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Abstract
Purpose Congenital cataract, opacification of the ocular lens, is clinically and genetically a heterogeneous childhood
disease. In this study we aimed to identify the underlying genetic cause of isolated autosomal-dominant lamellar cataract in a
multi-generation English family.
Methods Whole-genome sequencing (WGS) was undertaken in two affected subjects and one unaffected individual.
Segregation analysis was performed and a known cataract-causing mutation was identified. Segregation was further vali-
dated by sanger sequencing in the entire pedigree.
Results A heterozygous mutation c.7 G > T; p.D3Y was identified in an NH2-terminal region of the gap junction protein
GJA3 and found to co-segregate with disease.
Conclusion We have identified a recurrent mutation in GJA3 in a large British pedigree causing the novel phenotype of
autosomal-dominant congenital lamellar cataract. Previously, p.D3Y was found in a Hispanic family causing pulverulent
cataract. WGS proved an efficient method to find the underlying molecular cause in this large family, which could not be
mapped due to uninformative markers.

Introduction

Lens opacity is widely considered to be the primary cause of
blindness worldwide. Congenital cataracts are phenotypically
and genetically heterogeneous. They are responsible for
1–6/10,000 births in the United Kingdom and 5–15/10,000

births in developing countries and are a pronounced factor of
vision loss in infants and children [1].

Congenital cataract can occur in isolation, or in asso-
ciation with other non-ocular diseases. Most familial cat-
aracts are associated with an autosomal-dominant mode of
inheritance [2, 3]. Clinical classification depends on the
position and type of the lens opacity, such as: blue-dot
(cerulean), coralliform, nuclear, cortical, complete, pul-
verulent and anterior polar, posterior polar, posterior
nuclear, polymorphic, and lamellar [4].

So far > 40 genes have been implicated in catar-
actogenesis, including crystallins encoding transparent
intracellular lens proteins, water channel proteins (aqua-
porins), solute carrier protein, cytoskeletal proteins,
chromatin-modifying protein-4B, transcription factors,
transmembrane proteins, lens intrinsic membrane protein,
receptor tyrosine kinase gene EPH receptor A2 [5], an
endoplasmic reticulum membrane-embedded protein, Wol-
framin [6], and gap junction proteins including GJA8 and
GJA3 [5].

Gap junction channels and hemichannels are made by
connexins: they play an important role in intercellular
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communication. Each hemichannel is formed by six con-
nexin units, called a connexon. Two connexons from
neighboring cells dock to make a gap junction channel
through the extracellular loops of connexins, which allows
the exchange of ions and small molecules between cells [7].
In humans, at least 21 connexin genes have been associated
with several different genetic defects including deafness,
skin abnormalities, neurodegenerative diseases, cardio-
pathies, and cataracts [8–11].The lens expresses three dis-
crete connexins: Cx43, Cx50, and Cx46, displaying various
levels of expression and function in maintaining lens
homeostasis (reviewed in ref. 12).

The lens is a transparent, avascular, and biconvex organ
in the anterior chamber of the eye, situated behind the
cornea. The cornea and lens transmit light onto the retina for
fine focusing. The lens is comprised of two cell types:
metabolically active epithelial cells that form a single layer
along the anterior surface and fiber cells that form the main
bulk of the lens. These fiber cells lose all of their intracel-
lular organelles during differentiation and become metabo-
lically inert. Using the gap junctions to maintain tissue
homeostasis and transparency, the lens has therefore
developed a substantial intercellular communication system
[13]. Cx43 is expressed primarily in the lens epithelial cells,
whereas Cx46 and Cx50 are extensively expressed in lens
fiber cells [12]. Mutations in Cx50 and Cx46 lead to con-
genital cataracts in human and mice [14].

Here we report a recurrent mutation (p.D3Y) in GJA3
causing an isolated autosomal-dominant lamellar cataract in
a five generation British family. Previously, this mutation
has been found in a Hispanic family causing a different
phenotype of pulverulent cataract [15].

Methods

Phenotyping

The family was identified through the proband attending
the Genetic Service at Moorfields Eye Hospital, London,
UK. Local ethics committee approval was obtained and
all of the participants gave written informed consent.
All the family members underwent full ophthalmic
examination, including slit lamp examination; all affected
individuals were diagnosed as having isolated lamellar
cataract.

