 

 

80 

1 3.76 0.39 1.01e-6 

2 5.80 0.60 1.08e-6 

3 5.86 0.61 8.12e-8 

4 8.63 0.90 9.14e-8 

5 8.70 0.91 7.17e-8 

6 9.93 1.04 1.30e-7 

 

3.3.2 Critical current prediction 

From the perturbation analysis in the previous section,  it can be shown that when the spin currant 

density 0J = , i.e.,  0 = , 0n   for 0  . For 0J  , i.e., 0  , n  has an even greater 

positive value. For 0J  , i.e., for 0  , the positive value of n  decreases and there is a certain 

critical value of cnJ  for which 0n = . At values cnJ J , 0n  , which corresponds to increasing 

precessional amplitude for the eigenstate n . Therefore, we can use the condition 0n =  to 

calculate the critical current density cnJ  for n -th eigenstate. Let 0n =  in (3.21) we have 

 
,

, ( )

n n n
cn

n n

j
J

b

  

  ⊥

−  
=

  p
, (3.29) 

and the overall critical current density cJ  is defined as min { }c n cnJ J=  obtained for the eigenstate 

number cn . At cJ J= , 0
cn = , so that the STT effects overcomes the effect of the system 

damping, and any cJ J  lead to increased oscillations and switching. Compared to the 
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conventional method calculating critical current by extracting from multiple time domain 

simulations [32], (3.29) solves cnJ  directly from the eigenfrequency and eigenstate. Also with 

(3.19), (3.21) and (3.29), n  can be expressed as a function of applied current density J : 

 1n n

cn

J

J
 

 
 = − − 

 
. (3.30) 

We show the calculated the critical current density cnJ  for first six eigenstates for 20 nm and 80 

nm cases in Table 3.1. The results are consistent with high accuracy time domain extraction results. 

To understand the excitation of different eigenstates and the overall time dynamics, Figure 3.2 

shows n  for n = 1, 2, 3,4, 5, 6 as a function of J  for 20 nm and 80 nm cells. When 1cJ J  but 

smaller than the rest of critical currents, only 1 0 , whereas the rest 0n  . As a result, only the 

n = 1 eigenstate is important for the time dynamics. On the other hand, for large J , all 0n  and 

they are close to each other. This behavior can be explained by This behavior can be explained by 

noting that for large J , n nJ k   − , as shown in (3.30), so that assuming that nk  is close for 

different n , n  is also approximately the same for different n . As a result, many eigenstates 

become important to describe the time dynamics. 

3.3.3 Switching time prediction 

The presented theory provides not only the critical current density J  but also an approximation 

for the switching current density for a given time or stitching time for a given current density 

cJ J . To that end, we can set a condition on | |na  in (3.24) to be at a certain level max| |na  to lead 

to switching. This can be set by requiring that | |n na C = , where C  is a constant of (1)O . Then, 

assuming constant current, using (3.28) and (3.29), we can obtain the conditions for the switching 
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current swJ  for a given pulse duration   and switching time swt  for switching time for a given 

current cJ J : 

 
( ) ( )

( )

log log
1 ;

1

sw
sw

c c c c

J
t

J J J

 

  
= + =

  −
, (3.31) 

where ( )max/ | | | (0) / |
c c c

st

nc n n na P j    +  is the coefficient related to the initial magnetization 

conditions and the driving term. For zero-temperature simulations starting from equilibrium, 

(0) 0
cna = and   is determined by 

c

st

nP .  

 

Figure 3.3: Imaginary eigenfrequencies 
n  vs. current J  for the first 6 eigenstates for (a)  20D = nm and 

(b)  80D = nm disc. 

  

Figure 3.3 shows swJ  as a function of  1/  obtained via the eigenvalue framework analysis and 

via the complete LLG equation solver. In the LLG equation simulations, switching is defined as 

the average perpendicular magnetization crossing zero. In EVF, the results were obtained via  
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Figure 3.4: Inverse of switching time with different current densities for (a) 20D = nm and (b) 80D =  nm 

disc. Black dash lines show linear extrapolation of 5 points with smallest current of LLG equation 
simulations and the intercept is the predicted 

cJ . 

 

(3.31), where   was chosen such that curve of J  vs. 1/ sw  obtained for cJ J is accurately 

extrapolated to cJ  at 1/ 0sw = , and the corresponding st

nP  values of the first six eigenstates are 

shown in Table 3.1. This choice resulted in 1.08 =  and 1.32 =  for 20 nm and 80 nm disc., 

respectively. The initial magnetization conditions for both eigenvalue framework and LLG 

equation simulations were the same equilibrium state, i.e., for eigenvalue framework ( 0) 0t = =v  

and 0(0) ( 0), 0n na t A= = =v . The results obtained via the eigenvalue framework and LLG 

equation approaches are close to each other. The curve obtained via the LLG equation solver is 

linear for the 20 nm case, but it is not linear for the 80 nm case. For the 80 nm case, the curve has 

different curvatures for larger and small 1/ . The values of cJ  are typically obtained by linearly 

extrapolating from the swJ  vs. 1/  curve such that (1/ 0)c swJ J = = . The non-linearity of the 
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swJ  vs. 1/  curve, therefore, poses a significant problem in terms of the reliability and speed of 

calculating cJ . Indeed, one needs to run simulations for a large   to obtain more reliable results, 

which is slow, and it is not clear a priori what values of τ are required. The eigenvalue framework, 

on the other hand, allows obtaining the results by simply obtaining a solution to a single 

eigenproblem problem followed by the perturbation theory analysis for the results in Table 3.1. 

3.3.4 Magnetization dynamics simulation 

Besides predicting the switching time directly from  (3.31), the detailed magnetization dynamics 

can also be calculated from the eigenvalue framework using  (3.24) and (3.27). We demonstrate 

the time domain dynamics using the eigenvalue framework and the LLG equation solver for the 

20 nm and 80 nm cells for two values of  20nmJD =  in Figure 3.4. The eigenvalue framework 

results are shown for the overall solution v  and for scaled na  corresponding to individual 

eigenstates. The LLG equation results are shown for the magnitude of the spatially averaged 

transverse magnetization component ( )0 0r = − m m m m m  equivalent to v  in eigenvalue 

framework. The results are shown for the magnitude of the averages | |r m  and | | v , which 

represent a more global characterization, e.g., related to magnetoresistance that would be obtained 

if a read layer .were added to the stack, as well as the average of the magnitudes | |r m  and 

| | v , which represent more local behavior of the magnetization. The initial magnetization 

conditions for both eigenvalue framework and LLG equation simulations were the same 

equilibrium state, as in Figure 3.3. For eigenvalue framework, we stopped the simulation when 

| | 1 =v , which is the physically maximal possible value. For the 20 nm cell (Figure 3.4 (a, b, e, 

f)), the EVF results for | | v  and | | v  are close to the LLG equation results | |r m  and 

| |r m  for all times until switching occurs. The increase of | |v  is exponential and the increase 
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rate is directly given by 1 . This behavior is explained by the fact that for the 20 nm cell with 

11.5 cJ J= ,  1cJ J but  cnJ J with 1n   (see Table 3.1), i.e., only 1n = eigenstate is growing 

with 1 0 , whereas all other eigenstates are damped 0n   (Figure. 3.4(i, j)). For the 20 nm cell 

with 110 cJ J= , cnJ J  and 0n   for  6n  , but 1  is significantly more negative, such that the 

1n =  eigenstate is still dominant. For the 80 nm cell, the behavior is similar for the smaller J  

(Figure 3.4(c, g, k)), which has the same explanation as the cases for the 20 nm cell. The behavior 

of rm  after switching starts is more complicated because switching for the 20 nm cells is mostly 

by uniform rotation and for 80 nm cells it is by domain wall. For greater J  for the 80 nm cells 

(Figure 3.4(d)), the time dependence of | |r m  and | | v  still appears to be mostly as an 

exponential increase. On the other hand, the time dependence of | |r m  and | | v  (Figure 

3.4(h)) is not just an exponential increase but rather it is modulated with oscillations. The 

agreement between the eigenvalue and LLG equation solver frameworks is still good for times 

until switching starts. The oscillatory behavior in Figure 3.4 (h) is explained by the fact that 

multiple eigenstates become growing, and their coupling needs to be accounted for. Specifically, 

from Figure 3.4(l) and Table 3.1, the 2n =  eigenstate has a significant contribution. Because of 

the 2n =  eigenstate symmetry, this contribution is not revealed in the  | |r m  and | | v , but it 

leads to the oscillations in | |r m   and | | v . 

Additionally, for large amplitudes of rm , the dynamics obtained via the general LLG 

equation solver becomes highly non-linear, e.g., the final switching may be via domain walls. Still, 

EVF predicts the initial dynamics and onset of switching accurately even for such large cells. 

