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Abstract

Parity and Primordial Perturbations on the Path to New Physics

by

Amara McCune

The interplay between particle physics models and their cosmological implications

provides a crucial set of constraints for model-builders. As upcoming experiments set out

to determine the particle nature of dark matter, detect primordial gravitational waves

(GWs), and map primordial non-Gaussianities (PNGs), a unique opportunity arises to

search for physics beyond the Standard Model (BSM) at scales that may be as high as

1013 GeV. This thesis explores these three examples of cosmological aspects of model-

building. We begin with a review of the problems that motivate the search for BSM

physics, touching on both the naturalness problems and the inflationary paradigm. Then,

we introduce a parity-based solution to the strong CP problem, motivating the question

of whether a model containing a heavy mirror copy of the SM gauge group may contain

a viable candidate for dark matter. We then turn to GWs, introducing a new source of

primordial GWs from stochastic fluctuations of scalar fields in the early universe. Finally,

we turn to effective field theories (EFTs) in de-Sitter space, introducing the problem in

the context of cosmological collider physics and initiating a systematic understanding

of EFT construction in inflationary spacetimes. In turn, we illustrate the promise of

near-future cosmological probes to provide insights into the underlying physics of our

universe.
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Preface

We begin this thesis with an extensive pedagogical introduction to the mathematical

foundations of the Standard Model (SM), focusing on understanding quantum field the-

ory through a group-theoretic lens. We then review concepts in effective field theory

(EFT), building up the techniques of Wilsonian renormalization and emphasizing the

origin of operator redundancies in enumerating a minimal EFT basis. We then go into

the ΛCDM model of cosmology, detailing the formalism of working with cosmological

perturbations and introducing the inflationary paradigm. Finally, we go over several

key problems that motivate the search for physics beyond the Standard Model (BSM),

including the naturalness problems, dark matter, and the microscopic considerations of

inflation. Readers familiar with this material may wish to proceed to chapter 2.

Although the strong CP problem is not the central feature of this thesis, I believe

chapter 2 provides an important overview of parity solutions to the strong CP problem

and their phenomenological features. The following chapter builds upon this work, pre-

senting a model that extends these ideas to feature a mirror copy of the entire SM gauge

group. This first half of the thesis underscores the importance of parity symmetry in

model-building, showing how models based in parity can solve key SM puzzles and lead

to a rich phenomenology that may be visible to near-future experiments.

The next half of the thesis, as the title suggests, focuses on primordial perturbations.

Chapter 4 considers a new source of gravitational waves, while chapter 5 then turns

xii



towards interactions of heavy particles during inflation. Both works were inspired by the

promise of cosmological collider physics, and seek to connect the considerations of early-

universe model building to cosmological observables that may be visible in an upcoming

suite of experiments.

Units Throughout this thesis, we will employ natural units in which ℏ = c = 1 unless

otherwise stated. Chapter 4 will explicitly write factors of H, the Hubble parameter,

while chapter 5 will not, in order to simplify notation. These factors can always be

restored via dimensional analysis.
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Chapter 1

A Tale of Two Standard Models

Over the past century, humanity has constructed two crowning achievements of science:

The Standard Model (SM) of particle physics and the ΛCDM model of cosmology, rep-

resenting our current best understanding of the large-scale structure and fundamental

building blocks of our universe. Our observations span nearly fifty orders of magnitude,

from the smallest experimentally confirmed particles to the size of the observable universe

itself.

These models are astonishingly precise in the phenomena they are able to capture,

while utilizing relatively simple and compact mathematical structures. This itself, as

captured by the above quote, is remarkable. Part of what makes this comprehension

possible is a separation of scales. We don’t need to know about quantum mechanics

to compute the trajectory of a ball thrown up in the air on Earth, a common problem

in introductory physics courses. Similarly, computations of scattering cross sections at

particle accelerators do not typically consider the effects of gravity, as its influence at this

scale is negligible. In other words, these degrees of freedom decouple from one another.

There are cases, however, in which we cannot consider these regimes to be indepen-

dent. Black holes are a classic example; matter that falls into a black hole is subject

1



CHAPTER 1. A TALE OF TWO STANDARD MODELS

to extreme spacetime curvature while being compressed toward a singularity. Relativis-

tic particles in strong gravitational fields require the considerations of both relativistic

quantum field theory (QFT) and general relativity. Other astrophysical objects, such as

neutron stars and white dwarfs, also present such environments. A particularly interest-

ing intersection of these domains lies in the beginning of the universe itself. Signatures

of these phenomena are therefore crucial testing grounds for new ideas in high-energy

physics, exploring the behavior of matter at higher energies or curved spacetimes at which

our two “standard models” fail to accurately converge.

Aside from the omission of gravity – incorporating only three of the four known

fundamental forces – there are many reasons to suspect that the SM is not the final story.

Much of the observed energy density in the universe also seems to remain unknown,

with baryonic matter comprising only about 5 percent of the universe’s mass-energy

budget. The rest is wrapped up in dark matter and dark energy, whose constituents and

underlying mechanisms remain unknown. Although the inflationary paradigm provides

a compelling explanation as to why the universe is isotropic and homogeneous on large

scales, the specific microphysics by which inflation occurs remains unknown.

The SM itself, however, also presents its puzzles. For example, why is the Higgs mass

measured to be 125 GeV, despite the possibility of substantial quantum corrections?

Why is there no apparent CP violation in the strong sector, despite the fact that it is not

a priori prohibited? What sets the value of the vacuum energy density, which is predicted

by standard methods in QFT to be some 50 or more orders of magnitude higher than its

measured value? This collection of puzzles, known as the naturalness problems, seek to

explain the existence of a large separation of scales, which historically has indicated the

presence of a new symmetry or degree of freedom.

Finally, there are the many questions that one may expect to be answered in a

Theory of Everything. In particular, we can ask what the origin of the SM’s structure is.

2
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The SM’s free parameters, namely its masses and mixing angles, have no known origin,

but could be explained by a more encompassing theory. The quarks and leptons are

arranged in a particular fashion, with each containing three generations, two families,

and a distinct, hierarchical structure in their mixing matrix. Where this hierarchy comes

from constitutes the SM’s flavor puzzle and remains an active area of research.

1.1 The Standard Model of Particle Physics

The first standard model we encounter is the one that is more often known as the

Standard Model (SM); the cosmological standard model is more often referred to as

ΛCDM model of cosmology. The SM of particle physics is made of up 17 fundamental

particles and 3 fundamental forces — the electromagnetic, strong, and weak forces —

under which these particles are charged. There is a surprising amount of structure in-

volved: There are 6 quarks and 6 leptons that can each be grouped into 3 generations

that interact in the same way under the electromagnetic and strong forces. Most of the

SM’s free parameters relate to this structure — such as the quark masses and mixing

angles — and have we have no verified explanation of where it comes from.

1.1.1 From Particles to Fields and Back Again

The idea of a particle as a tiny, indivisible element of matter dates back to the 6th

century BC. It wasn’t until the early 1900s that, following centuries of observations and

modeling of both the wave-like and particle-like properties of light, the idea of discrete

quanta was proposed by Max Planck as a resolution to “ultraviolet catastrophe” of black-

body radiation.

The advent of quantum field theory (QFT) in the subsequent decades formally intro-

duced the idea that a particle is not the most fundamental object comprising matter, but

3
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rather an excited state of an underlying quantum field. In this picture, one can quan-

tize a classical field theory by promoting the field variables to operators with canonical

commutation relations, then building the Hilbert space by applying creation and annihi-

lation operators to the field operators. Feynman showed the equivalency of this approach

to the path integral formalism, in which an amplitude is computed by exponentiating

the action and summing over all possible paths. There are upsides and downsides to

each formalism. Recent research in high energy theory has included the development of

spinor-helicity formalism to compute scattering amplitudes.

While the quantum field-theoretic notion of a particle is certainly useful, it is not

predictive. More predictive power came along in the 1930s when Wigner formulated

his namesake theorem, relating the Hilbert space of quantum states to the symmetry

transformations they are invariant under. This perspective led to a sharper definition: A

particle is an irreducible representation of the Poincaré group. In the rest of this section,

we will interrogate this definition, exploring the beautiful relationship between particle

physics, group theory, and representation theory along the way. Much of this discussion

is inspired by [1] [2].

Representation Theory

To start, we will build up some mathematical machinery, starting with the notion of

a group. A group G is a set with an associated group action, which we will denote ×,

that obeys the axioms:

1. There is an identity element e ∈ G such that e × g = g × e = g for each element

g ∈ G.

2. For each element g ∈ G, there is an inverse element g−1 ∈ G such that g × g−1 =

g−1 × g = I.

4
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3. For elements g1, g2, g3 ∈ G, (g1 × g2) × g3 = g1 × (g2 × g3). In other words, the

group action × is associative.

The group action × is commonly either addition or multiplication, but can be any other

operation that satisfies the axioms. We define G as abelian if, for g1, g2 ∈ G, g1 × g2 =

g2 × g1, i.e the group action is commutative on elements of G. The group is non-abelian

if it is non-commutative.

Given two groups G and H, a map f : G→ H is a group homomorphism if the group

structure of G is preserved,

f(g1 × g2) = f(g1)× f(g2) ∀ g1, g2 ∈ G. (1.1)

The group homormorphism further constitutes a representation of G if it maps G onto

the general linear group GL(V ) for a field F ,

f : G→ GL(V ), (1.2)

where again the group structure of G is preserved. For an n-dimensional vector space

V , GL(V ) is a group consisting of the set of all n-by-n invertible matrices plus the

group action of matrix multiplication that takes V → V . Representations of groups are

important because allow us to study entities which may be abstract — for example, the

group of permutation operations on a set of objects — as familiar, linear matrices. A

group may admit multiple representations, i.e. there is usually more than one map from

G to GL(V ) that retains the group structure of G. For finite groups, one must choose a

basis for the vector space V ; it is common to denote GL(V ) by GL(n, F ), where n is the

matrix dimension and F is the field over which the vector space is defined.

Let’s consider a simple example of the group of permutations of the set of numbers

5
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{1, 2, 3}. There are 3! = 6 ways to permute this set:

{1, 2, 3} → {1, 2, 3}, {1, 2, 3} → {1, 3, 2}, {1, 2, 3} → {2, 1, 3}

{1, 2, 3} → {2, 3, 1}, {1, 2, 3} → {3, 2, 1}, {1, 2, 3} → {3, 1, 2}
(1.3)

The group of permutations consists of the permutations themselves. Adopting cyclic

notation1, there are 5 group elements,

p1 = (1)(2)(3), p2 = (12)(3), p3 = (13)(2), p4 = (1)(23), p5 = (123), p6 = (132).

(1.4)

This permutation group is known as S3. Note that this indeed forms a group: We’ve

included the identity element, each element has an inverse (the first three elements listed

are their own inverses, while the last two are each other’s inverses), and composing any

two permutations is guaranteed to result in another permutation of the group. Not all

pi, pj commute, and so the group is non-abelian.

To form a representation of S3, we need to find a mapping S3 → GL(V ) that preserves

the structure of S3. For example, we see that the p2p3 = p5, and so the corresponding

representation matrices M2,M3,M5 must obey M2M3 =M5. Let’s find a representation

that maps,

f : S3 → GL(1,R). (1.5)

The choice of Mk = 1 for all k is an easy way to satisfy the group structure. This is an

example of a trivial representation.

To find more complicated representations, we introduce the idea of the generating set

of a group G: This is a subset of the group S in which any element of G can be expressed

1In this notation, (1 2 3) denotes the permutation that exchanges 1 → 2, 2 → 3, and 3 → 1. The
numbers contained in a cycle, denoted by closed parentheses, are exchanged with one another in this
way.
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as a combination of elements in S or their inverses. For S3, we can see that all of the

patterns of 1.3 can be achieved through successive applications of p2 and p4 — these

constitute the generating set. Now, let’s consider V to be a 3-by-3 dimensional vector

space, with basis vectors e1, e2, e3. Explicitly, the map is f : S3 → GL(3,R). Then, p1

should map onto the 3-by-3 identity matrix, p2 should swap the first and second basis

vectors, and so on. We arrive at the representation,

p1 =


1 0 0

0 1 0

0 0 1

 , p2 =


0 1 0

1 0 0

0 0 1

 , p3 =


0 0 1

0 1 0

1 0 0



p4 =


1 0 0

0 0 1

0 1 0

 , p5 =


0 1 0

0 0 1

1 0 0

 , p6 =


0 0 1

1 0 0

0 1 0


(1.6)

This is the defining representation; we can verify via matrix multiplication that it pre-

serves the S3 group structure. This representation is an example of a reducible represen-

tation because it has an invariant subspace: Multiplying any pi by the vector vsub =


1

1

1


returns vsub.

Formally, a representation is reducible if it has non-trivial sub-representation: Given

a representation f : G → GL(V ), if there exists a vector subspace U ⊂ V such that

f(g)u ∈ U for all u ∈ U , restricting f to the subspace U constitutes a sub-representation.

For example, if we have two representations, f1 : G → GL(V1) and f2 : G → GL(V2),

over the same field F , we can define a representation f1⊕f2 → GL(V1⊕V2) by the direct

sum,

(f1 ⊕ f2)(g) = f1(g)⊕ f2(g) =

f1(g) 0

0 f2(g)

 . (1.7)
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This new representation is of course reducible, and f1 and f2 are sub-representations. If

a representation does not contain non-trivial sub-representations, it is irreducible.

There is an easy way to see if a representation is reducible or not. we first need to

know its conjugacy classes. We say that two elements g1, g2 ∈ G are conjugate to one

another if there exists an element g3 ∈ G such that g1 = g3g2g
−1
3 , where g3 does not need

to be distinct from g1, g2; a conjugacy class is then a set of conjugate group elements.2

For S3, one can work out that there are three conjugacy classes: The identity element

p1 constitutes one class, the elements consisting of a single permutation p2, p3, and p4

constitute the second class, and the elements consisting of two permutations p5 and p6

constitute the third.

Given the representation f , we can define the character value of f by the map χ :

G→ C such that

χ(f)(g) = Tr[f(g)]. (1.8)

All elements of a group that belong to the same conjugacy class have the same character

value. Equivalent representations — where two representations h1 : G → GL(V ) and

h2 → GL(V ) are defined as equivalent if there exists a matrix A such that h1(g) =

A−1h2(g)A for all g ∈ G — also have the same character value. We can assemble these

character values into a character vector for each representation, which lives in a complex

vector space with dimension equal to the number of conjugacy classes. 3

Now, we are ready to state an important theorem for irreducibility: A representation

2This is an example of an equivalence relation: A binary relation between set elements that is reflexive,
symmetric, and transitive. Given this equivalence relation, we can form equivalence classes, i.e. split up
our set of group elements into sets that are equivalent, where g1 and g2 belong to the same equivalence
class if and only if they are equivalent. The equivalence classes will necessarily be disjoint.

3The representation theory literature employs the term “character” for both the trace of the repre-
sentation matrix for a particular conjugacy class and the vector assembling the traces of each conjugacy
class; I’ve separated these definitions here for clarity.
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f of a finite group G is irreducible if and only if

c∑
i=1

ni|χ(f)
i |2 = |G|, (1.9)

where c is the number of conjugacy classes of G and ni is the number of elements in the

ith conjugacy class. Let’s test this for the defining representation of S3. We find,

c∑
i=1

ni|χ(f)
i |2 = (1)(3)2 + (3)(1)2 + (2)(0)2 > |G| = 6, (1.10)

and so this representation is indeed reducible. The trivial representation is always irre-

ducible,

c∑
i=1

ni|χ(f)
i |2 = (1)(1)2 + (1)(1)2 + (1)(1)2 + (1)(1)2 + (1)(1)2 + (1)(1)2 = |G| = 6.

(1.11)

We can then count the number of irreps. The representations above are unitary and,

given two inequivalent unitary irreps, their corresponding matrices must be orthogonal.

This follows from Schur’s lemma, which states that, for two irreps h1 : G→ GL(V1) and

h2 : G→ GL(V2), if there is a matrix A such that

Ah1(g) = h2(g)A (1.12)

for all g ∈ G, then either A is a square invertible matrix and the irreps are equivalent or

A = 0. Then, for matrix elements of inequivalent irreps h1(g) and h2(g),∑
g∈G

h†1(g)ijh2(g)kl = 0 ∀ i, j, k, l. (1.13)

One can use Schur’s second lemma 4 to show more generally that, for any two irreps

h1(g) and h2(g), ∑
g∈G

h†1(g)ijh2(g)kl =
|G|
d
δilδjkδh1h2 ∀ i, j, k, l, (1.14)

4A = λI, λ ∈ C for h1 = h2, where I is the identity matrix of appropriate dimensionality.

9



CHAPTER 1. A TALE OF TWO STANDARD MODELS

where d is the dimension of the irreps (if equivalent). Letting i = j and k = l and

summing over i, k yields,∑
i,k

∑
g∈G

h†1(g)iih2(g)kk =
∑
g∈G

Tr[h†1(g)ii]Tr[h2(g)kk] =
∑
g∈G

(
χ(h1)(g)

)∗
χ(h2)(g)

=
∑
i,k

|G|
d
δikδikδh1h2 = |G|δh1h2 .

(1.15)

Because all group elements in the same conjugacy class have the same character value,

we can equivalently write this result as,

c∑
i=1

ni

(
χ
(h1)
i

)∗
χ
(h2)
i = |G|δh1h2 , (1.16)

which implies that the character vectors of inequivalent irreps are orthogonal in the

vector space of conjugacy classes. These irreducible character vectors then form a basis

in this vector space, and the character vectors for reducible representations can be written

as a linear combination of them. We can also think of the vector space of irreducible

representations, which has a number of dimensions ρ equal to the number of irreps. One

can work out5,

ρ∑
α=1

χ
(α)
i

∗
(g)χ

(α)
j (g) =

|G|
ni
δij, (1.17)

which tells us that This implies key result: The number of inequivalent irreps of a finite

group is equal to the number of conjugacy classes of the group. Finally, we can use the

fact that there will always be a trivial representation with a number of elements equal

to |G| to find the dimension of each irrep,

c∑
α=1

χ
(α)
1

∗
(g)χ

(α)
1 (g) =

c∑
α=1

d2α = |G|. (1.18)

For S3, this means that there are 3 irreps, one of which is the trivial represenation

which has dimension 1. This leaves us with 2 irreps to find, of which one should be

5The proof of this is rather involved, and we will not reproduce it here. It is, dare I say, an exercise
left to the reader.
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dimension 1 and the other dimension 2. We will eventually connect this to physics, so

we will focus on unitary irreps. Then, we can employ 1.9 to get the constraint,

χ2
a + 3χ2

b + 2χ2
c = 6, (1.19)

for the character values χa, χb, and χc corresponding to the identity conjugacy class,

2-cycle conjugacy class, and 3-cycle conjugacy class, respectively. We can then use the

orthogonality relation of 1.16 and take h1 to be the trivial representation to obtain,

χa + 3χb + 2χc = 0. (1.20)

This uniquely fixes the choice χa = 1, χb = −1, χc = 1.6

The orthogonality relations can be used to construct a very useful device, the char-

acter table for a group, which organizes the character values for each representation

according to their conjugacy class. The character table for S3, based on what we know

so far, is:

identity 2-cycles 3-cycles

trivial 1 1 1

sign 1 -1 1

2D 2 a b

The top row of the table gives the conjugacy class, while the leftmost column gives the

irrep. For the 2-dimensional representation, which we have not found yet, we’ve used

the variables a, b to label unknown characters. We do know that the trace of the 2-by-2

identity matrix is 2, and so we automatically know the character of the identity conjugacy

class. We can find a and b with a nice trick: The orthogonality relations imply that the

6Technically, based on these constraints alone, this choice is fixed up to a sign. The ambiguity is
resolved by recalling that this irrep still has to satisfy the properties of being a representation. In this
case, it turns out that the opposite sign choice does not result in a valid homomorphism. The valid
homorphism is the one that maps even permutations to 1 and odd permutations to -1. This is known
as the sign representation.

11
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rows and columns of the character table should be orthogonal. The completed table is

then:

identity 2-cycles 3-cycles

trivial 1 1 1

sign 1 -1 1

2D 2 0 -1

At last, we can use the character table to construct the 2-dimensional representation.

We know there is one identity element, three 2-cycles, and two 3-cycles. We know their

traces from the character values, we know that their matrix elements satisfy 1.13, and

we know that p2 and p4 constitute the generating set of S3. In general, we can use the

fact that the representation must maintain the group structure and the representation is

unitary to piece together that the 2-dimensional representation consists of,

p1 =

1 0

0 1

 , p2 =

−1/2 √3/2√
3/2 1/2

 , p3 =

 −1/2 −
√
3/2

−
√
3/2 1/2


p4 =

1 0

0 −1

 , p5 =

−1/2 −√3/2√
3/2 −1/2

 , p6 =

 −1/2 √
3/2

−
√
3/2 −1/2

 .

(1.21)

In this section, we’ve studied the group S3 and its representations, focusing on per-

mutations of the set of numbers {1, 2, 3}. A group, however, is an abstract entity, and

the “permuted objects” of the set can really be anything we want. For example, we can

imagine each element being a corner of an equilateral triangle; the permutations then

correspond to rotations and reflections of this triangle. In particular, we can see that

the 2-cycle permutations correspond to the three different ways of reflecting the triangle,

while the 3-cycle permutations correspond to the two directions in which to rotate it.

Because of this direct correspondence to symmetry transformations, the groups Sn are

more generally known as symmetric groups.

12
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The Sn groups are quite fundamental in the study of group theory. This is due

to Cayley’s theorem, which states that every group G of order n is isomorphic to a

subgroup of Sn. This is a remarkable result, because it means that we can map every

finite group G → Sn, and that the group structure can be characterized by bijective

mappings G × G → G. It also allows us to define a regular representation for each G

based in our knowledge of Sn. This is found as follows. The dimension of the regular

representation corresponds to the number of elements in the group, e.g. for S3, the

regular representation consists of six 6-by-6 matrices. Each element is assigned a basis

vector: {e, e(12)(3), e(13)(2), e(1)(23), e(123), e132}. The matrix corresponding to each element

can then be constructed by working out how that particular element acts on the other

group elements and permuting the matrix columns accordingly. For example, the matrix

for p2 is, 

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 1 0


, (1.22)

because p2p1 = p2, p2p2 = p1, p2p3 = p5, and so on.

The regular representation is particularly important because it can be decomposed

exactly as the direct sum of all irreps of the group,

freg =
c⊕

α=1

dαf(α), (1.23)

where α labels each irrep and dα is its corresponding dimension.
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Lie Groups and Lie Algebras

We’ve now built up our study of Sn and seen that groups are a powerful tool for

studying symmetries. Sn groups are discrete, and so the rotations and reflects they

describe occur about fixed axes. What if instead we are interested in describing, for

example, the rotations and reflections of a circle? In this case there are no fixed axes,

and an infinite number of rotations and reflections can leave the circle invariant. The

group describing these transformations must be continuous.

S3 is a discrete group, and so the rotations and reflections it describes occur about

fixed axes. What if instead we are interested in describing, for example, the rotations

and reflections of a circle? In this case there are no fixed axes, and an infinite number

of rotations and reflections one could perform that leave the circle invariant. The group

describing these transformations must then be continuous, and we can think of it as

a continuous space M with dimension corresponding to the number of parameters the

group elements depend on. The parameters themselves must also be continuous. In order

to associate each point in M with another, in the mapping M → M , we must be able

to “walk” along this space without encountering any discontinuities. We must also be

able to describe the change from one point to another infinitesimally close point. These

requirements restrict M to be a smooth, differentiable manifold. Such groups are known

as Lie groups. Formally, a Lie group is a group that is also a smooth, differentiable

manifold, endowed with group actions of multiplication µ : M ×M → M and inversion

ι :M →M that are smooth maps.

One Lie group we have already encountered is GL(n,C), the group of n×n invertible

matrices. These matrices are described by n2 parameters which may be complex, and so

the dimension of this group is 2n2.7 This Lie group is closed, meaning that its underlying

7It is useful to emphasize that while the group elements are n × n matrices, the dimension of the
group is given by the number of parameters needed to describe an element, and the dimension of the
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manifold is boundaryless and compact8. All closed Lie groups are subgroups of GL(n,C),

and therefore also matrix groups. Matrix groups we encounter over and over again in the

study of particle physics include:

1. O(n): The group of all n× n orthogonal matrices. Its dimension is n(n−1)
2

.

2. U(n): The group of all n× n unitary matrices. Its dimension is n2.

3. SO(n): The group of all n × n orthogonal matrices with determinant equal to 1.

Its dimension is n(n−1)
2

.

4. SU(n): The group of all n × n unitary matrices with determinant equal to 1. Its

dimension is n2 − 1.

5. Spin(n): A group that is a double cover9 of SO(n). It therefore also has dimension

n(n−1)
2

.

Each of these groups can be thought of as groups of transformations on some target space,

the space of parameters describing the group. For example, the group elements of SO(2)

are given by, cos(θ) − sin(θ)

sin(θ) cos(θ)

 , (1.24)

for θ ∈ R. This is the familiar matrix of rotations in R2. We can choose any parametriza-

tion, though it is useful to choose a set of parameters βb, with b = 1, ..., N , such that the

matrices of matrix Lie group elements are often not equal to the dimension of the group itself.
8A topological space is compact if its parameters vary over a closed interval.
9The cover of a group G is another group H that maps onto G in a way that maintains certain

structures of G. Formally, H covers G if there is a surjective homomorhism ϕ : H → G such that the
kernel of ϕ (the set of group elements that ϕ maps to the identity) is a normal subgroup (a subgroup
that is invariant under conjugation of g ∈ G) and the quotient H/ker(ϕ) is isomorphic to G. A double
cover is a cover in which |H| = 2|G|.
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group element for β = 0 is the identity,

g(β)
∣∣
β=0

= e, (1.25)

where β is to be interpreted as the total set of βb. The representation f then obeys

f(β)|β=0 = 1. The Taylor expansion of f(β) about β = 0 is then,

f(β) = f(β)
∣∣
β=0

+ βb

(
∂

∂β
f(βb)

) ∣∣
β=0

+ ... = 1 + βb

(
∂

∂βb
f(β)

) ∣∣∣∣
β=0

+ ... (1.26)

where we sum over b. This is more commonly written as,

f(β) = 1 + iβbXb + ... (1.27)

where we define

Xb ≡ −i
(

∂

∂βb
f(β)

) ∣∣∣∣
β=0

(1.28)

to be the group generators. We will see that these generators indeed generate the group.

Consider a set of infinitesimal parameters βb/k, where k is large. An infinitesimal group

element near the identity is then given by,

f(dβ) = 1 + i

(
βb
k

)
Xb. (1.29)

We can then recover any group element by raising the infinitesimal one to the power of

k, (
1 + i

(
βb
k

)
Xb

)k
= 1 + iβbXb −

β2
b (k − 1)

2k
X2
b −

iβ3
b (k − 2)(k − 1)

6k2
X3
b + ... (1.30)

In the limit k →∞, this becomes

lim
k→∞

(
1 + i

(
βb
k

)
Xb

)k
= 1 + iβbXb −

1

2
β2
bX

2
b −

i

3!
β3
bX

3
b + ... = eiβbXb . (1.31)

This means that we can write the group elements directly in terms of the generators.

16



CHAPTER 1. A TALE OF TWO STANDARD MODELS

Now, let’s say we have two elements of the same group g1, g2 ∈ G in the represen-

tation f . According to this result, we can write the elements as f(g1) = eiβaXa and

f(g2) = eiβbXb , where g1 and g2 may be generated by different generators (or combina-

tions thereof). While they are parameterized in the same way, they will not in general

share the same parameter values. Multiplying these elements yields,

f(g1)f(g2) = ei(βaXa+βbXb). (1.32)

We know that f(g1)f(g2) should yield some f(g3), and so there must be some parameter

choices β3 and combination of generators X3 such that,

ei(βaXa+βbXb) = eiβcXc . (1.33)

This implies that the generators Xb must form an algebra, which we call the Lie algebra

of the group. We can see why this is by finding the commutator of the group generators.

We can write,

ln
(
1 + eiβaXaeiβbXb − 1

)
= iβcXc. (1.34)

Taylor expanding, we find,

(
eiβaXaeiβbXb − 1

)
− 1

2

(
eiβaXaeiβbXb − 1

)2
+ ...

=

(
iβaXa + iβbXb − βaXaβbXb −

1

2
β2
aX

2
a −

1

2
β2
bX

2
b

)
− 1

2
(iβaXa + iβbXb − ...)2 + ...

=

(
iβaXa + iβbXb − βaXaβbXb −

1

2
β2
aX

2
a −

1

2
β2
bX

2
b

)
− 1

2

(
−β2

aX
2
a − βaXaβbXb − β2

bX
2
b − βbXbβaXa + ...

)
+ ...

= iβaXa + iβbXb −
1

2
βaXaβbXb +

1

2
βbXbβaXa + ... = iβcXc. (1.35)

This yields the commutator,

[βaXa, βbXb] = 2i (βaXa + βbXb − βcXc) + ... (1.36)
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where the ellipses denote further terms in all expansions. The result, leaving the details

to [2] is,

[Xa, Xb] = ifabcXc (1.37)

for generators Xa, Xb, and Xc, and constants fabc known as structure constants. These

can be computed for any nontrivial representation and define the algebra for each group.

The Lie algebra is typically easier to work with than the Lie group, because the

algebra is a vector space. Formally, the Lie algebra of a group G is the vector space

g over a field F , endowed with a binary operation called the Lie bracket that maps

[ , ] : g× g→ g. The bracket satisfies the properties:

1. Bilinearity: [ax + by, cz] = [ax, cz] + [by, cz] for all a, b ∈ F and x, y, z ∈ g.

2. Asymmetry: [x,y] = -[y,x] for all x, y ∈ g.

3. The Jacobi identity: [x, [y,z]] + [z, [x,y]] + [y, [x,z]] = 0 for all x, y, z ∈ g.

To recap, we’ve introduced the related concepts of both Lie groups and Lie algebras.

A Lie group is a group that is also a smooth differentiable manifold, and we can apply

all of the tools of representation theory to them. The group elements can be written in

terms of infinitesimal group generators, which are defined such that there is one generator

for each continuous parameter of the group. The set of all linear combinations of the

generators constitutes a vector space which is the Lie algebra. Given the Lie algebra,

one can find the group elements by exponentiating the generators according to 1.31.

Notationally, a Lie group is written as e.g. SU(n), whereas its corresponding Lie algebra

is written as su(n). Each Lie group has a corresponding Lie algebra, and multiple Lie

groups may share the same Lie algebra. We can construct representations of the Lie

algebra in analogous way to Lie groups as the mappings f : g → gl(V ) such that the
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algebra homomorphism is preserved. The homomorphism for a Lie algebra is,

f([x, y]) = f(x)f(y)− f(y)f(x). (1.38)

An especially nice property of a Lie algebra is its Casimir invariant, which is an

element that commutes with all elements of the Lie algebra. The most commonly used

Casimir invariant is the quadratic Casimir, defined as

C =
∑
i,j

κijXiXj, (1.39)

for X ∈ g. κij is the inverse of the Killing form10. Casimirs are important for labeling

the irreps of a Lie algebra according to their eigenvalues.

Given a Lie group, we would like to be able to find its irreps. Because there is

a corresponding Lie algebra for every Lie group, and the Lie algebras are linear, we

can study the representations of Lie groups by studying the representations of their Lie

algebras. Below, we will introduce representations that are particularly useful to our

central question of how to understand particles as irreps of the Poincaré group.

The adjoint representation. The adjoint representation is comprised of the genera-

tors themselves, and is way to represent the elements of the group as linear transforma-

tions of its Lie algebra. Denoting the matrices of the adjoint representation by Ta, we

have,

[Ta]bc ≡ −fabc. (1.40)

These matrices by definition obey,

[Ta, Tb] = ifabcTc. (1.41)

The dimension of the adjoint representation is then given by N , the number of generators

of the group (also the number of parameters specifying each group element).

10This is a bilinear form κ : g× g→ R or C such that κ(Xi, Xj) = Tr(TiTj), where T gives X ∈ g in
the adjoint representation, described below.
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The fundamental representation. For Lie groups, the fundamental representation

is equivalent to the defining representation, which is given by the matrices of the Lie

group itself. For example, the fundamental representation of SO(n) is given by the n×n

simple orthogonal matrices.

Tensor representations. The fundamental representations of SO(n) associate each

element of SO(n) to a rotation matrix that specifies how an n-vector transforms in Rn,

v′a =
n∑
i=1

Raivi. (1.42)

This particular representation is sometimes known as the vector representation because

of this property. We can also consider how higher-dimensional objects transform under

the rotation matrices like matrices,

M ′
ab =

n∑
i=1

RaiRbjMij (1.43)

and tensors,

T ′
abc =

n∑
i=1

RaiRbjRckTijk. (1.44)

Letting n = 3 for illustrative purposes, we can see that a 3-vector will transform according

to 1.42, a 3 × 3 matrix will transform according to 1.43, and a 3 × 3 × 3 tensor will

transform according to 1.44. While the 3 representation11 tells us how a 3-component

vector transforms under SO(3), we can similarly arrange the 9 components of M ′
ab in

a 9-component vector, with each element of SO(3) represented by a 9 × 9 matrix with

components RaiRbj. This is the 9 representation. We notice that this representation is

built from the tensor product of the 3 representation,

9 = 3⊗ 3. (1.45)

11The notation n denotes a representation of a Lie group in which each element is associated with
an n×n-dimensional matrix. For complex representations, we distinguish between the n representation
and the complex conjugate n representation.
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Similarly, we can construct a representation,

27 = 3⊗ 3⊗ 3, (1.46)

in which we arrange the 27 components of T ′
abc into a 27-component vector, with each ele-

ment of SO(3) represented by a 27×27 dimensional matrix with components RaiRbjRck.

We can build higher-rank tensor representations in the same way.

Recall that we can always decompose a tensor into its symmetric and anti-symmetric

parts. For example,

Mij = Sij + Aij, (1.47)

with

Sij =
1

2
(Mij +Mji), Aij =

1

2
(Mij −Mji). (1.48)

One can show that S and A are invariant under the action of 1.43. Because S has 6

independent components and A has 3 independent components, we can decompose the

9 representation as,

9 = 6⊕ 3. (1.49)

The 6 representation can be further decomposed into 6 = 5⊕1, because the trace (which

is symmetric) is invariant under 1.43. In full, the decomposition into invariant subspaces

is,

9 = 5⊕ 3⊕ 1. (1.50)

For SO(n), a rank-m tensor transforms in the tensor product representation,

n⊗ n⊗ ...⊗ n, (1.51)
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where we take the direct product m − 1 times. Studying how these general tensors

decompose into irreps leads to the familiar Clebsch-Gordan coefficients.

Let’s now consider tensor representations of SU(n). The matrices are now unitary

instead of orthogonal, and can be complex-valued. We then construct tensor repre-

sentations with n as well as n. Objects with upper indices transform under products of

U ∈ SU(n) while objects with lower indices transform under products of U † ∈ SU(n). For

example, the tensor T ijk then transforms under products of unitary matrices U ∈ SU(n)

as,

(T ′)ijk =
n∑

i,j,k=1

U i
aU

j
b (U

†)ckT
ab
c , (1.52)

and defines the tensor product representation n⊗ n⊗ n.

Spin representations. A spin representation is a type of projective representation

12. We’ve already been introduced to the spin group Spin(n) as the double cover of

SO(n), meaning that there is a group homomorphism Spin(n)→ SO(n) with kernel Z2.

The spin representations of SO(n) are defined to be the representations of Spin(n) that

cannot be mapped onto ordinary representations of SO(n).

We will construct explicit examples of the spin representations for the Lie algebra

su(2), which will be useful to later discussions. The derivation is familiar in the con-

text of introductory quantum mechanics, but we will be explicit in our treatment of

representation theory. Let L1, L2, L3 form a basis for su(2). Its bracket is then,

[Li, Lj] = i

3∑
i,j=1

ϵijkLk. (1.53)

Representations of the algebra — here given by the matrices Γ1,Γ2,Γ3 — will also follow

12A projective representation is given by matrices T (g), g ∈ G such that T (g1)T (g2) =
c(g1, g2)T (g1, g2), and is defined only for SO(n). In other words, the group structure is maintained
only up to a constant c(g1, g2).
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this structure,

[Γi,Γj] = i

3∑
i,j=1

ϵijkΓk. (1.54)

Constructing the representation up to a similarity transformation, we can choose Γ3 to

be diagonal. Its eigenstates can be labeled by integer m,

Γ3|m⟩ = m|m⟩. (1.55)

We then label the highest weight state by j, where j is the largest eigenvalue of Γ3 in a

representation. Note that our representation is finite-dimensional. We define raising and

lowering operators,

Γ± =
1√
2
(Γ1 ± iΓ2). (1.56)

The states are normalized,

Γ+|m⟩ = Nm|m+ 1⟩, (1.57)

where Nm = 1
2
j(j + 1)− 1

2
m(m+ 1). This can be computed by fixing the normalization

Γ−|m⟩ = |m − 1⟩ and noting that Γ+|j⟩ = 0. We can then recursively construct the

2j + 1 states, | − j⟩, ...|0⟩, ..., |j⟩. The (2j + 1)-dimensional representation is known as

the spin-j representation, with states labeled by |j,m⟩. The representation must have

positive integer dimension, and so j must be a multiple of 1/2. These are irreps of su(2),

and there are an infinite number of them.

We can then find the spin representation explicitly for a given j. The states of the

spin-1/2 representation are |1/2, 1/2⟩ and |1/2,−1/2⟩. Thinking of the states as basis

vectors of a two-dimensional vector space,1

0

 = |1/2, 1/2⟩,

0

1

 = |1/2,−1/2⟩, (1.58)
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we can solve for Γ1,Γ2,Γ3. We find that they are the Pauli matrices,

Γ1 =
1

2

0 1

1 0

 , Γ2 = −
i

2

 0 1

−1 0

 , Γ3 =
1

2

1 0

0 −1

 . (1.59)

The quadratic Casimir for su(2) is Γ2 ≡ Γ2
1 + Γ2

2 + Γ2
3. One can find,

Γ2|j,m⟩ = j(j + 1)|j,m⟩, (1.60)

which corresponds to the total angular momentum, as seen in introductory quantum

mechanics.

Lie groups and Lie algebras are a rich topic, and we could say many more interesting

things about them. To make progress with our central question, we will now focus on

one particular Lie group, the Poincaré group.

Defining a Particle

The Poincaré group is the group of all spacetime symmetries in Minkowski spacetime.

It acts on spacetime coordinates xµ as,

xµ → (x′)µ = Lµνx
ν + aµ, (1.61)

where we sum over spacetime indices as usual, Lµν are components of a Lorentz transfor-

mation, and aµ denotes a spatial translation. The Lorentz group is the group SO(3, 1),

where the time and spatial dimensions are denoted separately, and it is the group of

rotations in four dimensions with respect to the Minkowski metric. Because it shares

many properties with SO(4), the group of rotations in four dimensions with respect to

the Euclidean metric, we will start our discussion there.
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SO(4). The fundamental (defining) representation of SO(4) is given by the set of spe-

cial orthogonal 4 × 4 matrices. Its double cover is Spin(4). We can further show that

there is an isomorphism Spin(4) ≃ SU(2)× SU(2) =⇒ SO(4) ≃ SU(2)× SU(2) =⇒

so(4) ≃ su(2)⊕ su(2). Building on the finite irreps we found for su(2), the double cover

relationship tells us that the irreducible projective representations of so(4) are labeled

by two half-integers j1, j2 and have dimension (2j1 + 1)(2j2 + 1). The so(4) Lie algebra

is then given by two copies of the Lie algebra of su(2), which we label by generators L±,

[L+i, L+j] = i
3∑

i,j=1

ϵijkL+k

[L−i, L−j] = i
3∑

i,j=1

ϵijkL−k.

(1.62)

The L+, L− should also commute,

[L+i, L−j] = 0, (1.63)

for i, j = 1, 2, 3. The so(4) Lie algebra is more commonly written as,

[Ji, Jj] = i
3∑

i,j=1

ϵijkJk

[Ji, Kj] = i

3∑
i,j=1

ϵijkKk

[Ki, Kj] = i

3∑
i,j=1

ϵijkKk,

(1.64)

which is the same as that given by L± with the basis change L±i =
1
2
(Ji +Ki).
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The Lorentz group. The Lie algebra of the Lorentz group is given by,

[Ji, Jj] = i
3∑

i,j=1

ϵijkJk

[Ji, Kj] = i
3∑

i,j=1

ϵijkKk

[Ki, Kj] = −i
3∑

i,j=1

ϵijkKk,

(1.65)

which is the same as the Lie algebra for so(4), except we’ve picked up a minus sign on

the third commutator, i.e. Ki → iKi. Going through the same arguments as in the case

of so(4), we find that we can study the Lorentz group as the Lie algebra isomorphism,

so(3, 1)C ≃ su(2)C ⊕ su(2)C, (1.66)

where the subscript denotes the basis change in the third commutator13. We can identify

the generators J as generating rotations. Satisfying the commutators leads to the boost

matrices for K, and we identify these as the generators of the boosts. We see that the

Lie algebra corresponding to the Lorentz group is 6-dimensional.

The Poincaré group. Finally, the Lie algebra of the Poincaré group is given by,

[Pµ, Pν ] = 0

[Mµ,nu, Pρ] = −i(ηµρPν − ηνρPµ)

[Mµν ,Mρ,σ] = −i(ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ),

(1.67)

where the rotations are given by Ji =
1
2
ϵimnM

mn and the boosts are given by Ki =Mi0,

the Pµ are the generators of the translations, and ηµν is the Minkowski metric.

There are two Casimir invariants for the Poincaré group. The first is P 2 = PµP
µ,

and the second is W 2 = WµW
µ, with Wµ ≡ −1

2
ϵµνρσM

νρP σ, which is known as the

13This is known as complexification. We can get back to real Lie algebras by noting that there is an
isomorphism between su(2)C and sl2(C), where the latter is the special linear group. One eventually
finds that so(3, 1)C ≃ sl2(C), and from there we can restrict to the reals.
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Pauli-Lubanski pseudovector. Because the eigenvalue of P 2 on state |p⟩ is −m2, the

representations of the Poincaré group are labeled by m2. We can then study the irreps

of the Poincaré group based on the mass and momentum of eigenvector |p⟩:

1. Zero mass and zero momentum. The only finite-dimensional unitary representation

in this case is the trivial representation. This is the vacuum, and it is invariant

under all symmetries of the Poincaré group.

2. m > 0. For positive mass in the rest frame, pµ = (m, 0, 0, 0). We then find the little

group: The subgroup of the Poincaré group that leaves pµ invariant. We find that

it is SO(3), whose Lie algebra is isomorphic to su(2). SO(3) then has an infinite

number of irreps, labeled by half-integer j with dimensions 2j+1. We’ve seen that

j corresponds to the spin angular momentum.

3. Zero mass and nonzero momentum. Choosing pµ = (p, 0, 0, p), the little group is

the special Euclidean group SE(2). It has one generator of rotations J , and two

generators of translations P1, P2. The eigenvector under translations is Pi|k⟩ = k|k⟩

and, for k = 0, the little group is SO(2). Its irreps are one-dimensional and indexed

by helicity h. Because there are spin representations, h should also be a half-integer.

For k ̸= 0, the little group is trivial.

We are now ready to state Wigner’s theorem, which classifies unitary representations

of the Poincaré group. Following the above analysis, the irreps of the Poincaré group are

indexed by the mass m of the particle, and either its spin j (if it is massive) or its helicity

h (if it is massless). A particle is then an irreducible representation of the Poincaré group,

and it can be either massive or massless. Massive particles are indexed by their spin,

while massless particles are indexed by their helicity.

We can go a step further and begin to classify these particles. Consider again irreps

for whichm > 0, whose little group is SO(3). Further, recall that spin representations are
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defined for SO(n) and are projective representations, which preserve the group structure

up to a constant. Bargmann’s theorem states that every projective unitary representa-

tion14 of a group G can be lifted15 to an ordinary representation of the universal cover of

G. The universal cover of SO(3) is SU(2), and so all projective unitary representations

of SO(3) come from SU(2). We can then find the projective irreps of SO(3) by expo-

nentiating the irreps of su(2). And because Spin(3) is the double cover of SO(3), these

projective representations will be spin representations.

We found that the irreps of su(2) can be indexed by a half integer j and are (2j+1)-

dimensional. Let’s consider both j = 1/2 and j = 1. For j = 1/2, we found that the

generators of the Lie algebra were the Pauli matrices. We can then choose elements of the

Lie algebra θ1Γ3, θ2Γ3 where θ1, θ2 ∈ R to find two elements of SO(3) via exponentiation,

R(θ1) = eiθ1Γ3 =

eiθ1/2 0

0 e−iθ1/2

 , R(θ2) = eiθ1Γ3 =

eiθ2/2 0

0 e−iθ2/2

 . (1.68)

Multiplying these elements together should also yield an element of the group,

R(θ1)R(θ2) =

ei(θ1+θ2)/2 0

0 e−i(θ1+θ2)/2

 . (1.69)

For θ1 + θ2 = 2π, this becomes,

R(θ1)R(θ2) = −

1 0

0 1

 . (1.70)

In rotating by 2π, we have picked up a minus sign, rather than returning to the iden-

tity. This is the definition of a projective representation; the group structure has been

preserved up to a constant. This representation is therefore a spin representation.

14Technically, this theorem only applies to groups whose Lie algebra cohomology satisfy certain prop-
erties; we will not detail this further except to say that all groups we will consider satisfy such properties.

15A projective representation is lifted if it is possible to choose a projective representation T (g) ∈ T̃ (g),
where T̃ (g) is a representation of the projective linear group PGL(V ), such that the group structure is
preserved exactly.
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For j = 1, we can again solve for Γ1,Γ2,Γ3 to find,

Γ1 =
1√
2


0 1 0

1 0 1

0 1 0

 , Γ2 = −
i√
2


0 1 0

−1 0 1

0 −1 0

 , Γ3 =


1 0 0

0 0 0

0 0 −1

 . (1.71)

We can do the same exercise to find,

R(θ1)R(θ2) = eiθ1Γ3eiθ2Γ3 =


ei(θ1+θ2) 0 0

0 1 0

0 0 e−i(θ1+θ2)

 =


1 0 0

0 1 0

0 0 1

 for θ1 + θ2 = 2π.

(1.72)

Rotating by 2π has yielded the identity matrix. We can repeat this process for any half

integer j, and the punchline is: For integer j = 1, 2, ..., the elements of SO(3) transform

as ordinary representations, while for half integer j = 1/2, 3/2, ..., the elements of SO(3)

transform as spin representations. Objects that transform under the ordinary represen-

tations are vectors, while the objects that transform under the spin representations are

spinors. This is a nice way to see that bosonic particles, with integer spin, transform as

vectors while fermionic particles, with half integer spin, transform as spinors.

Spinors are equivalently, and more commonly, defined as elements of a vector space

linearly represented by the Clifford algebra. This is a Lie algebra with a bracket

{γµ, γν} = 2ηµν (1.73)

where γµ are the gamma matrices, defined as,

γ0 =

I 0

0 −I

 , γi =

 0 σi

−σi 0

 , (1.74)

where I is the 2 × 2 identity matrix, and σi are the Pauli matrices. The γ5 defined by

γ5 = iγ0γ1γ2γ3. A spinor field is “left-handed chiral” or “right-handed chiral” depending
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on whether it transforms as,

ψL = PLψ or ψR = PRψ, (1.75)

respectively. PL and PR are the projection matrices,

PL =
1− γ5

2
, PL =

1 + γ5

2
. (1.76)

As defined, ψL and ψR are Weyl spinors, while ψ =

ψL
ψR

 is the Dirac spinor.

Particles and fields. In quantum mechanics, our system is built from states occupying

some Hilbert space and operators that act upon the states. A transformation on the

system can be captured by a unitary operator U acting on the state,

|ψ⟩ → |ψ′⟩ = U |ψ⟩. (1.77)

Ensuring that this operator is unitary means that the inner product of states is un-

changed, and so probabilities are conserved. The system should also evolve in time as,

|ψ′(t)⟩ = e−iH(t−t0)U |ψ′(t0)⟩, (1.78)

which implies that U commutes the Hamiltonian H. Each eigenvalue of the Hamiltonian

can be associated with an irrep of its symmetry group, and the eigenfunctions give the

basis for the space of states. This state space — the Hilbert space — decomposes into a

direct sum of subspaces, each of which transform irreps of the symmetry group.

In QFT, fields are operator-valued and act upon an infinite-dimensional Hilbert space.

We can then think of our symmetries as acting on the operators,

O → O′ = U †(g)OU(g), (1.79)
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where U is again unitary. The symmetry then acts linearly on the fields,

ϕi(x)→ ϕ′
i(x) = U †(g)ϕi(x)U(g) =M j

i (g)ϕj(x), (1.80)

where M j
i (g) is a representation of the symmetry group.

There are many layers of mathematical structure we’ve built up to reach this point.

First, we’ve developed the notion of a symmetry group, which is an abstract object.

Then, we built up representations of the group on a vector space V over a field F .

Finally, the group can be represented by matrices which act on the fields. To finish out

the connection, we can think of the irreps of the Poincaré group — the particles — as

forming a basis for the Hilbert space of the QFT, and the fields are operator-valued and

act on these states.

1.1.2 Symmetries and their Breaking

As we’ve now seen, symmetry plays in indispensable role in QFT. Thus far we’ve

studied Poincaré invariance, a spacetime symmetry and example of a local symmetry due

to its dependence on a spacetime coordinate. Local symmetries are important due to their

connection to charges and conservation laws; they are in contrast to global symmetries

which are the same at every point in spacetime. In addition to spacetime symmetries,

particles may obey internal symmetries, which act on the internal space generated by

the fields. The Coleman-Mandula theorem tells us that, in spacetime dimensions greater

than 1 + 1, the symmetry group of an interacting QFT will factorize as the Poincaré

symmetry × internal symmetries 16.

A QFT may be invariant under any number of symmetries, whether accidental or im-

posed, and they lead to a rich variety of phenomena. In this section, we will review aspects

of both continuous and discrete symmetries, for both global and local transformations.

16There are two important exceptions to this theorem, conformal invariance and supersymmetry, which
we will not discuss here.
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Continuous Symmetries

Emmy Noether, in her namesake theorem, proved the correspondence between con-

tinuous symmetries of the action and conserved currents. To illustrate, let’s consider a

Lagrangian density L that is invariant under a translation symmetry xµ → x′µ = xµ+aµ.

The variation of the action is given, in general, by

δS =

∫ (
∂L

∂(∂µϕ)
δ(∂µϕ) +

∂L
∂ϕ

δϕ

)
d4x. (1.81)

Integrating by parts and applying the Euler-Lagrange equations yields,

δS =

∫
∂µ

(
∂L

∂(∂µϕ)
δϕ

)
d4x. (1.82)

We can Taylor expand to find the change in the field under the infinitesimal translation:

δϕ = −aν∂νϕ. The variation of the action is then,

δS = −aν
∫
∂µ

(
∂L

∂(∂µϕ)
∂νϕ

)
d4x. (1.83)

Which can be rewritten in terms of the energy-momentum tensor,

δS = aν
∫
∂µT

µν d4x, (1.84)

where

T µν =
∂L

∂(∂µϕ)
∂νϕ− ηµνL. (1.85)

ηµν is the usual Minkowski metric. For the action to be invariant under the translation,

δS = 0. This implies,

∂µT
µν = 0. (1.86)

This implies that, if the action is invariant under translations, both energy T 00 and

momentum T 0i are conserved.
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Global Symmetries

Noether’s theorem motivates the concept of charge. If we consider two complex

scalars, ϕ1 and ϕ2, we can impose a symmetry under a phase rotation,

ϕ1 → eiα1θϕ1, ϕ2 → eiα2θϕ2. (1.87)

The Lagrangian for a model with these fields can be built by requiring each term to be

invariant under both U(1) symmetries,

L = ∂µϕ†
1∂µϕ1 + ∂µϕ†

2∂µϕ2 − V (ϕ1, ϕ2), (1.88)

where V (ϕ1, ϕ2) is a general, q1- and q2-conserving potential. The Noether currents are,

jµ1 = i(ϕ†
1∂

µϕ1 − ϕ1∂
µϕ†

1), jµ2 = i(ϕ†
2∂

µϕ2 − ϕ2∂
µϕ†

2) (1.89)

By Noether’s theorem, these are conserved quantities. We can integrate the first compo-

nent of the current, corresponding to the charge density, to find the Noether charge,

Q1 =

∫
d3x j01 . (1.90)

While Q1 gives the total amount of charge for the system, q1 corresponds to the charge

quantum number, and is what we typically think of as the “charge” of a particle. Because

we’ve discussed only global continuous symmetries, with no spacetime dependence, this

scenario corresponds to classical electrodynamics. We can further identify q1 and q2 as

the generators of the corresponding U(1) symmetries.

In the case of fermions, consider two spinor fields, ψ1 and ψ2. A U(1) phase rotation

corresponds to,

ψL → eiqLθψL, ψR → eiqRθψR. (1.91)

If qL ̸= qR, this symmetry is known as chiral. If not, it is a vectorial symmetry.
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Local Symmetries

Considering now just one scalar field ϕ, we can see what happens when make θ a

continuous parameter. The transformation is,

ϕ(x)→ eiqθ(x)ϕ(x), (1.92)

with the complex conjugate transforming as usual,

ϕ(x)† → e−iqθ(x)ϕ(x)†. (1.93)

The kinetic term transforms under this symmetry as,

∂µϕ
†(x)∂µϕ(x)→

[
∂µϕ

†(x)− iq (∂µθ(x))ϕ†(x)
]
[∂µϕ(x) + iq (∂µθ(x))ϕ(x)] ̸= ∂µϕ

†(x)∂µϕ(x).

(1.94)

The kinetic term then apparently violates this symmetry, and we find the same in the

case of fermion fields. To make the Lagrangian invariant under this U(1) symmetry, we

have to “subtract” the extra terms that arise. To this end, we introduce the covariant

derivative,

Dµ = ∂µ + igqAµ, (1.95)

where g is the gauge coupling and Aµ is a vector field that transforms as,

Aµ → Aµ −
1

g
∂µθ. (1.96)

With this new definition, the kinetic term remains invariant. Because we are adding new

vector fields, we introduce a kinetic term for them, which is the familiar field strength,

L ⊃ −1

4
F µνFµν , (1.97)

where the field strength is defined by,

[Dµ, Dν ] = igqF µν , (1.98)
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and can be written in terms of the vector fields,

F µν = ∂µAν − ∂νAµ. (1.99)

These vector fields are known as gauge fields, and a Lagrangian that does not change

under such transformations is gauge invariant. Interestingly, the gauge fields themselves

must be massless because an explicit mass term 1
2
m2AµAµ is not gauge invariant. The

strength of the interaction of the gauge field is set by gq, and so depends directly on the

charge. Finally, the transformation law for Aµ shows that the gauge field transforms in

the adjoint representation.

Gauge invariance is not a symmetry in the same sense that spacetime symmetries

and global symmetries are symmetries. It is rather a “symmetry of description”, because

a gauge-invariant Lagrangian may be rewritten in several different ways that all lead to

the same physics.

Non-Abelian Symmetries

Consider a field ϕ in a representation R with N components. The transformation law

for a general local symmetry is,

ϕi →
(
eiTa(x)θa(x)

)
ij
ϕj, (1.100)

where the Ta are the generators of the symmetry. For abelian symmetries, the generator

is simply the charge qi. In the case of non-abelian symmetries, we simply need to know

the generators. Let’s consider the case of ϕ transforming under SU(n). The Ta are then

the SU(n) generators with the algebra,

[Ta, Tb] = ifabcTc, (1.101)

while ϕ is represented by N × N matrices. Following the same procedure as in the

abelian case, we find that we must introduce a covariant derivative in order to ensure the
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invariance of the kinetic term,

Dµ = ∂µ + igTaG
µ
a , (1.102)

where g is again a coupling constant and we introduce a vector field Gµ
a that transforms

as,

Ga
µ → Ga

µ − fabcθbGc
µ −

1

g
∂µθ

a. (1.103)

The field strength is now defined by the commutator,

[Dµ, Dν ] = igT aGa
µν (1.104)

and can be written in terms of Gµ
a as,

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gfabcGb
µG

c
ν . (1.105)

Again, we find that we cannot write down explicit mass terms for the gauge fields that

are gauge invariant.

There are a rich variety of phenomena that arise from gauge theories, which we will

not attempt to detail here, but can be found in excellent resources such as [3].

Discrete Symmetries

In QFT, the set of C, P , and T discrete symmetries — charge conjugation, parity,

and time reversal, respectively — are especially important. All of these are spacetime

symmetries and their combination, CPT , must be conserved for any local theory that

obeys Lorentz invariance. Indeed, no experimental violations of CPT have ever been

observed.

C and P are especially interesting in theories involving fermions. While C symmetry

exchanges the sign of charges, P exchanges the chirality of space, i.e. x→ −x. This has
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the effect of changing the chirality of fermions; under P , ψL ↔ ψR. The combined CP

symmetry performs both operations at once, and so makes the exchanges,

ϕ→ ϕ†, ψLi → ψLi, ψRi → ψRi. (1.106)

If there is a basis of the Lagrangian in which all parameters are real, CP is guaranteed

to be conserved.

Broken Symmetries

If the Lagrangian contains terms do not obey a symmetry, but whose coefficients are

small parameters, this symmetry is said to be explicitly broken. A symmetry may also

be spontaneously broken if the Lagrangian of the theory is invariant under the symmetry

but its vacuum state is not. To illustrate this, consider the theory of two scalar fields

ϕR and ϕI related by ϕ ≡ ϕR + iϕI . The Lagrangian for this theory, after imposing an

SO(2) rotational symmetry, is

L =
1

2
∂µϕR∂

µϕR +
1

2
∂µϕI∂

µϕI −
µ2

2

(
ϕ2
R + ϕ2

I

)
− λ

4

(
ϕ2
R + ϕ2

I

)2
, (1.107)

where µ2 and λ are real parameters. Assuming µ2 < 0, and defining v2 = −µ2/λ, we can

rewrite the potential as,

V = λ

(
ϕ†ϕ− v2

2

)2

. (1.108)

The vacuum expectation value (VEV) 2⟨ϕ†ϕ⟩ = ⟨ϕ2
R + ϕ2

I⟩ is then equal to −µ2/2λ = v2.

This means that the minimum of the potential V lies on a circle of radius v. We can

choose the configuration ⟨ϕR⟩ = v, ⟨ϕI⟩ = 0 and redefine our fields such that the VEV

vanishes. This occurs for h = ϕR − v, ξ = ϕI . The Lagrangian can be rewritten in terms

of these fields as,

L =
1

2
(∂µh)(∂

µh) +
1

2
(∂µξ)(∂

µξ)− λv2h2 − λvh(h2 + ξ2)− λ

4
(h2 + ξ2)2. (1.109)
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This Lagrangian is no longer invariant under SO(2), and we can see that we went from

a Lagrangian with a nonzero VEV to one with a zero VEV. In other words, the theory

has been spontaneously broken.

We can notice a few properties. First, our rewritten Lagrangian contains a scalar field

h whose mass is m2 = λv2. Second, the original Lagrangian was invariant under SO(2),

which has one generator, and this is no longer the case in the resulting Lagrangian.

The generator is said to be broken; in exchange, we’ve picked up a massless scalar ξ.

Goldstone’s theorem states as much: For a continuous spontaneously broken symmetry,

the number of broken generators correspond to the number of new, massless scalars.

These scalars are the Goldstone bosons.

1.1.3 The SM Gauge Group

In addition to invariance under the Poincaré group, the particles of the SM are sym-

metric under a set of internal symmetries,

SU(3)× SU(2)L × U(1)Y , (1.110)

which make up the SM gauge group. Each representation is denoted (p, q)Y , where p is

the representation of SU(3), q the representation of SU(2)L, and Y the hypercharge. The

subscript L denotes that the particles that transform under SU(2) all have left-handed

chirality, while the hypercharge is the U(1) component of the electroweak symmetry. The
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SM representations are,

Particle Name Representation

Spin 1

B Z boson (1, 1)0

W W boson (1, 3)0

G gluon (8, 1)0

Spin 1
2

qL left-handed quark (3, 2) 1
3

ucL left-handed antiquark (up) (3̄, 1)− 4
3

dcL left-handed antiquark (down) (3̄, 1) 2
3

ℓL left-handed lepton (1, 2)1

ℓcL left-handed antilepton (1, 1)2

Spin 0

H Higgs boson (1, 2)1

(1.111)

The SM is further endowed with the electroweak symmetry breaking structure SU(2)L×

U(1)Y → U(1)EM , where EM denotes the electromagnetic gauge group. All of the gauge

bosons, as illustrated in the previous section, transform under the adjoint representation,

while all fermions transform as spinors.

1.2 Effective Field Theory

Effective field theories (EFTs) are surprisingly simple in their core idea: We do not

need to know every single degree of freedom in the universe in order to understand a

given system. These degrees of freedom may be separated by orders of magnitude in

scale, and decouple from one another in certain regimes. Practically, our observational

instruments can only make measurements to a finite degree of precision, and so we need
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only consider the effects that contribute in a non-negligible way to the observable at hand.

This is the reason why are are able to focus on Newtonian mechanics to understand the

physics of billiard balls, rather than starting with general relativity. While the latter

approach would return the same answer as the former, it is far more laborious and rather

unnecessary. The easier approach is to construct a theory that contains the pertinent

degrees of freedom that make up a system at a given energy scale.

This is rather convenient for us, as there are a number of phenomena that (as far as

we can tell) do not require an extremely coarse-grained understanding of the world in

order to make meaningful predictions. Across scientific disciplines, “effective theories”

are built with the goal of capturing the essential components of a particular system. In

quantum field theory, the formalized organization of an EFT allows us to parameterize

our ignorance of physics in the far UV in order to understand the workings of a theory

in the IR.

In this section, we will review the details of such parameterizations, focusing on a

Lagrangian-based approach to EFT. We begin our discussion with a review of some

baseline concepts in constructing QFTs. From there, we illustrate some scale-dependent

properties of QFTs, discuss the operator redundancies that are rife in Lagrangian-based

descriptions of QFTs, and end by introducing the procedure for building an EFT from

the bottom-up.

1.2.1 Lagrangian Formalism

A QFT can be described via an action S. We are familiar with the concept of the

action from classical Lagrangian-based mechanics, which is built upon the principle of

least action: Given a classical system and its generalized coordinates, we can compute the

system’s trajectory between two points as the one that minimizes the energy required to
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take this trajectory. In quantum mechanics, we no longer have a single, classical trajec-

tory, and instead must sum over all possible paths in order to compute the propagator.

For a quantum field theory, this becomes a sum over all possible field configurations.

Feynman famously showed that the propagator can be written as,

⟨ϕ(x0, x)|ϕ(x′0, x′)⟩ ∼
∫
DϕeiS , (1.112)

where Dϕ denotes the sum over field configurations and we omit normalization factors.

For simplicity, we have written the propagator of a scalar field, though we can of course

consider more complicated objects.

The action itself is often written in terms of its Lagrangian density, S =
∫
(dDx)L,

with D the number of spacetime dimensions. The Lagrangian density L is most often

referred to simply as the Lagrangian. This is a functional that depends on the fields

of the theory, and encodes the symmetries it obeys and its interactions. Because the

propagator is related to a sum of the action over all possible field configurations, the

Lagrangian must include all possible interactions of the fields in a given theory. It is

constructed such that several physical principles are maintained, including:

1) Locality. This is the idea that an object can only influence objects in its immediate

surroundings. The speed of propagation is bounded by the speed of light.

Mathematically, we require that the Lagrangian is a function only of fields and their

derivatives, each of which depend on a single point in spacetime. All spacetime depen-

dence of the Lagrangian is contained in the fields.

2) Causality. Objects that are not contained in each other’s past light cone can-

not influence one another. This means that fields at two points in spacetime that are

41



CHAPTER 1. A TALE OF TWO STANDARD MODELS

spacelike-separated should commute,

[ϕ(x), ϕ(y)] = 0. (1.113)

The principles of locality and causality are addressed by ensuring that the Lagrangian

obeys Poincaré symmetry. This is the full symmetry of special relativity, which includes

invariance under spatial translations and rotations as well as Lorentz boosts. Considering

a scalar field ϕ(x), a Lorentz transformation transforms this field as

ϕa(x)→ ϕa(x
′)′ = [M(Λ)]baϕb(Λ

−1ϕ′), (1.114)

where Λ defines the Lorentz symmetry. The matrix M(Λ) forms a representation for ϕ.

More generally, the fields which construct the Lagrangian are irreducible representa-

tions of the Poincaré group.

3) Unitarity. This is the principle that ensures that the sum of probabilities in scat-

tering processes between sets of particles remains equal to 1 as the system evolves in

time. Consider a general multi-particle state denoted by Ψα, where α is a general index

describing the state.

For a scattering process, we generically have some “in” states Ψin
α that interact and

result in some “out” states Ψout
α . This is formalized by the S-matrix, which is defined as

S = ⟨Ψout
α |Ψin

α ⟩, (1.115)

where we use the notation S to be distinct from the action S. In order for the probabilities

to sum to 1, we must have,

S†S = 1, (1.116)

the requirement of unitarity of the S-matrix. We can further split up the S-matrix into

a noninteracting, “free field” component and an interacting component,

S = 1 + iT , (1.117)
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where we must also have

T †T . (1.118)

Given the input of the local fields and the symmetries they obey, the above properties

get us most of the way to a sensible Lagrangian. For our theory to be dynamical, it must

contain a kinetic term. Massive theories may contain an explicit mass term quadratic

in the fields. As a general principle, all interactions that are not explicitly forbidden

by a symmetry are included. From a model-building perspective, one may wish to add

additional ingredients to the Lagrangian, such as an imposed symmetry.

In an ideal world, field theorists would simply be able to write down an action S

for a theory of their choice and evaluate 1.112. In practice, the path integral cannot be

computed exactly except in the case of very simple theories. There are then several steps

to get from the Lagrangian of a theory to answers for observable quantities, and there

are several challenges inherent in this formalism. Some of them are:

1) Perturbative expansion in the computation of the path integral. It is not

possible to compute the path integral exactly for a general Lagrangian,

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − V (ϕ), (1.119)

where we consider a scalar field ϕ. One can, however, exactly compute the path integral

for the free field action, with V (ϕ) = 0. Carrying out this computation returns the

well-known free field propagator. Let’s say we want to add an interaction term to this

theory,

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − λ

4!
ϕ4. (1.120)
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The path integral we wish to compute is then,∫
Dϕei

∫
d4x( 1

2
∂µϕ∂µϕ− 1

2
m2ϕ2− λ

4!
ϕ4+Jϕ), (1.121)

where Jϕ is a source term. To proceed, can separate the free field and interacting parts

of the integral and Taylor-expand the interacting part order by order in λ. This yields,∫
Dϕ
[
ei

∫
d4x( 1

2
∂µϕ∂µϕ− 1

2
m2ϕ2+Jϕ)

(∫
d4x

[
1− i

4!
λϕ4 +

1

2

(
i

4!

)2

λ2ϕ8 + ...

])]
.

(1.122)

which can be rewritten as,∫
d4w

(
1− i

4!
λ

(
δ

δJ(w)

)4

+
1

2

(
i

4!

)2

λ2
(

δ

δJ(w)

)8

+ ...

)∫
Dϕei

∫
d4x( 1

2
∂µϕ∂µϕ− 1

2
m2ϕ2+Jϕ)

(1.123)

=

√
2π

m2

∫
d4w

(
1− i

4!
λ

(
δ

δJ(w)

)4

+
1

2

(
i

4!

)2

λ2
(

δ

δJ(w)

)8

+ ...

)
e−i

∫ ∫
d4xd4yJ(x)D(x−y)J(y),

(1.124)

where D(x − y) is the free field propagator. For details, see the excellent discussion in

chapter 1 of [1]. We can further expand the exponential on the right-hand side to obtain

a total expansion in terms of both λ and J . This expansion maps on to the familiar

Feynman diagrams we’ve come to associate with perturbative QFT, with the order of J

corresponding to the number of particles involves in each diagram and λ corresponding

to the number of times they intersect.

In order to obtain this result, we have considered small λ: the weak-coupling regime.

This ensures that we can safely truncate our expansion of the interaction term, as terms

with higher powers of λ will negligibly contribute to our overall result for the path integral.

In a strong-coupling regime, we cannot safely make this assumption and must consider

other methods.
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There are several nuances of this discussion that are worth emphasizing. In particular,

this perturbative approximation is not valid for every QFT. In practice, there are only

a small class of QFTs for which we can utilize this machinery and be ensured that we

are sufficiently capturing the phenomena of the theory. The perturbative approximation

of QCD, for example, famously does not capture important non-perturbative effects like

instantons. QFTs themselves are not mathematically well-defined outside of the per-

turbative regime, and it remains unknown whether or not every QFT even admits such

a Lagrangian description. Finally, although we’ve considered a path integral approach

here, one can similarly consider these ideas from the approach of canonical quantization.

2) Divergences in computations of loop diagrams. The perturbative expansion of

the path integral is one way to see how Feynman diagrams simplify our calculation. Each

term can be associated with a Feynman diagram, and in turning the crank to compute

the contribution of each term to the path integral, one can notice patterns that comprise

the Feynman rules. Knowing the Feynman rules for a particular theory allows one to

draw each diagram and compute its individual amplitude and sum these amplitudes to

arrive at the total.

Feynman diagrams for tree-level processes are relatively straightforward. Complica-

tions arise when we consider loops, which require performing an integral over an internal

loop of momenta. When considering the scattering process ϕϕ → ϕϕ, we have the loop

diagram:

To evaluate it, we must compute the integral,

1

2
(−iλ)2

∫
d4k

(2π)4

(
i

k2 −m2 + iϵ

)(
i

(k1 + k2 − k)2 +m2 + iϵ

)
. (1.125)

When k is large, the integral becomes,

−1

2
(−iλ)2

∫
d4k

(2π)4

(
1

k4

)
=

1

24(2π)4
(−iλ)2 log(k), (1.126)
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which is divergent. The resolution to this apparent problem lies in recognizing that our

integral involved summing over modes of arbitrarily high momentum. Because we have

only verified our knowledge of physics up to some energy scale, and indeed we know that

there is some UV physics that we do not know, it does not necessarily make sense to

include these high energy modes in the sum. We therefore introduce a physical parameter

Λ that tells us up to what momenta we can reasonably compute our integral. This cutoff

scale regularizes the integral, which is now formally,

1

2
(−iλ)2

∫ Λ

0

d4k

(2π)4

(
i

k2 −m2 + iϵ

)(
i

(k1 + k2 − k)2 +m2 + iϵ

)
, (1.127)

and the amplitude itself now depends on the cutoff. We can evaluate this integral using

Feynman’s trick,
∫ 1

0
dx(xA + (1− x)B)−2 = (AB)−1. The computation can be found in

standard QFT textbooks [4] [5]. At one-loop, after summing all one-loop diagrams, the

result is,

M(ϕϕ→ ϕϕ) = −iλ+ iCλ2
[
log

(
Λ2

s

)
+ log

(
Λ2

t

)
+ log

(
Λ2

u

)]
+O(λ3), (1.128)

where s, t, and u are the Mandelstam variables and C is a constant. We have successfully

removed the momentum divergence, as the amplitude now scales logarithmically with

the cutoff. However, the scattering-amplitude is a measurable quantity, and should not

depend on the specific choice of Λ. Further, an experiment can only measure λ at a

given value of s, t, and u, which we will label s0, t0, and u0. The λ that shows up in the

Lagrangian is not necessarily a physical quantity.

The idea of renormalization is simple, albeit confusing in practice, and shows up in

many branches of physics. The logic is this: The parameters of a theory will change

when we add in interactions or compute an observable to a higher order in perturbation

theory. As we’ve seen, we can regulate the theory to only depend on distance scales for

which the physics is known, but this introduces a cutoff parameter. By renormalizing
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the theory to depend only on physical, measurable quantities, we can remove this cutoff

dependence and arrive at a sensible theory from which we can make predictions. In our

example, instead of the coupling λ, we wish to instead write our answer in terms of some

physically-measurable λp. This λp should be a function of Λ such that the amplitude

remains invariant as we scale Λ up or down. In other words, we should not be able to

choose an arbitrary value of Λ that changes the physics. Instead, we can absorb this

dependence into the coupling parameters, which defines the physical couplings for us,

rather than relying on the unknown parameter λ we wrote in our Lagrangian.

We then must solve for λ0, the bare parameter 17, in terms of λp. One choice is to

resum the higher-order corrections into the definition of the measured coupling, giving a

renormalization condition,

−iλp = −iλ0 + iCλ20

[
log

(
Λ2

s0

)
+ log

(
Λ2

t0

)
+ log

(
Λ2

u0

)]
+O(λ30), (1.129)

for some chosen values of the Mandelstam variables at which we perform our experi-

ment18. We can then solve for the bare parameter,

iλ0 = iλp + iCλ20

[
log

(
Λ2

s0

)
+ log

(
Λ2

t0

)
+ log

(
Λ2

u0

)]
+O(λ30). (1.130)

Plugging this into our result forM, we find,

M(ϕϕ→ ϕϕ) = −iλp − iCλ20
[
log

(
Λ2

s0

)
+ log

(
Λ2

t0

)
+ log

(
Λ2

u0

)]
+O(λ3p)

+ iCλ20

[
log

(
Λ2

s

)
+ log

(
Λ2

t

)
+ log

(
Λ2

u

)]
+O(λ30)

= −iλp + iCλ20

[
log

(
s

s0

)
+ log

(
t

t0

)
+ log

(
u

u0

)]
+O(λ30). (1.131)

17These are the parameters that appear in the regularized Lagrangian, as well as in the path integral.
18Crucially, this is a choice that is dependent on the renormalization scheme. Here, we illustrate the

process in the on-shell renormalization scheme, but there are other schemes which define the physical
coupling differently. As long as we are consistent about what we measure, and ensure that it corresponds
to the chosen definition, this should not be a problem. While the numerical value of λp changes from
scheme to scheme, physical measurements do not.
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We can make the substitution λ20 → λ2p, which will only change the expression at higher

order in λp. Finally, we have,

M(ϕϕ→ ϕϕ) = −iλp + iCλ2p

[
log

(
s

s0

)
+ log

(
t

t0

)
+ log

(
u

u0

)]
+O(λ3p), (1.132)

and our expression for the scattering amplitude no longer depends on a cutoff Λ, only

the measured coupling λp and the chosen values of the Mandelstam variables at which

our experiment is undertaken.

Suppose we instead would like to write down our Lagrangian from the beginning in

terms of only physical couplings. Consider again the Lagrangian 1.120. Technically, this

should be written,

L =
1

2
∂µϕ∂

µϕ− 1

2
m2

0ϕ
2 − λ0

4!
ϕ4, (1.133)

where the subscripts denote the fact that we are using the bare parameters. We can

instead express this only in terms of the physical parameters. To this end, we write,

L =
1

2
∂µϕ∂

µϕ− 1

2
mp(Λ)

2ϕ2 − λp(Λ)

4!
ϕ4 + A∂µϕ∂

µϕ+Bϕ2 + Cϕ4, (1.134)

where we must choose A, B, and C such that this Lagrangian results in the same physics

as the one before. If we assume that the kinetic term is canonically normalized at the

scale Λ, we can take A = 0. Then, we consider which computations lead us to actual

observables of the theory. In this example, we can find B through the two-point function

by computing the contribution of the counterterm Lagrangian to the propagator. C can

be found in a similar manner through computation of the four-point function. We will

not perform the calculation here, but the details can be found in several introductory

textbooks [5] [4].

The model considered here is an example of a renormalizable theory, because we can

successfully compute observables in terms of physical parameters. This means that, in
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practice, as long as we can perform the necessary measurements, we can make meaningful

predictions based on the values of these parameters. In introducing counterterms, we

can see that we need to perform three renormalizations in order to fully express the

Lagrangian in terms of physical quantities. Not all theories share this luxury, and are

nonrenormalizable in the sense that an infinite number of counterterms would need to

be introduced. We will expand upon this concept, and the conditions that lead to it, in

1.2.2.