Whole-genome sequencing (WGS) and
bioinformatics analysis

Genomic DNA was extracted from ethylenediaminete-
traacetic acid-sequestered blood samples taken with
informed consent and local ethical approval using the

Nucleon II DNA extraction kit (ScotlabBioscience, Strath-
clyde, Scotland, UK). Genomic DNA was processed using
the Illumina TruSeq DNAPCR-Free Sample Preparation kit
(Illumina) and sequenced using an Illumina Hiseq 2500,
generating mean genome coverage of 35 × . WGS was done
by a service provider (Macrogen.Inc., Korea). As described
in Berry et al. 2017 [16], raw data in fastq format was
analyzed using the Phenopolis platform [17]. The short read
sequence data were aligned using novoalign (version
3.02.08). Variants and indels were called according using
GATK haplotype caller [18]. The variants were then
annotated using the Variant Effect Predictor (VEP) [19].
Variants were then filtered to only contain variants not
present in public control databases Kaviar (Glusman et al.
2011) [20] and gnomAD (http://gnomad.broadinstitute.org/),
and predicted to be moderately or highly damaging
according to the VEP. Cosegregation of the filtered variants
in both affected individuals was then performed. Finally,
the list of variants was further screened using Phenopolis,
for genes associated with the Human Phenotype Ontology
[21] term “lamellar cataract” (HP:0007971) according to
OMIM [22]. The mutations were then ordered on CADD
score with the highest-ranking mutations at the top.

Structural bioinformatics

The protein structure of GJA3 was analyzed using SWISS-
MODEL https://swissmodel.expasy.org/repository/uniprot/
Q9Y6H8.

The best PDB match, with a match of 49%, was the
structure of 2ZW3 PDB ID, solved with X-ray crystal-
lography (reference https://www.ncbi.nlm.nih.gov/pubmed/
?term= 19340074).

All structures were downloaded in PDB format and
analyzed using Pymol (version 1.8) locally.

Sanger sequencing

Bi-directional direct Sanger sequencing was performed to
validate the variant identified by WGS. Genomic DNA
was amplified by PCR using GoTaq 2 × master mix (AB
gene; Thermo Scientific, Epsom, UK) and GJA3-specifc
primers designed with Primer3 http://bioinfo.ut.ee/
primer3-0.4.0/primer3/. PCR conditions were followed
as: 94 °C for 10 min of initial denaturation followed by 30
cycles of amplification of 30 s at 94 °C, 30 s at 60 °C, and
45 s at 72 °C. After the PCR products were reacted
with BigDye Terminator v3.1, they were run on ABI 3730
Genetic Analyzer (both from Applied Biosystems)
and analyzed using
SeqMan Pro (version 8.0.2 from DNASTAR) sequence
analysis. After validating the variant, family segregation
was performed in all the individuals.
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Results

Sixteen members of a large five generation British family
including 10 affected, 4 unaffected, and 2 spouses were
examined (Fig. 1). All the affected family members had
bilateral cataract and age of onset varied from birth to age
20 months. One Individual (III-10) was diagnosed at the
age of 3 weeks and also had glaucoma. One of the patients
(IV-2) had bilateral cataract at birth, surgery at age 11 years,
and suffered bilateral retinal detachment.

WGS was undertaken in two affected (IV-5, V-1) and
one unaffected (III-11) member of the family. Variant
annotation and filtering was performed using the Phenopolis
platform. From a total of 7,096,614 variants in the three
individuals, 549,719 were found to co-segregate in the two
affected individuals. After filtering for rare variants with a
homozygous frequency of 0 and allele frequency < 0.01 in
Gnomad and Kaviar, 33,310 variants remained. A gene list
of 97 cataract-associated genes was used for gene panel
screening, after which, 44 variants remained. The top
scoring variant on CADD (score of 27.4) was a known rare
heterozygous damaging variant, NM_021954.3:c.7 G > T;
p.D3Y, in GJA3 gene on chromosome 13q11-q12

(reference). Direct sequencing confirmed that this missense
mutation c.7 G > T in exon 2 of GJA3 co-segregated with all
affected members of the family (Fig. 2).

The p.D3Y mutation from aspartate (D3Y) to a tyrosine
in the in the NH2-terminal (NT) cytoplasmic tail of the
GJA3 protein is likely to affect the degree of metabolite
cell-to-cell coupling and is essential for the voltage sensi-
tivity. The aspartate is a negatively charged amino acid,
whereas tyrosine is uncharged, which could have some
effect on the hemichannel activity [23, 24] (Fig. 3).

Discussion

Here we report a missense mutation c.7 G > T in the gap
junction protein (GJA3) gene in a five generation English
pedigree with autosomal-dominant congenital lamellar cat-
aract. All the affected family members had bilateral cataract
and age of onset varied from birth to age 20 months.