 



54 

 

Figure 3.5: Time dependence of the magnetization behavior for different D  and different values of constant 

and uniform J . (a-d) Magnitude of the averaged | |r m  and | | v ; (e-h) Average of the magnitude of 

| |r m  and | | v ; (i-l) Magnitudes of the averaged | |n v . The results are given for (a, e, i) 80nmD =  

20nmD =  with 1.5 cJ J= ; (b, f, j) 20nmD =  with 10 cJ J= ; (c, g, k)  with 1.5 cJ J= ; (d, h, l)  with 

10 cJ J= . The inset in (h) presents a zoom in showing the magnetization oscillations appearing due to the 

excitation of multiple eigenstates. 
 

 

3.4 Summary  

In summary, we presented a theoretical and numerical framework for studying the switching 

properties of nanomagnetic structures driven by spintronic excitations. The framework considers 
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a linearized LLG equation for the small magnetization deviations from the equilibrium state. It 

expands the small magnetization deviations in terms of eigenstates with corresponding complex 

eigenfrequencies. Depending on the current driving spin torque, the eigenfrequencies can have a 

positive or negative imaginary part corresponding to damped or growing time domain solutions, 

respectively. The system time dynamics is then driven by a small number of growing eigenstates 

and for small currents just a single eigenstate may be sufficient. We developed a perturbation 

theory that provides semi-analytical dynamic solutions by using the base eigenvalue solutions, i.e., 

eigenvalue problem solutions with no current or damping. The framework allows obtaining 

accurate predictions of the switching properties, including the critical switching current, switching 

time for a given current and switching current for a given time. The critical switching current is 

obtained as the smallest current leading to vanishing imaginary part of the eigenfrequencies. The 

switching time and switching current can be obtained based on the values of the imaginary part of 

the eigenfrequencies. The presented eigenvalue framework can also be extended to account for 

thermal effects, which will be discussed later. The approach provides important insights into 

dynamics in such systems and allows solving several difficulties in their modeling, such extracting 

the switching current in MRAM and understanding reasons for switching mechanisms. The 

introduced framework is intended for applications in design and modeling of spintronic devices 

and understanding physics of their switching mechanisms. 
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Chapter 4 

Switching Current Reduction in MRAM 

In Chapter 3, we discussed how to predict the critical current of spin-torque driven MRAMs based 

on the eigenvalue framework. It was shown that the critical current of each eigenstate is determined 

by the eigenfrequency and the eigenstate spatial distribution. We showed with the uniform current 

density through the MTJs, the overall critical current always corresponds to the first eigenstate. 

This is because of the first eigenstate smallest eigenfrequency and the weighted orthogonality of 

the eigenstates. This could be changed if the spin current has a non-uniform spatial distribution 

passing through the MTJs. We present a method in which the current density and the material 

magnetic parameters are allowed to be spatial distributions. Such optimizations results in a lower 

critical current and higher efficiency of MRAM. First, we introduce the optimization of the current 

density based on the eigenvalue framework and using the projected gradient descent (PGD) 

method. We show how the optimization achieves, first, lower critical current for each eigenstate 

and, therefore, the overall critical current, second how the higher eigenstate is excited over the first 

eigenstate, and last, how the optimization increases the switching efficiency, viz. the ratio between 

the energy barrier and the critical current. We also show that such optimization, comparing to the 

decrease of the efficiency as an inverse of the MTJ size for the uniform current density, can achieve 

an approximately linear growth of the critical current and switching efficiency with the lateral size.  

4.1 Non-uniform current density optimization 

Consider that the current flowing through the MTJs is allowed to have a spatial density distribution, 

as illustrated in Figure 4.1, we denote the spin current density spatial distribution ( )J r  as 

 max( ) ( )J J =r r , (4.1) 
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where maxJ  is the maximal value of the current density and ( ) 0 r  is the normalized real-valued 

spatial distribution with respect to the spatial coordinate r . The total current I  is then given by 

 
max ( )

S
I J ds=  r , (4.2) 

where the surface integral is over the cross-sectional area of the MTJ stack. Using the spatial 

distribution expression (4.1), the spin torque coefficient   is also a spatial function ( ) r defined 

by 

 ( ) ( )bJ =r r . (4.3) 

 

Figure 4.1: Illustration to the considered MTJ stack with non-uniform current distribution. 

 

Using  (4.3), following the similar procedure in the eigenvalue framework  discussed in 3.3.2, the 

critical current density for eigenstate n  is given by 
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and inserting  (4.4) into  (4.2), the corresponding critical current is 
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Figure 4.2: PGD optimization process for first 6 eigenstates for 80nmD = . The curves for the sets of 

eigenstates 2,3n =  and 4,5n = almost overlap, so that they cannot be visually distinguished.   

 

In view of (4.5), cnI  can be regarded as a functional of ( ) r . We can minimize the 

functional to find the optimal current density distribution ( )n r  for a given n  that leads to the 

minimum critical current cnI . An approach that we follow is PGD [66], which finds ( )n r  by the 

following iterative procedure 

 1( ) ( ) ( ( ))
ii i cn iP I   +

 = −  r r r , (4.6) 

where   is the hyperparameter learning rate and i  is the minimization step number, the notation 

( ( )) ( )cn cnI I   =  r r  denotes the gradient of the critical current cnI  given by (4.5) with 

respect to the distribution ( ) r : 
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where P  denotes the projection operator of the optimization given the constraint ( ) 0n r , 

   2
( ) 0

( ), if  ( ) 0
( ) arg min || ||

0, else

n n

n nP


 
  




= − = 

r

r r
r . (4.8) 

We can initialize with a uniform distribution and carry out PGD iteratively by combining (4.5)-

(4.8) until cnI  is converged to cnI , and the overall optimized critical current cI  is then found by 

min { }c n cnI I= . 

We will carry out the optimization method descried above in the following sections. For 

the results, we consider an MTJ with the free layer of thickness 1nmh = , diameters D  in the range 

of 20 160nm− , 0.01 = , saturation magnetization 3960emu/cmsM = , exchange constant 

610 erg/ cmexA −= , and uniaxial anisotropy energy density 36.11 Merg/cmUK = . The 

magnetization of reference layer is considered to be fixed to direction p . For all the calculations, 

the eigenvalues and eigenstates were found using the FastMag micromagnetic simulator [19]. The 

tetrahedral mesh edge length was chosen 3nm  to insure convergence. The numerical eigenvalue 

problem was solved with an iterative implicitly restarted and preconditioned Arnoldi method [67]. 

The time integration in the LLG equation solver was accomplished using a time step and order 

adaptive implicit solver based on the backward differentiation formulars [68,69] with the relative 

tolerance of 610− , which resulted in time steps of 0.1-1 ps. The time domain solutions 

corresponding to the eigenproblem were found via (3.24). The minimal energy paths and the 

corresponding energy barriers were found by using the nudged elastic band method, implemented 
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as a FastMag module. 

 

Figure 4.3: Top row shows eigenstates 1, 3, 4, 6 for 80nmD = , where the color plot represents the spatial 

distribution of the magnitude, and the arrow plot represents the real part of the eigenstate. The bottom row 

shows the PGD optimized current distribution for each eigenstate. 

 

4.2 Critical current with optimization 

We first carry out the optimization for the first six eigenstates starting from a uniform distribution 

initialization. Figure 4.2 shows the convergence of the minimization process together with the 

magnetization snapshots at different minimization iterations. It is evident that the convergence is 

achieved with a few tens of iterations.  

In Figure 4.3, we show the optimal current density distributions n  for most representative 

eigenstates 1,3,4,6n =  for 80nmD =  and they are similar for other sizes. The corresponding 

minimized cnI  are shown in Table 4.1 for 40nmD =  and 80nmD = . For comparison, Table 4.1 

also shows cnI  corresponding to the uniform current distribution 1 = . For the uniform  , cnI  

increases with n , which can be explained by (4.5) and the fact that n  increases with n . As a 
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result, 1c cI I= , i.e., it corresponds to the smallest eigenfrequency. The optimized distributions in 

Figure 4.3 are such that the stronger current density regions correspond to higher magnitude of the 

eigenstate spatial distributions, which is due to the fact that, from (4.5), the optimal distribution is 

weighted by the magnitude of the eigenstates. In all cases, cn cnI I . The achievable reduction of 

cnI  as compared to cI  as well as the behavior of cnI  for different n  depends on the MTJ lateral 

size. For the smaller 40nmD = , the c cI I . ratio is 1.5, whereas for 80nmD = , the c cI I  ratio 

achieved a greater value of 2.3. for greater D , the ratio c cI I  increases further. For 40nmD = , 

1c cI I= , i.e., the best minimization is achieved for the 1n =  eigenstate, which is related to the fact 

that 6  is significantly greater than 1 . On the other hand, for 80nmD = , 6c cI I= , i.e., the best 

minimization is achieved for the 6n =  eigenstate, which means that the switching process in this 

case proceeds completely differently from what is conventionally assumed. The fact that 6c cI I=  

for 80nmD =  is because 6  is not significantly different than 1  and because 6  is more 

confined to the center, thus allowing for a deeper minimization for 6  than for 1 . 