3) Inclusion of higher order terms in the action. We can decompose the La-

grangian into a free field part plus an interacting part,

L = L0 + Lint. (1.135)

The question then arises: How many terms should we include in Lint? In principle, the

answer is as many as we like. However, we need to make sure that, like the higher order

terms in the perturbative expansion of the path integral, these additional terms do not

lead to divergences in the path integral. Additionally, computations of loop corrections

in higher order terms will in general lead to divergences in computations of scattering

amplitudes. Depending on the particular term, these divergences may be severe.

To contend with these issues, the technique of power counting introduces explicit

dependence on the cutoff Λ. This organizes the Lagrangian in terms of Λ in order to

keep track of how each successive term scales. It is easiest to see how this is done by

considering an in-depth example.
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1.2.2 An Illustrative Example

Let’s now consider a simple theory involving a scalar field ϕ in D spatial dimensions

with a Z2 symmetry. Its action is,

S ⊃
∫
dDx

(
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − λ

4!
ϕ4 − ζ

6!
ϕ6 + ...

)
(1.136)

The action itself, in natural units, must have a mass dimension of zero, and so each term

in the Lagrangian density must have mass dimension equal to D. Each derivative ∂
∂xµ

has units of inverse length, giving it a mass dimension [ ∂
∂xµ

] = 1. We then conclude that

ϕ has mass dimension [ϕ] = D
2
− 1.

We immediately notice that, in knowing the mass dimension of the scalar field, each

of the parameters in the above Lagrangian are dimensionful. It is not surprising to see

that m2 has mass dimension [m2] = 2. We can also see that [λ] = 4−D, [ζ] = 6− 2D,

and so on.

We can understand the long-distance behavior of this theory by rescaling xµ by a

dimensionless parameter s,

xµ → sxµ′. (1.137)

In order to ensure that the kinetic term remains canonically normalized, we then make

the field redefinition,

ϕ→ s(1−D/2)ϕ′ (1.138)

The action is then,

S ⊃
∫
dDx′

(
1

2
∂µϕ

′∂µϕ′ − 1

2
s2m2ϕ′2 − λ

4!
s4−Dϕ′4 − ζ

6!
s6−2Dϕ′6 + ...

)
(1.139)

The powers of s in each term are exactly the mass dimensions of each of their corre-

sponding parameters. To see the long-distance behavior, we can now keep xµ′ fixed and
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take the limit s → ∞. The behavior of each term clearly depends on D; to be explicit,

let’s take the phenomenologist’s favorite, D = 4. The action is,

S ⊃
∫
d4x′

(
1

2
∂µϕ

′∂µϕ′ − 1

2
s2m2ϕ′2 − λ

4!
s0ϕ′4 − ζ

6!
s−2ϕ′6 + ...

)
(1.140)

Because the kinetic term is canonically normalized, its behavior does not change in the

s → ∞ limit. The m2 term will grow, the λ term will not change, and the ζ operator

will tend to zero.

The reparameterization in terms of s is a nice way to explicitly categorize the behavior

of each term. However, we could have skipped this exercise altogether and just looked at

the mass dimension of the parameter corresponding to each term, or equivalently to the

mass dimension of the operators themselves. To complete the categorization, we define

each operator O as

1. relevant if [O] > 0,

2. marginal if [O] = 0, or

3. irrelevant if [O] < 0.

In 1.140, the quadratic operator is relevant, the quartic operator is marginal, and

the last operator written is irrelevant. Despite the terminology, it should be emphasized

that irrelevant operators are not necessarily unimportant. To see this, consider again

the action 1.139. We’ve seen that we can write the Lagrangian in terms of the physical

coupling constants, which are functions of the cutoff scale Λ. We can explicitly make

these parameters functions of this scale by rewriting them as, for example,

ζ =
c1
Λ2
, (1.141)

where c1 is a dimensionless constant and we must have two inverse powers of Λ so that

the whole term has a mass dimension of 4. The Lagrangian can then be written as an
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expansion in powers of Λ,

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − λ

4!
ϕ4 +

∑
i=1

ci
Λ2i

ϕ2i+4, (1.142)

where we’ve absorbed further constants into the definitions of the ci. This is the power

counting technique. We can see that, if the energy scale E at which our interactions

proceed is much less than Λ, irrelevant operators can be heavily suppressed. At larger

Λ, these contributions will become more and more important.

The categorization of relevant, marginal, and irrelevant operators is directly related

to their renormalization properties: All operators with mass dimension ≤ 4 are renor-

malizable, while operators with higher mass dimension are not. Power counting is an

easy way to see this. Recall that a theory is renormalizable if we are able to rescale the

couplings by introducing counterterms that completely absorb divergences without intro-

ducing new ones. Further, recall that our ϕ4 operator led to a logarithmic divergence in

the scattering amplitude at one-loop, stemming from the momentum dependence 1/k4,

which can be fully absorbed by three counterterms. If we were to go to two-loop order,

we would encounter an integral,

M(ϕϕ→ ϕϕ)two loop =

∫
d4k1
(2π)4

d4k2
(2π)4

1

k21k
2
2(k1 + k2)2(k1 + p1 + p2)2

, (1.143)

where k1 and k2 are the momenta flowing in each loop, and p1 and p2 are the external

momenta. We’ve omitted the dependence on m and iϵ for brevity. This integral can be

computed via dimensional regularization19, in which we shift the number of dimensions

d = 4− ϵ for some small parameter ϵ which can be later taken to zero after the integral

is performed. This has the advantage of converting divergences into simple poles of the

19This is a common renormalization scheme that, instead of computing integrals in d dimensions,
introduces a small parameter ϵ and computes the integral in d − ϵ dimensions. This has the effect of
shifting the integral away from the d dimensions in which the divergence occurs. At the end of the
computation, we can take the limit ϵ→ 0. This scheme is particularly useful because it preserves both
Lorentz invariance and gauge invariance. Other schemes may not obey these symmetries, and the results
must be treated with extra caution.
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form 1/ϵ. We will not go through the details of the computation; the result is,

M(ϕϕ→ ϕϕ)two loop ∼
1

(4π)4

(
1

ϵ
+ finite terms

)
, (1.144)

which is another logarithmic divergence. This means that the existing ϕ4 counterterm

can additionally absorb this divergence. This is true for all loop orders, and so we only

end up needing three counterterms to render the amplitude finite.

If we now consider ϕ6, the scattering process is ϕϕϕ→ ϕϕϕ. We will again spare the

details of the computations, and simply state that the scattering amplitude at one-loop

is,

M(ϕϕϕ→ ϕϕϕ)one loop ∼
1

(4π)4

(
1

ϵ
+ finite terms

)
(1.145)

and two-loop is,

M(ϕϕϕ→ ϕϕϕ)two loop ∼
1

(4π)4

(
1

ϵ2
+

1

ϵ
+ finite terms

)
. (1.146)

In contrast to the phi4 case, our two-loop amplitude is now quadratically divergent. This

means that, to absorb this divergence, we must introduce a counterterm at the level of

ϕ8. In turn, the ϕ8 counterterm will introduce a more severe divergence, requiring a coun-

terterm at the order of ϕ10. This eventually leads to an infinite number of counterterms,

making ϕ6 nonrenormalizable.

We can still study non-renormalizable theories up to some cutoff scale Λ — as long as

the energy scale E is much less than Λ — they will just have much less predictive power

than a completely renormalizable theory. There are many scenarios in which we wish

to explore the theory at high order, or models of physics beyond the SM which include

operators with high mass dimension.
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1.2.3 Wilson’s Approach

The approach to renormalization developed by Ken Wilson revolves around a low

energy effective action,

Seff = S0 + Sint, (1.147)

where Sint is the interacting part. This effective action is a function of both the fields

and the cutoff scale Λ, so that the path integral is,∫
Dϕ|k|<Λe

−Seff [ϕ]. (1.148)

We now only include modes with momentum |k| < Λ; modes above this scale are said to

have been integrated out.

We treat the interacting part as an expansion in some power counting parameter E/Λ,

with E ≪ Λ. As we’ve seen, this is done by explicitly writing in the powers of Λ required

to maintain a mass dimension equal to the spacetime dimension — such that the mass

dimension of the action is zero — for each term in the Lagrangian. Higher-order terms

then depend on dimensionless constants ci, which are known asWilson coefficients. These

encode the effects of the high-energy physics on the low-energy observables, and are fixed

by data through the renormalization process. We’ve seen that the physical couplings

are functions of the cutoff scale, e.g. λp(Λ). These are known as running couplings,

because depend on a measurement made at some renormalization scale — which we’ve

characterized by the Mandelstam variables s0, t0, and u0. The Λ dependence on these

couplings can be understood through the beta function,

β(g) ≡ ∂g

∂ ln Λ
= Λ

∂g

∂Λ
. (1.149)

As we lower the scale Λ, we integrate out more high-energy modes in the effective action;

the physics of these modes is now encoded in the couplings themselves. This process of
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lowering Λ from the UV to the IR is known as renormalization group (RG) flow. Because

we are successively integrating out modes, we are coarse-graining our theory. This flow

is therefore one-way: While we can flow from the UV to the IR, this decreases the the

available information content in our theory — we cannot reverse course from the IR to the

UV. In fact, several points in the UV may flow to the same point in the IR, demonstrating

how different microscopic details may exhibit the same behavior on large-scales. There

is much more one could say about RG flow, which is outside the scope of this thesis, but

a highly recommended excursion.

1.2.4 Operator Redundancies

Formulating the action in the Lagrangian formalism is convenient and lends itself

well to the familiar Feynman diagram expansion, allowing one to find the Feynman rules

for a theory and easily compute its leading diagrams. The prescription for calculating

scattering amplitudes in this way is well-trodden ground in introductory QFT textbooks.

These amplitudes, however, are the observable quantity at hand, not the fields themselves.

It is well-known that the Lagrangian for a theory is not unique; this is why we need to

agree upon a particular basis in which to perform calculations of the quantities that

experiments will measure. We of course need to be able to agree that a measured value

corresponds to a particular, well-defined parameter, so that our experimental conclusions

are reproducible and universal.

There are several ways that one can transform a Lagrangian to obtain an equivalent

Lagrangian. Namely,

1. Integration by parts (IBP). Consider a scalar field ϕ. Its kinetic term, up

to normalization factors, is ∂µϕ∂
µϕ. We can integrate by parts in 4 spacetime
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dimensions to obtain,∫
d4x (∂µϕ∂

µϕ) = ∂µ (ϕ∂
µϕ)−

∫
d4x

(
ϕ∂2ϕ

)
. (1.150)

The total derivative term can be rewritten as a boundary term via Stokes’ theorem,

which then vanishes because it is assumed that ϕ vanishes at spacetime infinity.

We are then free to make the replacement ∂µϕ∂
µϕ ↔ −ϕ∂2ϕ. A Lagrangian that

contains both of these terms would be said to contain an operator redundancy.

2. Equations of motion (EOM). We can always obtain the EOMs for a field in

a given theory via the Euler-Lagrange equations. For a simple scalar theory with

Lagrangian

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2, (1.151)

one can easily find the EOM for ϕ to be

ϕ̈ = −m2ϕ. (1.152)

We are then free to make replacements using this expression.

3. Field redefinitions. We are free to redefine our fields as we see fit as long as the

scattering amplitudes (the observables) themselves are unchanged. Consider a field

redefinition on the ϕ field above,

ϕ→ ϕ+ f(ϕ). (1.153)

The Lagrangian transforms as,

L → 1

2
∂µϕ∂

µϕ+ ∂µϕ∂
µϕf ′(ϕ) +

1

2
∂µϕ∂

µϕ(f ′(ϕ))2 − 1

2
m2ϕ2 −m2ϕf(ϕ)− 1

2
m2f(ϕ)2.

(1.154)
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How can we be sure that that this Lagrangian leads to the same phyiscs as the

previous one? Consider the generating functional,

Z[J ] =

∫
Dϕ eiS[ϕ]+i

∫
d4x J(x)ϕ(x). (1.155)

Applying the field redefinition, we obtain,

Z ′[J ] =

∫
D(ϕ+ f) eiS[ϕ+f ]+i

∫
d4x J(x)(ϕ(x)+f(x)). (1.156)

Because f is a fixed function, it does not affect the integration measure. We have,

however, picked up a shift in the source term, J(x)(ϕ+ f) = J(x)ϕ(x) + J(x)f(x).

We can write Z ′[J ] in terms of Z[J ] as,

Z ′[J ] = ei
∫
d4x J(x)f(x)Z[J ]. (1.157)

To compute the correlation functions, we then take functional derivatives of the

generating functional with respect to J(x). The two-point function, for example,

can be found via,

⟨0|T{ϕ(x)ϕ(y)}|0⟩ = 1

Z[0]

δ2Z[J ]

δJ(x)δJ(y)

∣∣∣∣∣
J=0

. (1.158)

We find a shifted correlation function,

⟨0|T{ϕ(x)ϕ(y)}|0⟩+ ⟨0|T{ϕ(x)f(ϕ(y))}|0⟩+ ⟨0|T{f(ϕ(x))ϕ(y)}|0⟩+ ⟨0|T{f(ϕ(x))f(ϕ(y))}|0⟩.

(1.159)

The correlation functions are related to the the S-matrix elements — which are the

observables of the system — via the LSZ reduction formula,

⟨f |S|i⟩ = lim
p2i→m2

n∏
i=1

(∫
d4xi e

ipi·xi(□xi +m2)

) m∏
j=1

(∫
d4yj e

−iqj ·yj(□yj +m2)

)
× ⟨0|T{ϕ(x1) . . . ϕ(xn)ϕ(y1) . . . ϕ(ym)}|0⟩. (1.160)
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To compute the S-matrix elements using the LSZ formula, we need to extract the

physical on-shell poles in the correlation function. We’ve picked up three new terms

in the two-point function due to our field redefinition. The cross-terms involve

correlations between the original field and the redefined part. However, because

f(ϕ) is a function of the original field, it will not introduce new physical poles

in the propagator. These cross terms do not contribute new poles in the on-shell

limit, and so they do not change the physical S-matrix. Further, Similarly, the last

term involves the function f(ϕ), but since f(ϕ) is typically chosen to be smooth

and invertible, it does not alter the pole structure of the theory. f(ϕ) may modify

the correlation functions off-shell, but it does not introduce new poles or alter the

residues of the original poles. Hence, this term also does not affect the physical

S-matrix.

We can then safely perform field redefinitions without worrying that they are chang-

ing the underlying physics. It should be noted that

It should be noted that EOMs are just a special case of field redefinitions. While

field redefinitons may change the field in a non-trivial way, EOMs contain at most

infinitesimal changes in the fields, because the variation of the action is required to

vanish. We’ve seen above that we can make redefinitions on fields without changing

the correlation functions; utilizing EOMs guarantees this as well.

When writing down an EFT, there are several input parameters: The fields, the sym-

metries these fields obey, and the cutoff scale and Wilson coefficients. Our Lagrangian

may also include terms up to arbitrarily high mass dimension, and we must take care to

ensure that we are not including redundant operators in our theory. At low mass dimen-

sion, it is straightforward enough to write down all possible operators that are consistent

with the symmetries of the theory and check by hand that we’ve not included opera-
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tors which may be transformed into one another via IBP, EOMs, or field redefinitions.

However, at high mass dimension, this operation quickly becomes difficult.

This redundancy of description is intimately related to gauge invariance. Gauge in-

variance introduces redundancies in the description of the fields because gauge-equivalent

field configurations lead to the same physical situation. Similarly, in EFT, operator re-

dundancies arise because different ways of writing the operators in the Lagrangian can

correspond to the same physical interaction. The physical observables, namely the scat-

tering amplitudes, do not depend on how the operators are written as long as the physical

content remains unchanged. Both gauge invariance and operator redundancies reflect the

idea that not all degrees of freedom in a field theory correspond to physically meaningful

quantities, and some are merely mathematical conveniences that can be transformed or

removed without altering the physical content.

One might wonder if there is a way to formulate QFT without all of these redundan-

cies. The answer is, so far, yes: There is a fruitful program of research into formulating

on-shell scattering amplitudes in the spinor-helicity formalism. Redundancies may still

show up in intermediate steps in these calculations, but the Ward identity ensures that

the final answer will be gauge invariant. In some cases, this formalism drastically re-

duces messy algebra and condenses calculations that would take hundreds of pages in the

Lagrangian formalism down to a few lines. These structures are proving to be invalu-

able computational devices, and are certainly are pushing forward our understanding of

QFT itself. However, the beauty of EFTs is not to be disregarded; they remain powerful

tools whose utility lies in their ability to and understand the low-energy consequences

of higher-energy physics. In the quest to uncover new physics, and study theories that

might constitute new physics, EFTs prove indispensable yet.
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1.3 ΛCDM Cosmology

The early 1990s saw the onset of the “golden age of cosmology” in which large-scale

cosmological experiments began to gather enormous quantities of high quality data on

an array of astrophysical and cosmological objects. The launch of the COBE satellite

in 1992 enabled the first measurements of the cosmic microwave background (CMB),

providing a new window into the physics of the universe at the time of recombination. It

discovered anisotropies in the CMB, a key prediction of inflation and component of models

of large-scale structure formation. The angular power spectrum of the CMB was precisely

mapped byWMAP in the 2000s, revealing the acoustic peaks that allow for measurements

of the universe’s curvature as well as the cosmological densities of both baryonic and dark

matter. Observations of the bullet cluster and gravitational lensing experiments provided

further evidence for dark matter, and distance measurements using type Ia supernovae

suggested the accelerated expansion of the universe. The first observation of gravitational

waves by LIGO in 2015 confirmed a key prediction of general relativity and allowed for

detailed studies into the dynamics of black hole and neutron star inspirals. A host of

upcoming cosmological experiments are poised to continue this age of discovery, with ever

more precise gravitational wave observatories and infrared telescopes aimed at measuring

the 21-cm hydrogen transition line.

Modeling the formation and evolution of the universe itself is a notably different

endeavor than modeling the universe’s particle content. We were able to verify the

SM experimentally by accelerating particles up to a fraction of the speed of light, col-

liding them, and analyzing the subsequent map of energy deposition on the collider’s

calorimeter20. This is a repeatable procedure, and we can build up statistics of these

20This is, of course, an extremely coarse-grained view of how this process has played out. On a finer
level, our knowledge of the SM is built up from a variety of tabletop experiments, various accelerator
components aimed at distinguishing between different types of particles, and an enormous amount of
sophisticated data analysis.
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particle collisions over many runs of the experiment. In contrast, we can only observe

the universe we are living in, and our measurements are inherently indirect. Rather

than measuring direct products of collisions, we can only measure the byproducts of

the universe’s expansion and evolution: Galaxy structures and distributions, the cos-

mic microwave background (CMB), the astrophysical objects whose light is visible to

our telescopes, and low-frequency gravitational waves (thus far). The universe was only

formed once, and so precise observations of these byproducts and theory-building efforts

to predict them from underlying principles are crucial in formulating our understanding.

While terrestrial particle physics experiments are comprised of continuous testing and

iterating, cosmological observation is more like piecing together evidence from the scene

of a crime.

Rapid development on the observational side has enjoyed great agreement with the

ΛCDM model of cosmology, the current paradigm describing the energy content and

dynamics of the universe on large scales. It is the second “standard model” we encounter

in this thesis, and we will review its key components in this section.

1.3.1 Spacetime Expansion

The first significant piece of evidence in formulating a thermal history of the universe

lies in its expansion. Galaxy redshift data places the age of the universe at approximately

13.8 billion years. We now know, via measurements of redshifts from very early galaxies,

that the universe is expanding, as light that is systematically shifted toward the red end

of the spectrum points to an outward expansion. Observations of Cepheid variable stars

— which radially pulsate at constant intervals and act as standard candles for distance

measuring because they have the same intrinsic brightness — give further evidence to

an accelerated nature of this expansion. An expanding universe that also obeys the
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cosmological principle21 is described by the the Friedmann-Robertson-Walker (FRW)

metric,

ds2 = −dt2 + a2(t)γijdx
idxj, (1.161)

where γij is the metric of a maximally-symmetric 3-dimensional spacetime and a(t) is

the scale factor, which parametrizes the expansion rate. Written in spherical coordinates,

this can be further parametrized in terms of a curvature parameter κ,

ds2 = −dt2 + a(t)2
[

dr2

1− kr2 + r2
(
dθ2 + sin2 θ dϕ2

)]
, (1.162)

where κ may lie anywhere between −1 and 1. κ = 0 corresponds to a flat space, κ =

1 corresponds to a maximally positively curved space, and κ = −1 corresponds to a

maximally negatively curved space. We can solve Einstein’s equations with this metric.

Assuming that we can model the universe as a perfect fluid, the energy-momentum tensor

is,

Tµν = (ρ+ p)uµuν + pgµν , (1.163)

where ρ is the energy density of the fluid, p its pressure, and uµ its four-velocity. Solving

the temporal component22,

R00 −
1

2
Rg00 + Λg00 =

8πG

c4
T00, (1.164)

we find, (
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− κ

a2
. (1.165)

21This states that, on large scales, the universe is spatially homogeneous and isotropic. This is often
taken as an assumption in cosmology, mostly in the context of it simplifying computations. The validity
of the cosmologcial principle is an ongoing area of research.

22In this section, we will explicitly write factors of G and c.
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The parameter H ≡ (ȧ/a) is known as the Hubble parameter. Applying the same proce-

dure to the spatial components,

Rii −
1

2
Rgii + Λgii = 8πTii, (1.166)

yields,

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (1.167)

Equations 1.165 and 1.167 are known as the Friedmann equations ; with them, we can

see how the dynamics of the universe depend directly on its contents. We can combine

the Friedmann equations to obtain the continuity equation,

ρ̇ = −3H(ρ+ p), (1.168)

and classify how the energy density scales with a(t). Non-relativistic matter can be

assumed to be pressure-less and evidently scales as ρm ∝ a(t)−3, while (relativistic)

radiation has a pressure p = 1
3
ρ and scales as ρr ∝ a(t)−4. This implies that, by un-

derstanding how the species of matter and radiation in the universe evolved over time,

we can correspondingly understand its expansion history. We can study each species

according to its number density, energy density, and pressure,

na = ga

∫
d3k

(2π)3
fa(x,k)

ρa = ga

∫
d3k

(2π)3
fa(x,k)E(k)

Pa = ga

∫
d3k

(2π)3
fa(x,k)

k2

3E(k)
,

(1.169)

where a labels each species, fa(x,k) gives its distribution in phase space, and ga is the

number of degrees of freedom of each species. Early on in the expansion history, we

can approximate the species as being in equilibrium and sharing a common phase space

distribution function,

fa(E) =
1

e(Ea−µa)/T ± 1
, (1.170)
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where T is the equilibrium temperature, µa is the chemical potential, and the ± factor

becomes a + for fermions and a − for bosons. Due to the Boltzmann suppression factor,

we can see that when the temperature T drops below the mass ma of a given species,

it will no longer significantly contribute to the distribution function. This implies that

the energy density is radiation-dominated. We can solve for the radiation from 1.169,

finding,

ρr =
π2

30
g∗T

4, with g∗ ≡
∑
a=b

ga +
7

8

∑
a=f

ga, (1.171)

where b denotes a sum over bosonic species and f a sum over fermionic species. Our

equilibrium scenario is disrupted for interacting matter, which is what eventually tran-

sitions the universe out of a radiation-dominated era. There are two competing factors

that determine the dominant energy density: The expansion rate and the interaction

rate between species. For an expansion rate greater than the interaction rate, interacting

species will eventually freeze out.

As the particles of the SM with the weakest interactions, neutrinos were the first

known species to freeze out. After protons and neutrons froze out, light elements could

be synthesized in a process known as Big Bang Nucleosynthesis (BBN). Both of these

freeze outs occurred shortly after the Big Bang. Due to the high ambient temperature,

these species existed in a dense, ionized plasma until about 380,000 years after the Big

Bang, when the universe had cooled enough to form the first neutral hydrogen atoms in a

process known as recombination. Prior to recombination, the abundance of free electrons

led to a high rate of Thomson scattering, and so the universe was opaque. As neutral

hydrogen atoms formed, the rate of Thomson scattering decreased enough for photons

to decouple. As the universe expanded, photons eventually underwent a last scattering

off an electron; these are the photons that make up the surface of last scattering, visible

to us at the CMB.
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1.3.2 The Cosmic Microwave Background

A hydrogen atom has a minimum ionization energy of 13.6 eV. Prior to the epoch

of recombination, the universe was hot enough such that the energy of each photon

exceeded this margin, and hence all hydrogen was fully ionized. To study recombination

more concretely, we introduce the parameter χe describing the fraction of electrons in

the universe that are free. We can then write this in terms of the number densities of

free electrons, protons, and hydrogen,

χe =
ne

nH + np
(1.172)

During recombination, we assume a reaction,

p+ e− ←→ H + γ (1.173)

We make the assumption that this process occurs fast enough to ensure equilibrium.

To estimate the relative abundances of protons, electrons, and hydrogen under this as-

sumption, we can employ the Saha equation,

npne
nH

=
(mekBT

2πℏ2
)3/2

e−EI/kBT (1.174)

Where me is the mass of the electron, kB is Boltzmann’s constant, T is the temper-

ature, and EI is the hydrogen ionization energy. We can rewrite this equation in terms

of χe,

χ2
e

1− χe
= (nH − np)−1

(mekBT

2πℏ2
)3/2

e−EI/kBT , (1.175)

and express quantities on the right-hand side of this equation in terms of redshift

z. The temperature T scales as T = 2.725(1 + z), where T is units of Kelvin and
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2.725 gives the current temperature of the CMB. The total hydrogen density scales as

nH +np = 1.6(1+ z)−3 in units of inverse cubic meters. With these relationships, we can

estimate the redshift at which recombination occurred, and arriving a value z ≈ 138023.

Comparing the size of the universe at this redshift to its present size, using the scale

factor relationship ρr ∝ a−4, we find that the universe was roughly one-thousandth of its

current size.

The CMB is almost perfectly described by the spectrum of a blackbody24. The energy

density of this black-body radiation is given by,

ϵ(ν)dν =
8πh

c3
ν3df

ehν/kBT − 1
, (1.176)

where we write energy per unit volume of black-body radiation at a given temperature

T. As the universe expands, the form of the blackbody is preserved, albeit at a lower

temperature. This follows from the proportionality,

Tf ∝ Ti
ai
af
, (1.177)

where the subscripts i and f denote the initial and final temperatures and scale factors.

The majority of radiation density in the universe is made up of CMB photons. Since

these photons originated from the last scattering surface, and since we have seen that

this surface was formed when the universe was roughly a thousandth of its current size,

we observe them as coming from a large sphere centered on our galaxy.

Anisotropies

While the CMB is largely described by a blackbody radiation spectrum, it also con-

tains tiny anisotropies on the order of one part in 105. In the image above, we see these

23For reference, recall that we take the redshift at the current epoch to be 0 by definition.
24This can be understood by the fact that this radiation was in a highly-interacting thermal state at

the time of recombination
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Figure 1.1: The CMB as seen by the Planck satellite. [6]

anisotropies as points with a slightly higher temperature, shown in red, and points with

a slightly lower temperature, shown in blue, with respect to its average blackbody tem-

perature. These scalar features of the CMB can be categorized primary and secondary

anisotropies, depending on their source. The former were created during last scatter-

ing while the latter were created during the photon’s path to our observational line of

sight. There is a wide range of effects that create secondary anisotropies as the photon

travels from the surface of last scattering, including reionization, an encounter with a

gravitational potential well, or effects of gravitational lensing.

To analyze the primary anisotropies, we consider two main mechanisms by which they

are created: Gravitational effects and adiabatic effects, which we will analyze in further

detail. For general primary anisotropies Θ, we have,

Θ = Θgrav +Θad. (1.178)
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A gravitational potential δΦ can affect CMB radiation via gravitational redshift as

well as an added effect of time dilation, whereby we observe a slightly younger uni-

verse in overdense regions. Gravitational redshift and time dilation add anisotropies as,

respectively,

Θ ≈ δΦ, −2δΦ

3
. (1.179)

The total primary anisotropy due to gravitational effects is then,

Θgrav ≈
δΦ

3
. (1.180)

This gravitational effect is more commonly known as the Sachs-Wolfe effect. Looking

now at adiabatic perturbations, or perturbations that can be expressed in terms of some

time shift, we can treat the dense plasma present in the universe prior to recombination

as a perfect fluid of photon-baryons. This is because baryons were coupled to photons via

Coulomb interactions, and Thomson scattering processes coupled photons to electrons.

With radiation pressure acting as a restoring force, this means we can apply typical fluid

dynamic analyses to the adiabatic perturbations. We can relate the local gravitational

potential wells, δΦ, to the matter density perturbations via Poisson’s equation. It can

then be shown using the continuity equation that the adiabatic perturbations are related

to the matter density ρ by,

Θad =
δρ

3ρ
. (1.181)

Considering a model in which perturbations are affected only by changes in radiation

pressure, ignoring gravity and effects of baryon mass-energy, we can use the fact that

photon number is conserved and take into account the universe’s expansion to arrive at

a key equation,
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Θ̈ +
1

3
k2Θ, (1.182)

where k is a wave number in Fourier space. We see that this equation closely resembles

that of a harmonic oscillator. Given this simplified model, this means that the radiation

pressure acts as a restoring force for any initial perturbations. The factor of 1/3 in

our equation can be related to the adiabatic speed of sound, and we further conclude

that these oscillations will propagate at the speed of sound in our simplified fluid. This

means that when matter and radiation decouple during recombination, any temperature

fluctuations are effectively “frozen” into the photons, and these oscillations can be seen

based on the correlations of the temperature anisotropies in the CMB.

Power Spectrum

The angular power spectrum of the CMB can be obtained by mapping the correlations

between the anisotropies of the temperature map. We can first express the temperature

map T (θ, ϕ) as an expansion,

T (θ, ϕ) =
∑
ℓm

aℓmYℓm(θ, ϕ), (1.183)

where aℓm are coefficients and Yℓm are the spherical harmonics,

Yℓm(θ, ϕ) =

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pℓm(cos θ)e

imϕ. (1.184)

As usual, ℓ labels the multipole number and m the azimuthal number. The angle cos θ

depends on the relative orientation between two correlations. The power spectrum for a

particular value of ℓ is defined as a sum over m25,

Cℓ =
1

2ℓ+ 1

ℓ∑
m=−ℓ

|aℓm|2. (1.185)

25Because the CMB is approximately homogeneous and isotropic, the power spectrum should not
depend on the aximuthal angle.
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The value ℓ = 0 corresponds to the temperature averaged over the entire sky, ℓ = 1

corresponds to the angular dipole, and so on. Because these fluctuations are assumed to

be chosen randomly and distributed uniformly over the sky, we can define a Gaussian

average to characterize the entire power spectrum,

Cℓ =

〈
1

2ℓ+ 1

ℓ∑
m=−ℓ

|aℓm|2
〉
. (1.186)

When we measure the power spectrum, our instruments take individual measurements

over various angular scales corresponding to the value of ℓ26. At low values of ℓ, there

are only a small number of measurements to average. This means that, even with zero

measurement error, there may be random fluctuations that give values higher or lower

than expected; this is known as cosmic variance. As we increase ℓ, we increase the number

of measurements, and so any error due to cosmic variance is gradually decreased.

The power spectrum contains a succession of peaks known as acoustic peaks, and

we can glean a lot of information from them. The first peak corresponds to the largest

scale on which the photon-baryon fluid was able to undergo one complete oscillation

by the time of recombination. The angular size of this sound horizon depends on the

geometry of the universe: For κ = 0, the angular size corresponds directly to the ratio

of the physical size of the sound horizon to the distance to the surface of last scattering.

In a closed universe, κ = 1, the angular size of objects appears larger than in a flat

universe because light travels along curved paths, making distant objects appear closer.

In an open universe, κ = −1, the angular size of objects appears smaller because light is

spread out over a larger distance due to the curvature. Measurements of the CMB show

that the first angular peak occurs at ℓ ≈ 220, corresponding to an angular size of about

1◦. This corresponds to a universe that is very close to flat.

26The angular scale of each ℓ is 360/(ℓ+1). For example ℓ = 1 corresponds to an angular scale of 180
degrees, ℓ = 2 corresponds to an angular scale of 120 degrees, and so on.
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Figure 1.2: The CMB power spectrum. [7]

The more baryons there are, the more tightly the photon-baryon plasma is coupled in

the early universe, which affects the amplitude of the acoustic oscillations. If the baryon

density is higher, the gravitational wells are deeper during the compression phase, making

it harder for photon pressure to push the plasma outward in the rarefaction phase. This

results in a lower second peak. The baryon density can then be determined by the relative

heights of the first and second peaks.

Transfer Functions

In analyzing the underlying physics of the power spectrum, our goal is to track the

effects of fluctuations during recombination directly to the CMB anisotropies. Consider

perturbations in the metric, using Newtonian gauge,

ds2 = a2(τ)
[
−(1 + 2Φ)dτ 2 + (1− 2Ψ)δijdx

idxj
]
, (1.187)
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where Φ ≈ Ψ act as gravitational potentials. One can show by integrating the geodesic

equation that the photon momentum p is described by,

d

dτ
ln(ap) = −dΦ

dτ
+∇(Φ + Ψ). (1.188)

p is related to the temperature anisotropy as,

ap ∝ aT̄

(
1 +

δT

T̄

)
. (1.189)

Integrating 1.188 from the time of emission to the time of observation, and rewriting in

terms of temperature, we arrive at,

δT

T̄
(n̂) =

(
1

4
δγ + Φ+ n̂ · ve

)
τ=τ∗

+

∫ τ0

τ∗

dτ (Φ + Ψ̇). (1.190)

The term n̂ · ve accounts for the Doppler shift due to motion of electrons at the last

scattering surface — n̂ is the direction from which the photon enters a detector, while

ve is the electron’s velocity. 1
4
δγ + Φ describes the gravitational redshift of the photons

from moving out of a small gravitational well. These are the dominant contributions to

the temperature anisotropies. Substituting this result into the angular power spectrum

gives us an expression,

Cℓ =
4π

(2ℓ+ 1)2

∫
d ln k T 2

ℓ (k)Pζ(k), (1.191)

where the power spectrum of each Fourier mode ζk is given by Pζ(k) ≡ k3

2π2 ⟨ζkζ−k⟩0.

Tℓ(k) is the transfer function, which describes the projection of the fluctuations onto the

surface of last scattering as well as their evolution from recombination. It is given by,

Tℓ(k) = TSW(k)jℓ(kr∗) + TD(k)j
′
ℓ(kr∗), (1.192)

where TSW(k) ≡
(
1
4
δγ + Φ

)
∗ ζ(k) and TD(k) ≡ − (ve)∗ ζ(k). The subscript denotes eval-

uation at the surface of last scattering.
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1.3.3 The Inflationary Paradigm

The inflationary paradigm posits that the universe underwent a brief period of ex-

tremely rapid, exponential expansion in its earliest moments, within a fraction of a second

after the Big Bang. While not a component of traditional Big Bang cosmology, the in-

flationary paradigm has gained much traction in recent decades due to its ability to

elegantly solve several Big Bang puzzles and provide a compelling framework to under-

stand structure formation. Here, we will review these puzzles, and review the formalism

and consequences of inflation.

Motivations

The scale of the CMB’s temperature anisotropies is on the order of 10−5, while the

CMB overall of a relatively uniform temperature of about 2.7 K. This is a significant

result, because it means that places in the sky which are billions of light years away

from each other somehow have the same temperature. As these regions are not causally

connected, this poses a conundrum.

To be more rigorous, consider the size of the universe. As the universe evolves and

expands, the particle horizon27 changes by a factor of a0/ai, where ai denotes the initial

scale factor and a0 denotes the scale factor at present time. Therefore, initially, this

horizon scale was smaller by a factor of ai/a0. This tells us that the size of the universe

at this time was roughly

li ≈ ct0
ai
a0
. (1.193)

We can then compare this estimate to the size of an initial casual region, the size of

portions of space in causal contact with one another. This is given by lc ≈ cti. We can

27This is given by the distance that light has traveled since the beginning of the universe, integrated
over time, considering the expansion of the universe
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then take the ratio ,

li
lc
≈ t0
ti

ai
a0
. (1.194)

We can find a numerical estimate from this expression by noting the relationship

between the scale factor and temperature, ai/a0 = T0/Ti. Estimating that primordial

radiation dominates at the Planck time, we can plug in the Planck temperature to get,

li
lc
≈ 1028. (1.195)

This tells us that the initial size of the universe, at the Planck time, is greater than

the size of a causal region by 1084, or that there are approximately 1048 of these causally

disconnected regions. This means that the matter distribution, which we observe as

largely homogeneous, is unnaturally fine-tuned. This is often known as the horizon

problem.

We can further consider the initial curvature via the Friedmann equation,

Ω(t)− 1 =
κ

(Ha)2
. (1.196)

where Ω(t) is the cosmological density parameter, defined for a particular component as

ΩX = ρX/ρc, with ρc the critical density28. The curvature parameter κ measured today

is very close to zero, and so Ω(t) must be very close to 1. We can further find conditions

on Ω at various epochs in the universe’s evolution,

|Ω(aBBN)− 1| ≤ O(10−16)

|Ω(aGUT)− 1| ≤ O(10−55)

|Ω(apl)− 1| ≤ O(10−61).

(1.197)

This is known as the flatness problem because this means that the early universe must

have been very flat in order to satisfy cosmological constraints.

28The critical density, ρc =
3H2

8πG , is the energy density of a spatially flat universe
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The punchline of this analysis29 is that there are several aspects of Big Bang cosmology

which become a story about extreme fine-tuning. While it is not necessarily forbidden

that the universe was formed with a certain set of specific parameters, it makes the

story less plausible and lessens the overall predictive power of Big Bang cosmology. Are

these parameters due to an anthropic principle, or is there a physical way to explain why

the universe is so homogeneous and isotropic? Can we explain these specific, fine-tuned

initial conditions through a physical mechanism?

The answer is yes. The basic idea of inflation is that there was a period of exponential

expansion early on in the evolution of the universe. By allowing several e-folds, or periods

of time where the universe doubles in size due to exponential expansion, we can essentially

“smooth out” the initial conditions. The inflationary paradigm typically includes an

inflaton field responsible for inflation, whose potential energy vastly dominated its kinetic,

leading to an equation of state p ≈ −ρ that drives the expansion. As inflation ends, the

inflaton field decays to other particles in a process known as reheating.

Formalism

To understand exactly how inflation resolves the problems of initial conditions, let

us formally consider inflation within the context of general relativity. We have seen in

the previous discussion of initial conditions that the ratio ȧ0
ȧi
, which we can also write

as (aH)−1, seems to play a special role in both the horizon and flatness problems. In

fact, these problems arise because of the behavior of this quantity; since the comoving

Hubble radius is increasing with time, there are more causally disconnected regions and

the flatness continually decreases. This leads to an idea: Invert this ratio early on in the

universe.

29There is a third commonly-cited problem with Big Bang cosmology known as the monopole problem.
In short, it asks why there are no magnetic monopoles, which are an abundant feature of many grand
unified theories, in our universe.
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First developed by Alan Guth in 1979 [8], the main idea behind inflation is that the

universe underwent a period of adiabatic exponential expansion between 10−36 seconds

after the big bang to 10−33 seconds after the big bang. We can use the Friedmann

equations to see why the solution to the problems outlined above rests with exponential

expansion.

By observational constraints, we can set the curvature κ = 0. The mechanism of

inflation, accelerated expansion, requires that ä > 0, which corresponds to P < −ρ/3. We

can assume that inflation was not driven by radiation or ordinary, so a reasonable guess,

based off of the behavior of cosmological constant-dominance, would give us P ≈ −ρ.

This yields a scale factor,

a(t) = aie
Hi(t−ti) (1.198)

This scale factor solves the horizon problem by allowing the comoving horizon to

decrease with time. To be consistent with observations, it must be the case that all

anisotropies today were in causal contact with each other in the far past, i.e. they were

inside the same horizon. This is the condition,

1

a0H0

<
1

aiHi

. (1.199)

The comoving particle horizon is given by,

χp(t) =

∫ t

0

dt′

a(t)′
=

∫ a

0

da

aH2
=

∫ a

0

d ln(
1

aH
). (1.200)

We can then solve for the number of e-folds of inflation: The number of times the universe

expands by a factor of e. This is dependent on the details of reheating, but most models

place the e-fold number somewhere in the range of 50− 70.

We also see that an exponentially increasing scale factor allows Ω(a) to tend toward

1, driving the universe toward flatness and allowing for a resolution to the flatness prob-

lem. All in all, the paradigm allows for a wider range of initial conditions for the early
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universe. These initial conditions are then “inflated away” as the exponential expansion

drives causal patches in the universe far away from each other and pushes the curvature

parameter toward zero.

Scalar Perturbations

Through inflation, quantum fluctuations can be stretched to cosmic scales that seed

large-scale structure. The Hubble radius H−1 — approximately the radius of the observ-

able universe — is roughly constant during inflation, since the Hubble parameter is given

by ȧ/a and the scale factor is an exponential. Quantum fluctuations in the matter and

scalar fields during this time are being constantly generated and are stretched as space

expands, eventually stretching beyond the Hubble radius and exiting the horizon. Scalar

fluctuations in particular can be characterized by the power spectrum,

⟨RkRk′⟩ = (2π)3δ(k + k′)PR(k), ∆2
s ≡ ∆2

R =
k3

2π2
PR(k), (1.201)

where the second quantity defines the dimensionless power spectrum. The scale depen-

dence of the power spectrum is parameterized by the spectral tilt ns,

ns − 1 ≡ d ln∆2
s

d ln k
. (1.202)

The momentum dependence is parameterized by the running of the spectral index,

αs ≡
dns
d ln k

. (1.203)

This allows us to parameterize the dimensionless power spectrum as an approximate

power law,

∆2
s(k) = As(k∗)

(
k

k∗

)ns(k∗)−1+ 1
2
αs(k∗) ln( k

k∗ )
, (1.204)

given in terms of a reference scale k∗ known as the pivot scale.
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Now, let’s consider the generation of these scalar perturbations during inflation and

compute the resultant power spectra. We define the comoving curvature perturbation, a

gauge-invariant quantity, as

R ≡ Ψ− H

ρ+ p
δq (1.205)

where Ψ is a spatially flat hypersurface and δq is the scalar part of the 3-momentum

density. Cosmological inhomogeneities are characterized by R, which tells us about

the intrinsic spatial curvature of co-moving or constant hypersurfaces. This quantity is

conserved outside the horizon, and so we quantize scalar fluctuations during inflation by

writing the equation of motion for R in the form of a simple harmonic oscillator. We

start with a single-field slow roll model30, in which we have one scalar inflaton field ϕ,

defined by the action

S =
1

2

∫
d4x
√−g[R− (∇ϕ)2 − 2V (ϕ)]. (1.206)

Here, we choose units where M−2
pl = 1. In order to fix our reparametrizations, we

choose a gauge. In this case, it is convenient choose the gauge where the inflaton field is

unperturbed and scalar degrees of freedom are characterized by metric fluctuations,

δϕ = 0, gij = a2[(1− 2R)δij + hij], ∂ihij = 0. (1.207)

We can then expand the action to second order in R to get,

S =
1

2

∫
d4xa3

ϕ̇2

H2
[Ṙ2 + a−2(∂iR2]. (1.208)

We then define the Mukhanov variable v ≡ zR where z ≡ a2 ϕ̇
2

H2 . Rewriting the action in

conformal time yields

S =
1

2

∫
dτdx3

[
(v′2) + (∂iv)

2 +
z′′

z
v2
]
. (1.209)

30We will consider alternative models of inflation in the next section.
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Using a Fourier expansion of the field v, we arrive at the Mukhanov equation.

v′′k +
(
k2 +

z′′

z

)
vk = 0 (1.210)

Since the function z depends on background dynamics, this equation is difficult to en-

tirely solve. We can arrive at boundary conditions characterizing the solutions by first

quantizing the field v,

v̂k = vk(τ)âk + v∗−k(τ)â
†
−k, (1.211)

with the creation and annihilation operators satisfying the usual commutation relations

if the mode functions are normalized as,

⟨vk, vk⟩ ≡
i

ℏ

(
v∗kv

′
k − v∗

′

k vk

)
= 1. (1.212)

We can choose the vacuum state for the fluctuations to be the Minkowski vacuum in the

far past, τ → −∞. The mode equation in this limit becomes that of a simple harmonic

oscillator, which motivates the initial condition,

lim
τ→−∞

vk =
e−ikτ√
2k
. (1.213)

In the de Sitter limit, perhaps the closest approximation to inflationary expansion, z′′/z =

2/τ 2. Plugging this, and our ansatz for vk, back into the Mukhanov equation yields,

vk =
e−ikr√
2k

(
1− i

κτ

)
, (1.214)

the Bunch-Davies mode function. With this result, we can now compute the power

spectrum; consider the field defined by ψ̂k = v̂k/a,

⟨ψ̂k(τ)ψ̂k′(τ)⟩ = (2π)3δ(k + k′)
H2

2k3
(
1 + k2τ 2

)
. (1.215)

On superhorizon scales, for which kτ ≪ 1, this becomes a constant,

⟨ψ̂k(τ)ψ̂k′(τ)⟩ → (2π)3δ(k + k′)
H2

2k3
. (1.216)

79



CHAPTER 1. A TALE OF TWO STANDARD MODELS

We can relate the curvature perturbation in a spatially-flat gauge directly to the pertur-

bations of the inflation field ϕ driving inflation: R = Hψ/ϕ̇. The power spectrum at

horizon crossing k = a(t∗)H∗ is,

⟨Rk(t)Rk′(t)⟩ = (2π)3δ(k + k′)
H2

2k3
H2

ϕ̇2
. (1.217)

The dimensionless power spectrum is then,

∆2
R(k) =

H2
∗

(2π)2
H2

∗

ϕ̇2
∗
. (1.218)

We can see that the spectrum at horizon crossing, because R approaches a constant,

determines the spectrum until the modes re-enter the horizon.

We can also the compute the power spectrum of the vacuum fluctuations, given by

the operator,

v̂(τ,x)

∫
d3k

(2π)3
v̂ke

ik·x. (1.219)

While the expectation value of v̂(τ,x) vanishes, it has a nonzero variance,

⟨|v̂(τ,x)|2⟩ =
∫

d3k

(2π)3
|vk(τ)|2 =

∫
d ln k

k3

(2π)3
|vk(τ)|2. (1.220)

The dimensionless power spectrum is then,

∆2
v(k, τ) = |vk(τ)|2 = a2

(
H

2π

)2

(1 + (kτ)) . (1.221)

As kτ → 0, the superhorizon limit, the power spectrum is the same for all momenta, and

is therefore scale-invariant.

Tensor Perturbations

The production of a stochastic gravitational wave background is a key prediction of

inflation. In a similar way that electromagnetic waves are derived as propagating solutions
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of Maxwell’s equations, and come in two distinct linear polarizations, gravitational waves

are derived as propagating solutions to Einstein’s equations. It can be shown that these

equations imply two distinct polarizations for gravitational waves as well, which we will

denote + and ×. Gravitational waves are the transverse, traceless components of the

metric perturbation. This can be described as a perturbation to the FRW metric

gij = a2(δij + 2hij) (1.222)

We can consider these perturbations via the Einstein-Hilbert action. Expanding this

action to quadratic order in hij yields

S =
1

4

∫
dt

∫
dx3a3

[
(1/2)(ḣij)

2 − 1

2a2
(∂khij)

2

]
(1.223)

where x is a comoving coordinate. We can reformulate this equation in terms of Fourier

components and the two gravitational wave polarization amplitudes h+ and h×.

S =
∑
p=+,×

∑
k

∫
dta3

[
1

2
| ˙vp,k

2| − 1

2
(k/a)2|v2p,k|

]
(1.224)

where vp = hp/2 and k is the usual wave vector. The structure of this resulting equation

tells us that the gravitational wave Fourier modes and polarization state amplitudes

behave as simple harmonic oscillators. We can then define the gravitational-wave power

spectrum by noticing that each perturbation is a realization of a random field that is

randomly drawn from a Gaussian distribution. The variance of v, utilizing the usual result

for a simple harmonic oscillator, is then ⟨v2⟩ = ℏ/2ω. The variance of the distribution of

tensor fluctuations will then be,

⟨|hp,k|2⟩ =
H2

∗
4k3

. (1.225)

The dimensionless power spectrum is then given by

∆2
t = 2

k3

2π2
⟨|hp,k|2⟩ =

2H2
∗

π2
, (1.226)
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where we multiply by a factor of 2 in order to account for the two different polarization

states. We can again see that this spectrum is scale-invariant.

The power spectra of both the scalar and tensor perturbation depend, as expected,

on the Hubble scale at horizon exit, and therefore on the energy scale of inflation. This

also implies that can probe this energy scale through the tensor-to-scalar ratio,

r ≡ ∆2
t (k)

∆2
s(k)

, (1.227)

where ∆2
s(k) denotes the dimensionless power spectrum of the scalar fluctuations. The

inflationary potential V — which we will detail in the next section — is proportional to

H2. V can be related to the tensor-to-scalar ratio as,

V 1/4 ∼
( r

0.01

)1/4
1016GeV, (1.228)

and thus constitutes a direct measurement of Hubble during inflation. Upper limits on

the tensor-to-scalar ratio by BICEP and Planck [9] give r ≲ 0.06. This translates into a

bound on H ≲ 1013 GeV.

1.3.4 Cold Dark Matter

The first hints of the existence of large quantities of extra, unseen matter in the

universe came about via the observation of galaxy rotation curves in the 1930s. The

rotation curves of spiral galaxies – showing the orbital speeds of visible matter in the

galaxy as a function of their distance from the galactic center – appeared flat, rather

than displaying the ∝ r−1/2 dependence expected from Newtonian gravity. If we assume

that galaxy rotation follows Newtonian gravity, as other orbital systems do, the galactic

mass would have to be up to five times larger than what could be accounted for by visible

matter. The rotation curves then imply that this extra mass would scale as M(r) ∝ r in

order to match the observed flatness; its density would scale as ∝ M(r)/r3 ∼ r−2. This
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suggests that the distribution of this matter in galaxies is more like a halo, in contrast

with the disk-like structure observed from visible matter.

At this point, there were several possibilities for how to reconcile this observation.

Perhaps this signaled a breakdown of the predominant gravitational theory, or that ob-

servational instruments could not capture enough light necessary to reveal the presence of

a preponderance of dim astrophysical objects. In the subsequent decades, these questions

were sharpened with the development of ΛCDM model of cosmology, which constitutes

the leading modern paradigm. As every piece of observational evidence strengthened

the predictions of General Relativity (GR) and it became clear that known astrophysical

objects alone could not account for enough matter to form the necessary massive halo

structures, the possibility of a new type of matter altogether emerged.

Further observations have also pointed to the presence of a large amount of hidden

matter. Gravitational lensing measurements can map out this matter indirectly by ob-

serving the gravitationally-assisted bending of light around galaxies and other massive

objects. Lensing measurements of the Bullet Cluster, consisting of a pair of colliding

galaxy clusters, reveal a center of mass inconsistent with that predicted by the cluster’s

visible matter. Measurements of the mass-energy density of the universe via the power

spectrum of the CMB by Planck have led to the following breakdown: Only about 5 per-

cent of this mass-energy, assuming a ΛCDM model of cosmology, is made up of baryonic

matter. Seventy percent consists of dark energy. The remaining twenty-five percent is

other, non-visible matter; this is what we mean by dark matter (DM).

This breakdown comes from measurements of the power spectrum. We’ve seen that

the first and second peaks are sensitive to the amount of baryonic matter in the universe

at the time of recombination. The balance between radiation pressure and gravitational

pull due to DM is also reflected in the positions and heights of the power spectrum peaks.

DM creates deeper wells than baryons alone would, which leads to stronger compressions
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during the odd-numbered peaks. This means that more dark matter makes the third

peak more pronounced relative to the second peak. The position of the first peak, when

combined with the observed matter density and the flatness of the universe, implies the

existence of a component that makes up the remaining energy density to achieve Ωtot ≈ 1.

This missing component is attributed to the cosmological constant.

The DM of ΛCDM has specific properties. While remaining agnostic to the actual

microscopic model, the DM in this paradigm is:

1. Cold. In particular, the DM is non-relativistic. This is essential for the growth

of structure formation. Low velocities of dark matter allow efficient clumping,

providing gravitational wells in which baryonic matter can also collapse to form

stars and galaxies. If dark matter were hot and relativistic, its high velocities

would prevent it from clustering on small scales, as it would have a tendency to

smooth out small-scale density fluctuations due to its free-streaming behavior31.

This would hinder the formation of small structures and delay large-scale structure

formation.

2. Non-dissipative. One of the primary reasons dark matter must be non-dissipative

in the ΛCDM model is that it is electromagnetically neutral. It then cannot emit or

absorb light, so it cannot cool through radiaton. The non-dissipative nature of DM

is crucial for explaining why it forms diffuse halos around galaxies, while baryonic

matter collapses into the dense, luminous regions we observe as galaxies.

3. Collisionless. Along the same lines, DM must be collisionless, interacting with

each other primarily through gravity. The Bullet Cluster provides direct evidence

that DM is non-dissipative and collisionless: While the baryonic gas was slowed

31The free-streaming length is the distance a particle can travel before it is significantly slowed by
gravity. Cold dark matter has a very small free-streaming length, which means that it clusters on small
scales.
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down by collisions, the DM — inferred through gravitational lensing — passed

through the collision without interacting, indicating that DM does not dissipate

energy.

While ΛCDM posits the existence of cold DM, it does not posit a microscopic model

for it. In the next section, we will provide an overview of several models of DM, some of

which deviate from the above guidelines in a small enough way to maintain the successes

of ΛCDM and remain consistent with observation.

1.4 Hints of New Physics

The SM and the ΛCDM model both constitute our current best understanding of the

particle physics and cosmology of our universe. It is also clear that this cannot be the

end of the story. In this section, we will dive into the long list of reasons why there must

be physics beyond the SM. We will start with the naturalness problems, then consider

models to explain the nature of DM, introduce microscopic models of inflation, and end

with an overview of many other rich topics that we will not fully detail here.

1.4.1 The Naturalness Problems

In our study of EFTs, we saw that physical phenomena that are characterized by

different scales decouple from one another and can be understood in a largely independent

fashion. A theory violates the naturalness principle if its parameters depend on scales

that are significantly separated from one another. For example, in computing the self-

energy of the electron with a cutoff scale Λ, it receives a classical contribution of the form

∆me ∼ e2Λ, signifying a divergence. The electron self-energy must then be fine-tuned in

order to fit observational data.
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Such talk of divergences recalls renormalization: We’ve seen that the standard pro-

cedure for curing divergences in computations of QFT observables is to regularize the

integral by introducing a cutoff scale Λ, then redefine our parameters to be anchored

to a physical measurement. By parameterizing our ignorance of the high momentum

modes, renormalization allows us to make predictions of the physics at lower momen-

tum. However, our ultimate goal is to systematically discover the new physics beyond

the cutoff. Indeed, the divergence in the electron self-energy was eventually cured by the

inclusion of the positron, whose divergent contribution to the self-energy cancelled that

of the electron. Further, this modification was motivated by the inclusion of a (then)

new symmetry: CPT. In a similar fashion, divergences between the self-energy of neutral

kaons led to the successful prediction of a (then) new degree of freedom: The charm

quark [10]. Historically, finding solutions to problems that display fine-tuning has guided

the discovery of new physics.

There are a few ways that we can more rigorously define naturalness as a principle.

The main idea is that parameters in a more complete theory of physics should not require

fine-tuning, and instead admit dynamical explanations for their values. Parameters are

said to be technically natural if their size in the UV is not significantly influenced by

intermediate-scale physics, as in the example of the electron self-energy. More strongly,

they are ‘t Hooft natural if, when the parameter is set to zero, a symmetry is restored.

There are three major outstanding problems that consist of a finely-tuned parameter

that is natural under either definition. Collectively, they make up the naturalness prob-

lems. We will go through each of them below, and focus our extended discussion on the

strong CP problem, which will be important for later chapters of this thesis.
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The Hierarchy Problem

The hierarchy problem is the question of why the Higgs mass is 125 GeV, in light of

the fact that it can receive large quantum corrections that should drive it up to much

higher values. Quantum corrections to the Higgs mass take the form,

δm2
H ∼

Λ2

16π2
, (1.229)

where Λ is the usual cutoff scale, which in this case may be as high as the Planck mass.

Without fine-tuning, the Higgs mass should be much larger than its observed value,

unless a mechanism exists to cancel or regulate these large contributions.

Supersymmetry (SUSY) has long been a popular solution to the hierarchy problem.

By introducing an R-parity symmetry — which exchanges bosons for their fermionic

superpartner and fermions for their bosonic superpartner — the divergent quantum cor-

rections to the Higgs mass now receive a contribution of the opposite sign from the

superpartner of each particle. The corrections then take the form,

δm2
H ∼

Λ2

16π2
− Λ2

16π2
, (1.230)

and the Higgs mass is rendered stable without the need for fine-tuning. Although SUSY

has since fallen out of favor due to the null LHC results of the past decade, it may

still address the hierarchy problem if the mass difference between the particles and their

superpartners is not too large. In other words, SUSY must be softly broken to remain a

viable solution.

The Cosmological Constant Problem

The cosmological constant problem refers to the large discrepancy between the the-

oretically predicted value of the vacuum energy density — the cosmological constant Λ

— from quantum field theory and the observed value from cosmological measurements.
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The vacuum energy density ρvac in QFT is expected to receive contributions from vari-

ous sources, including the zero-point energies of quantum fields. These contributions are

expected to be on the order of the Planck scale,

ρvac ∼
M4

Pl

16π2
. (1.231)

However, the observed value of the cosmological constant, inferred from the accelerated

expansion of the universe, is extremely small,

ρobs ∼ 10−120M4
Pl. (1.232)

representing a discrepancy of 120 orders of magnitude between the theory prediction and

observational result. The value in natural units of the cosmological constant is,

Λ ≈ 1.1× 10−52m−2, (1.233)

an incredibly tiny value that renders the cosmological constant problem the most severe

of the naturalness problems. It is also the problem for which there exist the fewest

satisfactory explanations, and constitutes one of the most significant unresolved problems

in high energy physics.

The Strong CP Problem

CP, describes the invariance of the behavior of a system under the simultaneous

transformations of charge conjugation and parity. The weak force has been observed to

violate CP, while the strong force has thus far produced no such observed occurrence.

However, using our model-building techniques of writing down all terms in the La-

grangian of a theory that obey all discrete and continuous symmetries, there should be

a CP-violating term in the QCD Lagrangian. Namely,

LQCD ⊃ θ
g2

32π2
Tr(GµνG̃

µν), (1.234)
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where G is the gluon field strength, g its gauge coupling, and θ a phase. This term is a

total derivative, and arises from non-perturbative effects. CP violation also occurs due

to the Yukawa terms, and so the total amount of CP violation in the strong sector is

characterized by,

θ̄ = θ +Arg(DetMq), (1.235)

whereMq is the quark mass matrix. Bounds on θ̄ come from measurements of the neutron

eDM, which gives the constraint,

θ̄ ≲ 10−10. (1.236)

The strong CP problem is then the question of why θ̄ is so small. This is a fine-tuning

problem of 1 part in 1010, which is why it is categorized as a naturalness problem. A

solution would be able to explain the smallness of θ̄, rather than relying on this parameter

to be an input.

A massless up quark. In principle, the strong CP problem may be solved in a straight-

forward way — if the up quark were massless. When mu = 0, there is a chiral symmetry

in the quark sector of the QCD Lagrangian. In particular, we can perform a chiral

rotation,

u→ eiαγ5u, (1.237)

which allows the θ term to be rotated away through an appropriate choice of the phase

α. However, this solution is disfavored. The experimentally measured pion masses and

decay constants are consistent with the up quark having a small but nonzero mass, and

the mass differences between the proton and neutron would be difficult to explain if the

up quark were massless. Lattice QCD calculations also suggest the up quark mass is

small but nonzero.
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The Nelson-Barr mechanism. The idea of the Nelson-Barr mechanism is to intro-

duce spontaneous CP violation and an extended particle content in such a way that θ

is automatically zero at tree-level. The mechanism assumes that CP is a fundamental

symmetry of the theory, but it is spontaneously broken by a scalar field acquiring a

VEV, which avoids the introduction of explicit CP-violating terms in the Lagrangian.

We introduce new vector-like quarks such that the Yukawa terms are,

LNB = −(yu)ijQ̄L,iHUR,j − (yd)ijQ̄L,iHDR,j − (yq)ij q̄L,iϕqR,j − (ymix)ijQ̄L,iHqR,j + h.c.,

(1.238)

where Q denote the SM quarks, q the new vector-like quarks, and y the Yukawa matrices.

We further introduce a new scalar ϕ responsible for spontaneous CP-breaking, with

⟨ϕ⟩ = vϕe
iα. The full quark mass matrix is given by,

M =

 MQ M †
mix

Mmix Mq

 , (1.239)

After spontaneous CP-breaking, Mq = vϕe
iαyq and Mmix = vymix. The determinant of

the mass matrix is,

det(M) = det(Mq) det(MQ −MmixM
−1
q M †

mix), (1.240)

where the off-diagonal terms cancel the phase contribution in the full determinant, en-

suring that det(M) is real and its argument is zero. Due to the CP symmetry prior to

its breaking, θ is initially zero.

While solving the strong CP problem, this solution introduces new sources of fine-

tuning to ensure that both the θ angle vanishes and the determinant of the mass matrix

remains real. Solutions based on CP are therefore quite fragile, and have become disfa-

vored [11].
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The axion. Perhaps the most currently popular proposed solution to the strong CP

problem is the axion, a a dynamical scalar particle a that is the pseudo-Nambu-Goldstone

boson of a spontaneously broken U(1)P,Q symmetry, known as Peccei-Quinn (PQ) sym-

metry. Adding this into the QCD Lagrangian yields,

L ⊃ αs
4π

(
θ̄ − a

fPQ
GµνG̃

µν

)
, (1.241)

where αs is the strong coupling constant and fPQ the scale of the PQ symmetry breaking.

The idea is then that a may be rotated into θ̄ by the PQ symmetry, such that it finds a

minimum at ⟨a⟩ = θ̄, giving an overall contribution of zero above fPQ.

The axion is appealing for many reasons, the first of which is that it is a fairly simple

ingredient to add into the model. U(1) symmetries show up frequently in renormalizable

models of BSM physics, and it is not a huge stretch to posit the existence of an additional

U(1) at higher energies. They are also appealing for an entirely different reason: They

are able to make up the dark matter relic abundance, simultaneously solving two of the

major outstanding problems of particle physics.

There is a crucial snag, however, that takes the name of the axion quality problem. In

order to be a robust solution to the strong CP problem, U(1)PQ must be a high quality

global symmetry. There may be other interactions that change the shape of the axion

potential, and it is particularly sensitive to Planck-suppressed operators, which could

throw off the careful cancellation that occurs in 1.241. There also may be further sources

of CP violation from as-yet unknown BSM physics, such as CP violation that explains

the baryon-anti-baryon asymmetry.

Anthropics

While the naturalness principle has certainly led to successful predictions and post-

dictions of new particles, its logic is inductive. On one hand, there is a logical precedent to
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flesh out the full range of solutions to the naturalness puzzles that retain the naturalness

principle. On the other hand, perhaps induction can only take us so far, and naturalness

will at some point fail, if it hasn’t already done so.

In some sense, the naturalness problems are not problems per se. The values for the

parameters of the SM, as calculated by Weinberg, fall just in the range that leads to the

conditions for life [12]. For example, if the cosmological constant significantly larger than

its observed value, the universe would have expanded too quickly for galaxies to form.

Conversely, if it were negative and too large in magnitude, the universe would collapse

too early. This leads to an anthropic bound on the cosmological constant,

Λ ≲
3

8πGρmatter

, (1.242)

which translates to an upper bound that lies quite close to the observed value. Perhaps,

then, we observe a universe that has these values because this is one of the few that we

could even exist in.

The anthropic principle, however, does not make testable predictions, and relies on the

possible existence of other universes in which the fundamental parameters are different.

Further, while it can in some sense explain why we observe small values for certain

constants, it does not provide a dynamical mechanism for why these values are chosen,

effectively sidestepping the problem.

1.4.2 What’s the (Dark) Matter?

While ΛCDM cosmology posits the existence of cold DM, it remains very much an

open question as to what this DM actually is. In this section, we will discuss the prevailing

question of what could constitute DM and give a brief survey of the current landscape

of DM candidates. Our discussion is inspired by material presented in the lecture notes

[13] [14].
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Making a DM Candidate

There have been numerous attempts to explain what DM is, utilizing a variety of cre-

ative approaches. First, what if DM actually is baryonic matter, but simply too dim to be

properly accounted for? A number of astrophysical objects, such as black holes, neutron

stars, and brown dwarfs, are difficult to detect and could easily fit this description. Un-

fortunately, this perhaps simplest explanation has been ruled out by gravitational lensing

measurements. Importantly, primordial black holes, which are thought to form through

large density perturbations in the early universe, remain a compelling DM candidate.

This is because black holes formed through gravitational stellar collapse are restricted

to certain ranges of masses based on the Schwarzschild radius, while primordial black

holes may originate prior to stellar formation via primordial density perturbations and

are therefore not subject to the same constraints.

Since the discrepancy in the measurement of visible matter versus its predicted distri-

bution assumes General Relativity (GR), one might ask if GR is insufficient to describe

the dynamics of galaxies. Indeed, modified theories of gravity have been constructed that

can fit well with observed galaxy rotation curves, and we know that GR cannot be an

all-encompassing theory of gravity. However, these theories often fail to mesh with the

larger cosmological picture. GR has consistently passed every experimental test we’ve

thrown at it, including precision measurements of the gravitational constant, observations

of weak-lensing in the solar system, and the direct detection of gravitational waves. Thus

far, modified theories have not been able to simultaneously predict flat galaxy rotation

curves while maintaining the overwhelming success of GR. Further, modified theories are

more difficult to justify in light of (no pun intended) indirect observations of DM via

lensing.

If DM is not comprised of hidden baryonic matter and not a product of corrections
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to GR, it is natural to consider explanations rooted in the hypothesis of new wave-like

or particle-like matter. After all, we have a Standard Model of baryonic matter that has

enjoyed excellent agreement with data. There is no a priori reason why DM could not

also adhere to similar particle properties. What, then, makes for a good microscopic DM

candidate? There are a few criteria to consider:

1) Its interactions must be predominantly gravitational. Observational evidence

strongly suggests that DM interactions are primarily gravitational. DM is also often

assumed to be collisionless. However, some models propose weak self-interacting dark

matter (SIDM), where dark matter particles interact with each other through a new,

weak force. In other models, DM could carry a small, nonzero electric charge, making it

millicharged and allowing for very weak electromagnetic interactions.

2) Its interactions must be non-dissipative. However, there are dissipative models

in which DM particles can interact with each other via forces beyond gravity, leading to

energy loss. A key component of these models is the existence of a dark sector with new

particles and forces. These interactions could be mediated by dark photons or other light

bosons that act similarly to photons in the SM. DM particles could emit dark photons,

carrying away energy allowing dark matter to cool and collapse into compact structures.

3) It must result in the necessary relic abundance. There are two primary mech-

anisms that may lead to this: freeze-out and freeze-in.

The freeze-out mechanism is the most commonly considered scenario for DM produc-

tion. It assumes that DM particles were in thermal equilibrium with the SM particles

in the early universe, with interactions like χχ̄ ↔ SM with χ a generic SM particle.

At early times, the number density follows the Boltzmann distribution. As the universe

expands and cools, the interaction rate Γ ∼ nχ⟨σv⟩, where nχ is the number density
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and ⟨σv⟩ the thermally-averaged cross-section, falls below the expansion rate. Then, DM

particles can no longer annihilate or be produced efficiently. They decouple and their

number density becomes fixed, leading to the observed relic abundance. The evolution

of the number density is governed by the Boltzmann equation,

dnχ
dt

+ 3Hnχ = −⟨σv⟩
(
n2
χ − n2

χ,eq

)
, (1.243)

where nχ,eq is the number density of DM during equilibrium. The relic abundance is

inversely proportional to the annihilation cross section,

Ωχh
2 ∝ 1

⟨σv⟩ , (1.244)

where h is the dimensionless Hubble constant. The annihilation cross-section must lie

within a certain range to match the observed relic abundance. If the interactions are

too weak, the DM would overclose the universe32, and if the interactions are too strong,

there would be too little DM today.

In the freeze-in mechanism, DM particles are never in thermal equilibrium with SM

particles. Instead, they are produced through very weak interactions, like decays or

scatterings off heavy particles, SM + SM → SM + χ. As the temperature decreases,

production continues until the universe cools sufficiently that further production becomes

negligible and their number density freezes in, leading to the relic abundance. This

number density is described by the Boltzmann equation,

dnχ
dt

+ 3Hnχ = ⟨σv⟩n2
SM , (1.245)

where nSM is the number density of SM particles. The relic abundance is determined by

the strength of the interactions with the thermal bath, and it scales with the interaction

32This is a scenario in which the total density of matter and energy in the universe exceeds the critical
density, leading to a closed geometry that will eventually stop expanding and begin to contract.
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strength as,

Ωχh
2 ∝ ⟨σv⟩. (1.246)

Freeze-in requires precise tuning of the interaction cross-section and production mecha-

nism, so that the interaction rate is weak enough that DM never thermalizes, but strong

enough to produce the correct relic abundance. This abundance is,

Ωχh
2 ≈ 0.12. (1.247)

4) It must lead to a consistent cosmology. DM was originally introduced to ex-

plain galactic rotation curves, and through lensing experiments and cluster observations,

is thought to form a halo-like structure surrounding a galaxy. This has interesting im-

plications for the formation of large-scale structure in the universe. DM must account

for the gravitational pull necessary to explain the formation of large-scale structures over

cosmic time, while having a free-streaming length small enough to allow for the formation

of small structures such as galaxies. Models with slightly higher free-streaming lengths

can still be viable but must reproduce the correct galaxy-scale structure. Too much free

streaming, as in the case of hot DM, would wash out small-scale structures.

A DM model must also fit the anisotropies in the CMB, in particular leading to the

right amount to account for the power spectrum peaks, as well as fit the baryon acoustic

oscillations33 observed in surveys of large-scale structure.

Finally, DM should not significantly alter the predictions of BBN, which is highly

sensitive to the energy content of the universe during its first few minutes. DM must not

33BAO are regular, periodic fluctuations in the density of visible matter (baryons) in the universe,
imprinted in the large-scale structure as a result of sound waves that propagated through the early
universe. These sound waves were generated during recombination in the primordial plasma composed
of photons, baryons, and DM. They appear as a slight enhancement in the probability of finding galaxies
separated by a characteristic scale corresponding to corresponds to the maximum distance the sound
waves could have traveled before the universe cooled enough for photons and baryons to decouple. This
feature can be seen in the 2-point correlation function or the power spectrum of galaxy surveys.
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contribute too much energy during this time or interact strongly with these processes.

5) It must have thus far evaded detection. Like any new particle added to the SM,

there must be properties of DM that explain why it has not yet been detected by current

or previous experiments, while adhering to bounds set by direct and indirect detection

experiments.

The Current Landscape

Current bounds leave open large swaths of parameter space for possible DM candi-

dates, which physicists have slowly been chipping away at in the past decades. There are

a number of creative proposals, as well as experiments aimed at various possible produc-

tion channels [14]. To get a sense for this landscape, we will focus on a few well-considered

DM candidates in this section, in order to illustrate the main ideas in performing a DM

calculation.

Weakly-Interacting Massive Particles (WIMPs). WIMPS are natural candidates

for DM obeying a freeze-out mechanism. They are predicted to have a relic density

consistent with the observed dark matter abundance if their annihilation cross-section is

approximately the weak interaction scale, which leads to the so-called“WIMP miracle”.

WIMP masses typically range from a few GeV to a few TeV, which is a natural range in

many BSM theories such supersymmetry.

While WIMPs are theoretically compelling, direct and indirect detection experiments

have yet to observe their signatures. The absence of detection has pushed the bounds on

the WIMP-nucleon interaction cross-section to extremely small values, making it harder

to discover WIMPs unless their interactions are weaker or their mass is different from

the initially expected range.
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Axions. We’ve introduced axions already in the context of solving the strong CP prob-

lem. They also constitute perhaps the current most popular proposal for a particle DM

candidate, following the realization that they are naturally light and weakly interacting.

Axions are predicted to have a very small mass, in the range of 10−5 eV to 10−2 eV. This

makes them much lighter than WIMPs, but because of their production mechanism, they

are non-relativistic at the time of structure formation. They also interact very weakly

with other particles, primarily through couplings to photons, fermions, and gluons, which

are suppressed by the scale fPQ. In order for axions to have evaded detection thus far,

this scale lies around 109 GeV to 1012 GeV.

Axions may be non-thermally produced in the early universe through different mecha-

nisms. In the vacuum misalignment mechanism, the axion field is initially displaced from

its minimum in the potential after PQ symmetry breaking. As the universe expands and

cools, the axion field begins to oscillate around the minimum of the potential. These

oscillations correspond to a population of non-relativistic axions, making them a natural

candidate for cold DM. Further, the axion number density remains constant after the

oscillations start, which is analogous to the freeze-out process for WIMPs but without

requiring thermal equilibrium. The relic density of axions from this mechanism is,

Ωah
2 ∼

(
1012GeV

fa

)7/6

, (1.248)

which becomes close to the observed relic abundance for fPQ ∼ 1012 GeV.

Another commonly-considered production mechanism involves the topological defects

formed from PQ symmetry breaking in the early universe, such as axion strings and

domain walls. Axion strings can form after breaking, and produce a population of axions

when they decay. Domain walls are formed in an analogous way, and also contribute to

axion density upon decay.
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The list goes on... Aside from axions and WIMPs, several alternative dark matter

candidates are being actively explored. Sterile neutrinos are a leading candidate for warm

dark matter (WDM), produced through non-thermal mechanisms and detectable via po-

tential X-ray emissions from their decay. Self-interacting dark matter (SIDM) posits that

dark matter particles can interact with each other, potentially solving small-scale struc-

ture issues in galaxies, such as the core-cusp problem. Fuzzy dark matter, consisting of

ultralight bosons with masses around 10−22 eV, exhibits wave-like behavior on galactic

scales and could help explain galactic core structures. Primordial black holes (PBHs),

which form in the early universe, offer a non-particle-based dark matter candidate, po-

tentially detectable through gravitational lensing or mergers observed by gravitational

wave observatories. Finally, light dark matter (LDM) and dark photons offer possibilities

in the sub-GeV mass range, with searches focused on accelerator-based experiments and

novel direct detection techniques. These diverse candidates each address different theo-

retical challenges and remain key targets in the ongoing search for dark matter. There

are certainly no shortage of additional DM models, with the development of many more

an ongoing process.

1.4.3 The Inflationary Mechanism

The inflationary paradigm, though not verified, is quite successful at resolving the

traditional problems with Big Bang cosmology. Actually implementing inflation, however,

requires new physics, because do not know what the inflating mechanism is. There

are several key predictions of inflation theory that would serve as evidence toward its

paradigm, and the tests of the paradigm are dependent on which specific type of inflation

is being studied. There is no current consensus among cosmologists as to what the

triggering mechanism of inflation was, and so several variations on the inflation idea exist,
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each of which center around a slightly different formulation of the inflaton potential and

subsequent field.

It is typically considered to be inflaton field, a scalar ϕ, that has a high potential

energy prior to inflation that drives the expansion itself. We will detail this model, and

outline a few others, in this section.