Lamellar cataract is also referred to as zonular cataract
and is one of the most common phenotypes of autosomal-
dominant congenital cataract. The inner fetal nucleus is
made up of a clear lens surrounded by an opacified shell that

Fig. 1 Abridged pedigree of the British family with lamellar cataract. Squares and circles symbolize males and females, respectively. Open and
filled symbols indicate unaffected and affected individuals

Whole-genome sequencing reveals a recurrent missense mutation in the Connexin 46 (GJA3) gene causing. . . 1663



Fig. 2 Sequence analysis of GJA3. An unaffected individual (upper chromatogram illustrates a normal control and a missense mutation c.7 G > T
shown in affected member of the family with lamellar cataract

Fig. 3 Structure of the GJA3
protein. a Transmembrane view
of GJA3 https://www.rcsb.org/
pdb/explore/explore.do?
structureId= 2zw3. b View of
the GJA3 hemichannel https://
swissmodel.expasy.org/
repository/uniprot//Q9Y6H8
c Wild-type amino at position 3
(Aspartate) d Mutant amino acid
at position 3 (Tyrosine). The
side chain of the tyrosine
interferes with the hemichannel
activity
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is in turn surrounded by clear cortex, which may contain
opacities referred to as “riders” or “cortical spokes”.
Lamellar cataract represents a disturbance in the lens
development at a particular time and the cataractous “shell”
varies in size according to the stage of fetal development at
which the disturbance occurs [4, 16]. The elongated fiber
cells of the lens constitute the main bulk of the lens’ mass
and represent the target cells for cataract formation owing to
miscommunication; GJA3 protein mainly functions in gap
junction communication between these cells [25]. Connexin
46 mutations are phenotypically highly heterogeneous [9]
(summarized in Table 1).

In 1990, Willecke et al. [26, 27] were the first group to
assign GJA3 to chromosome 13, and after 9 years, Mackay
et al. found the first connexion 46 mutations in humans
causing autosomal-dominant congenital cataract. Connexin
46 comprises two exons encoding a transmembrane protein
of 435 amino acids, containing four transmembrane
domains (TM1-TM4), two extracellular loops (E1, and E2),
an intracellular loop (CL), and cytoplasmic NH2- and
COOH termini. Connexins share the same membrane
topology among all the family members. So far, 50 (novel
and recurrent) cataract-causing mutations in GJA3 have
been reported in various ethnic groups. Interestingly, half of
the mutations are found in China, and the remainder have
been found in other ethnic groups; 6 from India, 4 from
Australia, 3 from Denmark, 10 from UK, 2 from USA, and
1 from Honduras; and exhibiting different phenotypes
(Table 1).

In the present study, the recurrent p.D3Y(c.7G- > T)
change in GJA3 gene resulted in an aspartate (a negatively
charged amino acid) to tyrosine (an uncharged amino acid)
at position 3 within the NT cytoplasmic tail. The Asp-3
residue of GJA3 is phylogenetically conserved, hence, this
indicates aspartate is likely to be functionally important and
that the mutation may therefore have a detrimental phy-
siological effect. Several studies have suggested that the NT
along with E1 and TM1 contribute to the pore lining region
of the hemichannel and therefore any compromise in the
amino-acid residues may interfere with the conformation
and flexibility of NT and also with voltage gating [28–32].
Schlingmann and co-workers in 2012 has shown the
involvement of Asp-3 (D3Y) in the determination of the
cell-to-cell coupling and for the voltage dependent Cx46
hemichannels. This hypothesis is further supported by Tong
et al. (2013); they demonstrated the effect of D3Y on
reduced hemichannel activity and alterations in voltage
gating and charge selectivity. Lens fiber cells are dependent
on intercellular communication for their survival [33, 34].

Ebihara et al. 2010 [35] has reported the association of
connexin 46 with calcium and sodium influx in fiber cells
and their important role on the function and development of
the lens. Further, the important role of Cx46 in the delivery

of glutathione in the lens nucleus has been demonstrated.
Cx46 not only have major role in congenital cataract but
also age-related cataract, which may give rise to identify
new therapeutic strategies [36].

Here, we have found the recurrent p.D3Y (c.7G- > T)
mutation in the GJA3 gene in a British family with a dif-
ferent phenotype, lamellar cataract; where previously this
variant has only been reported in association with pul-
verulent cataract. These results show further heterogeneity
in inherited cataract, with the same mutation, on a different
genetic background, causing a different phenotype, pre-
sumably through diverse mechanisms.

Summary

What was known before

• Opacification of the ocular lens is clinically and
genetically a heterogeneous childhood disease.
• Previously, p.D3Y mutation in GJA3 gene was found in
a Hispanic family causing pulverulent cataract.

What this study adds

• In this study we have identified a recurrent mutation in
GJA3 in a large British pedigree causing the novel
phenotype of autosomal-dominant congenital lamellar
cataract.
• Our study show further heterogeneity in inherited
cataract, with the same mutation, on a different genetic
background, causing a different phenotype, presumably
through diverse mechanisms.
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