Table 4.1: Eigenfrequencies and critical currents for 40nmD = and 80nmD =  for uniform, optimal, and 

confined current density distributions. 

 

(nm)D  n  f (GHz) 
cnI (μA ) cnI (μA ) 10

cnI (μA ) 20

cnI (μA ) 

 

40 

1 5.68 7.43 5.15 5.23 5.62 

2 12.0 15.8 12.1 102 31.3 

3 12.1 15.9 12.2 101 31.2 

4 21.7 28.4 17.6 189e3 141 

5 21.8 28.5 17.7 153e3 140 

6 27.9 36.6 5.95 7.74 15.8 

 

80 

1 3.76 19.7 9.84 10.0 10.4 

2 5.80 30.6 23.8 525 144 

3 5.86 30.7 23.9 520 143 

4 8.63 45.5 31.6 4.89e3 3.01e3 

5 8.70 45.6 31.7 2.46e3 1.85e3 

6 9.92 52.3 8.66 9.14 11.3 
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 From Figure 4.3, we find that the optimal distribution is either 1  or 6 , and thus   for 

different sizes are nearly the same and they are mostly confined to the center. It may be hard to 

achieve such distributions practically. An alternative is to have a uniform distribution confined to 

a circular region of radius d D , i.e., 1 =  for radii of r d , and 0 = , otherwise. We used 

such confined distributions for 10nmd =  and 20nm , and found that, as summarized in Table 4.1, 

while the obtained values of  the critical current, referred to as 10

cI  and 20

cI  for 10nmd =  and 

20nm , respectively, are greater than the minimized cI , the increase is only in the range of 10%  

for any D . For 40nmD =  and 80nmD = , 10

cI  and 20

cI  are obtained for the 1n =  and 6n =  

eigenstates, respectively, which is the same behavior as that for the optimal current density 

distributions. On the other hand, for the rest of the shown n , the values of cnI  are much greater 

than those for the corresponding optimal distributions, which is because these confined 

distributions for not match the corresponding eigenstates.  

4.3 Magnetization dynamics with optimization 

To relate the results for the critical current to the magnetization dynamics and switching, Figure 

4.4 shows the time evolution of the magnetization for the confined current distribution with 

10nmd = , two MTJ diameters 40nmD =  and 80 nm , and corresponding 
101.5 cI I= . The 

polarization direction is tilted with a small angle of  0.1  with respect to the perpendicular 

direction, i.e., ( )0,sin( /1800),cos( /1800) =p . The small tilt in p  is set to break the 

symmetry. The results were computed by solving the original LLG equation and via the eigenvalue 

framework converted into the time domain via (3.24). The results based on LLG equation are 

shown for the spatially averaged transverse magnetization component 0 0( )r = − m m m m m , 
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which is a counterpart of v  obtained via the eigenvalue framework. From Table 4.1, the main 

contributions to the time dynamics are expected from the eigenstates with 1n =  and 6. To 

demonstrate the role of these eigenstates, we show not only the dynamics of v  but also the 

individual dynamics of 1v  and 6v , viz. the contribution to v  from eigenstates 1n =  and 6 

respectively. For both 40nmD =  and 80 nm , we find that, for early times, the micromagnetic and 

eigenvalue framework results match providing a great characterization of the switching onset. 

Once the magnetization starts switching non-linear effects, such as domain wall motion, become 

important and the micromagnetic results become different. For 40nmD = , the switching process 

is dominated by 1v . This is explained by the fact that 10 10

1c cI I=  and the corresponding 

8

1 -1.74 10 rad/s=   for 

 

Figure 4.4: Magnetization dynamics obtained via micromagnetic and eigenvalue framework for the 

confined   with 10nmd =  for (a) 40nmD =  and (b) 80nmD = , each with corresponding 
101.5 cI I= . 
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101.5 cI I=  has the largest negative value as compared to the rest of n . For 80nmD = , the 

switching process is dominated by 6v , which is because 10 10

6c cI I=  and the corresponding 

8

6 -3.11 10 rad/s =   for 101.5 cI I=  has the largest negative value. We also find that the switching 

for 80nmD = is faster than that for 40nmD = , which is explained by the greater negative value 

of the 6  for 80nmD =  than 1  for 40nmD = . The fact that different eigenstates dominate 

leads to different time dynamics of the switching process.  

To further explain the switching process, Figure 4.5 shows a time sequence of the magnetization 

snapshots during switching for the confined current distribution with 10nmd =  for 40nmD =   

  
 
Figure 4.5: Time sequence of the magnetization snapshots during switching for the confined current 

distribution with 10nmd =  for (a) 40nmD =  and (b) 80nmD = . The arrows are for the magnetization  

m , whereas the colormap is based on the magnitude of transverse magnetization component 
rm  for 

comparison with Figure 4.3. 

and 80 nm . For both D  the magnetization spatial distribution during the switching onset, i.e., for 

early times (the second snapshot from the left), follows the eigenstate spatial distribution. For the 

40nmD =  and 80 nm  cases, this distribution is that for the 1φ  and 6φ  eigenstates, which is in  
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Figure 4.6: (a) Minimal energy path and associated images for 40nmD =  and 80nmD = , and (b) energy 

versus time during the STT driven switching with 1.5 cI I=  for 40nmD = and 80nm . 

 

agreement with the fact that 1c cI I=  and 6cI , respectively. For later times, the final switching 

process is non-linear and spatially non-uniform. For comparison, figure 4.6(a) shows the minimal 

energy path, including the energy and the magnetization snapshots. The minimal energy path is by 

domain wall, which is consistent with earlier shown results. As compared to the switching process, 

the minimal energy path has a different behavior in terms of the reversal onset in that the 

magnetization spatial distribution does not exhibit any relation to the eigenstates. However, there 

is a resemblance of the minimal energy path and the STT switching process at later times when 

non-linear effects kick in. For comparison, Figure 4.6(b) shows the time dependence of the energy 

during switching for 101.5 cI I= . The energy corresponding to switching and the minimal energy 

path for 40nmD =  follow a similar track in terms of the energy. On the other hand, for 80nmD =

, the energy corresponding to switching follows a different, more complicated track than the 

minimal energy path, which is because of more complicated dynamics for larger MTJ sizes. 
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Figure 4.7: Size dependence of the critical current (a), energy barrier (b), and efficiency (c) with different 

distributions. The empty and solid markers in (a) and (c) correspond to results from eigenstate 1 and 
eigenstate 6 respectively. 

 

 

4.4 Efficiency with optimization 

We note that the achieved cI , 
10

cI , and 
20

cI  reduction is greater for greater D , which suggests a 

quantitatively and qualitatively different scaling of the critical current and the corresponding 

efficiency   as a function of D . To demonstrate this point, Figure 4.7a shows dependences of cI

, cI , 
10

cI , and 
20

cI  as a function of D . The critical current cI  for the uniform  , increases slightly 

less quadratically with D . On the other hand, the minimized cI  scales nearly linearly with D , but 
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as two curves with a slightly different slope for 60nmD   and 60nmD  , corresponding to 

1c cI I=  and 6c cI I= , respectively. The increase of cI  with D  is nearly linearly with D , but as two 

curves with a slightly different slope for 60nmD   and 60nmD  , corresponding to 1c cI I=  and 

6c cI I= , respectively. The increase of cI  with D  is much slower than that for cI . For the confined 

distribution, the scaling of  10

cI  and 20

cI  with D  is similar to that of the minimized case. An 

insignificant difference is that the transition between the optimal minimization obtained for 1n =

or 6n =  occurs at greater D  as compared to the fully minimized case. The values of 10

cI  and 20

cI  

are only slightly greater than those of cI . 

Figure 4.7b shows that the energy barrier   as a function of D  increases slightly less than 

linearly. The resulting efficiencies obtained as cI =  , cI =  , 10 10

cI =  , and 20 20

cI =   

are shown in Figure 4.7c. The efficiency   for uniform   decreases as 1 D , which was reported 

previously [54,70]. The optimized efficiencies  , 
10 , and 

20  are much greater than  , and 

they nearly constant with respect to the dependence of D ; interestingly,   is even greater for 

greater D .  

4.5 Non-uniform material parameter distribution 

Inspecting the operation of the MTJs with uniform material parameters shows that the reason for 

the optimal current density distribution being in the central region of the free layer is the fact that 

the eigenstate is more confined there. The eigenstates can be manipulated by modifying the 

material parameters to achieve additional MTJ operation improvements. To demonstrate this point, 

we use spatially varying material parameters, specifically, we choose a spatially varying sM  in 

two configurations. In the first non-uniform sM  configuration, we use the same 
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3960emu/cmsM =  for r d  and a lower 3480emu/cmsM =  for r d . In the second non-

uniform sM  configuration, 3480emu/cmsM = for r d  and 3960emu/cmsM =  for r d . Such 

modified sM  can be achieved, e.g., by ion irradiation  [71]. The modulation of sM  modulates the 

spatial distribution of the effective anisotropy energy density, approximately given by 

22eff U sK K M= −  for thin films  [72].  