Single-Field Slow Roll Model

The simplest model is single-field slow roll inflation, in which a single scalar inflaton

field ϕ has a high potential energy prior to inflation that drives the expansion itself. In

this model, the total energy density of the inflaton is,

ρ =
1

2
ϕ̇2 +

1

2

(∇ϕ)2
a2

+ V (ϕ) (1.249)

If we make the assumption that the scalar field is spatially homogeneous, the gradient

term goes away and we are left with,

ρ =
1

2
ϕ̇2 + V (ϕ). (1.250)

The corresponding pressure of the inflaton field is,

p =
1

2
ϕ̇2 − V (ϕ). (1.251)

The magic of the slow-rolling field then comes in since we notice that, if the inflaton field

only changes slowly, we obtain the condition,

ϕ̇2 ≪ V (ϕ). (1.252)

In this case, we see that

ρ ≈ −p ≈ V (ϕ), (1.253)

and the inflaton field acts similarly to a cosmological constant. This means that an ex-

ponential expansion can be driven via an inflaton field if the field is slow-rolling through
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some period of time and if its potential energy dominates the energy density of the uni-

verse, analogous to the behavior of a cosmological constant. The slow roll is characterized

by a parameter,

ε = − Ḣ

H2
. (1.254)

When ε < 1, accelerated expansion occurs. The expansion must also be sustained over a

long-enough period of time, giving the condition,

|ϕ̈| < |V,ϕ|. (1.255)

where the subscript on V indicates that we take the derivative of the potential with

respect to ϕ. This leads to a second slow roll parameter,

η = − ϕ̈

Hϕ̇
, (1.256)

whose absolute value must also be less than 1. We can write the slow roll parameters in

terms of the inflaton potential,

v(ϕ) ≡
M2

pl

2

(
V,ϕ
V

)2

, ηv(ϕ) ≡M2
pl

V,ϕϕ
V

. (1.257)

We’ve seen that, to formulate single-field slow roll inflation, we can make use of an action

with a standard kinetic term minimally coupled to gravity,

S =

∫
d4x
√−g

[1
2
M2

plR−
1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (1.258)

where R is the Ricci scalar. During inflation, spacetime is approximately de-Sitter,

a(t) ∼ eHt. Varying the action with this metric, we obtain the equations of motion for

the inflaton field,

ϕ̈+ ∂ϕV = 0. (1.259)
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Models with Modified Potentials

There are no shortage of further inflationary models to discuss that build off of the

simplest single-field slow roll model. Perhaps the most immediate aspect of inflationary

models that can be tinkered with is the potential. What features should this potential

have? We have seen above that we can start with general slow-roll conditions, although

models are not necessarily constrained to this requirement. One feature that each po-

tential must have, however, is some mechanism to exit inflation. Specifically, a “graceful

exit” is a necessity: One that does not interfere with the structure of the universe imme-

diately after inflation. This is because we want to preserve the homogeneity and isotropy,

which were the motivations for introducing an inflationary paradigm in the first place.

Each of the following potentials can be characterized by its state prior to inflation as well

as its mechanism for a graceful exit. In Figure 1.4.3 we can see three commonly used

Figure 1.3: A sampling of commonly-used inflationary potentials. [15]

inflationary potentials. The first one, old inflation, assumes that our scalar field starts

at the local minimum of the potential, driving inflation as it tunnels to the true vacuum.

The second potential, which corresponds to a Coleman-Weinberg type potential, is given

by
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V (ϕ) = V0

[(ϕ
µ

)4(
ln
(ϕ
µ
− 1

4

)
+

1

4

)]
(1.260)

This is also the potential for radiatively-induced symmetry breaking in electroweak and

grand unified theories, and so this is a particularly popular popular inflationary model.

In this model, the scalar field escapes from the maximum due to quantum fluctuations.

Energy is homogeneously released as it rolls toward its minimum value.

The third potential is one formulation of chaotic inflation. This is a sub-type of a class

of models known as large-field models, where the inflaton field starts off at some large

value and evolves to zero at the origin. In chaotic inflation, the potential is dominated

by the term

V (ϕ) = λpϕ
p (1.261)

where λp is a coupling constant. This self-coupling should be very small in order for the

density fluctuations to be small. These models are known as chaotic models since they

may have nearly any set of initial conditions, and this is the broadest possible class of

models that satisfy the slow-roll parameters.

Multi-field Models and the Curvaton

Single-field inflation models rely on the inflaton to both inflate the universe and

be responsible for the primordial density fluctuations. Multi-field models, as the name

suggests, introduce multiple fields, some of which may be responsible for inflation and

some of which may be spectator fields. In the curvaton model, the inflaton field does

the inflating, and a second scalar field — the curvaton — is responsible for the observed

density fluctuations. The curvaton is subdominant during inflation, but can later convert

its fluctuations into curvature perturbations. The simplest curvaton model features the
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potential,

V (ϕ, σ) =
1

2
m2
ϕϕ

2 +
1

2
m2
σσ

2, (1.262)

where the curvaton mass mσ ≪ H. Its equation of motion, using an FRW metric, is

given by,

σ̈ + 3Hσ̇ + V ′(σ) = 0. (1.263)

We can capture the dynamics of the inflaton and curvaton fields by splitting them into

their interacting and background values, e.g. σ(t,x) = σ0(t) + δσ(t,x). We assume that

the curvaton kinetic energy is much smaller than that of the inflaton,

ϵ ≡ − Ḣ

H2
≈ ϕ̇2

2H2M2
pl

, (1.264)

and so the curvaton is slowly-rolling along its potential,

σ̇0 ≈ −
m2

3H
σ0. (1.265)

Crucially, curvature fluctuations now no longer need to be generated immediately after

inflation. As the inflaton reheats following inflation, the curvaton will slowly roll along

its potential until its mass reaches the Hubble scale. At this point, the curvaton will

oscillate about its potential and dilute like matter. The curvature perturbation is related

to the curvaton by,

ζ ≈
(

3ρσ
4ρr + 3ρσ

)
ζσ, (1.266)

where ρr gives the radiation density, and ζσ are the curvature fluctuations generated

by the curvaton. The factor out front gives the ratio of the curvaton energy density

to the total energy density. The dimensionless power spectrum of the curvaton will be

scale-invariant,

∆2
σ(k) ∼

(
H∗

2π

)2

, (1.267)
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and the power spectrum of curvature perturbations is,

Pζ =
(

3ρσ
4ρr + 3ρσ

)2(
H∗

2πσ∗

)2

. (1.268)

Primordial Non-Gaussianities

All current observations are consistent with Gaussian primordial curvature perturba-

tions. Inflationary models, however, predict the generation of primordial non-Gaussianities,

deviations from a perfect Gaussian distribution in the statistics of the primordial cur-

vature perturbations. A Gaussian distribution implies that the statistical properties of

the perturbations are entirely characterized by the two-point correlation function — or

equivalently, the power spectrum. Non-Gaussianities require higher-order correlation

functions, such as the three-point function or the four-point function, to fully describe

the statistics of the perturbations.

The curvature perturbation ζ(x) is usually expanded into a sum of Gaussian and

non-Gaussian components,

ζ(x) = ζG(x) + fNLζ
2
G(x) + · · · , (1.269)

where fNL is a non-linearity parameter that characterizes deviations from Gaussianity,

and ζG(x) gives the Gaussian part of the distribution. The first non-Gaussianity is given

by the three-point correlation function,

⟨ζ(k1)ζ(k2)ζ(k3)⟩ = (2π)3δ(3)(k1 + k2 + k3)Bζ(k1, k2, k3), (1.270)

where we explicitly write momentum-conserving delta functions. The bispectrum Bζ(k1, k2, k3)

characterizes the amplitude and shape of the non-Gaussianities, and is commonly param-

eterized as,

Bζ(k1, k2, k3) = 2fNL [Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)] , (1.271)
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where Pζ is the usual power spectrum. Different models of inflation predict different

shapes and magnitudes of the bispectrum, which are described by different configurations

of k1, k2, k3. The non-Gaussianities are then characterized by the shape of the momentum-

conserving triangle formed by k1, k2, k3.

Local non-Gaussianity is generated locally in real space, and the bispectrum is largest

when one of the momenta is much smaller than the other; this is the squeezed limit. In

this limit, the bispectrum is approximated as,

Bζ(k1, k2, k3) ∼
1

k31k
3
2

+ permutations = (1.272)

Equilateral non-Gaussianity refers to a bispectrum in which k1 = k2 = k3. The bispec-

trum goes like,

Bζ(k1, k2, k3) ∼
1

k31k
3
2k

3
3

. (1.273)

Finally, folded non-Gaussianity occurs when k1 ≈ k2 + k3. Each shape is characterized

by its own fNL parameter. For arbitrary shapes, we can measure the magnitude of the

non-Gaussianity as,

fNL ≡
5

18

BR(k, k, k)

PR(k)2
. (1.274)

Non-Gaussianities are also described by higher-point correlation functions, such as

the four-point function,

⟨ζ(k1)ζ(k2)ζ(k3)ζ(k4)⟩ = (2π)3δ(3)(k1 + k2 + k3 + k4)Tζ(k1, k2, k3, k4), (1.275)

where Tζ(k1, k2, k3, k4) is the trispectrum.

The latest constraints on non-Gaussianities from Planck are [16],

f local
NL = −0.9± 5.1, f equil

NL = −26± 47, f ortho
NL = −38± 24, (1.276)

where the orthogonal shape is a combination of other shapes. These results are consistent

with Gaussian primordial perturbations, and no significant detection of non-Gaussianities

has so far been made.
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Cosmological Collider Physics

A more detailed calculation shows that, in the squeezed limit, three-point function of

curvature perturbations depends on momenta as,

⟨ζ(k1)ζ(k2)ζ(k3)⟩ ∝ e−πµ
1

k31

1

k33

(
k3
k1

)∆(m)

eiδ(µ), (1.277)

where k3 ≪ k1, k2 and ∆(m) depends on the mass m of the interacting (non-inflaton)

particle as,

∆(m) =
3

2
+ i

√
m2

H2
− 9

4
. (1.278)

Immediately, we can see that the behavior of the three point function can be divided

into three distinct regimes. When the mass is much higher than Hubble, m ≫ H,

the Boltzmann factor in 1.277 dominates, and the signal becomes heavily suppressed.

When the mass is much lower than Hubble, m ≪ H, 1.278 is real, corresponding to an

analytic signature. However, in the “Goldilocks zone” of m ≳ 3H
2
, 1.278 contains an

imaginary part, generating a non-Gaussian oscillatory signal that is directly proportional

to the mass. Further, this signature is sensitive to the actual value of m, opening up

the possibility of distinguishing interacting particles from one another. If the particle

has a nontrivial spin, the proportionality of 1.277 may also contain angle-dependent

Legendre polynomials, allowing for further avenues for identification [17]. This possibility

of probing particle interactions in the early universe is known as cosmological collider

physics.

While this program could provide a promising window into the inflationary era, there

are many challenges to navigate. First, Gaussianities significantly dominate the observ-

ables in the CMB and large-scale structure, to one part in 105, implying weak couplings

between SM particles and inflationary fields. Thus far, no non-Gaussianities (NG) have

been detected, and any measurements hoping to observe these signals must be performed
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with an as-yet achieved level of precision. The target NG can also be produced by sev-

eral sources, namely primordial NG generated during the inflationary era as well as those

originating from the non-linear growth of perturbations post-inflation. Thus, our goal

is to identify target models that can generate NG that are distinct and large enough

to detect. The simplest instance of such models include direct couplings between the

inflaton and some particle with a mass m ∼ H. We explicitly decompose the inflaton

field into its classical and and quantum parts,

ϕ(t,x) = ξ(t,x) + ϕ0(t). (1.279)

The curvature perturbations can then be written in terms of the interacting compo-

nent of the inflaton field, ζ = ξ/ϕ0, and the object of interest is the three-point func-

tion as ⟨ξ(k1)ξ(k2)ξ(k3)⟩. Such interactions can come from tree-level diagrams, With

Figure 1.4: The single, double, and triple exchange diagrams, respectively. Note the
inclusion of a mixed propagator.

k3 ≪ k1, k2, this leads to the operator product expansion (OPE) regime, in which the

spatial coordinates obey the structure |x1 − x2|/ll|x1 − x3|. In this sense, the diagrams

above “factorize” into two sub-diagrams, In the limit that k3 → 0, the soft mode of this

sub-diagram is approximately constant over distances |x1 − x2. We can then reorganize

our diagrams to contain one “effective vertex,” which serves to vastly simplify our cal-

culations. Our job, then, is to identify models that include the inflationary couplings

that can be encoded in fNL. The computation of the diagrams then proceeds in the

familiar way, with the caveat that our spacetime is now dS. Computing amplitudes in dS
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Figure 1.5: By evaluating these diagrams in the squeezed limit, the computation can
be split into two sub-diagrams. Computing the diagram on the left leads to an effective
vertex for this diagram.

is notoriously difficult, as lack of knowledge of the outgoing states and their evolution

invalidates the usual “in-out” formalism of flat-space QFT. This necessitates the use of

the “in-in” formalism first introduced by Schwinger.

Starting in the interaction picture, the expectation value of an operator Q can be

written as

⟨Q⟩ = ⟨Ω|U †QU |Ω⟩ = ⟨0|T̄ e+i
∫ η
−∞(1−iϵ)

H(η′)dt′Q(η)Te−i
∫ η
−∞(1+iϵ)

H(η′′)dt′′ |0⟩. (1.280)

This is known as the “master equation” for cosmological collider physics. This equation

sums over our ignorance of the outgoing states by computing the “in-in” state: evolving

the operator forward and then backward in time. This can bee seen via the use of the

time ordering and anti-time ordering operators T and T̄ , respectively. H is understood

to be the Hamiltonian in the interaction picture, and we note that the time evolution

occurs with respect to two bulk times η′ and η′′, with the final answer evaluated at a

time η0 on the boundary.

The cosmological collider can be considered in analogy with an particle accelerator like

the LHC, in which particle collisions lead to signals like leptons or jets, which in turn leave

a map of energy deposition on a calorimeter. A cosmological ”collider”, on the other hand,

uses inflationary expansion in the early universe as the mechanism for colliding particles.
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These then leave primordial density perturbations which may manifest in cosmological

datasets such as the CMB, the 21-cm line, and maps of large-scale structure. Crucially,

because the scale of Hubble during inflation may be as high as 1013 GeV, this could open

up a window into exploration of physics at extremely high energies, far above what any

of our current experiments can probe.

1.4.4 Where is Gravity? (and Other Concerns)

There are many more puzzles and questions that lead us to expect the existence

of new physics in addition to the ones already discussed. While not by any means a

comprehensive list, we will give an overview of a few more problems that suggest that

the SM and ΛCDM are by themselves insufficient to capture the phenomena of particle

physics and cosmology.

Where is gravity? The most glaring shortcoming of the SM is that it does not include

gravity. Quantum gravity is expected to kick in at the Planck scale, and the development

of this field is an active area of research in high energy theory. While there have been

many attempts to quantize gravity — the most successful being, arguably, string theory

— we have no testable predictions to verify a theory of quantum gravity.

What is dark energy? While the ΛCDM model does an excellent job of fitting with

data, it does not say what the Λ (or, for that matter, the CDM) actually is.

What is the neutrino mass mechanism? In the SM, neutrinos are massless, but

everybody knows that this cannot be the case. The discovery of neutrino oscillations

— in which neutrinos change between the electron, muon, and tau flavors they travel—

showed that neutrinos must have small, nonzero masses. This is because oscillation is only
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possible if the mass eigenstates of neutrinos are different from their flavor eigenstates,

which requires the mass eigenstates to have different, nonzero masses. This phenomenon

requires an extension of the SM, as it cannot account for neutrino masses. Possible

explanations include the seesaw mechanism and the introduction of sterile neutrinos,

though the exact origin of neutrino mass is still unknown.

What is the source of the baryon asymmetry? The baryon asymmetry problem

refers to the observed imbalance between matter and antimatter in the universe. Ac-

cording to the SM and Big Bang theory, equal amounts of matter and antimatter should

have been produced in the early universe, leading to their mutual annihilation. However,

the universe is dominated by matter. Explaining this requires mechanisms that violate

CP symmetry, baryon number, and out-of-equilibrium processes — the Sakharov condi-

tions — but the Standard Model’s CP violation is too small to account for the observed

asymmetry, suggesting new physics is needed.

Leptogenesis is one mechanism that explains the baryon asymmetry of the universe

by first generating an asymmetry in the lepton sector. This occurs through the decay of

heavy right-handed neutrinos, which violate lepton number and CP symmetry. The lep-

ton asymmetry is then converted into a baryon asymmetry through electroweak sphaleron

processes, which violate baryon and lepton numbers but conserve their difference.

What is the nature of the Higgs? While we’ve confirmed the existence of the Higgs

and measured its mass, questions remain about its exact nature, such as whether it is

an elementary particle or part of a more complex system (e.g., part of a composite or

extended Higgs sector).

What is the origin of the hierarchical structure of the flavor sector? The flavor

sector contains the majority of the SM’s free parameters, including the quark and lepton
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masses, quark mixing angles, and a CP-violating phase. Giving neutrinos mass in order

to align with experiment requires still more parameters. The question of the origin of

these parameters and their hierarchical structure comprises the flavor puzzle.

Importantly, although the mass parameters of the flavor sector display significant

hierarchies, these parameters are ‘t Hooft natural. This is the SM is invariant under a

global flavor symmetry when the Yukawa couplings are set to zero. The flavor problem

is not severe in the sense that it is not a naturalness problem, but the expectation of

physics beyond the SM motivates a search for its explanation.
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Chapter 2

P not PQ

2.1 Introduction

The current upper bound on the size of the neutron electric dipole moment (EDM)

is |dn| < 1.8 · 10−26 e · cm [18].1 In turn, this severely constrains the size of the QCD

vacuum angle, which is required to be

θ̄ = θs + θq ≲ 10−10 , (2.1)

where θq is the argument of the determinant of the quark mass matrix, and θs the

coefficient of the GG̃ operator,

L ⊃ θsαs
4π

tr
(
GaG̃a

)
. (2.2)

In the Standard Model (SM), θq = arg det(yuyd), with yu,d the Yukawa matrices in the

up- and down-quark sectors. θ̄ provides a physical, basis-independent measurement of

CP -violation in the strong sector of the SM.

That θ̄ is constrained to be so tiny is one of the most puzzling features of the SM, and it

is known as the strong CP problem. It stands alongside the electroweak hierarchy problem

1Here we quote the direct limit; the inferred bound |dn| < 1.6 · 10−26 e · cm from the 199Hg EDM
limit [19] is comparable assuming no additional contributions to the atomic EDM.
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and the cosmological constant problem as one of the three great naturalness puzzles that

remain unsolved. Although numerically the strong CP problem is orders of magnitude

less severe than either of its siblings, it is considerably more robust against anthropic

arguments.2 As such, it has drawn renewed attention during an era in which LHC null

results are challenging naturalness-based approaches to the electroweak hierarchy.

Although one could argue that θs = 0 on the basis that QCD interactions otherwise

preserve CP , a similar argument cannot be made for a vanishing θq. For example, if CP

were a good symmetry of the Yukawa sector then the Yukawa matrices would need to

be real. However, real Yukawas would lead to a vanishing phase in the CKM matrix, in

direct conflict with the O(1) CP -violation observed in the electroweak sector of the SM.

Besides CP , a non-zero θ̄ also violates P . Again, the fact that the strong sector preserves

parity may allow us to impose θs = 0. P invariance in the Yukawa sector would require

the Yukawa matrices to be hermitian, in which case θq = 0 too, while still allowing for a

non-zero CKM phase. However, the fact that P is maximally violated by the electroweak

interactions severely weakens this line of reasoning as an attempt to argue for a small θ̄.

So although θ̄ is a measurement of both P and CP violation by strong dynamics, the

above discussion highlights how the origin of the strong CP problem in the SM ultimately

lies in the features of the electroweak sector. It is the fact that electroweak interactions

maximally violate both P and CP that precludes an understanding of the bound in

Eq.(2.1) based on the underlying symmetries of the SM.

With this in mind, it is natural to attempt an understanding of the smallness of θ̄

in the context of theories with an extended electroweak sector. If either P or CP are

good symmetries of the extended theory, then θ̄ will be forced to vanish. Of course,

to account for the P and CP violation we observe in nature, they must eventually

be broken, and a non-zero θ̄ will be radiatively generated. If the induced θ̄ is small

2See, however, [20] for arguments to the contrary.

114



CHAPTER 2. P NOT PQ

enough, this class of theories offer a symmetry-based solution to the strong CP problem.

Concrete implementations of this idea based on spontaneously broken P and CP were

first proposed in [21–23] (building on [24]) and [25,26] respectively. It is the former that

will be the focus of this work.3

There is another good reason to consider solutions to strong CP based on the restora-

tion of spacetime symmetries, namely that these may be realized as gauge symmetries in

the context of string theory [30,31]. As such, they can only be broken spontaneously and

not explicitly. Depending on the scale of spontaneous symmetry breaking, the apparent

lack of P and CP violation in the strong sector could therefore be fully, or partially,

explained in this context. Clearly, a resolution to the strong CP problem along these

lines would be especially attractive: it would allow us to understand the smallness of θ̄

as an accident resulting from the underlying structure of the UV-completion, as opposed

to being the result of a model-building effort specially designed to address Eq.(2.1).

From the bottom-up, there are a number of ways the SM can be extended to accom-

modate spontaneously broken P . However, in order to address the strong CP problem,

a necessary feature of all of them is the presence of an SU(2)R gauge factor, as well as

an extended matter content that mirrors that of the SM. Crucially, the SU(3) quantum

numbers of SM fermions and their mirror counterparts must be the same, making the

presence of additional colored particles an irreducible feature of these models. With this

extended field content, parity enforces the Yukawa couplings in the two sectors to be

identical. To be phenomenologically acceptable, parity must be broken at some scale v′

above the weak scale, with the additional gauge bosons and mirror quarks being suffi-

ciently heavy to evade experimental constraints. Näıvely, bounds on the mass of colored

particles would seemingly require yuv
′ ≳ 1 TeV [32, 33], in turn setting a lower bound

v′ ≳ 108 GeV. But a parametric separation of scales between v and v′ entails an irre-

3For recent exploration along these lines, see also [27–29].
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ducible amount of fine-tuning ∆−1 ≃ 2v2/v′2, which would become ∆−1 ≲ 10−12 for such

a stringent bound on v′. Considering that the goal is to naturally explain a number of

O(10−10), parity would hardly seem to remain an attractive solution to strong CP.

In this paper, we show that the conclusion of the previous paragraph is premature,

and that a parity-breaking scale as low as 18 TeV is consistent with all experimental

constraints. This significantly improves the level of fine-tuning, and leaves an open

window for symmetry-based solutions to strong CP that are based on spontaneously

broken parity. The leading constraint on the low-tuning version of these models comes

not from bounds on colored particles, but from direct searches for Z ′ and W ′ resonances

at the LHC [34,35]. Future searches for heavy gauge bosons at current and future colliders

are the most promising probes of this class of theories, with a 100 TeV proton collider

guaranteed to make a discovery if the level of fine-tuning is better than ∆−1 ∼ 10−5

[36,37]. Overall, the viability of these parity-based models makes collider experiments a

central testing ground for solutions to strong CP.

Another attractive feature of this class of solutions to the strong CP problem is that

they are robust against the effects of symmetry-breaking higher dimensional operators

(HDOs) that may arise from short-distance physics associated with a gravitational UV

completion. If parity is a gauge symmetry of the underlying theory, we are led to consider

only those HDOs proportional to the source of spontaneous symmetry breaking. On the

other hand, if parity were global, the expectation that quantum gravity violates all

global symmetries [38–50] suggests we should include all HDOs that explicitly violate P .

Although the nature of the operators is different in the gauge and global implementations,

the conclusion will be the same: in both cases, the leading HDOs with O(1) coefficients

may be present without destabilizing the solution to strong CP.

This stands in stark contrast with the reality of what has traditionally been the most

popular solution to the strong CP problem: the QCD axion [51–57]. In this case, the
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parameter θ̄ is promoted to the status of dynamical field, the axion, which is a pseudo-

Nambu-Goldstone boson of a spontaneously broken U(1)PQ global symmetry. A potential

for the axion is induced non-perturbatively by QCD dynamics, and its vacuum expecta-

tion value (vev) adjusts such that θ̄ = 0, thereby solving strong CP. To work, the QCD

axion potential must dominate to 1 part in 1010, overwhelming any other contributions

that may arise from additional degrees of freedom. New dynamics responsible for, say,

dark matter, baryogenesis, or addressing the hierarchy problem, cannot significantly con-

tribute to the axion potential. Similarly, Planck-suppressed HDOs that break U(1)PQ

must be exceptionally suppressed [58–61]. The mechanism is not robust. The need for

U(1)PQ to be a high quality global symmetry has become known as the “axion quality

problem”. Attempts to turn the QCD axion into a high quality axion are valuable [62–69],

but hardly helpful in making a small θ̄ appear natural.

The goal of this work is to identify the most natural parity-based solution to the

strong CP problem, and highlight its experimental consequences. We do so by following

a strategy that combines the traditional notion of naturalness with the expectation that

gravity violates all global symmetries. The former singles out a specific implementation

of the spectrum of parity-symmetric models, and underscores the central role of collider

experiments in exploring solutions to strong CP. The latter opens up an entirely new

avenue of exploration for parity solutions to the strong CP problem, ranging from EDM

experiments to gravitational wave observatories, depending on the degree to which the

symmetry remains approximate.

This chapter is organized as follows. In section 2.2 we review the main features of

parity-based solutions to strong CP, and discuss how a low symmetry breaking scale

can be realized while complying with experimental constraints. We focus on the main

phenomenological signatures of these models that are relevant for collider and flavor

experiments in section 2.3. In section 2.4, we discuss the size of radiative corrections
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to both θ̄ and the EDM of elementary fermions, including charged leptons, depending

on the details of the parity-breaking sector. We explore the effect of Planck-suppressed

HDOs on this class of models in section 2.5, paying special attention to a potential

gravitational wave signal from the spontaneous breaking of parity. Section 2.6 contains

our conclusions. Finally, a series of appendices contain results that have been crucial in

our analysis, but may be skipped on a first reading of the manuscript.

2.2 P to solve strong CP

In this section, we introduce the main features of symmetry-based solutions to the

strong CP problem based on parity. In 2.2.1 we review the basic idea, as first introduced

in [21–23]. We focus on the scalar potential in 2.2.2, with an emphasis on the implications

for fine-tuning of the weak scale that arise as a result of the breaking of parity. In 2.2.3

we discuss how the scale of additional colored particles can be decoupled from the parity-

breaking scale, in turn minimizing the level of fine-tuning.

2.2.1 Parity as a solution to the strong CP problem

A symmetry-based solution to the strong CP problem based on parity requires ex-

tending the SM both in terms of matter content and gauge interactions. The minimal

implementation of this idea is based on the gauge group

SU(3)× SU(2)L × SU(2)R × U(1)Ŷ , (2.3)

as well as a doubling of the matter content of the SM into a ‘mirror’ sector with identical

quantum numbers, except that SU(2)L doublets are now doublets of SU(2)R. Table 2.1

summarizes the gauge charges in the quark and Higgs sectors of the theory. (Analogous

charge assignments apply in the lepton sector, which we don’t make explicit.) Crucially,
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the Higgs sector of the theory does not introduce additional sources of CP -violation —

indeed, the freedom to perform both SU(2)L and SU(2)R gauge transformations allows

us to expand around a vacuum where both vevs are real. 4

Q =

u
d

 U † D† H Q′† =

u′†
d′†

 U ′ D′ H ′∗

SU(3) 3 3 3 · 3 3 3 ·

SU(2)L 2 · · 2 · · · ·

SU(2)R · · · · 2 · · 2

U(1)Ŷ
1
6

2
3
−1

3
1
2

1
6

2
3
−1

3
1
2

Table 2.1: Quantum numbers in the quark and Higgs sectors. Mirror sector fields are
distinguished with a prime. We use notation such that all of Q, U , and D (as well
as their mirror counterparts Q′, U ′, and D′) are left-handed, two-component Weyl
fermions, whereas daggered fields are always right-handed.

With this additional field content, the theory admits an alternative definition of

parity that combines the action of the ‘ordinary’ parity transformation with an internal

symmetry that exchanges the fields of the SM and mirror sectors. Explicitly, in the

gauge, quark, and Higgs sectors:

Wµ
L ↔WRµ, (2.4)

Q,U,D ↔ Q′†, U ′†, D′†, (2.5)

H ↔ H ′∗, (2.6)

4The model we have just introduced is not the minimal parity-symmetric extension of the SM, but
rather the minimal extension that solves the strong CP problem. The most minimal extension of the
SM that admits a generalized parity symmetry was introduced in [70], and does not require a doubling
of the fermion sector. The scalar sector, however, requires the addition of an additional Higgs field
transforming as a bifundamental of the two SU(2) factors, in order to write Yukawa couplings in a
gauge invariant fashion. As discussed in [23], the vev of this field will in general be complex, precluding
a vanishing θq.
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and similarly for leptons. Since SU(3) and U(1)Ŷ interactions are not mirrored, the

corresponding gauge fields transform as usual under parity. Unlike ordinary parity in the

SM, this ‘generalized’ parity transformation is now a good symmetry of the gauge sector

of the theory, thanks to the extended electroweak sector and matter content.

In this context, the strong CP problem is solved as follows. On the one hand, parity

requires that θs = 0, just as one may argue in the SM based on the properties of the

strong sector alone. On the other hand, the presence of additional colored particles

results in an extended quark mass matrix. In particular, Yukawa terms can be written

for both the SM and mirror sectors, of the form

L ⊃ −
{
(yu)ijQiHUj + (y′u)ijQ

′†
i H

′∗U ′†
j

}
+ h.c., (2.7)

and similarly for down-type quarks and leptons. As a result, the tree-level value of θq in

these models is given by

θq = arg det(yuyd) + arg det(y′∗u y
′∗
d ). (2.8)

Crucially, demanding that Yukawa interactions preserve parity, which is now a good

symmetry of the extended electroweak sector, enforces the Yukawa couplings in the two

sectors to be identical, i.e.

y′f = yf . (2.9)

In turn, this implies θq = 0, as per Eq.(2.8), forcing θ̄ to vanish at tree-level in parity-

symmetric models.

With the field content outlined in table 2.1, the theory admits an additional fermion

mass term involving only the SU(2)-singlets, of the form

L ⊃ −(Mu)ijUiU
′
j + h.c. (2.10)
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(with analogous terms for down-type quarks and leptons), where invariance under gen-

eralized parity requires that the vector-like mass matrix be hermitian, i.e.M†
f =Mf .

5

In general, the expression for θq can be conveniently written as

θq = arg det(MuMd), (2.11)

where Mu and Md are 6× 6 matrices, of the form

Mf =

 ⊬ v′√
2
y′∗f

v√
2
yTf Mf

 , for f = u, d. (2.12)

Due to the zero in the upper-left block of the overall 6×6 mass matrix, the expression for

θq remains as in Eq.(2.8). As we will discuss in 2.2.3, the presence of vector-like masses

is crucial in implementing a version of the model with low fine-tuning.6

To obtain a phenomenologically viable model, parity must be broken, with different

vevs in the mirror and SM Higgs sectors. This will induce a non-vanishing θ̄ beyond

tree-level, which must be small enough if the theory is to remain a bona-fide solution

to strong CP. The size of radiative corrections depends on the details of how parity is

spontaneously broken. If P is broken without breaking CP , then the radiatively induced

θ̄ will be no larger than in the SM [23], where θ̄ < 10−19 [71]. On the other hand, if

CP is also spontaneously broken (e.g. through the vev of a pseudo-scalar) then a larger

θ̄, as well as a neutron EDM independent of θ̄, may be radiatively generated. Even in

this latter case, we will see that radiative corrections can be small enough to remain

compatible with experimental constraints. Given that the final size of θ̄ is a somewhat

5Note that a non-hermitian mass matrix is compatible with softly broken parity; we will explore the
consequences of such soft breaking in section 2.4.1.

6A variation on the model we have so far discussed entails extending the gauge group in Eq.(2.3)
with an additional U(1), as first discussed in [23]. In this case, SM and mirror fields are charged under
different U(1) factors, which transform into each other under parity. Although this seems like a minimal
modification of the model presented here, this two-U(1) version does not allow for the vector-like mass
terms of Eq.(2.10), in turn precluding the implementation of a low parity-breaking scale.
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model-dependent feature of this class of models, we defer a more detailed discussion of

this issue to section 2.4.

More generally, discussing the leading effect of broken parity on the fine-tuning of the

electroweak sector does not require committing to a specific implementation of sponta-

neous symmetry breaking. For this purpose, it will be enough to focus on the features of

the Higgs sector, to which we now turn.

2.2.2 Scalar sector and fine-tuning

For the time being, we will parametrize the necessary breaking of parity through an

explicit soft term in the scalar potential. Of course, such soft breaking should ultimately

be the result of some spontaneous symmetry breaking dynamics, as we will make more

explicit in section 2.4. In this spirit, the most general scalar potential involving the

SU(2)L and SU(2)R Higgs doublets takes the form

V (H,H ′) = −m2
H(|H|2 + |H ′|2) + λ(|H|2 + |H ′|2)2 + κ(|H|4 + |H ′|4) + µ2|H|2. (2.13)

At this level, Eq.(2.13) is identical to the scalar potential of theories of Neutral Natural-

ness, such as Twin Higgs [72, 73]. The first two terms respect both parity and a larger

accidental SU(4) (really, O(8)) symmetry, while κ respects the former but not the latter.

The parameter µ2 softly breaks parity. In the interest of a non-trivial vacuum structure,

we take m2
H > 0. Depending on the relative signs and sizes of the quartic couplings, the

tree-level vacua for µ2 = 0 either preserve parity (with v′ = v) or spontaneously break

parity (with v ̸= 0, v′ = 0 or v = 0, v′ ̸= 0). A vacuum with v′ ≫ v ̸= 0 may be obtained

by deforming the theory away from the parity-symmetric vacuum with nonzero µ2 and

λ, κ > 0. At tree-level, the vevs in the SM and mirror Higgs sectors are then given by

v2 =
m2
H − µ2(1 + λ/κ)

2λ+ κ
, and v′2 =

m2
H + µ2λ/κ

2λ+ κ
, (2.14)
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where v2 ≪ v′2 is necessary in order to obtain a phenomenologically viable model. After

spontaneous symmetry breaking, the spectrum of the theory contains two scalar fields, h

and h′, with masses mh ≃ 2
√
κv and mh′ ≃

√
2λv′ respectively, as well as six Goldstones

that become the longitudinal components of the gauge bosons of our extended electroweak

sector. The physical gauge boson spectrum contains Z ′ and W ′ resonances, which are

heavier than their SM counterparts by a factor of v′/v. We defer further details of the

scalar and gauge sectors to appendix A.1.1.

It is clear from Eq.(2.14) that to obtain a hierarchy of scales between v and v′ we

need to introduce a tree-level tuning between the parity-preserving and parity-breaking

mass-squared terms. Heuristically, the necessary fine-tuning is given by

∆−1 ≡ m2
H − µ2(1 + λ/κ)

m2
H

≃ (2λ+ κ)v2

(λ+ κ)v′2
≃ 2v2

v′2
. (2.15)

This is an irreducible contribution to the fine-tuning in this class of models. Insofar

as it involves the sensitivity of the weak scale v to underlying parameters, it may be

classified as a tuning associated with the electroweak hierarchy problem, although it is

not necessarily the only such contribution. For example, a hierarchy of scales v′2 ≪M2
Pl

would constitute an additional source of fine-tuning in the absence of a stabilizing mech-

anism. Similarly, additional hierarchies of scales or couplings in the sector responsible

for spontaneously breaking P might necessitate similar accurate cancellations. However,

these are issues that could, at least in principle, be addressed at some higher scale above

v′, provided the necessary dynamics do not spoil the smallness of θ̄ [74]. In contrast,

Eq.(2.15) is forced on us independently of the UV-completion. Although it is tempting

to attach the tuning in Eq.(2.15) to the electroweak hierarchy problem and attribute it

to anthropic selection (the perspective advocated in e.g. [28,29]), this necessarily entails

some favorable assumptions about the properties of an anthropic landscape. Here we

prefer to render unto strong CP the things that are strong CP’s, and take the irreducible
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tuning in Eq.(2.15) at face value as a measure of the degree to which a parity model

naturally explains the small value of θ̄ without reintroducing tuning elsewhere.

With this in mind, in this paper we focus on implementations of parity solutions

to strong CP where the level of fine-tuning, as parametrized in Eq.(2.15), is as mild

as possible. This will concentrate our attention on a specific mechanism to generate

fermion masses that in turn endows these models with characteristic phenomenology, as

we discuss next.

2.2.3 Fermion masses and a low parity-breaking scale

Fermion mass terms arise from the Yukawa couplings of Eq.(2.7), as well as from the

vector-like mass involving the SU(2)-singlets. In total:

L ⊃ −
{
v√
2
(yu)ijuiUj +

v′√
2
(yu)

∗
iju

′
iU

′
j + (Mu)ijUiU

′
j

}
+ h.c., (2.16)

where we have already set y′u = yu, as mandated by generalized parity, and analogous

mass terms are present both for down-type quarks and leptons.

The structure of Eq.(2.16) allows for two limiting realizations of the fermion spectrum.

If the overall scale of the vector-like mass matrix is M ≪ v, v′, then fermion masses are

generated mainly through the Yukawa terms, as in the SM. In this case, mirror fermions

would be an exact copy of the SM, just heavier by a factor of v′/v. Demanding that the

lightest mirror quark is heavy enough to comply with current experimental constraints

requires mu × v′/v ≳ 1 TeV [32, 33], in turn setting a lower bound v′ ≳ 108 GeV. As

advertised in the Introduction, this sets the level of fine-tuning in the electroweak sector

to ∆−1 ≲ 10−12. The phenomenology of parity solutions to strong CP in this regime was

discussed recently in [28].

On the other hand, the limitM ≫ v, v′, allows for a see-saw realization of the fermion

spectrum, consisting of three light (SM-like) fermions, and three heavy fermions with
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mass of order M . A sufficiently high scale for the mass of additional colored particles

can now be achieved by increasing M , not v′. This allows for a much lower parity-

breaking scale, and therefore a much better level of fine-tuning. See-saw implementations

of fermion masses, for both quarks and leptons, are discussed in [75–78], and it was

in fact in this context that a parity-based solution to the strong CP problem was first

proposed [21,22]. It is this second realization of the fermion spectrum that we concentrate

on in this work. 7

The up-quark sector requires special consideration, since the see-saw mechanism can-

not be applied to the top quark while maintaining perturbative Yukawas. So let us

discuss the down-quark and lepton sectors first. (We will use notation appropriate to the

down-quark sector, but emphasize that the same results apply for leptons.) To leading

order in both v/M and v′/M , the masses of the light and heavy fermions are obtained

by diagonalizing the 3× 3 hermitian matrices

vv′

2
y∗dM−1

d yTd , and Md, (2.17)

respectively. We make the simplifying assumption that there are no significant hierarchies

in the eigenvalues ofMd, and therefore the heavy quarks appear at a common scale ∼M .

Parametrically, light quark masses are then of the form mdi ∼ |y|2vv′/M . The see-saw

mechanism generates fermion masses mdi ≪ v while allowing for much larger Yukawa

couplings than in the SM, which is obviously one of the main attractions of this class of

models. Generating the b quark mass through the see-saw mechanism while maintaining

perturbativity sets an upper bound on the ratio M/v′, parametrically:

mb ∼ |y|2
vv′

M
≲
vv′

M
⇒ M

v′
≲

v

mb

∼ 102. (2.18)

7The vector-like masses of Eq.(2.16) provide a soft breaking of generalized parity, precluding the
existence of degrees of freedom that would be stabilized by the internal part of this symmetry. As a
result, these models do not feature a natural dark matter candidate whose presence is linked to the
resolution of the strong CP problem, unlike some of the viable parameter space of the QCD axion.
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Rotating from the flavor to the mass eigenbasis in the fermion sector can be conve-

niently performed step by step at each order in perturbation theory, and we present a

detailed discussion of this procedure in appendix A.1.2. At zeroth order in v(′)/M , it is

necessary to perform unitary transformations acting separately on the SU(2)-singlet and

doublet fields, of the form:

d→ O†
dd , d

′ → OTd d′ , and D′ → O†
D′D

′ , D → OTD′D . (2.19)

Od and OD′ are 3 × 3 unitary matrices acting on flavor space that diagonalize the first

and second matrices of Eq.(2.17), respectively. At first order in v(′)/M , a further rotation

is required that mixes the SU(2)-singlet and doublet fields as follows: d

D′

→
 ⊮3 ϵ†d

−ϵd ⊮3


 d

D′

 , and

d′
D

→
 ⊮3 ϵ′†d

−ϵ′d ⊮3


d′
D

 , (2.20)

where ϵd and ϵ′d are 3 × 3 matrices with entries of O(v/M) and O(v′/M) respectively,

and whose explicit expressions are given in Eq.(A.13).

Using Dirac notation, the left- and right-handed components of the light and heavy

mass eigenstates are then given by

diL =

di
0

 , diR =

 0

d′†i

 , and DiL =

D′
i

0

 , DiR =

 0

D†
i

 . (2.21)

In particular, notice that the right-handed components of the light (SM-like) fermions

consist of the corresponding component of the SU(2)R-doublets, up to corrections of

O(v′/M). This feature plays a crucial role in the phenomenology of these models. In

particular, it leads to unsuppressed couplings between SU(2)R gauge bosons, and the

right-handed currents of the SM-like fermions. As we will discuss in 2.3.1, this leads to

the most stringent bound on the parity-breaking scale.

As far as the up-quark sector is concerned, the see-saw mechanism can be implemented

for the u and c quarks, with the corresponding heavy partners appearing at the scale∼M .
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The mass eigenstates for the first two generations are as in Eq.(2.21). The top sector,

on the other hand, cannot be significantly “see-sawed”. Instead, it consists of light and

heavy top partners with tree-level masses mt ≃ ytv/
√
2 and mt′ ≃ mt×v′/v, respectively.

In Dirac notation, and at zeroth order in v(′)/M , the mass eigenstates are now purely

made of SM and mirror sector fields, i.e.

tL =

u3
0

 , tR =

 0

U †
3

 , and t′L =

U ′
3

0

 , t′R =

 0

u′†3

 . (2.22)

As usual, rotation matrices in the quark sector are constrained by the requirement that

the CKM matrix is reproduced appropriately, which in this case implies V = OuO†
d, up to

corrections of O(v2/M2). Further details concerning the mass diagonalization procedure

in the fermion sector can be found in appendix A.1.2.

This finalizes our discussion of the main characteristics of parity solutions to strong

CP that feature low fine-tuning in the electroweak sector. Before moving on, we include in

figure 2.1 a schematic representation of the typical spectrum of these models. Amusingly,

the combination of parity and the see-saw mechanism leads to a spectrum of partner

particles strikingly reminiscent of a “natural” left-right Twin Higgs model [73, 79] with

light top and W/Z partners.

2.3 Dial P for Phenomenology

We now turn to the phenomenology of natural parity solutions to strong CP, begin-

ning with direct bounds from the LHC in section 2.3.1 before turning to indirect flavor

constraints in 2.3.2. The collider and flavor phenomenology of similar left-right models

has been the topic of previous work [21, 22, 78–82], and our focus here will be on those

“irreducible” signatures that are mandated by the structure of the theory in its capacity

as a solution to strong CP. A more in depth study of collider and flavor signatures in
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<latexit sha1_base64="Uzk3SCmsnQn6BlTVSVXhxK1USgc=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahp7JbCtVbwYvHCvYD2rVk02wbmmSXJCuUpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305ha3tnd6+4Xzo4PDo+KZ+edXWUKEI7JOKR6gdYU84k7RhmOO3HimIRcNoLZreZ33uiSrNIPph5TH2BJ5KFjGCTSZ77WB+VK27NXQJtEi8nFcjRHpW/huOIJIJKQzjWeuC5sfFTrAwjnC5Kw0TTGJMZntCBpRILqv10eesCXVlljMJI2ZIGLdXfEykWWs9FYDsFNlO97mXif94gMeG1nzIZJ4ZKsloUJhyZCGWPozFTlBg+twQTxeytiEyxwsTYeEo2BG/95U3Srde8Ru3mvlFpVfM4inABl1AFD5rQgjtoQwcITOEZXuHNEc6L8+58rFoLTj5zDn/gfP4ACcyNhQ==</latexit>

104

<latexit sha1_base64="f6VRveEhpKMKif0vamjyayef0ds=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahp5JIQb0VvHisYD+gjWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btIctPXBwOO9GWbmBTFn2rjut1Pa2Nza3invVvb2Dw6PqscnXR0litAOiXik+gHWlDNJO4YZTvuxolgEnPaC2W3m956o0iySD2YeU1/giWQhI9hkkuc+NkfVmttwc6B14hWkBgXao+rXcByRRFBpCMdaDzw3Nn6KlWGE00VlmGgaYzLDEzqwVGJBtZ/mty7QhVXGKIyULWlQrv6eSLHQei4C2ymwmepVLxP/8waJCa/9lMk4MVSS5aIw4chEKHscjZmixPC5JZgoZm9FZIoVJsbGU7EheKsvr5PuZcNrNm7um7VWvYijDGdwDnXw4ApacAdt6ACBKTzDK7w5wnlx3p2PZWvJKWZO4Q+czx8M1I2H</latexit>

106

<latexit sha1_base64="Ont0P2ef0eibwxgTrddwwZrYLGM=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahp7Irpeqt4MVjBfsB7VqyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G09vM7z5RpVkkH8wspr7AY8lCRrDJJM99bAzLFbfmLoDWiZeTCuRoDctfg1FEEkGlIRxr3ffc2PgpVoYRTuelQaJpjMkUj2nfUokF1X66uHWOLqwyQmGkbEmDFurviRQLrWcisJ0Cm4le9TLxP6+fmPDaT5mME0MlWS4KE45MhLLH0YgpSgyfWYKJYvZWRCZYYWJsPCUbgrf68jrpXNa8eu3mvl5pVvM4inAG51AFD66gCXfQgjYQmMAzvMKbI5wX5935WLYWnHzmFP7A+fwBD9yNiQ==</latexit>

⇤ (GeV)

<latexit sha1_base64="gkoyEtT2xgHYVjp7Se/QyOkRBPA=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIdVMSKai7ggtduKhgH9CEMplM26GTSZiZCCUU/BU3LhRx63e482+ctllo64GBwznncu+cIOFMacf5tgorq2vrG8XN0tb2zu6evX/QUnEqCW2SmMeyE2BFORO0qZnmtJNIiqOA03Ywup767UcqFYvFgx4n1I/wQLA+I1gbqWcfeXcmHGLkocyTEarc0NbZpGeXnaozA1ombk7KkKPRs7+8MCZpRIUmHCvVdZ1E+xmWmhFOJyUvVTTBZIQHtGuowBFVfjY7f4JOjRKifizNExrN1N8TGY6UGkeBSUZYD9WiNxX/87qp7l/6GRNJqqkg80X9lCMdo2kXKGSSEs3HhmAimbkVkSGWmGjTWMmU4C5+eZm0zqturXp1XyvXK3kdRTiGE6iACxdQh1toQBMIZPAMr/BmPVkv1rv1MY8WrHzmEP7A+vwBOaqUTg==</latexit>

W 0, Z 0

<latexit sha1_base64="NhZYyzTYNgb59RHRInqSvfi0fnY=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZpD1J2paDeCl48VrAf2C4lm2bb2GyyJFmhLP0PXjwo4tX/481/Y9ruQVsfDDzem2FmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NIyUYQ2ieRSdQKsKWeCNg0znHZiRXEUcNoOxjczv/1ElWZS3JtJTP0IDwULGcHGSq12+Rw9lPvFklt150CrxMtICTI0+sWv3kCSJKLCEI617npubPwUK8MIp9NCL9E0xmSMh7RrqcAR1X46v3aKzqwyQKFUtoRBc/X3RIojrSdRYDsjbEZ62ZuJ/3ndxIRXfspEnBgqyGJRmHBkJJq9jgZMUWL4xBJMFLO3IjLCChNjAyrYELzll1dJ66Lq1arXd7VSvZLFkYcTOIUKeHAJdbiFBjSBwCM8wyu8OdJ5cd6dj0VrzslmjuEPnM8f3iaN8w==</latexit>

t0

<latexit sha1_base64="H7bGefDSTxos+Pk6LIf9/kl0cBc=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSL2VBIpqLeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2d++4lrI2L1iJOE+xEdKhEKRtFKD3jRL5XdqjsHWSVeTsqQo9EvffUGMUsjrpBJakzXcxP0M6pRMMmnxV5qeELZmA5511JFI278bH7plJxbZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpyiDcFbfnmVtC6rXq16c18r1yt5HAU4hTOogAdXUIc7aEATGITwDK/w5oydF+fd+Vi0rjn5zAn8gfP5Azy6jRs=</latexit>

h0

<latexit sha1_base64="a1flJVEkQtdfoLRnz46aOZ6dEj0=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSL2VBIpqLeCF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpYXTRL5XdqjsHWSVeTsqQo9EvffUGMUsjlIYJqnXXcxPjZ1QZzgROi71UY0LZmA6xa6mkEWo/m186JedWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseEUbQje8surpHVZ9WrVm/tauV7J4yjAKZxBBTy4gjrcQQOawCCEZ3iFN2fsvDjvzseidc3JZ07gD5zPHyp+jQ8=</latexit>

U, D, C, S, B

<latexit sha1_base64="OQ9+gnfFUXQNXrFvDd2+GpTLUAE=">AAAB9HicbVBNT8JAEJ36ifiFevSykZhwaEhrSNQbEQ8eMVoggYZsly1s2G7r7paEEH6HFw8a49Uf481/4wI9KPiSSV7em8nMvCDhTGnH+bbW1jc2t7ZzO/ndvf2Dw8LRcUPFqSTUIzGPZSvAinImqKeZ5rSVSIqjgNNmMKzN/OaISsVi8ajHCfUj3BcsZARrI/mejW5tVLPRg41uuoWiU3bmQKvEzUgRMtS7ha9OLyZpRIUmHCvVdp1E+xMsNSOcTvOdVNEEkyHu07ahAkdU+ZP50VN0bpQeCmNpSmg0V39PTHCk1DgKTGeE9UAtezPxP6+d6vDKnzCRpJoKslgUphzpGM0SQD0mKdF8bAgmkplbERlgiYk2OeVNCO7yy6ukcVF2K+Xr+0qxWsriyMEpnEEJXLiEKtxBHTwg8ATP8Apv1sh6sd6tj0XrmpXNnMAfWJ8/9A2Pjw==</latexit>

108

<latexit sha1_base64="Ue3TRamYpvYzMVSWE0CFNv/tQaY=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahp7IrhdZbwYvHCvYD2rVk02wbmmSXJCuUpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305ha3tnd6+4Xzo4PDo+KZ+edXWUKEI7JOKR6gdYU84k7RhmOO3HimIRcNoLZreZ33uiSrNIPph5TH2BJ5KFjGCTSZ772ByVK27NXQJtEi8nFcjRHpW/huOIJIJKQzjWeuC5sfFTrAwjnC5Kw0TTGJMZntCBpRILqv10eesCXVlljMJI2ZIGLdXfEykWWs9FYDsFNlO97mXif94gMWHTT5mME0MlWS0KE45MhLLH0ZgpSgyfW4KJYvZWRKZYYWJsPCUbgrf+8ibpXte8eu3mvl5pVfM4inABl1AFDxrQgjtoQwcITOEZXuHNEc6L8+58rFoLTj5zDn/gfP4AEuSNiw==</latexit>

102

<latexit sha1_base64="Uzk3SCmsnQn6BlTVSVXhxK1USgc=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahp7JbCtVbwYvHCvYD2rVk02wbmmSXJCuUpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305ha3tnd6+4Xzo4PDo+KZ+edXWUKEI7JOKR6gdYU84k7RhmOO3HimIRcNoLZreZ33uiSrNIPph5TH2BJ5KFjGCTSZ77WB+VK27NXQJtEi8nFcjRHpW/huOIJIJKQzjWeuC5sfFTrAwjnC5Kw0TTGJMZntCBpRILqv10eesCXVlljMJI2ZIGLdXfEykWWs9FYDsFNlO97mXif94gMeG1nzIZJ4ZKsloUJhyZCGWPozFTlBg+twQTxeytiEyxwsTYeEo2BG/95U3Srde8Ru3mvlFpVfM4inABl1AFD5rQgjtoQwcITOEZXuHNEc6L8+58rFoLTj5zDn/gfP4ACcyNhQ==</latexit>

104

<latexit sha1_base64="f6VRveEhpKMKif0vamjyayef0ds=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahp5JIQb0VvHisYD+gjWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btIctPXBwOO9GWbmBTFn2rjut1Pa2Nza3invVvb2Dw6PqscnXR0litAOiXik+gHWlDNJO4YZTvuxolgEnPaC2W3m956o0iySD2YeU1/giWQhI9hkkuc+NkfVmttwc6B14hWkBgXao+rXcByRRFBpCMdaDzw3Nn6KlWGE00VlmGgaYzLDEzqwVGJBtZ/mty7QhVXGKIyULWlQrv6eSLHQei4C2ymwmepVLxP/8waJCa/9lMk4MVSS5aIw4chEKHscjZmixPC5JZgoZm9FZIoVJsbGU7EheKsvr5PuZcNrNm7um7VWvYijDGdwDnXw4ApacAdt6ACBKTzDK7w5wnlx3p2PZWvJKWZO4Q+czx8M1I2H</latexit>

106

<latexit sha1_base64="Ont0P2ef0eibwxgTrddwwZrYLGM=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahp7Irpeqt4MVjBfsB7VqyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G09vM7z5RpVkkH8wspr7AY8lCRrDJJM99bAzLFbfmLoDWiZeTCuRoDctfg1FEEkGlIRxr3ffc2PgpVoYRTuelQaJpjMkUj2nfUokF1X66uHWOLqwyQmGkbEmDFurviRQLrWcisJ0Cm4le9TLxP6+fmPDaT5mME0MlWS4KE45MhLLH0YgpSgyfWYKJYvZWRCZYYWJsPCUbgrf68jrpXNa8eu3mvl5pVvM4inAG51AFD66gCXfQgjYQmMAzvMKbI5wX5935WLYWnHzmFP7A+fwBD9yNiQ==</latexit>

⇤ (GeV)

<latexit sha1_base64="gkoyEtT2xgHYVjp7Se/QyOkRBPA=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIdVMSKai7ggtduKhgH9CEMplM26GTSZiZCCUU/BU3LhRx63e482+ctllo64GBwznncu+cIOFMacf5tgorq2vrG8XN0tb2zu6evX/QUnEqCW2SmMeyE2BFORO0qZnmtJNIiqOA03Ywup767UcqFYvFgx4n1I/wQLA+I1gbqWcfeXcmHGLkocyTEarc0NbZpGeXnaozA1ombk7KkKPRs7+8MCZpRIUmHCvVdZ1E+xmWmhFOJyUvVTTBZIQHtGuowBFVfjY7f4JOjRKifizNExrN1N8TGY6UGkeBSUZYD9WiNxX/87qp7l/6GRNJqqkg80X9lCMdo2kXKGSSEs3HhmAimbkVkSGWmGjTWMmU4C5+eZm0zqturXp1XyvXK3kdRTiGE6iACxdQh1toQBMIZPAMr/BmPVkv1rv1MY8WrHzmEP7A+vwBOaqUTg==</latexit>

W 0, Z 0

<latexit sha1_base64="NhZYyzTYNgb59RHRInqSvfi0fnY=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZpD1J2paDeCl48VrAf2C4lm2bb2GyyJFmhLP0PXjwo4tX/481/Y9ruQVsfDDzem2FmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NIyUYQ2ieRSdQKsKWeCNg0znHZiRXEUcNoOxjczv/1ElWZS3JtJTP0IDwULGcHGSq12+Rw9lPvFklt150CrxMtICTI0+sWv3kCSJKLCEI617npubPwUK8MIp9NCL9E0xmSMh7RrqcAR1X46v3aKzqwyQKFUtoRBc/X3RIojrSdRYDsjbEZ62ZuJ/3ndxIRXfspEnBgqyGJRmHBkJJq9jgZMUWL4xBJMFLO3IjLCChNjAyrYELzll1dJ66Lq1arXd7VSvZLFkYcTOIUKeHAJdbiFBjSBwCM8wyu8OdJ5cd6dj0VrzslmjuEPnM8f3iaN8w==</latexit>

t0

<latexit sha1_base64="H7bGefDSTxos+Pk6LIf9/kl0cBc=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSL2VBIpqLeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2d++4lrI2L1iJOE+xEdKhEKRtFKD3jRL5XdqjsHWSVeTsqQo9EvffUGMUsjrpBJakzXcxP0M6pRMMmnxV5qeELZmA5511JFI278bH7plJxbZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpyiDcFbfnmVtC6rXq16c18r1yt5HAU4hTOogAdXUIc7aEATGITwDK/w5oydF+fd+Vi0rjn5zAn8gfP5Azy6jRs=</latexit>

h0

<latexit sha1_base64="a1flJVEkQtdfoLRnz46aOZ6dEj0=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSL2VBIpqLeCF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpYXTRL5XdqjsHWSVeTsqQo9EvffUGMUsjlIYJqnXXcxPjZ1QZzgROi71UY0LZmA6xa6mkEWo/m186JedWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseEUbQje8surpHVZ9WrVm/tauV7J4yjAKZxBBTy4gjrcQQOawCCEZ3iFN2fsvDjvzseidc3JZ07gD5zPHyp+jQ8=</latexit>

W 0, Z 0

<latexit sha1_base64="NhZYyzTYNgb59RHRInqSvfi0fnY=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZpD1J2paDeCl48VrAf2C4lm2bb2GyyJFmhLP0PXjwo4tX/481/Y9ruQVsfDDzem2FmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NIyUYQ2ieRSdQKsKWeCNg0znHZiRXEUcNoOxjczv/1ElWZS3JtJTP0IDwULGcHGSq12+Rw9lPvFklt150CrxMtICTI0+sWv3kCSJKLCEI617npubPwUK8MIp9NCL9E0xmSMh7RrqcAR1X46v3aKzqwyQKFUtoRBc/X3RIojrSdRYDsjbEZ62ZuJ/3ndxIRXfspEnBgqyGJRmHBkJJq9jgZMUWL4xBJMFLO3IjLCChNjAyrYELzll1dJ66Lq1arXd7VSvZLFkYcTOIUKeHAJdbiFBjSBwCM8wyu8OdJ5cd6dj0VrzslmjuEPnM8f3iaN8w==</latexit>

t0

<latexit sha1_base64="H7bGefDSTxos+Pk6LIf9/kl0cBc=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSL2VBIpqLeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2d++4lrI2L1iJOE+xEdKhEKRtFKD3jRL5XdqjsHWSVeTsqQo9EvffUGMUsjrpBJakzXcxP0M6pRMMmnxV5qeELZmA5511JFI278bH7plJxbZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpyiDcFbfnmVtC6rXq16c18r1yt5HAU4hTOogAdXUIc7aEATGITwDK/w5oydF+fd+Vi0rjn5zAn8gfP5Azy6jRs=</latexit>

h0

<latexit sha1_base64="a1flJVEkQtdfoLRnz46aOZ6dEj0=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSL2VBIpqLeCF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpYXTRL5XdqjsHWSVeTsqQo9EvffUGMUsjlIYJqnXXcxPjZ1QZzgROi71UY0LZmA6xa6mkEWo/m186JedWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseEUbQje8surpHVZ9WrVm/tauV7J4yjAKZxBBTy4gjrcQQOawCCEZ3iFN2fsvDjvzseidc3JZ07gD5zPHyp+jQ8=</latexit>

U, D, C, S, B

<latexit sha1_base64="OQ9+gnfFUXQNXrFvDd2+GpTLUAE=">AAAB9HicbVBNT8JAEJ36ifiFevSykZhwaEhrSNQbEQ8eMVoggYZsly1s2G7r7paEEH6HFw8a49Uf481/4wI9KPiSSV7em8nMvCDhTGnH+bbW1jc2t7ZzO/ndvf2Dw8LRcUPFqSTUIzGPZSvAinImqKeZ5rSVSIqjgNNmMKzN/OaISsVi8ajHCfUj3BcsZARrI/mejW5tVLPRg41uuoWiU3bmQKvEzUgRMtS7ha9OLyZpRIUmHCvVdp1E+xMsNSOcTvOdVNEEkyHu07ahAkdU+ZP50VN0bpQeCmNpSmg0V39PTHCk1DgKTGeE9UAtezPxP6+d6vDKnzCRpJoKslgUphzpGM0SQD0mKdF8bAgmkplbERlgiYk2OeVNCO7yy6ukcVF2K+Xr+0qxWsriyMEpnEEJXLiEKtxBHTwg8ATP8Apv1sh6sd6tj0XrmpXNnMAfWJ8/9A2Pjw==</latexit>

⇤

<latexit sha1_base64="sjuz+/aTmqNpn7KJQ/Jk2BqdlYc=">AAAB7nicbVC7SgNBFL0bXzG+opY2g0FIFXYloHYBGwuLCOYByRJmZyfJkNnZZeauEJZ8hI2FIrZ+j51/4yTZQhMPDBzOOZe59wSJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI79ztPXBsRq0ecJtyP6EiJoWAUrdTp39toSAfliltzFyDrxMtJBXI0B+WvfhizNOIKmaTG9Dw3QT+jGgWTfFbqp4YnlE3oiPcsVTTixs8W687IhVVCMoy1fQrJQv09kdHImGkU2GREcWxWvbn4n9dLcXjtZ0IlKXLFlh8NU0kwJvPbSSg0ZyinllCmhd2VsDHVlKFtqGRL8FZPXifty5pXr9081CuNal5HEc7gHKrgwRU04A6a0AIGE3iGV3hzEufFeXc+ltGCk8+cwh84nz8Hs49P</latexit>

v0

<latexit sha1_base64="VtlpefNFqk8HuqUNZPj8fmojYOQ=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoOYU9iVgHoLePEYxTwgCWF20psMmZ1dZmYDYckfePGgiFf/yJt/4yTZgyYWNBRV3XR3+bHg2rjut5Pb2Nza3snvFvb2Dw6PiscnTR0limGDRSJSbZ9qFFxiw3AjsB0rpKEvsOWP7+Z+a4JK80g+mWmMvZAOJQ84o8ZKj5PLfrHkVtwFyDrxMlKCDPV+8as7iFgSojRMUK07nhubXkqV4UzgrNBNNMaUjekQO5ZKGqLupYtLZ+TCKgMSRMqWNGSh/p5Iaaj1NPRtZ0jNSK96c/E/r5OY4KaXchknBiVbLgoSQUxE5m+TAVfIjJhaQpni9lbCRlRRZmw4BRuCt/ryOmleVbxq5fahWqqVszjycAbnUAYPrqEG91CHBjAI4Ble4c0ZOy/Ou/OxbM052cwp/IHz+QM/xI0d</latexit>
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Figure 2.1: Schematic illustration of the particle spectrum of parity solutions to the
strong CP problem in their least tuned version. The lightest exotic particles are W ′

and Z ′ resonances, followed by a top partner appearing at a scale of order v′. A mirror
Higgs is also part of the low-lying spectrum, with mh′ ≃

√
2λv′. (For illustration, we

have chosen λ = O(1), but note that h′ could be much lighter if λ ≪ 1.) Additional
mirror quarks have masses of order the see-saw scale,M ≫ v′. The lepton sector must
also be “see-sawed”, with mirror leptons similarly appearing well above v′ (although we
emphasize that the see-saw scales in the quark and lepton sectors need not coincide).

light of forthcoming data can illuminate the additional structure of these models, and it

is a worthwhile direction for continued study.

2.3.1 Collider bounds

The doubling of the electroweak sector gives rise to a plethora of experimental signa-

tures at colliders, ranging from additional vector bosons (theW ′ and Z ′ of spontaneously

broken SU(2)R) to vector-like quarks (the SU(2)-singlet fermions) to additional Higgs

bosons. Ultimately, given that the Z ′ and W ′ gauge bosons acquire masses exclusively

from SU(2)R breaking, and inherit couplings to the SM-like quarks and leptons, collider

searches for these additional vectors place the most solid and strongest direct bounds on

the models under consideration.
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Neutral currents

The Z ′ resonance inherits couplings to both the left- and right-handed currents of SM-

like fermions. In the down-type quark and lepton sectors, these are both flavor diagonal

and generation universal. After rotating to the mass eigenbasis in both the gauge and

fermion sectors, as outlined in appendix A.1, we find:

L ⊃ gZ ′
µ

3∑
i=1

(
z′dR d̄iRγ

µdiR + z′eR ēiRγ
µeiR + z′νR ν̄iRγ

µνiR
)
+ {R→ L} . (2.23)

As discussed in section 2.2.3, the see-saw implementation of fermion masses leads to

unsuppressed couplings between the SU(2)R gauge bosons and right-handed fermions.

Up to corrections of O(sin2 θw), these are identical to the couplings between the SM Z

and left-handed currents. Specifically:

z′dR ≃ −
g

2

(
1 +O(s2w)

)
, z′eR ≃ −

g

2

(
1 +O(s2w)

)
, and z′νR ≃

g

2

(
1 +O(s2w)

)
, (2.24)

where sw ≡ sin θw, and we have ignored corrections of O(v2/v′2). On the other hand,

couplings of the Z ′ to left-handed currents are now suppressed:

z′dL ≃ −
g

6

swtw√
cos 2θw

= O(s2w), and z′eL = z′νL = −3z′dL . (2.25)

The situation in the up-quark sector is somewhat different. Now, couplings between the

Z ′ and the right-handed fermion currents are no longer universal. Instead, we have:

L ⊃ gZ ′
µ

(
3∑
i=1

z′uLūiLγ
µuiL +

2∑
i=1

z′uR ūiRγ
µuiR + z′tR t̄Rγ

µtR

)
. (2.26)

As before, Z ′ couplings to first and second generation right-handed currents are unsup-

pressed, and are given by

z′uR ≃
g

2

(
1 +O(s2w)

)
, (2.27)

whereas those to left-handed fermions, as well as to the right-handed top, now read

z′uL =
z′tR
4
≃ −g

6

swtw√
cos 2θw

= O(s2w) . (2.28)
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Bounds on the Z ′ mass from its production at the LHC will therefore be similar to

those found in the so-called Sequential Standard Model, which features a Z ′ resonance

that is just a heavy copy of the SM Z. In the present model, couplings of the Z ′ to SM

fermions are similar to those of the Z after the replacement L↔ R— a replacement that

does not affect either the production cross section or the decay rates into light fermions.

The most constraining limits thus come from [34], where a search focused on leptonic

final states sets a lower bound mZ′ ≳ 5 TeV. In turn, this translates into a lower limit

on the scale of parity breaking of order v′ ≳ 13 TeV.

Charged currents

W ′ gauge bosons interact with the right-handed SM fermions in a way that mirrors

the interactions between their left-handed counterparts and SM W . In the lepton sector:

L ⊃ g√
2

3∑
i,j=1

(
BijW

+
µ ν̄iLγ

µejL +B′
ijW

′+
µ ν̄iRγ

µejR
)
+ h.c., (2.29)

where B = B′ = OνO†
e, up to corrections of order v(′)

2
/M2. As far as the quark sector is

concerned, the up-type sector again requires special consideration. We find:

L ⊃ g√
2

3∑
i,j=1

W+
µ VijūiLγ

µdjL + h.c., (2.30)

with V = OuO†
d +O(v2/M2), whereas

L ⊃ g√
2
W ′+
µ

3∑
j=1

(
2∑
i=1

V ′
ijūiRγ

µdjR +∆V ′
3j t̄Rγ

µdjR

)
+ h.c. (2.31)

Up to corrections of O(v′2/M2), we have V ′ = V , and ∆V ′
3j = (ϵ′∗u V )3j. The 3× 3 matrix

ϵ′u, whose entries are suppressed by a factor of v′/M ≪ 1, is given explicitly in Eq.(A.19).

As with the Z ′, we expect bounds on the W ′ to be comparable to those in the Se-

quential Standard Model. Current direct searches set stringent constraints on such W ′

resonances, of order mW ′ ≳ 6 TeV [35]. In turn, this sets the strongest limit on the scale
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of parity breaking: v′ ≳ 18 TeV. Although direct searches for vector-like quarks and

additional Higgs bosons are also germane, they lead to significantly weaker bounds on

the scale of parity breaking compared toW ′ and Z ′ searches. For example, null results in

searches for vector-like top partners [32,33] lead to v′ ≳ 2 TeV, with comparable bounds

coming from searches for SM-singlet scalars.

Looking to the future, a 100 TeV pp collider such as the proposed FCC-hh should be

sensitive to W ′ and Z ′ bosons as heavy as ∼ 40 TeV [36, 37], corresponding to v′ ≳ 120

TeV. This would comprehensively cover the most natural parameter space consistent with

current data, and the non-observation of heavy vectors at such a collider would suggest

that parity solutions are tuned at the ∆−1 ∼ 10−5 level. In this respect, future colliders

provide a decisive test of parity solutions to the strong CP problem.

2.3.2 Flavor constraints

In the SM, flavor-changing neutral currents (FCNCs) are absent at tree-level, ap-

pearing only at one-loop, and being additionally suppressed by the GIM mechanism.

As a result, precision measurements of flavor-violating processes often imply stringent

constraints on extensions of the SM. In the class of models under consideration, FCNCs

arise already at tree-level, mediated by the Z and Z ′ gauge bosons, as well as the scalars

h and h′. However, their size is suppressed by factors of the Yukawa couplings of the

relevant fermions, making their effect negligible. At one-loop, FCNCs proceeding via box

diagrams involving W ′ gauge bosons and mirror up-type quarks can lead to deviations

in kaon properties, in turn setting the leading constraints on the flavor structure of these

models.
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Tree-level FCNCs

Rotating from the gauge to the mass eigenbasis in the fermion and gauge boson

sectors, as specified in appendix A.1, leads to the presence of flavor-changing interactions

between the Z and the SM-like fermions. For example, in the down-quark sector there

are new interactions of the form

L ⊃ g

2cw
(ϵ†dϵd)ijZµd̄iLγ

µdjL, (2.32)

where ϵd is a 3×3 matrix acting on flavor space whose explicit form is given in Eq.(A.13).

Integrating out the Z, the effective hamiltonian relevant to describe |∆F | = 1 processes,

such as the leptonic decay of B mesons, now contains additional terms, of the form

∆Heff ≃ −
√
2GF (ϵ

†
dϵd)32 cos(2θw)(b̄Lγ

µsL)(µ̄LγµµL) + h.c. (2.33)

(An analogous term involving right-handed muons is also present, but suppressed by a

factor of s2w, so we neglect it in the subsequent discussion.)

The deviation with respect to the SM prediction for the branching fraction of the

process B0
s → µ+µ− as a result of the operator in Eq.(2.33) can be written as

rµµ ≡
BR(B0

s → µ+µ−)BSM

BR(B0
s → µ+µ−)SM

− 1 ≃ |C
(SM)
10 + C

(BSM)
10 |2

|C(SM)
10 |2

− 1, (2.34)

where C
(SM)
10 and C

(BSM)
10 are the SM and BSM contributions to the Wilson coefficient of

the four-fermion operator (b̄Lγ
µsL)(µ̄γµγ

5µ). In the SM

C
(SM)
10 =

GF

2
√
2

α

4π
(V ∗

tbVts)C̃
(SM)
10 , (2.35)

with C̃
(SM)
10 ≃ 4.41 [83], whereas from Eq.(2.33) we have

C
(BSM)
10 ≃ GF√

2
cos(2θw)(ϵ

†
dϵd)32. (2.36)
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A stringent upper bound on the size of the (ϵ†dϵd)32 coefficient arises from the requirement

that the masses of the down-type quarks are correctly reproduced in this model. From

Eq.(A.13), we have

(ϵ†dϵd)32 =
v2

2

∑
i

(ỹd)3i(ỹd)
∗
2i

m2
Di

∼ v2

M2

∑
i

(ỹd)3i(ỹd)
∗
2i ≲

v

M

√
mbms

v′
≪ 1, (2.37)

where in the last step we have made use of the upper bound in Eq.(A.12). We then have,

parametrically

rµµ ∼
2|C(BSM)

10 |
|C(SM)

10 |
≲ 10−3

(
18 TeV

v′

)2(
v′

M

)
. (2.38)

This effect is much smaller than the theoretical and experimental errors on BR(B0
s →

µ+µ−), which are both on the order of 10% [84].8

The effects of Z-mediated FCNCs on other processes are even more suppressed. For

example, |∆F | = 2 processes such as kaon mixing require two insertions of the (tiny)

flavor-violating coefficient. In the lepton sector, even |∆F | = 1 decays are virtually

unobservable, as the effect is now suppressed by the masses of the relevant leptons.

FCNCs mediated by the SM Higgs are similarly negligible, since the corresponding Wilson

coefficients feature the same suppression as those from Z exchange, on top the smaller

coupling between the Higgs and light fermions. Flavor-changing interactions mediated

by the Z ′ and h′ are further suppressed by an additional factor of m2
Z/m

2
Z′ and m2

h/m
2
h′

respectively, making them irrelevant. Overall, the strong suppression of the tree-level

FCNCs that occurs naturally in these models makes their effects negligible.