Results for ,c cI I ,  , and ,   as a function of D  for both non-uniform sM  distributions are 

shown in Figure 4.8. For both distributions with uniform current density (Figures. 4.8(e) and 

4.8(f)), the efficiency decreases with D  is slower than that for the case of uniform sM  with 

uniform current density (Figure. 4.7(c)). This can be explained by the fact that the lower effK  

assists switching, thus effectively suppressing the critical current increase with D . A benefit is that 

for both non-uniform sM  distributions, the energy barriers (Figures 4.8(c) and (d)) are higher than 

the barrier in Figure 4.7(b), which is important to maintain thermal stability. For the first non-

uniform sM  distribution, the 1φ  eigenstate is confined to the edge, as shown in the inset of Figure 

4.8(a). The corresponding optimized current density distribution, shown in the inset of Figure 

4.8(a), is also confined closer to the edge, which differs from that for the uniform sM  in Figure 

4.3. The minimized critical current cI  is again significantly reduced as compared to cI  and the 

efficiency is increased. The optimized efficiency   slightly decreases with the size, which is 

because, for this case, the 1φ  eigenstate determines switching for all considered sizes, and there is 

not an additional efficiency improvement associated with a higher order eigenstate as in the 

uniform sM  case. For the second non-uniform sM  distribution, the eigenstate is confined to the 

center even more than in the uniform sM  case (inset in Figure 4.8(b)). For this case, the optimal 
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current density distribution is mostly confined to the center and the 1φ  eigenstate also determines 

switching for all sizes. The behaviors of the critical current density, energy barrier, and efficiency 

are similar to the first non-uniform distribution. 

 

Figure 4.8: Size dependence of (a) the critical current, (c) energy barrier, and (e) efficiency with different 

current density distributions for a non-uniform 
sM  with 3960emu/cmsM =  for r d  and 

3480emu/cmsM =  for r d . (b), (d), and (f) are results for 3480emu/cmsM =  for r d  and 
3960emu/cmsM =  for r d . The insets are for the complex magnitudes of the 

1| |φ  eigenstate and the 

corresponding optimal current density distribution  . 

 

4.6 Summary 

In summary, we showed how it is possible to minimize cI  in MTJs by optimizing ( ) r . 

The minimization is based on the understanding that finding cI  is equivalent to making one of the 

eigenstates grow in time. The condition for cI  is given in terms of ( )n r , n , and ( ) r . cI  can 
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be viewed as a functional of ( ) r , which can be minimized. We show that the optimized or 

confined ( ) r  result in a significantly reduced cI  and increased  . Moreover, the optimization 

results in a major improvement in the scaling of cI  and    in that cI  increases nearly linearly and 

  is mostly constant with an increase of the MTJ size. The fact that there is no need to reduce the 

MTJ size to improve the efficiency opens opportunities for the MTJ optimization. We note that 

the same minimization approach may be applied to other spintronic systems, e.g., those using SOT 

or to spin torque oscillators, e.g., to selectively drive their eigenstates. 
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CHAPTER 5   

Eigenvalue-based Fokker-Planck approach for thermal 

statistics analysis 

Thermal effects play an important role in determining the operation of magnetic materials and 

devices. Thermal effects lead to probabilistic magnetization dynamics. For example, in MRAM, 

the thermal effects result in statistical switching, i.e., switching events should be described by a 

probability function, which depends on the materials and structure parameters and the temperature. 

The magnetization switching under STT reacts to thermal fluctuations and results in a distribution 

of switching times. There is a finite probability that an MRAM cell is switched or not switched for 

any value of the polarized current. The non-switching probability is known as write error rate 

(WER). For proper operation, WER needs to be less than 910−  and 1810− with or without an error 

correction, respectively [73]. It is essential to be able to calculate the WER. Several works have 

studied WER using different methods. Based on the macrospin model, which is valid for small 

magnetic elements, analytical analysis can be performed for subcritical [74] and supercritical [75] 

regimes. For general current values in small-size cases, a FP equation can be derived and used to 

calculate WER [74]. For larger magnetic elements, in which switching dynamics follows a 

spatially non-uniform path, the general modeling approach is to simulate the switching process by 

solving the LLG equation with the stochastic thermal field for many switching events to obtain 

enough statistical information for calculating the WER. Although recent work has proposed 

several methods to improve the simulation process, such as batch simulation [76], rare event 

enhancement [77], and machine learning assistance [78], it is still time consuming and inefficient. 
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Using FP equation is efficient but only macrospin based FP equation formulations are available, 

and they are inaccurate for larger sized magnetic elements because they do not account for the 

spatial non-uniformities in the magnetization switching  [74].  

In this chapter, we present a FP equation-based approach for calculating the probability 

densities in nanomagnetic systems characterized by complex magnetization dynamics. First, we 

discuss how thermal effects can be accounted for in the eigenvalue framework. Next, we introduce 

the FP formulation based on an eigenstate expansion of the solutions to the L-LLG equation, which 

allows considering statistical properties of non-uniform magnetization dynamics accounting for 

all effective magnetic field including STT. The formulations include finding eigenstates and 

eigenfrequencies of the structure of interest, formulating a FP equation describing the probability 

density dynamics of the excitation coefficients of the eigenstate solutions, and using this equation 

for finding derived quantities, such as WER. We show that the magnetization dynamics of the L-

LLG equation can be represented in terms of the normal modes and corresponding time dependent 

coefficients. We then formulate a FP equation related to the magnitude and phase of the time 

dependent modal coefficient. Next, we show that solving the FP equation gives the probability 

density function (PDF) as a function of time, which can be related to the magnetization and used 

to calculate the WER. Compared to the generally used stochastic LLG equation simulations, the 

presented approach directly obtains the probabilities and WER by solving FP equation only once. 

Compared to generally used FP equation approaches, the presented formulation allows handling 

non-uniform dynamics, which otherwise would be impossible. The idea of using FP equation with 

eigenstate expansion can be generalized to other physical types, such as studying the magnetic 

susceptibility under AC applied field. 
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5.1 Thermal noise in eigenvalue framework 

In Chapter 1.3, we discussed stochastic LLG equation accounting for the thermal effect in LLG 

equation. And in Chapter 3, we discussed the eigenvalue framework to solve the L-LLG equation. 

Following the similar procedure, we can construct the L-LLG equation including the thermal filed 

 
0 0 0 0 0( ) ( ) ( ) ( ) ( )th thA

t
  


= −   −  −  



v
v m m p m H m m H , (5.1) 

where  

 
2 B

th

S

k T

VM




=H G  (5.2) 

is the thermal field defined in (1.22), and other symbols have the same definitions in. As discussed 

in Chapter 1.3, G  is a three dimensional normalized Gaussian white noise (GWN) with 0 =G

, 2 1 =G , where x   denotes the expectation of x . 

From  (5.1) and following the eigenvalue framework derivation steps discussed in Chapter 3, 

(3.25) with thermal field is written as 

 stt thn
n n n n

da
j a P P

dt
= + + , (5.3) 

where 

 0 0 0 0( ) ( ) ( ) ,th

n th th nP A   = −  −   m H m m H , (5.4) 

with the inner product ,      defined as the volume integral over the structure domain  , the 

subscript n  denotes the n -th eigenstates of the system, and the rest of the symbols have the same 

definitions as in (3.26). 

As shown in Chapter 3, the formulation based on the eigenstates represents the system in 

terms of a typically small number of eigenstate coefficients. The non-uniform dynamics is 

automatically accounted for by the fact that the eigenstate states are spatially non-uniform. 
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Statistical properties can be obtained by solving  (5.3) repetitively to obtain a sufficient ensemble 

of realizations. While this approach already allows for a much more efficient and convenient way 

of computing statistical properties, it is still a brute force approach that requires many simulations 

and provides limited insights into the physics of the magnetization dynamics. To address these 

difficulties, an FP equation can be formulated as a counterpart of  (5.3), which can be regarded as 

a Langevin equation, for the probability density function corresponding to the coefficients na .  

5.2 Fokker-Planck equation based on eigenstates 

In this section, we show the derivation of the FP equation from the Langevin equation based on 

(5.3), including the boundary and initial conditions. 

5.2.1 Langevin equation formulation 

We represent the coefficients na  in  (5.3)  in the polar form | | nj

n na a e


= , where | |na  is the 

complex magnitude and n  is the complex phase, so that  (5.3) can be written as 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

| |
| | ( cos sin ) ( cos sin )

1 1
( cos sin ) ( cos sin )

| | | |

i r i r in
n stt n stt n th n th nn n n n

r i r i rn
stt n stt n th n th nn n n n

n n

d a
a P P P P

dt

d
P P P P

dt a a

    


    

= − + + + +

= + − + −

, (5.5) 

where the superscripts r and i  represent the real and imaginary part of the complex values, 

respectively. Note the statical properties of the random variables, i.e., the thermal field, in  (5.5) 

can be viewed as a multi-dimensional Langevin equation [79]: 

 
1 2

1 2
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,
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Here, 
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and  
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where the subscript 1e and 2e  represent the unit basis vector in 0( )TM m  as defined in  (3.13). 

In the multi-dimensional Langevin equation (5.6), the 1h  and 2h  terms are the force terms 

accounting for micromagnetic interactions and spin torques, the 
1 2 1 21 1 2 2, ,g g g g

e e e e  terms are drift 

terms accounting for the stochastic thermal field. 

5.2.2 Fokker-Planck equation formulation 

We define a time dependent probability density function (PDF) (| |, ; )n n na t   for the magnitude 

and phase coefficients | |na  and n  at time t . The FP equation is a time-dependent partial 

differential equation for the PDF (| |, ; )n n na t  , which is obtained from the Langevin equation 

(5.6) based on the Kramers-Moyal expansion [79]: 

 ( ) ( )
1,2 , 1,2
| |, , | |,

(| |, ; )

p n n p q n n

n n n k n kl n

k k lp p q
a a a a a

a t A B
t a a a

 

   
= =
= =

  
= − +

   
  , (5.9) 
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where 
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,

,
p n n

ki
k k ic kl ki li

a a i x yp
i x y

g
A h g B g g

a

 
= =

=


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
  , (5.10) 

are terms calculated from the Langevin equation (5.6) terms, and 2 B Sk T VM  =  is the 

variance of the thermal field. Solving the FP equation gives the time dependent PDF of time 

coefficients of each eigenstate coefficient. The PDF of the magnetization can be obtained based 

on the PDFs of the eigenstate coefficients. 

5.2.3 Boundary conditions and initial conditions 

The FP equation (5.9) can be solved numerically with proper boundary and initial conditions. First, 

for boundary conditions, it is natural that the phase n  should satisfy the periodicity boundary 

condition 

 (0) (2 )n n  = . (5.11) 

Considering the normalization and conservation of the probability, the magnitude | |na  should 

satisfy the zero flux boundary condition 

 
| |

| 0
ˆ

na



=

n
, (5.12) 

where n̂  is the unit vector on the boundary of magnetic domain. 

The initial condition for FP equation (5.9), i.e. (| |, ; 0)n n na t  = , is obtained by setting 

0stt

nP =  under infinite time. Note that ( )r

th n
P  and ( )i

th n
P  are linear transformations of the Gaussian  
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Figure 5.1: Spatially averaged in-plane magnetization component 
rm  with a constant current for (a) and 

(c) 20nmD =  and (b) and (d) 80nmD = with finite temperature 300T K= . The current 1.5 cJ J=  ((a) - 

(b)) and 10 cJ J=  ((c)-(d)). 

 

white noise thH , so that they also follow the normal distribution with dispersions of the Gaussian 

distribution ( )
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are the variances of the Gaussian distribution. Consequently, the real and imaginary parts of the 

coefficient na , i.e. r

na  and  i

na , also follow the Gaussian distribution ( )
2

(0, )ra
N   and 

( )
2

(0, )ia
N  , respectively, where 
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 Note that for a complex random variable, if the real and imaginary parts follow the Gaussian 

distribution, the magnitude and phase should follow the Rayleigh distribution [80]. Therefore, the 

resulting initial PDF is given by 
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With the boundary and initial conditions, the FP equation can be solved numerically to get the 

PDF of the coefficient na . 

5.3 Write error rate analysis  

5.3.1 Write error rate from probability density function 

An important quantity for the system can be calculated from the PDF is WER. To calculate WER, 

we first characterize the switching behavior by the average in-plane magnetization, as discussed 

in Chapter 3. From (3.24), we have the average in-plane magnetization 2 2( ) ( )inp x y = +v v v . 

The non-switching condition can be defined as inp s v , where s  is a certain critical value. 

Using (5.9), the time dependent non-switching probability is given by 
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 ( ) ( , ; )

inp

ns m m

s

P t a a t da da 
 

= 
v

. (5.16) 

To determine the integration upper limit, we consider the approximation  

 
inp inp n

n

   v v , (5.17) 

where the average in-plane magnetization is approximately equal to the sum of the average in-

plane magnetization of each eigenstate. For each eigenstate, we consider the condition 

independently, such that 

 inp n ns  v , (5.18) 

and the total upper limit is the sum of the upper limit of each eigenstate ns , i.e. 

 
n

n

s s= . (5.19) 

Considering the non-switching probability for each eigenstate, where we have the upper limit nu  

for each eigenstate, we have 

  
2

0
0

( ) (| |, ; ) | |
nu

ns n n n nn
P t d a t d a



  =    (5.20) 

where the upper limit nu  is calculated from the in-plane magnetization upper limit of each 

eigenstate ns : 

 ( )( ) ( )( )
2 2

/ 2 cos cosn n n nm m

n x n x y n yu s
      

 
   = + + +    

 
, (5.21) 

where nm  and n  denote the magnitude and phase of the n -th eigenstate, respectively. 

With the non-switching probability of each eigenstate, and the approximation in (5.17), the 

WER is the total non-switching probability combined of all the eigenstates 
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  ( ) ( )
n

ns ns n
s n

P t P t= . (5.22) 

5.3.2 Write error rate results 

As an example of using the presented framework, we consider switching in a MTJs, which is 

comprised of a cylindrical free layer of 1 nm thickness and diameter (D) of 20nm and 80nm for  

Figure 5.2: The initial distribution of normalized (a) 
ra  and (b)

ia . Histogram shows the 10000 times 

simulation from eigenvalue framework based on (5.3) with 0sttP = . The red line shows the Gaussian 

distribution from (5.14). The results are for 1n = eigenstate of the system. 

 

temperatures (T) of 100K and 300K. The magnetic material parameters are with the uniaxial 

anisotropy 36.11 Merg/cmUK =  of the easy axis perpendicular to the disc, saturation 

magnetization 3960emu/cmsM = , exchange stiffness 1 erg/cmexA = , and damping constant   

= 0.01. An STT field is applied to the bottom surface of the cell. 

The WER is calculated in two steps. First, we carried out eigenstate calculations as a part 

of the finite element method based micromagnetic simulator FastMag [19]. The numerical 

eigenvalue problem is solved with an iterative implicitly restarted and preconditioned Arnoldi 

method [67]. Details of the eigenstate solver framework analysis are given in Chapter 3. The eigen 

solver results indicate the active modes involved in the switching process, where the imaginary 
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parts of the eigenfrequencies are negative. We, then, use the presented FP equation (5.9) 

formulation to calculate the PDF and WER. The FP equation is solved numerically with the 

FEniCS software [81]. 

 
Figure 5.3: WER results for 20nmD = with current 9.5μAI =  for temperature (a)-(b) 100KT =  and (c)-

(d) 300KT = . (a) (c) Marginal PDF of normalized eigen framework time coefficient magnitude for 

different time. (b) (d) WER results based on stochastic LLG simulations and FP equation solution.  
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To illustrate the switching process and WER with the thermal effect, we first show 

solutions of the linearized LLG equation from the eigenvalue framework with thermal fields. 

Figure 5.1 shows the results for a 80nmD = disc with the magnetic parameters listed above and 

300T K= . The thermal filed for eigenvalue framework and stochastic LLG equation simulations 

are calculated with same random seed. The eigenvalue-based results are in a good agreement with 

the stochastic LLG equation simulations. 

Next,  to validate the initial condition derived in 5.2.3, in Figure 5.2, we show the marginal 

distribution of the coefficients 1

ra  and 1

ia  with the finite temperature 300T K=  based on the 

distribution of (5.14) and the histogram from 10,000 times simulations based on  (5.3). The 

marginal distribution of ra  and ia  are defined as 

 
( ; ) ( , ; )

( ; ) ( , ; )

i

r

r r i i

a

i r i r

a

a t a a t da

a t a a t da

 

 

=

=




. (5.23) 

The agreement indicates the validity of the initial condition.  

Next, we show PDF and WER obtained by solving the FP equation. For validation, we also 

compare the WER results with WER obtained by running 10,000 times the stochastic LLG 

equation simulations and counting the number of switching and non-switching events. This 

number of stochastic simulations results in the nsP  accuracy on the order of 
410−
. 

Figure 5.3 shows results for a smaller diameter of 20nmD = with 9.5μAI = and 

temperatures of 100KT =  and 300KT = . For this current, only the first eigenstate with the 

smallest eigenfrequency is active. Figure 5.3a shows the marginal distribution of the time 

coefficient magnitude at different times. The WER can be regarded as the area below the curve up 

to the upper limit. The initial parameter marginal distribution at 0t =  due to the thermal 
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fluctuations localize in a small range near zero. Also, the higher (room) temperature of 300K has 

a broader initial distribution. Due to the STT effects, for  

Figure 5.4: WER results for 80nmD =  with current 29.5μAI = for (a)-(b) 100KT =  and (c)-(d) 

300KT = . (a) (c) Marginal PDF of eigen framework time coefficient magnitude for different time. (b) (d) 

WER results based on stochastic LLG simulations and FP equation solution. 