One-loop FCNCs

Another source of FCNCs beyond those present in the SM arises at one loop. In

these models, the familiar box diagram that describes meson mixing in the SM is now

8The effective operator (b̄Rγ
µsR)(µ̄γµγ

5µ) is also generated after integrating out the Z, with a Wilson

coefficient C
′(BSM)
10 ∼ C(BSM)

10 that enters into Eq.(2.34) in a similar manner. The presence of this operator
does not quantitatively affect our analysis.
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Z, Z 0

<latexit sha1_base64="FwEZPWoImB0SOBHe+aDbtXkiRlc=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBF7kLIrBfVW8OKxgtuWtkvJptk2NJtdkqxQlv4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0gE18ZxvtHa+sbm1nZhp7i7t39wWDo6buo4VZR5NBaxagdEM8El8ww3grUTxUgUCNYKxnczv/XElOaxfDSThPkRGUoeckqMlbzOJe5c9Etlp+rMgVeJm5My5Gj0S1+9QUzTiElDBdG66zqJ8TOiDKeCTYu9VLOE0DEZsq6lkkRM+9n82Ck+t8oAh7GyJQ2eq78nMhJpPYkC2xkRM9LL3kz8z+umJrzxMy6T1DBJF4vCVGAT49nneMAVo0ZMLCFUcXsrpiOiCDU2n6INwV1+eZU0r6purXr7UCvXK3kcBTiFM6iAC9dQh3togAcUODzDK7whiV7QO/pYtK6hfOYE/gB9/gCBw43F</latexit>

�

<latexit sha1_base64="Xzx2lb/podJ1UQhBbO0zDCCZBJg=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoOQU9iVgHoLePEYwTwgWULvZDYZM49lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSjgz1ve/vcLG5tb2TnG3tLd/cHhUPj5pG5VqQltEcaW7ERjKmaQtyyyn3URTEBGnnWhyO/c7T1QbpuSDnSY0FDCSLGYErJPa/REIAYNyxa/5C+B1EuSkgnI0B+Wv/lCRVFBpCQdjeoGf2DADbRnhdFbqp4YmQCYwoj1HJQhqwmxx7QxfOGWIY6VdSYsX6u+JDIQxUxG5TgF2bFa9ufif10ttfB1mTCappZIsF8Upx1bh+et4yDQllk8dAaKZuxWTMWgg1gVUciEEqy+vk/ZlLajXbu7rlUY1j6OIztA5qqIAXaEGukNN1EIEPaJn9IrePOW9eO/ex7K14OUzp+gPvM8fgvmPBw==</latexit>

d

<latexit sha1_base64="9wVXLtflsmbbIzYcufFkmT6z+x4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWzmbRrN5uwuxFK6S/w4kERr/4kb/4bt20O2vpg4PHeDDPzglRwbVz32ylsbG5t7xR3S3v7B4dH5eOTtk4yxbDFEpGobkA1Ci6xZbgR2E0V0jgQ2AnGd3O/84RK80Q+mEmKfkyHkkecUWOlZjgoV9yauwBZJ15OKpCjMSh/9cOEZTFKwwTVuue5qfGnVBnOBM5K/UxjStmYDrFnqaQxan+6OHRGLqwSkihRtqQhC/X3xJTGWk/iwHbG1Iz0qjcX//N6mYlu/CmXaWZQsuWiKBPEJGT+NQm5QmbExBLKFLe3EjaiijJjsynZELzVl9dJ+7LmXdVum1eVejWPowhncA5V8OAa6nAPDWgBA4RneIU359F5cd6dj2VrwclnTuEPnM8fw/eM2g==</latexit>

Dj , dj

<latexit sha1_base64="swTvbMsZHly8Uknb9mx4+/fUCeY=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahBymJFNRbQQ8eK9gPaEPYbDbttptN3N0IJfRPePGgiFf/jjf/jds2B219MPB4b4aZeX7CmdK2/W0V1tY3NreK26Wd3b39g/LhUVvFqSS0RWIey66PFeVM0JZmmtNuIimOfE47/vhm5neeqFQsFg96klA3wgPBQkawNlL31hudo8AbeeWKXbPnQKvEyUkFcjS98lc/iEkaUaEJx0r1HDvRboalZoTTaamfKppgMsYD2jNU4IgqN5vfO0VnRglQGEtTQqO5+nsiw5FSk8g3nRHWQ7XszcT/vF6qwys3YyJJNRVksShMOdIxmj2PAiYp0XxiCCaSmVsRGWKJiTYRlUwIzvLLq6R9UXPqtev7eqVRzeMowgmcQhUcuIQG3EETWkCAwzO8wpv1aL1Y79bHorVg5TPH8AfW5w8Kj49C</latexit>

d

<latexit sha1_base64="9wVXLtflsmbbIzYcufFkmT6z+x4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWzmbRrN5uwuxFK6S/w4kERr/4kb/4bt20O2vpg4PHeDDPzglRwbVz32ylsbG5t7xR3S3v7B4dH5eOTtk4yxbDFEpGobkA1Ci6xZbgR2E0V0jgQ2AnGd3O/84RK80Q+mEmKfkyHkkecUWOlZjgoV9yauwBZJ15OKpCjMSh/9cOEZTFKwwTVuue5qfGnVBnOBM5K/UxjStmYDrFnqaQxan+6OHRGLqwSkihRtqQhC/X3xJTGWk/iwHbG1Iz0qjcX//N6mYlu/CmXaWZQsuWiKBPEJGT+NQm5QmbExBLKFLe3EjaiijJjsynZELzVl9dJ+7LmXdVum1eVejWPowhncA5V8OAa6nAPDWgBA4RneIU359F5cd6dj2VrwclnTuEPnM8fw/eM2g==</latexit>

d

<latexit sha1_base64="9wVXLtflsmbbIzYcufFkmT6z+x4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWzmbRrN5uwuxFK6S/w4kERr/4kb/4bt20O2vpg4PHeDDPzglRwbVz32ylsbG5t7xR3S3v7B4dH5eOTtk4yxbDFEpGobkA1Ci6xZbgR2E0V0jgQ2AnGd3O/84RK80Q+mEmKfkyHkkecUWOlZjgoV9yauwBZJ15OKpCjMSh/9cOEZTFKwwTVuue5qfGnVBnOBM5K/UxjStmYDrFnqaQxan+6OHRGLqwSkihRtqQhC/X3xJTGWk/iwHbG1Iz0qjcX//N6mYlu/CmXaWZQsuWiKBPEJGT+NQm5QmbExBLKFLe3EjaiijJjsynZELzVl9dJ+7LmXdVum1eVejWPowhncA5V8OAa6nAPDWgBA4RneIU359F5cd6dj2VrwclnTuEPnM8fw/eM2g==</latexit>

Dj , dj

<latexit sha1_base64="swTvbMsZHly8Uknb9mx4+/fUCeY=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahBymJFNRbQQ8eK9gPaEPYbDbttptN3N0IJfRPePGgiFf/jjf/jds2B219MPB4b4aZeX7CmdK2/W0V1tY3NreK26Wd3b39g/LhUVvFqSS0RWIey66PFeVM0JZmmtNuIimOfE47/vhm5neeqFQsFg96klA3wgPBQkawNlL31hudo8AbeeWKXbPnQKvEyUkFcjS98lc/iEkaUaEJx0r1HDvRboalZoTTaamfKppgMsYD2jNU4IgqN5vfO0VnRglQGEtTQqO5+nsiw5FSk8g3nRHWQ7XszcT/vF6qwys3YyJJNRVksShMOdIxmj2PAiYp0XxiCCaSmVsRGWKJiTYRlUwIzvLLq6R9UXPqtev7eqVRzeMowgmcQhUcuIQG3EETWkCAwzO8wpv1aL1Y79bHorVg5TPH8AfW5w8Kj49C</latexit>

d

<latexit sha1_base64="9wVXLtflsmbbIzYcufFkmT6z+x4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWzmbRrN5uwuxFK6S/w4kERr/4kb/4bt20O2vpg4PHeDDPzglRwbVz32ylsbG5t7xR3S3v7B4dH5eOTtk4yxbDFEpGobkA1Ci6xZbgR2E0V0jgQ2AnGd3O/84RK80Q+mEmKfkyHkkecUWOlZjgoV9yauwBZJ15OKpCjMSh/9cOEZTFKwwTVuue5qfGnVBnOBM5K/UxjStmYDrFnqaQxan+6OHRGLqwSkihRtqQhC/X3xJTGWk/iwHbG1Iz0qjcX//N6mYlu/CmXaWZQsuWiKBPEJGT+NQm5QmbExBLKFLe3EjaiijJjsynZELzVl9dJ+7LmXdVum1eVejWPowhncA5V8OAa6nAPDWgBA4RneIU359F5cd6dj2VrwclnTuEPnM8fw/eM2g==</latexit>

s

<latexit sha1_base64="+Cfk3PwdQUZ1dobr2lw7LqUkKfc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOlph6UK27NXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqx5V7Xb5lWlXs3jKMIZnEMVPLiGOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH2rOM6Q==</latexit>

s̄

<latexit sha1_base64="WVV0QR3pB15Bh7JVydFsNiN3Z1s=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvQU9mVgnorePFYwX5Au5Rsmm1js8mSZIWy9D948aCIV/+PN/+NabsHbX0w8Hhvhpl5YSK4sZ73jQobm1vbO8Xd0t7+weFR+fikbVSqKWtRJZTuhsQwwSVrWW4F6yaakTgUrBNObud+54lpw5V8sNOEBTEZSR5xSqyT2v2QaGwG5YpX8xbA68TPSQVyNAflr/5Q0TRm0lJBjOn5XmKDjGjLqWCzUj81LCF0Qkas56gkMTNBtrh2hi+cMsSR0q6kxQv190RGYmOmceg6Y2LHZtWbi/95vdRG10HGZZJaJulyUZQKbBWev46HXDNqxdQRQjV3t2I6JppQ6wIquRD81ZfXSfuy5tdrN/f1SqOax1GEMziHKvhwBQ24gya0gMIjPMMrvCGFXtA7+li2FlA+cwp/gD5/ACk2jsw=</latexit>

d

<latexit sha1_base64="9wVXLtflsmbbIzYcufFkmT6z+x4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWzmbRrN5uwuxFK6S/w4kERr/4kb/4bt20O2vpg4PHeDDPzglRwbVz32ylsbG5t7xR3S3v7B4dH5eOTtk4yxbDFEpGobkA1Ci6xZbgR2E0V0jgQ2AnGd3O/84RK80Q+mEmKfkyHkkecUWOlZjgoV9yauwBZJ15OKpCjMSh/9cOEZTFKwwTVuue5qfGnVBnOBM5K/UxjStmYDrFnqaQxan+6OHRGLqwSkihRtqQhC/X3xJTGWk/iwHbG1Iz0qjcX//N6mYlu/CmXaWZQsuWiKBPEJGT+NQm5QmbExBLKFLe3EjaiijJjsynZELzVl9dJ+7LmXdVum1eVejWPowhncA5V8OAa6nAPDWgBA4RneIU359F5cd6dj2VrwclnTuEPnM8fw/eM2g==</latexit>

d̄

<latexit sha1_base64="LQbsIlDbH0Fa933H82j8U6V+UCw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBahp5JIQb0VvHisYD+gDWWz2bRrN7thdyOU0P/gxYMiXv0/3vw3btMctPXBwOO9GWbmBQln2rjut1Pa2Nza3invVvb2Dw6PqscnXS1TRWiHSC5VP8CaciZoxzDDaT9RFMcBp71gervwe09UaSbFg5kl1I/xWLCIEWys1B0GWKFwVK25DTcHWideQWpQoD2qfg1DSdKYCkM41nrguYnxM6wMI5zOK8NU0wSTKR7TgaUCx1T7WX7tHF1YJUSRVLaEQbn6eyLDsdazOLCdMTYTveotxP+8QWqiaz9jIkkNFWS5KEo5MhItXkchU5QYPrMEE8XsrYhMsMLE2IAqNgRv9eV10r1seM3GzX2z1qoXcZThDM6hDh5cQQvuoA0dIPAIz/AKb450Xpx352PZWnKKmVP4A+fzBxJ6jr0=</latexit>

ui, Ui

<latexit sha1_base64="DHKkZNrjiKlGI/favvxcEU2NgBE=">AAAB73icbVBNS8NAEJ34WetX1aOXxSL0ICWRgnorePFYwbSFNoTNdtMu3Wzifggl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5UcaZ0q777aytb2xubZd2yrt7+weHlaPjtkqNJNQnKU9lN8KKciaor5nmtJtJipOI0040vp35nScqFUvFg55kNEjwULCYEayt1DUhu0B+yMJK1a27c6BV4hWkCgVaYeWrP0iJSajQhGOlep6b6SDHUjPC6bTcN4pmmIzxkPYsFTihKsjn907RuVUGKE6lLaHRXP09keNEqUkS2c4E65Fa9mbif17P6Pg6yJnIjKaCLBbFhiOdotnzaMAkJZpPLMFEMnsrIiMsMdE2orINwVt+eZW0L+teo35z36g2a0UcJTiFM6iBB1fQhDtogQ8EODzDK7w5j86L8+58LFrXnGLmBP7A+fwBPEOPYg==</latexit>

ūj , Ūj

<latexit sha1_base64="N3euSRaoYyR+IPBeGcFwDGFf8lw=">AAAB+3icbZDLSsNAFIZP6q3WW6xLN4NF6EJKIgV1V3DjsoJpC20Ik+mknXZyYWYiltBXceNCEbe+iDvfxmmahbb+MPDxn3M4Z34/4Uwqy/o2ShubW9s75d3K3v7B4ZF5XO3IOBWEOiTmsej5WFLOIuoopjjtJYLi0Oe0609vF/XuIxWSxdGDmiXUDfEoYgEjWGnLM6sDHwuUepMLlJPjTTyzZjWsXGgd7AJqUKjtmV+DYUzSkEaKcCxl37YS5WZYKEY4nVcGqaQJJlM8on2NEQ6pdLP89jk6184QBbHQL1Iod39PZDiUchb6ujPEaixXawvzv1o/VcG1m7EoSRWNyHJRkHKkYrQIAg2ZoETxmQZMBNO3IjLGAhOl46roEOzVL69D57JhNxs3981aq17EUYZTOIM62HAFLbiDNjhA4Ame4RXejLnxYrwbH8vWklHMnMAfGZ8/dHeTWw==</latexit>

W

<latexit sha1_base64="B5fjsM+e18UllEMmSBodfAIvdN8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOlZmdQrrg1dwGyTrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHRGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlv/IzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynZELzVl9dJ+7LmXdVum1eVejWPowhncA5V8OAa6nAPDWgBA4RneIU359F5cd6dj2VrwclnTuEPnM8fsEOMzQ==</latexit>

W

<latexit sha1_base64="B5fjsM+e18UllEMmSBodfAIvdN8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOlZmdQrrg1dwGyTrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHRGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlv/IzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynZELzVl9dJ+7LmXdVum1eVejWPowhncA5V8OAa6nAPDWgBA4RneIU359F5cd6dj2VrwclnTuEPnM8fsEOMzQ==</latexit>

W 0

<latexit sha1_base64="2Ud2wvHcZ6EqFGuaz42+ri6DMwM=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSL2VBIpqLeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2d++4lrI2L1iJOE+xEdKhEKRtFKD+2LfqnsVt05yCrxclKGHI1+6as3iFkacYVMUmO6npugn1GNgkk+LfZSwxPKxnTIu5YqGnHjZ/NLp+TcKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOEUbQje8surpHVZ9WrVm/tauV7J4yjAKZxBBTy4gjrcQQOawCCEZ3iFN2fsvDjvzseidc3JZ07gD5zPHxCpjP4=</latexit>

s

<latexit sha1_base64="+Cfk3PwdQUZ1dobr2lw7LqUkKfc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOlph6UK27NXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqx5V7Xb5lWlXs3jKMIZnEMVPLiGOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH2rOM6Q==</latexit>

s̄

<latexit sha1_base64="WVV0QR3pB15Bh7JVydFsNiN3Z1s=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvQU9mVgnorePFYwX5Au5Rsmm1js8mSZIWy9D948aCIV/+PN/+NabsHbX0w8Hhvhpl5YSK4sZ73jQobm1vbO8Xd0t7+weFR+fikbVSqKWtRJZTuhsQwwSVrWW4F6yaakTgUrBNObud+54lpw5V8sNOEBTEZSR5xSqyT2v2QaGwG5YpX8xbA68TPSQVyNAflr/5Q0TRm0lJBjOn5XmKDjGjLqWCzUj81LCF0Qkas56gkMTNBtrh2hi+cMsSR0q6kxQv190RGYmOmceg6Y2LHZtWbi/95vdRG10HGZZJaJulyUZQKbBWev46HXDNqxdQRQjV3t2I6JppQ6wIquRD81ZfXSfuy5tdrN/f1SqOax1GEMziHKvhwBQ24gya0gMIjPMMrvCGFXtA7+li2FlA+cwp/gD5/ACk2jsw=</latexit>

d

<latexit sha1_base64="9wVXLtflsmbbIzYcufFkmT6z+x4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWzmbRrN5uwuxFK6S/w4kERr/4kb/4bt20O2vpg4PHeDDPzglRwbVz32ylsbG5t7xR3S3v7B4dH5eOTtk4yxbDFEpGobkA1Ci6xZbgR2E0V0jgQ2AnGd3O/84RK80Q+mEmKfkyHkkecUWOlZjgoV9yauwBZJ15OKpCjMSh/9cOEZTFKwwTVuue5qfGnVBnOBM5K/UxjStmYDrFnqaQxan+6OHRGLqwSkihRtqQhC/X3xJTGWk/iwHbG1Iz0qjcX//N6mYlu/CmXaWZQsuWiKBPEJGT+NQm5QmbExBLKFLe3EjaiijJjsynZELzVl9dJ+7LmXdVum1eVejWPowhncA5V8OAa6nAPDWgBA4RneIU359F5cd6dj2VrwclnTuEPnM8fw/eM2g==</latexit>

d̄

<latexit sha1_base64="LQbsIlDbH0Fa933H82j8U6V+UCw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBahp5JIQb0VvHisYD+gDWWz2bRrN7thdyOU0P/gxYMiXv0/3vw3btMctPXBwOO9GWbmBQln2rjut1Pa2Nza3invVvb2Dw6PqscnXS1TRWiHSC5VP8CaciZoxzDDaT9RFMcBp71gervwe09UaSbFg5kl1I/xWLCIEWys1B0GWKFwVK25DTcHWideQWpQoD2qfg1DSdKYCkM41nrguYnxM6wMI5zOK8NU0wSTKR7TgaUCx1T7WX7tHF1YJUSRVLaEQbn6eyLDsdazOLCdMTYTveotxP+8QWqiaz9jIkkNFWS5KEo5MhItXkchU5QYPrMEE8XsrYhMsMLE2IAqNgRv9eV10r1seM3GzX2z1qoXcZThDM6hDh5cQQvuoA0dIPAIz/AKb450Xpx352PZWnKKmVP4A+fzBxJ6jr0=</latexit>
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Figure 2.2: Additional box diagrams contributing to kaon mixing in the models under
consideration include any of the up-type quarks propagating inside the loop, as well as
(left) twoW bosons, (center) oneW and oneW ′, and (right) twoW ′s. Quantitatively,
it is diagrams with one W and one W ′ that are the most relevant.

accompanied by similar diagrams that include W ′s as well as the additional (heavy)

up-type quarks running inside the loop, as we show in figure 2.2. Given the level of

experimental precision in measurements of kaon mixing parameters, even a modification

to this process at the loop level can be a significant source of constraints.

The relevant interactions are those involving the SM-like down-type quarks and both

the W and W ′ gauge bosons. They are given by

L ⊃ g√
2
W+
µ

3∑
j,i=1

(
VijūiLγ

µdjL +∆VijŪiLγ
µdjL

)
+ h.c., (2.39)

where U3L = t′L here and ∆V = ϵuV , as well as

L ⊃ g√
2
W ′+
µ

3∑
j=1

(
2∑
i=1

VijūiRγ
µdjR + V3j t̄

′
Rγ

µdjR

+
2∑
i=1

∆V ′
ijŪiRγ

µdjR +∆V ′
3j t̄Rγ

µdjR

)
,

(2.40)

with ∆V ′ = ϵ′∗u V . The entries of the 3× 3 matrices ϵu and ϵ′u are O(v/M) and O(v′/M)

respectively, and explicit expressions can be found in Eq.(A.19).

The detailed expressions, including loop functions, relevant to estimate the contri-

butions to the kaon mixing parameters ∆mK and |ϵK | can be found in appendix A.3.

Additional box diagrams including two W s or two W ′s always lead to a contribution

which is much smaller than that of the SM, and can therefore be neglected. The leading

contribution arises from diagrams including one W and one W ′. In this case, there is an

“irreducible” contribution to both parameters (irreducible in the sense that it can only
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be “turned-off” by increasing v′), which comes from the u and c quarks, whose couplings

to the W ′ gauge boson are set to be equal to those of the CKM matrix as a result of

generalized parity. The size of this correction reads

(∆mK)u,c ≈ −6 · 10−16 GeV

(
6 TeV

mW ′

)2

, and |ϵK |u,c ≈ 7 · 10−5

(
6 TeV

mW ′

)2

,

(2.41)

which in both cases is an order of magnitude below the theoretical error in the corre-

sponding SM prediction, for values of mW ′ consistent with the direct bounds discussed

in 2.3.1.

Contributions from box diagrams that involve additional members of the up-quark

sector additionally depend on the see-saw scale M , as well as the size of both diagonal

and off-diagonal entries in the up-type Yukawa matrices. As far as ∆mK is concerned,

the leading contribution comes from diagrams where the u and c quarks propagate inside

the loop, and so it is roughly equal to the result in Eq.(2.41), even for a see-saw scale

M that sits only slightly above v′. In contrast, the contribution to |ϵK | can be large,

and it is dominated by diagrams where the t quark propagates inside the loop. Choosing

the individual entries in the Yukawa couplings to saturate the upper bound given in

Eq.(A.18), |ϵK | sets a lower bound on M than can range between 750 TeV and 1000 TeV

(depending on whether the leading contribution interferes destructively or constructively

with the SM result) for v′ ∼ 18 TeV. This value of M sits comfortably within the upper

bound M ≲ 102v′, which follows from the requirement of perturbative Yukawas, as

discussed around Eq.(2.18). Alternatively, even for v′ = 18 TeV and M = 40 TeV, an

additional suppression by a factor of O(0.1) in the off-diagonal elements of the up-type

Yukawas with respect to their upper bound is enough to bring the predicted value of |ϵK |

within the allowed range.

Overall, the class of parity solutions to the strong CP problem that we focus on in this
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work can comfortably satisfy existing constraints from flavor physics. Flavor-changing

processes are, nevertheless, an interesting probe of the structure of these models, and a

more in-depth investigation is a promising avenue for future work.

2.4 Broken parity and the neutron EDM

As we discussed in section 2.2, parity-symmetric theories predict a vanishing θ̄, there-

fore offering a potential solution to the strong CP problem. However, the breaking of

parity that is necessary for phenomenological reasons implies that, although zero at tree-

level, a non-zero θ̄ may be generated radiatively. In this section, we investigate in detail

the size of radiative corrections to both θ̄, and the EDM of elementary fermions. We fo-

cus on the effect of non-gravitational interactions, and leave gravitational considerations

to section 2.5.

The size of radiative corrections to the θ̄ parameter is a somewhat model-dependent

question, as it depends on the details of how parity is broken. For instance, we could

regard generalized parity to be a global symmetry that is only broken softly by dimen-

sionful parameters, as in Eq.(2.13). More realistically, we might expect that the breaking

of parity is spontaneous, and not explicit. This must certainly be the case if, for exam-

ple, parity were a gauge symmetry of the UV theory. Even in this case, there are two

qualitatively different options: either parity is broken without breaking CP (e.g. through

a symmetry-breaking sector with two scalar fields that obtain asymmetric vevs); or both

parity and CP are broken simultaneously (e.g. through the vev of a pseudo-scalar). The

former situation is quantitatively similar to the global case. In the latter, however, the

symmetry-breaking sector can introduce an additional source of CP -violation beyond

that present in the SM, and a non-vanishing θ̄ can arise already at one loop.

In the remainder of this section, we discuss the three qualitatively different possibil-
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ities for the breaking of parity, with a focus on the implications for the size of radiative

corrections to the neutron EDM.

2.4.1 Softly broken parity

We will first discuss the possibility of parity being broken softly, only as a result of

dimensionful parameters. Performing this analysis will give us an understanding of the

irreducible effects that will be present in any theory where the breaking of parity happens

dynamically.

There are two potential sources of soft breaking. One corresponds to the µ2 term in

the scalar potential of Eq.(2.13), which splits the Higgs vevs in the SM and mirror sectors.

As anticipated in the introduction, if this was the only source of parity-violation, radiative

corrections to θ̄ would be no larger than in the SM [23]. Another potential source of soft

breaking are the vector-like mass matrices of Eq.(2.10). Relaxing the requirement that

these be hermitian introduces a soft breaking of both generalized parity and CP . In this

case, a correction to the EDMs of elementary charged fermions (both quarks and leptons)

arises already at one loop, whereas θ̄ remains zero both at the tree- and one-loop levels.

In turn, this translates into a contribution to the neutron EDM independent of θ̄.

Taking the vector-like mass matrices of the SU(2)-singlets to be general complex

matrices, WLOG we may write them as

M′
f =Mf + i∆Mf , (2.42)

where bothM†
f =Mf and ∆M†

f = ∆Mf . If ∆Mf is non-vanishing,M′
f is no longer

hermitian, therefore (softly) breaking both generalized parity and CP . At one-loop, a

non-zero ∆Mf leads to a non-vanishing contribution to the EDM of elementary fermions,

with the relevant diagrams depicted in figure 2.3. The result is dominated by diagrams

where the mirror Higgs, h′, and the heavy mirror fermions propagate inside the loop. We
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<latexit sha1_base64="sjuz+/aTmqNpn7KJQ/Jk2BqdlYc=">AAAB7nicbVC7SgNBFL0bXzG+opY2g0FIFXYloHYBGwuLCOYByRJmZyfJkNnZZeauEJZ8hI2FIrZ+j51/4yTZQhMPDBzOOZe59wSJFAZd99spbGxube8Ud0t7+weHR+Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHI79ztPXBsRq0ecJtyP6EiJoWAUrdTp39toSAfliltzFyDrxMtJBXI0B+WvfhizNOIKmaTG9Dw3QT+jGgWTfFbqp4YnlE3oiPcsVTTixs8W687IhVVCMoy1fQrJQv09kdHImGkU2GREcWxWvbn4n9dLcXjtZ0IlKXLFlh8NU0kwJvPbSSg0ZyinllCmhd2VsDHVlKFtqGRL8FZPXifty5pXr9081CuNal5HEc7gHKrgwRU04A6a0AIGE3iGV3hzEufFeXc+ltGCk8+cwh84nz8Hs49P</latexit>

M � v0

<latexit sha1_base64="cAIF048JWu4zYja0qTNda0VKxjg=">AAAB73icbVBNSwMxEJ34WetX1aOXYBF7KrtSUG8FL16ECvYD2qVk0+w2NJtdk2yhLP0TXjwo4tW/481/Y9ruQVsfDDzem2Fmnp8Iro3jfKO19Y3Nre3CTnF3b//gsHR03NJxqihr0ljEquMTzQSXrGm4EayTKEYiX7C2P7qd+e0xU5rH8tFMEuZFJJQ84JQYK3XucS8M8fiiXyo7VWcOvErcnJQhR6Nf+uoNYppGTBoqiNZd10mMlxFlOBVsWuylmiWEjkjIupZKEjHtZfN7p/jcKgMcxMqWNHiu/p7ISKT1JPJtZ0TMUC97M/E/r5ua4NrLuExSwyRdLApSgU2MZ8/jAVeMGjGxhFDF7a2YDoki1NiIijYEd/nlVdK6rLq16s1DrVyv5HEU4BTOoAIuXEEd7qABTaAg4Ble4Q09oRf0jj4WrWsonzmBP0CfP76HjxA=</latexit>

v0

<latexit sha1_base64="VtlpefNFqk8HuqUNZPj8fmojYOQ=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoOYU9iVgHoLePEYxTwgCWF20psMmZ1dZmYDYckfePGgiFf/yJt/4yTZgyYWNBRV3XR3+bHg2rjut5Pb2Nza3snvFvb2Dw6PiscnTR0limGDRSJSbZ9qFFxiw3AjsB0rpKEvsOWP7+Z+a4JK80g+mWmMvZAOJQ84o8ZKj5PLfrHkVtwFyDrxMlKCDPV+8as7iFgSojRMUK07nhubXkqV4UzgrNBNNMaUjekQO5ZKGqLupYtLZ+TCKgMSRMqWNGSh/p5Iaaj1NPRtZ0jNSK96c/E/r5OY4KaXchknBiVbLgoSQUxE5m+TAVfIjJhaQpni9lbCRlRRZmw4BRuCt/ryOmleVbxq5fahWqqVszjycAbnUAYPrqEG91CHBjAI4Ble4c0ZOy/Ou/OxbM052cwp/IHz+QM/xI0d</latexit>

v

<latexit sha1_base64="tWiGXJozviEA+L5MYbuoh3AZTho=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9iVgHoLePGYgHlAsoTZSScZMzu7zMwGwpIv8OJBEa9+kjf/xkmyB00saCiquunuCmLBtXHdbye3tb2zu5ffLxwcHh2fFE/PWjpKFMMmi0SkOgHVKLjEpuFGYCdWSMNAYDuY3C/89hSV5pF8NLMY/ZCOJB9yRo2VGtN+seRW3CXIJvEyUoIM9X7xqzeIWBKiNExQrbueGxs/pcpwJnBe6CUaY8omdIRdSyUNUfvp8tA5ubLKgAwjZUsaslR/T6Q01HoWBrYzpGas172F+J/XTczw1k+5jBODkq0WDRNBTEQWX5MBV8iMmFlCmeL2VsLGVFFmbDYFG4K3/vImaV1XvGrlrlEt1cpZHHm4gEsogwc3UIMHqEMTGCA8wyu8OU/Oi/PufKxac042cw5/4Hz+AN8/jOw=</latexit>

��

h, h0

<latexit sha1_base64="XnTt7vIQWIsDU94VwtOz9GFuNlE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSL2ICWRgnorePFYwbSFNpTNdtMs3d2E3Y1QQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6acaeO6387a+sbm1nZpp7y7t39wWDk6buskU4T6JOGJ6oZYU84k9Q0znHZTRbEIOe2E47uZ33miSrNEPppJSgOBR5JFjGBjJT++RPHFoFJ16+4caJV4BalCgdag8tUfJiQTVBrCsdY9z01NkGNlGOF0Wu5nmqaYjPGI9iyVWFAd5PNjp+jcKkMUJcqWNGiu/p7IsdB6IkLbKbCJ9bI3E//zepmJboKcyTQzVJLFoijjyCRo9jkaMkWJ4RNLMFHM3opIjBUmxuZTtiF4yy+vkvZV3WvUbx8a1WatiKMEp3AGNfDgGppwDy3wgQCDZ3iFN0c6L86787FoXXOKmRP4A+fzB6x5jeE=</latexit>

�

<latexit sha1_base64="Xzx2lb/podJ1UQhBbO0zDCCZBJg=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoOQU9iVgHoLePEYwTwgWULvZDYZM49lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSjgz1ve/vcLG5tb2TnG3tLd/cHhUPj5pG5VqQltEcaW7ERjKmaQtyyyn3URTEBGnnWhyO/c7T1QbpuSDnSY0FDCSLGYErJPa/REIAYNyxa/5C+B1EuSkgnI0B+Wv/lCRVFBpCQdjeoGf2DADbRnhdFbqp4YmQCYwoj1HJQhqwmxx7QxfOGWIY6VdSYsX6u+JDIQxUxG5TgF2bFa9ufif10ttfB1mTCappZIsF8Upx1bh+et4yDQllk8dAaKZuxWTMWgg1gVUciEEqy+vk/ZlLajXbu7rlUY1j6OIztA5qqIAXaEGukNN1EIEPaJn9IrePOW9eO/ex7K14OUzp+gPvM8fgvmPBw==</latexit>

f

<latexit sha1_base64="kfeWzpXXMQPCfOzPuL1ekbHC+Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOlZjgoV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnzrmq3zatKvZrHUYQzOIcqeHANdbiHBrSAAcIzvMKb8+i8OO/Ox7K14OQzp/AHzucPxv+M3A==</latexit>

f

<latexit sha1_base64="kfeWzpXXMQPCfOzPuL1ekbHC+Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOlZjgoV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnzrmq3zatKvZrHUYQzOIcqeHANdbiHBrSAAcIzvMKb8+i8OO/Ox7K14OQzp/AHzucPxv+M3A==</latexit>

F

<latexit sha1_base64="1ls4gIrgmADDq1uJ/F13JuM89As=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9iVgHoLCOIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38799hMqzWP5YCYJ+hEdSh5yRo2VGnf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCa3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpHVZ8aqVm0a1VCtnceThDM6hDB5cQQ3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A5Z/jLw=</latexit>

Z, Z 0

<latexit sha1_base64="FwEZPWoImB0SOBHe+aDbtXkiRlc=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBF7kLIrBfVW8OKxgtuWtkvJptk2NJtdkqxQlv4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0gE18ZxvtHa+sbm1nZhp7i7t39wWDo6buo4VZR5NBaxagdEM8El8ww3grUTxUgUCNYKxnczv/XElOaxfDSThPkRGUoeckqMlbzOJe5c9Etlp+rMgVeJm5My5Gj0S1+9QUzTiElDBdG66zqJ8TOiDKeCTYu9VLOE0DEZsq6lkkRM+9n82Ck+t8oAh7GyJQ2eq78nMhJpPYkC2xkRM9LL3kz8z+umJrzxMy6T1DBJF4vCVGAT49nneMAVo0ZMLCFUcXsrpiOiCDU2n6INwV1+eZU0r6purXr7UCvXK3kcBTiFM6iAC9dQh3togAcUODzDK7whiV7QO/pYtK6hfOYE/gB9/gCBw43F</latexit>

�

<latexit sha1_base64="Xzx2lb/podJ1UQhBbO0zDCCZBJg=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoOQU9iVgHoLePEYwTwgWULvZDYZM49lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSjgz1ve/vcLG5tb2TnG3tLd/cHhUPj5pG5VqQltEcaW7ERjKmaQtyyyn3URTEBGnnWhyO/c7T1QbpuSDnSY0FDCSLGYErJPa/REIAYNyxa/5C+B1EuSkgnI0B+Wv/lCRVFBpCQdjeoGf2DADbRnhdFbqp4YmQCYwoj1HJQhqwmxx7QxfOGWIY6VdSYsX6u+JDIQxUxG5TgF2bFa9ufif10ttfB1mTCappZIsF8Upx1bh+et4yDQllk8dAaKZuxWTMWgg1gVUciEEqy+vk/ZlLajXbu7rlUY1j6OIztA5qqIAXaEGukNN1EIEPaJn9IrePOW9eO/ex7K14OUzp+gPvM8fgvmPBw==</latexit>

f

<latexit sha1_base64="kfeWzpXXMQPCfOzPuL1ekbHC+Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOlZjgoV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnzrmq3zatKvZrHUYQzOIcqeHANdbiHBrSAAcIzvMKb8+i8OO/Ox7K14OQzp/AHzucPxv+M3A==</latexit>

f

<latexit sha1_base64="kfeWzpXXMQPCfOzPuL1ekbHC+Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOlZjgoV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnzrmq3zatKvZrHUYQzOIcqeHANdbiHBrSAAcIzvMKb8+i8OO/Ox7K14OQzp/AHzucPxv+M3A==</latexit>

F

<latexit sha1_base64="1ls4gIrgmADDq1uJ/F13JuM89As=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9iVgHoLCOIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38799hMqzWP5YCYJ+hEdSh5yRo2VGnf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCa3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpHVZ8aqVm0a1VCtnceThDM6hDB5cQQ3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A5Z/jLw=</latexit>

fi

<latexit sha1_base64="3cULxToVSZgOt7LG+RA4ks3pWwg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHsK+6JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wvb6vVeo3eRxFOIFTOAcPLqEOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AFJBI3S</latexit>

h, h0

<latexit sha1_base64="XnTt7vIQWIsDU94VwtOz9GFuNlE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSL2ICWRgnorePFYwbSFNpTNdtMs3d2E3Y1QQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6acaeO6387a+sbm1nZpp7y7t39wWDk6buskU4T6JOGJ6oZYU84k9Q0znHZTRbEIOe2E47uZ33miSrNEPppJSgOBR5JFjGBjJT++RPHFoFJ16+4caJV4BalCgdag8tUfJiQTVBrCsdY9z01NkGNlGOF0Wu5nmqaYjPGI9iyVWFAd5PNjp+jcKkMUJcqWNGiu/p7IsdB6IkLbKbCJ9bI3E//zepmJboKcyTQzVJLFoijjyCRo9jkaMkWJ4RNLMFHM3opIjBUmxuZTtiF4yy+vkvZV3WvUbx8a1WatiKMEp3AGNfDgGppwDy3wgQCDZ3iFN0c6L86787FoXXOKmRP4A+fzB6x5jeE=</latexit>

�

<latexit sha1_base64="Xzx2lb/podJ1UQhBbO0zDCCZBJg=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoOQU9iVgHoLePEYwTwgWULvZDYZM49lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSjgz1ve/vcLG5tb2TnG3tLd/cHhUPj5pG5VqQltEcaW7ERjKmaQtyyyn3URTEBGnnWhyO/c7T1QbpuSDnSY0FDCSLGYErJPa/REIAYNyxa/5C+B1EuSkgnI0B+Wv/lCRVFBpCQdjeoGf2DADbRnhdFbqp4YmQCYwoj1HJQhqwmxx7QxfOGWIY6VdSYsX6u+JDIQxUxG5TgF2bFa9ufif10ttfB1mTCappZIsF8Upx1bh+et4yDQllk8dAaKZuxWTMWgg1gVUciEEqy+vk/ZlLajXbu7rlUY1j6OIztA5qqIAXaEGukNN1EIEPaJn9IrePOW9eO/ex7K14OUzp+gPvM8fgvmPBw==</latexit>

Z, Z 0

<latexit sha1_base64="FwEZPWoImB0SOBHe+aDbtXkiRlc=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBF7kLIrBfVW8OKxgtuWtkvJptk2NJtdkqxQlv4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0gE18ZxvtHa+sbm1nZhp7i7t39wWDo6buo4VZR5NBaxagdEM8El8ww3grUTxUgUCNYKxnczv/XElOaxfDSThPkRGUoeckqMlbzOJe5c9Etlp+rMgVeJm5My5Gj0S1+9QUzTiElDBdG66zqJ8TOiDKeCTYu9VLOE0DEZsq6lkkRM+9n82Ck+t8oAh7GyJQ2eq78nMhJpPYkC2xkRM9LL3kz8z+umJrzxMy6T1DBJF4vCVGAT49nneMAVo0ZMLCFUcXsrpiOiCDU2n6INwV1+eZU0r6purXr7UCvXK3kcBTiFM6iAC9dQh3togAcUODzDK7whiV7QO/pYtK6hfOYE/gB9/gCBw43F</latexit>

�

<latexit sha1_base64="Xzx2lb/podJ1UQhBbO0zDCCZBJg=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoOQU9iVgHoLePEYwTwgWULvZDYZM49lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSjgz1ve/vcLG5tb2TnG3tLd/cHhUPj5pG5VqQltEcaW7ERjKmaQtyyyn3URTEBGnnWhyO/c7T1QbpuSDnSY0FDCSLGYErJPa/REIAYNyxa/5C+B1EuSkgnI0B+Wv/lCRVFBpCQdjeoGf2DADbRnhdFbqp4YmQCYwoj1HJQhqwmxx7QxfOGWIY6VdSYsX6u+JDIQxUxG5TgF2bFa9ufif10ttfB1mTCappZIsF8Upx1bh+et4yDQllk8dAaKZuxWTMWgg1gVUciEEqy+vk/ZlLajXbu7rlUY1j6OIztA5qqIAXaEGukNN1EIEPaJn9IrePOW9eO/ex7K14OUzp+gPvM8fgvmPBw==</latexit>

fi

<latexit sha1_base64="3TMLZtzKOnbAqtfaVb/Y5ZSjt9w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIQb0VvHisaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mmmCfkRHkoecUWOlh3DAB+WKW3MXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbQva169dnNfrzSqeRxFOINzqIIHV9CAO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gBBMo24</latexit>

Fj , fj

<latexit sha1_base64="piB9CjQAQDMB8TAPhcC9gVxCkE0=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahBymJFNRbQRCPFewHtCFstpt2280m7m6EEvonvHhQxKt/x5v/xm2ag7Y+GHi8N8PMPD/mTGnb/rYKa+sbm1vF7dLO7t7+QfnwqK2iRBLaIhGPZNfHinImaEszzWk3lhSHPqcdf3Iz9ztPVCoWiQc9jakb4qFgASNYG6l7643PUeCNvXLFrtkZ0CpxclKBHE2v/NUfRCQJqdCEY6V6jh1rN8VSM8LprNRPFI0xmeAh7RkqcEiVm2b3ztCZUQYoiKQpoVGm/p5IcajUNPRNZ4j1SC17c/E/r5fo4MpNmYgTTQVZLAoSjnSE5s+jAZOUaD41BBPJzK2IjLDERJuISiYEZ/nlVdK+qDn12vV9vdKo5nEU4QROoQoOXEID7qAJLSDA4Rle4c16tF6sd+tj0Vqw8plj+APr8wcQsY9G</latexit>

fi

<latexit sha1_base64="3TMLZtzKOnbAqtfaVb/Y5ZSjt9w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIQb0VvHisaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mmmCfkRHkoecUWOlh3DAB+WKW3MXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbQva169dnNfrzSqeRxFOINzqIIHV9CAO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gBBMo24</latexit>
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Figure 2.3: One-loop diagrams generating a non-zero EDM for the d quark in the
presence of soft breaking of generalized parity through non-hermitian vector-like mass
matrices for the SU(2)-singlets. The leading contribution arises from the diagram
where h′, and the heavy mirror quarks, Dj , propagate inside the loop. Analogous
diagrams are present in both the up-quark and lepton sectors.

present a detailed calculation in appendix A.2.1. For any of the light SM fermions, we

find

df
e
≃ nfQfmf

32π2M2
×O

( |∆M|
M

)
. (2.43)

where nf is the number of mirror fermions appearing at the see-saw scale in each fermion

sector (i.e. nd = ne = 3, and nu = 2), and |∆M| refers to the typical size of the entries

in the ∆M matrix.

Taking the soft-breaking through ∆M to be O(1), we find, parametrically,

du, dd ∼ 10−28

(
40 TeV

M

)2

e · cm. (2.44)

In turn, this will translate into an EDM for the neutron of approximately the same

size. For illustration, we have normalized the above expression to a value of M that is

roughly a factor of two larger than the current lower bound on v′. The corresponding

result lies two orders of magnitude below the current experimental bound on dn, and

could fall within reach of future experiments depending on the value of the see-saw scale

(see e.g. [85] for a survey of prospective molecule-based searches promising orders-of-

magnitude improvement in sensitivity to hadronic CPV).

The see-saw mechanism must also be implemented in the charged lepton sector. If it

were not, the mirror partner of the SM electron would appear at a scale me′ ≃ me×v′/v,

138



CHAPTER 2. P NOT PQ

which would be as low as ∼ 40 MeV for the least fine-tuned version of the model where

v′ ≃ 18 TeV. Since mirror fermions carry the same electromagnetic charge as their SM

counterparts, this possibility is obviously ruled out. As a result, a non-zero electron EDM

is also a generic prediction of this class of theories. Parametrically

de ∼ 10−29

(
90 TeV

M

)2

e · cm, (2.45)

where we have chosen the see-saw scale in the lepton sector so as to saturate the current

upper bound on the electron EDM, which is |de| < 1.1 · 10−29 e · cm [86].

Although an EDM is generated at one loop for the various elementary fermions, θ̄

remains zero at this order. At tree-level, it is easy to see that θ̄ = 0, even in the presence

of non-hermitian vector-like mass matrices. Working in the flavor basis, the full 6 × 6

mass matrices in both the up- and down-quark sectors are only modified with respect to

Eq.(2.12) by replacingMf withM′
f in the bottom-right block. We then have

detMf = det

 ⊬3
v′√
2
y′∗f

v√
2
yTf M′

f

 ∝ det
(
y′∗f y

T
f

)
for f = u, d, (2.46)

which is real regardless ofM′
f , since y

′
f = yf . This is clearly an accidental consequence of

the zero appearing in the upper-left corner of the quark mass matrix — the gauge struc-

ture of the theory does not allow for relevant operators with the appropriate quantum

numbers to fill that block. The vanishing of θ̄ at one-loop is less immediately obvious.

The relevant calculation was performed in [22], and it is also apparent as a byproduct

of our EDM calculation in appendix A.2.1. As already emphasized in [22], a non-zero

correction to θ̄ could appear at the two-loop order, and would lead to an additional

contribution to the neutron EDM that could be comparable in size to the one discussed

here.
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2.4.2 Spontaneously broken parity and CP

Perhaps more compellingly — and necessarily, if parity is a gauge symmetry — the

breaking of parity can be accomplished through the vacuum expectation value of an

additional field. The most minimal realization actually entails the breaking of both

parity and CP through the vev of a pseudo-scalar field ϕ. The soft term in Eq.(2.13) is

generated by pseudo-scalar couplings to the Higgs sector, of the form

V ⊃ µϕϕ(|H|2 − |H ′|2) + λϕϕ
2(|H|2 + |H ′|2) . (2.47)

The first term above splits the two vevs, and to obtain v′ ≫ v entails

µϕvϕ ∼ κv′2 . (2.48)

A natural possibility is to take vϕ ∼ µϕ ∼ v′, with κ = O(1). However, κ ≪ 1 is

also possible, especially since this coupling breaks the otherwise accidental SU(4) global

symmetry of the scalar potential in Eq.(2.13). Indeed, the quartic coupling of the SM-like

Higgs is λSM ∼ 2κ, suggesting κ ≲ 0.1 and thus a pseudo-scalar vev vϕ that is numerically

somewhat smaller than v′.

Crucially, there is an additional operator consistent with all symmetries that involves

ϕ and the SU(2)-singlet fermions, of the form [74]:

L ⊃ i(ȳd)ijϕDiD
′
j + h.c., (2.49)

and similarly for up-type quarks and leptons. The ȳf matrices must be hermitian in

order to respect generalized parity. When ϕ gets a vev, this term breaks both parity

and CP . In the notation of section 2.4.1, a non-hermitian contribution to the vector-like

masses in the fermion sector is generated, of the form ∆Mf = ȳfvϕ. More importantly,

new interactions involving the pseudo-scalar lead to a non-zero contribution to θ̄ already

at one loop, which sets stringent constraints on the size of these couplings. The relevant
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diagrams are those on the left of figure 2.3, minus the external photon line, and allowing

for ϕ to propagate inside the loop. In appendix A.2.2, we present a detailed calculation,

performed in the mass eigenbasis, of the one-loop correction to the quark mass matrix,

and the corresponding correction to θ̄, in the context of left-right models with a see-saw

fermion structure. In the remainder of this section, we will reproduce the parametric

contribution to θ̄ from the down-quark sector using a spurion analysis that the reader

might find more instructive.

If we parametrize the one-loop correction to the 6×6 mass matrix in the down-quark

sector in terms of 3× 3 blocks, as follows

∆Md ≡

∆d′d ∆d′D′

∆Dd ∆DD′

 , (2.50)

then the corresponding contribution to θ̄ from the down-quark sector can be written as

θd ≡ arg det (Md +∆Md)

≃ ImTr
(
M−1

d ∆Md

)
= ImTr

{
−
(
vv′

2
y′∗dM−1

d yTd

)−1

∆d′d +

(
v√
2
yTd

)−1

∆Dd +

(
v′√
2
y′∗d

)−1

∆d′D′

}
.

(2.51)

Notice that the ∆DD′ block does not contribute to θd at this order, which again is a

consequence of the zero in the upper-left corner of Md.

We will now estimate the size of the ∆ matrices appearing in Eq.(2.51) through a

spurion analysis, as follows. The lagrangian will remain invariant under SU(3) flavor

transformations on the various quark fields, of the form

d→ RQd, d′ → RQ′d′, and D → RDD, D′ → RD′D′, (2.52)

provided the various Yukawa couplings, as well as the vector-like mass matrix, similarly

transform in an appropriate manner. The correct transformation rules for these objects
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are given by

yTd → R∗
Dy

T
dR†

Q , y′∗d → R∗
Q′y′∗d R†

D′ ,

Md → R∗
DMdR†

D′ , ȳd → R∗
DȳdR†

D′ .

(2.53)

On the other hand, the ∆ matrices of Eq.(2.51) must similarly transform as follows:

∆d′d → R∗
Q′∆d′dR†

Q , ∆d′D′ → R∗
Q′∆d′D′R†

D′ , and ∆Dd → R∗
D∆DdR†

Q . (2.54)

It is now straightforward to identify the leading objects that transform as in Eq.(2.54)

and contain a single insertion of ȳd. These are of the form

∆d′d ∼
vv′vϕ
16π2

(
y′∗dM−1

d ȳdM−1
d yTd

)
, (2.55)

whereas

∆d′D′ ∼ v′vϕ
16π2

(
y′∗dM−1

d ȳd
)
, and ∆Dd ∼

vvϕ
16π2

(
ȳdM−1

d yTd
)
. (2.56)

We have also included numerical factors to account for the loop suppression, as well as to

take into account that the contribution to θ̄ must not diverge in the limits where either

v or v′ vanish. Plugging this back into Eq.(2.51), we find that all three terms give a

contribution of the same size. Parametrically:

θd ∼
vϕ

16π2
Tr
(
M−1

d ȳd
)
∼ |ȳd|vϕ

16π2M
. (2.57)

This result is consistent with the more detailed calculation of the contribution to θ̄ from

the quark sector presented in appendix A.2.2.

Requiring that θ̄ ≲ 10−10 sets an upper bound on the typical size of the entries of the

ȳ matrices in the quark sector, of the form

ȳ ≲ 10−8M

vϕ
≲ 10−6, (2.58)

where in the last step we have assumed that vϕ ∼ v′, and have taken into account the

upper bound on the see-saw scale M as given in Eq.(2.18).
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This result bring us to the following conclusion: if the spontaneous breaking of parity

also implies breaking CP , then any interaction between the quark and symmetry breaking

sectors must be extremely weak. Fortunately, if ȳ = 0 at tree-level, a non-zero value of

ȳ will not be generated radiatively. Indeed, ȳ and the vector-like mass matricesM are

the only two parameters that violate the Z2 symmetry acting on the matter fields of the

mirror sector. The breaking throughM, however, is soft, and therefore will not translate

into a non-zero ȳ at the loop order. In this sense, a vanishing ȳ is technically natural.

2.4.3 Spontaneously broken parity alone

A less minimal possibility is to spontaneously break parity while preserving CP

through the addition of two scalar fields, σ and σ′, whose vevs differ. This can be

achieved if this symmetry breaking sector has a scalar potential of the form

Vσ = −m
2
σ

2
(σ2 + σ′2) +

λ1
4
(σ2 + σ′2)2 +

λ2
4
σ2σ′2 . (2.59)

where for simplicity we have forbidden cubic terms by imposing an additional Z2 sym-

metry. If λ2 > 0, the vacua lie at ⟨σ⟩ = 0, ⟨σ′⟩ = ±
√
m2
σ/λ1 and viceversa. This option

is not viable for the Higgs potential itself, which requires both v and v′ to be nonzero,

but is perfectly adequate for an additional scalar sector.

Parity breaking can then be translated into the Higgs sector by writing appropriate

couplings of the form

V ⊃ λσ
(
σ2|H|2 + σ′2|H ′|2

)
+ λ′σ(σ

′2|H|2 + σ2|H ′|2) . (2.60)

These terms are compatible with the generalized parity introduced in section 2.2, acting

additionally as σ ↔ σ′. Provided λσ ̸= λ′σ, this will generate the soft term in Eq.(2.13)

proportional to λσ − λ′σ. For example, in the vacuum with ⟨σ′⟩ ≠ 0, v′ ≫ v corresponds

to

(λ′σ − λσ)⟨σ′⟩2 ∼ κv′2. (2.61)
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As this scenario breaks P without breaking CP (and the additional Z2 symmetry acting

on the σs forbids marginal couplings between σ, σ′ and fermion bilinears), there are

no significant additional contributions to the neutron EDM. There is, of course, the

possibility of collider signatures coming from the Higgs portal coupling in Eq.(2.60),

most notably mixing between the Higgs and the scalar that acquires a vev, as well as

invisible decays of the Higgs if kinematically allowed. The two scalars acquire masses

of order
√
2λ1⟨σ′⟩ ∼

√
λ1v

′ and
√
λ2/2⟨σ′⟩ ∼

√
λ2v

′, respectively, and it is certainly

possible for one to be lighter than half the Higgs mass depending on the values of λ1,2.

2.5 Strong CP and quantum gravity

As we discussed in the Introduction, the strong CP problem arises out of the difficulty

of reconciling the smallness of θ̄ with the O(1) violation of both parity and CP by the

electroweak sector. In turn, all attempts to address this puzzle are themselves based

on the introduction of an additional symmetry beyond those of the SM. However, there

is strong evidence that within a theory of quantum gravity, global symmetries cannot

be exact — they must be either broken, or gauged. The origin of this statement goes

back a long way [38–46], and to some extent it has recently been established [47,48]. Of

course, the single most pressing issue for phenomenology is to establish a lower bound

on the amount of global symmetry violation that must be present in the IR. Attempts at

finding such a “universal” lower bound have been made [49, 50], but a fully satisfactory

answer remains elusive. Absent a full understanding of how quantum gravity affects

global symmetries at low energies, we can at least attempt to assess the robustness of an

EFT against global symmetry violation by considering the impact of HDOs suppressed

by the appropriate power of MPl. This both constrains the viable parameter space of

parity solutions to strong CP and illustrates the sense in which P , rather than U(1)PQ,
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provides a solution to the strong CP problem that is robust against the expected intrusion

of quantum gravity. Beyond imposing constraints, these higher-dimensional operators

also lead to new experimental signatures associated with the spontaneous breaking of

parity, which we explore in section 2.5.2.

2.5.1 Constraints from Planck-suppressed operators

The observation that the breaking of global symmetries by quantum gravity can have

a profound impact on the validity of the QCD axion solution to strong CP was first made

in [58–61]. Planck-suppressed HDOs that violate the U(1)PQ symmetry carried by the

field Φ, the phase of which is the axion, are of the form

L ⊃ η

Md−4
Pl

|Φ|d−nΦn + h.c. (2.62)

Here, d is the operator dimension, n its units of U(1)PQ charge (so n ≥ 1 in order to

break the symmetry), and η a coupling that will in general feature arbitrary real and

imaginary parts. HDOs of this form contribute to the axion potential, and, in general,

will displace the axion vev away from the value leading to a small θ̄. Following [59],

requiring that the shift in the axion vev is small enough so as not to spoil the solution

to strong CP translates into the following upper bound

|η|
(

fa√
2MPl

)d
≲ 10−81θ̄ ≲ 10−91, (2.63)

where fa is the scale of U(1)PQ spontaneous symmetry breaking (alternatively, the axion

decay constant), which is experimentally constrained to be between 108 and 1017 GeV [84].

Focusing on operators of dimension d = 5, this translates into an upper bound on the

size of η, of the form

|η| ≲ 10−55

(
1012GeV

fa

)5(
θ̄

10−10

)
. (2.64)

145



CHAPTER 2. P NOT PQ

In other words, for all experimentally allowed values of the axion decay constant, the

U(1)PQ symmetry must remain an approximate global symmetry to an exceptional de-

gree. This is clearly one of the most significant drawbacks of the axion solution to strong

CP.

In the remainder of this section we study the effect of Planck-suppressed HDOs on

parity solutions to the strong CP problem. We consider separately the cases where parity

is global or gauged. The nature of the HDOs under consideration will be different, but

in both cases we will see that even O(1) coefficients are compatible with solving strong

CP.

Parity as a global symmetry

If we regard parity as a global symmetry, then we must consider the effect of HDOs

that explicitly violate P . The relevant dimension-5 HDOs were already identified in [87],

and they are of the form

L ⊃ 1

MPl

[
(αu)ij(H

′Q′
i)(HQj) + (αd)ij(H

′†Q′
i)(H

†Qj)
]
+ h.c. (2.65)

Notice that if αf = α†
f then the above terms would be parity-symmetric. In general,

however, the αf ’s will not be hermitian, and it is under this assumption that we proceed.

Setting the Higgs to their vevs, Eq.(2.65) leads to a correction to the quark mass

matrix that, for arbitrary αf ’s, does not respect generalized parity. The leading contri-

bution to θ̄ will come from the contributions to the up- and down-quark masses, which

are of the form

δmu ≃
vv′(αu)11
2MPl

, and δmd ≃
vv′(αd)11
2MPl

. (2.66)

In turn,

θq ≃
Im(δmu)

mu

+
Im(δmd)

md

∼ 105
|α|v′
2MPl

, (2.67)
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where in the last step we have used mu/v ∼ md/v ∼ 10−5. Requiring that the above

contribution is smaller than the current bound on θ̄ translates into an upper bound on

the parity breaking scale:

v′ ≲
20 TeV

|α|

(
θ̄

10−10

)
. (2.68)

Notice this upper bound is (just) compatible with the lower bound v′ ≳ 18 TeV from

direct searches of W ′ gauge bosons, as discussed in section 2.3.1. As a result, if global

generalized parity is responsible for solving strong CP, an O(1) violation of the symmetry

due to gravitational effects would imply a contribution to θ̄ accessible in near-future

experiments.

Parity as a gauge symmetry

If parity is instead a gauge symmetry of the underlying theory, HDOs that explic-

itly violate P are therefore not allowed. Planck-suppressed operators such as those in

Eq.(2.65) might still be generated, but only with αf = α†
f , and therefore will not con-

tribute to θ̄. Instead, the operators of interest must be proportional to the source of

spontaneous symmetry breaking. If the latter takes place via the vev of a pseudo-scalar,

as discussed in section 2.4.2, then there are two dimension-5 HDOs that satisfy this

requirement, namely:

L ⊃ ηs
ϕαs

4πMPl

Tr
(
GaG̃a

)
, (2.69)

and

L ⊃ iϕ

MPl

{
(ζu)ijQiHUj + (ζ ′u)ijQ

′
iH

′U ′
j + (ζd)ijH

†QiDj + (ζ ′d)ijH
′†Q′

iU
′
j

}
+ h.c., (2.70)

with ηs ∈ R, and ζ ′f = ζ∗f so as to satisfy generalized parity.

The operator of Eq.(2.69) will generate a contribution to θs after spontaneous sym-

metry breaking, of the form

θs ≃
ηsvϕ
MPl

. (2.71)
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Assuming that vϕ ∼ v′, demanding that this contribution is smaller than the current

bound on θ̄ leads to an upper bound on the parity breaking scale

vϕ ∼ v′ ≲
109 GeV

ηs

(
θ̄

10−10

)
, (2.72)

which is clearly well above current bounds on v′.

At the same time, once ϕ gets its vev, the operator of Eq.(2.70) leads to an extra

contribution to the Yukawa couplings of the up- and down-type quarks in the SM and

mirror sectors that are not parity-symmetric. In turn, this will lead to an additional

contribution to the mass eigenvalues of the light quarks which will in general contain an

imaginary component. For example, in the down quark sector

Im(δmdi) ≃ vv′ Im

{
ivϕ
MPl

∑
j

(yd)
∗
ij(ζd)ij

mDj

}
∼ vv′

M

|ζd|vϕ
MPl

|(yd)i⋆|, (2.73)

where |(yd)i⋆| refers to the typical size of the entries in the i-th row of the yd matrix. The

leading contribution to θq will come from the up and down quarks. In total:

θq ≃
Im(δmu)

mu

+
Im(δmd)

md

≃ vϕ
MPl

vv′

M

{ |ζu|(yu)1⋆
mu

+
|ζd|(yd)1⋆
md

}
. (2.74)

Taking into account the upper bound on the entries of the Yukawa couplings necessary to

reproduce the light quark masses (see Eq.(A.12)), as well as the requirement that v′ ≲M

in order to implement the see-saw mechanism, the previous equation implies

θq ≲ 102
|ζ|vϕ
MPl

, (2.75)

where we have set mu/v ∼ md/v ∼ 10−5, and have assumed that |ζu| ∼ |ζd|. In turn,

taking vϕ ∼ v′, this sets an upper bound on the scale of spontaneous symmetry breaking:

vϕ ∼ v′ ≲
107 GeV

|ζ|

(
θ̄

10−10

)
. (2.76)

As before, this is fully compatible with current experimental bounds on the parity-

breaking scale, even for O(1) coefficients of the corresponding HDOs.
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2.5.2 Gravitational waves from the spontaneous breaking of

parity

Beyond providing additional constraints on the parameter space of parity solutions

to strong CP, the expected effects of gravity also introduce new experimental signatures.

Here we highlight one possibility, namely the impact of HDOs when parity is a spon-

taneously broken global symmetry. The spontaneous breaking of discrete symmetries

can lead to the formation of a network of domain walls in the early universe, provided

the reheating temperature after inflation is above the scale of spontaneous symmetry

breaking [88] 9. If the spontaneously broken symmetry is global, but otherwise exact, a

domain wall configuration interpolates between two distinct vacua that are degenerate,

making these defects topologically stable objects. The formation of such networks can

be fatal on two grounds. On the one hand, the energy density in domain walls redshifts

slower than that of matter or radiation, and would eventually dominate the universe’s

energy budget. If this happened before the current epoch, the rapid expansion of the

subsequent domain-wall-dominated era would be at odds with observation. On the other

hand, even if only a subdominant component of the total energy density was in the form

of domain walls today, their effect on large-scale density fluctuations rules out defects

with characteristic scales above ∼ 1 MeV [91]. These considerations are often referred to

as the “domain wall problem” of theories with spontaneously broken discrete symmetries.

These problems are largely solved when we take into consideration that, within a the-

ory of quantum gravity, we expect all symmetries to be either broken or gauged [38–48]

— an expectation that includes spacetime symmetries [47, 48]. In this context, the do-

main wall network is unstable, rendering its earlier formation largely unproblematic (see

9This statement relies on the restoration of the spontaneously broken symmetry at high temperatures.
Scenarios where symmetry restoration does not take place have been explored in [89,90]. In these cases,
topological defects would not form via the mechanism of [88].
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e.g. [92], and also [89, 90]). Moreover, the significant amount of gravitational radiation

emitted in the process results in a stochastic gravitational wave background that may

be within reach of current and future observatories. We discuss this possibility in the

remainder of this section.

We will focus first on the scenario where parity is a global symmetry that is only

explicitly broken by gravitational effects. At low energies, the symmetry-breaking dy-

namics will enter the effective potential for ϕ through HDOs that violate parity. One

such operator is of the form

V ⊃ ϵ
ϕ5

MPl

. (2.77)

This breaks the degeneracy between the two previously degenerate vacua, corresponding

to ⟨ϕ⟩ = ±vϕ. Parametrically, the energy difference now reads

δV ∼
ϵv5ϕ
MPl

. (2.78)

If the reheating temperature is above the scale of spontaneous symmetry breaking,

then we expect that a network of domain walls will be formed once the temperature of

the universe drops bellow T ∼ vϕ [88]. Numerical [93–97] and analytical [98, 99] studies

suggest that, shortly after formation, the network evolves according to a scaling solution,

with ρDW(t) ≃ σ/t, and typical domain wall size comparable to the Hubble scale H(t)−1.

σ corresponds to the tension of the domain walls, which in our model is of the form

σ ∼ √κϕv3ϕ, where κϕ refers to the quartic coupling in the ϕ potential. Two competing

effects determine the network’s subsequent evolution. On the one hand, the pressure

difference between the two vacua exerts a force per unit area of order ∼ δV . On the

other, the tension per unit area acting on a wall with curvature radius R is ∼ σ/R. In

the scaling regime, R(t) ∼ H(t)−1 ∼ t (assuming the universe is radiation dominated),

and therefore the effect of tension decreases with time. Eventually, the pressure difference
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1014

<latexit sha1_base64="5cbBNbY4vanfezorWYrOBhVeGZ8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIQb0VvHisYD+gjWWznbRLN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mGmCfkRHkoecUWOljuc+Zl59NihX3Jq7AFknXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkr9VGNC2YSOsGeppBFqP1ucOyMXVhmSMFa2pCEL9fdERiOtp1FgOyNqxnrVm4v/eb3UhNd+xmWSGpRsuShMBTExmf9OhlwhM2JqCWWK21sJG1NFmbEJlWwI3urL66R9WfPqtZv7eqVRzeMowhmcQxU8uIIG3EETWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w9CHo7O</latexit>

1016

<latexit sha1_base64="eevQfIXHmtKnf2UTHpsF4mPGA7o=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQU9gV8XELePEYwTwgWcPspDcZMju7zMwKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3BYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKbc99zLzLab9ccWvuHGSVeDmpQI5Gv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+7pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE177GZdJalCyxaIwFcTEZPY7GXCFzIiJJZQpbm8lbEQVZcYmVLIheMsvr5LWec27qN3cX1Tq1TyOIpzAKVTBgyuowx00oAkMxvAMr/DmJM6L8+58LFoLTj5zDH/gfP4ARSiO0A==</latexit>
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Decay before BBN

Decay before domination

10�15

<latexit sha1_base64="WtvnrYuHA0OX/dp2UmUK7qsc8CU=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBByMexKRL0FvHiMYB6QrGF20kmGzM6uM7NCWPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSy4Nq777aysrq1vbOa28ts7u3v7hYPDho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGN1O/+YRK80jem3GMfkgHkvc5o8ZKLc99SM+8i0m3UHTL7gxkmXgZKUKGWrfw1elFLAlRGiao1m3PjY2fUmU4EzjJdxKNMWUjOsC2pZKGqP10du+EnFqlR/qRsiUNmam/J1Iaaj0OA9sZUjPUi95U/M9rJ6Z/5adcxolByeaL+okgJiLT50mPK2RGjC2hTHF7K2FDqigzNqK8DcFbfHmZNM7LXqV8fVcpVktZHDk4hhMogQeXUIVbqEEdGAh4hld4cx6dF+fd+Zi3rjjZzBH8gfP5A66IjwY=</latexit>

1

<latexit sha1_base64="NBij7Ye+eWEAGzSf0xhVynUQ6OI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOlpjcoV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnzrmq3zatKvZrHUYQzOIcqeHANdbiHBrSAAcIzvMKb8+i8OO/Ox7K14OQzp/AHzucPdquMpw==</latexit>

10�10

<latexit sha1_base64="8btYIXoZwH4YMbTVtMw2PQiwSzM=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoOQi2FXAuot4MVjBPOAZA2zk0kyZHZ2nekVwpKf8OJBEa/+jjf/xkmyB00saCiquunuCmIpDLrut5NbW9/Y3MpvF3Z29/YPiodHTRMlmvEGi2Sk2wE1XArFGyhQ8nasOQ0DyVvB+Gbmt564NiJS9ziJuR/SoRIDwShaqe25D+m55057xZJbcecgq8TLSAky1HvFr24/YknIFTJJjel4box+SjUKJvm00E0Mjykb0yHvWKpoyI2fzu+dkjOr9Mkg0rYUkrn6eyKloTGTMLCdIcWRWfZm4n9eJ8HBlZ8KFSfIFVssGiSSYERmz5O+0JyhnFhCmRb2VsJGVFOGNqKCDcFbfnmVNC8qXrVyfVct1cpZHHk4gVMogweXUINbqEMDGEh4hld4cx6dF+fd+Vi05pxs5hj+wPn8AabvjwE=</latexit>

10�5

<latexit sha1_base64="LdzvhgUQX+2ufWuhdFuHZ/eXbBg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQi2FXIuot4MVjBPOAZA2zk04yZHZ2mZkVwpKP8OJBEa9+jzf/xkmyB00saCiquunuCmLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpKFMMGi0Sk2gHVKLjEhuFGYDtWSMNAYCsY38781hMqzSP5YCYx+iEdSj7gjBortTz3MT2/nPaKJbfizkFWiZeREmSo94pf3X7EkhClYYJq3fHc2PgpVYYzgdNCN9EYUzamQ+xYKmmI2k/n507JmVX6ZBApW9KQufp7IqWh1pMwsJ0hNSO97M3E/7xOYgbXfsplnBiUbLFokAhiIjL7nfS5QmbExBLKFLe3EjaiijJjEyrYELzll1dJ86LiVSs399VSrZzFkYcTOIUyeHAFNbiDOjSAwRie4RXenNh5cd6dj0VrzslmjuEPnM8fPYuOyw==</latexit>

v
�

=
18

T
eV

<latexit sha1_base64="0jJPVAZGpa6orn/g2fgRPa4YH+k=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWARuiqJFKwLoeDGZYW+oAlhMp20Q2cmYWZSKCEbf8WNC0Xc+hnu/BunbRbaeuDC4Zx7ufeeMGFUacf5tjY2t7Z3dkt75f2Dw6Nj++S0q+JUYtLBMYtlP0SKMCpIR1PNSD+RBPGQkV44uZ/7vSmRisairWcJ8TkaCRpRjLSRAvt8GnjJmMI76DagBzNPctgm3TywK07NWQCuE7cgFVCgFdhf3jDGKSdCY4aUGrhOov0MSU0xI3nZSxVJEJ6gERkYKhAnys8WD+TwyihDGMXSlNBwof6eyBBXasZD08mRHqtVby7+5w1SHTX8jIok1UTg5aIoZVDHcJ4GHFJJsGYzQxCW1NwK8RhJhLXJrGxCcFdfXifd65pbr90+1ivNahFHCVyAS1AFLrgBTfAAWqADMMjBM3gFb9aT9WK9Wx/L1g2rmDkDf2B9/gBBuJTZ</latexit>

v
�

=
3.5·10

4
T
eV

<latexit sha1_base64="fAYtpZmwXwokC+Cqt2M3geyFkoU=">AAACDHicbVDLSgMxFM34rPVVdekmWISuhhmtqAuh4MZlhb6gM5ZMJtOGZpIhyRTK0A9w46+4caGIWz/AnX9j2s5CWw8EDuecy809QcKo0o7zba2srq1vbBa2its7u3v7pYPDlhKpxKSJBROyEyBFGOWkqalmpJNIguKAkXYwvJ367RGRigre0OOE+DHqcxpRjLSReqXyqOclAwpv4Ll9AT0cCg1d56EKPZh5MoYN0pqYlGM7M8Bl4uakDHLUe6UvLxQ4jQnXmCGluq6TaD9DUlPMyKTopYokCA9Rn3QN5Sgmys9mx0zgqVFCGAlpHtdwpv6eyFCs1DgOTDJGeqAWvan4n9dNdXTlZ5QnqSYczxdFKYNawGkzMKSSYM3GhiAsqfkrxAMkEdamv6IpwV08eZm0zmy3al/fV8u1Sl5HARyDE1ABLrgENXAH6qAJMHgEz+AVvFlP1ov1bn3MoytWPnME/sD6/AGLQZi3</latexit>

100 106 1010 1014
10-15

10-11

10-7

0.001

v� / GeV

<latexit sha1_base64="U+h8vdxw7odrAOBceXQSbjj2YNQ=">AAAB/3icbVBNS8NAEN34WetXVPDiZbEIPdVECuqt4EGPFewHNCFsttN26WYTdjeFEnvwr3jxoIhX/4Y3/43bNgdtfTDweG+GmXlhwpnSjvNtrayurW9sFraK2zu7e/v2wWFTxamk0KAxj2U7JAo4E9DQTHNoJxJIFHJohcObqd8agVQsFg96nIAfkb5gPUaJNlJgH48CLxkw7OFzU5knI3wLzUlgl5yKMwNeJm5OSihHPbC/vG5M0wiEppwo1XGdRPsZkZpRDpOilypICB2SPnQMFSQC5Wez+yf4zChd3IulKaHxTP09kZFIqXEUms6I6IFa9Kbif14n1b0rP2MiSTUIOl/USznWMZ6GgbtMAtV8bAihkplbMR0QSag2kRVNCO7iy8ukeVFxq5Xr+2qpVs7jKKATdIrKyEWXqIbuUB01EEWP6Bm9ojfryXqx3q2PeeuKlc8coT+wPn8A24+Upw==</latexit>

✏

<latexit sha1_base64="RNkZKjCjqPk7e2Cq91oPWAb7iAg=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5JIQb0VvHisYD+gDWWznbRLN5u4uxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mGmCfkRHkoecUWOlbh8TzUUsB+WKW3MXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4t7Z+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm8+fJkCtkRkwtoUxxeythY6ooMzaikg3BW315nbQva169dnNfrzSqeRxFOINzqIIHV9CAO2hCCxgIeIZXeHMenRfn3flYthacfOYU/sD5/AFI35AS</latexit>

102

<latexit sha1_base64="Uzk3SCmsnQn6BlTVSVXhxK1USgc=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahp7JbCtVbwYvHCvYD2rVk02wbmmSXJCuUpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305ha3tnd6+4Xzo4PDo+KZ+edXWUKEI7JOKR6gdYU84k7RhmOO3HimIRcNoLZreZ33uiSrNIPph5TH2BJ5KFjGCTSZ77WB+VK27NXQJtEi8nFcjRHpW/huOIJIJKQzjWeuC5sfFTrAwjnC5Kw0TTGJMZntCBpRILqv10eesCXVlljMJI2ZIGLdXfEykWWs9FYDsFNlO97mXif94gMeG1nzIZJ4ZKsloUJhyZCGWPozFTlBg+twQTxeytiEyxwsTYeEo2BG/95U3Srde8Ru3mvlFpVfM4inABl1AFD5rQgjtoQwcITOEZXuHNEc6L8+58rFoLTj5zDn/gfP4ACcyNhQ==</latexit>

104

<latexit sha1_base64="f6VRveEhpKMKif0vamjyayef0ds=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahp5JIQb0VvHisYD+gjWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btIctPXBwOO9GWbmBTFn2rjut1Pa2Nza3invVvb2Dw6PqscnXR0litAOiXik+gHWlDNJO4YZTvuxolgEnPaC2W3m956o0iySD2YeU1/giWQhI9hkkuc+NkfVmttwc6B14hWkBgXao+rXcByRRFBpCMdaDzw3Nn6KlWGE00VlmGgaYzLDEzqwVGJBtZ/mty7QhVXGKIyULWlQrv6eSLHQei4C2ymwmepVLxP/8waJCa/9lMk4MVSS5aIw4chEKHscjZmixPC5JZgoZm9FZIoVJsbGU7EheKsvr5PuZcNrNm7um7VWvYijDGdwDnXw4ApacAdt6ACBKTzDK7w5wnlx3p2PZWvJKWZO4Q+czx8M1I2H</latexit>

106

<latexit sha1_base64="Ont0P2ef0eibwxgTrddwwZrYLGM=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahp7Irpeqt4MVjBfsB7VqyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G09vM7z5RpVkkH8wspr7AY8lCRrDJJM99bAzLFbfmLoDWiZeTCuRoDctfg1FEEkGlIRxr3ffc2PgpVoYRTuelQaJpjMkUj2nfUokF1X66uHWOLqwyQmGkbEmDFurviRQLrWcisJ0Cm4le9TLxP6+fmPDaT5mME0MlWS4KE45MhLLH0YgpSgyfWYKJYvZWRCZYYWJsPCUbgrf68jrpXNa8eu3mvl5pVvM4inAG51AFD66gCXfQgjYQmMAzvMKbI5wX5935WLYWnHzmFP7A+fwBD9yNiQ==</latexit>

108

<latexit sha1_base64="Ue3TRamYpvYzMVSWE0CFNv/tQaY=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahp7IrhdZbwYvHCvYD2rVk02wbmmSXJCuUpX/BiwdFvPqHvPlvzLZ70NYHA4/3ZpiZF8ScaeO6305ha3tnd6+4Xzo4PDo+KZ+edXWUKEI7JOKR6gdYU84k7RhmOO3HimIRcNoLZreZ33uiSrNIPph5TH2BJ5KFjGCTSZ772ByVK27NXQJtEi8nFcjRHpW/huOIJIJKQzjWeuC5sfFTrAwjnC5Kw0TTGJMZntCBpRILqv10eesCXVlljMJI2ZIGLdXfEykWWs9FYDsFNlO97mXif94gMWHTT5mME0MlWS0KE45MhLLH0ZgpSgyfW4KJYvZWRKZYYWJsPCUbgrf+8ibpXte8eu3mvl5pVfM4inABl1AFDxrQgjtoQwcITOEZXuHNEc6L8+58rFoLTj5zDn/gfP4AEuSNiw==</latexit>

1010

<latexit sha1_base64="yUHFolB3qSzAZaP/jNJFVnHDgIE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIQb0VvHisYD+gjWWznbRLN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mGmCfkRHkoecUWOljuc+Zp47G5Qrbs1dgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny3OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzH8nQ66QGTG1hDLF7a2EjamizNiESjYEb/XlddK+rHn12s19vdKo5nEU4QzOoQoeXEED7qAJLWAwgWd4hTcncV6cd+dj2Vpw8plT+APn8wc8Co7K</latexit>

1012

<latexit sha1_base64="mmQmbBJByGhXBdF8uou+CbcOSuU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBahp5KUgnorePFYwbZCG8tmu2mXbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYkUBl332ylsbG5t7xR3S3v7B4dH5eOTjolTzXibxTLWDwE1XArF2yhQ8odEcxoFkneDyc3c7z5xbUSs7nGacD+iIyVCwShaqeu5j5lXnw3KFbfmLkDWiZeTCuRoDcpf/WHM0ogrZJIa0/PcBP2MahRM8lmpnxqeUDahI96zVNGIGz9bnDsjF1YZkjDWthSShfp7IqORMdMosJ0RxbFZ9ebif14vxfDKz4RKUuSKLReFqSQYk/nvZCg0ZyinllCmhb2VsDHVlKFNqGRD8FZfXiedes1r1K7vGpVmNY+jCGdwDlXw4BKacAstaAODCTzDK7w5ifPivDsfy9aCk8+cwh84nz8/FI7M</latexit>

1014

<latexit sha1_base64="5cbBNbY4vanfezorWYrOBhVeGZ8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIQb0VvHisYD+gjWWznbRLN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mGmCfkRHkoecUWOljuc+Zl59NihX3Jq7AFknXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkr9VGNC2YSOsGeppBFqP1ucOyMXVhmSMFa2pCEL9fdERiOtp1FgOyNqxnrVm4v/eb3UhNd+xmWSGpRsuShMBTExmf9OhlwhM2JqCWWK21sJG1NFmbEJlWwI3urL66R9WfPqtZv7eqVRzeMowhmcQxU8uIIG3EETWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w9CHo7O</latexit>

1016

<latexit sha1_base64="eevQfIXHmtKnf2UTHpsF4mPGA7o=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQU9gV8XELePEYwTwgWcPspDcZMju7zMwKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3BYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKbc99zLzLab9ccWvuHGSVeDmpQI5Gv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+7pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE177GZdJalCyxaIwFcTEZPY7GXCFzIiJJZQpbm8lbEQVZcYmVLIheMsvr5LWec27qN3cX1Tq1TyOIpzAKVTBgyuowx00oAkMxvAMr/DmJM6L8+58LFoLTj5zDH/gfP4ARSiO0A==</latexit>

Co
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10�15

<latexit sha1_base64="WtvnrYuHA0OX/dp2UmUK7qsc8CU=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBByMexKRL0FvHiMYB6QrGF20kmGzM6uM7NCWPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSy4Nq777aysrq1vbOa28ts7u3v7hYPDho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGN1O/+YRK80jem3GMfkgHkvc5o8ZKLc99SM+8i0m3UHTL7gxkmXgZKUKGWrfw1elFLAlRGiao1m3PjY2fUmU4EzjJdxKNMWUjOsC2pZKGqP10du+EnFqlR/qRsiUNmam/J1Iaaj0OA9sZUjPUi95U/M9rJ6Z/5adcxolByeaL+okgJiLT50mPK2RGjC2hTHF7K2FDqigzNqK8DcFbfHmZNM7LXqV8fVcpVktZHDk4hhMogQeXUIVbqEEdGAh4hld4cx6dF+fd+Zi3rjjZzBH8gfP5A66IjwY=</latexit>

1

<latexit sha1_base64="NBij7Ye+eWEAGzSf0xhVynUQ6OI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmd3O/84RK81g+mGmCfkRHkoecUWOlpjcoV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnzrmq3zatKvZrHUYQzOIcqeHANdbiHBrSAAcIzvMKb8+i8OO/Ox7K14OQzp/AHzucPdquMpw==</latexit>

10�10

<latexit sha1_base64="8btYIXoZwH4YMbTVtMw2PQiwSzM=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoOQi2FXAuot4MVjBPOAZA2zk0kyZHZ2nekVwpKf8OJBEa/+jjf/xkmyB00saCiquunuCmIpDLrut5NbW9/Y3MpvF3Z29/YPiodHTRMlmvEGi2Sk2wE1XArFGyhQ8nasOQ0DyVvB+Gbmt564NiJS9ziJuR/SoRIDwShaqe25D+m55057xZJbcecgq8TLSAky1HvFr24/YknIFTJJjel4box+SjUKJvm00E0Mjykb0yHvWKpoyI2fzu+dkjOr9Mkg0rYUkrn6eyKloTGTMLCdIcWRWfZm4n9eJ8HBlZ8KFSfIFVssGiSSYERmz5O+0JyhnFhCmRb2VsJGVFOGNqKCDcFbfnmVNC8qXrVyfVct1cpZHHk4gVMogweXUINbqEMDGEh4hld4cx6dF+fd+Vi05pxs5hj+wPn8AabvjwE=</latexit>

10�5

<latexit sha1_base64="LdzvhgUQX+2ufWuhdFuHZ/eXbBg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQi2FXIuot4MVjBPOAZA2zk04yZHZ2mZkVwpKP8OJBEa9+jzf/xkmyB00saCiquunuCmLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpKFMMGi0Sk2gHVKLjEhuFGYDtWSMNAYCsY38781hMqzSP5YCYx+iEdSj7gjBortTz3MT2/nPaKJbfizkFWiZeREmSo94pf3X7EkhClYYJq3fHc2PgpVYYzgdNCN9EYUzamQ+xYKmmI2k/n507JmVX6ZBApW9KQufp7IqWh1pMwsJ0hNSO97M3E/7xOYgbXfsplnBiUbLFokAhiIjL7nfS5QmbExBLKFLe3EjaiijJjEyrYELzll1dJ86LiVSs399VSrZzFkYcTOIUyeHAFNbiDOjSAwRie4RXenNh5cd6dj0VrzslmjuEPnM8fPYuOyw==</latexit>

Fine-tuning

f / Hz

<latexit sha1_base64="27jWSZDZMHyaqjKj7nyzJafjqQo=">AAAB+XicbVBNSwMxEJ31s9avVY9egkXoqe5KQb0VvPRYwX5At5Rsmm1Dk+ySZAt16T/x4kERr/4Tb/4b03YP2vpg4PHeDDPzwoQzbTzv29nY3Nre2S3sFfcPDo+O3ZPTlo5TRWiTxDxWnRBrypmkTcMMp51EUSxCTtvh+H7utydUaRbLRzNNaE/goWQRI9hYqe+6EQrQla0sUALVn2Z9t+RVvAXQOvFzUoIcjb77FQxikgoqDeFY667vJaaXYWUY4XRWDFJNE0zGeEi7lkosqO5li8tn6NIqAxTFypY0aKH+nsiw0HoqQtspsBnpVW8u/ud1UxPd9jImk9RQSZaLopQjE6N5DGjAFCWGTy3BRDF7KyIjrDAxNqyiDcFffXmdtK4rfrVy91At1cp5HAU4hwsogw83UIM6NKAJBCbwDK/w5mTOi/PufCxbN5x85gz+wPn8AVXLkh8=</latexit>

v
�
=

18
T
eV

<latexit sha1_base64="0jJPVAZGpa6orn/g2fgRPa4YH+k=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWARuiqJFKwLoeDGZYW+oAlhMp20Q2cmYWZSKCEbf8WNC0Xc+hnu/BunbRbaeuDC4Zx7ufeeMGFUacf5tjY2t7Z3dkt75f2Dw6Nj++S0q+JUYtLBMYtlP0SKMCpIR1PNSD+RBPGQkV44uZ/7vSmRisairWcJ8TkaCRpRjLSRAvt8GnjJmMI76DagBzNPctgm3TywK07NWQCuE7cgFVCgFdhf3jDGKSdCY4aUGrhOov0MSU0xI3nZSxVJEJ6gERkYKhAnys8WD+TwyihDGMXSlNBwof6eyBBXasZD08mRHqtVby7+5w1SHTX8jIok1UTg5aIoZVDHcJ4GHFJJsGYzQxCW1NwK8RhJhLXJrGxCcFdfXifd65pbr90+1ivNahFHCVyAS1AFLrgBTfAAWqADMMjBM3gFb9aT9WK9Wx/L1g2rmDkDf2B9/gBBuJTZ</latexit>

v
�
=

3.5 · 10 4
T
eV

<latexit sha1_base64="fAYtpZmwXwokC+Cqt2M3geyFkoU=">AAACDHicbVDLSgMxFM34rPVVdekmWISuhhmtqAuh4MZlhb6gM5ZMJtOGZpIhyRTK0A9w46+4caGIWz/AnX9j2s5CWw8EDuecy809QcKo0o7zba2srq1vbBa2its7u3v7pYPDlhKpxKSJBROyEyBFGOWkqalmpJNIguKAkXYwvJ367RGRigre0OOE+DHqcxpRjLSReqXyqOclAwpv4Ll9AT0cCg1d56EKPZh5MoYN0pqYlGM7M8Bl4uakDHLUe6UvLxQ4jQnXmCGluq6TaD9DUlPMyKTopYokCA9Rn3QN5Sgmys9mx0zgqVFCGAlpHtdwpv6eyFCs1DgOTDJGeqAWvan4n9dNdXTlZ5QnqSYczxdFKYNawGkzMKSSYM3GhiAsqfkrxAMkEdamv6IpwV08eZm0zmy3al/fV8u1Sl5HARyDE1ABLrgENXAH6qAJMHgEz+AVvFlP1ov1bn3MoytWPnME/sD6/AGLQZi3</latexit>

10-8 10-5 0.01
10-20

10-17

10-14

10-11

10-8

10-5

10�7

<latexit sha1_base64="ihLy0YAaNfVjSNX/HFy/cDJPNgQ=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQi2FXAtFbwIvHCOYBSQyzk9lkyOzsMtMrhCUf4cWDIl79Hm/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PWiZKNONNFslId3xquBSKN1Gg5J1Ycxr6krf9ye3cbz9xbUSkHnAa835IR0oEglG0UttzH9PL2mxQLLkVdwGyTryMlCBDY1D86g0jloRcIZPUmK7nxthPqUbBJJ8VeonhMWUTOuJdSxUNuemni3Nn5MIqQxJE2pZCslB/T6Q0NGYa+rYzpDg2q95c/M/rJhhc91Oh4gS5YstFQSIJRmT+OxkKzRnKqSWUaWFvJWxMNWVoEyrYELzVl9dJ66riVSs399VSvZzFkYczOIcyeFCDOtxBA5rAYALP8ApvTuy8OO/Ox7I152Qzp/AHzucPQJWOzQ==</latexit>

10�5

<latexit sha1_base64="LdzvhgUQX+2ufWuhdFuHZ/eXbBg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQi2FXIuot4MVjBPOAZA2zk04yZHZ2mZkVwpKP8OJBEa9+jzf/xkmyB00saCiquunuCmLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpKFMMGi0Sk2gHVKLjEhuFGYDtWSMNAYCsY38781hMqzSP5YCYx+iEdSj7gjBortTz3MT2/nPaKJbfizkFWiZeREmSo94pf3X7EkhClYYJq3fHc2PgpVYYzgdNCN9EYUzamQ+xYKmmI2k/n507JmVX6ZBApW9KQufp7IqWh1pMwsJ0hNSO97M3E/7xOYgbXfsplnBiUbLFokAhiIjL7nfS5QmbExBLKFLe3EjaiijJjEyrYELzll1dJ86LiVSs399VSrZzFkYcTOIUyeHAFNbiDOjSAwRie4RXenNh5cd6dj0VrzslmjuEPnM8fPYuOyw==</latexit>

10�3

<latexit sha1_base64="V8RJqb6g+JHFAnjqfzN6sPvC7R8=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQi2FXA+ot4MVjBPOAZA2zk04yZHZ2mZkVwpKP8OJBEa9+jzf/xkmyB00saCiquunuCmLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpKFMMGi0Sk2gHVKLjEhuFGYDtWSMNAYCsY38781hMqzSP5YCYx+iEdSj7gjBortTz3MT2/nPaKJbfizkFWiZeREmSo94pf3X7EkhClYYJq3fHc2PgpVYYzgdNCN9EYUzamQ+xYKmmI2k/n507JmVX6ZBApW9KQufp7IqWh1pMwsJ0hNSO97M3E/7xOYgbXfsplnBiUbLFokAhiIjL7nfS5QmbExBLKFLe3EjaiijJjEyrYELzll1dJ86LiVSs399VSrZzFkYcTOIUyeHAFNbiDOjSAwRie4RXenNh5cd6dj0VrzslmjuEPnM8fOoGOyQ==</latexit>

10�1

<latexit sha1_base64="w60783IQmckxBMnv62g7RE2T/Jc=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSL0YkmkoN4KXjxWsB/QxrLZTtqlm03Y3Qgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSK4Nq777aytb2xubRd2irt7+weHpaPjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GtzO//YRK81g+mEmCfkSHkoecUWOltuc+ZhfetF8qu1V3DrJKvJyUIUejX/rqDWKWRigNE1Trrucmxs+oMpwJnBZ7qcaEsjEdYtdSSSPUfjY/d0rOrTIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/9jMskNSjZYlGYCmJiMvudDLhCZsTEEsoUt7cSNqKKMmMTKtoQvOWXV0nrsurVqjf3tXK9ksdRgFM4gwp4cAV1uIMGNIHBGJ7hFd6cxHlx3p2PReuak8+cwB84nz83d47H</latexit>

10�9

<latexit sha1_base64="1h110mLXscCnUDb1z/8cuI241jI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQi2FXAppbwIvHCOYBSQyzk9lkyOzsMtMrhCUf4cWDIl79Hm/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PWiZKNONNFslId3xquBSKN1Gg5J1Ycxr6krf9ye3cbz9xbUSkHnAa835IR0oEglG0UttzH9PL2mxQLLkVdwGyTryMlCBDY1D86g0jloRcIZPUmK7nxthPqUbBJJ8VeonhMWUTOuJdSxUNuemni3Nn5MIqQxJE2pZCslB/T6Q0NGYa+rYzpDg2q95c/M/rJhjc9FOh4gS5YstFQSIJRmT+OxkKzRnKqSWUaWFvJWxMNWVoEyrYELzVl9dJ66riVSu1+2qpXs7iyMMZnEMZPLiGOtxBA5rAYALP8ApvTuy8OO/Ox7I152Qzp/AHzucPQ5+Ozw==</latexit>

⌦gwh2

<latexit sha1_base64="uRK9FnNplkoUs6pBPYnU/pXzaxA=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBG6KkkpqLuCG3dWsA9oY5hMJ+nQmUmYmSgh1F9x40IRt36IO//GaZuFth64cDjnXu69J0gYVdpxvq219Y3Nre3STnl3b//g0D467qo4lZh0cMxi2Q+QIowK0tFUM9JPJEE8YKQXTK5mfu+BSEVjcaezhHgcRYKGFCNtJN+uDG84iZCfDyWH0eMUju8bvl116s4ccJW4BamCAm3f/hqOYpxyIjRmSKmB6yTay5HUFDMyLQ9TRRKEJygiA0MF4kR5+fz4KTwzygiGsTQlNJyrvydyxJXKeGA6OdJjtezNxP+8QarDCy+nIkk1EXixKEwZ1DGcJQFHVBKsWWYIwpKaWyEeI4mwNnmVTQju8surpNuou8365W2z2qoVcZTACTgFNeCCc9AC16ANOgCDDDyDV/BmPVkv1rv1sWhds4qZCvgD6/MH/qiUSA==</latexit>

10�20

<latexit sha1_base64="vzDCflrGPlISqVPu6jHq/sm0KEU=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBByMeyGgHoLePEYwTwgWcPsZJIMmZ1dZ3qFsOQnvHhQxKu/482/cZLsQRMLGoqqbrq7glgKg6777aytb2xubed28rt7+weHhaPjpokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfDPzW09cGxGpe5zE3A/pUImBYBSt1Pbch/Si4k57haJbducgq8TLSBEy1HuFr24/YknIFTJJjel4box+SjUKJvk0300Mjykb0yHvWKpoyI2fzu+dknOr9Mkg0rYUkrn6eyKloTGTMLCdIcWRWfZm4n9eJ8HBlZ8KFSfIFVssGiSSYERmz5O+0JyhnFhCmRb2VsJGVFOGNqK8DcFbfnmVNCtlr1q+vqsWa6UsjhycwhmUwINLqMEt1KEBDCQ8wyu8OY/Oi/PufCxa15xs5gT+wPn8Aah1jwI=</latexit>

10�15

<latexit sha1_base64="WtvnrYuHA0OX/dp2UmUK7qsc8CU=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBByMexKRL0FvHiMYB6QrGF20kmGzM6uM7NCWPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSy4Nq777aysrq1vbOa28ts7u3v7hYPDho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGN1O/+YRK80jem3GMfkgHkvc5o8ZKLc99SM+8i0m3UHTL7gxkmXgZKUKGWrfw1elFLAlRGiao1m3PjY2fUmU4EzjJdxKNMWUjOsC2pZKGqP10du+EnFqlR/qRsiUNmam/J1Iaaj0OA9sZUjPUi95U/M9rJ6Z/5adcxolByeaL+okgJiLT50mPK2RGjC2hTHF7K2FDqigzNqK8DcFbfHmZNM7LXqV8fVcpVktZHDk4hhMogQeXUIVbqEEdGAh4hld4cx6dF+fd+Zi3rjjZzBH8gfP5A66IjwY=</latexit>

10�10

<latexit sha1_base64="8btYIXoZwH4YMbTVtMw2PQiwSzM=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoOQi2FXAuot4MVjBPOAZA2zk0kyZHZ2nekVwpKf8OJBEa/+jjf/xkmyB00saCiquunuCmIpDLrut5NbW9/Y3MpvF3Z29/YPiodHTRMlmvEGi2Sk2wE1XArFGyhQ8nasOQ0DyVvB+Gbmt564NiJS9ziJuR/SoRIDwShaqe25D+m55057xZJbcecgq8TLSAky1HvFr24/YknIFTJJjel4box+SjUKJvm00E0Mjykb0yHvWKpoyI2fzu+dkjOr9Mkg0rYUkrn6eyKloTGTMLCdIcWRWfZm4n9eJ8HBlZ8KFSfIFVssGiSSYERmz5O+0JyhnFhCmRb2VsJGVFOGNqKCDcFbfnmVNC8qXrVyfVct1cpZHHk4gVMogweXUINbqEMDGEh4hld4cx6dF+fd+Vi05pxs5hj+wPn8AabvjwE=</latexit>

10�5

<latexit sha1_base64="LdzvhgUQX+2ufWuhdFuHZ/eXbBg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQi2FXIuot4MVjBPOAZA2zk04yZHZ2mZkVwpKP8OJBEa9+jzf/xkmyB00saCiquunuCmLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpKFMMGi0Sk2gHVKLjEhuFGYDtWSMNAYCsY38781hMqzSP5YCYx+iEdSj7gjBortTz3MT2/nPaKJbfizkFWiZeREmSo94pf3X7EkhClYYJq3fHc2PgpVYYzgdNCN9EYUzamQ+xYKmmI2k/n507JmVX6ZBApW9KQufp7IqWh1pMwsJ0hNSO97M3E/7xOYgbXfsplnBiUbLFokAhiIjL7nfS5QmbExBLKFLe3EjaiijJjEyrYELzll1dJ86LiVSs399VSrZzFkYcTOIUyeHAFNbiDOjSAwRie4RXenNh5cd6dj0VrzslmjuEPnM8fPYuOyw==</latexit>

Decay before domination

Decay before BBN 10-8 10-5 0.01
10-20

10-17

10-14

10-11

10-8

10-5

10�7

<latexit sha1_base64="ihLy0YAaNfVjSNX/HFy/cDJPNgQ=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQi2FXAtFbwIvHCOYBSQyzk9lkyOzsMtMrhCUf4cWDIl79Hm/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PWiZKNONNFslId3xquBSKN1Gg5J1Ycxr6krf9ye3cbz9xbUSkHnAa835IR0oEglG0UttzH9PL2mxQLLkVdwGyTryMlCBDY1D86g0jloRcIZPUmK7nxthPqUbBJJ8VeonhMWUTOuJdSxUNuemni3Nn5MIqQxJE2pZCslB/T6Q0NGYa+rYzpDg2q95c/M/rJhhc91Oh4gS5YstFQSIJRmT+OxkKzRnKqSWUaWFvJWxMNWVoEyrYELzVl9dJ66riVSs399VSvZzFkYczOIcyeFCDOtxBA5rAYALP8ApvTuy8OO/Ox7I152Qzp/AHzucPQJWOzQ==</latexit>

10�5

<latexit sha1_base64="LdzvhgUQX+2ufWuhdFuHZ/eXbBg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQi2FXIuot4MVjBPOAZA2zk04yZHZ2mZkVwpKP8OJBEa9+jzf/xkmyB00saCiquunuCmLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpKFMMGi0Sk2gHVKLjEhuFGYDtWSMNAYCsY38781hMqzSP5YCYx+iEdSj7gjBortTz3MT2/nPaKJbfizkFWiZeREmSo94pf3X7EkhClYYJq3fHc2PgpVYYzgdNCN9EYUzamQ+xYKmmI2k/n507JmVX6ZBApW9KQufp7IqWh1pMwsJ0hNSO97M3E/7xOYgbXfsplnBiUbLFokAhiIjL7nfS5QmbExBLKFLe3EjaiijJjEyrYELzll1dJ86LiVSs399VSrZzFkYcTOIUyeHAFNbiDOjSAwRie4RXenNh5cd6dj0VrzslmjuEPnM8fPYuOyw==</latexit>

10�3

<latexit sha1_base64="V8RJqb6g+JHFAnjqfzN6sPvC7R8=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQi2FXA+ot4MVjBPOAZA2zk04yZHZ2mZkVwpKP8OJBEa9+jzf/xkmyB00saCiquunuCmLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpKFMMGi0Sk2gHVKLjEhuFGYDtWSMNAYCsY38781hMqzSP5YCYx+iEdSj7gjBortTz3MT2/nPaKJbfizkFWiZeREmSo94pf3X7EkhClYYJq3fHc2PgpVYYzgdNCN9EYUzamQ+xYKmmI2k/n507JmVX6ZBApW9KQufp7IqWh1pMwsJ0hNSO97M3E/7xOYgbXfsplnBiUbLFokAhiIjL7nfS5QmbExBLKFLe3EjaiijJjEyrYELzll1dJ86LiVSs399VSrZzFkYcTOIUyeHAFNbiDOjSAwRie4RXenNh5cd6dj0VrzslmjuEPnM8fOoGOyQ==</latexit>

10�1

<latexit sha1_base64="w60783IQmckxBMnv62g7RE2T/Jc=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSL0YkmkoN4KXjxWsB/QxrLZTtqlm03Y3Qgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSK4Nq777aytb2xubRd2irt7+weHpaPjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GtzO//YRK81g+mEmCfkSHkoecUWOltuc+ZhfetF8qu1V3DrJKvJyUIUejX/rqDWKWRigNE1Trrucmxs+oMpwJnBZ7qcaEsjEdYtdSSSPUfjY/d0rOrTIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/9jMskNSjZYlGYCmJiMvudDLhCZsTEEsoUt7cSNqKKMmMTKtoQvOWXV0nrsurVqjf3tXK9ksdRgFM4gwp4cAV1uIMGNIHBGJ7hFd6cxHlx3p2PReuak8+cwB84nz83d47H</latexit>

10�9

<latexit sha1_base64="1h110mLXscCnUDb1z/8cuI241jI=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoOQi2FXAppbwIvHCOYBSQyzk9lkyOzsMtMrhCUf4cWDIl79Hm/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PWiZKNONNFslId3xquBSKN1Gg5J1Ycxr6krf9ye3cbz9xbUSkHnAa835IR0oEglG0UttzH9PL2mxQLLkVdwGyTryMlCBDY1D86g0jloRcIZPUmK7nxthPqUbBJJ8VeonhMWUTOuJdSxUNuemni3Nn5MIqQxJE2pZCslB/T6Q0NGYa+rYzpDg2q95c/M/rJhjc9FOh4gS5YstFQSIJRmT+OxkKzRnKqSWUaWFvJWxMNWVoEyrYELzVl9dJ66riVSu1+2qpXs7iyMMZnEMZPLiGOtxBA5rAYALP8ApvTuy8OO/Ox7I152Qzp/AHzucPQ5+Ozw==</latexit>

f / Hz

<latexit sha1_base64="27jWSZDZMHyaqjKj7nyzJafjqQo=">AAAB+XicbVBNSwMxEJ31s9avVY9egkXoqe5KQb0VvPRYwX5At5Rsmm1Dk+ySZAt16T/x4kERr/4Tb/4b03YP2vpg4PHeDDPzwoQzbTzv29nY3Nre2S3sFfcPDo+O3ZPTlo5TRWiTxDxWnRBrypmkTcMMp51EUSxCTtvh+H7utydUaRbLRzNNaE/goWQRI9hYqe+6EQrQla0sUALVn2Z9t+RVvAXQOvFzUoIcjb77FQxikgoqDeFY667vJaaXYWUY4XRWDFJNE0zGeEi7lkosqO5li8tn6NIqAxTFypY0aKH+nsiw0HoqQtspsBnpVW8u/ud1UxPd9jImk9RQSZaLopQjE6N5DGjAFCWGTy3BRDF7KyIjrDAxNqyiDcFffXmdtK4rfrVy91At1cp5HAU4hwsogw83UIM6NKAJBCbwDK/w5mTOi/PufCxbN5x85gz+wPn8AVXLkh8=</latexit>

⌦gwh2

<latexit sha1_base64="uRK9FnNplkoUs6pBPYnU/pXzaxA=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBG6KkkpqLuCG3dWsA9oY5hMJ+nQmUmYmSgh1F9x40IRt36IO//GaZuFth64cDjnXu69J0gYVdpxvq219Y3Nre3STnl3b//g0D467qo4lZh0cMxi2Q+QIowK0tFUM9JPJEE8YKQXTK5mfu+BSEVjcaezhHgcRYKGFCNtJN+uDG84iZCfDyWH0eMUju8bvl116s4ccJW4BamCAm3f/hqOYpxyIjRmSKmB6yTay5HUFDMyLQ9TRRKEJygiA0MF4kR5+fz4KTwzygiGsTQlNJyrvydyxJXKeGA6OdJjtezNxP+8QarDCy+nIkk1EXixKEwZ1DGcJQFHVBKsWWYIwpKaWyEeI4mwNnmVTQju8surpNuou8365W2z2qoVcZTACTgFNeCCc9AC16ANOgCDDDyDV/BmPVkv1rv1sWhds4qZCvgD6/MH/qiUSA==</latexit>
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Figure 2.4: Constraints on the size of the coefficient of the Planck-suppressed HDO
of Eq.(2.77), as a function of the scale of spontaneous symmetry breaking, vϕ. The
region vϕ ≲ 18 TeV (green) is in conflict with direct bounds on the mass of W ′

and Z ′ resonances, under the assumption that vϕ ∼ v′, as discussed in section 2.3.1.
Values of ϵ that are too small (blue) do not destabilize the domain wall network early
enough to either avoid a domain-wall-dominated era, or to ensure collapse before
the onset of BBN, and are therefore ruled out. The region of parameter space in
pink is experimentally allowed, but the level of fine-tuning in the electroweak sector
worsens as vϕ is increased (corresponding to a darker shade). The dashed line at
vϕ ≃ 3.5 · 104 TeV corresponds to a fine-tuning of O(10−10) in the electroweak sector.
(For illustration, we have set the quartic coupling in the pseudo-scalar potential to be
κϕ = 1 in this plot.)

between the two vacua dominates, causing the network to collapse at a time of order

tcoll. ∼
σ

δV
∼
√
κϕMPl

ϵv2ϕ
. (2.79)

Clearly, the domain wall network could be very long-lived if ϵ ≪ 1. The requirement

that collapse takes place either before the universe becomes domain wall dominated,

or before the start of BBN (so as to avoid energy injection into the SM plasma that

would disrupt light element formation), sets a lower bound on ϵ as a function of the

spontaneous symmetry breaking scale. This is depicted in figure 2.4, where the BBN

and domain-wall-domination restrictions dominate for values of vϕ below and above ∼ 73

TeV respectively. As can be appreciated in the figure, in the region of parameter space
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where the fine-tuning is better than 10−10 (that is, vϕ ∼ v′ ≲ 3.5 · 104 TeV), ϵ may be as

small as O(10−13).

The collapse of a domain wall network leads to the production of gravitational

waves [100,101]. On dimensional grounds, one would expect the energy density in gravi-

tational radiation to be of the form ρgw ∼ GNσ
2 (the mandatory power of GN times the

necessary factors of σ to make up dimensions), an expectation that is largely upheld by

numerical analysis [102–105]. The resulting gravitational wave spectrum has an extended

shape, peaking at a frequency corresponding to the Hubble size at the time of collapse

(corresponding to the typical size of the domain walls), and falling off as 1/f for larger

frequencies. At the present epoch, the peak frequency of the gravitational wave signal is

given by

f∗ ≃ 10−9 Hz

(
Tcoll.

10−2 GeV

)(
g∗(Tcoll.)

10

)1/6

∼ 10−9 Hz
( vϕ
18 TeV

)( ϵ

10−12

)1/2( 1

κϕ

)1/4

,

(2.80)

and the energy density in gravitational radiation at frequency peak reads [106]

Ωgwh
2(f∗) ≃ 2 · 10−10

(
σ

(20 TeV)3

)2(
10−2 GeV

Tcoll.

)4(
10

g∗(Tcoll.)

)4/3

∼ 10−10
( vϕ
18 TeV

)2(10−12

ϵ

)2 (κϕ
1

)2
,

(2.81)

where Tcoll. refers to the temperature of the SM plasma at a time tcoll., and we have

assumed that network collapse takes place during radiation domination.10

Figure 2.5 shows the region that can be spanned by the peak of the stochastic grav-

itational wave background in the f∗ vs. Ωgwh
2(f∗) plane, together with the sensitivity

curves of a number of gravitational wave experiments. The lower bound on ϵ depicted in

figure 2.4 translates into a lower bound on f∗ for each value of the symmetry breaking

10In the second steps of Eq.(2.80) and (2.81), we have substituted Tcoll. by the corresponding expression
in terms of the model’s fundamental parameters, while ignoring a weak dependence on g∗.
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Figure 2.5: In blue, region of parameter space where the frequency peak of the
stochastic gravitational wave signal, f∗, as well as the corresponding energy density,
Ωgwh

2(f∗), can fall in light of the experimental constraints on the various model pa-
rameters summarized in figure 2.4. Dotted lines correspond to constant ϵ. The region
to the right of the dashed line corresponding to vϕ = 3.5 · 104 TeV features a level of
fine-tuning worse than 1 part in 1010, and it is therefore less attractive. Sensitivity
curves for a variety of gravitational wave experiments are shown, including the pulsar
timing arrays EPTA [109], NANOGrav [108], SKA [107] (observation time of 5, 10
and 20 years as indicated), as well as the space-based interferometers LISA [110], and
DECIGO [111]. (For illustration, we have set the quartic coupling in the pseudo-scalar
potential to be κϕ = 1 in this plot.)

scale (e.g. f∗ ≳ 10−9 Hz for vϕ ≃ 18 TeV). As can be seen in figure 2.5, a region of pa-

rameter space with low v′ falls within reach of gravitational wave observatories probing

the low frequency regime such as SKA [107], NANOGrav [108], and the EPTA [109]. As

ϵ is increased, the collapse of the domain wall network occurs earlier, further suppressing

the current value of the energy density in gravitational radiation by the corresponding

redshift factor.

Our discussion so far applies in the context of global discrete symmetries provided

that they either do not descend from a continuous symmetry, or that, if they do, the

symmetry breaking scale of the continuous factor is above the reheating temperature, so

that a network of cosmic strings is not formed in the early universe. On the other hand,
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if the reheating temperature is larger than the scale set by the tension of the strings,

µ, then a string network will be formed first, with the strings later joined by domain

walls. The entire string-wall network now evolves together, and the problem features an

additional time scale, given by

t∗ ∼
µ

σ
. (2.82)

At t ∼ t∗, the force per unit length on a string of radius R(t) ∼ t, given by ∼ µ/t,

becomes comparable to the wall tension. The system then becomes dominated by the

tension of the domain walls, causing the network to shrink, and break down into pieces

that will further decay into gravitational waves (or, potentially, also massive particles,

depending on their size and the relevant particle spectrum) [100, 101]. If this timescale

is shorter than tcoll., the earlier destruction of the network of defects could move any

potential gravitational wave signal into an unobservable regime.

The discussion of the previous paragraph is especially relevant if parity is instead

realized as a gauge symmetry, for which explicit breaking is no longer allowed. Näıvely,

one would hope that the gauge case would be cosmologically more benign: the gauge

equivalence of the two vacua makes them no longer distinct, eliminating the topological

stability of the domain walls. Indeed, domain walls can be destroyed by a process in

which a string loop is nucleated on the wall, further growing to destroy the entire defect.

However, the corresponding nucleation probability is proportional to e−µ
3/σ2

[112], which

will be exceedingly small for any reasonable separation of scales between the string and

wall tensions, therefore rendering gauge domain walls effectively stable. It is therefore

crucial that the reheating temperature is above the string tension scale, so that a string

network is formed that can later result in the entire collapse of the subsequent string-

wall network. The cosmological implications, as well as potential gravitational wave

signatures, of a discrete parity symmetry that is gauged will be further explored in
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future work.

2.6 Conclusions

The strong CP problem remains one of the great naturalness problems of the Standard

Model, and is perhaps the most compelling in light of its resistance to straightforward

anthropic explanations. Fully satisfying solutions to the problem remain elusive given

the expected violation of global symmetries in a theory of quantum gravity, which de-

mands extensive effort to protect the Peccei-Quinn symmetry underlying axion-based

approaches. In this work we have pursued a possibility that is more transparently robust

against the effects of quantum gravity, revisiting parity-based solutions to the strong CP

problem. Our approach highlights the experimental signatures associated with the most

natural regions of parameter space in these models, as well as ancillary signatures that

are dependent upon the detailed mechanism of parity breaking.

The notion of naturalness within this parameter space is governed by the tuning

associated with the separation of scales of SU(2)L and SU(2)R breaking, which are

related by generalized parity. Given this tuning, “see-saw” vector-like masses for the

SU(2)-singlet fermions play a key role in allowing the scale of SU(2)R breaking to be

lowered toward its most natural value consistent with experimental constraints. Within

this framework, the LHC provides the strongest test of natural parity-based solutions to

the strong CP problem, probing the scale of SU(2)R breaking through searches for W ′

and Z ′ vector bosons as well as vector-like quarks and additional Higgs bosons. This

leaves parity solutions tuned at the ∼ 10−3 level, which while not fully natural remains

a significant improvement in explaining the observed θ̄ ≲ 10−10. The extended reach

for heavy resonances at future colliders such as FCC-hh will decisively test these parity

solutions at the level of ∼ 10−5 tuning. Constraints on new sources of flavor violation
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play a complementary role, with additional sensitivity to the scale of vector-like fermions

and the underlying model of flavor.

The detailed mechanism of parity breaking gives rise to additional signatures within

reach of near-future tabletop experiments and gravitational wave observatories. Soft par-

ity and CP -violating terms give rise to EDMs for elementary fermions at one-loop, both

quarks and charged leptons, which provide a pathway to discovery in precision searches

for CP -violation in molecular systems. Spontaneous violation of parity and CP through

the vev of a pseudo-scalar gives rise to additional one-loop contributions to θ̄, which

provides an additional pathway to discovery and already requires the source of parity vi-

olation to be sequestered from the quark sector (albeit in a technically natural way). The

expected violation of global symmetries in a theory of quantum gravity further shapes

the viable parameter space and potential experimental signatures through the impact

of various Planck-suppressed operators whose form depends on the underlying parity-

breaking mechanism. If parity is a global symmetry that is broken both spontaneously

(by a pseudo-scalar vev) and explicitly (by gravitational effects), collapse of the domain

wall network associated with the spontaneous breaking of parity can generate a gravity

wave signal accessible at low-frequency gravitational wave observatories. In this respect,

the violation of global symmetries by gravitational effects is a feature of parity-based so-

lutions to the strong CP problem, rather than a bug. Taken together, these experimental

opportunities warrant further exploration of generalized parity as a solution to strong

CP.
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Chapter 3

Dark Matter in a Mirror Solution to

the Strong CP Problem

3.1 Introduction

The nature of DM and the strong CP problem are two of the most compelling puzzles

of particle physics. In the last decades, cosmological observations of the cosmic microwave

background (CMB), distant supernovae, large samples of galaxy clusters, and baryon

acoustic oscillations have firmly established a standard cosmological model in which DM

accounts for about 85% of the matter content of the Universe, and about 27% of the

global energy budget [113]. Another puzzle stems from the observational absence of the

neutron electric dipole moment, dn < 10−26 e · cm [114], which constrains the amount of

CP violation in the strong interactions. (C stands for charge conjugation, P for spacetime

parity and CP for their combination.) In the QCD Lagrangian, there is only one CP

violating term [115],

L ⊃ θ̄QCD
g2s

32π2
Ga
µνG̃

a,µν , (3.1)
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where Gµν
a is the gluon field strength tensor, gs the strong coupling constant, G̃a,µν ≡

1
2
ϵµναβG

αβ
a and θ̄QCD is an angle ∈ [0, 2π]. In the SM, θ̄QCD combines the bare θ-angle

θQCD with an anomalous contribution from the quark mass matrix M into a flavor-

invariant quantity, θ̄QCD ≡ θQCD + arg det(M). The constraint above results in the

upper limit θ̄QCD ≲ 10−10 [116–118], so that θ̄QCD is by far, and inexplicably, the smallest

dimensionless parameter of the SM. This strong CP problem is made even more surprising

by the fact that weak interactions violate CP with a phase of order unity.

Three approaches to this problem have received considerable attention in the liter-

ature: a massless colored fermion [119–122] which makes θ̄QCD unphysical (and whose

minimal incarnation is now excluded by lattice data [123]), spontaneously broken P or

CP symmetries [21, 22, 25, 26] that fix θ̄QCD = 0 in the UV and rely on its extremely

suppressed renormalization [71, 124–127], and a spontaneously broken global anomalous

symmetry à la Peccei-Quinn [51, 52] which relaxes θ̄QCD to 0 through the QCD-induced

dynamics of the predicted QCD axion [53, 54]. The QCD axion additionally turns out

to be a natural DM candidate [128–130]. (See Ref. [131] for a review on the QCD axion

and a large set of references.)

It was recognized in the 1970s already that parity might solve the strong CP prob-

lem [24, 132], and several models have been analyzed in the literature since then (see

e.g. [21–23, 28, 29, 133–140]). Those models require extending the gauge group and par-

ticle content of the SM. However, unlike the QCD axion, the presence of a good DM

candidate is not guaranteed by a suitable choice of parameters and cosmological history,

as P relates the additional couplings and masses to the SM ones so that there is little

freedom to find an appropriate parameter space. Extra fields can be added to play the

role of DM [134, 135], while within minimal models the possibility that DM is made

out of the mirror neutrinos or mirror electrons predicted by parity has been explored

in Refs. [141, 142] and [136], respectively. For mirror neutrinos, justifying the necessary
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small parameters requires extra ingredients, while only non-thermal production mech-

anisms were known to work for mirror electrons. In this work, we study whether it is

possible to thermally produce DM within a minimal setup where, as with the axion, its

mass and abundance can be computed in terms of parameters already required to solve

the strong CP problem.

Concretely, we analyze the model proposed by some of us in Ref. [143], based on a

mirror copy of the SM. In the process, we automatically explore other setups studied in

the literature [23,136], to which our model reduces in the appropriate limit. Parity fixes

almost all coefficients given the measured SM parameters, so that one can genuinely scan

the full parameter space. Generically, the only DM candidate is the mirror electron e′,

i.e. the new fermion paired with the SM electron by parity. We argue that production

from a dark sector in thermal equilibrium with the SM is not allowed by experimental

constraints. Moreover, the only viable thermal production mechanism from the SM bath,

that can adequately suppress the dangerous relic abundance of mirror up quarks u′, is

(sequential) freeze-in1. Mirror up quarks are electrically neutral and colored and hence

can bind into fractionally-charged exotic hadrons. We perform a thorough numerical

analysis and identify the range of model parameters where one finds consistent e′ DM.

This fixes all scales of the model within a few orders of magnitude, dramatically increasing

the predictivity beyond the constraints from parity alone.

As we were completing this work, a different cosmological history for the same model

was presented in Ref. [139], where e′ DM is obtained through freeze-out and subse-

quent dilution, while fractionally-charged exotic hadrons are argued to be sufficiently

suppressed. While the bounds on such hadrons [136] are based on fluxes that have un-

certainties [145], they appear to exclude this cosmological scenario by several orders of

1Freeze-in of mirror electron DM has been considered in Twin Higgs models [144]. There, neutral
naturalness does not lead to dangerous exotic hadrons and freeze-in through kinetic mixing is allowed.
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magnitude, calling into question its viability.

The paper is organized as follows. In Sec. 3.2, we summarize the relevant features

and mechanisms of the model proposed in Ref. [143] to solve the strong CP problem. In

Sec. 3.3, we discuss the running of masses and gauge couplings in this model, while in

Sec. 3.4 we study the induced kinetic mixing between the SM and mirror photon, which

strongly impacts the direct detection (DD) prospects of the model. In Sec. 3.5 we explore

whether this model provides a solution to the DM problem, and in Sec. 3.7 we comment

on the compatibility between DM and the Higgs parity mechanism, which allows parity

to be exact instead of softly broken in the UV without adding new degrees of freedom.

Finally, we conclude in Sec. 3.8. In App. B.1, we compute the freeze-in distribution of

mirror photons, allowing us to compute the e′ DM abundance in Sec. 3.5.

3.2 Mirror Solutions to the Strong CP problem

Here, we summarize the model presented in Ref. [143].

The full SM gauge group is mirrored to SU(3)×SU(2)×U(1)Y ×SU(3)′×SU(2)′×

U(1)′, and the matter content is doubled to include mirror copies of the fermion and Higgs

fields. One set of particles has the usual SM quantum numbers under SU(3)× SU(2)×

U(1)Y and is a singlet of SU(3)′×SU(2)′×U(1)′, while the converse is true for the other

set. Each of the two Higgs fields is responsible for the breaking of the electroweak sector

of its own “world”. This setup can solve the strong CP problem when the two worlds are

related via a Z2 symmetry composed with the usual action of P, so that the (C)P-odd θ

angles of SU(3) and SU(3)′ satisfy the relation θ = −θ′. In Ref. [143], it was shown that

breaking the two SU(3) gauge groups to their diagonal subgroup, which is identified with

SU(3)QCD, provides a solution to the strong CP problem, as one finds θQCD = θ + θ′. In

the limit of exact or softly broken P in the UV, the two θ angles cancel completely. In
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the IR, despite P being broken, θQCD receives negligible corrections.

The mirror Higgs acquires a vacuum expectation value (VEV) v′ ≫ v, where v

denotes the SM Higgs VEV, which breaks P spontaneously. A phenomenologically-viable

vacuum is achieved either by a soft P breaking term in the tree-level scalar potential or

by radiative corrections at the scale v′ [29]. In the latter case, v′ cannot be chosen

arbitrarily and depends on the other couplings of the model. We discuss it further in

Sec. 3.7. In the rest of this paper, we treat v′ as an independent parameter, which can for

instance be achieved through the aforementioned soft breaking of parity. In either case,

the theory does not address the hierarchy problem. Moreover, in this paper, we consider

the simplest SU(3) × SU(3)′ → SU(3)QCD breaking mechanism, provided by the VEV

of a bifundamental scalar field Σ. Although the solution to the strong CP problem does

not depend on the specific breaking mechanism (see Ref. [143] for additional examples),

the phenomenology of the model is sensitive to it. This will be commented on when

necessary.

The interest of mirror solutions to the strong CP problem stems from their simplicity

and predictivity: since the gauge and Yukawa couplings are fixed by P, the only two free

parameters with respect to the SM are v′ and v3, the energy scale at which SU(3)×SU(3)′

is broken. The constraints on the parameter space of this setup from collider searches

and from the requirement that it solves the strong CP problem are shown in Fig. 1 of

Ref. [143]. The allowed region roughly reads

2 · 108GeV ≲ v′ ≲ 1014GeV; v3 ≳ 5TeV. (3.2)
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3.3 Masses, couplings and their running

As alluded to above, parity forces the gauge and Yukawa couplings in the two worlds

to be equal at scales above v′,

gG′ = gG , yf ′ = yf , (3.3)

where G = 1, 2, 3 denotes a simple factor of the SM gauge group of coupling gG and

similarly for the mirror gauge couplings gG′ , while yf are the SM Yukawa couplings in

the up, down and charged lepton sectors and similarly for the mirror Yukawa couplings

yf ′ . The breaking of parity will generate deviations from these relations below v′ in a

calculable fashion. Knowing the precise values will be of extreme importance for the

discussion of DM below, so we discuss here the renormalization group equations (RGEs)

of our model.

For a choice of v′ and v3, the values of the parameters at all scales and in both worlds

can be found. Indeed, the solution to the RGEs is fully fixed by the following constraints:

1. Matching to the measured SM parameters at low energies,

2. Continuity at v3, except for

1

αQCD

=
1

αs
+

1

α′
s

(3.4)

(plus possible threshold corrections at loop level), where α
(′)
s = g

(′)
s

2

4π
with g

(′)
s the

(mirror) color coupling constant above v3,

3. Parity at v′, i.e. the relations of Eq. (3.3).

For given v′ and v3, these constraints constitute sufficient boundary data to fix all inte-

gration constants in the RGEs. We focus on the one-loop RGEs [146] and use the values

in the modified minimal subtraction (MS) scheme given in Ref. [147]. We have checked

that using the two-loop RGEs for the strong couplings affect the result at the percent
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level, yielding a smaller source of uncertainty than that on the SM up quark mass (see

below). The same applies to the use of the pole mass instead of the MS mass. In this pa-

per, we use the latter everywhere. We also include the effect of the bifundamental scalar

field Σ on the RGEs. For simplicity, we assume that all components of that scalar field

acquire masses of order v3 (this can be achieved upon suitably choosing the parameters

of its scalar potential).

The most straightforward case is when the lightest colored mirror fermion, namely the

mirror up quark u′, is heavy. Specifically, whenmu′ ≥ v3. In this case, the modification of

the SM RGEs is minimal all the way to v′: One simply needs to replace αQCD → αs and

add the contribution of three flavors of fundamental scalars to the SU(3) running. One

can then pick a random value of αs(v3) (which lies between2 αQCD(v3) and 2αQCD(v3)),

run the SM world couplings to v′, fix the mirror world parameters at v′ and run them

down to v3 to check whether the relation of Eq. (3.4) holds. Spanning over all (or many)

choices of αs(v3), one can identify the appropriate value.

When mu′ < v3, the situation is more intricate. The boundary values for the mirror

quark masses depend on the SM quark masses, which depend on the running of the QCD

coupling constant, which itself depends on the mirror quark masses and their contribution

to the β function. In this case, one needs to numerically solve the full system of RGEs of

the two coupled mirror worlds. In practice, we implement this for all values of mu′/v3,

and we cross-check the results with the previous method when applicable. We checked

that our numerical precision is such that the constraints imposed by matching at v3 and

parity at v′ are satisfied at the sub-per-mille level. We illustrate some results of this

procedure in Fig. 3.1. In the right panel, we see that the loop correction to the ratio of

mu′ to me′ , the mirror electron e′ mass, depends on v3 and can be noticeable, which will

2The lower bound directly follows from Eq. (3.4), while the upper bound also takes into account the
fact that the mirror gauge coupling runs faster at lower energies, since the mirror fermions are heavier.
Therefore, since the two gauge couplings are equal at v′, αs(v3) < α′

s(v3).
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Figure 3.1: MS running parameters for v′ = 109 GeV and two choices of v3, to which
the red vertical lines correspond. Left panel: running gauge couplings of the color
groups. Right panel: ratios of the u′ and e′ masses. The curves stop at µ = me′(µ),
and the running of mu′ is frozen below µ = mu′(µ).

prove crucial when we discuss DM later on.

The outputs of this procedure are the running gauge couplings and fermion masses.

They are used as inputs in a second step in which we compute the running kinetic mixing

and Higgs quartic, which we discuss below. The RGEs of the gauge couplings and of the

Higgs potential have been studied using similar techniques in Ref. [139].

A further comment on the input value for mu is in order. In the following, we find the

DM production to be extremely sensitive to mu′/me′ , whose value is obtained from the

low energy determination of the SM up-quark and electron masses, as described above.

The electron mass is known with the astonishing precision of ∼ 0.1 ppb, while the PDG

reports mu(2GeV) = 2.16+0.49
−0.26 MeV [148]. This is the largest source of uncertainty

in our result, as discussed in Sec. 3.5. The central value is used for the right panel

of Fig. 3.1. Note, that a recent combination of lattice determinations of mu reports a

smaller uncertainty of ∼ 4% [123], but is not without controversy and remains under

active investigation.
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3.4 Kinetic Mixing

Parity is compatible with a kinetic mixing between the gauge boson of U(1)Y and its

mirror copy,

L ⊃ ϵF µνF ′
µν . (3.5)

This term was not relevant for the solution to the strong CP problem in Ref. [143], but

it constitutes an important source of cosmological constraints on the parameter space of

the model. Indeed, once this term is introduced, all fermions charged under U(1)′ become

charged also under U(1)Y . If this is the case for DM, very stringent constraints on its

charge from direct detection experiments apply. Anticipating the discussion in Sec. 3.5,

the mirror electron is the only DM candidate of the model and kinetic mixing plays an

important role in assessing its viability.

Removing the tree-level contribution to the kinetic mixing is a reasonable assumption.

For instance, in UV completions where one U(1) belongs to a larger gauge group, the

interaction term in Eq. (3.5) is not allowed by gauge invariance. Therefore, it vanishes

above the scale at which the two U(1) gauge theories emerge. However, it will be gener-

ated at loop-level below that scale. In the current setup, the first loop-level contribution

to this term arises at 4-loop [136], and could be further suppressed by an appropriate

arrangement of the energy scales of the model, which we will discuss next. Nevertheless,

due to the tight constraints, it is worth studying in detail the 4-loop contribution to ϵ,

as it depends only on the two free parameters of the model, v′ and v3.

The leading diagram is shown in Fig. 3.2. As noted in Ref. [136], the renormalization

group equation of the kinetic mixing parameter can be read off from the four-loop beta

function of QCD [149], yielding

dϵ

dlnµ
=

e2g6s
(4π)8

(
−1760

27
+

1280

9
ζ(3)

)∑
ij

qiq
′
j . (3.6)
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It is clear that this contribution is only present below v3, as above that scale the internal

gluons do not couple simultaneously to SM and mirror quarks. Above v3, we need higher-

loop diagrams to connect γ and γ′, which are further suppressed. Moreover, below their

γ′ γ

q′ q

Figure 3.2: 4-loop diagram contributing to kinetic mixing.

γ′ γ

q

Figure 3.3: Diagram contributing to kinetic mixing below the lightest mirror quark mass.

masses, the mirror quarks are integrated out at one-loop and the three-loop diagram of

Fig. 3.3 arises, where the effective vertex on the left connects one mirror photon to three

gluons3 and is therefore suppressed by 1/m4
u′ (note that, due to parity, mu′ is the smallest

mass scale among the UV fields). Dimensional analysis dictates that such contributions

must come with an extra factor ∼ ( p
mu′

)4, where p is the largest momentum flowing in the

quark loops, while one retains the e2g6S and four-loop suppression (one for the one-loop

matching at µ ∼ mu′ and three for the diagram in the IR theory). Therefore, one can

safely neglect the running below mu′ . In conclusion, 4-loop contributions to the kinetic

mixing are relevant below the scale v3 and when there is at least one mirror quark below

that scale.

3There is no effective operator connecting one mirror photon to any combination of two gauge fields,
due to symmetry (see the discussion on the “X3” class of operators in section 5 of [150]).
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3.5 Dark Matter

Given the unbroken mirror QED symmetry of the model of Ref. [143], it is natural

to expect the presence of a good DM candidate. However, it turns out that this happens

only in a specific region of parameter space and through a non-standard production

mechanism. This is the topic of this section.

Although little is known about the particle nature of DM, a good DM candidate must:

1. Have a relic abundance today that matches the observed value ΩDM = ρDM/ρcrit =

0.265(7), where ρcrit = 8.5(1) × 10−30 g cm−3 is the critical density of the Uni-

verse [148],

2. Be cosmologically stable so as to agree with current experimental observations [151–

154],

3. Become non-relativistic well before matter-radiation equality, as required by the

formation of large scale structures in the Universe [155–157],

4. Have zero, or very small, electromagnetic charge, as required by searches for stable

charged particles [158,159],

5. Have limited self-interactions, constrained by the observed DM halo profiles, cluster

collisions and the CMB spectrum [160].

In the present model, all mirror particles are electrically neutral, up to kinetic mixing.

Through mirror Yukawa and electroweak couplings fixed by parity, the mirror particles

have decay channels similar to their SM counterparts, hence the only stable massive

particles are the mirror electron e′ and up quark u′. They cannot decay to the SM

because of the unbroken mirror electromagnetic charges that they carry. The mirror

photon remains massless and contributes to dark radiation (by an amount far below
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current limits in the scheme to be described), whereas mirror neutrinos are heavy but

quickly decay to the SM unless further model building is invoked, as we discuss below.

Finally, the physical components of the bifundamental scalar field Σ which breaks the

color groups are generically of mass ∼ v3 and quickly decay to quarks and gluons [161].

Being the lightest stable mirror fermion, and charged only under mirror gauge groups,

the mirror electron is the best DM candidate in this class of models. However, in Sec. 3.3

we have seen that the u′ has a mass close to the e′, and so its abundance has to also be

carefully considered. This will turn out to be of utmost importance for the viability of a

DM production mechanism, given the bounds on the u′ relic density. Another important

constraint on the cosmology stems from the fact that the potential of Σ displays an

accidental Z3 symmetry, leading to domain walls (DWs) if the universe is reheated above

the phase transition temperature ∼ v3. (This symmetry appears to be accidental to all

mass dimensions, preventing one from introducing a bias to collapse the domain walls.)

However, over most of the parameter space, this requirement is weaker than the one

associated with the relic density of u′.

3.5.1 Bounds on mirror quarks

An extensive discussion of the cosmological history of the mirror quarks in these

models can be found in Ref. [136]. The heavier mirror quarks decay into the lighter

ones, while the latter hadronize after the QCD phase transition, forming bound states by

combining with other colored particles. Rearrangements mediated by scattering processes

then lead to the presence of two kinds of exotic bound states:

1. Hadrons made of u′ and SM quarks: u′qq, u′u′q, u′q̄. We denote these by h′.

2. Hadrons made of three u′.
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The abundance of these states, relative to the abundance of u′, has been estimated in

Ref. [136],

Yu′u′u′ ≃ Yu′ ×


Yu′/Ycrit Yu′ < Ycrit

1 Yu′ > Ycrit

,

Yh′ ≃ Yu′ ×


1 Yu′ < Ycrit

Ycrit/Yu′ Yu′ > Ycrit

,

Ycrit ≃ 2× 10−13
( mu′

GeV

)2
YDM .

(3.7)

While bound states made of only u′ can in principle be a component of DM, the abun-

dance of h′ is strongly constrained by searches for nuclear and electric recoil at deep

underground detectors [162–164], and by tracks of ionizing particles in bulk matter, on

earth [165–168] as well as in meteorites [169]. Again we refer the reader to the discussion

in Ref. [136].

Collider bounds on fractionally charged heavy stable states give mu′ ≳ 1.5TeV [143],

while bounds from higher dimensional operators that can spoil the solution to the

strong CP problem imply mu′ ≲ 106 TeV. In this mass range, one obtains Yh′ ≲

[10−14 − 10−8] YDM from the bounds of the MACRO [166], ICRR [167] and Baksan

experiments [168], as well as Yh′ ≲ mu′/GeV 10−15 YDM from searches of ionizing tracks

in the Hoba meteorite [169]. The lower bound on mu′ and the definition of Ycrit imply

that Ycrit ≳ 4× 10−7 YDM, hence Yh′ < Ycrit given the bounds above. This shows that the

only viable scenario is

Yu′ < Ycrit, Yh′ ≃ Yu′ , Yu′u′u′ ≃
Y 2
u′

Ycrit
. (3.8)

In the literature, it has been debated whether strongly interacting particles can reach

terrestrial experiments such as MACRO, ICRR and Baksan, because of their interac-

tions in the Earth’s atmosphere and crust. However, even assuming a geometrical cross

169



CHAPTER 3. DARKMATTER IN AMIRROR SOLUTION TO THE STRONGCP PROBLEM

section for DM-nucleus scattering (which is the largest possible value for such a cross

section4 [170]), it has been shown that this is the case for neutral DM bound states [171]

as well as charged ones [136]. The determination of the h′ flux in the galactic disk from

its charged massive particle nature [145] is not straightforward, hence the systematic

errors on the bounds for Yh′ are difficult to estimate. Therefore, in the following, we

show different exclusion scenarios. Nonetheless, the constraints are so stringent that,

even taking a conservative stand, they play an important role in our results.

Concerning bound states made of only u′, one finds from the relations above that

Yu′u′u′ ≲ 2× 10−10 YDM, and the DM fraction of fully mirror bound states is negligible.

3.5.2 Bounds on e′ DM

Since bound states of mirror quarks are constrained to provide only an extremely

small contribution to DM, we are left with the possibility of mirror electron DM. We

remind the reader that in this model the mirror electron is charged only under the mirror

gauge groups SU(2)′ × U(1)′ and has a mass larger than ∼ 750GeV5. Before studying

the production mechanism in the early universe, we discuss the bounds from DM direct

and indirect searches.

Being coupled with the mirror photon, the e′ experiences a long-range force. However,

its mass is too heavy to appreciably self-scatter and disrupt the DM halo profile [160] nor

the spectrum of the CMB. On the other hand, the kinetic mixing discussed in Sec. 3.4

leads to an interaction with SM particles and can produce an observable signal. The

strongest bound comes from searches for DM-nucleus scattering. The results of the

4A larger cross section can be obtained through long range interaction or, in the case of composite
DM, by the presence of resonances or threshold bound states [170].

5This limit is obtained from the bound on the mirror quark masses which, due to parity, implies a
bound on the mirror electron mass with a mild dependence on the parameters of the model.
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Figure 3.4: Limit on ϵ vs v′ from DM direct searches (blue region) from XENON1T
[163] (solid line), XENONnT [172] (dashed line) and LUX-ZEPLIN [173] (dotted line)
together with predictions for different values of v3/v

′.

experiment XENON1T [163] can be recast [136] into the bound

me′ > 106GeV

(
ϵ

10−8

)2

. (3.9)

Results from XENONnT [172] and LUX-ZEPLIN (LZ) [173] lead to similar bound, up to

the respective replacement of 106 by 1.5× 106 and 3× 106. Since the mass of the mirror

electron depends only on the VEV of the mirror Higgs with a very good precision, this

limit translates into a bound on ϵ and v′, as shown in Fig. 3.4. The same figure also

shows the predictions of ϵ for different values of v3, assuming no UV kinetic mixing as

discussed in Sec. 3.4. As anticipated there, the smaller v3, the weaker the bound on v′.

For v3 below the lightest mirror quark mass, the kinetic mixing is extremely suppressed

and this bound disappears. For very low values of v3 (above mu′), we find the lower limit

v′ ≳ 1011GeV. This complements the other bounds on the parameters of the model. In

fact, Ref. [143] finds the bound v′ ≲ 1014GeV from higher-dimensional operators that

can spoil the solution to the strong CP problem. Therefore, in the scenario v3 > mu′ ,
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Figure 3.5: Most relevant tree-level diagrams for the production of e′ and u′ in the
early universe when the temperature is smaller than v3.

this leaves only 2-3 orders of magnitude for v′.

3.5.3 Freeze-out

The most relevant processes for the interaction of e′ and u′ with the thermal bath are

shown in Fig 3.5 when the temperature is smaller than v3. At temperatures higher than

its mass, e′ is efficiently produced by/annihilated into two mirror photons. In the freeze-

out scenario, the resulting e′ yield reads Ye′ ≃ YDM

(
v′

108 GeV

)
and the point in parameter

space which reproduces the right DM abundance is already excluded by collider searches,

as mentioned in Sec. 3.2. Refs. [139, 174] studied the possibility of heavier e′, whose

abundance is diluted trough the decay of the mirror neutrinos. However, we discussed

the running of the mirror fermion masses in Sec. 3.3 and we saw that the ratio mu′/me′

can be at most as large as ∼ 2 for mu′ close to v3. This implies that the abundance of

e′ and u′ would be similar. Indeed, for u′ the mirror photon channel is also active, but

it is even dominated by the production/annihilation through gluons or SM quarks. For
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a temperature above v3, the gluons become mirror gluons, and the bifundamental scalar

Σ is also in equilibrium and can annihilate into a u′ pair. It then appears to us that the

bounds discussed in Sec. 3.5.1 are too strong and prevent the freeze-out scenario from

being viable. Weakening the bounds on the u′ abundance by a few orders of magnitude

to account for the large uncertainties is not sufficient to change the conclusion.

3.5.4 Freeze-in

We therefore need to assume that the mirror fermions are never in thermal equilibrium

and are produced through a freeze-in mechanism. If mu′ > me′ ≫ T , a factor of a few in

the mass leads to an exponential suppression in the abundances, Yu′/Ye′ ∼ exp(
mu′−me′

T
),

due to the Boltzmann suppression of the thermal bath particles which are energetic

enough to produce e′ and u′.

In the following, we assume that the reheating temperature at the end of inflation, TR,

is the highest temperature Tmax reached in the cosmological history of the universe and is

smaller than me′ . We are thus adding a new parameter to the model, whose cosmology is

now determined by three quantities: v′, v3, TR. In addition, we need to assume that the

inflaton does not directly decay to mirror fermions, or with a very reduced rate, and that

it does not produce too many mirror photons either, as those would subsequently generate

a population of mirror fermions6. None of this happens if we assume that the inflaton

primarily decays to the SM sector, or that it mostly produces gluons and mirror gluons.

The former is not in contradiction with exact parity due to the different electroweak

VEVs in the two sectors, for instance if the inflaton couples to matter through a parity-

symmetric Higgs portal [175]. For a P -odd inflaton, such a coupling and an inflaton

VEV can generate a soft P breaking leading to asymmetric electroweak scales in the

6We note that an initial population of mirror photons is an interesting possibility, but we choose to
focus here on the minimal, purely thermal DM production from the SM bath.
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two sectors, even though a severe tuning is needed. We elaborate on our assumptions

regarding reheating in Sec. 3.5.5.

In this setup, the only mirror species that can ever be in thermal equilibrium with

the SM is the mirror photon, which, below v3, interacts with the SM gluons through the

1-loop diagrams in Fig. 3.6. Again, the relevant production processes for e′ and u′ below

v3 are shown in Fig. 3.5. Above v3, Σ thermalizes gluons and mirror gluons, so that the

relevant diagrams become those of Fig. 3.6 and Fig. 3.5 where gluons are replaced by

mirror ones.

γ′ in thermal equilibrium

The cross sections for the processes in Fig. 3.6 read

σgg→γ′γ′ ≃ 8× 10−8 g
4
se

′ 4s3

m8
u′

+O

(
s4

m10
u′

)
, (3.10)

σgg→gγ′ ≃ 7.5× 10−8 g
6
se

′ 2s3

m8
u′

+O

(
s4

m10
u′

)
, (3.11)

where s = (p1 + p2)
2 and p1,2 are the four-momenta of the external gluons. In the center

of mass frame s = 4E1E2.

Following Ref. [176], the rate for these processes is7

Γγ′ =ng

∫
σvMol e

−E1/T e−E2/Td3p1d
3p2∫

e−E1/T e−E2/Td3p1d3p2

≃ 1.5× 10−3 (g
4
se

′ 4 + g6se
′ 2)T 9

m8
u′

,

(3.12)

and the condition for having γ′ in thermal equilibrium is

Γγ′ ≳ H ≃ T 2

MP

⇒ TR ≳ 26GeV

(
mu′

TeV

)8/7

. (3.13)

7Note that we integrated over all energies in Eq. (3.12) although we used the simple formulae of
Eqs. (3.10)-(3.11) which are not valid at energies larger than mu′ . The exponential suppression above
E ∼ T ensures that the result is not noticeably affected. For instance, accounting for resonant u′ū′

bound states formation [177–180] yields an increase in the actual cross section that is comparable to
that obtained from Eqs. (3.10)-(3.11) when s ∼ m2

u′ . We checked that this region and larger energies
essentially do not contribute to the result.
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Figure 3.6: 1-loop portal between SM gluons and γ′.

The power of mu′ indicates that TR grows faster than mu′ (i.e., than v′) and tends to

bring mirror fermions in thermal equilibrium, which is problematic as shown above. With

this result, it is actually impossible to find a region of parameter space which gives the
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correct relic abundance for e′. In fact, we find

xe′ ≡
me′

TR
≲ 38

me′

mu′

(
TeV

mu′

)1/7

. (3.14)

As mentioned above, collider bounds require mu′ ≳ 1.5TeV, implying that v′ ≥ 2× 108

GeV. For such values, we find numerically that the ratio me′/mu′ is such that xe ≲ 16 all

over the allowed parameter space, bringing the mirror electrons in thermal equilibrium

with the mirror photons and overshooting the DM relic abundance by several orders of

magnitude. (For instance, v′ = 109 GeV and v3 = 105 GeV yield xe close to the maxi-

mal value, as can be seen in Fig. 3.1.) We verified this estimate solving the Boltzmann

equation numerically, and we indeed found that the mirror electrons reach thermal equi-

librium. Importantly, the result holds even assuming a large uncertainty O(20%) on mu′ ,

in which case xe′ remains smaller than ∼ 22.

γ′ out of equilibrium

To reduce the abundance of e′ and even further of u′, TR needs to be lower than the

limit in Eq. (3.13). This implies that also γ′ are out of equilibrium and DM is produced

via a sequential freeze-in process [181, 182]. In App. B.1 we describe how to solve the

Boltzmann equation for the momentum distribution of the mirror photons. We were able

to solve it analytically in the limit where the number of degrees of freedom is constant and

for high-energy mirror photons (i.e. Eγ′ ≫ T ). These are consistent assumptions: the

SM degrees of freedom are all in the bath until much lower temperatures than TR where

most of the e′ are produced, and making e′ (such that me′ ≫ TR for freeze-in) requires

highly energetic photons. Soft photons do not contribute to this process since they need

to scatter with a very energetic one, whose number density is extremely suppressed. We

checked the consistency of this argument, as detailed in App. B.1.

With the mirror photon distribution, we then numerically solve the Boltzmann equa-
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tion for e′ and u′, making no further assumption and using the full non-thermal distribu-

tions of the mirror photons obtained in App. B.1. Fig. 3.7 and Fig. 3.8 show our results

in the v′ − TR/v′ plane, for two benchmark cases: when v3 > v′, and when v3 has the

smallest value allowed by collider searches (v3 = 5TeV), respectively. We discuss the ex-

trapolation of intermediate cases later on, while for v3 > v′ the result is independent of v3.

(We fixed it to be 10 v′ in our code to generate Fig. 3.7. The actual value of v3 > v′ only

matters for kinetic mixing, whose RG running kicks in below v3 as explained in Sec. 3.4.)

The points which provide the right yield of e′ are shown with a solid orange line. The

blue solid and dotted lines show the experimental bounds on u′, discussed in Sec. 3.5.1.

Given the uncertainty on these bounds, we show two benchmarks: Yh′ < 10−8 YDM (solid

blue) and Yh′ < 10−12 YDM (dotted blue). For comparison, the region where the mirror

photons are in equilibrium is shown in green, confirming that it is incompatible with e′

DM. Moving to the right of the plot, the ratio TR/v
′ increases as well as the abundances

of both e′ and u′. A few values of mu′/me′ are also shown along the DM line, from

which one sees that the conservative bounds on the u′ abundance give the constraint

mu′/me′ ≳ 1.6 − 1.7 (with a small dependence on the value of v3) to get a viable DM

model. In the two figures, this translates to v′ ≲ 5× 1010GeV and TR ≲ 5TeV. Such a

low reheating temperature raises the question of the baryogenesis mechanism at play in

the early universe. We discuss this point in Sec. 3.6.

Anticipating the results of the numerical analysis for all values of v′ and v3, the

prediction for the kinetic mixing in Fig. 3.4 then suggests that models with v3 ≳ mu′

do not contain a good DM candidate produced by freeze-in. This applies in particular

to the models of Refs. [23, 136] (which can be obtained from ours in the v3 →∞ limit),

and it can be seen in Fig. 3.9, which shows the ratio mu′/me′ as a function of v3 and

v′. The observed trend is understood as follows: the ratio is larger for smaller mu′ , i.e.

smaller v′, as the u′ feels the effect of a larger strong coupling constant which grows in
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Figure 3.7: Values of TR and v′ reproducing the correct DM relic abundance
for e′ (solid orange line) in the scenario v3 > v′. Requiring Yh′ < 10−8 YDM

(Yh′ < 10−12 YDM) rules out the blue region to the right of the solid blue (dotted
blue) line. The region where the mirror photons distribution is thermal is shown in
green. Dashed lines are analogous to solid ones, but using a 20% higher value for mu.

Figure 3.8: Values of TR and v′ reproducing the correct DM relic abundance for
e′ (solid orange line) in the scenario v3 = 5TeV. Requiring Yh′ < 10−8 YDM

(Yh′ < 10−12 YDM) rules out the blue region to the right of the solid blue (dotted
blue) line. The region where the mirror photons distribution is thermal is shown in
green. Dashed lines are analogous to solid ones, but using a 20% higher value for mu.
The gray region is such that TR > v3 and DWs are expected to form in the Σ field.
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the IR. Similarly, the smaller v3, the larger its effect on the running of mu′ since strong

couplings are typically larger above v3, as illustrated in Fig. 3.1. This effect competes

with the fact that larger couplings make mu run faster, and that the RG running of the

strong couplings above v3 is steeper than the one below. Numerically, we find that the

ratio mu′/me′ is maximized for points where mu′ ∼ v3, corresponding to the peaks in

the contour plot of Fig. 3.9. The bound from DM direct detection is also shown as a

shaded region. It arises from the kinetic mixing between γ and γ′ as discussed in Sec. 3.4

and prevents the possibility of having DM for large values of v3. We can make the trend

1.2

1.3

1.4

1.5

1.6

1.7
1.8

1.92

Figure 3.9: Ratio mu′/me′ as a function of v′ and v3. In the shaded region, e′ DM is
excluded by the irreducible kinetic mixing and its impact on direct detection signals
at Xenon1T (darker region) and LZ (lighter region).

displayed in Fig. 3.9 sharper by running our RGEs and Boltzmann codes for all values of

v′ and v3. The result is shown in Fig. 3.10, where we therefore identify a precise region of

parameter space where the model explains the observed DM abundance while satisfying
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all other constraints:

Parameters for Viable DM

109GeV ≲ v′ ≲ 1011GeV ,

5× 103GeV ≲ v3 ≲ 10−5 v′ ,

TR ≃ 10−7 v′ .

(3.15)

In this parity solution to the strong CP problem, the mirror electron is a good DM

candidate with a mass in the range [5TeV, 250TeV]. We stress that the requirement

of DM greatly reduces the large ranges for v′ and v3 that solve the strong CP problem,

shown in Eq. (3.2).

We also investigated the impact of a large error, O(20%), on the IR value of mu. As

commented in Sec. 3.3, this is the major source of uncertainty in our result. The results of

our numerical analysis are represented by the dashed blue lines in Figs. 3.7 and 3.8. These

lines can be roughly reproduced upon rescaling the bounds (solid blue lines) through a

20% shift in TR/v
′. (This amounts to assuming a O(20%) shift on mu′ .) Note however

that the DM line shifts to slightly higher TR (a ∼ 5% effect) (dashed orange lines), due

to the dependence of the mirror photon production cross section on mu′ . Numerically,

we find that increasing mu′ by 20% extends the e′ DM region to v′ ≲ 2× 1011GeV and

TR ≲ 25TeV. In addition, the lower bound on the ratio mu′/me′ becomes larger as the

bound on Yu′ becomes stronger. However, for low v3 most of this region is excluded by

the presence of Σ domain walls.

On the other hand, lowering mu by 20% gives stronger bounds, as expected, con-

straining v′ between 109GeV and 1010GeV and TR below 105GeV. Overall, this doesn’t

change the main picture of our result. The summary of results in the (v3, v
′) plane can
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be found in Fig. 3.10 below.

Finally, a non-thermal population of mirror photons remains until today, but it is far

beyond observational prospects. Being more suppressed than thermal at TR and being

subsequently diluted by the SM thresholds, it gives a very small contribution to dark

radiation, ∆Neff ≤ 7× 10−6, which is saturated for the smallest reheating temperatures

that allow e′ DM.

3.5.5 Comments on Inflation and Reheating

Given the non trivial set of constraints which make DM viable in this model, we

briefly comment on their impact on cosmological inflation and the subsequent reheating

period. The following conditions are assumed in the predictive scenario for e′ production

presented above.

• At the end of reheating, when the universe enters a period of radiation domination,

only the SM sector is populated and in thermal equilibrium at a temperature TR

in the range [0.1 - 5] TeV. Higher TR would not generate an appropriate e′ relic

density (see Figs. 3.7 and 3.8).

• TR ≤ O(0.1)me′ and mϕ ≲ me′ , where mϕ is the mass of the inflaton. The former

implies that our freeze-in calculation is applicable and that we do not freeze-out

(hence overproduce) e′ and u′. The latter prevents the inflaton from directly decay-

ing to e′ and u′, or its high-energy decay products from scattering and producing

e′ or u′.

• During reheating, when the universe is dominated by the energy density of the

inflaton field which is transferred to radiation, the temperature cannot be larger

than TR to avoid populating the mirror sector8.

8Calling Tmax the maximum temperature reached by the plasma during reheating, one may wonder if
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Furthermore, we require TR < v3 to avoid domain walls for Σ. It is clear that the

possibilities for a viable inflationary model are strongly constrained.

A thorough analysis of inflation and reheating models is beyond the scope of this work;

here we just note a few promising possibilities. The requirement that the maximal tem-

perature reached during reheating is TR is fulfilled in the limit of instantaneous reheating,

i.e. when the universe transitions from inflation to a phase of radiation domination in

less than a Hubble time. For instance, this is achieved if the inflaton potential makes

an almost discontinuous change from being very flat to be very steep. Alternatively, one

can deal with a smoother reheating if the temperature of the SM bath increases (or stays

constant) throughout this phase, reaching a maximum at TR. Scenarios of this kind,

using dissipative processes other than decays, have been discussed in Ref. [183].

3.6 Mirror neutrinos and leptogenesis

Finally, we discuss mirror neutrinos, which are electrically neutral. In our minimal

model, the neutrino masses must arise from Weinberg-type operators. Due to parity,

one finds two independent coupling matrices xν , x
′
ν , the former being symmetric and the

latter hermitian [141],

Lν =
xν,ij
2Λ

(HLi)(HLj) +
x∗ν,ij
2Λ

(H ′L′
i)(H

′L′
j)

+
x′ν,ij
Λ

(HLi)(H
′L′
j) .

(3.16)

a qualitatively similar DM production could be performed if me′ > Tmax > TR. In that case, e′ freeze-in
happens during (inflaton) matter domination, and a large enough e′ relic density needs to be frozen-in in
order to compensate the subsequent dilution. This implies that the Boltzmann factor e−me′/Tmax should
be increased with respect to the e−me′/TR evaluated in Sec. 3.5.4. However, the correlated e−mu′/Tmax

will also be increased, leading to u′ overproduction. In summary, e′ freeze-in at Tmax > TR does not
work in this model.
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Below v′, H ′ is frozen to its vev and the mirror neutrinos acquire a mass matrix, mν′ ,

and Yukawa coupling matrix to LH, yν , of

mν′ = x∗ν
v′ 2

Λ
, yν = x′ν

v′

Λ
. (3.17)

It is convenient to work in a basis where mν′ is real and diagonal. Below the electroweak

scale a mass matrix arises also for the SM neutrinos:

mν = v2
(mν′

v′2
− yνm−1

ν′ yν
T
)
. (3.18)

The spontaneous breaking of parity at scale v′ leads to a “direct” neutrino mass term

proportional to mν′ as well as a conventional “seesaw” mass term proportional to 1/mν′ .

If xν,ij and x
′
ν,ij are comparable, as expected for example from approximate flavor sym-

metries, then the direct and seesaw contributions to the light neutrino masses will also

be comparable, so that neutrino physics differs from that of just adding right-handed

neutrinos to the SM.

With e′ DM from sequential freeze-in, the cosmological effects of the mirror neutrinos

are highly dependent on the coupling matrices x, x′ and the scale Λ. For example, if the

matrix elements of x, x′ are order unity, and v′ is of order 1010 GeV, the observed neutrino

masses require the scale Λ to be of order 1015 GeV. In this case the mirror neutrinos have

masses of order 105 GeV, well above the reheating temperature of 103 GeV, so the mirror

neutrinos are not made in the thermal bath and play no cosmological role.

For other parameters the mirror neutrinos are light enough to be produced at reheat-

ing, and they decay via the Yukawa coupling yν ν
′LH to LH with decay rate

Γν′i→SM =
1

8π

(
yν

†yν
)
ii
mν′i

. (3.19)

Could such decays lead to the cosmological baryon asymmetry via thermal leptogenesis

[184]? If there is no degeneracy among mirror neutrinos, the answer is no: for this case
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Ref. [140] finds that thermal leptogenesis requires v′ > 1012 GeV to avoid fine tuning in

the SM neutrino masses; Fig. 3.10 shows this is inconsistent with e′ DM, even allowing for

a large uncertainty in the up quark mass. Furthermore, thermal leptogenesis without ν ′

degeneracy requires the lightest ν ′ to be heavier than 109 GeV, many orders of magnitude

above TR.

However, it is well known that degeneracy among ν ′ produces the observed baryon

asymmetry for much lower values of mν′ [185]. In this case, in theories with neutrino

masses arising from (3.16), leptogenesis can occur for lower values of v′: Fig. 5 of

Ref. [140] shows that degeneracies in the range of 10−3−10−6, resulting from approximate

flavor symmetries, gives successful leptogenesis throughout the allowed range of v′ ∼

(109 − 1011) GeV required by e′ DM.

An important feature of e′ DM from sequential freeze-in, relevant for leptogenesis,

is that it requires a very low reheat temperature, TR ∼ 10−7v′ ∼ (102 − 104) GeV.