 

0t  , the distribution is flattened, and the non-switching probability decreases. Figure 5.3b shows 

the time evolution of WER from the FP equation and LLG equation calculations. The results show 



86 

 

an agreement between the stochastic LLG equation and FP equation simulations. We see that the 

higher temperature 

Figure 5.5: WER results for (a)-(b) 20nmD = with current 21μAI = for temperature (a) 100K and (b) 

300K. (c)-(d) 80nmD = with current 45μAI = for temperature (c) 100K and (d) 300K. 

 

has greater thermal effects, which results in a more flattened marginal distribution and a faster 

switching time. For the higher temperature, the FP equation model slightly overestimates nsP , 

more so for smaller currents, which is related to the linearized approximation. Nevertheless, it still 

represents the exponential decay rate of the WER well. 



87 

 

Figure 5.4 shows similar results for the larger diameter of 80nmD =  with the current of 

29.5μAI = . For this current, only the lowest eigenfrequency eigenstate is active. Compared to the 

smaller diameter, the initial distribution for the same temperature has a smaller variance, which is 

consistent with a greater thermal stability. For the larger case, where the macrospin approximation 

is invalid [54,82], the presented FP equation approach also shows an agreement with the stochastic 

LLG equation results for predicting WER. 

Next, we show WER for greater currents for different sizes and temperatures. Figure 5.5 

shows WER for 21μAI =  for 20nmD = , and 45μAI =  for 80nmD =  for 100KT =  and 

300KT = , respectively. For these currents, both sizes have 3 active modes. We show the FP 

equation WER results using 1 mode and all active modes. For 20nmD = , we see that although FP 

equation results with all active modes slightly underestimate the WER, the use of FP solutions for 

multiple eigenstates results in a much better approximation with a better agreement with the 

stochastic LLG equation results.  

5.4 Summary 

In summary, we presented a FP approach based on the eigenstate expansion of the solutions 

of the linearized LLG equation, which allows studying WER of STT MRAM due to the thermal 

noise. We found eigenstates and corresponding eigenfrequencies of the structure, accounting for 

all effective magnetic field including spin transfer torque. We developed a framework that 

represents the magnetization dynamics of the L-LLG equation in terms of the eigen modes and 

corresponding time dependent coefficients. We then formulated a FP equation related to the 

magnitude and phase of the complex time dependent modal coefficients. Solving the FP equation 

gives the PDF as a function of time, which can be related to the magnetization and used to calculate 
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the WER. Compared to the generally used stochastic LLG equation simulations in the time 

domain, the presented approach directly obtains the WER by solving FP equation only once, and 

it is scalable to large cases where non-uniform dynamics occurs.  
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CHAPTER 6 

Linearized frequency domain Landau-Lifshitz-Gilbert 

Equation Solver 

LLG equation (1.4) is a time dependent non-linear equation, and it describes the magnetization 

dynamics in both linear and non-linear regimes. Solving LLG equation can be computationally 

expensive as it requires obtaining solutions at many time steps and it is often numerically stiff, 

which may require either small time steps or assisting linear solvers. Under weak dynamics 

excitations, however, the magnetization dynamic response may be linear. Examples of such 

systems are spin wave excitations under weak time-dependent applied fields or the initial dynamics 

under spin torque excitations [15,63]. In such cases, LLG equation can be linearized in terms of a 

weak magnetization deviation around the equilibrium state. Such linearization has been used to 

obtain solutions in terms of the eigenstate representations [82] and it can be used to obtain solutions 

even for non-linear problems [83–85]. For a linearized LLG equation, we can find solutions as a 

response to a harmonic excitation, i.e., an excitation at a given frequency. 

 In this Chapter, we present a linear frequency domain LLG (FD-LLG) equation solver. The 

FD-LLG equation solver provides a linearized magnetization solution as a response to a dynamic 

excitation, e.g., the applied field, which is a characterized by a given frequency. Considering a 

given frequency allows formulating a time independent linear equation for a complex 

magnetization amplitude, which can, then, be used to provide linear time domain solutions. The 

FD-LLG equation solver is developed based on the finite element based micromagnetic simulator 

FastMag. The linear system is solved effectively with an iterative solver. The number of iterations 
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is significantly reduced using a linear preconditioner. Solving the FD-LLG equation is much more 

efficient and provides a more physically insight than solving the original LLG equation.  

6.1 Linearized Landau-Lifshitz-Gilbert Equation 

We start by introducing the LLG equation linearized equation, including a static and dynamic 

applied magnetic field. The linearization derivation and the equation parameter definitions are 

similar to those given in Chapter 3. We repeat some of the definition for completeness for the case 

considered in this Chapter. 

The magnetization dynamics is described by the LLG equation, which is, in its implicit form, is 

written as 

 
eff

t t
 

 
= −  + 

 

m m
m H m , (6.1) 

where, similar to Chapter 3, m  is the normalized magnetization,   is the gyromagnetic ratio,   

is the damping constant, and effH  is the effective field. The effective field is a function of m , and 

it is composed of several components, including the magnetostatic field  msH , exchange field exH  

, anisotropy field (assumed uniaxial) anH , and an applied Zeeman field aH : 
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 (6.2) 

where the applied field can be expressed as a time independent DC part ,0aH , and a time dependent 

AC part ( )a th : 

 ,0 ( )a a a t= +H H h  (6.3) 
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The LLG equation (6.1) is non-linear in m  due to the presence of the cross products and 

it describes the magnetization dynamics in a broad range of situations, including linear and non-

linear effects. In various cases, however, the general LLG equation can be linearized. Such a 

linearization is allowed when the magnetization varies insignificantly around its equilibrium state. 

Weak magnetization variations can be due to weak excitations, e.g., by weak applied fields or by 

spin transfer torque (STT). Even in the general non-linear cases, the initial dynamics that contains 

important information about the system behavior can be characterized by the linearization [82,83].  

We present a framework that uses a L-LLG equation to study the magnetization dynamics. 

We first present a linearized time domain LLG equation. Then, we construct a FD-LLG equation 

to study small oscillations around the equilibrium state driven by time-harmonic excitations. We 

seek a solution for small magnetization deviation v  around the equilibrium state such that  

 0= +m m v , (6.4) 

here 0m  is the equilibrium magnetization state for the system without a dynamic excitation. which 

is given by the Brown condition [1] 

 0 0( ) 0eff =m H m , (6.5) 

which corresponds to 0 0t  =m  in the LLG equation. 

The magnetization deviation v is normal to 0m , so that the normalization of m is 

preserved. Because of the linearity of ( )effH m  in terms of m , we can write  0( )eff C= +H m H v , 

where 0 0 ,0( )eff a= +H H m H . Considering the week dynamic applied field ( )a th , inserting 

representation (6.5) into LLG equation (6.1), and linearizing the equation by keeping only the 

terms linear in v ,  and ah , we can write a linearized LLG equation for v : 
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0 0 0 0( )a

t t
 

 
= −  +  +  + 

 

v v
v H m h m h m ， (6.6) 

where C=h v  is the effective field corresponding to v . Denoting the cross operator as 

( ) = u v u v , we can reformat (6.6) in matrix format 

 ( )0 0 0 0( ) ( ) ( ) ( )a
t t

 
 

= −  + + + 
 

v v
H v m h m h m . (6.7) 

Since v  is normal to 0m , we can project every vector and operator into the tangent space 

( )TM
0

m  of 0m , by using the projection operator [59] 

 ( )P I= − 
0m 0 0

m m , (6.8) 

where   denotes the dyadic Kronecker tensor product, I  denotes the identity matrix. It can be 

shown that when restricted to vector fields in  ( )TM
0

m , the operator 0( ) m  is linear and anti-

symmetric and it is also invertible [59], i.e., 

 0 0( ) ( ) I  = −m m . (6.9) 

With (6.8) and (6.9), we can simplify (6.7) by multiplying 0( ) m  at both sides: 

 
aB A

t
 ⊥ ⊥


+ =



v
v h , (6.10) 

where 

 
( )

( )

0 0

0

( )

( )

A P I C

B P I

⊥

⊥

=  −

=  +

0

0

m

m

H m

m
. (6.11) 

6.2 Linear solver 

Assuming a time harmonic excitation at a circular frequency  , the applied field can be written 

as 
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 Re ( ) jn t

a a

n

e  
=  

 
h h r , (6.12) 

where ah is the complex amplitude of the exciting magnetic field, which represents its magnitude 

and phase. Assuming the linearity of the response, the small deviation v  can be expressed as 

 Re ( ) jn t

n

e  
=  

 
v v r ， (6.13) 

where v  is the complex amplitude of the magnetization deviation. Inserting (6.13) into (6.11), we 

obtain the FD-LLG equation 

 ( ) aj B A  ⊥ ⊥+ =v h . (6.14) 

Here, ah  in the right-hand side is a known function of spatial coordinates and v  is an unknown, 

which is found by solving the linear system of equations. 

 The linear system matrix of (6.14) is dense due to the presence of the magnetostatic field 

operator msH . Therefore, to enable solving large problems, iterative methods, such as the 

conjugated gradient (CG) or generalized minimal residual method (GMRES) [86], typically should 

be used. Micromagnetic problems often are stiff, which results in a badly conditioned matrix and 

many linear iterations required for the solution. Reducing the number of iterations can be achieved 

by developing a proper preconditioner. It has been shown that the high condition number for 

micromagnetic systems is a result of the effects of the exchange field linear operator [87]. To 

alleviate this problem, we use the projected sparse matrix ex exC P C⊥ = 0m  of the exchange field 

operator exC , which represents the discretization of the 
2(2 )sA M   operator in, to construct a 

sparse preconditioner matrix  

 ( )exP j B H ⊥ ⊥= + , (6.15) 
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The inverse matrix of preconditioner 1P− can be approximately calculated by the incomplete LU 

decomposition (ILU)  [86] or using the block-inverse preconditioner [87]. Multiplying by 1P−  in 

both sides of the (6.14), we obtain a preconditioned linear problem 

 
1 1( ) aP j B A P  − −

⊥ ⊥+ =v h . (6.16) 

The preconditioned linear system of (6.16) has a significantly reduced condition number and can 

be solved in a much smaller number of iterations than the original problem of (6.14). 

 

Figure 6.1: Time dynamics of the average magnetization obtained via the full LLG equation and FD-LLG 

equation solvers for 100nmL = , 0.01 = . The top inset shows the strip with its magnetization equilibrium 

state. The bottom inset shows a snapshot of yv  at 10nst = . 
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6.3 Linear solver results 

We implemented the FD-LLG equation solver as a part of the FEM based micromagnetic simulator 

FastMag with tetrahedral elements [19]. The effective fields are computed as for the general LLG 

equation. The linear system of equations (6.16) is solved using the GMRES algorithm with the 

relative error of 810− . The preconditioner is based on the ILU0 and ILUk flavors of the ILU 

preconditioner using the sparse matrix P  of (6.15) [86]. The results are shown for a magnetic strip 

of width 30nmw = , thickness 1nmh = , and length L w  ranging from 100nm  to 10μm . The 

material parameters are 
3800emu/cmsM = , 1 erg/cmexA = , and   ranges from 0.01 to 0.0001. 

The maximal mesh edge length was chosen as 2 nm to be sufficiently smaller than the exchange 

length of 12.5nmsA M = . The equilibrium magnetization is along the longest direction (see the 

top inset in Figure 6.1). The magnetization dynamics is excited by a weak applied magnetic field 

of  50Oea =h  confined to the region of 10nm  near the center of the strip at frequency 

(2 ) 20GHzf  = = . The results were obtained on an Intel Core i9-9900K CPU. 

Figure 6.1 demonstrates the validity of the solver by comparing the results obtained via the 

FD-LLG equation (6.16) and via the original LLG equation (6.1). The figure shows the space 

averaged y-component of v  for 100nmL = . The number of mesh vertices for this case was 3,927. 

The number of iterations based on the ILU0 preconditioner for the FD-LLG equation solver was 

57 and the computational time was 3 seconds. The initial, i.e., early time dynamics, is different, 

which is because for the non-linear solver there are initial non-linear effects. The later time 

dynamics is described by the FD-LLG equation solver accurately. A snapshot of yv  at 10nst =  

shown in the bottom inset of Figure 6.1 demonstrates a standing spin wave pattern. 
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Figure 6.2:  Size dependence of the linear solver iteration number and computational time when using 

different preconditioners for 0.01 = . 

 

Figure 6.2 demonstrates the computational performance of the FD-LLG equation solver by 

showing the number of iterations and computational time as a function of the strip length L  and 

the corresponding number of tetrahedral mesh vertices N . The results are shown for the 

preconditioned formulation of  (6.16). It is evident that the non-preconditioned solver requires 

many iterations, whereas using preconditioners leads to a significant reduction of the number of 

iterations. The ILUk preconditioners perform better than ILU0 in terms of having a smaller number 

of iterations, but they have a higher cost per iterations. Overall, we find that ILUk with 1k =  has 

the best performance in terms of the computational time. Overall, the solver performance is good, 

and it allows addressing large scale computational problems. We note that the solving the linear 
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system without using a preconditioner, i.e., (6.14), requires a large number of iterations, e.g., 1,952 

iterations for the 100nmL =  case, which makes such a solver impractical. Therefore, using the 

preconditioned system of  (6.16) is critical. 

 

Figure 6.3:  Frequency dependence of the magnetization deviation magnitude for 100nmL =  and 

0.0001 = . 

 

Finally, Fig. 6.3 shows the space averaged magnitude | |yv   as a function of frequency 

f . One can see that the solution | |yv   exhibits a strong resonance response, with the resonant 

frequency related to the resonant standing spin wave excitation. The figure also shows the number 

of iterations with ILUk with 1k =  preconditioner. The number of iterations increases at the 

resonant frequency, but this increase is modest, which demonstrates a good performance even 

when the excitation frequency is close to the resonant frequency. 
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6.4 Summary 

 In summary, we present a FD-LLG equation solver that allows obtaining the magnetization 

dynamics solutions driven by weak time harmonic excitations. The formulation is based on 

linearizing the original non-linear time domain LLG equation and assuming a single frequency 

excitation and solution, which results in a single linear system of equations for the complex 

magnetization deviation around the magnetization equilibrium state. The linear system is 

preconditioned by a sparse preconditioner that allows significantly reducing the number of 

iterations and computational time required for its solution. We note that once the solutions for v  

is obtained, the time domain solution v  is found for all time via  (6.13).  

    Assuming a small number of linear iterations for solving  (6.16), the FD-LLG equation solver 

provides a much more efficient approach than solving the original non-linear LLG equation for 

finding solutions in the linear regime. If the excitation is given by multiple frequencies, e.g., by a 

pulse, then multiple frequency domain solutions can be combined via the Fourier transform. The 

results are shown for real-valued frequencies, but solutions can also be obtained for complex-

valued frequencies, which can provide insights into the magnetization dynamics behavior. The 

FD-LLG equation solver is implemented in the FEM framework, and it can also be extended to 

finite difference implementations.  
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Chapter 7 

Harmonic balance solver 

In the linear FD-LLG equation formulation of Chapter 6, we only keep the first order terms in the 

linearized LLG equation to linearize it. Linear response is obtained when the excitation is by a 

weak time-harmonic field. When the time-harmonic excitation is stronger, non-linear effects 

become important. For example, an excitation of a given frequency may result in a generation of 

higher order harmonics. Non-linear effects are accounted for in the general non-linear LLG 

equation (1.4), but using the LLG equation may be not efficient numerically and may make 

understanding physical mechanisms complicated. In this section, we consider the magnetization 

response to a time-harmonic excitation in the regime of “weak” non-linearities, in which the 

magnetization can be represented in terms of an expansion over a series of higher-order harmonics 

accounting for higher-harmonic generation phenomena. We refer to the method described next as 

to Harmonic balance method (HBM). The HBM is related to techniques used to solver for non-

linear dynamic excitation in various systems, such as circuit solvers [88]. 

7.1 Harmonic balance solver 

The derivation of HBM starts similarly to the derivation of the linearized LLG equation in Chapter 

6 with several important updates. When inserting the expansion of (6.4) in LLG equation (6.1), we 

keep not only the first-order terms, but also the higher order terms, which gives: 

 
0 0 0 0( ( ) ( ) ) ( ) ( ( ) )a a

t t t
   

  
+ − + −  = −  +  + + 

  

v v v
H v m h m v h v h m h v , (7.1)

where we keep the first-order terms on the left-hand side and other terms on the right-hand side. 
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We assume an excitation by a time-harmonic driving term, e.g., applied magnetic field at 

frequency  : 

 .j t

a ah e c c= +h . (7.2) 

where . .c c  denotes the complex conjugate of the first term of the right-hand side. Due to the time 

periodicity, the solution and the corresponding magnetic field can be expanded via an infinite 

number of harmonics 
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Inserting (7.2) and (7.3) into (7.1) and re-arranging the terms results in the following non-linear 

equation: 

 

1

1 1

0 0 0

0

1

( ) ( ) ( )

( )

.

n n n n

n m n n

n m

j t j t j t j t

n n n n n n

n n n n

j t

a

j t j t j t j tj t j t

n m n a n a

n m n n

j t j t

n m m

n m

j v e v e h e j v e

h e

v e h e v e h e v e h e

v e j v e

   



    

 

   





 

−

 
+ − +  −  = 

 

− 

 
−  +  +  

 

+ 

   

   

 

H m m

m

. (7.4) 

From here, we can re-arrange the terms and obtain equations for the coefficients of each n-th order 

harmonic component, i.e., each exponent with the power of n n = :  

 

( )0 0 0

0 1

1 1

( ) ( ) ( )
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n n n n n n
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j v v h j v

h

v h v h v h

v j v

   

 



 

− − + −

−

+  +  −  =

− 

 
−  +  +  

 

+ 





H m m

m

. (7.5) 

This equation can be further multiplied by P
0m  and 0( ) m  at both sides resulting in  
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 

 (7.6) 

Note that the left-hand side operator here is the same as the left-hand side of the linearized LLG 

equation (6.10), whereas the right-hand side contains the non-linear coupling between the 

coefficients of all harmonics. Under weak excitations the non-linear coupling can be neglected, 

which results in a linear equation only for 1v  identical to (6.10), and no higher-order harmonics 

generation. For stronger excitations, the non-linear coupling becomes important. This 

understanding indicates that the non-linear system of (7.6) can be solved iteratively.  