Interestingly, this is above the electroweak scale, so any lepton asymmetry produced can

be processed to a baryon asymmetry via electroweak sphalerons. A key question is the

size of mν′1
relative to TR. If mν′1

≫ TR, thermal production of ν ′1, which occurs via

the inverse of the decay process (3.19), will be highly Boltzmann suppressed, leading

to a negligible lepton asymmetry. On the other hand, if mν′1
≲ TR the produced lepton

asymmetry will be strongly erased by rescatterings involving ν ′2, which is degenerate with

ν ′1. Avoiding such strong washout requires reducing the Yukawa coupling coupling of ν ′2

to the point that, at these low values of mν′1
, the production of the asymmetry in ν ′1

decays is too small, unless it is boosted by a degeneracy of at least 10−8. This exceeds

the natural limit of degeneracy in this theory, 10−6, set by radiative corrections from the

tau coupling [140].

Thus the only possibility is that ν ′1,2 have masses close to TR, but sufficiently above

that a near thermal abundance of ν ′1 can be produced at reheating, while rescattering via
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virtual ν ′2 leads to little washout of the asymmetry. We conclude that thermal leptogenesis

may occur in the same minimal theory where e′ from sequential freeze in accounts for

dark matter, but only if ν ′1,2 are highly degenerate with mass several times larger than

TR ∼ 10−7v′ ∼ (102 − 104) GeV.

Other possibilities for leptogenesis exist. The effective theory below v′ may contain

the coupling ϕν ′ν ′, allowing the inflaton ϕ to decay to mirror neutrinos as well as SM

particles. Non-thermal leptogenesis then occurs in ν ′ decays before they thermalize.

Even though strong washout may be avoided by having mν′ ≫ TR, some degeneracy

among ν ′ is still required for a sufficient baryon asymmetry. If the mirror neutrino is the

lightest mirror fermion, inflaton decays to other mirror fermions may be kinematically

forbidden, so that our previous calculations of the e′ and u′ abundance still applies.

Another possibility is to augment the SM sector with gauge single fermions N and, by

parity, SM′ is augmented by N ′. In this case thermal leptogenesis can result purely in

the SM + N sector via N decay, as in conventional minimal leptogenesis. The low reheat

temperature again requires significant N degeneracy, but this is much less constrained

by radiative corrections. The breaking of parity by v′ can lead to N ′ coupling to ν ′ in

pseudo-Dirac states much heavier than the reheat temperature.

3.7 Higgs Parity

Models that implement a parity solution to the strong CP problem break parity

either explicitly, via a soft breaking term in the potential, or spontaneously, with a

vacuum having v′ ≫ v stabilized by Coleman-Weinberg radiative corrections [29]. The

latter mechanism, dubbed “Higgs Parity”, explains why the SM quartic coupling vanishes

when evolved to a high energy scale, and implies that the new physics at this scale is

that of parity restoration.
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Figure 3.10: In the DM region, there exists a TR for which e′ constitutes all
of DM while the u′ relics pass the experimental constraints. The solid, dashed
and dotted curves assume that those constraints take the form Yh′ < xYDM with
x = 10−8, 10−10, 10−12 respectively. The dark (light) gray-shaded region is excluded
by direct detection searches for e′ DM by Xenon1T [163] (LZ [173]), and the black-
-shaded one by the presence of Σ domain walls. In the Higgs parity region, the Higgs
quartic coupling vanishes at the scale v′ for some values of αS and mt within their 2σ
contours at mZ . The dashed red line assumes central values for αS and mt, the solid
line that they saturate their 2σ contours (in the direction of large mt and small αS),
and the dotted one that mt takes its central value while αS is increased to saturate
its 2σ contour.

As described in Refs. [136, 174], the tree-level parity symmetric potential for H and

H ′ has an important feature: in the limit that v ≪ v′ is imposed, an accidental U(4)

global symmetry emerges, with H = (H,H ′) forming a fundamental representation so

that an SU(2) × SU(2)′ subgroup is gauged. When H gets a VEV, ⟨H⟩ = (0, 0, 0, v′),

the U(4) is spontaneously broken to a U(3), H ′ acquires a mass and at tree-level the SM

Higgs arises as a massless Nambu-Goldstone boson. However, radiative corrections to the

scalar potential (the leading contribution coming from the SM and mirror top quarks)

break explicitly the U(4) global symmetry, giving radiative contributions to the SM Higgs

mass and quartic coupling. The large hierarchy v′/v results mainly from fine-tuning and
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the SM Higgs quartic coupling λ at the scale v′ takes a small value. At lower energies,

quantum corrections within the SM renormalize λ so that it grows logarithmically. In

this section, we discuss whether the condition λ(v′) ≃ −0.001 [136] is compatible with

the parameter space giving rise to e′ DM.

The leading contributions to the RGE for λ below the scale v′ are

dλ

dlnµ
=
24λ2 + 12λy2t − 6y4t

16π2
− λ (3α1 + 9α2)

4π

+
3

8
α2
1 +

9

8
α2
2 +

3

4
α1α2 ,

(3.20)

where yt is the top Yukawa. The couplings yt, α1 and α2 are computed at all scales, for

any given v3 and v
′, as discussed in Sec. 3.3. Hence, starting with the low energy value of

λ, known from the Higgs boson mass, its value at higher energies is computed in terms

of v3 and v′. The input parameters, in the MS scheme, that we use here are [147]

λ(mZ) = 0.13947± 0.00045 ,

αS(mZ) = 0.1179± 0.0009 ,

mt(mZ) = (168.26± 0.75)GeV.

(3.21)

The region of the (v3, v
′) plane consistent at 2σ with λ(v′) = 0 is shown in red in Fig. 3.10.

That it shuts off for small v3 is understood as follows. Low v3 increases the strong coupling

constants at a given scale, thereby enhancing the running of yt, making it decrease faster

in the UV than in the SM, hence reducing its impact on λ, which ends up not crossing zero

when yt runs too fast. One can see that, for the central values in Eq. (3.21), the condition

λ(v′) = 0 can be satisfied only for v3 ≳ 1010GeV and v′ ≳ 6 × 1011GeV. Varying the

input parameters within their 2σ uncertainty, λ(v′) = 0 can be obtained with v3 as low as

≈ 107GeV. These conditions for Higgs Parity are however incompatible with the results

obtained for e′ as DM candidate, using the central value of mu, as shown by the blue

region of Fig. 3.10. (Compare with Eq. (3.15)). As already discussed, a value for mu

larger by 20% would weaken the bounds in Fig. 3.7 and Fig. 3.8, which is however not
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sufficient to reconcile Higgs parity and e′ DM, as shown by the green region of Fig. 3.10.

Higgs Parity in this model would therefore require that measured SM parameters deviate

significantly from their central values. Fig. 3.10 neglects the threshold corrections to the

quartic at v′, but it is found to be very small and negative [136], making the situation

slightly worse for Higgs parity. Decreasing the theoretical uncertainty on our prediction

through the use of two-loop RGEs would be interesting as well, although we do not expect

a different conclusion; we leave this for future work.

A non-minimal theory, with additional heavy fermion states coupled to the Higgs, with

mass well below v′, would allow λ(v′) = 0 to be consistent with e′ DM from sequential

freeze-in. Thus parity could be spontaneously broken by the radiative Higgs Parity

mechanism in non-minimal theories. Froggatt-Nielsen type theories of flavor contain

such heavy fermions; if their masses are well below v′ the scale of spontaneous flavor

symmetry breaking is relatively low.

3.8 Conclusion

We have shown that certain models based on Parity solutions to the strong CP prob-

lem have a DM candidate already embedded in their particle spectrum. Having as a

benchmark the model detailed in Ref. [143], where the full gauge group of the SM is

copied. We have discussed the parameters of the model, stressing that Parity leaves little

freedom, making the model very predictive. There are two free parameters in addition

to the SM ones: the scale at which parity is broken, v′, which is also the scale of mirror

electroweak symmetry breaking, and the scale v3 at which the two color group break to

their diagonal subgroup. We computed the impact of broken parity on the RGEs of the

model, and we then studied the unavoidable kinetic mixing between the SM U(1)Y gauge

group and its mirror copy, which plays a relevant role for DM direct detection.
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We identified the mirror electron e′ as a good DM candidate, while the mirror up quark

u′ can form fractionally charged bound states with SM quarks after QCD confinement,

being therefore excluded by several experimental searches. The closeness in mass of e′

and u′ strongly determines the DM production mechanism. We find that production of

e′ DM from the SM bath, with a sufficiently suppressed u′ abundance, can occur via

a sequential freeze-in mechanism through an out-of-equilibrium bath of mirror photons.

This can occur only in the blue wedge-shaped region in the (v3, v
′) plane of Fig. 3.10.

Hence, the mass of the mirror electron is in the range [5−250] TeV and the SU(3)×SU(3)′

breaking scale is in the range [5− 500] TeV. At any point in this blue wedge region, the

reheating temperature must be close to 10−7v′, and hence is predicted to be low, in the

range [0.1−5] TeV. We noted that knowing the mass of the up quark with good precision

is crucial to make a robust prediction, therefore we commented on the possibility that

the precision of lattice determinations is underestimated.

The blue wedge-shaped region of Fig. 3.10 for e′ DM is not large and has several

observational signals associated with it. Near the vertical edge of the wedge, at v3 = 5

TeV, there are colored states associated with SU(3) × SU(3)′ breaking that may be

accessible to future collider experiments, as discussed in [143]. Close to the long sloped

edge of the wedge, e′ DM may be discovered by direct detection, via kinetic mixing of

our photon with the mirror photon. Higher in the wedge v′ increases and the u′/e′ mass

ratio falls; the abundance of the fractionally charged hadrons h, containing u′ increases,

leading to signals of this exotic DM component as discussed in [145]. Finally, throughout

the wedge, e′ DM is self interacting, with a long-range mirror electromagnetic force that

is precisely predicted, and this may lead to future observational signals in large scale

structure.

The low reheating temperature requires a late production of the cosmological baryon

asymmetry. The theory satisfies two key requirements for leptogenesis: heavy neutral
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fermions (ν ′) with Yukawa couplings to SM leptons, and a reheat temperature above the

electroweak phase transition. Generating sufficient baryons at such late times requires ν ′

degeneracy, to enhance the asymmetry, and ν ′ masses somewhat larger than the reheat

temperature.

Finally, we discussed whether the mechanism of Higgs Parity, which provides the

spontaneous breaking of exact parity, can be realised in these models and is compatible

with the parameters leading to a good DM candidate. We showed that the current central

values for mt and αS clearly exclude this possibility. Stretching these values within their

2σ confidence intervals gets one closer to the region of parameter space where e′ can

be DM, but overlap also requires a large uncertainty in the up quark mass. If parity is

broken spontaneously, either SM parameters are far from their central values, the Higgs

Parity theory contains couplings of the Higgs to exotic fermions, or the breaking occurs

first in some other sector of the theory and appears as soft breaking in the electroweak

sector.
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Chapter 4

Gravitational Waves from Stochastic

Scalar Fluctuations

4.1 Introduction

The fluctuations observed in the cosmic microwave background (CMB) and large-

scale structure (LSS) have given us valuable information about the primordial Universe.

As per the standard ΛCDM cosmology, such fluctuations were generated during a period

of cosmic inflation (see [15] for a review). While the microphysical nature of inflation

is still unknown, well-motivated single-field slow-roll inflationary models predict an ap-

proximately scale-invariant spectrum of primordial fluctuations, consistent with CMB

and LSS observations. These observations have enabled precise measurements of the

primordial fluctuations between the comoving scales k ∼ 10−4 − 1 Mpc−1. However, the

properties of primordial density perturbations are comparatively much less constrained

for k ≳ Mpc−1. In particular, as we will discuss below, the primordial curvature power

spectrum ∆2
ζ can naturally be much larger at such small scales, compared to the value

∆2
ζ ≈ 2× 10−9 observed on CMB scales [186].
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Scales corresponding to k ≳ Mpc−1 are interesting for several reasons. First, they

contain vital information regarding the inflationary dynamics after the CMB-observable

modes exit the horizon. In particular, they can reveal important clues as to how inflation

could have ended and the Universe was reheated. An enhanced power spectrum on such

scales can also lead to overabundant dark matter (DM) subhalos, motivating novel probes

(see [187] for a review). Furthermore, if the enhancement is significant, ∆2
ζ ≳ 10−7, the

primordial curvature fluctuations can induce a stochastic gravitational wave background

(SGWB) within the range of future gravitational wave detectors [188]. For even larger

fluctuations, ∆2
ζ ≳ 10−2, primordial black holes (PBH) can form, leading to interesting

observational signatures [189, 190]. Given this, it is interesting to look for mechanisms

that can naturally lead to a ‘blue-tilted’, enhanced power spectrum at small scales.

In models involving a single dynamical field during inflation, such an enhancement can

come, for example, from an inflection point on the inflaton potential or an ultra-slow roll

phase [191–195].1 However, for any generic structure of the inflaton potential, a power

spectrum that is blue-tilted at small scales can naturally arise if there are additional

light scalar fields other than the inflaton field. One class of such mechanisms involves a

rolling complex scalar field where the radial mode φ has a mass of order the inflationary

Hubble scale H and is initially displaced away from the minimum [197]. As φ rolls down

the inflationary potential, the fluctuations of the Goldstone mode ∝ (H/φ)2 increase

with time. This can then give rise to isocurvature fluctuations that increase with k, i.e.,

a blue-tilted spectrum. This idea was further discussed in [198] to show how curvature

perturbations can be enhanced on small scales as well, and lead to the formation of PBH.

For further studies on blue-tilted isocurvature perturbations, see, e.g., [199–202]. Other

than this, models of vector DM [203], early matter domination [204], and incomplete

phase transitions [205] can also give rise to enhanced curvature perturbation at small

1See also [196] for PBH formation in a multi-field ultra-slow roll inflationary model.
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scales.

In this work, we focus on a different mechanism where a Hubble-mass scalar field

quantum mechanically fluctuates around the minimum of its potential, instead of being

significantly displaced away from it (as in [197, 198]).2 Hubble-mass fields can naturally

roll down to their minimum since the homogeneous field value decreases with time as

exp(−m2t/(3H)), where m is the mass of the field with m ≲ H. Given that we do not

know the total number of e-foldings that took place during inflation, it is plausible that

a Hubble mass particle was already classically driven to the minimum of the potential

when the CMB-observable modes exit the horizon during inflation. For example, for

m2/H2 = 0.2, the field value decreases by approximately a factor of 103, for 100 e-

foldings of inflation prior to the exit of the CMB-observable modes. For any initial field

value φini ≲ 103⟨φ⟩, this can then naturally localize the massive field near the minimum

⟨φ⟩. However, the field can still have quantum mechanical fluctuations which tend to

diffuse the field away from ⟨φ⟩. The potential for the field, on the other hand, tries to

push the field back to ⟨φ⟩. The combination of these two effects gives rise to a non-trivial

probability distribution for the field, both as a function of time and space.

We study these effects using the stochastic formalism [207,208] for light scalar fields in

de Sitter (dS) spacetime. In particular, such stochastic effects can lead to a spectrum that

is blue-tilted at small scales. While we carry out the computation by solving the associ-

ated Fokker-Planck equation in detail below, we can intuitively understand the origin of a

blue-tilted spectrum as follows. For simplicity, we momentarily restrict our discussion to

a free scalar field σ with massm such thatm2 ≲ H2. The fluctuation σk(t), corresponding

to a comoving k-mode, decays after horizon exit as σk(t) ∼ H exp(−m2(t − t∗)/(3H)),

where t∗ is the time when the mode exits the horizon, k = a(t∗)H. We can rewrite

2For scenarios where the spectator field fluctuates around the minimum and gives rise to dark matter
abundance, see, e.g., [206].
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Figure 4.1: Schematic of the mechanism. The comoving horizon 1/(aH) decreases
during inflation and increases after that. Any k-mode carries a fluctuation of order
H/(2π) at the time of mode exit. However, modes with larger k (red) exit the horizon
later and encounters less dilution compared to modes with smaller k (blue), since
t∗ > t̃∗. Consequently, modes with larger k source stronger gravitational waves upon
horizon re-entry (shown via square box). We also depict the fact that σ carries
an energy density ∝ H4 during inflation, and dilutes as matter (for our benchmark
choices) after inflation ends.

the above by noting that physical momenta redshift as a function of time via k/a(t) =

H exp(−H(t − t∗)). Then we arrive at, σk(t) ∼ H(k/(aH))m
2/(3H2). Therefore, the di-

mensionless power spectrum, |σk|2k3 ∝ (k/(aH))2m
2/(3H2) has a blue tilt of 2m2/(3H2).

Physically, modes with smaller values of k exit the horizon earlier and get more diluted

compared to modes with larger values of k, leading to more power at larger k, and thus

a blue-tilted spectrum. This qualitative feature, including the specific value of the tilt

for a free field, is reproduced by the calculation described later where we also include the

effects of a quartic self-coupling. We summarize the mechanism in Fig. 4.1.

We note that if m is significantly smaller than H, the tilt is reduced and the ob-

servational signatures are less striking. On the other hand, for m ≳ H, the field is

exponentially damped, and stochastic effects are not efficient in displacing the field away

from the minimum. Therefore, it is puzzling as to why the particle mass, a priori ar-

bitrary, could be close to H in realistic scenarios. However, a situation with m ≈ H

can naturally rise if the field is non-minimally coupled to gravity. That is, a coupling

194



CHAPTER 4. GRAVITATIONALWAVES FROM STOCHASTIC SCALAR FLUCTUATIONS

L ⊃ cRσ2, where R is the Ricci scalar, can uplift the particle mass during inflation

m2 = (c/12)H2, regardless of a smaller ‘bare’ mass. Here we have used R = (1/12)H2

during inflation, and we notice for c ∼ O(1), we can have a non-negligible blue-tilted

spectrum.

The way the spectrum of σ affects the curvature perturbation depends on the cosmol-

ogy, and in particular, the lifetime of σ. During inflation, the energy density stored in σ is

of order H4, as expected, since σ receives H-scale quantum fluctuations. This is subdom-

inant compared to the energy stored in the inflaton field ∼ H2M2
pl. This implies σ acts as

a spectator field during inflation, and through the stochastic effects, σ obtains isocurva-

ture fluctuations. After the end of inflation, σ dilutes as matter while the inflaton decay

products dilute as radiation. Therefore, similar to the curvaton paradigm [209–212], the

fractional energy density in σ increases with time. Eventually, σ decays into Standard

Model radiation, and its isocurvature perturbations get imprinted onto the curvature

perturbation. Different from the curvaton paradigm, in our scenario, σ does not domi-

nate the energy density of the Universe, and also the fluctuations of the inflaton are not

negligible. In particular, on large scales, observed via CMB and LSS, the fluctuations

are red-tilted and sourced by the inflaton, as in ΛCDM cosmology. On the other hand,

the blue-tilted σ fluctuations are subdominant on those scales, while dominant at smaller

scales ≲ Mpc. These enhanced perturbations can source an SGWB, observable in future

gravitational wave detectors, as we describe below.

The rest of the chapter is organized as follows. In section 4.2, we describe the evolution

of the inflaton field and σ along with some general properties of curvature perturbation in

our framework. In section 4.3, we compute the stochastic contributions to σ fluctuations

to obtain its power spectrum. We then use these results in section 4.4 to determine

the full shape of the curvature power spectrum, both on large and small scales. The

small-scale enhancement of the curvature power spectrum leads to an observable SGWB
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and we evaluate the detection prospects in section 4.5 in the context of µ-Hz to Hz-scale

gravitational wave detectors. We conclude in section 4.6. We include some technical

details relevant to the computation of SGWB in appendix C.1.

4.2 Cosmological History and Curvature Perturba-

tion

We now describe in detail the cosmological evolution considered in this work. We

assume that the inflaton field ϕ drives the expansion of the Universe during inflation and

the quantum fluctuations of ϕ generate the density fluctuations that we observe in the

CMB and LSS, as in standard cosmology. We also assume that there is a second real

scalar field σ which behaves as a subdominant spectator field during inflation, as alluded

to above. We parametrize its potential as,

V (σ) =
1

2
m2σ2 +

1

4
λσ4. (4.1)

The σ field does not drive inflation but nonetheless obtains quantum fluctuations during

inflation. In particular, σ obtains stochastic fluctuations around the minimum of its

potential, as we compute in section 4.3. After the end of inflation, the inflaton is assumed

to reheat into radiation with energy density ρr, which dominates the expansion of the

Universe.

We have ignored the interaction between ϕ and σ. First, the two fields could be

part of completely different sectors with no mediators that can couple the two sectors.

Second, the inflaton can be modeled as a (pseudo)-Goldstone boson so that there is an

approximate shift symmetry ϕ → ϕ + constant. This shift symmetry is necessary to

explain the lightness of the inflaton field. Furthermore, this approximate shift symmetry

leads to an almost scale-invariant power spectra on large scales, observed in the CMB.
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In the presence of this symmetry, the leading operator that couples the two fields is of

the type (∂ϕ)2σ2/Λ2 with some effective theory cutoff scale Λ. Here we are assuming a

σ → −σ symmetry which is present in the potential V (σ) (4.1). The cut-off scale can be

high, for example, of the order of the Planck scale. This interaction can then be safely

ignored.

The evolution of the σ field depends on its mass m, interaction λ, and its frozen

(root mean squared) displacement σ0 during inflation. As long as the ‘effective’ mass

of σ: m2 + 3λσ2
0, is smaller than the Hubble scale, σ remains approximately frozen at

σ0. However, after the Hubble scale falls below the effective mass, σ starts oscillating

around its potential. The evolution of its energy density ρσ, during this oscillatory phase

depends on the values of m and λ. If the quartic interactions dominate, with λσ2 ≫ m2,

ρσ dilutes like radiation [213]. Eventually, the amplitude of σ decreases sufficiently, so

that λσ2 ≲ m2, following which ρσ starts redshifting like matter. We illustrate these

behaviors in Fig. 4.2.

Similar to the curvaton paradigm [209–212], during the epoch ρσ is diluting as matter,

its fractional energy density, fσ(t) ≡ ρσ(t)/ρr(t), increases linearly with the scale factor

a(t). For our benchmark parameter choices, we assume σ to decay into SM radiation

while fσ(td) ∼ 1, where td denotes the time of σ decay. After td, the evolution of the

Universe coincides with standard cosmology.

With this cosmology in mind, we can track the evolution of various cosmological per-

turbations using the gauge invariant quantity ζ, the curvature perturbation on uniform-

density hypersufaces [214],

ζ = −ψ −Hδρ

ρ̇
. (4.2)

Here ψ is a fluctuation appearing in the spatial part of the metric as, δgij = −2a2ψδij (ig-

noring vector and tensor perturbations), δρ denotes a fluctuation around a homogeneous
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)a
(t
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m2/H2 = 0.005, λ = 1

m2/H2 = 0.2, λ = 0.05

Radiation

Figure 4.2: Time evolution of scalar field energy density ρσ(t). In scenarios where
the quartic term dominates the initial evolution (dashed red), the field dilutes as
radiation (dot-dashed olive), ρσ(t) ∝ 1/a(t)4. Eventually, the mass term becomes
important, and the behavior becomes ρσ(t) ∝ 1/a(t)3. The benchmark choices in this
work will mimic the blue curve where the evolution of ρσ(t) is always dominated by
the mass term with a matter-like dilution. For both the blue and the red curves,
t = 1 corresponds to the moment when the Hubble scale is approximately equal to
the effective mass and the field starts oscillating.
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density ρ, and an overdot denotes a derivative with respect to physical time t. We assume

that the decay products of ϕ do not interact with σ during their cosmological evolution.

Since there is no energy transfer between the two sectors, their energy densities evolve

as,

ρ̇r = −4Hρr , ρ̇σ = −3Hρσ, (4.3)

where we have focused on the epoch where σ dilutes like matter. For the benchmark

parameter choices discussed below, the matter-like dilution for σ onsets soon after infla-

tion. Similar to eq. (4.2), we can parametrize gauge invariant fluctuations in radiation

and σ with the variables,

ζr = −ψ +
1

4

δρr
ρr
, ζσ = −ψ +

1

3

δρσ
ρσ

. (4.4)

In terms of the above variables, we can express eq. (4.2) as,

ζ =
4

4 + 3fσ
ζr +

3fσ
4 + 3fσ

ζσ = ζr +
fσ

4 + 3fσ
Sσ. (4.5)

Here Sσ ≡ 3(ζσ− ζr) is the isocurvature perturbation between radiation and σ perturba-

tions. In the absence of any energy transfer, ζr and ζσ are each conserved at super-horizon

scales [215]. As a result, the evolution of ζ is entirely determined by the time-dependent

relative energy density of between radiation and σ, fσ = ρσ/ρr. Since ζr and Sσ are uncor-

related, the power spectrum for curvature perturbation ⟨ζ(k)ζ(k′)⟩ ≡ (2π)3δ(k+k′)Pζ(k)

is determined by,

Pζ(k) = Pζr(k) +

(
fσ

4 + 3fσ

)2

PSσ(k) , (4.6)

or equivalently,

∆2
ζ(k) = ∆2

ζr(k) +

(
fσ

4 + 3fσ

)2

∆2
Sσ
(k) , (4.7)

where ∆2
ζ(k) = k3Pζ(k)/(2π

2), with ∆2
ζr
(k) and ∆2

Sσ
(k) defined analogously.

To compute the spectral tilt, we denote the comoving momentum of the mode that

enters the horizon at td, the time of σ decay, as kd which satisfies kd = a(td)H(td).
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For t > td, ζ remains conserved with time on superhorizon scales. Correspondingly, for

k < kd, the spectral tilt is given by,

ns − 1 ≡
d ln∆2

ζ(k)

d ln k
=

∆2
ζr
(k)

∆2
ζ(k)

d ln∆2
ζr
(k)

d ln k

+

(
fσ

4 + 3fσ

)2 ∆2
Sσ
(k)

∆2
ζ(k)

d ln∆2
Sσ
(k)

d ln k
.

(4.8)

We will consider scenarios where the radiation energy density ρr originates from the

inflaton, and therefore, d ln∆2
ζr
(k)/d ln k ≈ −0.04 determines the spectral tilt observed

on CMB scales [186]. On the other hand, σ acquires stochastic fluctuations to give

rise to a blue-tilted power spectrum with d ln∆2
Sσ
(k)/d ln k ∼ 0.3, as discussed next

in section 4.3. Since we will be interested in scenarios with fσ ≲ 1, i.e., (fσ/(4 +

3fσ))
2 ≲ 0.02, we require ∆2

Sσ
(k)/∆2

ζ(k) ≲ 1 on CMB-scales to be compatible with CMB

measurements of ns. We can also compute the running of the tilt,

dns
d ln k

≈
(

fσ
4 + 3fσ

)2 ∆2
Sσ
(k)

∆2
ζ(k)

(
d ln∆2

Sσ
(k)

d ln k

)2

. (4.9)

Our benchmark parameter choices, discussed above, thus also satisfy the CMB constraints

on dns/d ln k [186].

4.3 Review of the Stochastic Formalism

A perturbative treatment of self-interacting light scalar fields in de Sitter (dS) space-

time is subtle due to infrared divergences. A stochastic approach [207, 208] can be used

to capture the nontrivial behavior of such fields in dS. In this formalism, the super-

horizon components of the fields are considered classical stochastic fields that satisfy

a Langevin equation, which includes a random noise originating from the sub-horizon

physics. This gives rise to a Fokker-Planck equation for the probability distribution

function (PDF) of the stochastic field, which can be used to calculate correlation func-
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tions of physical observables. We now review these ideas briefly while referring the reader

to refs. [207,208,216–219] for more details.

4.3.1 Langevin and Fokker-Planck Equations

The stochastic approach provides an effective description for the long-wavelength,

superhorizon sector of the field theory by decomposing the fields into long-wavelength

classical components and short-wavelength quantum operators. For instance, a light

scalar field can be decomposed as

σtot.(x, t) = σ(x, t)

+

∫
d3k

(2π)3
θ(k − ϵa(t)H)e−ik·x(akuk + a†−ku

∗
k),

(4.10)

where θ(· · · ) is the Heaviside step function, a is the scale factor, H is the Hubble scale,

and ϵ ≲ 1 is a constant number (not to be confused with the slow-roll parameter) which

defines the boundary between long (k < ϵa(t)H) and short (k > ϵa(t)H) modes. We

have also denoted the classical part of the field as σ(x, t). The quantum description of

the short modes is characterized by the creation and annihilation operators ak, a
†
k along

with the mode functions uk(t), u
∗
k(t).

For a light field with |V ′′(σ)| ≪ H2, it can be shown [207, 208, 216, 217] that the

classical part of the field, σ(x, t), follows a Langevin equation

σ̇(x, t) = − 1

3H
V ′(σ) + ξ(x, t). (4.11)

Here an overdot and a prime denote derivative with respect to time and the field, respec-

tively. The noise ξ arises from short-scale modes,

ξ(x, t) = ϵaH2

∫
d3k

(2π)3
δ(k − ϵaH)e−ik·x(akuk + a†−ku

∗
k), (4.12)

with a correlation

⟨ξ(x1, t1)ξ(x2, t2)⟩ =
H3

4π2
δ(t1 − t2)j0(ϵaH|x1 − x2|), (4.13)
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where j0(x) = sinx/x is the zeroth order spherical Bessel function. We see that the noise

is uncorrelated in time (i.e., it is a white noise), but also it is uncorrelated over spatial

separations larger than (ϵaH)−1.

The Langevin equation (4.11) gives rise to a Fokker-Planck equation for the one-point

PDF,

∂PFP(t, σ(x, t))

∂t
=

[
V ′′(σ(x, t))

3H

+
V ′(σ(x, t))

3H

∂

∂σ
+
H3

8π2

∂2

∂σ2

]
PFP(t, σ(x, t)).

(4.14)

Here PFP(t, σ(x, t)) is the PDF of the classical component to take the value σ(x, t) at time

t. Thus the Fokker-Planck equation describes how an ensemble of field configurations

evolves as a function of time, according to the underlying Langevin equation. In this

equation, the first and second terms on the right-hand side represent classical drift terms

that depend on the potential V (σ). The third term represents a diffusion contribution

from the noise ξ. While the classical drift tries to move the central value of the field

towards the minimum of the potential, the diffusion contribution pushes the field away

from the minimum. An equilibrium is achieved when these two effects balance each other.

This equilibrium solution can be obtained by setting ∂PFP/∂t = 0 in (4.14), and is given

by

PFP,eq(σ) =
1

N exp

(
− 8π2

3H4
V (σ)

)
, (4.15)

where N is a normalization constant. Upon a variable change

P̃FP(t, σ) ≡ exp

(
4π2V (σ)

3H4

)
PFP(t, σ), (4.16)

eq. (4.14) can written as

∂P̃FP(t, σ)

∂t
=
H3

4π2

[
−1

2

(
v′2 − v′′

)
+

1

2

∂2

∂σ2

]
︸ ︷︷ ︸

Dσ

P̃FP(t, σ) , (4.17)
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with v(σ) = 4π2V (σ)/(3H4). We can recast the above as an eigenvalue equation. To

that end, we write

P̃FP(t, σ) =
∑
n

ane
−Λntψn(σ), (4.18)

where ψn(σ) satisfies the equation

Dσψn(σ) = −
4π2

H3
Λnψn(σ). (4.19)

The eigenfunctions ψn(σ) form an orthonormal basis of functions and an’s are some

arbitrary coefficients.

This time-independent eigenvalue equation (4.19) can be solved numerically for a

generic potential V (σ), as we discuss below with an example. By definition, and inde-

pendent of the form of the potential, the eigenfunction ψ0 corresponding to the eigenvalue

Λ0 = 0, determines the equilibrium distribution. Solution of the eq. (4.19) for Λ0 = 0 is

given by

ψ0(σ) =
1√
N

exp

(
− 4π2

3H4
V (σ)

)
. (4.20)

Thus comparing to eq. (4.15) we get,

PFP,eq(σ) = ψ0(σ)
2 . (4.21)

4.3.2 Two-point Correlation Function and Power Spectrum

We are interested in calculating the two-point correlation functions of cosmological

perturbations. Any such two-point correlation function depends only on the geodesic

distance s between the two points. Given the coordinates of the two points (x1, t1) and

(x2, t2), this distance can be parametrized by z = 1 +H2s2/2 with

z = coshH(t1 − t2)−
1

2
eH(t1+t2) (H|x1 − x2|)2 . (4.22)
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To understand the significance of the variable z, we first write the two-point correlation

function for an arbitrary function of σ, g(σ), as

Gg(x1, t1;x2, t2) = ⟨g(σ(x1, t1))g(σ(x2, t2))⟩. (4.23)

To compute this, it is more convenient to calculate the temporal correlation first, and then

use the fact that equal-time correlations over spatially separated points are related to

the temporal correlation through the de Sitter-invariant variable z (4.22). In particular,

for coincident points Gg is a function of (t1 − t2) only, which can be expressed in terms

of z for large |z| as,

Gg(t1 − t2) ≈ Gg(H
−1 ln |2z|). (4.24)

However, for an equal time correlation function we can also write,

|2z| ≈ (HeHt|x1 − x2|)2, (4.25)

which gives,

Gg(t1 − t2) ≃ Gg

(
ln |2z|
H

)
≃ Gg

(
2

H
ln(aH|x1 − x2|)

)
, (4.26)

where the approximations hold as long as |z| ≫ 1 and we used a(t) = exp(Ht).

Now we aim at formally calculating Gg(t) in terms of solutions of the Fokker-Planck

equation. The temporal correlation can be written as (see, e.g., [207,208,219])

Gg(t) =

∫
dσ

∫
dσ0PFP,eq(σ0)g(σ0)Π(t, σ;σ0)g(σ), (4.27)

where Π(t, σ;σ0) is the kernel function of the time evolution of the probability distribution

function, i.e., if the probability distribution is δ(σ − σ0) at t = 0 it would be Π(t, σ;σ0)

at time t. In particular, it is defined by

PFP(t;σ) =

∫
dσ0Π(t, σ;σ0)P (0;σ0). (4.28)
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In terms of re-scaled probabilities, we can rewrite the above as,

P̃FP(t;σ) =

∫
dσ0Π̃(t, σ;σ0)P̃FP(0;σ0) , (4.29)

Π(t, σ;σ0) = e−v(σ)Π̃(t, σ;σ0)e
v(σ0). (4.30)

It follows that Π̃ satisfies the same Fokker-Planck equation as P̃FP (4.17). Therefore, the

solutions can be written as

Π̃(t;σ, σ0) =
∑
n

ψn(σ0)e
−Λntψn(σ), (4.31)

which obeys the initial condition Π̃(0;σ, σ0) = δ(σ−σ0) is satisfied. Therefore, according

to (4.27) we have3

Gg(t) =
∑
n

∫
dσ0ψ0(σ0)g(σ0)ψn(σ0)e

−Λnt

×
∫

dσψn(σ)g(σ)ψ0(σ) =
∑
n

g2ne
−Λnt, (4.32)

where

gn ≡
∫

dσψn(σ)g(σ)ψ0(σ). (4.33)

We see that in late times the correlation is dominated by the smallest Λn ̸= 0.

We can now present the equal-time correlation function by combining (4.26) and

(4.32) [207,208,219]:

Gg(|x1 − x2|) =
∑
n

g2n
(aH|x1 − x2|)2Λn/H

. (4.34)

We note that this depends on the physical distance between the two points at time

t, namely, a|x1 − x2|. This correlation function has the following dimensionless power

spectrum [219],

∆2
g(k) =

k3

2π2
Pg(k) =

k3

2π2

∫
d3re−ik·rGg(r)

=
∑
n

2g2n
π

Γ

(
2− 2Λn

H

)
sin

(
πΛn
H

)(
k

aH

)2Λn/H

(4.35)

3Note that PFP,eq(σ0) = ψ0(σ0)
2 = ψ0(σ0)ψ0(σ)e

4π2V (σ)/3H4

e−4π2V (σ0)/3H
4

.
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where Γ denotes the gamma function. This expression is valid in the limit k ≪ aH.

So far our discussion has been general and is valid for any potential under the slow-roll

approximation and the assumption of a small effective mass, |V ′′(σ)| ≪ H2. In the next

section, we discuss a concrete example with V (σ) given in eq. (4.1).

4.4 Large Curvature Perturbation from Stochastic

Fluctuations

We focus on the potential in eq. (4.1) to demonstrate how large curvature perturbation

can arise from stochastic fluctuations. We first describe various equilibrium quantities

and how to obtain the power spectra PSσ , and consequently evaluate Pζ which determines

the strength of the GW signal.

4.4.1 Equilibrium Configuration

The normalized PDF for the one-point function is given by eq. (4.15). For conve-

nience, we reproduce it here

PFP,eq(σ) =
1

N exp

(
−8π2V (σ)

3H4

)
, (4.36)

with

N =
2
√
2
√
λ

exp
(
m4π2

3H4λ

)
mK 1

4

(
m4π2

3H4λ

) . (4.37)

Here Kn(x) is the modified Bessel function of the second kind. The mean displacement

of the field can be computed as,

⟨σ2⟩ =
∫ ∞

0

dσσ2PFP,eq(σ) =
m2

2λ

−1 + K 3
4

(
m4π2

3H4λ

)
K 1

4

(
m4π2

3H4λ

)
 . (4.38)
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In the appropriate limits, this can be simplified to,

⟨σ2⟩
∣∣∣∣
λ→0

=
3H4

8π2m2
, (4.39)

⟨σ2⟩
∣∣∣∣
m→0

=

√
3

2λ

Γ(3/4)

Γ(1/4)π
H2, (4.40)

matching the standard results [208]. We can also compute the average energy density of

the field as,

⟨V (σ)⟩ =
∫ ∞

0

dσV (σ)PFP,eq(σ)

=
1

32

3H4

π2
− 4m4

λ
+

4m4

λ

K 3
4

(
m4π2

3H4λ

)
K 1

4

(
m4π2

3H4λ

)
 ,

(4.41)

reducing to,

⟨V (σ)⟩
∣∣∣∣
λ→0

=
3H4

16π2
, (4.42)

⟨V (σ)⟩
∣∣∣∣
m→0

=
3H4

32π2
. (4.43)

To ensure that σ does not dominate energy density during inflation, we require

⟨V (σ)⟩ ≪ 3H2M2
pl. (4.44)

Finally, we compute ⟨V ′′(σ)⟩ to check the validity of slow-roll of the σ field,

⟨V ′′(σ)⟩ =
∫ ∞

0

dσV ′′(σ)PFP,eq(σ)

=
1

2
m2

−1 + 3K 3
4

(
m4π2

3H4λ

)
K 1

4

(
m4π2

3H4λ

)
 ,

(4.45)

which reduces to,

⟨V ′′(σ)⟩
∣∣∣∣
λ→0

= m2, (4.46)

⟨V ′′(σ)⟩
∣∣∣∣
m→0

=
3
√
3Γ(3/4)√

2πΓ(1/4)

√
λH2 ≈ 0.4

√
λH2. (4.47)

To ensure slow-roll, we require

⟨V ′′(σ)⟩ ≪ H2. (4.48)
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4.4.2 Power Spectrum

To obtain isocurvature power spectrum, PSσ , we need to compute the two-point func-

tion of δρσ/ρσ. We can write this more explicitly as,

δρσ(x)

ρσ
=
ρσ(x)− ⟨ρσ(x)⟩
⟨ρσ(x)⟩

=
ρσ(x)

⟨ρσ(x)⟩
− 1. (4.49)

where we can approximate ρσ ≈ V (σ), since ⟨V (σ)⟩ is approximately frozen, as long

as eq. (4.48) is satisfied. Referring to eq. (4.33) and eq. (4.35), the relevant coefficient gn

for ρσ is determined by,

gn =

∫
dσψn(σ)ρσψ0(σ)∫
dσψ0(σ)ρσψ0(σ)

. (4.50)

For n > 0, the last term in eq. (4.49) does not contribute because of the orthogonality

of the eigenfunctions.

The eigenfunctions ψn and the eigenvalues Λn relevant for eq. (4.35) can be obtained

by solving the eigensystem for the potential eq. (4.1). In terms of variables, z = λ1/4σ/H

and α = m2/(
√
λH2), the eigenvalue eq. (4.19) can be written as [219],

∂2ψn
∂z2

+

(
−
(
4π2

3

)2

(αz + z3)2 +
4π2

3
(α + 3z2)

)
ψn

= −8π2

√
λ

Λn
H
ψn.

(4.51)

Given the potential in eq. (4.1), the eigenfunctions are odd (even) functions of σ for odd

(even) values of n. Since ρσ is an even function of σ, eq. (4.50) implies g1 = 0, and

therefore, the leading coefficient is g2 with the eigenvalue Λ2 determining the first non-

zero contribution to the spectral tilt. We show the numerical results for the eigenvalues

for some benchmark parameter choices in Table 4.1.

The curvature power spectrum ∆2
ζ depends on both ∆2

Sσ
and fσ, as in eq. (4.7). With

the values of gn,Λn in Table 4.1, we can compute the dimensionless power spectrum

∆2
Sσ

using eq. (4.35), where we can evaluate the factor of aH at the end of inflation.
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m2/H2 λ Λ2/H g22 Λ4/H g24

0.2 0.05 0.16 1.99 0.37 0.03

0.2 0.07 0.17 1.98 0.40 0.05

0.2 0.1 0.18 1.98 0.44 0.07

0.25 0.05 0.19 1.99 0.42 0.02

0.25 0.07 0.20 1.99 0.45 0.03

0.25 0.1 0.21 1.98 0.49 0.05

0.3 0.05 0.22 1.99 0.48 0.01

0.3 0.07 0.23 1.99 0.51 0.02

0.3 0.1 0.24 1.99 0.54 0.03

Table 4.1: Eigenvalues for some benchmark parameter choices corresponding to the
potential in eq. (4.1).

Furthermore, for our benchmark parameter choices, only the eigenvalue Λ2 is relevant.

Therefore, eq. (4.35) can be simplified as,

∆2
Sσ
(k) ≈ 2g22

π
Γ

(
2− 2Λ2

H

)
sin

(
πΛ2

H

)(
k

kend

)2Λ2/H

, (4.52)

where kend = aendHend.

The precise value of kend depends on the cosmological history after the CMB-observable

modes exit the horizon. It is usually parametrized as the number of e-foldings N(k) ≡

ln(aend/ak), where ak is the scale factor when a k-mode exits the horizon during inflation,

defined by k = akHk. Assuming an equation of state parameter w between the end of

inflation and the end of the reheating phase, we can derive the relation [220,221],

k

a0H0

=

( √
π

901/4
T0
H0

)
e−N(k)

(
V

1/2
k

ρ
1/4
endMpl

)(
ρRH

ρend

) 1−3w
12(1+w)

×
g
1/3
∗,s,0g

1/4
∗,RH

g
1/3
∗,s,RH

.

(4.53)
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Here g∗,RH and g∗,s,RH are the effective number of degrees of freedom in the energy density

and entropy density, respectively, at the end of the reheating phase; Vk is the inflationary

energy density when the k-mode exits the horizon; ρend and ρRH are the energy densities

at the end of inflation and reheating, respectively. Plugging in the CMB temperature T0

and the present-day Hubble parameter H0, we arrive at

N(k) ≈ 67− ln

(
k

a0H0

)
+ ln

(
V

1/2
k

ρ
1/4
endMpl

)

+
1− 3w

12(1 + w)
ln

(
ρRH

ρend

)
+ ln

(
g
1/4
∗,RH

g
1/3
∗,s,RH

)
.

(4.54)

Significant sources of uncertainty in N(k) comes from Vk, ρend, ρRH, and w. Furthermore,

eq. (4.54) assumes a standard cosmological history where following reheating, the Uni-

verse becomes radiation dominated until the epoch of matter-radiation equality. We now

consider some benchmark choices with which we can evaluate N(k). We set k = a0H0,

assume V
1/4
k = 1016 GeV, close to the current upper bound [186], ρend ≃ Vk/100, mo-

tivated by simple slow-roll inflation models, and w ≈ 0 [222–224].4 Then depending on

the reheating temperature, we get

N(k) =


62, TRH = 6× 1015 GeV,

59, TRH = 1011 GeV.

(4.55)

For the first benchmark, we have assumed an instantaneous reheating after inflation,

while for the second benchmark, the reheating process takes place for an extended period

of time. For these two benchmarks, kend ≈ 4× 1023 Mpc−1 and 1022 Mpc−1, respectively.

To determine ∆2
ζ(k), we also need to evaluate fσ as a function of time. We can

4The precise value of w is model dependent, see, e.g., [225–230] and [231] for a review. However, this
does not affect the superhorizon behavior of ζr and Sσ that we described above. Instead, w primarily
affects the number of e-foldings N(k) in (4.54). For example, using w = 0.2(0.1) makes a 0.5%(0.2%)
change in N(k) for TRH = 6 × 1015 GeV in (4.55). For TRH = 1011 GeV, using w = 0.2(0.1) makes a
3%(2%) change in N(k). Given these changes are less than 5%, we will use w ≈ 0 in the rest of the
analysis.
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express the time dependence of fσ in terms of k in the following way. A given k-mode re-

enters the horizon when k = akHk, and assuming radiation domination, we get k/kend =

aend/ak. Since fσ increases with the scale factor before σ decay, we can express fσ(t) =

fσ(td)(kd/k), for t < td, where kd and k are the modes that re-enter the horizon at time

td and t, respectively. Therefore, the final expression for the curvature power spectrum

at the time of mode re-entry follows from eq. (4.7),

∆2
ζ(k) =


∆2
ζr
(k) +

(
fσ(td)

4+3fσ(td)

)2
∆2
Sσ
(k), k < kd,

∆2
ζr
(k) +

(
fσ(td)(kd/k)

4+3fσ(td)(kd/k)

)2
∆2
Sσ
(k), k > kd.

(4.56)

To determine the scale kd, we consider the benchmarks discussed above, along with

some additional choices for other parameters.

Benchmark 1. We focus on the first benchmark in eq. (4.55). For m2 = 0.2H2 and

λ ≃ 0.05− 0.1, we get ⟨V (σ)⟩ ≈ 0.02H4 from eq. (4.41), implying ⟨V (σ)⟩/Vk ≈ 3× 10−12

for H = 5 × 1013 GeV. Assuming instantaneous reheating, and ρend ≃ Vk/100, we see

fσ ≃ 1 for a ≃ (1/3) × 1010aend. As benchmarks, we assume σ decays when fσ = 1

and 1/3. Using kend ≈ 4 × 1023 Mpc−1, we can then evaluate kd ≈ 1014 Mpc−1 and

kd ≈ 3 × 1014 Mpc−1, respectively. The result for the curvature power spectrum with

these choices is shown in Fig. 4.3 (left).

Benchmark 2. We now discuss the second benchmark in eq. (4.55). We again choose

m2 = 0.2H2 and λ ≃ 0.05 − 0.1, for which we get ⟨V (σ)⟩ ≈ 0.02H4 from eq. (4.41).

This implies ⟨V (σ)⟩/Vk ≈ 3 × 10−12 for H = 5 × 1013 GeV, as before. The rest of

the parameters can be derived in an analogous way, with one difference. During the

reheating epoch, with our assumption w ≈ 0, fσ does not grow with the scale factor

since the dominant energy density of the Universe is also diluting as matter. Accounting
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Figure 4.3: Power spectrum of curvature perturbations for the benchmarks discussed
above. Stochastic effects lead to a blue-tilted spectrum of σ, with larger m and λ
corresponding to larger tilts, leading to faster decay as k gets smaller. The blue-tilt
is eventually cut off at kd, the k-mode that reenters the horizon at the time of σ
decay. For k larger than kd, the fractional energy density in σ at the time of mod-
e-reentry is smaller. Correspondingly, ∆2

ζ gets suppressed. Eventually, for very large

k, the effects of σ become negligible, and ∆2
ζ reverts back to its standard, slightly

red-tilted behavior. A smaller value of fσ(kd), the fractional energy density at the
time σ decay, suppresses the effect of σ to ∆2

ζ , and hence leads to a suppressed peak.
This mechanism predicts signatures in CMB spectral distortion measurements [232],
especially in Super-PIXIE [233], along with Pulsar Timing Array (PTA) probes for
enhanced DM substructure [234], and precision astrometry probes (AstroM) [235].
We also show constraints from FIRAS [236] and non-observation of primordial black
holes (PBH) [189].
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for this gives kd ≈ 8 × 1011 Mpc−1 and kd ≈ 3 × 1012 Mpc−1, for fσ = 1 and 1/3,

respectively, with the resulting curvature power spectrum shown in Fig. 4.3 (center).

Benchmark 3. This is same as the first benchmark discussed above, except we focus

on m2 = 0.25H2 and 0.3H2 along with fσ = 1. The result is shown in Fig. 4.3 (right).

We note that for all three cases, the power spectrum does not become as large as

to give rise to PBH. It can also be checked that the correction to the large-scale power

spectrum, relevant for the CMB, from the enhanced small-scale power spectrum, is small.

In fact, repeating the argument of [237], we find

δPζ(kL) ∼
∆4
ζ

k3s
∼

∆4
ζ

∆2
ζ,CMB

k3L
k3s
Pζ(kL). (4.57)

For ∆2
ζ ∼ 10−5 and ks ∼ 1014 Mpc−1, as in Fig. 4.3 (left), we have

δPζ(kL) ∼ 10−46Pζ(kL), (4.58)

for kL ∼ 10−1 Mpc−1 and ∆2
ζ,CMB ∼ 10−9 (corresponding to a typical scale probed by the

CMB).

4.5 Gravitational Wave Signature

4.5.1 Secondary Gravitational Waves from Scalar Curvature

Perturbation

We now review how large primordial curvature perturbations can source GW at the

second order in perturbation theory [238–241] (for a review see [188]). We then evaluate

the GW spectrum sourced by ∆2
ζ computed in section 4.4. We start our discussion with a

brief review of the essential relations, following [242], and expand the discussion further
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in appendix C.1. For some recent work on scalar-induced gravitational waves, see, e.g.,

Refs. [243,244].

We can write a tensor perturbation in Fourier space as,

hij(τ,x) =
∑
λ=+,×

∫
d3k

(2π)3
eik·xϵλij(k)hλ(τ,k) , (4.59)

where ϵ
λ={+,×}
ij (k) are polarization tensors:

ϵ+ij(k) =
1√
2
(e1,i(k)e1,j(k)− e2,i(k)e2,j(k)) , (4.60)

ϵ×ij(k) =
1√
2
(e1,i(k)e2,j(k) + e2,i(k)e1,j(k)) , (4.61)

with e1,2 the orthonormal bases spanning the plane transverse to k. The equation of

motion determining the generation and evolution of GW is given by

h′′λ(τ,k) + 2Hh′λ(τ,k) + k2hλ(τ,k) = 4Sλ(τ,k), (4.62)

where ′ denotes derivative with respect to the conformal time τ and H = a′/a is the

conformal Hubble parameter. The second-order (in scalar metric perturbation Φ) source

term is given by5

Sλ(τ,k) =
∫

d3q

(2π)3
Qλ(k,q)

3(1 + w)

[
2(5 + 3w)ΦpΦq

+ τ 2(1 + 3w)2Φ′
pΦ

′
q + 2τ(1 + 3w)(ΦpΦ

′
q + ΦpΦ

′
q)

]
.

(4.64)

We have defined p ≡ k− q, Φk ≡ Φ(τ,k), and a projection operator Qλ(k,q):

Qλ(k,q) ≡ ϵijλ (k)qiqj . (4.65)

5We parametrize the scalar metric fluctuations, for vanishing anisotropic stress, as

ds2 = − (1 + 2Φ) dt2 + a2 (1− 2Φ) δijdx
idxj (4.63)
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The metric perturbation Φ(τ,k) can be written in terms of the primordial curvature

perturbation ζ(k),

Φ(τ,k) =
3 + 3w

5 + 3w
TΦ(kτ)ζ(k) , (4.66)

via a transfer function TΦ(kτ) which depends on w. With the above quantities, one can

now solve eq. (4.62) using the Green function method,6

hλ(τ,k) =
4

a(τ)

∫ τ

τ0

dτ̄Gk(τ, τ̄)a(τ̄)Sλ(τ̄ ,k) . (4.67)

Using the solutions of eq. (4.62), the power spectrum Pλ(τ, k), defined via,

⟨hλ1(τ,k1)hλ2(τ,k2)⟩ ≡ (2π)3δλ1λ2δ
3(k1 + k2)Pλ1(τ, k1) , (4.68)

can be written as,

⟨hλ1(τ,k1)hλ2(τ,k2)⟩ =

16

∫
d3q1
(2π)3

d3q2
(2π)3

Qλ1(k1,q1)Qλ2(k2,q2)I(|k1 − q1|, q1, τ1)

× I(|k2 − q2|, q2, τ2)⟨ζ(q1)ζ(k1 − q1)ζ(q2)ζ(k2 − q2)⟩ .

(4.69)

Here

I(p, q, τ) =
1

a(τ)

∫ τ

τ0

dτ̄ Gk(τ, τ̄)a(τ̄)f(p, q, τ̄) , (4.70)

and

(5 + 3w)2

3(1 + w)
f(p, q, τ) = 2(5 + 3w)TΦ(pτ)TΦ(qτ)

+ τ 2(1 + 3w)2T ′
Φ(pτ)T

′
Φ(qτ)

+ 2τ(1 + 3w) [TΦ(pτ)T
′
Φ(qτ) + T ′

Φ(pτ)TΦ(qτ)] .

(4.71)

where T ′
Φ(pτ) = ∂TΦ(pτ)/∂τ . We note that the power spectrum is sourced by the four-

point correlation function of super-horizon curvature perturbations, and is further mod-

ified by the sub-horizon evolution as encapsulated in I(p, q, τ).

6Scale factors appearing in the I integral as a(τ̄)/a(τ) are the artifact of Gk(τ, τ̄) being Green’s
function of the new variable v(τ,k) = ah(τ,k) and not hλ itself; see Appendix C.1.2.
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The four-point function in eq. (4.69) has both disconnected and connected contri-

butions, from the scalar power spectrum and trispectrum, respectively. The connected

contribution usually contributes in a subdominant way compared to the disconnected

piece in determining total GW energy density; see [245] for a general argument.7 There-

fore, in the following, we focus only on the disconnected contribution, which can be

written as

Pλ(τ, k)

∣∣∣∣
d

= 32

∫
d3q

(2π)3
Qλ(k,q)

2I(|k− q|, q, τ)2

× Pζ(q)Pζ(|k− q|) .
(4.72)

For a derivation of this formula see appendix C.1.3.

GW signal strength can be characterized by SGWB energy density per unit logarith-

mic interval of frequency and normalized to the total energy density [248],

h2ΩGW =
1

ρtot

dρGW

d log f
(4.73)

where the present day Hubble parameter is given by H0 = 100h km/s/Mpc and ρtot =

3M2
plH

2
0 is the critical energy density in terms of the reduced Planck mass Mpl ≈ 2.4 ×

1018 GeV. The total energy density ρGW is given by,

ρGW =
M2

pl

4

∫
d ln k

k3

16π2
×∑

λ

(
⟨ḣλ(t,k)ḣλ(t,−k)⟩′ +

k2

a2
⟨hλ(t,k)hλ(t,−k)⟩′

)
,

(4.74)

with the primes denoting the fact that momentum-conserving delta functions are factored

out, ⟨hλ(t,k)hλ(t,k′)⟩ = (2π)3δ3(k + k′)⟨hλ(t,k)hλ(t,−k)⟩′. Approximating ḣλ(t,k) ≈

(k/a)hλ(t,k), we can simplify to get,8

ΩGW =
1

48

(
k

a(τ)H(τ)

)2 ∑
λ=+,×

∆2
λ(τ, k), (4.75)

7See also [242,246,247] for examples where the connected contribution can be important.
8Note that we are using the convention at which the spatial part of the metric is given by a2(δij +

hij/2)dx
idxj . If we were using an alternative convention a2(δij + hij)dx

idxj , then the factor of 1/48
would be replaced by 1/12 as in refs. [240,248].
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where ∆2
λ(τ, k) = (k3/(2π2))Pλ(τ, k).

The above expression can be rewritten in form convenient for numerical evaluation

(see appendix C.1.4 for a derivation),9

ΩGW(k) =
2

48α2

∫ ∞

0

dt

∫ 1

−1

ds Kd(u, v)∆
2
ζ(uk)∆

2
ζ(vk) (4.76)

where u = |k − q|/k = p/k, v = q/k, s = u − v, t = u + v − 1, and Kd is the kernel

function following from manipulating the integrand of eq. (4.72). This kernel function is

illustrated in fig. 4.4a.

We now focus on the scenario where GW is generated during a radiation dominated

epoch and set w = 1/3. We can then write (see Appendix C.1.1 for details),

TΦ(kτ) =
9
√
3

(kτ)3

(
sin

kτ√
3
− kτ√

3
cos

kτ√
3

)
, (4.77)

and plot this function in fig. 4.4b. We note that after entering the horizon, modes start to

oscillate and decay, and as a result, the sub-horizon modes do not significantly contribute

to GW generation. In fig. 4.4c, we confirm that at any given time f(p, q, τ) is suppressed

for shorter modes that have re-entered the horizon earlier. Finally, the green function is

given by (see appendix C.1.2 for details)

Gk(τ, τ̄) =
sin[k(τ − τ̄)]

k
. (4.78)

With these expressions, we can obtain a physical understanding of GW generation via

eq. (4.72). The Green function, given in eq. (4.78), is an oscillatory function of time whose

frequency is k. The quantity f(p, q, τ) is also an oscillatory and decaying function of time

(see fig. 4.4c), inheriting these properties from the transfer function (4.77). Therefore,

the dominant contribution to the integral (4.70) is a resonant contribution when the

momentum of the produced GW is of the same order as the momentum of the scalar

9Note that the integration variable u and v are swapped with t and s since in the t − s space,
integration limits are independent of the integration variables.
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Figure 4.4: (a) The kernel function from eq. (4.76). We note a clear resonance contri-
bution from t ≃ 0.7 corresponding to u + v ≃

√
3. (b) The transfer function TΦ. (c)

Function f(p, q, τ) as in eq. (4.71). We see that for the scalar modes that enter the
horizon earlier, with p, q > k, this function is more suppressed as expected from the
behavior of the transfer function.
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modes, i.e., k ∼ p ∼ q. In particular, the resonant point is at u + v ≃
√
3 [245] as

shown in fig. 4.4a. GW generation is suppressed in other parts of the phase space. For

example, the source term, which contains gradients of the curvature perturbation [239],

is suppressed by small derivatives if any of the wavenumbers p, q of ζ is much smaller

than k. On the other hand, if p, q are much larger than k, then the scalar modes would

have decayed significantly after entering the horizon by the time k ∼ H, and thus the

production of GW with momentum k gets suppressed.

To obtain the final result for ΩGW, we note that the GW comoving wavenumber k is

related to the present-day, redshifted frequency f of the generated GW via

f = f∗

(
a∗
a0

)
=

k

2π
≃ 1.5mHz

(
k

1012Mpc−1

)
, (4.79)

where f∗ and a∗ are respectively the frequency and the scale factor at the time of GW

generation. Using these expressions, we arrive at our final result, shown in Fig. 4.5, for

the same benchmark choices discussed in Fig. 4.3. We see that stochastic effects can

naturally give rise to a large enough SGWB, within the sensitivity range of DECIGO,

BBO, µ-Ares, and Ultimate DECIGO [249–251].

4.6 Conclusion

In this work, we have discussed an early Universe scenario containing a light spectator

field, along with an inflaton field. The fluctuations of the inflaton are red-tilted and

explain the observed fluctuations in the CMB and LSS. On the other hand, the spectator

field σ naturally acquires a blue-tilted power spectrum. This blue-tilted power spectrum

is eventually cut-off at very small scales since when such small-scale modes enter the

horizon, the spectator field contributes subdominantly to the total energy density. As

a consequence, primordial black holes are not produced in this scenario. Overall, this
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Figure 4.5: Gravitational wave spectrum for the benchmarks discussed in Fig. 4.3. We
notice that the number of e-folds after CMB-observable modes exited the horizon de-
termines the peak frequency of the spectrum, and correspondingly, different detectors
can be sensitive to the signal. Although a similarly peaked spectrum would appear
in the context of cosmological phase transitions (PT), the low-frequency tail of this
GW spectrum is different from the usual f3 tail. While in the context of PT the f3

scaling originates due to causality and superhorizon behavior of fluctuations, in our
scenario, the f -scaling is determined by σ mass. The differing frequency dependence
can then be used to discriminate between the two classes of signals.
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mechanism of generating a blue-tilted spectrum works for any generic inflaton potential

and does not require any particular fine-tuning or structure such as an inflection point

or a bump on the potential or an ultra slow-roll phase.

The blue-tilted spectrum gives rise to large curvature perturbations at small scales.

These, in turn, source a stochastic gravitational wave background (SGWB) when the

perturbations re-enter the horizon. Focusing on some benchmark choices for the number

of e-foldings and spectator field potential, we have shown that this scenario predicts

observable gravitational waves at future detectors operating in 10−5 Hz to 10 Hz range,

with strengths ΩGWh
2 ≃ 10−20 − 10−15.

There are various interesting future directions. In particular, we have worked in a

regime where σ does not dominate the energy density during the cosmological history.

It would be interesting to explore the consequences of an early matter-dominated era

caused by the σ field. We have also seen that the low-frequency scaling of the SGWB

spectrum depends on the mass and coupling of σ and is generally different from the

f 3-scaling expected in the context of cosmological PT, or f 2/3-scaling expected in the

context of binary mergers. This different frequency dependence can be used to identify

the origin of an SGWB, and distinguish between various cosmological or astrophysical

contributions. Along these lines, it would be interesting to carry out a quantitative

analysis to understand how well we can separate any two frequency dependencies, for

example, by doing a Fisher analysis.

Note Added

While we were finishing this work, results from NANOGrav [252], EPTA, InPTA [253,

254], PPTA [255], CPTA [256] appeared. Secondary gravitational waves from the scalar

perturbation can in principle give rise to the signal [257,258]. Such scalar perturbations
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could be generated in a model similar to the one considered in this paper. However,

the frequency dependence of ΩGWh
2 determined by the NANOGrav result is [252] 1.8±

0.6. We note that for a free field with mass m, the frequency dependence of ΩGWh
2 is

given by, 4m2/(3H2). So for the central value, one would naively infer m2/H2 = 1.4.

Therefore to interpret it in terms of a free field, we require a mass bigger than the Hubble

scale. However, since for larger than Hubble-scale masses, the stochastic effects are not

efficient, one may have to go beyond the stochastic scenario to explain the NANOGrav

observations. We could instead consider a regime in which the misalignment contribution

is important [197,198]. We will leave a detailed analysis of this scenario to future work.
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Chapter 5

An Effective Cosmological Collider

5.1 Introduction

Local effective field theory (EFT) provides a powerful way to parametrize the effects of

ultraviolet physics in a model-independent way. It has been employed with great success

across a wide range of physical settings, from chiral perturbation theory and heavy quark

effective theory to the EFT of inflation and the Standard Model (SM) EFT (see [259]

and references therein for recent reviews). However, the simple recipe for constructing

these EFTs — by assembling the set of local, higher-dimensional operators consistent

with the symmetries and field content of the infrared theory — is often complicated

by a vast redundancy of description associated with the insensitivity of observables to

parameterizations of the fields.

Such redundancies are typically accommodated by identifying a ‘basis’ of operators

that is minimal, independent, and non-redundant with respect to the observables of

interest. Operators outside the chosen basis can be expressed in terms of operators within

the basis (or in some cases be eliminated entirely) in a variety of ways. For example,

integration-by-parts (IBP) can be used to write certain operators in terms of others,
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dropping the boundary terms provided that fields vanish at spacetime infinity. Operators

that differ by the lowest-order classical equations of motion (EOM) can be exchanged

at linear order when on-shell quantities are concerned [260–263]. In flat space, the LSZ

reduction formula renders S-matrix elements insensitive to general field redefinitions.

Reducing the scope of allowed EFT operators to a minimal basis with the methods at

hand greatly facilitates the calculation of observables.

The simplifications arising from a minimal operator basis are perhaps most apparent

when computing S-matrix elements in flat space, where EOM and IBP relations lead

to a dramatic reduction in the number of operators at a given order in power counting

[263]. However, important differences arise in a cosmological context, particularly for an

inflationary, quasi-de Sitter (dS) spacetime. In this case, we are interested not in the

S-matrix, but rather in the correlation functions of density perturbations at the end of

inflation. As a result, arbitrary field redefinitions are not allowed (or must be undone

at some stage of the calculation) since such redefinitions would change the correlation

functions. Consequently, only a limited set of transformations can be used to remove

redundant couplings. Furthermore, the correlation functions are computed on a late-

time spatial boundary. As a result, temporal boundary terms may be relevant when

implementing IBP relations.

These subtleties become particularly relevant in the context of primordial non-Gaussianity

(NG). The approximate scale invariance of primordial density perturbations, inferred

through the cosmic microwave background (CMB), indicate that the interactions of the

inflaton preserve an approximate shift symmetry, ϕ → ϕ + constant. This implies both

the self-interactions of the inflaton and interactions of the inflaton with other fields would

involve operators with dimension 5 or higher, necessitating an EFT expansion. The ques-

tion of how to construct a minimal operator basis by eliminating redundant operators

arises immediately. Unsurprisingly, there is a long history of identifying non-redundant
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self-interactions in the various EFTs of inflation [264,265], e.g., [266–279].

In this work, we are interested in inflationary EFTs where additional heavy degrees

of freedom are present. Such EFTs are especially relevant for the ‘Cosmological Col-

lider Physics’ program [17, 280] which aims to study oscillatory NG induced by on-shell

particle production during inflation. Particles with masses of order or larger than the

inflationary Hubble scale Hinf can be produced as the Universe inflates. Following their

production, the heavy particles can oscillate in time, eventually decaying into inflaton

fluctuations. Those real-time oscillations of the heavy particles give rise to an oscilla-

tory, scale-dependent NG. Intriguingly, from the frequency of the oscillations and the

angular dependence of the NG, one can extract the mass and spin of the heavy particle,

respectively. Since Hinf ≲ 5 × 1013 GeV [186], the prospect of doing on-shell mass-spin

spectroscopy of such heavy particles through NG provides a unique opportunity to study

fundamental physics at high energies. For various interesting work on this subject see

Refs. [281–327].

Among the different types of theories that can give rise to a cosmological collider

signal, gauge theories are particularly interesting. Of course, such theories play a central

role in the SM, and (hidden) gauge theories are also ubiquitous in physics beyond the

SM. With this motivation, in the present work we focus on the EFT of a gauge-Higgs

sector coupled to the inflaton [295], where the presence of a Higgs field allows us to

incorporate spontaneous symmetry breaking (SSB) and study NG mediated by gauge

bosons.1 Furthermore, we focus on a U(1) gauge theory, as our primary goal will be

to lay out the procedure of operator basis construction in dS spacetime where heavy

fields are present. This can then be generalized to include non-Abelian gauge theories,

which exhibit various interesting phenomena during inflation, such as thermalization and

1We clarify that by ‘Higgs’ we will mean a generic complex scalar field that is not necessarily the SM
Higgs. It can however be the SM Higgs, for example, if the electroweak scale is uplifted to Hinf [295], or
if loop corrections to SM are considered [292].
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dissipation, as well as fermionic degrees of freedom, e.g., [328–333].

Establishing a minimal basis for the irrelevant interactions between the inflaton and

an additional sector is essential to the determination of observable effects.2 In doing

so, one encounters subtleties analogous to those that arise in the study of inflationary

self-interactions. Such a minimal basis relevant to cosmological collider signals was first

developed in Ref. [285] for a heavy real scalar field coupled to the inflaton at lowest

non-trivial order. In this work, we perform a systematic construction of a minimal

operator basis for the more general gauge-Higgs-inflaton EFT by considering operators

up to dimension 9. We impose an exact shift symmetry on the inflaton (discarding

slow roll-suppressed corrections) and consider operators that describe the interactions of

the inflaton with the gauge and the Higgs boson. To remove redundant operators, we

primarily employ EOM and IBP relations. The EOM relations are closely analogous to

those used in flat space [265]. On the other hand, IBP relations at dimension 5 do give

rise to non-zero boundary terms that are a priori relevant. However, we show that such

terms do not contribute to cosmological correlation functions involving heavy particles,

and can be removed via appropriate field redefinitions. Beyond dimension 5, we find

that IBP can indeed be used as in flat space for the operators of interest. One way to

think about the irrelevance of these boundary terms is that they arise from interactions

of the inflaton with heavy fields. The mode functions of the heavy fields decay at late

times, corresponding to the physical effect that heavy particles get diluted as the Universe

expands. Consequently, the temporal boundary terms resulting from IBP relations vanish

for the operators and observables of interest.

To highlight some of our findings, we show that the only dimension 5 operator that

2Of course, there are also more direct routes to mapping the space of cosmological observables that
are free of EFT operator redundancies, as in the cosmological bootstrap (see, e.g., [334] for a recent
review). Nonetheless, exploring observables from the standpoint of EFT Lagrangians can be useful for
interpreting the microscopic implications of data and estimating the observability of certain signatures,
motivating the approach taken here.
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is not redundant is an axionic coupling of the inflaton to the gauge field, namely ϕFF̃ .

In particular, by using EOM we find that an operator coupling the Higgs current to the

inflaton is redundant, and the leading Higgs-inflaton coupling arises only at dimension 6.

The same conclusion can be drawn using a field redefinition argument, as we discuss in

an appendix. We also show that in the broken phase of the theory, a quadratic mixing

between the inflaton and the longitudinal mode of the gauge boson, relevant for tree-level

bispectrum signatures, first arises at dimension 9. Finally, we identify new operators

at dimensions 7 and 8 involving the inflaton and gauge boson. These operators are

expected to contribute with similar strengths for NG compared to some other operators

that have been considered in the previous literature. While certain higher dimensional

operators of the gauge-Higgs-inflaton theory have been considered in isolation in the

previous literature, our systematic approach to enumerating an operator basis identifies

additional operators that would be present in a generic EFT and could contribute to NG

signals.

The rest of the chapter is organized as follows: We discuss aspects of the choice of

operator basis on inflationary observables in Sec. 5.2, with a particular emphasis on the

effect of boundary terms generated by integration-by-parts manipulations. In Sec. 5.3 we

introduce an EFT of the inflaton coupled to an abelian gauge-Higgs theory, enumerating

operators up to dimension 9 and reducing them to a minimal operator basis. Although

boundary terms appear in certain cases, they do not affect the correlation functions of

interest. With the minimal basis at hand, we enumerate interaction vertices and estimate

the leading sizes of non-Gaussianity in Sec. 5.4. We conclude in Sec. 5.5. A number of

general considerations and examples regarding IBP and boundary terms in inflationary

spacetimes can be found in the appendices.
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Notations and Conventions. We follow the ‘mostly plus’ metric signature: (−,+,+,+).

The operator ∇µ denotes an ordinary covariant derivative, while the operator Dµ ≡

∇µ + igAAµ denotes a gauge covariant derivative. Unless explicitly stated, we will use

units in which the Hubble scale during inflation, Hinf = 1. Factors of Hinf can be restored

using dimensional analysis.

5.2 Inflationary Observables and Operator Bases

The precise nature of cosmic inflation is still unknown. Different classes of mecha-

nisms can explain the homogeneous cosmic expansion and the generation of primordial

fluctuations during inflation. To capture certain model-independent features and signa-

tures, it is therefore useful to construct an EFT consistent with the symmetries and the

particle content of the theory. In this regard, there are two qualitatively different classes

of EFTs relevant during inflation. The more UV-agnostic of the two treats the inflaton as

a Goldstone boson arising from spontaneous breaking of time translation symmetry [264].

In this EFT, Lorentz invariance is (spontaneously) broken and as a result, one can allow

qualitatively new sets of higher dimensional operators, in addition to the ones that follow

from requiring Lorentz invariance.

Another class of EFT [265] is useful if we are to describe both the inflationary fluctua-

tions and the homogeneous inflationary expansion, since the latter is not necessarily part

of the Goldstone EFT [264]. The advantage of this second class of EFTs is that it could

be valid up to a much higher energy scale and can more readily describe how reheating

can happen at the end of inflation. While the Lorentz-breaking, Goldstone EFT would

allow for the greatest generality, for concreteness, in this work we will focus on a Lorentz-

invariant EFT description and assume that inflation is driven by a slowly rolling scalar

field ϕ. Taking a bottom-up approach, we will also impose a strict shift symmetry on ϕ:
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ϕ → ϕ + constant, motivated by the approximate scale invariance of primordial pertur-

bations, and neglect subleading corrections from violation of this symmetry. Therefore,

all the operators involving ϕ that we consider below will have (sometimes implicitly)

derivative coupling ∇µϕ.

Our analysis will also encompass scenarios where the density fluctuations originate

not from the inflaton ϕ, but a curvaton field σ, as in the curvaton paradigm [209–212]. In

such scenarios, while the spacetime expansion is driven by ϕ, the density fluctuations in

the late Universe originate from σ. However, to obtain (approximately) scale-invariant,

superhorizon fluctuations, the mass of σ needs to be much smaller than Hinf . Therefore,

we can still impose a shift symmetry on σ. Consequently, our following analysis will

exactly carry over to the curvaton scenario, with the replacement ∇µϕ → ∇µσ. With

this in mind, in the rest of the discussion we will focus on the standard inflationary

slow-roll EFT where both the homogeneous expansion and fluctuations are sourced by

ϕ.

5.2.1 Minimal Operator Bases

The approximate shift symmetry acting on the inflaton implies that the couplings

between the inflaton and additional fields are necessarily irrelevant operators that may

be organized systematically according to the relevant power-counting scheme. However,

the full set of irrelevant operators consistent with the symmetries of the EFT is generally

over-complete, leading to a redundancy of description whose severity depends on the

observables of interest. In flat space where the observables are typically related to S-

matrix elements, the redundancy of description corresponds to the freedom to perform

nearly-arbitrary field redefinitions without altering the S-matrix elements. This can be

used to arrive at minimal, non-redundant operator bases order-by-order in the power
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counting, where the number of operators in a minimal basis is typically much smaller

than the total number of operators consistent with symmetries. In practice, a non-

redundant basis of operators can usually be obtained order-by-order in power counting

by using the lowest-order equations of motion to eliminate operators.3 Operators that

differ by total derivatives can also be exchanged via integration-by-parts (IBP), as both

spatial and temporal boundary terms are assumed to vanish in flat space.

The situation is somewhat different in cosmological contexts. In inflationary scenar-

ios, we are interested in computing cosmological correlation functions at a fixed time

slice towards the end of inflation, or when all the modes associated with the correlation

function have exited the horizon. To be specific, we use the Poincare patch representation

of dS spacetime

ds2 =
−dη2 + dx2

η2
, (5.1)

and denote the conformal time on the time slice of interest by η = η0. We then take

η0 → 0 limit of the cosmological correlators to obtain the conserved correlation functions.

Compared to the usual Minkowski spacetime, the presence of this boundary at η0, where

we evaluate the correlation functions, requires a reexamination of the standard operator

basis manipulations, in particular those involving IBP. This is because the boundary

terms on the space-like surface at η0 may not vanish in general. The potential importance

of boundary terms is already apparent for a massless free field in dS [266].

3There are various subtleties involved when using equations of motion to eliminate operators, enu-
merated in [335].
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5.2.2 Massless Free Field in dS

Consider the Lagrangian of a free massless field and an equivalent expression obtained

via IBP,

−1

2

∫
d4x
√−ggµν∇µϕ∇νϕ = −1

2

∫
d4x
√−ggµν∇µ(ϕ∇νϕ) +

1

2

∫
d4x
√−gϕ□ϕ, (5.2)

where □ϕ = gµν∇µ∇νϕ. Using the EOM □ϕ ≈ 0 (neglecting V (ϕ)) and Stokes’ theorem

we arrive at

−1

2

∫
d4x
√−ggµν∇µϕ∇νϕ = −1

2

∫
d3x
√
γnµ(ϕ∇µϕ). (5.3)

Here the spatial integration is over a space-like surface at η0 and we have assumed the

fields vanish at spatial infinity as well as at very early times when the fields are in their

vacuum states. The vector nµ = (1/η0, 0, 0, 0) is normal to the space-like surface on which

the induced metric is given by γij, with a determinant γ = 1/η60. Thus the (on-shell)

action of a massless free field in dS can be written as a boundary term at η0 which can

be simplified as,

1

2η20

∫
d3x ϕ∂ηϕ|η0 =

1

2η20

∫
d3k

(2π)3
ϕk∂ηϕ−k|η0 . (5.4)

To compute correlation functions, we can first derive the associated wavefunction which

can be schematically written as (see [334] for a recent review),

Ψ[φ, η0] =

∫
ϕ(η0)=φ,ϕ(−∞)=0

DϕeiS[ϕ] ∝ eiScl[φ,η0], (5.5)

where ϕ(η0) = φ is the late time boundary condition while ϕ(−∞) = 0 ensures that

the fields are in their vacuum state at early times. We have also evaluated the path

integral using the saddle point approximation, up to a proportionality constant. With

these choices, we can write

ϕk = φk
(1− ikη)eikη
(1− ikη0)eikη0

. (5.6)
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The classical action is then given by (upon using φ−k = φ∗
k),

Scl =
1

2η20

∫
d3k

(2π)3
k2η0

(1− ikη0)
|φk|2. (5.7)

A correlation function at a late time, η0 is given by

⟨φ(k1)φ(k2) · · ·φ(kn)⟩ =
∫
Dφφ(k1)φ(k2) · · ·φ(kn)|Ψ[φ, η0]|2∫

Dφ|Ψ[φ, η0]|2
. (5.8)

Given the appearance of |Ψ[φ, η0]|2, only the imaginary terms in Scl contribute to the

determination of the correlation function. From (5.7), the part that diverges as η0 → 0

then does not contribute and the surviving contribution is given by

Scl ≈
∫

d3k

(2π)3
ik3

2
|φk|2. (5.9)

We can now evaluate the two-point function using this wavefunction,

⟨φ(k1)φ(k2)⟩ =
∫
Dφφ(k1)φ(k2)|Ψ[φ, η0]|2∫

Dφ|Ψ[φ, η0]|2
,

=

∫
Dφφ(k1)φ(k2) exp

(
−
∫

d3k
(2π)3

k3

2
|φk|2

)
∫
Dφ exp

(
−
∫

d3k
(2π)3

k3

2
|φk|2

) ,

=
1

2k31
(2π)3δ(k1 + k2),

(5.10)

as can also be derived using the standard ‘in-in’ computation (see [294] for a pedagogical

review). This example illustrates that the imaginary part of Scl is relevant for computing

the correlation function, while the real part drops out from |Ψ[φ, η0]|2.

There is another way to reach the same conclusions as above, highlighting the role

of the boundary. We can treat the fields in (5.4) as quantum operators, instead of

classical functions. The two-point function can then be computed using the standard

‘in-in’ approach. Since the correlation functions are evaluated on the spatial surface

and Eq. (5.4) is also evaluated on the same surface, we need to evaluate only equal-time

propagators. We also note that the usual time evolution operator T (exp(−i
∫
dtH)), with
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H the Hamiltonian, can be schematically written as a boundary term ∼ exp(−if(η0)).

Thus the time ordering part gives a factor of (−i), while the anti-time ordering part

gives the complex conjugate factor (+i), as in a standard bulk computation. With these

ingredients, the result is given by

⟨ϕ(k1)ϕ(k2)⟩′ = 2× (−i) 1

2η20

1

4k61
(1 + ik1η0)

2(1− ik1η0)k21η0 + c.c.

=
1

η0

1

4k41
(−i+ k1η0)(1 + k21η

2
0) + c.c.

=
1

2k31
+O(η0).

(5.11)

Here we have used the standard notation ⟨ϕ(k1)ϕ(k2)⟩ ≡ (2π)3δ(k1 + k2)⟨ϕ(k1)ϕ(k2)⟩′.

Further examples of the relevance of boundary terms for massless and massive scalars,

both free and with derivatively-coupled cubic interactions, are presented in Appendix

D.2.

5.2.3 Operators Coupled to the Inflaton

In what follows, we will use arguments similar to those presented above to understand

whether certain boundary terms contribute or not in determining cosmological correla-

tors. While the boundary term was essential in the previous example, in many cases it

can be neglected. In particular, we often encounter operators of the type∫
d4x
√
|g|∇µϕ∇µO, (5.12)

where O is any (composite) operator containing massive fields. Using an IBP we can

write the above as ∫
d4x

√
|g| (∇µ [∇µϕ · O]−□ϕ · O) . (5.13)

The second term does not contribute in any vertex for an ‘in-in’ diagram since □f = 0

where f is a mode function for the inflaton. The first term, on the other hand, can be
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written as ∫
d4x ∂µ

(√
|g|∇µϕ · O

)
. (5.14)

For the spatial component, i.e., for µ = i, the above does not contribute under the

assumption that fields vanish at spatial infinity. Therefore, the only potentially non-

trivial term is the one involving time derivatives,

−
∫

d4x ∂η

(
1

η2
∂ηϕ · O

)
. (5.15)

This determines the interacting Hamiltonian of interest,

HI =

∫
d3x ∂η

(
1

η2
∂ηϕ · O

)
. (5.16)

However, since this is a total time derivative, we can evaluate the time evolution operator

as

T exp

(
−i
∫ η0

−∞
dηHI

)
= T exp

(
−i
∫

d3x

[
1

η2
∂ηϕ · O

]
η0

)
. (5.17)

The last term is evaluated at η0 and it does not involve any time integrals. Therefore, the

time ordering operator acts trivially. We can then conclude that if the term in the square

brackets vanishes at η0, the entire operator does not contribute to correlation functions

involving the massive particle.4

5.3 The Abelian Gauge-Higgs-Inflaton EFT

We’re now equipped to construct minimal operator bases in dS for EFTs where a

shift-symmetric inflaton couples to additional fields. For concreteness, in this article we

4A detailed example of the action of the time ordering operator can be found in Appendix D.1, where
we show that while boundary terms can be present in the intermediate stages of a computation, they
do not give a (non-local) cosmological collider signal with the characteristic non-analytic momentum
dependence. Rather, the boundary terms give a local contribution which can be accounted for by
appropriate local field redefinitions.
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will take the additional fields to comprise an abelian gauge-Higgs sector. This theory

is of considerable interest as a benchmark for various cosmological collider signals, and

captures most of the relevant features involved in constructing a minimal operator basis.

A similar procedure can be followed for other effective theories containing different fields,

such as fermions or non-abelian gauge bosons.

The Lagrangian containing the inflaton (ϕ), a Higgs (H), and a U(1) gauge field Aµ,

up to dimension-4 is given by

L ⊃ −1

2
∇µϕ∇µϕ− V (ϕ)− (DµH)†DµH− V (|H|2)− 1

4
FµνF

µν . (5.18)

Here DµH = ∇µH + igAAµH is the gauge covariant derivative and V (|H|2), V (ϕ) are

respectively the Higgs and inflaton potentials, whose detailed forms will not be important

for our purposes. We will see in some cases that the surviving contributions from a given

operator are slow roll-suppressed, in the sense of involving dV (ϕ)/dϕ or d2V (ϕ)/dϕ2.

We will not track such operators explicitly, under the assumption that their slow roll-

suppressed contributions to observables are subdominant to other contributions. We

assume the Higgs potential is such that it can acquire a vacuum expectation value ⟨H⟩ =

v/
√
2, so that all states in the abelian gauge-Higgs sector are massive in the broken phase.

Alternately, our results can also be applied to the theory of a shift-symmetric inflaton

coupled to a complex scalar with a global U(1) symmetry by taking the gA → 0 limit

and assuming ⟨H⟩ = 0.

In reducing the operator basis, we will primarily use the following EOM and also

implement IBP. The EOM for the inflaton is given by,

□ϕ = V ′(ϕ), [Inflaton EOM] (5.19)
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where we have denoted □ ≡ ∇µ∇µ. To obtain the EOM for the Higgs, we first expand

−(DµH)†DµH = −∇µH†∇µH + igAAµH†∇µH− igAAµH∇µH† − g2AAµAµH†H.

(5.20)

The EOM is then given by,

−∇µ (∇µH + igAA
µH) = +igAAµ∇µH− g2AAµAµH− V ′(|H|2)H, (5.21)

which can be written in terms of the gauge covariant derivative,

−∇µD
µH = igAAµD

µH− V ′(|H|2)H. [Higgs EOM] (5.22)

The EOM for the gauge field is given by

−∇µF
µν = igA

(
H†DνH− (DνH)†H

)
. [Gauge Field EOM] (5.23)

The symmetries of the theory forbid relevant or marginal couplings between the in-

flaton and the abelian gauge-Higgs sector, so interactions are necessarily irrelevant. We

assume the gauge-Higgs sector is weakly coupled and the Higgs VEV is parametrically

smaller than the characteristic UV scale Λ suppressing the irrelevant operators, so that

the natural power counting is in terms of the classical dimension of operators constructed

out of the fields in the unbroken phase.

In what follows, we enumerate operators up to dimension 9, beginning with the

complete set of operators at a given dimension allowed by symmetries, modulo some

operators trivially related by EOM. We then reduce the operators to a minimal basis

at a given order via EOM and IBP relations, taking care to verify that boundary terms

arising from IBP do not contribute to the observables of interest. Since we are taking

a bottom-up approach in which the Wilson coefficients of different operators are free

parameters, we may use the lowest-order EOM to arrive at a minimal basis at a given
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order in power-counting. Although these EOM manipulations do not correctly account

for changes to Wilson coefficients at higher order in power counting, the values of these

coefficients were already arbitrary. In this way, we can fix the operator basis using

the lowest-order EOM by starting at dimension-5 and proceeding to successively higher

dimensions. Note that more care would be required in manipulating operator bases when

matching to a specific UV completion in which all Wilson coefficients take on specific

values [335].

Needless to say, the number of possible operators grows rapidly with operator dimen-

sion. Although it is not too cumbersome to enumerate operators up to dimension-9 by

hand, we have also cross-checked our results against the flat-space operator basis codes

DEFT [336] and Sym2Int [337,338].

5.3.1 Dimension 5

We start our analysis of irrelevant operators at dimension 5. While there are a

number of operators consistent with the assumed symmetries, we show there is only one

operator that contributes non-trivially to cosmological correlators. We first summarize

the operators in Table 5.1. The Wilson coefficient for each operator is taken to be real;

note that operators such as O5,1 and O5,2 can be interpreted as the real and imaginary

parts of a single operator with a complex Wilson coefficient.

We note that O5,1 can be simplified as

O5,1 = ∇µϕ∇µ(H†H). (5.24)

We can use the EOM (5.23) for the gauge field and subsequently an IBP to write

O5,2 =
1

gA
∇ν (F

νµ∇µϕ) . (5.25)
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Operator Expression

O5,1 ∇µϕ
(
H†DµH + (DµH)†H

)
O5,2 (−i)∇µϕ

(
H†DµH− (DµH)†H

)
O5,3 ∇µϕ∇νF

νµ

O5,4 ϕFµνF̃
µν

Table 5.1: Allowed operators at dimension 5. Here and henceforth, F̃µν = (1/2)ϵµνρσFρσ.

In the process we have dropped a contribution of the type ∇ν∇µϕ · F µν which vanishes

identically for a torsion-free metric. This manipulation also shows that O5,2 is equivalent

to O5,3. To comprehensively study the fate of O5,1 and O5,2, it is useful to consider both

the unbroken and broken phases of the theory.

Unbroken Phase

We start with O5,1 which after an IBP gives,

O5,1 =

∫
d4x
√−g

[
∇µ(∇µϕ · H†H)−□ϕ · H†H

]
. (5.26)

The second term vanishes in the limit of vanishing inflaton potential and we will not

consider it further. The first term is a boundary term that reduces to a spatial integral

at η0,

O5,1 =

∫
d3x
√
γnµ(∇µϕ · H†H) = − 1

η20

∫
d3x∂ηϕ · H†H. (5.27)

From (5.6), we note

∂ηϕk = φk
k2η0

(1− ikη0)
. (5.28)

Given the late time scaling of H(η,k) ∼ η
3/2±iµ
0 (as can be shown by considering mode

functions of a massive particle, see, e.g., [320]), where µ ≡
√
m2/H2

inf − 9/4 is taken to
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be positive, we have

O5,1 ∝ η20 → 0. [Unbroken Theory] (5.29)

Therefore, O5,1 does not contribute to late-time correlators.

We now consider O5,2 which is also a boundary term and can be rewritten as,

O5,2 =
1

gA

∫
d3x
√
γnν∇µϕF

νµ = − 1

gA

∫
d3x∂iϕFηi. (5.30)

For an unbroken gauge theory, the physical degrees of freedom are the transverse com-

ponents A⊥
i which satisfy kiA

⊥
i = 0. Therefore, O5,2 does not contribute to late-time

correlators. Note, that this argument does not rely on the vanishing of the mode func-

tions at late times.

Broken Phase

We now repeat the above analysis for the case of a broken gauge theory starting with

O5,1. We can still implement an IBP to write it as

O5,1 = −
1

η20

∫
d3x∂ηϕ · H†H. (5.31)

In the broken gauge theory, we can set one of the Higgs to its VEV to obtain a term

quadratic in fluctuations. However, the result still scales as,

O5,1 ∝ η
1/2
0 → 0 [Broken Theory]. (5.32)

Hence O5,1 does not contribute in the broken gauge theory as well.

Next we turn to O5,2, which can be written as

O5,2 = −
1

gA

∫
d3x∂iϕFηi = −

1

gA

∫
d3x∂iϕ(∂ηA

∥
i − ∂iAη). (5.33)
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However, we need to take into account the longitudinal component of the gauge boson

which is a combination of Aη and A
∥
i . The temporal component Aη falls as η

3/2±iµ
0 , with

µ ≡ (m2/H2
inf − 1/4)1/2 > 0, at late times, as can be seen from the massive gauge boson

mode functions, e.g., [289]. Therefore the term proportional to ∂iAη in (5.33) vanishes

in the late time limit. After a spatial IBP, the surviving term can be written as

O5,2 =
1

gA

∫
d3xϕ∂η∂iA

∥
i . (5.34)

We can rewrite the above after using the constraint equation for the massive field,

∇µA
µ = 0⇒ −η2∂ηAη + 2ηAη + η2∂iA

∥
i = 0, (5.35)

O5,2 =
1

gA

∫
d3xϕ∂η

(
∂ηAη −

2

η
Aη

)
. (5.36)

This can be further simplified by using the EOM for Aη,

∂2ηAη −
2

η
∂ηAη − ∂2iAη +

m2 + 2

η2
Aη = 0, (5.37)

O5,2 = −
m2

gAη20

∫
d3xϕAη. (5.38)

While this term does not vanish as η0 → 0, it does not contribute to a late-time correlation

function. As an example, we can evaluate the contribution to the two-point inflaton

correlation function from O5,2. That has a scaling:

⟨ϕ(k1)ϕ(k2)⟩ ∝
1

η40
× η30(1 + k21η

2
0)(1 + k21η

2
0)((−i)2 + (+i)2 + (+i)(−i) + (+i)(−i)) = 0,

(5.39)

where the last factor in the parenthesis comes from summing over the four ‘in-in’ subdi-

agrams, while the factor of η30 comes from the massive Aη propagator at late times.

More generally, each factor of O5,2 appears in a correlator involving the inflaton field

on the late time surface with a structure

∝ (−i)(1− ikη0)
|fη(η0, k)|

η20
+ (+i)(1 + ikη0)

|fη(η0, k)|
η20

= −2k |fη(η0, k)|
η0

, (5.40)
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where Aη(η,k) = fη(η, k)b
†
k+f

∗
η (η, k)b−k, with fη(η, k) a mode function and b†k a creation

operator, along with their conjugates. The prefactors are (−i) or (+i) depending on

whether the contribution originally came from a time ordering or anti-time ordering

term.5 We have also kept only the absolute value |fη(η0, k)| since, in an inflaton correlator

on the late time surface, we always have the combination |fη(η0, k)|2 from the longitudinal

mode propagator, so each factor of Aη effectively contributes a factor of |fη(η0, k)|. Noting

that |fη(η0, k)| ∼ η
3/2
0 for µ > 0, we see O5,2 does not contribute to a correlation function

from contractions on the late time surface. It can also be checked that bulk contractions

with the operators in Table 5.5 vanish as η0 → 0. Therefore, O5,2 does not contribute to

cosmological correlation functions overall.

Surviving Contribution at Dimension 5

The above analysis shows that the three operators O5,1, O5,2, and O5,3 are all re-

dundant. The remaining operator is O5,4 which is also shift symmetric since FµνF̃
µν

is a total derivative. This operator is non-trivial and has been discussed extensively in

the context of gauge field production during inflation (see, e.g., [328]), and cosmological

collider [339].

5.3.2 Dimension 6

At dimension 6, we only have one operator coupling the inflaton field to the gauge-

Higgs sector,

O6,1 ≡ (∇µϕ)
2H†H. (5.41)

5Since here we are interested in evaluating just surface terms at η0, the action of time ordering or
anti-time ordering is trivial. However, the factors of (−i) or (+i) are still present depending on whether
terms originally came from time ordering operator T exp(−i

∫
dt H) or anti-time ordering operator

(T exp(−i
∫
dt H))†.
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Operator Expression

O7,1 |H|2∇µϕ
(
H†DµH + (DµH)†H

)
O7,2 |H|2∇µϕ

(
H†DµH− (DµH)†H

)
O7,3 F µν∇µϕ

(
H†DνH + (DνH)†H

)
O7,4 (−i)F µν∇µϕ

(
H†DνH− (DνH)†H

)
Table 5.2: Allowed operators at dimension 7.

This term is not reducible to another operator, and it contributes both in the broken and

unbroken phase, via tree and loop-level diagrams, respectively. The associated signatures

have been discussed in [291,295].

5.3.3 Dimension 7

At this dimension, there are four possible operators to start with, as summarized in

Table 5.2. We start the analysis with O7,1 which after IBP can be written as

O7,1 = ∇µϕ · H†H∇µ(H†H) = 1

2
∇µϕ∇µ|H|4 = 1

2
∇µ
(
|H|4∇µϕ

)
, (5.42)

where in the last line we have dropped a contribution proportional to □ϕ as that is

slow roll-suppressed. The surviving term is a boundary term, which we can evaluate by

following the procedure detailed in the previous section. On a late time surface at η0, it

scales as

O7,1 ∼
√
γnηg

ηη|H|4∂ηϕ ∼
1

η40
× η20 × |H|4 × η0. (5.43)

Now we need to set at least one of the Higgs to its fluctuation, otherwise we would just

have a dimension 5 operator considered before. Since the H mode function has a scaling

η
3/2
0 , up to oscillatory parts, we see that the entire boundary term vanishes. Therefore

O7,1 does not contribute.
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Next we consider O7,2. We can use the EOM for the gauge field to write

O7,2 =
i

gA
|H|2∇µϕ∇νF

νµ. (5.44)

However, this is equivalent to O7,3. To see this, we write,

O7,3 = F µν∇µϕ∇ν(H†H) = ∇ν

(
F µν∇µϕ(H†H)

)
−∇νF

µν · ∇µϕ · H†H. (5.45)

On the late-time surface, the total derivative term scales as

1

η40
× η40∂ηA∥

i |H|2. (5.46)

We cannot set both the H to their VEVs, otherwise we just go back to a dimension 5

operator considered above. Therefore, since at least one factor of the H fluctuation has

to be present, going as η
3/2
0 , the entire term scales at least as η0. Thus the total derivative

does not contribute. Finally we consider O7,4, which upon using the gauge field EOM

becomes

O7,4 =
1

gA
Fµν∇µϕ∇ρF

ρν , (5.47)

and can contribute to correlation functions. In total there are two non-redundant oper-

ators at dimension 7, neither of which have yet been considered in the literature.

5.3.4 Dimension 8

Many more operators are allowed at dimension 8, as enumerated in Table 5.3. The

operators O8,1 −O8,6 form a non-redundant minimal basis. Of the remaining operators,

O8,7 simply vanishes. To see this, we fix µ and ν such that they are not identical. If

they are identical, then the associated contribution is already a part of O8,2. Then we

can write,

FµρF̃
νρ =

1

2
Fµρϵ

νραβFαβ. (5.48)
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Operator Expression

O8,1 FµνF
µν(∇ρϕ)

2

O8,2 FµνF̃
µν(∇ρϕ)

2

O8,3 |H|4(∇µϕ)
2

O8,4 |DµH|2(∇νϕ)
2

O8,5 (DµH)†DνH∇µϕ∇νϕ

O8,6 FµρF
νρ∇µϕ∇νϕ

O8,7 FµρF̃
νρ∇µϕ∇νϕ

O8,8 F̃µρF̃
νρ∇µϕ∇νϕ

O8,9 (H†DµH + (DµH)†H)∇µ∇νϕ∇νϕ

O8,10 (−i)(H†DµH− (DµH)†H)∇µ∇νϕ∇νϕ

Table 5.3: Allowed operators at dimension 8.

The index ρ has to be different from both µ and ν. We denote the two possible values it

can take by γ and δ where γ ̸= δ. Then we can rewrite the above,

FµρF̃
νρ =

1

2
Fµγϵ

νγαβFαβ +
1

2
Fµδϵ

νδαβFαβ [γ and δ are not summed over]. (5.49)

The indices α and β can then take values between µ, δ, and γ:

FµρF̃
νρ = Fµγϵ

νγµδFµδ + Fµδϵ
νδµγFµγ, [no summation over any index]

= FµγFµδ(ϵ
νγµδ + ϵνδµγ) = 0.

(5.50)

Therefore, O8,7 does not contribute.

The operator O8,8 is reducible. To see this we can write,

F̃µρF̃
νρ =

1

4
ϵµραβϵ

νργδFαβFγδ =
1

2

(
F γδFγδδ

ν
µ − 2F νδFµδ

)
. (5.51)

This implies O8,8 is reducible to O8,1 and O8,6.
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Next we focus on O8,9 which can be written as

O8,9 = ∇µ(H†H)∇µ∇νϕ∇νϕ = −1

2
□(H†H)∇νϕ∇νϕ+ boundary term. (5.52)

where we have used IBP in the last step. Using methods similar to those used earlier, we

can show the boundary term scales as η
1/2
0 → 0, and hence is not relevant for cosmological

correlators. The surviving term, however, is equivalent to O8,4. To see this, we can use

the EOM (5.21) for H and ∇µA
µ = 0 to write,

□(H†H) = 2(DµH)†DµH + 2V ′(|H|2)|H|2. (5.53)

The last term determined by the Higgs potential contributes to O6,1 and O8,3.

Finally, O8,10 can be reduced using similar techniques. First, we can rewrite it using

the EOM (5.23) and an IBP,

1

2gA
∇ρF

ρµ∇µ (∇νϕ∇νϕ) = − 1

2gA
∇µ∇ρF

ρµ (∇νϕ∇νϕ) + boundary term. (5.54)

Similar as above, one can check that the boundary term vanishes as η
3/2
0 at late times.

Noting that ∇µ∇ρF
ρµ ∝ RµρF

ρµ = 0, we conclude that O8,10 does not contribute. Thus

we find that there are six non-redundant operators at dimension 8.

5.3.5 Dimension 9

At dimension 9 we start with a set of operators summarized in Table 5.4. Among

these, O9,1 does not contribute, as can be seen by doing an IBP which gives a vanishing

boundary term, along with a term involving □ϕ which vanishes in the slow-roll limit.

Using IBP, we can also check that O9,2 and O9,3 are equivalent. O9,17 and O9,20 are

both reducible in terms of other operators. There are a priori other permutations with

three derivatives acting on ϕ. Those terms can, however, be reduced by using the fact

that for a maximally symmetric spacetime such as dS, we can write the Riemann tensor
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Operator Expression

O9,1 ∇µϕ(H†DµH + (DµH)†H)|H|4 = ∇µϕ∇µ(H†H)|H|4

O9,2 ∇µϕ(−i)(H†DµH− (DµH)†H)|H|4 = 1
g
∇µϕ∇νF

νµ|H|4

O9,3 ∇νϕ(H†DµH + (DµH)†H)|H|2Fµν = ∇νϕ∇µ(H†H)|H|2Fµν
O9,4 ∇νϕ(−i)(H†DµH− (DµH)†H)|H|2Fµν = 1

g
∇νϕ∇αF

αµ|H|2Fµν
O9,5 ∇νϕ(H†DµH + (DµH)†H)FµαF να = ∇νϕ∇µ(H†H)FµαF να

O9,6 ∇µϕ(H†DµH + (DµH)†H)FανFαν = ∇µϕ∇µ(H†H)FανFαν

O9,7 ∇µϕ(H†DµH + (DµH)†H)FανF̃αν = ∇µϕ∇µ(H†H)FανF̃αν

O9,8 ∇νϕ(−i)(H†DµH− (DµH)†H)FµαF να = 1
g
∇νϕ∇βF

βµFµαF
να

O9,9 ∇µϕ(−i)(H†DµH− (DµH)†H)FανFαν = 1
g
∇µϕ∇βF

βµFανF
αν

O9,10 ∇µϕ(−i)(H†DµH− (DµH)†H)FανF̃αν = 1
g
∇µϕ∇βF

βµFανF̃
αν

O9,11 ∇µϕ(H†DµH + (DµH)†H)(∇νϕ)
2 = ∇µϕ∇µ(H†H)(∇νϕ)

2

O9,12 ∇µϕ(−i)(H†DµH− (DµH)†H)(∇νϕ)
2 = 1

g
∇µϕ∇αF

αµ(∇νϕ)
2

O9,13 ∇νϕ∇ν(H†H)|DµH|2

O9,14 ∇µϕ∇ν(H†H)(DµH)†DνH

O9,15 ∇νϕ∇αF
αν |DµH|2

O9,16 ∇νϕ∇αF
αµ(DνH)†DµH

O9,17 ∇ν∇µϕ∇µ(H†H)∇ν(H†H)

O9,18 ∇ν∇µϕ∇αF
αµ∇βF

βν

O9,19 ∇ν∇µϕ∇αF
αµ∇ν(H†H)

O9,20 ∇ν∇µϕ∇µF ρν∇ρ(H†H)

Table 5.4: Allowed operators at dimension 9.

246



CHAPTER 5. AN EFFECTIVE COSMOLOGICAL COLLIDER

as Rµνρσ ∝ (gµρgνσ − gµσgνρ). The Bianchi identity for Fµν is also useful in reducing

certain terms. All the other terms would contribute to cosmological correlators, albeit

with suppressed contributions compared to operators at lower dimensions, as we will see

in the next section.

However, the operator O9,12 is special since it gives rise to a quadratic mixing be-

tween the inflaton and the longitudinal gauge boson. Such an operator is observationally

relevant since it would mediate tree-level NG, and we have seen that no other operator

up to dimension 8 could give rise to such a mixing. To elaborate on this further, we can

rewrite O9,12 after an IBP as, (dropping the gauge coupling)

O9,12 = ∇ν [(∇ρϕ∇ρϕ)∇µϕF
νµ]−∇ν(∇ρϕ∇ρϕ)∇µϕF

νµ. (5.55)

Here we have used the fact that F νµ∇µ∇νϕ = 0.

The Boundary Term. We first consider the boundary term, following an analysis

similar to the above. We can write the boundary term as,

i

gA

∫
d3x
√
|γ|nν [(∇ρϕ∇ρϕ)∇µϕF

νµ] (5.56)

Therefore, at late times this term scales as,

∼ 1

η30
× 1

η0
× η20∂iϕ× η40Fηi → 0. (5.57)

Thus this term can be dropped.

The Bulk Term. To obtain the inflaton-gauge boson mixing, we can focus on the F ηi

component from (5.55). Since our main purpose to illustrate the form of the quadratic

mixing, we will not track the overall numerical and η factors. If we set µ = i and ν = 0,

then the term would have a ϕ̈0, and hence it would be slow-roll suppressed. However, for
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µ = 0 and ν = i, we would have a contribution which is quadratic in fluctuations,

O9,12 ⊃ ϕ̇2
0∂iϕ̇F

iη. (5.58)

To simplify this further we can do a spatial IBP to write,

O9,12 ⊃ ϕ̇2
0ϕ̇∂iF

iη. (5.59)

and use (5.35) and (5.37) to write

O9,12 ⊃ ϕ̇2
0m

2ξ̇Aη. (5.60)

Here we have written the inhomogeneous part of the inflaton field: ϕ(t,x) = ϕ0(t)+ξ(t,x).

This matches with the conclusion in [295], however only this particular dimension 9

operator was considered in isolation.

5.3.6 Summary and Classification

The non-redundant operators up to dimension-9 are summarized in Table 5.5. In the

third column, we indicate whether the operator contributes to the bispectrum at tree or

loop level. This differs depending on the phase of the gauge theory. For example, O6,1

can clearly contribute to the bispectrum at tree level in the broken phase, when we can

decompose the Higgs field in unitary gauge as H = (h+ v) /
√
2, with h an interacting

degree of freedom and v the VEV. In the unbroken phase, this is not possible, and the

operator may only contribute via a loop diagram.

On top of the tree/loop classification of each operator’s contribution to observables, in

weakly coupled UV completions it may also be possible to assign a tree/loop classification

to the operator’s Wilson coefficients [340]. At present the tree/loop classification of

Wilson coefficients has only been extended through dimension-8 [341], and we do not

explicitly classify Wilson coefficients here.
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Dimension Operator Observables

5 O5,4 = ϕFµνF̃
µν Loop [339]

6 O6,1 = (∇µϕ)
2H†H Tree [295] and Loop [292]

7 O7,2 = |H|2∇µϕ∇νF
νµ Loop

O7,4 = Fµν∇µϕ∇ρF
ρν Loop

8 O8,1 = FµνF
µν(∇ρϕ)

2 Loop [292]

O8,2 = FµνF̃
µν(∇ρϕ)

2 Loop

O8,3 = |H|4(∇µϕ)
2 Tree and Loop

O8,4 = |DµH|2(∇νϕ)
2 Loop [292]

O8,5 = (DµH)†DνH∇µϕ∇νϕ Loop

O8,6 = FµρF
νρ∇µϕ∇νϕ Loop

9 O9,2 = |H|2O7,2 Loop

O9,4 = |H|2O7,4 Loop

O9,5 = ∇νϕ∇µ(H†H)FµαF να Loop

O9,6 = O5,1FανF
αν Loop

O9,7 = O5,1FανF̃
αν Loop

O9,8 = ∇νϕ∇βF
βµFµαF

να Loop

O9,9 = O5,3FανF
αν Loop

O9,10 = O5,3FανF̃
αν Loop

O9,11 = O5,1(∇µϕ)
2 Tree and Loop

O9,12 = O5,3(∇µϕ)
2 Tree [295] and Loop

O9,13 = O5,1|DµH|2 Loop

O9,14 = ∇µϕ∇ν(H†H)(DµH)†DνH Loop

O9,15 = O5,3|DµH|2 Loop

O9,16 = ∇νϕ∇αF
αµ(DνH)†DµH Loop

O9,18 = ∇ν∇µϕ∇αF
αµ∇βF

βν Loop

O9,19 = ∇ν∇µϕ∇αF
αµ∇ν(H†H) Loop

Table 5.5: A minimal operator basis up to dimension-9. We have dropped some
overall prefactors to write the operators more compactly in terms of dimension-5 and
-7 operators. Operators with leading effects (as described in Sec. 5.4) are highlighted in
red. The third column indicates whether these operators contribute to the bispectrum
at tree or loop level. Observables highlighted in blue only arise in the broken phase.
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5.4 Observational Implications

Having constructed a minimal basis, we now study the predictions for NG, especially

in the context of the cosmological collider. We first briefly review some aspects that will

also set up the notation. As discussed in the Introduction, particles with masses of order

Hinf can be produced as the Universe inflates. After production these particles can prop-

agate on-shell, oscillating in time, and eventually decay into inflaton fluctuations. Such

processes then give rise to non-trivial correlations among different inflaton fluctuations,

in particular, three- and higher-point correlation functions. In this work, we will focus

on the three-point function, i.e., the bispectrum, characterized by three spatial momenta

k1,k2,k3:

⟨R(k1)R(k2)R(k3)⟩ = (2π)3δ(k1 + k2 + k3)B(k1, k2, k3). (5.61)

The δ function above enforces spatial momentum conservation. We have denoted the

gauge invariant comoving curvature perturbation by R; for a detailed definition and

review see, e.g., [214]. Conventionally, the function B is normalized with respect to the

power spectrum so that there is no overall scale dependence,

F (k1, k2, k3) =
5

6

B(k1, k2, k3)

PR(k1)PR(k2) + PR(k2)PR(k3) + PR(k1)PR(k3)
. (5.62)

It is also a convention to characterize the ‘strength’ of NG, at the equilateral configuration

where k1 = k2 = k3, in terms of a single number fNL ≡ F (k, k, k). In the case of the

cosmological collider, the function F exhibits oscillations as a function of k3/k1, especially

in the squeezed limit k3 ≪ k1 ≈ k2. We will denote the associated strength of NG by a

parameter fosc, defined via:

Fsq ≈
5

12

B(k1, k2, k3)

PR(k1)PR(k3)
≡ |fosc|

[(
k3
k1

) 3
2
+iµ

+ c.c.

]
. (5.63)
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In the following, we will estimate the parametric dependence of fosc on various Wilson

coefficients and identify which operators are expected to give a leading signal in a generic

EFT. To that end, we briefly revisit the power counting scheme.

5.4.1 Power Counting

As discussed in Section 5.3, the power counting scheme for the gauge-Higgs-inflaton

EFT can be organized in terms of operator dimension. For simplicity we take operators

to be suppressed by appropriate powers of a common UV scale Λ with Wilson coefficients

cn,a,

L ⊃
∑
n=5,···

cn,a
Λn−4

On,a. (5.64)

Here n determines the dimension of the operator while the index a runs over all the

operators having the same dimension. The EFT scale has to satisfy certain restrictions.

To control the inflaton derivative expansion in (∂ϕ)2/Λ4, we require Λ >

√
ϕ̇
0
[342]. We

also require Λ > v to control the expansion in v2/Λ2, i.e., for the EFT to be suitably

organized in terms of the linearly-realized gauge symmetry.

5.4.2 ‘Monochromatic’ Operators

The operators summarized in Table 5.5 contribute to several types of cosmological

correlators. A given diagram could involve either the Higgs or the gauge boson or both.

Diagrams in which both the Higgs and the gauge boson are present can give rise to

interesting signatures. For a recent study outlining the techniques for computing such

diagrams involving more than one massive field, see [343]. However, the ‘monochromatic’

signatures that could let us extract the mass and spin of the boson in the most imme-
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diate manner would involve either the Higgs or the gauge boson, but not both.6 With

this in mind, we now highlight which operators would give rise to such monochromatic

signatures.

Note that a given monochromatic signature typically accumulates contributions from

multiple operators at successive orders in power counting, where higher-order contribu-

tions are suppressed by appropriate powers of v/Λ or Hinf/Λ. In what follows, the leading

monochromatic signatures are those that arise at the lowest order in power counting.

Leading operators are indicated in red in Table 5.5.

Higgs Signature

The leading monochromatic operator involving the Higgs arises at dimension 6, namely

O6,1. In the broken phase, this operator gives rise to tree-level NG, as was studied in

detail in [295]. On the other hand, in the unbroken phase, the operator contributes to

NG at the loop level, as studied in [292].

At dimension 7 there are no monochromatic Higgs operators, since all the non-

redundant operators involve gauge bosons as well. At dimension 8, monochromatic Higgs

signatures arise from O8,3,O8,4,O8,5. However, we typically expect these contributions

to be suppressed by additional powers of (Hinf/Λ) or (v/Λ) compared to the dimension-

6 contribution. At dimension 9, O9,11, O9,13, O9,14 would contribute, with additional

suppression by powers of (Hinf/Λ) and/or (v/Λ). In particular, O9,13 and O9,14 would

contribute to vertices having at least three Higgs fluctuations.

6If there is a hierarchy between the Higgs and the gauge boson mass, we can integrate out the heavier
particle to effectively obtain a monochromatic contribution for the other particle. Here we instead focus
on the case where both the Higgs mass and the gauge boson mass are comparable.
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Gauge Boson Signature

At loop-level, the leading monochromatic gauge boson signature arises from O5,4.

This operator has been studied extensively in the context of axion inflation [328], and in

the context of the cosmological collider [339]. The operator O7,4 can also contribute, but

potentially without the chemical potential-like structure which arises from O5,4. There

are multiple possible contributions at dimension 8. For example, the effects of O8,1 were

computed in [292], while O8,2 and O8,6 would also contribute at the same order in EFT

power counting.

At dimension 9, O9,12 is special since it can give rise to a quadratic mixing between

the inflaton and the longitudinal gauge boson, as discussed above. The operator O9,18

also contributes, albeit suppressed by powers of (Hinf/Λ). There are other operators

at dimension 9 that involve one inflaton with three gauge bosons, and therefore do not

contribute to a three-point function at the one-loop level.

5.4.3 Estimates

The vertices relevant for NG mediated at tree level or at one loop are summarized

in Figs. 5.1 and 5.2. There are four types of vertices, many of which accumulate con-

tributions from more than one operator in Table 5.5, as indicated by the corresponding

Wilson coefficients cn,a. For operators involving derivatives, we have estimated the size

of the derivatives to be of order Hinf , as appropriate for scenarios where all the mass

scales are of the order Hinf .

Using these vertices we can construct various tree and loop-level diagrams that can

mediate non-gaussianities. For illustration, we only consider the leading Higgs and gauge-

boson mediated NG.
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Figure 5.1: Higgs-inflaton vertices from various operators present in Table 5.5. The
inflaton (Higgs) is denoted by a thin (solid) line. We have not included vertices with
more than two Higgs fluctuations.
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Figure 5.2: Gauge boson-inflaton vertices from various operators present in Table 5.5.
The inflaton (gauge boson) is denoted by a straight (wavy) line. We have not included
vertices with more than two gauge bosons.
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Higgs. The signature in the broken phase was discussed in [295]; here we summarize

the main conclusions. The dimension 6 operator O6,1 would mediate the leading tree-level

NG through the vertices shown on the first row of Fig. 5.1. The parametric dependence

of NG from the so-called ‘single exchange’ diagram can be estimated as,

fHiggs
osc,tree ∼

µ4v2

ϕ̇2
0H

2
inf

, (5.65)

where µ2 ∼ c6,1ϕ̇
2
0/Λ

2 denotes a ‘classical’ correction to the Higgs mass from O6,1 when

the inflaton is set to its VEV [295]. The total Higgs mass is then given by m2
h,full ∼

µ2+m2
h,bare wherem

2
h,bare is the Higgs mass in the absence of any inflaton correction. Since

cosmological collider signatures would be exponentially suppressed for mh,full ≫ Hinf ,

we require m2
h,full ∼ H2

inf . Barring any fine-tuning, this would mean µ2 ∼ H2
inf and

m2
h,bare ∼ H2

inf . This implies the going rate for NG is fHiggs
osc,tree ∼ (H2

infv
2)/ϕ̇2

0. For a

more detailed numerical computation of the non-gaussianity, see Ref. [295] where the

exponential fall off of the NG as a function of increasing Higgs mass is also computed.

In the unbroken phase, the NG signature arises at one loop, mediated by the right

two vertices in the first row of Fig. 5.1. The corresponding estimate is

fHiggs
osc,loop ∼

1

16π2

µ4

ϕ̇2
0

. (5.66)

For a detailed evaluation see Ref. [292].

Gauge Boson. We first discuss the tree-level signature in the broken phase, which was

also discussed in [295]. For a tree-level signature, an essential ingredient is a quadratic

mixing between an inflaton and the longitudinal mode of the gauge boson. Such a mixing

arises at dimension 9, namely via O9,12, which also gives a cubic interaction between the

gauge boson and the inflaton. These two vertices can contribute to NG via the so-called
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single exchange diagram:

f gauge
osc,tree ∼ c29,12

ϕ̇4
0H

2

Λ10
. (5.67)

For Λ ≳
√
ϕ̇0, the above becomes f gauge

osc,tree ≲ c29,12(H
2/ϕ̇0). For a detailed evaluation see

Ref. [295]. There is another diagram that can contribute to NG, involving the vertices

with c7,4 and c9,12. The strength can be estimated as,

f gauge
osc,tree ∼ c7,4c

2
9,12

ϕ̇5
0

Λ13
. (5.68)

Taking Λ ≳
√
ϕ̇0, the above estimate becomes f gauge

osc,tree ≲ c7,4c
2
9,12(H/ϕ̇

3/2
0 ), and therefore

this contribution is expected to be subdominant compared to the previous process medi-

ated purely via c9,12. The dimension-5 operator determined by c5,4 can give larger signals,

both because it is a leading operator from an EFT perspective, and also because it can

give a ‘chemical potential’ for gauge boson, potentially leading to exponential particle

production. The cosmological collider signatures were computed in [339].

5.5 Conclusion

A systematic approach to constructing local EFTs entails not only fixing the power-

counting and enumerating operators consistent with the infrared symmetries and fields,

but also accommodating the resulting redundancy of description. This systematic ap-

proach is well-established in flat-space EFTs, where the irrelevance of boundary terms

and invariance of S-matrix elements under field redefinitions make operator redundancies

transparent. The situation is more complicated in cosmological EFTs, where boundary

terms are not always negligible and the observables of interest are sensitive to field redefi-

nitions. While minimal operator bases for inflaton self-interactions have been enumerated

in various inflationary EFTs, much less progress has been made for EFTs of heavy par-

ticles coupled to the inflaton beyond the simplest cases at lowest order.
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In this paper, we have developed a minimal operator basis for an abelian gauge-

Higgs-inflaton EFT up to dimension 9, an archetypal example of a sector of heavy fields

coupled to the inflaton relevant for cosmological collider physics. We have identified

low-dimensional operators that are entirely redundant, as well as new non-redundant

operators with potentially interesting observational signatures. Along the way, we have

identified a number of useful methods for checking boundary terms arising from IBP

relations, which can readily be applied to other EFTs of heavy particles coupled to

the inflaton. The systematic enumeration of minimal operator bases in these EFTs is

invaluable in light of the considerable interest in their cosmological signatures.

There are, of course, a number of interesting future directions. The methods presented

in this paper may readily be generalized to other sectors coupled to the inflaton, including

fermions and non-abelian gauge bosons. While we have focused on a Lorentz-preserving

EFT of inflation with a shift-symmetric inflaton, similar methods may be applied in the

more general Goldstone EFT of inflation [264]. Further, we have enumerated a number

of operators with observational effects at loop-order. The precise computation of these

effects remains important and will be the subject of future work. Finally, it would be very

interesting to extend the general methods developed for operator bases in flat space [263]

to cosmological contexts by accounting for the possible role of boundary terms. More

broadly, we hope that the extensive attention devoted to operator bases in flat space

EFTs may be equally applied to the plethora of EFTs arising in cosmological settings.
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Conclusions

This thesis has covered a wide range of topics in particle phenomenology and cosmology,

and presented new results in building and analyzing parity solutions to solve the strong

CP problem as well as progress in understanding the cosmological consequences of early

universe particle models.

There is much further ground to pursue, both in extending these works and venturing

further into the rich realm of particle theory and phenomenology. It’s an exciting time to

be in particle physics: While recent decades have seen a notable shift in morale following

strings of null experimental results, we have no shortage of ideas to pursue BSM physics

from both a theoretical and experimental lens. On the theory side, advancements in

EFTs, scattering amplitudes, generalized symmetries, and cosmological correlators are

poised to advance our knowledge of what QFT fundamentally is, while building new

structures to simplify existing models and guide the formation of new ones. On the

experimental side, we are still immersed in a golden age of cosmology, with upcoming

gravitational wave experiments and probes of large-scale structure poised to return results

on the tensor-to-scalar ratio, either a detection of primordial non-Gaussianities or new

bound on fNL, and signals of gravitational waves, which may or not be primordial in
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origin. Whether these experiments detect new signatures or not, we will learn something

about how our universe works. Perhaps this will be aligned with some of the ideas

presented in this thesis, or perhaps the field requires a true paradigm shift to make

progress. Either way, there is no shortage of ideas to ponder and work to be done. To

conclude with one of my favorite quotes: “It’s a magical world, Hobbes ’ol buddy...let’s

go exploring!”
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Appendix A

Supplementary Material for Chapter

2

A.1 Mass eigenstates

A.1.1 Gauge and Higgs sectors

With the gauge group of Eq.(2.3), and the Higgs sector specified in table 2.1, spon-

taneous symmetry breaking takes place in two steps, as follows

SU(2)L × SU(2)R × U(1)Ŷ
v′ ̸=0−−→ SU(2)L × U(1)Y v ̸=0−−→ U(1)EM . (A.1)

The physical spectrum contains SM-like Z, W±, and γ gauge bosons, as well as exotic

Z ′ and W ′± excitations. At tree-level, no mixing occurs in the charged gauge boson

sector, and the mass eigenstates are given in terms of the gauge eigenbasis by the usual

expression:

W± =
1√
2
(W 1 ∓ iW 2) , (A.2)

and similarly in the W ′ sector. Tree-level masses are of the form mW = gv/2 and

mW ′ = gv′/2, where we have assumed that g′ = g, as mandated by generalized parity.
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By contrast, in the neutral gauge boson sector mixing between SM and mirror fields takes

place already at tree-level. At zeroth order in a v/v′ expansion, the gauge eigenstates

can be written in the mass eigenbasis as follows
W ′3
µ

W 3
µ

B̂µ

 =


√
cos 2θw
cos θw

− sin θw tan θw sin θw

0 cos θw sin θw

− tan θw − tan θw
√
cos 2θw

√
cos 2θw



Z ′
µ

Zµ

Aµ

 , (A.3)

where sin2 θw ≃ 0.231 as usual. Corrections to the above expression arise at O(v2/v′2).

Masses for the SM-like Z and mirror Z ′ are given by

mZ =
gv

2 cos θw
+O

(
v2

v′2

)
, and mZ′ =

gv′ cos θw

2
√
cos 2θw

+O
(
v2

v′2

)
. (A.4)

After electroweak symmetry breaking, the Higgs sector consists of two real scalar

fields, h and h′, with masses given by mh ≃ 2
√
κv and mh′ ≃

√
2λv′. Rotating from the

gauge to the mass eigenbasis can be performed as followsh
h′

→
 cosα sinα

− sinα cosα


h
h′

 , (A.5)

with mixing angle α ∼ v/v′.

A.1.2 Fermion sector

Rotating from the flavor to the mass eigenbasis in the fermion sector requires solving

the eigenvalue problem for the 6 × 6 matrices M†
fMf , and MfM†

f , with Mf as given in

Eq.(2.12). This can be conveniently done as a perturbation expansion in v/M, v′/M ≪ 1.

In this section, we summarize the relevant results of this procedure. We focus first on the

down-quark and lepton sectors (although we will use notation appropriate to the down-

quark sector, we emphasize that identical results apply for leptons). The singularities

of the up sector as related to the top quark merit a separate discussion that we present

later.
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Down-type quarks and leptons

The mass eigenvalues in the down-quark sector can be found by diagonalizing the two

3× 3 matrices

v′v

2
y′∗dM−1

d yTd , and Md. (A.6)

In full generality, i.e. without yet imposing generalized parity, the above matrices are not

necessarily hermitian, and two unitary matrices are needed in order to bring them into

real diagonal form. This corresponds to the unitary transformations

d→ O†
dd, d

′ → O†
d′d

′, and D → O†
DD, D

′ → O†
D′D

′. (A.7)

By definition, the rotation matrices are such that

⋗d ≡ O∗
d′

(
v′v

2
y′∗dM−1

d yTd

)
O†
d = diag(mdi) , (A.8)

and

⋗D ≡ O∗
DMdO†

D′ = diag(mDi
) , (A.9)

where mdi and mDi
are the masses of the SM and exotic heavy quarks respectively. As

advertised in section 2.2.3, we will make the simplifying assumption that all three mirror

quarks appear at a common scale mDi
∼ M ≫ v, v′. Imposing generalized parity makes

both matrices in Eq.(A.6) hermitian. In this case, a single unitary matrix suffices to

make them diagonal, and we have Od′ = O∗
d and OD = O∗

D′ .

It is convenient to define two new matrices corresponding to the Yukawa couplings in

this new basis

ỹd ≡ O∗
dydO†

D, and ỹ′d ≡ Od′y′dOTD′ . (A.10)

With this definition, the tree-level masses of the SM-like fermions read

mdi =
vv′

2

∑
j

(ỹ′∗d )ij(ỹd)ij
mDj

=
vv′

2

∑
j

|(ỹd)ij|2
mDj

, (A.11)
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where the last step holds provided we impose generalized parity. From this expression,

we can find an upper bound on the individual entries in the Yukawa matrix, of the form

|(ỹd)ij| ≲
(
2mdimDj

vv′

)1/2

∼
(
mdiM

vv′

)1/2

. (A.12)

As advertised in section 2.2.3, bringing the full 6×6 matrix of Eq.(2.12) into diagonal

form requires a further transformation that mixes the SU(2)-doublet and singlet fields,

as specified in Eq.(2.20). In terms of the ỹd and ỹ′d couplings defined earlier, the 3 × 3

blocks appearing in Eq.(2.20) can be written as

ϵd =
v√
2
⋗−1
D ỹTd , and ϵ′d =

v′√
2
⋗−1
D ỹ′†d , (A.13)

whose entries are of O(v/M) and O(v′/M) respectively. When generalized parity is only

broken by the different vev’s in the SM and mirror sectors, we have ϵ′d = (v′/v)ϵ∗d.

Up-type quarks

The diagonalization procedure in the up-quark sector is analogous to that for down-

type quarks and leptons, although this time accommodating for the singularities of the

third generation for which the see-saw mechanism cannot be implemented.

As before, at zeroth order in v(′)/M , we perform transformations of the form

u→ O†
uu, u

′ → O†
u′u

′, and U → O†
UU, U

′ → O†
U ′U

′. (A.14)

On the one hand, the matrices OU and OU ′ must be chosen such that the vector-like

mass matrix Mu is brought into diagonal form. In this case, we make the assumption

that two of the eigenvalues of Mu are mU1 ,mU2 ∼ M , whereas the third one is much

smaller, and for simplicity we will take it to vanish in what follows. On the other hand,

the matrices Ou and Ou′ must now be such that

(ỹ′∗u ⋗̂−1
U ỹTu )ij = δij(ỹ

′∗
u ⋗̂−1

U ỹTu )ii, and (ỹu)i3 = (ỹ′u)i3 = 0 (A.15)
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for i, j = 1, 2, and where ⋗̂−1
U ≡ diag(m−1

U1
,m−1

U2
, 0), and the ỹu and ỹ

′
u matrices are defined

as in Eq.(A.10). Moreover, we define yt ≡ ỹ33, and yt′ ≡ ỹ′∗33, which we may choose to be

real and positive.

With this preliminaries, the tree-level mass eigenvalues in the top sector read

mt =
yt√
2
v , and mt′ =

yt′√
2
v′, (A.16)

with yt′ = yt if we impose generalized parity. For the first and second generation, we

have instead

mui =
vv′

2

2∑
j=1

(ỹ′∗u )ij(ỹu)ij
mUj

=
vv′

2

2∑
j=1

|(ỹu)ij|2
mUj

, (A.17)

where the last step holds provided we impose generalized parity. As before, we can now

obtain an upper bound on the individual Yukawa entries, of the form

|(ỹu)ij| ≲
(
2muimUj

vv′

)1/2

∼
(
muiM

vv′

)1/2

for i, j = 1, 2. (A.18)

A further transformation mixing the SU(2)-singlet and doublet components is again

necessary in order to diagonalize the full 6× 6 mass matrix, which can be written as in

Eq.(2.20). The corresponding ϵu and ϵ′u blocks are now given by

(ϵu)ij =
v√
2
(⋗̂−1

U ỹT )ij , (ϵu)3j = −
vv′

2

mt′(ỹ
′∗⋗̂−1

U ỹT )3j
m2
t′ − δj3m2

t

,

(ϵ′u)ij =
v′√
2
(⋗̂−1

U ỹ′T )∗ij , (ϵ′u)3j = −
vv′

2

mt(ỹ
∗⋗̂−1

U ỹ′T )∗3j
m2
t − δj3m2

t′
.

(A.19)

for i = 1, 2 and j = 1, 2, 3. Just as in the down-quark sector, if generalized parity is only

broken by the difference between v and v′, we have ϵ′u = (v′/v)ϵ∗u.

A.2 Radiatively induced EDM

A.2.1 One-loop EDM

We will now present a calculation of the one-loop correction to the EDM of elementary

charged fermions that arises under the assumption that parity is only broken softly, both
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in the scalar potential and through the presence of non-hermitian vector-like masses for

the SU(2)-singlets. The relevant diagrams are those featured in figure 2.3. We will

concentrate first on diagrams where either h or h′ propagate inside the loop.

In full generality, a Dirac fermion f that interacts with another fermion ψ, and a

neutral scalar ϕ through Yukawa couplings of the form

L ⊃ L(f̄RψL)ϕ+R(f̄LψR)ϕ+ h.c., (A.20)

will receive a one-loop EDM given by

df
e

=
Qψ

16π2

mψ

m2
ϕ

A(r) Im (LR∗) , (A.21)

where r = m2
ψ/m

2
ϕ, and the loop function A is given by

A(r) =
1

2(1− r)2
(
3− r + 2 log r

1− r

)
. (A.22)

In the model we are considering, the Yukawa interactions involving both light and heavy

fermions can be written as

L ⊃ −
∑
s=h,h′

s
(
d̄Rη̂

sdL + d̄Rβ̂
sDL + D̄Rγ̂

sdL + D̄Rδ̂
sDL

)
+ h.c., (A.23)

where we are using notation specific to the down-quark sector, but analogous expressions

apply for up-quarks and leptons (although the specific form of the Yukawa matrices will

differ). It will be convenient to write the above matrices as ω̂s = R1sω
h + R2sω

h′ (for

ω = η, β, γ, δ), where R11 = R22 = cosα and R12 = −R21 = sinα, with α ∼ v/v′

the mixing angle the Higgs sector. For the down-quark sector, the ω matrices can be

conveniently written as follows

ηh = −⋗d

v
, βh = − 1√

2

(
⋗dỹ

∗⋗−1
D

)
, γh =

ỹT√
2
, δh =

v

2

(
ỹT ỹ∗⋗−1

D

)
, (A.24)

and

ηh
′
= −⋗d

v′
, βh

′
=
ỹ′∗√
2
, γh

′
= − 1√

2
⋗−1
D ỹ′T⋗d, δh

′
=
v′

2

(
⋗−1
D ỹ′T ỹ′∗

)
.

(A.25)
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The one-loop correction to the EDM of one of the SM-like quarks, di, is dominated by

diagrams where the heavy mirror quarks propagate inside the loop. Since mDj
∼ M ≫

mh,mh′ , we can expand the loop function A(r) in the limit r ≫ 1. Keeping the first two

terms, we find

ddi
e
≃ −

∑
j,s

Qd

32π2mDj

(
1− m2

s

m2
Dj

)
Im
(
β̂sij γ̂

s
ji

)
. (A.26)

The last factor in the previous expression can be written as

Im(β̂sij γ̂
s
ji) = R1sR2s Im(βhijγ

h′

ji + βh
′

ij γ
h
ji), (A.27)

where we have taken into account that βhijγ
h
ji, β

h′
ij γ

h′
ji ∈ R, so those combinations don’t

appear on the right-hand-side. When summing over s in Eq.(A.26), the contribution

from the leading term in the m2
s/m

2
Dj
≪ 1 expansion vanishes since

∑
sR1sR2s = 0. The

leading contribution to ddi then reads

ddi
e
≃
∑
j,s

Qd

32π2

m2
s

m3
Dj

R1sR2s Im
(
βhijγ

h′

ji + βh
′

ij γ
h
ji

)
≃
∑
j

Qd

32π2

m2
h′

m3
Dj

sinα Im
(
βh

′

ij γ
h
ji

)
,

(A.28)

where in the last step we have neglected the first term in parenthesis since it is suppressed

by a factor of O((vv′/M2)2) with respect to the second, and we have only kept the

contribution from h′, since the contribution from h is suppressed by an additional factor

of m2
h/m

2
h′ .

From Eq.(A.24) and (A.25), we find

βh
′

ij γ
h
ji =

1

2
ỹ′∗ij ỹij. (A.29)

When generalized parity is a good symmetry, we have ỹ′ = ỹ, and therefore the above

term is real, in turn leading to a vanishing EDM. In the presence of soft breaking through

non-hermitian vector-like masses, the relationship ỹ′ = ỹ no longer holds, even if the
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Yukawa couplings in the flavor basis remain identical since the breaking is soft. To see

that the equality of the Yukawa couplings in the SM and mirror sectors no longer holds

in the mass basis, it is useful to remind ourselves of the fermion mass diagonalization

procedure discussed in appendix A.1.2. When generalized parity remains unbroken, the

unitary matrices of Eq.(A.7) are such that OF = O∗
F ′ and Of ′ = O∗

f . However, the non-

hermiticity of the vector-like mass matrix means the unitary matrices needed to bring

the 3 × 3 matrices of Eq.(A.6) into real diagonal form will no longer satisfy this simple

relation. Instead, writing the new vector-like mass matrices asMf + i∆Mf , with both

Mf and ∆Mf hermitian, the new unitary matrices are modified as follows

OF ′ → ÕF ′ = OF ′ +∆F ′ , OF → ÕF = O∗
F ′ −∆∗

F ′ ,

Of → Õf = Of +∆f , Of ′ → Õf ′ = O∗
f −∆∗

f .

(A.30)

The ∆ matrices arise at O (|∆M|/M), and are given by

(∆F ′)ij = i
∑
k ̸=i

[∆M̃,⋗F ]ik
m2
Fi
−m2

Fk

(OF ′)kj , and (∆f )ij = i
∑
k ̸=i

[∆m̃,⋗f ]ik
m2
fi
−m2

fk

(Of )kj , (A.31)

where

∆M̃ ≡ OF ′∆MO†
F ′ and ∆m̃ ≡ vv′

2
ỹ∗⋗−1

F ∆M̃⋗−1
F ỹT . (A.32)

Using the above expressions in the definition of ỹ, it is possible to write

ỹ′∗ = ỹ∗(⊮+ ξ), (A.33)

where ξ is a matrix with entries of O(|∆M|/M). Explicitly, after some massaging,

ỹ′∗ij =
∑
l

ỹ∗il

(
δlj + i

∆M̃lj

mFl
+mFj

(1− δlj) + i
vv′

2

∑
n,k ̸=i

ỹ∗kj ỹkn

mfi +mfk

∆M̃ln

mFl
mFn

)
. (A.34)

In total:

Im(ỹ′∗ij ỹij) = |ỹij|2 ×O
(
∆M
M

)
. (A.35)
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Plugging this back into Eq.(A.28), we have

ddi
e
≃
∑
j

Qd

32π2

m2
h′

m3
Dj

sinα
1

2
Im(ỹ′∗ij ỹij) ≃

ndQd

32π2

mdi

M2
×O

(
∆M
M

)
, (A.36)

with nd = 3 the number of mirror fermions appearing at the see-saw scale in the down-

quark sector. The above expression also applies to the lepton sector, after making the

obvious substitutions. In the up-quark sector, the expressions for the Yukawa couplings

are somewhat different to those in Eq.(A.24) and (A.25), but can be similarly found by

following the flavor-to-mass-basis rotation procedure outlined in section A.1.2. In the

end, diagrams where h′ and the mirror partners of the u and c quarks propagate inside

the loop give the leading contribution to the one-loop EDM. Thus, the above expression

also applies for the up-quark sector, this time with nu = 2 instead.

Additional contributions arise from diagrams where Z and Z ′ propagate inside the

loop (see figure 2.3). In this case, the leading contribution arises from diagrams involving

Z ′ as well as heavy mirror fermions. In total, the final result is parametrically the same

as that in Eq.(A.36), except for an additional suppression by a factor of g2 sin2 θw.

Although the potential one-loop correction to θ̄ that could arise as a result of the soft

breaking through non-hermitian vector-like masses was already shown to vanish in [22],

this can also be seen from the calculation we have just performed. The relevant diagrams

contributing to the quark mass matrix, and therefore to θ̄, are those of figure 2.3, minus

the external photon line. So although the appropriate loop function will be different, the

overall correction will be similarly proportional to Eq.(A.29). Using Eq.(A.8) to rewrite

ỹ′ in terms of ỹ, and the diagonal mass matrices, we find

Im(δmdi) ∝ Im(ỹ′∗ij ỹij) ∝ mdi Im((ỹ−1)jiỹij). (A.37)

As a result, the corresponding contribution to θ̄ from the down-quark sector reads∑
i

Im(δmdi)

mdi

∝ Im

(∑
i

(ỹ−1)jiỹij

)
= 0. (A.38)

269



APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2

Notice the sum over quark flavors is crucial in the above cancellation.

A.2.2 One-loop θ̄

The calculation of the one-loop correction to the quark mass matrix, and, in turn,

to θ̄, proceeds along similar lines to the EDM calculation we have just discussed. The

leading contribution to θ̄ comes from corrections to the light quark masses, and it is due

to diagrams where either h′ or ϕ propagate inside the loop.

Rotating from the gauge to the mass basis in the scalar sector requires performing a

transformation si → Rijsj, with si = {h, h′, ϕ}, and R is a 3× 3 orthogonal matrix that

we parametrize in terms of the various mixing angles as

R =


cαcβ cαsβsγ + sαcγ −cαsβcγ + sαsγ

−sαcβ −sαsβsγ + cαcγ sαsβcγ + cαsγ

sβ −cβsγ cβcγ

 (A.39)

where cα = cosα, sα = sinα, etc. Parametrically, we expect cα ∼ cβ ∼ cγ = O(1),

whereas sα ∼ v/v′, sβ ∼ v/vϕ, and sγ ∼ vϕ/v
′. In the down-quark sector, the Yukawa

interactions of Eq.(A.23) need to be extended to include ϕ in the sum, and the ω̂s matrices

are now given by

ω̂s = R1sω
h +R2sω

h′ +R3sω
ϕ for ω = η, β, γ, δ. (A.40)

The expressions for ωh and ωh
′
are as in Eq.(A.24) and (A.25), whereas for ϕ we have

ηϕ = −ivv
′

2

(
ỹ′∗⋗−1

D
˜̄y⋗−1

D ỹT
)
, βϕ =

iv′√
2

(
ỹ′∗⋗−1

D
˜̄y
)
,

γϕ =
iv√
2

(
˜̄y⋗−1

D ỹT
)
, δϕ = −i˜̄y,

(A.41)

where ˜̄y ≡ OF ′ ȳO†
F ′ , as usual.

In the notation of Eq.(A.20), the one-loop correction to Im(δmf ) is given by

Im(δmf ) =
mψ

16π2
F(mψ,mϕ) Im(LR∗), (A.42)
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where the loop function F now reads

F(mψ,mϕ) =
1

m2
ψ −m2

ϕ

[
m2
ψ

(
log

m2
ψ

µ2
− 1

)
−m2

ϕ

(
log

m2
ϕ

µ2
− 1

)]
. (A.43)

For the case at hand, the leading one-loop correction to the mass of the SM-like fermions

involves diagrams where the heavy mirror partners appearing at scaleM propagate inside

the loop. Specifically, in the down-quark sector, we have

Im(δmdi) =
∑
s,j

mDj

16π2
F(mDj

,ms) Im(β̂sij γ̂
s
ji). (A.44)

In analogy to the discussion in the previous section, the leading term in F in the limit

mDj
≫ ms is independent of ms, and its contribution to Im(δmf ) vanishes as a result

of the orthogonality of the mixing matrix in the scalar sector. The leading correction to

Im(δmdi) then reads

Im(δmdi) ≃
∑
j,s

m2
s

16π2mDj

log
m2
Dj

m2
s

Im(β̂sij γ̂
s
ji)

≃
∑

j,s=h′,ϕ

m2
s

16π2mDj

log
m2
Dj

m2
s

Im(sγβ
h′

ij γ
ϕ
ji + sγsαβ

ϕ
ijγ

h
ji),

(A.45)

where in the last step we have neglected the contribution from h, which is suppressed by

a factor of m2
h/m

2
s compared to that from h′ and ϕ. The two terms inside the parenthesis

are given by

sγ Im(βh
′

ij γ
ϕ
ji) = sγ

v

2

ỹ′∗ij ˜̄yjkỹik

mDk

∼ sγ
mdi ȳ

v′
∼ vϕmdi ȳ

v′2
, (A.46)

where in the last step we have substituted sγ ∼ vϕ/v
′, as we expect when vϕ ≲ v′, and

sγsα Im(βϕijγ
h
ji) = sγsα

v′

2

ỹ′∗ik ˜̄ykj ỹij
mDk

∼ sγsα
mdi ȳ

v
∼ vϕmdi ȳ

v′2
. (A.47)

Both terms are therefore of the same order. When vϕ ≲ v′, the contribution from ϕ to

Im(δmdi) is subleading to that from h′. Setting mh′ ≃
√
2λv′ ∼ v′, we then have

Im(δmdi) ∼
mdi

16π2

ȳvϕ
M

log
M2

m2
h′
, (A.48)
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and the contribution to θ̄ from the down-quark sector reads

θ̄ ≃
∑
i

Im(δmdi)

mdi

∼ 1

16π2

ȳvϕ
M

log
M2

m2
h′
. (A.49)

The above expression agrees with the parametric estimate presented in section 2.4.2,

except for the log factor that is not captured in our spurion analysis.

A.3 Kaon mixing

The ∆mK and |ϵK | parameters characterizing the kaon sector can be written as

∆mK = 2Re(mK
12), and |ϵK | =

κϵ| Im(mK
12)|√

2∆mK

, (A.50)

where mK
12 ≡ 1

2mK
⟨K0|Heff |K̄0⟩, and Heff refers to the effective hamiltonian appropriate

to describe kaon mixing.

In the SM,Heff is generated at one-loop through box diagrams involving twoW gauge

bosons. The corresponding contribution reads

Heff ⊃ −
G2
Fm

2
W

4π2
(d̄LγµsL)(d̄Lγ

µsL)
∑
α,β

λαλβF (xα, xβ) + h.c., (A.51)

where the loop function F is given by [344]

F (xα, xβ) =
x2α log xα

(xβ − xα)(1− xα)2
(
1− 2xβ +

xαxβ
4

)
+ {xα ↔ xβ}

+
1

(1− xα)(1− xβ)

(
7xαxβ

4
− 1

)
,

(A.52)

and λα = V ∗
αdVαs for α = u, c, t. In the present model, the sum over α and β in Eq.(A.51)

must be extended to include the additional members of the up-quark sector. The corre-

sponding couplings can be read off from Eq.(2.39), and are given by

λα = ∆V ∗
αd∆Vαs for α = U,C, T. (A.53)
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An additional contribution to Heff arises from diagrams involving oneW and oneW ′.

In this case:

Heff ⊃ −
G2
Fm

2
W

4π2
β(d̄RsL)(d̄LsR)

∑
α,β

λLRα λRLβ F̃ (β, xα, xβ) + h.c., (A.54)

where β ≡ m2
W/m

2
W ′ = v2/v′2, and the loop function now reads [345]

F̃ (β, xα, xβ) =
√
xαxβ {(1 + β)I2(xα, xβ, β)− (4 + βxαxβ)I1(xα, xβ, β)} , (A.55)

with

I1(β, xα, xβ) =
xα log xα

(1− xα)(1− βxα)(xα − xβ)
+ {xα ↔ xβ} −

β log β

(1− β)(1− βxα)(1− βxβ)
,

I2(β, xα, xβ) =
x2α log xα

(1− xα)(1− βxα)(xα − xβ)
+ {xα ↔ xβ} −

log β

(1− β)(1− βxα)(1− βxβ)
.

(A.56)

The relevant couplings follow from the interactions in Eq.(2.39) and (2.40). For the u

and c quarks, we have λLRα = λRLα = λα, whereas for their heavy partners

λLRα = ∆V ∗
αd∆V

′
αs, and λRLα = ∆V ′∗

αd∆Vαs, for α = U,C. (A.57)

In the top sector, on the other hand, we have

λLRt = V ∗
td∆V

′
3s, λ

RL
t = ∆V ′∗

3dVts, and λLRT = ∆V ∗
3dVts, λ

RL
T = V ∗

td∆V3s. (A.58)
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B.1 Freeze-in of γ′

As discussed in Sec. 3.5.3 and Sec. 3.5.4, a thermal population of mirror photon is

not consistent with the mirror electron being DM. If the latter is produced via a freeze-

out mechanism, it leads to an overabundance of mirror up-quarks, forbidden by direct

searches. If the e′ is produced via freeze-in, it leads to a yield larger than the observed

one for DM. Therefore, we instead considered a frozen-in population of γ′ that re-scatters

into e′.

Computing the yield of e′ through this mechanism then requires tracking the distribu-

tion fγ′(t, E) of mirror photons as they are produced from gluons thorugh the processes

of Fig. 3.6. Neglecting all terms proportional to fγ′ at leading order, the Boltzmann

equation reads

∂fγ′

∂t
−HE∂fγ′

∂E
=

1

E

∫
dΠ1dΠ2dΠ3 (2π)

4 δ(4)(p1+p2−p3−pγ′)|M12→3γ′|2f1(t, p1)f2(t, p2)

(B.1)
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with dΠi ≡ d3pi

(2π)32Ei
and p ≡ |p|. In our case, the particles labeled by 1, 2 are SM gluons in

thermal equilibrium, and 3 is a mirror photon or SM gluon in the final state. Anticipating

that the mirror photons will create heavy e′, we focus on high energy mirror photons, and

hence on high energy gluons. In addition, since the gluons are in thermal equilibrium,

we can approximate f1,2(t, p) ∼ e−|p|/T in the comoving frame. Then, via momentum

conservation, we find

f1(t, p1)f2(t, p2) = e−(p3+E)/T . (B.2)

Consequently, we can first compute∫
dΠ1dΠ2 (2π)

4 δ(4)(p1 + p2 − p3 − pγ′)|M12→3γ′|2, (B.3)

which is Lorentz invariant. In the center of mass frame, it reads∫
d cos θ

1

16π

∣∣∣M(
s, t = −s

2
(1 + cos θ)

) ∣∣∣2 . (B.4)

In the present case, we have computed the cross sections to be,

|Mgg→γ′γ′|2 =
e′4g4s (145586s

4 + 516433s3t+ 725757s2t2 + 450254st3 + 141256t4)

114307200π4m8
u′

|Mgg→gγ′ |2 =
e′2g6s (145586s

4 + 516433s3t+ 725757s2t2 + 450254st3 + 141256t4)

121927680π4m8
u′

.

(B.5)

We integrate over cos θ and express the result in terms of s in order to have the ex-

pression in any Lorentz frame, including the comoving frame where we know the gluon

distribution:

gg → γ′γ′ :
224881e′4g4ss

4

4572288000π5m8
u′
, gg → gγ′ :

224881e′2g6ss
4

4877107200π5m8
u′
. (B.6)

Performing the last integration over p3, we obtain∫
dΠ3s

4e−(p3+E)/T =
2E4e−E/T

(2π)2

∫
dp3d cos θ p

5
3 (1− cos θ)4 e−(p3+E)/T =

1536E4T 6e−E/T

(2π)2
,

(B.7)
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where we have used the rotational invariance of the system to align pγ′ with the z-axis.

Summing over the two production channels, we find

∂fγ′

∂t
−HE∂fγ′

∂E
=

224881e′2g4s (16e
′2 + 15g2s)T

6E3e−
E
T

190512000π7m8
u′

. (B.8)

We then wish to manipulate this equation into a numerically-friendly form. First, we

convert the time derivative into a temperature derivative using s = 2π2

45
heffT

3,

∂fγ′

∂t
=
∂fγ′

∂T

∂T

∂s

∂s

∂t
= −

(
8π3

90

)1/2
T 3

Mpl

heff(T )

g
1/2
∗ (T )

∂fγ′

∂T
, (B.9)

where g
1/2
∗ ≡ heff

g
1/2
eff

(
1 + T

3heff

dheff
dT

)
, and we write the Hubble parameter in terms of tem-

perature,

H(T ) =

(
π3geff(T )

90

)1/2
T 2

MP

. (B.10)

The equation becomes

T
∂fγ′

∂T
+ α1(T )E

∂fγ′

∂E
= −α2(T )T

4E3 e−E/T , (B.11)

where we define α1(T ) =
(
geff(T )g∗(T )

8h2eff(T )

)1/2
and α2(T ) =

224881e′2g4s(16e′2+15g2s)
190512000π7m8

u′

g
1/2
∗ (T )
heff(T )

√
90
8π3MP

for simplicity. Because we know that the freeze-in is UV-dominated, we can take α1 and

α2 to be constant, giving us the analytical solution,

f(T,E) =
α2E

3T−3α1

α1 − 1

[
T 3α1+4

(
E

T

) 3α1+4
1−α1

Γ

(
3α1 + 4

α1 − 1
,
E

T

)
−T 3α1+4

RH

(
E Tα1−1

RH T−α1
) 3α1+4

1−α1 Γ

(
3α1 + 4

α1 − 1
, T−α1E Tα1−1

RH

)]
.

(B.12)

where Γ is the so-called incomplete gamma function. In our Boltzmann codes, we are

using the above formula even for energies larger than mu′ , although Eqs. (B.5) only hold

for s ≤ m2
u′ . However, as in footnote 7, energies larger than mu′ essentially do not affect

the γ′ distribution and the resulting e′ relic abundance.
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C.1 Scalar-induced gravitational waves: technical de-

tails

In this appendix, we review the formalism relevant to computing GW energy density

for the sake of completeness, following the notation and analysis of Ref. [242].

C.1.1 Transfer functions

The equation of motion for the scalar perturbation Φ in the absence of isocurvature

perturbations is,

Φ′′(τ,k) + 3(1 + c2s)HΦ′(τ,k) + c2sk
2Φ(τ,k) = 0 , (C.1)
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where c2s ≃ w is the sound speed of the fluid. Defining dimensionless parameter y =

√
wkτ , we rewrite this equation as

d2Φ(y,k)

dy2
+

6(1 + w)

1 + 3w

1

y

dΦ(y,k)

dy
+ Φ(y,k) = 0 . (C.2)

A general solution is given by,

Φ(y,k) = y−γ [C1(k)Jγ(y) + C2(k)Yγ(y)] , (C.3)

where Jγ and Yγ are spherical Bessel functions of the first and second kind, respectively,

of order γ

γ =
3(1 + w)

1 + 3w
− 1 . (C.4)

In the radiation dominated era, in which w = 1/3→ γ = 1, we have

Φ(y,k) =
1

y2

[
C1(k)

(
sin y

y
− cos y

)
+

C2(k)

(
cos y

y
+ sin y

)]
. (C.5)

We can deduce the initial conditions of this solution by considering the early-time limit

kτ ≪ 1,

sin y

y
− cos y ≃ y2

3
and

cos y

y
+ sin y ≃ 1

y
. (C.6)

The first term (∝ C1) is then constant in this limit, while the second term (∝ C2) decays

as 1/y3 ∼ 1/a3. We can therefore assume the initial conditions,

C1(k) = 2ζ(k), C2(k) = 0 , (C.7)

which gives a particular solution,

Φ(τ,k) =
2

3
ζ(k)

3

y2

(
sin y

y
− cos y

)
, (C.8)

resulting in the transfer function, via (4.66),

TΦ(kτ) =
3

(kτ/
√
3)3

(
sin

kτ√
3
− kτ√

3
cos

kτ√
3

)
. (C.9)
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We can now see the distinct behavior of super-horizon (kτ ≪ 1) and sub-horizon (kτ ≫ 1)

modes in the radiation dominated era. While the super-horizon modes freeze via our

analysis above, the sub-horizon modes oscillate and damp as ∼ cos kτ/(kτ)2.

In the matter dominated era, w = 0 and the equation of motion for Φ becomes,

Φ′′(τ,k) + 3HΦ′(τ,k) = 0 , (C.10)

leading to a constant transfer function.