Let us denote the iteration number as i  and the variable 
i

nv  for n-th order at i-th iteration. 

We can initialize the iterations by assigning 
0 0nv =  for all n . We, then, proceed with the iterations 

via  

 

1

1 1 1
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i

n

i i i i i
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m m

j B A v

h B v h v h v j v
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     

+

⊥ ⊥

⊥ − − −

+ =

  
+ −  +  − +   

  
 

 (7.7) 

where, at each iteration 1i + , we solve a set of linear equations for 
1i

nv +
. In each such equation, we 

have a linear operator in the left-hand side that is similar to the linear operator in (6.10) but it is 

defined for the frequency n . The right-hand side for each linear problem of  (7.7) is known based 

on the previous iteration. The solution proceeds similar to that of the linearized LLG equation in 

Chapter 6, including the use of the same preconditioner. 

7.2 Two harmonics case 

The HBM in general includes an infinite number of harmonics. Often, however, only a finite 

number of such harmonics are strongly excited. In this section we show a special case with only 
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two harmonics 1n =  and 2n = , which exemplifies the procedure of HBM. We start the iteration 

process with 0i = , where 

 

0

1

0

2

0

0

v

v

 =


=
. (7.8) 

At 1i = , from  (7.7) we have 

 1

1

1

2
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. (7.9) 

Note that in  (7.9), the first equation is identical to the linear solver equation  (6.14), and the second 

equation has a trivial solution of 
1

2 0v = . Consequently, at 1i = , only 1v  has an update, which has 

a meaning of a solution that would be obtained if the linearization assumption of Chapter 6 is met. 

Next at 2i = , noting that 
1

2 0v = , we have 

 

2

1

2 1 1 1 1 1

2 1 1 1 1 1 1

( )
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. (7.10) 

Note that the first equation in  (7.10) is identical to the first equation in  (7.9), which indicates that 

1 2

1 1v v=  and only 2v  at 2i =  has an update. Continuing this procedure, one can find that at odd i  

iterations, only 1v  has an update, and at even i  iterations, only 2v  has an update. This process can 

be done iteratively until both harmonics converge with a tolerance  : 

 
1

1

| |
, 1, 2

| |

i i

n n

i

n

v v
n

v


−

−

 − 
 =

 
. (7.11) 

7.3 Harmonic balance solver results 

In this section, we show results of the HBM solver for several cases, including a single domain 

model and a magnetic dis with a more complicated dynamics. The HBM solver used to obtain 

the results is based on the two-order case discussed in Chapter 6.4.2. 
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7.3.1 Single-spin model results 

We first consider a macro spin model, where only a uniaxial anisotropy field in the z-direction is 

present. The equilibrium state is aligned in the z-direction. To obtain an excitation with an in-plane 

applied harmonic field, we need to break the symmetry by a small tilt of the equilibrium state. We 

use an equilibrium state 0m  to have a o1  angle with respect to the z-axis. We run LLG equation 

and HBM solvers, with the following magnetic parameters: 

3 30.611Merg/cm , 2000emu/cmU sK M= = , and 510 −= . The applied field is in the x-direction, 

has a magnitude of 50 Oe, and it is a sine function of time with frequency of / 2r

eig , where 

22 (1 )r

eig U sK M  = +  is the real part of the eigenfrequency, i.e., the ferromagnetic resonance 

frequency. The LLG equation simulation is carried out for 10,000 ns. The results for the HBM 

solver are obtained by solving  (7.7) iteratively and using  (7.3) to find the time dependence of the 

magnetization deviation at the same time steps as for the LLG equation solver. 

 
Figure 7.1: Fourier transform spectrum of LLG simulation and HBM results for macro spin model. 
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 Figure 7.1 shows the Fourier transform spectrum for both LLG equation and HBM solver 

results. We can see that both harmonics at 1 2r

eig =  and 2

r

eig =  are excited. Since 2  is near 

the complex eigenfrequency eig , the second harmonic is excited strongly. Also, the results in 

Figure 7.1 show a good agreement between the LLG equation and HBM solver results. The HBM 

solver required 3 non-linear iterations for 1610−  error tolerance. 

 

Figure 7.2: Fourier transform spectrum of HBM solutions and LLG results. 

 
 

7.3.2 Micromagnetic results for a magnetic disk 

Now, we show the operation of the HBM solver for a magnetic disk with perpendicular anisotropy 

of 
36.11Merg/cmUK = , with a small tilted 5 degree easy axis to perpendicular direction, 

magnetization saturation 
3960emu/cmsM = , diameter 20nmD = , thickness 1nmh = , and 

damping factor 
58 10 −=  . We use an in-plane time-harmonic applied field in the x-direction, 
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which has a magnitude of 5 Oe and frequency of 1 / 2 = , where 1 12 f  =  and 1 9.41GHzf =  

is the real part of first eigenfrequency. 

 We run the LLG equation simulations for 6000 ns and calculate the deviation v  from 

harmonic balance solver for both LLG equation simulation and HBM solver. Figure 7.2 shows the 

Fourier transform of the HBM and LLG equation solutions using the time series from 5000 to 6000 

ns. We find that the second harmonics is again excited and the HBM and LLG results have a great 

agreement. The HBM results required 3 iterations for a 910−  convergence tolerance, which was 13 

times faster than running the LLG simulations.  

7.4 Summary 

In summary, we introduced a HBM for solving the LLG equation under the assumptions 

of weak non-linearities to study the non-linear magnetization dynamics driven by a time-harmonic 

excitation. In HBM, the magnetization is represented in terms of a series of harmonic components, 

which correspond to powers of the driving field frequency. The LLG equation is reduced into a set 

of coupled equations for the coefficients of these harmonics. The equation can then be solved the 

iteratively with a small number of iterations. Numerical results demonstrate that the HBM gives 

accurate solutions, which match the direct LLG solution. Obtaining solutions via the HBM is much 

faster than using direct LLG equation solvers. 
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CHAPTER 8   

Conclusion 

This dissertation introduced algorithms to study the micromagnetic systems based on the L-LLG 

equation, including cases driven by applied fields and ST. We constructed an eigenvalue 

framework to study the switching behavior of ST-driven devices, which can be used to predict the 

switching current density and switching time of STT-MRAM as well as solve the L-LLG equation 

based on the eigen solutions of the system. This method is extended to optimize the current density 

spatial distribution and thus reduce the total critical current in MRAM elements. We found that 

the optimized current density spatial distribution can significantly increase the efficiency, viz., the 

ratio between energy barrier and critical current, especially for larger MRAM cells. The eigenvalue 

framework facilitates the design of new MRAM devices, provides important insights into 

dynamics in such systems, and allows solving several difficulties in their modeling, such as 

extracting the switching current in MRAM and understanding switching mechanisms. We also 

used the eigenvalue framework to construct a FP equation, which can be used to study WERs in 

MRAM. This approach can be generalized to account for the micromagnetic interactions and STT, 

which is useful for practical applications. 

The dissertation also introduced an FEM-based FD-LLG equation solver, which allows 

solving for the magnetization dynamics in the linear regime driven by time harmonic applied 

fields. The solver is based on using the L-LLG under the assumption of a single frequency 

excitation and magnetization dynamic behavior. The FD-LLG solver is based on solving a linear 

system for the complex magnetization amplitude. The linear equation is solved by an iterative 

solver, and we constructed an efficient preconditioner to result in a small number of iterations. In 
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the linear regime, using the developed FD-LLG solver is much more efficient than using the 

original time-domain LLG.   

We, then, introduced a HBM solver, which formulates a system of equations for finding 

the excitation coefficients of an infinite number of harmonics of different orders, which correspond 

to higher-order frequencies of the driving frequency. The solution is obtained via a rapidly 

convergent iterative procedure, in which a set of linear solutions are obtained at each iteration step. 

In the linear or weakly non-linear regimes, the introduced linear or HBM solvers allows obtaining 

the solutions much faster and with more physical insights than the original non-linear time 

dependent LLG equation solvers.  
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