C.1.2 Green’s function and GW solution

In this subsection, we discuss in detail the solutions to eq. (4.62), which is derived

using the second-order Einstein equation, G
(2)
ij = 8πGT

(2)
ij , for second-order tensor and

first-order scalar contributions. We neglect scalar anisotropic stress, and second-order

vector and scalar perturbations. In other words, we use the following perturbed FLRW

metric in the Newtonian gauge,

ds2 = − (1 + 2Φ) dt2 + a2
(
(1− 2Φ) δij +

1

2
hij

)
dxidxj, (C.11)

assuming a perfect fluid energy-momentum tensor with equation of state w. Using lower

order solutions and projecting out spatial indices using polarization tensors, i.e. ϵijλ Tij =

Tλ for any tensor T , we recover (4.62). For simplicity, we define a new variable v(τ,k) =

ahλ(τ,k), which gives the equation of motion for v(τ,k),

v′′(τ,k) +

[
k2 − a′′(τ)

a(τ)

]
v(τ,k) = 4a(τ)Sλ(τ,k) . (C.12)

We need the two homogeneous solutions of this equation v1(τ) and v2(τ) to construct

the Green’s function,

Gk(τ, τ̄) =
v1(τ)v2(τ̄)− v1(τ̄)v2(τ)
v′1(τ̄)v2(τ̄)− v1(τ̄)v′2(τ̄)

. (C.13)
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For each k we have

v′′1,2(τ) +

[
k2 − a′′(τ)

a(τ)

]
v1,2(τ) = 0 (C.14)

which, using a ∝ τα and x = kτ , leads to

d2v1,2(x)

dx2
+

[
1− α(α− 1)

x2

]
v1,2(x) = 0 , (C.15)

where α = 2/(1 + 3w). The solutions are

v1(x) =
√
xJα−1/2(x) (C.16)

v2(x) =
√
xYα−1/2(x) (C.17)

where Jα−1/2 and Yα−1/2 are again spherical Bessel functions of first and second kind,

respectively. We note that

dv1
dx

=
α√
x
Jα−1/2(x)−

√
xJα+1/2 (C.18)

dv2
dx

=
α√
x
Yα−1/2(x)−

√
xYα+1/2 . (C.19)

Now, we can calculate the expression in the denominator of the Green’s function,

v′1(x)v2(x)− v1(x)v′2(x) = kx

[
Jα−1/2(x)Yα+1/2(x)−

Jα+1/2(x)Yα−1/2(x)

]
= − 2

π
. (C.20)

The second equality can be checked explicitly via Mathematica. Thus, (C.13) simplifies

to

Gk(τ, τ̄) =
π

2

√
τ τ̄

[
Jα−1/2(kτ̄)Yα−1/2(kτ)−

Jα−1/2(kτ)Yα−1/2(kτ̄)

]
. (C.21)
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In the radiation dominated era, α = 1, and so,

Gk(τ, τ̄) =
sin k(τ − τ̄)

k
, (C.22)

where we have used (C.54) to replace Bessel functions of order 1/2. In the matter

dominated era we have α = 2, and so,

Gk(τ, τ̄) =
1

k

[(
τ̄ − τ
τ τ̄

)
cos k(τ − τ̄)+(

1/k2 − τ τ̄
τ τ̄

)
sin k(τ − τ̄)

]
. (C.23)

where we have again used (C.54) to replace Bessel functions of order 3/2.

Having calculated the Green’s functions, we can now write the solution for hλ(τ,k)

in the form of (4.67).

C.1.3 Connected and disconnected 4-point correlation function

The primordial 4-point correlation function of ζ can be written in terms of discon-

nected and connected pieces

⟨ζ(k1)ζ(k2)ζ(k3)ζ(k4)⟩ =⟨ζ(k1)ζ(k2)ζ(k3)ζ(k4)⟩d

+ ⟨ζ(k1)ζ(k2)ζ(k3)ζ(k4)⟩c, (C.24)

where

⟨ζ(k1)ζ(k2)ζ(k3)ζ(k4)⟩d =

(2π)6δ3(k1 + k2)δ
3(k3 + k4)Pζ(k1)Pζ(k3)

+ (2π)6δ3(k1 + k3)δ
3(k2 + k4)Pζ(k1)Pζ(k2)

+ (2π)6δ3(k1 + k4)δ
3(k2 + k4)Pζ(k1)Pζ(k4) , (C.25)
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and

⟨ζ(k1)ζ(k2)ζ(k3)ζ(k4)⟩c =

(2π)3δ3(k1 + k2 + k3 + k4)T (k1,k2,k3,k4) . (C.26)

Here, Pζ(k) and T (k1,k2,k3,k4) are the scalar power spectrum and trispectrum, respec-

tively. We focus on the disconnected contribution below. The relevant 4-point correlation

function for the GW power spectrum (4.69) is

⟨ζ(q1)ζ(k1 − q1)ζ(q2)ζ(k2 − q2)⟩d =

(2π)6δ3(k1 + k2)
[
δ3(q1 + q2) + δ3(k1 + q2 − q1)

]
× Pζ(q1)Pζ(|k1 − q1|). (C.27)

The two terms in the above expressions are equivalent when substituted in the integrand

of (4.69). The second term can be manipulated as

δ3(k1 + k2)δ
3(k1 + q2 − q1)Qλ1(k1,q1)Qλ2(k2,q2)

× I(|k1 − q1|, q1, τ)I(|k2 − q2|, q2, τ)

= Qλ1(k1,q1)Qλ2(−k1,q1 − k1)I(|k1 − q1|, q1, τ)

× I(q1, |k1 − q1|, τ)

= Qλ1(k1,q1)
2I(|k1 − q1|, q1, τ)2 (C.28)

which is the same result we get from the first term. Here we have used identities given

in eqs. (C.51)-(C.53). Thus, the disconnected GW power spectrum is given by (4.72).

C.1.4 Recasting integrals for numerical computation

Here we provide steps to recast (4.72) into a form suitable for numerical integration.
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Change of variables. We perform two successive changes of variables to recast the

integrals. First, we perform the transformation {q, cos θ} → {u, v}, where

u ≡ |k− q|
k

, v ≡ q

k
, (C.29)

and the inverse transformation is

q = vk , cos θ =
1 + v2 − u2

2v
. (C.30)

The determinant of the Jacobian for this transformation is,

det(J{q,cos θ}→{u,v}) = −∂vq∂u cos θ = −
ku

v
. (C.31)

which implies ∫
d3q =

∫ ∞

0

q2dq

∫ 1

−1

d cos θ

∫ 2π

0

dϕ

= k3
∫ ∞

0

dv v

∫ 1+v

|1−v|
duu

∫ 2π

0

dϕ . (C.32)

Second, we perform {u, v} → {s, t} where

s ≡ u− v , t ≡ u+ v − 1 , (C.33)

and the inverse transformation is

u =
s+ t+ 1

2
, v =

t− s+ 1

2
. (C.34)

The determinant of the Jacobian for the second transformation is then

det(J{u,v}→{s,t}) =
1

2
. (C.35)

Hence, we have1 ∫ ∞

0

dv

∫ 1+v

|1−v|
du =

1

2

∫ ∞

0

dt

∫ 1

−1

ds. (C.36)

1For v < 1, the lower limit of integration over s is 1 − 2v. However, in this case we already have
1− 2v > −1.

283



APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4

The final result is ∫
d3q =

k3

2

∫ ∞

0

dt

∫ 1

−1

ds uv

∫ 2π

0

dϕ . (C.37)

Above, we express the integrand in terms of u and v for convenience, though the inte-

gration itself is done in terms of s and t.

Analytic result for the I(p, q, τ) function. We summarize the results for a radiation-

dominated universe (for a more in-depth look, see e.g. [240]). At late times, we have

I(vk, uk, x/k →∞) =
1

k2
I(u, v, x→∞)

≃ 1

k2
1

x
ĨA(u, v)

(
ĨB(u, v) sinx+ ĨC cosx

)
, (C.38)

where we define

ĨA(u, v) ≡
3(u2 + v2 − 3)

4u3v3
(C.39a)

ĨB(u, v) ≡ −4uv + (u2 + v2 − 3) ln

∣∣∣∣3− (u+ v)2

3− (u− v)2
∣∣∣∣ (C.39b)

ĨC(u, v) ≡ −π(u2 + v2 − 3)Θ(u+ v −
√
3) . (C.39c)

In the last expression, Θ is the Heaviside theta function. This result redshifts as 1/x ∝

1/a. Using the above definitions, we compute the quantity given in C.28,

Q+(k,q)

cos 2ϕ
I(|k− q|, q, τ)

=
Q×(k,q)

sin 2ϕ
I(|k− q|, q, τ)

=
v2k2√

2

4v2 − (1 + v2 − u2)2
4v2

I(uk, vk, x/k)

≡ J̃ (u, v)√
2

k2I(uk, vk, x/k), (C.40)

where we have used dimensionless conformal time x = kτ and defined

J̃ (u, v) = 4v2 − (1 + v2 − u2)2
4

. (C.41)
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When computing the GW power spectrum we are generically interested in the time-

averaged quantity

k2I(v1k, u1k, x/k →∞)k2I(v2k, u2k, x/k →∞) =

1

2x2
ĨA(u1, v1)ĨA(u2, v2)

×
[
ĨB(u1, v1)ĨB(u2, v2) + ĨC(u1, v1)ĨC(u2, v2)

]
. (C.42)

Azimuthal angle integration. In the disconnected contribution (4.72), the only ϕ-

dependent factors in the integrands are sin 2ϕ and cos 2ϕ, coming from Qλ factors. For

each polarization, we then have∫ 2π

0

dϕ sin2(2ϕ) =

∫ 2π

0

dϕ cos2(2ϕ) = π . (C.43)

Finally, we are ready to numerically compute the GW energy density (4.75) which is

defined in terms of the dimensionless polarization-averaged GW power spectrum

∑
λ

∆2
λ(τ, k) =

k3

2π2

∑
λ

Pλ(τ, k). (C.44)

Using our recasted variables, the result is

ΩGW(k)

∣∣∣∣
d

=
2

48α2

(
k3

2π2

)2

∫ ∞

0

dt

∫ 1

−1

dsuvJ̃ (u, v)2ĨA(u, v)2
[
ĨB(u, v)

2

+ ĨC(u, v)
2

]
Pζ(uk)Pζ(vk) (C.45)

More compactly,

ΩGW(k)

∣∣∣∣
d

=
2

48α2

∫ ∞

0

dt

∫ 1

−1

ds Kd(u, v)∆
2
ζ(uk)∆

2
ζ(vk) (C.46)

where we define the following the Kernel functions Kd for simplified notation,

Kd(u, v) = (uv)−2J̃ (u, v)2ĨA(u, v)2
[
ĨB(u, v)

2 + ĨC(u, v)
2
]
. (C.47)
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C.1.5 Useful formula

The projection operator Qλ (4.65) is defined as,

Qλ(k,q) ≡ ϵijλ (k)qiqj = −ϵijλ (k)(k− q)iqj, (C.48)

where the second equality follows from ϵijλ (k)ki = 0. If we explicitly set k̂ = ẑ, we

have q = q(sin θ cosϕ, sin θ sinϕ, cos θ), where θ and ϕ are polar and azimuthal angles.

This leads to the expressions,

Q+(k,q) =
q2√
2
sin2 θ cos(2ϕ) ,

Q×(k,q) =
q2√
2
sin2 θ sin(2ϕ) . (C.49)

Since ϵλ(k) is orthogonal to k we have

Qλ(k,q) = Qλ(k,q+ ck) , (C.50)

for any constant c. Qλ(k,q) is also symmetric under k→ −k and q→ −q:

Qλ(k,q) = Qλ(−k,q) = Qλ(k,−q) = Qλ(−k,−q) . (C.51)

Using (4.71) we see that

f(p, q, τ) = f(q, p, τ) (C.52)

and so

I(p, q, τ) = I(q, p, τ) . (C.53)
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Bessel functions. The following formulae are helpful for computations involving Bessel

functions:

J1/2(x) =

√
2

πx
sinx ,

Y1/2(x) = −
√

2

πx
cosx ,

J3/2(x) =

√
2

πx

(
sinx

x
− cosx

)
,

Y3/2(x) = −
√

2

πx

(cosx
x
− sinx

)
. (C.54)
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Appendix D

Supplementary Material for Chapter

5

D.1 IBP, EOM, and Field Redefinitions in dS: An

Explicit Example

We are interested in computing cosmological correlation functions on a late time slice

at η0. Therefore, the boundary terms that arise while employing IBP can potentially

contribute to such correlation functions. Here we investigate the nature of these boundary

terms by focusing on a concrete example involving a massive field σ having a mass m,

defined in terms of the variable µ = (m2/H2 − 9/4)1/2. In particular, we focus on the

standard quasi-single field operator [280]:

O1 =
1

Λ

∫
d4x
√
|g|(∇µϕ)(∇µϕ)σ. (D.1)

By IBP we can write this as,

O1 =
1

Λ

∫
d4x
√
|g| [∇µ(ϕ∇µϕ · σ)− ϕ□ϕ · σ − ϕ∇µϕ∇µσ] . (D.2)
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Figure D.1: Left. Four point function mediated by O1 and O2. Right. Contact
interaction mediated by O2,TD.

The term involving □ϕ does not contribute to in-in correlators by virtue of the inflaton

EOM □ϕ ≈ 0, where we ignore the contribution from the inflaton potential. We rewrite

the remaining terms as,

O2 =
1

2Λ

∫
d4x
√
|g|
[
∇µ(∇µ(ϕ2) · σ)−∇µ(ϕ2)∇µσ

]
= O2,TD +O2,Bulk.

(D.3)

Here we have separated the total derivative (TD) and the bulk term. As noted in [285],

the boundary term can be neglected for equal-time correlation functions in the in-in

formalism because such terms are associated with equal-time commutators and can be

removed by a redefinition of the local operators. In what follows, we explore this in great

detail.

We first check that O1 and O2 give exactly the same contribution to in-in correlation

functions, as they should. Our goal would then be to understand the contribution from

O2,TD. To that end, we focus on a four point function as shown in the left panel of

Fig. D.1. There are four terms contributing to this four point function. We call the

associated contributions as, I++, I+−, I−+, and I−−, of which the third and the fourth

are the complex conjugates of the second and the first, respectively (the +(−) sign

denotes that the vertex come from a time (anti-time) ordering operator). Therefore, we

only consider I++ and I+− to show the equivalence of O1 and O2. For convenience, we

289



APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 5

write the TD term as,

O2,TD =
1

2Λ

∫
d4x∂µ

(√
|g|∂µ(ϕ2) · σ

)
= − 1

2Λ

∫
dη∂η

(
1

η2
∂η(ϕ

2) · σ
)
. (D.4)

In the last equality, we have dropped the spatial boundary terms, assuming fields decay at

spatial infinity. A similar operation can not be naively done for the temporal boundary,

since we are interested in computing the correlation functions on the same boundary.

Contribution via I+−. For I+−, the leading contribution involves two separate inte-

grals, one for the time ordering, and the other for anti-time ordering. Schematically they

can be written as,

⟨O1 · ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4) · O1⟩ and ⟨O2 · ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4) · O2⟩. (D.5)

We evaluate these numerically and the comparison between O1 and O2 are shown in the

left panel of Fig. D.2. The four point function exhibits oscillations as function of the

ratio of the momentum of the massive σ particle, |k1 + k2| and the momentum of the

inflaton |k1| = k1. (For this evaluation we set k1 = k2.) This confirms a cosmological

collider signature from this operator. We can also check explicitly that O2,TD does not

contribute to I+−. To see this, note (D.4) implies I+− has a contribution from,

∝ 1

η20

[
∂η(ϕ

2)σ
]
η0
. (D.6)

However, this term decays as η
1/2
0 as η0 → 0, and does not contribute to I+−.

Contribution via I++. Next we discuss I++ which involves nested time integrals,

originating from the time-ordering operation. Schematically, this has the form

⟨I · ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4) ·
∫ η0

−∞
dη O2(η)

∫ η

−∞
dη′ O2(η

′)⟩, (D.7)
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Figure D.2: Comparison between the contributions from O1 and O2. Left. The
I+− contribution evaluated for the configuration |k1| = |k2| = |k3| = |k4| with a
varying |k1 +k2|. The contribution from O1 and O2,Bulk match precisely while O2,TD

does not contribute. Right. The real and imaginary parts of the I++ contribution.
For the imaginary part, O2,TD does not contribute, and O1 and O2,Bulk match, as
expected. For the real part, O1 matches with the sum of O2,Bulk and O2,TD. The
contribution from O2,TD does not depend upon either the momentum ratio (as seen
here) or the mass parameter µ (as can be checked), indicating that it can be thought of
as originating from a ‘local’ contact interaction, such as the one shown schematically
in the right panel of Fig. D.1. For both the panels, we do not track the overall factors
or momentum dependence.
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where we have suppressed the spatial indices. The operator O1 also contributes via a

similar form. From the above form, we note that O2,TD could contribute to correlation

functions, since the inner integration contributes a non-vanishing integrand for the outer

integral. We evaluate this contribution from O2,TD numerically and indeed find it to

be non-zero, as shown in the right panel of Fig. D.2. There we also find the combined

contributions from O2,TD and O2,Bulk match with O1.

Importantly, the contribution from O2,TD does not vary as a function of |k1 +k2|/k1,

unlike the contribution from O2,Bulk. We also have checked that the contribution from

O2,TD is independent of the mass of σ for m >
√
2H. These facts indicate that the

contribution from O2,TD could be thought of as coming from a contact operator that

does not involve a σ exchange. This can be understood in two different ways.

First, instead of using the exact mode functions of σ, we can use their sub-horizon,

high-energy limits. In detail, we can express σ as,

σ(η,k) = gk(η)a
†
k + ḡk(η)a−k, (D.8)

with

gk(η) = +i exp(−iπ/4)
√
π

2
exp(πµ/2)(−η)3/2H(2)

iµ (−kη),

ḡk(η) = −i exp(+iπ/4)
√
π

2
exp(−πµ/2)(−η)3/2H(1)

iµ (−kη).
(D.9)

Using the high-energy limits of the Hankel functions (see, e.g., [320] for explicit expres-

sions), we can evaluate the contribution of O2,TD. We find,

⟨ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)⟩ ∝
(
− 13

256
+

k1
16|k1 + k2|

)
. (D.10)

The sub-horizon limit |k1 + k2|(−η)≫ 1, or equivalently |k1 + k2| ≫ k1 ∼ 1/(−η), then

implies the leading contribution is given by the first term in the parenthesis above. This

then exactly reproduces the O2,TD contribution in the right panel of Fig. D.2.

292



APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 5

Alternatively, we can construct a contact term that gives the same contribution as

O2,TD. To that end, we first do a field redefinition:

σ → σ +
c

Λ
ϕ2. (D.11)

Under this redefinition, the σ kinetic term gives rise to,

1

2
(∇µσ)(∇µσ)→ 1

2
(∇µσ)(∇µσ) +

c

Λ
∇µσ · ∇µ(ϕ2) +

c2

2Λ2
∇µ(ϕ

2) · ∇µ(ϕ2). (D.12)

For c = 1/2, we reproduce the form of the bulk term O2,Bulk. This indicates that the

action of O2,TD could be the same as the contact operator,

Ocontact =
1

8Λ2
∇µ(ϕ

2) · ∇µ(ϕ2). (D.13)

The temporal component of the above operator gives the same contribution as O2,TD in

Fig. D.2.

D.2 IBP in Inflationary Spacetime: Examples

In this appendix, we perform some explicit checks of IBP in inflationary spacetimes,

taking into account the necessary boundary terms. We first discuss massless fields (both

free and interacting) and then massive fields.

D.2.1 Massless Scalars

Free Theory

A massless scalar in dS can be expanded in terms of the mode functions as,

ϕ(η,k) = fk(η)a
†
k + f̄k(η)a−k, (D.14)
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with

fk(η) =
(1− ikη)eikη√

2k3
, f̄k(η) =

(1 + ikη)e−ikη√
2k3

. (D.15)

The free theory action, upon using the EOM □ϕ = 0, reduces to:∫
d4x
√
|g|(∇µϕ)

2 !
=

∫
d4x
√
|g|∇µ(ϕ∇µϕ). (D.16)

The
!
= indicates that we are interested in knowing whether both sides of the above

equation would give the same correlation function or not. To that end, we evaluate both

sides on-shell, using the above mode functions of massless fields in dS. The LHS gives∫
dηd3x

η2
[
−(∂ηϕ)2 + (∂iϕ)

2
]
=

∫ η0

−∞

dη

η2
[
−(k2η)2e2ikη + k2(1− ikη)2e2ikη

]
(D.17)

After performing the integrals we arrive at∫ η0

−∞

dη

η2
[
−(∂ηϕ)2 + (∂iϕ)

2
]
= −k

2

η0
− ik3. (D.18)

The RHS of (D.16) is a boundary term. We can use Stokes’ theorem to write it as,∫
d4x
√
|g|∇µ(ϕ∇µϕ) =

∫
d3x
√
|γ|nµ(ϕ∇µϕ). (D.19)

The induced metric on the boundary time slice is denoted by γ, with
√
|γ| = 1/η30, and

nµ is a unit normal vector nµ = (1/η0, 0, 0, 0). This can then be evaluated as η0 → 0,

− 1

η20
ϕ∂ηϕ

∣∣∣∣
η0

= −k
2

η0
− ik3. (D.20)

This matches exactly with the LHS contribution. Note the first term is naively divergent

as η0 → 0. However it does not contribute to correlation functions, which in this context

are the power spectrum. This is because, to evaluate the power spectrum, we need to

multiply the above by (−i) (stemming from the (−i) in exp(−i
∫
dtH)) and sum with its

conjugate. The 1/η0 piece then would cancel. The remaining term would contribute to

the power spectrum as expected.
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Interactions

As an example, we consider a massless scalar field ϕ in dS with an interaction term∫
d4x
√
|g|∇µ(ϕ

2)∇µϕ. (D.21)

By IBP we can reduce this as,∫
d4x
√
|g|∇µ(ϕ

2)∇µϕ
!
=

∫
d4x
√
|g|∇µ(ϕ

2∇µϕ) =

∫
d3x
√
|γ|nµϕ2∇µϕ. (D.22)

In the last relation, we have used Stokes’ theorem. We have assumed ϕ vanishes at spatial

infinity and dropped contribution from boundary terms at spatial infinity, keeping only

the contribution from a late time slice at η = η0 → 0, as above. We can rewrite the

boundary term as, ∫
d3x
√
|γ|nµϕ2∇µϕ =

∫
d3x

(
− 1

η20

)
ϕ2∂ηϕ

∣∣∣∣
η0

. (D.23)

We now compute the contact three-point interaction mediated by this operator and check

the relation (D.22).

LHS. Here we will not write
∫
d3x explicitly to keep the notation simple, and only

track time integrals. Then we can write the LHS of (D.22) as,∫ η0

−∞

dη

η2
(−2ϕ∂ηϕ∂ηϕ+ 2ϕ∂iϕ∂iϕ) (D.24)

Upon using the mode functions this becomes,∫ η0

−∞

dη

η2
([
(−2)(1− ik1η)k22ηk23η + perms.

]
(D.25)

+ [(2)(1− ik1η)(1− ik2η)(1− ik3η)(−k2 · k3) + perms.]) eiktη (D.26)

Here we have schematically included other momentum permutations and denoted kt =

k1+ k2+ k3. Using momentum conservation k1+k2+k3 = 0, the piece involving spatial
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derivatives can be simplified as,∫ η0

−∞

dη

η2
[
(1− ik1η)(1− ik2η)(1− ik3η)(k21 + k22 + k23)

]
eiktη. (D.27)

This can be evaluated as,

(+i)(k21 + k22 + k23)

[
i

η0
− kt +

k1k2 + k1k3 + k2k3
kt

+
k1k2k3
k2t

]
. (D.28)

The part involving time derivatives can be evaluated as,

(+i)(2k22k
2
3)

[
1

kt
+
k1
k2t

]
+ perms.. (D.29)

Summing the spatial and temporal contributions we have,∫
dη

η2
(−2ϕ∂ηϕ∂ηϕ+ 2ϕ∂iϕ∂iϕ) = −

(k21 + k22 + k23)

η0
+ (−i)(k31 + k32 + k33). (D.30)

RHS. The RHS of (D.22) can be evaluated as (we do not write
∫
d3x for brevity),(

− 1

η20

)
(1− ik1η0)(1− ik2η0)k23η0eiktη0 + perms.. (D.31)

Taking η0 → 0 limit,(
− 1

η0

)
k23(1 + ik3η0) + perms. = −(k21 + k22 + k23)

η0
+ (−i)(k31 + k32 + k33). (D.32)

This matches exactly with (D.30). Note the 1/η0 piece does not contribute to correlation

functions for reasons identical to the free theory case discussed above.

D.2.2 Massive Scalars

Free Theory

We will start with a simple case, the kinetic term∫
d4x
√
|g|(∇µσ)

2 (D.33)
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for a massive scalar field σ. The mode functions for a massive scalar in dS are given

in (D.9). We then check whether∫
d4x
√
|g|(∇µσ)

2 !
=

∫
d3x
√
|γ|nµσ∇µσ

∣∣∣∣
η0

−
∫

d4x
√
|g|σ□σ, (D.34)

where □σ ≡ ∇µ∇µσ. To that end, instead of using the explicit forms of the Hankel func-

tions, we will include them schematically and that will be sufficient for our purpose. We

will also check the equality (D.34) by analyzing the spatial and the temporal components

separately. The spatial part, again omitting
∫
d3x and tracking time integrals, is given

by ∫
dη

η2
(∂ifk1∂ifk2)

!
= −

∫
dη

η2
fk1∂

2
i fk2 , (D.35)

Inserting the momentum factors, this becomes∫
dη

η2
(k1 · k2)fk1fk2

!
= −

∫
dη

η2
k21fk1fk2 . (D.36)

The two contributions are equal since momentum conservation forces k1 + k2 = 0. The

temporal part is given by,

−
∫

dη

η2
(∂ηfk1∂ηfk2)

!
=

(
− 1

η20

)
fk1∂ηfk2

∣∣∣∣
η0

+

∫
dη

η2
fk1∇2

ηfk2 , (D.37)

where ∇2
η = ∂2η − 2

η
∂η. Momentum conservation forces k1 = k2, and by doing an explicit

temporal integration-by-parts, we can see the above equality indeed holds.

Interacting Theory

Next, we consider the interaction term∫
d4x
√
|g|∇µ(ϕ

2)∇µσ (D.38)

We then follow the same procedure as used in the previous example. To check the validity

of IBP for the case of massive scalars in dS, we consider whether
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∫
d4x
√
|g|∇µ(ϕ

2)∇µσ
!
=

∫
d4x
√
|g|∇µ(ϕ

2∇µσ)−
∫

d4x
√
|g|ϕ2□σ

=

∫
d3x
√
|γ|nµϕ2∇µσ

∣∣∣∣
η0

−
∫

d4x
√
|g|ϕ2□σ. (D.39)

Upon rewriting the boundary term, this condition becomes∫
d4x
√
|g|∂µ(ϕ2)∂µσ

?
=

∫
d3x

(
− 1

η20

)
ϕ2∂ησ

∣∣∣∣
η0

−
∫

d4x
√
|g|ϕ2□σ. (D.40)

We first compute the spatial part, again neglecting to write
∫
d3x for brevity. On the

LHS, this is∫
dη

η2
∂i(ϕ

2)∂iσ = −
∫

dη

η2
(k1 · k3 + k2 · k3)fk1fk2gk3 =

∫
dη

η2
k23fk1fk2gk3 , (D.41)

where we have used momentum conservation k1 + k3 + k3 = 0. We have also considered

a particular permutation of momenta, as this will be sufficient for our purpose. On the

RHS, we have

−
∫

dη

η2
ϕ2∂2i σ =

∫
dη

η2
k23fk1fk2gk3 , (D.42)

which matches with the LHS, as expected.

Now, we consider the temporal component. Starting again with the LHS and following

a similar procedure as shown with the free theory, we have

−
∫

dη

η2
∂η(fk1fk2)∂ηgk3

=

∫
dη∂η

(
− 1

η2
fk1fk2∂ηgk3

)
+

∫
dηfk1fk2∂η

(
1

η2
∂ηgk3

)
= − 1

η20
fk1fk2∂ηgk3

∣∣∣∣
η0

+

∫
dηfk1fk2

(
− 2

η3
∂ηgk3 +

1

η2
∂2ηgk3

) (D.43)

We identify the first term as the boundary term and the second as the temporal compo-

nent of □σ.

In the above two examples — a free theory and an interacting theory — we have seen

that IBP indeed holds for massive scalars in dS for contact diagrams.
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D.3 Dimension 5 Field Redefinition

The fact that O5,2 does not contribute to cosmological correlation functions can also

be seen by performing a field redefinition. In particular, we can redefine:

Aµ → Aµ −
∇µϕ

gAΛ
. (D.44)

Since we are not interested in late-time correlation functions of Aµ, i.e., Aµ does not

appear in the external lines, the above field redefinition does not modify inflaton correla-

tors via contact diagrams. It does have an effect on the other vertices. While the kinetic

terms for the inflaton and the gauge boson are unmodified by (D.44),

|DµH|2 → |DµH|2 +
i

Λ
∇µϕH†∇µH−

i

Λ
∇µϕH∇µH† − 2g

Λ
Aµ∇µϕH†H +

1

Λ2
(∇µϕ)

2H†H

= |DµH|2 −O5,2 +
1

Λ2
(∇µϕ)

2H†H.

(D.45)

Therefore, the field redefinition (D.44) eliminates O5,2 and gives a correction to O6,1.

299



Bibliography

[1] A. Zee, Group Theory in a Nutshell for Physicists. Princeton University Press,
USA, 3, 2016.

[2] H. Georgi, Lie algebras in particle physics, vol. 54. Perseus Books, Reading, MA,
2nd ed. ed., 1999.

[3] D. Tong, Gauge theory, Lecture notes, DAMTP Cambridge 10 (2018) 8.

[4] M. Srednicki, Quantum field theory. Cambridge University Press, 1, 2007.

[5] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory.
Addison-Wesley, Reading, USA, 1995.

[6] Planck Collaboration, Y. Akrami et. al., Planck 2018 results. IV. Diffuse
component separation, Astron. Astrophys. 641 (2020) A4, [arXiv:1807.0620].

[7] Planck Collaboration, N. Aghanim et. al., Planck 2018 results. V. CMB power
spectra and likelihoods, Astron. Astrophys. 641 (2020) A5, [arXiv:1907.1287].

[8] A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and
Flatness Problems, Phys. Rev. D 23 (1981) 347–356.

[9] M. Tristram et. al., Improved limits on the tensor-to-scalar ratio using BICEP
and Planck data, Phys. Rev. D 105 (2022), no. 8 083524, [arXiv:2112.0796].

[10] N. Craig, Naturalness: past, present, and future, Eur. Phys. J. C 83 (2023), no. 9
825, [arXiv:2205.0570].

[11] A. Hook, TASI Lectures on the Strong CP Problem and Axions, PoS TASI2018
(2019) 004, [arXiv:1812.0266].

[12] S. Weinberg, Anthropic Bound on the Cosmological Constant, Phys. Rev. Lett. 59
(1987) 2607.

[13] M. Lisanti, Lectures on Dark Matter Physics, in Theoretical Advanced Study
Institute in Elementary Particle Physics: New Frontiers in Fields and Strings,
pp. 399–446, 2017. arXiv:1603.0379.

300

http://xxx.lanl.gov/abs/1807.0620
http://xxx.lanl.gov/abs/1907.1287
http://xxx.lanl.gov/abs/2112.0796
http://xxx.lanl.gov/abs/2205.0570
http://xxx.lanl.gov/abs/1812.0266
http://xxx.lanl.gov/abs/1603.0379


[14] T. Lin, Dark matter models and direct detection, PoS 333 (2019) 009,
[arXiv:1904.0791].

[15] D. Baumann, Inflation, in Theoretical Advanced Study Institute in Elementary
Particle Physics: Physics of the Large and the Small, pp. 523–686, 2011.
arXiv:0907.5424.

[16] Planck Collaboration, Y. Akrami et. al., Planck 2018 results. IX. Constraints on
primordial non-Gaussianity, Astron. Astrophys. 641 (2020) A9, [arXiv:1905.0569].

[17] N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics,
arXiv:1503.0804.

[18] nEDM Collaboration, C. Abel et. al., Measurement of the permanent electric
dipole moment of the neutron, Phys. Rev. Lett. 124 (2020), no. 8 081803,
[arXiv:2001.1196].

[19] B. Graner, Y. Chen, E. Lindahl, and B. Heckel, Reduced Limit on the Permanent
Electric Dipole Moment of Hg199, Phys. Rev. Lett. 116 (2016), no. 16 161601,
[arXiv:1601.0433]. [Erratum: Phys.Rev.Lett. 119, 119901 (2017)].

[20] N. Kaloper and J. Terning, Landscaping the Strong CP Problem, JHEP 03 (2019)
032, [arXiv:1710.0174].

[21] K. Babu and R. N. Mohapatra, CP Violation in Seesaw Models of Quark Masses,
Phys. Rev. Lett. 62 (1989) 1079.

[22] K. S. Babu and R. N. Mohapatra, A Solution to the Strong CP Problem Without
an Axion, Phys. Rev. D 41 (1990) 1286.

[23] S. M. Barr, D. Chang, and G. Senjanovic, Strong CP problem and parity, Phys.
Rev. Lett. 67 (1991) 2765–2768.

[24] R. N. Mohapatra and G. Senjanovic, Natural Suppression of Strong p and t
Noninvariance, Phys. Lett. B 79 (1978) 283–286.

[25] A. E. Nelson, Naturally Weak CP Violation, Phys. Lett. B 136 (1984) 387–391.

[26] S. M. Barr, Solving the Strong CP Problem Without the Peccei-Quinn Symmetry,
Phys. Rev. Lett. 53 (1984) 329.

[27] S. Chakdar, K. Ghosh, S. Nandi, and S. K. Rai, Collider signatures of mirror
fermions in the framework of a left-right mirror model, Phys. Rev. D 88 (2013),
no. 9 095005, [arXiv:1305.2641].

[28] R. T. D’Agnolo and A. Hook, Finding the Strong CP problem at the LHC, Phys.
Lett. B 762 (2016) 421–425, [arXiv:1507.0033].

301

http://xxx.lanl.gov/abs/1904.0791
http://xxx.lanl.gov/abs/0907.5424
http://xxx.lanl.gov/abs/1905.0569
http://xxx.lanl.gov/abs/1503.0804
http://xxx.lanl.gov/abs/2001.1196
http://xxx.lanl.gov/abs/1601.0433
http://xxx.lanl.gov/abs/1710.0174
http://xxx.lanl.gov/abs/1305.2641
http://xxx.lanl.gov/abs/1507.0033


[29] L. J. Hall and K. Harigaya, Implications of Higgs Discovery for the Strong CP
Problem and Unification, JHEP 10 (2018) 130, [arXiv:1803.0811].

[30] M. Dine, R. G. Leigh, and D. A. MacIntire, Of CP and other gauge symmetries in
string theory, Phys. Rev. Lett. 69 (1992) 2030–2032, [hep-th/9205011].

[31] K.-w. Choi, D. B. Kaplan, and A. E. Nelson, Is CP a gauge symmetry?, Nucl.
Phys. B 391 (1993) 515–530, [hep-ph/9205202].

[32] ATLAS Collaboration, M. Aaboud et. al., Combination of the searches for
pair-produced vector-like partners of the third-generation quarks at

√
s = 13 TeV

with the ATLAS detector, Phys. Rev. Lett. 121 (2018), no. 21 211801,
[arXiv:1808.0234].

[33] CMS Collaboration, A. M. Sirunyan et. al., Search for vector-like T and B quark
pairs in final states with leptons at

√
s = 13 TeV, JHEP 08 (2018) 177,

[arXiv:1805.0475].

[34] ATLAS Collaboration, G. Aad et. al., Search for high-mass dilepton resonances
using 139 fb−1 of pp collision data collected at

√
s =13 TeV with the ATLAS

detector, Phys. Lett. B 796 (2019) 68–87, [arXiv:1903.0624].

[35] ATLAS Collaboration, G. Aad et. al., Search for a heavy charged boson in events
with a charged lepton and missing transverse momentum from pp collisions at√
s = 13 TeV with the ATLAS detector, Phys. Rev. D 100 (2019), no. 5 052013,

[arXiv:1906.0560].

[36] C. Helsens and M. Selvaggi, Search for high-mass resonances at FCC-hh, Tech.
Rep. CERN-ACC-2019-0028, CERN, Geneva, Oct, 2018.

[37] FCC Collaboration, A. Abada et. al., FCC Physics Opportunities: Future
Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C 79 (2019),
no. 6 474.

[38] Y. Zeldovich, A New Type of Radioactive Decay: Gravitational Annihilation of
Baryons, Phys. Lett. A 59 (1976) 254.

[39] Y. Zeldovich, A Novel Type of Radioactive Decay: Gravitational Baryon
Annihilation, Zh. Eksp. Teor. Fiz. 72 (1977) 18–21.

[40] T. Banks and L. J. Dixon, Constraints on String Vacua with Space-Time
Supersymmetry, Nucl. Phys. B 307 (1988) 93–108.

[41] S. B. Giddings and A. Strominger, Axion Induced Topology Change in Quantum
Gravity and String Theory, Nucl. Phys. B 306 (1988) 890–907.

302

http://xxx.lanl.gov/abs/1803.0811
http://xxx.lanl.gov/abs/hep-th/9205011
http://xxx.lanl.gov/abs/hep-ph/9205202
http://xxx.lanl.gov/abs/1808.0234
http://xxx.lanl.gov/abs/1805.0475
http://xxx.lanl.gov/abs/1903.0624
http://xxx.lanl.gov/abs/1906.0560


[42] K.-M. Lee, Wormholes and Goldstone Bosons, Phys. Rev. Lett. 61 (1988)
263–266.

[43] L. Abbott and M. B. Wise, Wormholes and Global Symmetries, Nucl. Phys. B
325 (1989) 687–704.

[44] S. R. Coleman and K.-M. Lee, WORMHOLES MADE WITHOUT MASSLESS
MATTER FIELDS, Nucl. Phys. B 329 (1990) 387–409.

[45] R. Kallosh, A. D. Linde, D. A. Linde, and L. Susskind, Gravity and global
symmetries, Phys. Rev. D 52 (1995) 912–935, [hep-th/9502069].

[46] T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity,
Phys. Rev. D 83 (2011) 084019, [arXiv:1011.5120].

[47] D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum
gravity, arXiv:1810.0533.

[48] D. Harlow and H. Ooguri, Constraints on Symmetries from Holography, Phys.
Rev. Lett. 122 (2019), no. 19 191601, [arXiv:1810.0533].

[49] S. Fichet and P. Saraswat, Approximate Symmetries and Gravity, JHEP 01
(2020) 088, [arXiv:1909.0200].

[50] T. Daus, A. Hebecker, S. Leonhardt, and J. March-Russell, Towards a Swampland
Global Symmetry Conjecture using weak gravity, Nucl. Phys. B 960 (2020)
115167, [arXiv:2002.0245].

[51] R. Peccei and H. R. Quinn, CP Conservation in the Presence of Instantons, Phys.
Rev. Lett. 38 (1977) 1440–1443.

[52] R. Peccei and H. R. Quinn, Constraints Imposed by CP Conservation in the
Presence of Instantons, Phys. Rev. D 16 (1977) 1791–1797.

[53] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons,
Phys. Rev. Lett. 40 (1978) 279–282.

[54] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223–226.

[55] J. E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett.
43 (1979) 103.

[56] M. A. Shifman, A. Vainshtein, and V. I. Zakharov, Can Confinement Ensure
Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980)
493–506.

[57] M. Dine, W. Fischler, and M. Srednicki, A Simple Solution to the Strong CP
Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199–202.

303

http://xxx.lanl.gov/abs/hep-th/9502069
http://xxx.lanl.gov/abs/1011.5120
http://xxx.lanl.gov/abs/1810.0533
http://xxx.lanl.gov/abs/1810.0533
http://xxx.lanl.gov/abs/1909.0200
http://xxx.lanl.gov/abs/2002.0245


[58] S. M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D
46 (1992) 539–549.

[59] M. Kamionkowski and J. March-Russell, Planck scale physics and the
Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137–141, [hep-th/9202003].

[60] R. Holman, S. D. Hsu, T. W. Kephart, E. W. Kolb, R. Watkins, and L. M.
Widrow, Solutions to the strong CP problem in a world with gravity, Phys. Lett. B
282 (1992) 132–136, [hep-ph/9203206].

[61] S. Ghigna, M. Lusignoli, and M. Roncadelli, Instability of the invisible axion,
Phys. Lett. B 283 (1992) 278–281.

[62] E. Chun and A. Lukas, Discrete gauge symmetries in axionic extensions of the
SSM, Phys. Lett. B 297 (1992) 298–304, [hep-ph/9209208].

[63] L. Randall, Composite axion models and Planck scale physics, Phys. Lett. B 284
(1992) 77–80.

[64] H.-C. Cheng and D. E. Kaplan, Axions and a gauged Peccei-Quinn symmetry,
hep-ph/0103346.

[65] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell,
String Axiverse, Phys. Rev. D 81 (2010) 123530, [arXiv:0905.4720].

[66] H. Fukuda, M. Ibe, M. Suzuki, and T. T. Yanagida, A ”gauged” U(1)
Peccei–Quinn symmetry, Phys. Lett. B 771 (2017) 327–331, [arXiv:1703.0111].

[67] L. Di Luzio, E. Nardi, and L. Ubaldi, Accidental Peccei-Quinn symmetry protected
to arbitrary order, Phys. Rev. Lett. 119 (2017), no. 1 011801, [arXiv:1704.0112].

[68] B. Lillard and T. M. P. Tait, A Composite Axion from a Supersymmetric Product
Group, JHEP 11 (2017) 005, [arXiv:1707.0426].

[69] B. Lillard and T. M. Tait, A High Quality Composite Axion, JHEP 11 (2018)
199, [arXiv:1811.0308].

[70] G. Senjanovic and R. N. Mohapatra, Exact Left-Right Symmetry and Spontaneous
Violation of Parity, Phys. Rev. D 12 (1975) 1502.

[71] J. R. Ellis and M. K. Gaillard, Strong and Weak CP Violation, Nucl. Phys. B 150
(1979) 141–162.

[72] Z. Chacko, H.-S. Goh, and R. Harnik, The Twin Higgs: Natural electroweak
breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802,
[hep-ph/0506256].

304

http://xxx.lanl.gov/abs/hep-th/9202003
http://xxx.lanl.gov/abs/hep-ph/9203206
http://xxx.lanl.gov/abs/hep-ph/9209208
http://xxx.lanl.gov/abs/hep-ph/0103346
http://xxx.lanl.gov/abs/0905.4720
http://xxx.lanl.gov/abs/1703.0111
http://xxx.lanl.gov/abs/1704.0112
http://xxx.lanl.gov/abs/1707.0426
http://xxx.lanl.gov/abs/1811.0308
http://xxx.lanl.gov/abs/hep-ph/0506256


[73] Z. Chacko, H.-S. Goh, and R. Harnik, A Twin Higgs model from left-right
symmetry, JHEP 01 (2006) 108, [hep-ph/0512088].

[74] A. Albaid, M. Dine, and P. Draper, Strong CP and SUZ2, JHEP 12 (2015) 046,
[arXiv:1510.0339].

[75] A. Davidson and K. C. Wali, Universal Seesaw Mechanism?, Phys. Rev. Lett. 59
(1987) 393.

[76] A. Davidson and K. C. Wali, Family Mass Hierarchy From Universal Seesaw
Mechanism, Phys. Rev. Lett. 60 (1988) 1813.

[77] A. Davidson, S. Ranfone, and K. C. Wali, Quark Masses and Mixing Angles From
Universal Seesaw Mechanism, Phys. Rev. D 41 (1990) 208.

[78] S. Ranfone, The Three generation seesaw model for quarks. 2., Phys. Rev. D 42
(1990) 3819–3828.

[79] H.-S. Goh and S. Su, Phenomenology of The Left-Right Twin Higgs Model, Phys.
Rev. D 75 (2007) 075010, [hep-ph/0611015].

[80] Y. Kiyo, T. Morozumi, P. Parada, M. Rebelo, and M. Tanimoto, Quark mass
hierarchy, FCNC and CP violation in a seesaw model, Prog. Theor. Phys. 101
(1999) 671–706, [hep-ph/9809333].

[81] A. Maiezza and M. Nemevšek, Strong P invariance, neutron electric dipole
moment, and minimal left-right parity at LHC, Phys. Rev. D 90 (2014), no. 9
095002, [arXiv:1407.3678].

[82] G. Senjanovic and V. Tello, Strong CP violation: problem or blessing?,
arXiv:2004.0403.

[83] A. Khodjamirian, T. Mannel, A. Pivovarov, and Y.-M. Wang, Charm-loop effect
in B → K(∗)ℓ+ℓ− and B → K∗γ, JHEP 09 (2010) 089, [arXiv:1006.4945].

[84] Particle Data Group Collaboration, P. Zyla et. al., Review of Particle Physics,
PTEP 2020 (2020), no. 8 083C01.

[85] N. Hutzler et. al., Searches for new sources of CP violation using molecules as
quantum sensors, arXiv:2010.0870.

[86] ACME Collaboration, V. Andreev et. al., Improved limit on the electric dipole
moment of the electron, Nature 562 (2018), no. 7727 355–360.

[87] Z. G. Berezhiani, R. N. Mohapatra, and G. Senjanovic, Planck scale physics and
solutions to the strong CP problem without axion, Phys. Rev. D 47 (1993)
5565–5570, [hep-ph/9212318].

305

http://xxx.lanl.gov/abs/hep-ph/0512088
http://xxx.lanl.gov/abs/1510.0339
http://xxx.lanl.gov/abs/hep-ph/0611015
http://xxx.lanl.gov/abs/hep-ph/9809333
http://xxx.lanl.gov/abs/1407.3678
http://xxx.lanl.gov/abs/2004.0403
http://xxx.lanl.gov/abs/1006.4945
http://xxx.lanl.gov/abs/2010.0870
http://xxx.lanl.gov/abs/hep-ph/9212318


[88] T. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976)
1387–1398.

[89] G. R. Dvali and G. Senjanovic, Is there a domain wall problem?, Phys. Rev. Lett.
74 (1995) 5178–5181, [hep-ph/9501387].

[90] G. R. Dvali, A. Melfo, and G. Senjanovic, Nonrestoration of spontaneously broken
P and CP at high temperature, Phys. Rev. D 54 (1996) 7857–7866,
[hep-ph/9601376].

[91] Y. Zeldovich, I. Kobzarev, and L. Okun, Cosmological Consequences of the
Spontaneous Breakdown of Discrete Symmetry, Zh. Eksp. Teor. Fiz. 67 (1974)
3–11.

[92] B. Rai and G. Senjanovic, Gravity and domain wall problem, Phys. Rev. D 49
(1994) 2729–2733, [hep-ph/9301240].

[93] W. H. Press, B. S. Ryden, and D. N. Spergel, Dynamical Evolution of Domain
Walls in an Expanding Universe, Astrophys. J. 347 (1989) 590–604.

[94] T. Garagounis and M. Hindmarsh, Scaling in numerical simulations of domain
walls, Phys. Rev. D 68 (2003) 103506, [hep-ph/0212359].

[95] J. Oliveira, C. Martins, and P. Avelino, The Cosmological evolution of domain
wall networks, Phys. Rev. D 71 (2005) 083509, [hep-ph/0410356].

[96] P. Avelino, C. Martins, and J. Oliveira, One-scale model for domain wall network
evolution, Phys. Rev. D 72 (2005) 083506, [hep-ph/0507272].

[97] A. Leite and C. Martins, Scaling Properties of Domain Wall Networks, Phys. Rev.
D 84 (2011) 103523, [arXiv:1110.3486].

[98] M. Hindmarsh, Analytic scaling solutions for cosmic domain walls, Phys. Rev.
Lett. 77 (1996) 4495–4498, [hep-ph/9605332].

[99] M. Hindmarsh, Level set method for the evolution of defect and brane networks,
Phys. Rev. D 68 (2003) 043510, [hep-ph/0207267].

[100] A. Vilenkin, Gravitational Field of Vacuum Domain Walls and Strings, Phys.
Rev. D 23 (1981) 852–857.

[101] T. Vachaspati, A. E. Everett, and A. Vilenkin, Radiation From Vacuum Strings
and Domain Walls, Phys. Rev. D 30 (1984) 2046.

[102] M. Gleiser and R. Roberts, Gravitational waves from collapsing vacuum domains,
Phys. Rev. Lett. 81 (1998) 5497–5500, [astro-ph/9807260].

306

http://xxx.lanl.gov/abs/hep-ph/9501387
http://xxx.lanl.gov/abs/hep-ph/9601376
http://xxx.lanl.gov/abs/hep-ph/9301240
http://xxx.lanl.gov/abs/hep-ph/0212359
http://xxx.lanl.gov/abs/hep-ph/0410356
http://xxx.lanl.gov/abs/hep-ph/0507272
http://xxx.lanl.gov/abs/1110.3486
http://xxx.lanl.gov/abs/hep-ph/9605332
http://xxx.lanl.gov/abs/hep-ph/0207267
http://xxx.lanl.gov/abs/astro-ph/9807260


[103] J. F. Dufaux, A. Bergman, G. N. Felder, L. Kofman, and J.-P. Uzan, Theory and
Numerics of Gravitational Waves from Preheating after Inflation, Phys. Rev. D
76 (2007) 123517, [arXiv:0707.0875].

[104] T. Hiramatsu, M. Kawasaki, and K. Saikawa, Gravitational Waves from
Collapsing Domain Walls, JCAP 05 (2010) 032, [arXiv:1002.1555].

[105] M. Kawasaki and K. Saikawa, Study of gravitational radiation from cosmic
domain walls, JCAP 09 (2011) 008, [arXiv:1102.5628].

[106] K. Saikawa, A review of gravitational waves from cosmic domain walls, Universe
3 (2017), no. 2 40, [arXiv:1703.0257].

[107] G. Janssen et. al., Gravitational wave astronomy with the SKA, PoS AASKA14
(2015) 037, [arXiv:1501.0012].

[108] NANOGRAV Collaboration, Z. Arzoumanian et. al., The NANOGrav 11-year
Data Set: Pulsar-timing Constraints On The Stochastic Gravitational-wave
Background, Astrophys. J. 859 (2018), no. 1 47, [arXiv:1801.0261].

[109] L. Lentati et. al., European Pulsar Timing Array Limits On An Isotropic
Stochastic Gravitational-Wave Background, Mon. Not. Roy. Astron. Soc. 453
(2015), no. 3 2576–2598, [arXiv:1504.0369].

[110] LISA Collaboration, P. Amaro-Seoane et. al., Laser Interferometer Space
Antenna, arXiv:1702.0078.

[111] N. Seto, S. Kawamura, and T. Nakamura, Possibility of direct measurement of the
acceleration of the universe using 0.1-Hz band laser interferometer gravitational
wave antenna in space, Phys. Rev. Lett. 87 (2001) 221103, [astro-ph/0108011].

[112] J. Preskill and A. Vilenkin, Decay of metastable topological defects, Phys. Rev. D
47 (1993) 2324–2342, [hep-ph/9209210].

[113] Planck Collaboration, P. A. R. Ade et. al., Planck 2015 results. XIII.
Cosmological parameters, Astron. Astrophys. 594 (2016) A13, [arXiv:1502.0158].

[114] J. M. Pendlebury et. al., Revised experimental upper limit on the electric dipole
moment of the neutron, Phys. Rev. D 92 (2015), no. 9 092003, [arXiv:1509.0441].

[115] G. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies, Phys. Rev. Lett.
37 (1976) 8–11.

[116] V. Baluni, CP Violating Effects in QCD, Phys. Rev. D 19 (1979) 2227–2230.

[117] R. J. Crewther, P. Di Vecchia, G. Veneziano, and E. Witten, Chiral Estimate of
the Electric Dipole Moment of the Neutron in Quantum Chromodynamics, Phys.
Lett. B 88 (1979) 123. [Erratum: Phys.Lett.B 91, 487 (1980)].

307

http://xxx.lanl.gov/abs/0707.0875
http://xxx.lanl.gov/abs/1002.1555
http://xxx.lanl.gov/abs/1102.5628
http://xxx.lanl.gov/abs/1703.0257
http://xxx.lanl.gov/abs/1501.0012
http://xxx.lanl.gov/abs/1801.0261
http://xxx.lanl.gov/abs/1504.0369
http://xxx.lanl.gov/abs/1702.0078
http://xxx.lanl.gov/abs/astro-ph/0108011
http://xxx.lanl.gov/abs/hep-ph/9209210
http://xxx.lanl.gov/abs/1502.0158
http://xxx.lanl.gov/abs/1509.0441


[118] M. Pospelov and A. Ritz, Theta vacua, QCD sum rules, and the neutron electric
dipole moment, Nucl. Phys. B 573 (2000) 177–200, [hep-ph/9908508].

[119] D. B. Kaplan and A. V. Manohar, Current Mass Ratios of the Light Quarks,
Phys. Rev. Lett. 56 (1986) 2004.

[120] T. Banks, Y. Nir, and N. Seiberg, Missing (up) mass, accidental anomalous
symmetries, and the strong CP problem, in 2nd IFT Workshop on Yukawa
Couplings and the Origins of Mass, pp. 26–41, 2, 1994. hep-ph/9403203.

[121] A. Hook, Anomalous solutions to the strong cp problem, Phys. Rev. Lett. 114
(Apr, 2015) 141801.

[122] P. Agrawal and K. Howe, A Flavorful Factoring of the Strong CP Problem, JHEP
12 (2018) 035, [arXiv:1712.0580].

[123] Flavour Lattice Averaging Group (FLAG) Collaboration, Y. Aoki et. al.,
FLAG Review 2021, Eur. Phys. J. C 82 (2022), no. 10 869, [arXiv:2111.0984].

[124] A. Valenti and L. Vecchi, The CKM phase and θ in Nelson-Barr models, JHEP
07 (2021), no. 203 203, [arXiv:2105.0912].

[125] J. de Vries, P. Draper, and H. H. Patel, Do Minimal Parity Solutions to the
Strong CP Problem Work?, arXiv:2109.0163.

[126] A. Valenti and L. Vecchi, Perturbative running of the topological angles, JHEP 01
(2023) 131, [arXiv:2210.0932].

[127] J. Hisano, T. Kitahara, N. Osamura, and A. Yamada, Novel loop-diagrammatic
approach to QCD θ parameter and application to the left-right model,
arXiv:2301.1340.

[128] J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the Invisible Axion, Phys.
Lett. 120B (1983) 127–132.

[129] L. F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys.
Lett. 120B (1983) 133–136.

[130] M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B120 (1983)
137–141. [,URL(1982)].

[131] L. Di Luzio, M. Giannotti, E. Nardi, and L. Visinelli, The landscape of QCD
axion models, Phys. Rept. 870 (2020) 1–117, [arXiv:2003.0110].

[132] M. A. B. Beg and H. S. Tsao, Strong P, T Noninvariances in a Superweak
Theory, Phys. Rev. Lett. 41 (1978) 278.

308

http://xxx.lanl.gov/abs/hep-ph/9908508
http://xxx.lanl.gov/abs/hep-ph/9403203
http://xxx.lanl.gov/abs/1712.0580
http://xxx.lanl.gov/abs/2111.0984
http://xxx.lanl.gov/abs/2105.0912
http://xxx.lanl.gov/abs/2109.0163
http://xxx.lanl.gov/abs/2210.0932
http://xxx.lanl.gov/abs/2301.1340
http://xxx.lanl.gov/abs/2003.0110


[133] L. Lavoura, A New type of spontaneous CP breaking, Phys. Lett. B 400 (1997)
152–156, [hep-ph/9701221].

[134] P.-H. Gu, Mirror left-right symmetry, Phys. Lett. B 713 (2012) 485–489,
[arXiv:1201.3551].

[135] J. Kawamura, S. Okawa, Y. Omura, and Y. Tang, WIMP dark matter in the
parity solution to the strong CP problem, JHEP 04 (2019) 162, [arXiv:1812.0700].

[136] D. Dunsky, L. J. Hall, and K. Harigaya, Higgs Parity, Strong CP, and Dark
Matter, JHEP 07 (2019) 016, [arXiv:1902.0772].

[137] L. J. Hall and K. Harigaya, Higgs Parity Grand Unification, JHEP 11 (2019) 033,
[arXiv:1905.1272].

[138] N. Craig, I. Garcia Garcia, G. Koszegi, and A. McCune, P not PQ, JHEP 09
(2021) 130, [arXiv:2012.1341].

[139] M. Redi and A. Tesi, Neutrinos, Dark Matter and Higgs Vacua in Parity
Solutions of the strong CP problem, arXiv:2307.0316.

[140] J. Carrasco-Martinez, D. I. Dunsky, L. J. Hall, and K. Harigaya, Leptogenesis in
Parity Solutions to the Strong CP Problem and Standard Model Parameters,
arXiv:2307.1573.

[141] J. A. Dror, D. Dunsky, L. J. Hall, and K. Harigaya, Sterile Neutrino Dark Matter
in Left-Right Theories, JHEP 07 (2020) 168, [arXiv:2004.0951].

[142] D. Dunsky, L. J. Hall, and K. Harigaya, Sterile Neutrino Dark Matter and
Leptogenesis in Left-Right Higgs Parity, JHEP 01 (2021) 125, [arXiv:2007.1271].

[143] Q. Bonnefoy, L. Hall, C. A. Manzari, and C. Scherb, A Colorful Mirror Solution
to the Strong CP Problem, arXiv:2303.0615.

[144] S. Koren and R. McGehee, Freezing-in twin dark matter, Phys. Rev. D 101
(2020), no. 5 055024, [arXiv:1908.0355].

[145] D. Dunsky, L. J. Hall, and K. Harigaya, CHAMP Cosmic Rays, JCAP 07 (2019)
015, [arXiv:1812.1111].

[146] T. P. Cheng, E. Eichten, and L.-F. Li, Higgs Phenomena in Asymptotically Free
Gauge Theories, Phys. Rev. D 9 (1974) 2259.

[147] G.-y. Huang and S. Zhou, Precise Values of Running Quark and Lepton Masses in
the Standard Model, Phys. Rev. D 103 (2021), no. 1 016010, [arXiv:2009.0485].

[148] Particle Data Group Collaboration, R. L. Workman et. al., Review of Particle
Physics, PTEP 2022 (2022) 083C01.

309

http://xxx.lanl.gov/abs/hep-ph/9701221
http://xxx.lanl.gov/abs/1201.3551
http://xxx.lanl.gov/abs/1812.0700
http://xxx.lanl.gov/abs/1902.0772
http://xxx.lanl.gov/abs/1905.1272
http://xxx.lanl.gov/abs/2012.1341
http://xxx.lanl.gov/abs/2307.0316
http://xxx.lanl.gov/abs/2307.1573
http://xxx.lanl.gov/abs/2004.0951
http://xxx.lanl.gov/abs/2007.1271
http://xxx.lanl.gov/abs/2303.0615
http://xxx.lanl.gov/abs/1908.0355
http://xxx.lanl.gov/abs/1812.1111
http://xxx.lanl.gov/abs/2009.0485


[149] T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin, The Four loop beta
function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379–384,
[hep-ph/9701390].

[150] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, Dimension-Six Terms
in the Standard Model Lagrangian, JHEP 10 (2010) 085, [arXiv:1008.4884].

[151] B. Audren, J. Lesgourgues, G. Mangano, P. D. Serpico, and T. Tram, Strongest
model-independent bound on the lifetime of Dark Matter, JCAP 12 (2014) 028,
[arXiv:1407.2418].

[152] M. G. Baring, T. Ghosh, F. S. Queiroz, and K. Sinha, New Limits on the Dark
Matter Lifetime from Dwarf Spheroidal Galaxies using Fermi-LAT, Phys. Rev. D
93 (2016), no. 10 103009, [arXiv:1510.0038].

[153] Y. Mambrini, S. Profumo, and F. S. Queiroz, Dark Matter and Global
Symmetries, Phys. Lett. B 760 (2016) 807–815, [arXiv:1508.0663].

[154] T. R. Slatyer and C.-L. Wu, General Constraints on Dark Matter Decay from the
Cosmic Microwave Background, Phys. Rev. D 95 (2017), no. 2 023010,
[arXiv:1610.0693].

[155] A. J. Benson, A. Farahi, S. Cole, L. A. Moustakas, A. Jenkins, M. Lovell,
R. Kennedy, J. Helly, and C. Frenk, Dark matter halo merger histories beyond
cold dark matter – i. methods and application to warm dark matter, Monthly
Notices of the Royal Astronomical Society 428 (nov, 2012) 1774–1789.

[156] M. R. Lovell, C. S. Frenk, V. R. Eke, A. Jenkins, L. Gao, and T. Theuns, The
properties of warm dark matter haloes, Mon. Not. Roy. Astron. Soc. 439 (2014)
300–317, [arXiv:1308.1399].

[157] R. Kennedy, C. Frenk, S. Cole, and A. Benson, Constraining the warm dark
matter particle mass with Milky Way satellites, Mon. Not. Roy. Astron. Soc. 442
(2014), no. 3 2487–2495, [arXiv:1310.7739].

[158] S. D. McDermott, H.-B. Yu, and K. M. Zurek, Turning off the Lights: How Dark
is Dark Matter?, Phys. Rev. D 83 (2011) 063509, [arXiv:1011.2907].

[159] F. J. Sanchez-Salcedo, E. Martinez-Gomez, and J. Magana, On the fraction of
dark matter in charged massive particles (CHAMPs), JCAP 02 (2010) 031,
[arXiv:1002.3145].

[160] P. Agrawal, F.-Y. Cyr-Racine, L. Randall, and J. Scholtz, Make Dark Matter
Charged Again, JCAP 05 (2017) 022, [arXiv:1610.0461].

[161] Y. Bai and B. A. Dobrescu, Collider Tests of the Renormalizable Coloron Model,
JHEP 04 (2018) 114, [arXiv:1802.0300].

310

http://xxx.lanl.gov/abs/hep-ph/9701390
http://xxx.lanl.gov/abs/1008.4884
http://xxx.lanl.gov/abs/1407.2418
http://xxx.lanl.gov/abs/1510.0038
http://xxx.lanl.gov/abs/1508.0663
http://xxx.lanl.gov/abs/1610.0693
http://xxx.lanl.gov/abs/1308.1399
http://xxx.lanl.gov/abs/1310.7739
http://xxx.lanl.gov/abs/1011.2907
http://xxx.lanl.gov/abs/1002.3145
http://xxx.lanl.gov/abs/1610.0461
http://xxx.lanl.gov/abs/1802.0300


[162] CDMS-II Collaboration, Z. Ahmed et. al., Dark Matter Search Results from the
CDMS II Experiment, Science 327 (2010) 1619–1621, [arXiv:0912.3592].

[163] XENON Collaboration, E. Aprile et. al., Dark Matter Search Results from a
One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018), no. 11
111302, [arXiv:1805.1256].

[164] R. Essig, T. Volansky, and T.-T. Yu, New Constraints and Prospects for sub-GeV
Dark Matter Scattering off Electrons in Xenon, Phys. Rev. D 96 (2017), no. 4
043017, [arXiv:1703.0091].

[165] Majorana Collaboration, S. I. Alvis et. al., First Limit on the Direct Detection of
Lightly Ionizing Particles for Electric Charge as Low as e/1000 with the Majorana
Demonstrator, Phys. Rev. Lett. 120 (2018), no. 21 211804, [arXiv:1801.1014].

[166] MACRO Collaboration, M. Ambrosio et. al., Final search for lightly ionizing
particles with the MACRO detector, hep-ex/0402006.

[167] F. Kajino, S. Matsuno, T. Kitamura, T. Aoki, Y. K. Yuan, K. Mitsui, Y. Ohashi,
and A. Okada, New limit on the flux of slowly moving magnetic monopoles,
Journal of Physics G: Nuclear Physics 10 (apr, 1984) 447.

[168] E. N. Alekseev, M. M. Boliev, A. E. Chudakov, S. P. Mikheyev, and O. Y.
Shkvorets, SEARCH FOR SLOWLY MOVING PENETRATING PARTICLES
AT BAKSAN UNDERGROUND TELESCOPE, in 18th International Cosmic
Ray Conference, vol. HE2.2-1, pp. 52–55, 1983.

[169] W. G. Jones, P. F. Smith, G. J. Homer, J. D. Lewin, and H. E. Walford, Searches
for Fractional Electric Charge in Meteorite Samples, Z. Phys. C 43 (1989)
349–355.

[170] M. C. Digman, C. V. Cappiello, J. F. Beacom, C. M. Hirata, and A. H. G. Peter,
Not as big as a barn: Upper bounds on dark matter-nucleus cross sections, Phys.
Rev. D 100 (2019), no. 6 063013, [arXiv:1907.1061]. [Erratum: Phys.Rev.D 106,
089902 (2022)].

[171] M. W. Goodman and E. Witten, Detectability of Certain Dark Matter
Candidates, Phys. Rev. D 31 (1985) 3059.

[172] XENON Collaboration, E. Aprile et. al., First Dark Matter Search with Nuclear
Recoils from the XENONnT Experiment, Phys. Rev. Lett. 131 (2023), no. 4
041003, [arXiv:2303.1472].

[173] LZ Collaboration, J. Aalbers et. al., First Dark Matter Search Results from the
LUX-ZEPLIN (LZ) Experiment, Phys. Rev. Lett. 131 (2023), no. 4 041002,
[arXiv:2207.0376].

311

http://xxx.lanl.gov/abs/0912.3592
http://xxx.lanl.gov/abs/1805.1256
http://xxx.lanl.gov/abs/1703.0091
http://xxx.lanl.gov/abs/1801.1014
http://xxx.lanl.gov/abs/hep-ex/0402006
http://xxx.lanl.gov/abs/1907.1061
http://xxx.lanl.gov/abs/2303.1472
http://xxx.lanl.gov/abs/2207.0376


[174] D. Dunsky, L. J. Hall, and K. Harigaya, Dark Matter, Dark Radiation and
Gravitational Waves from Mirror Higgs Parity, JHEP 02 (2020) 078,
[arXiv:1908.0275].

[175] Z. G. Berezhiani, A. D. Dolgov, and R. N. Mohapatra, Asymmetric inflationary
reheating and the nature of mirror universe, Phys. Lett. B 375 (1996) 26–36,
[hep-ph/9511221].

[176] P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved
analysis, Nuclear Physics B 360 (1991), no. 1 145–179.

[177] G. Pancheri, J. P. Revol, and C. Rubbia, Precise measurement of the toponium
mass from the observation of its two photon decay at the LHC, Phys. Lett. B 277
(1992) 518–523.

[178] V. D. Barger, E. W. N. Glover, K. Hikasa, W.-Y. Keung, M. G. Olsson, C. J.
Suchyta, III, and X. R. Tata, Superheavy Quarkonium Production and Decays: A
New Higgs Signal, Phys. Rev. D 35 (1987) 3366. [Erratum: Phys.Rev.D 38, 1632
(1988)].

[179] D. Kahawala and Y. Kats, Distinguishing spins at the LHC using bound state
signals, JHEP 09 (2011) 099, [arXiv:1103.3503].

[180] Y. Kats and M. J. Strassler, Probing Colored Particles with Photons, Leptons, and
Jets, JHEP 11 (2012) 097, [arXiv:1204.1119]. [Erratum: JHEP 07, 009 (2016)].

[181] T. Hambye, M. H. G. Tytgat, J. Vandecasteele, and L. Vanderheyden, Dark
matter from dark photons: a taxonomy of dark matter production, Phys. Rev. D
100 (2019), no. 9 095018, [arXiv:1908.0986].

[182] G. Bélanger, C. Delaunay, A. Pukhov, and B. Zaldivar, Dark matter abundance
from the sequential freeze-in mechanism, Phys. Rev. D 102 (2020), no. 3 035017,
[arXiv:2005.0629].

[183] R. T. Co, E. Gonzalez, and K. Harigaya, Increasing Temperature toward the
Completion of Reheating, JCAP 11 (2020) 038, [arXiv:2007.0432].

[184] M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys.
Lett. B 174 (1986) 45–47.

[185] M. A. Luty, Baryogenesis via leptogenesis, Phys. Rev. D 45 (1992) 455–465.

[186] Planck Collaboration, Y. Akrami et. al., Planck 2018 results. X. Constraints on
inflation, Astron. Astrophys. 641 (2020) A10, [arXiv:1807.0621].

[187] K. K. Boddy et. al., Snowmass2021 theory frontier white paper: Astrophysical and
cosmological probes of dark matter, JHEAp 35 (2022) 112–138, [arXiv:2203.0638].

312

http://xxx.lanl.gov/abs/1908.0275
http://xxx.lanl.gov/abs/hep-ph/9511221
http://xxx.lanl.gov/abs/1103.3503
http://xxx.lanl.gov/abs/1204.1119
http://xxx.lanl.gov/abs/1908.0986
http://xxx.lanl.gov/abs/2005.0629
http://xxx.lanl.gov/abs/2007.0432
http://xxx.lanl.gov/abs/1807.0621
http://xxx.lanl.gov/abs/2203.0638


[188] G. Domènech, Scalar Induced Gravitational Waves Review, Universe 7 (2021),
no. 11 398, [arXiv:2109.0139].

[189] A. M. Green and B. J. Kavanagh, Primordial Black Holes as a dark matter
candidate, J. Phys. G 48 (2021), no. 4 043001, [arXiv:2007.1072].

[190] B. Carr and F. Kuhnel, Primordial Black Holes as Dark Matter: Recent
Developments, Ann. Rev. Nucl. Part. Sci. 70 (2020) 355–394, [arXiv:2006.0283].

[191] P. Ivanov, P. Naselsky, and I. Novikov, Inflation and primordial black holes as
dark matter, Phys. Rev. D 50 (1994) 7173–7178.

[192] J. Garcia-Bellido and E. Ruiz Morales, Primordial black holes from single field
models of inflation, Phys. Dark Univ. 18 (2017) 47–54, [arXiv:1702.0390].

[193] G. Ballesteros and M. Taoso, Primordial black hole dark matter from single field
inflation, Phys. Rev. D 97 (2018), no. 2 023501, [arXiv:1709.0556].

[194] N. C. Tsamis and R. P. Woodard, Improved estimates of cosmological
perturbations, Phys. Rev. D 69 (2004) 084005, [astro-ph/0307463].

[195] W. H. Kinney, Horizon crossing and inflation with large eta, Phys. Rev. D 72
(2005) 023515, [gr-qc/0503017].

[196] S. Hooshangi, A. Talebian, M. H. Namjoo, and H. Firouzjahi, Multiple field
ultraslow-roll inflation: Primordial black holes from straight bulk and distorted
boundary, Phys. Rev. D 105 (2022), no. 8 083525, [arXiv:2201.0725].

[197] S. Kasuya and M. Kawasaki, Axion isocurvature fluctuations with extremely blue
spectrum, Phys. Rev. D 80 (2009) 023516, [arXiv:0904.3800].

[198] M. Kawasaki, N. Kitajima, and T. T. Yanagida, Primordial black hole formation
from an axionlike curvaton model, Phys. Rev. D 87 (2013), no. 6 063519,
[arXiv:1207.2550].

[199] D. J. H. Chung and H. Yoo, Elementary Theorems Regarding Blue Isocurvature
Perturbations, Phys. Rev. D 91 (2015) 083530, [arXiv:1501.0561].

[200] D. J. H. Chung and A. Upadhye, Search for strongly blue axion isocurvature,
Phys. Rev. D 98 (2018), no. 2 023525, [arXiv:1711.0673].

[201] D. J. H. Chung and S. C. Tadepalli, Analytic treatment of underdamped axionic
blue isocurvature perturbations, Phys. Rev. D 105 (2022), no. 12 123511,
[arXiv:2110.0227].

[202] A. Talebian, A. Nassiri-Rad, and H. Firouzjahi, Stochastic effects in axion
inflation and primordial black hole formation, Phys. Rev. D 105 (2022), no. 10
103516, [arXiv:2202.0206].

313

http://xxx.lanl.gov/abs/2109.0139
http://xxx.lanl.gov/abs/2007.1072
http://xxx.lanl.gov/abs/2006.0283
http://xxx.lanl.gov/abs/1702.0390
http://xxx.lanl.gov/abs/1709.0556
http://xxx.lanl.gov/abs/astro-ph/0307463
http://xxx.lanl.gov/abs/gr-qc/0503017
http://xxx.lanl.gov/abs/2201.0725
http://xxx.lanl.gov/abs/0904.3800
http://xxx.lanl.gov/abs/1207.2550
http://xxx.lanl.gov/abs/1501.0561
http://xxx.lanl.gov/abs/1711.0673
http://xxx.lanl.gov/abs/2110.0227
http://xxx.lanl.gov/abs/2202.0206


[203] P. W. Graham, J. Mardon, and S. Rajendran, Vector Dark Matter from
Inflationary Fluctuations, Phys. Rev. D 93 (2016), no. 10 103520,
[arXiv:1504.0210].

[204] A. L. Erickcek and K. Sigurdson, Reheating Effects in the Matter Power Spectrum
and Implications for Substructure, Phys. Rev. D 84 (2011) 083503,
[arXiv:1106.0536].

[205] J. Barir, M. Geller, C. Sun, and T. Volansky, Gravitational Waves from
Incomplete Inflationary Phase Transitions, arXiv:2203.0069.

[206] D. J. H. Chung, E. W. Kolb, A. Riotto, and L. Senatore, Isocurvature constraints
on gravitationally produced superheavy dark matter, Phys. Rev. D 72 (2005)
023511, [astro-ph/0411468].

[207] A. A. Starobinsky, STOCHASTIC DE SITTER (INFLATIONARY) STAGE IN
THE EARLY UNIVERSE, Lect. Notes Phys. 246 (1986) 107–126.

[208] A. A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar
field in the De Sitter background, Phys. Rev. D 50 (1994) 6357–6368,
[astro-ph/9407016].

[209] A. D. Linde and V. F. Mukhanov, Nongaussian isocurvature perturbations from
inflation, Phys. Rev. D 56 (1997) R535–R539, [astro-ph/9610219].

[210] K. Enqvist and M. S. Sloth, Adiabatic CMB perturbations in pre - big bang string
cosmology, Nucl. Phys. B 626 (2002) 395–409, [hep-ph/0109214].

[211] T. Moroi and T. Takahashi, Effects of cosmological moduli fields on cosmic
microwave background, Phys. Lett. B 522 (2001) 215–221, [hep-ph/0110096].
[Erratum: Phys.Lett.B 539, 303–303 (2002)].

[212] D. H. Lyth and D. Wands, Generating the curvature perturbation without an
inflaton, Phys. Lett. B 524 (2002) 5–14, [hep-ph/0110002].

[213] E. W. Kolb and M. S. Turner, The Early Universe, vol. 69. 1990.

[214] K. A. Malik and D. Wands, Cosmological perturbations, Phys. Rept. 475 (2009)
1–51, [arXiv:0809.4944].

[215] D. Wands, K. A. Malik, D. H. Lyth, and A. R. Liddle, A New approach to the
evolution of cosmological perturbations on large scales, Phys. Rev. D 62 (2000)
043527, [astro-ph/0003278].

[216] M. Sasaki, Y. Nambu, and K.-i. Nakao, Classical Behavior of a Scalar Field in the
Inflationary Universe, Nucl. Phys. B 308 (1988) 868–884.

314

http://xxx.lanl.gov/abs/1504.0210
http://xxx.lanl.gov/abs/1106.0536
http://xxx.lanl.gov/abs/2203.0069
http://xxx.lanl.gov/abs/astro-ph/0411468
http://xxx.lanl.gov/abs/astro-ph/9407016
http://xxx.lanl.gov/abs/astro-ph/9610219
http://xxx.lanl.gov/abs/hep-ph/0109214
http://xxx.lanl.gov/abs/hep-ph/0110096
http://xxx.lanl.gov/abs/hep-ph/0110002
http://xxx.lanl.gov/abs/0809.4944
http://xxx.lanl.gov/abs/astro-ph/0003278


[217] Y. Nambu and M. Sasaki, Stochastic Stage of an Inflationary Universe Model,
Phys. Lett. B 205 (1988) 441–446.

[218] P. W. Graham and A. Scherlis, Stochastic axion scenario, Phys. Rev. D 98
(2018), no. 3 035017, [arXiv:1805.0736].

[219] T. Markkanen, A. Rajantie, S. Stopyra, and T. Tenkanen, Scalar correlation
functions in de Sitter space from the stochastic spectral expansion, JCAP 08
(2019) 001, [arXiv:1904.1191].

[220] A. R. Liddle and S. M. Leach, How long before the end of inflation were observable
perturbations produced?, Phys. Rev. D 68 (2003) 103503, [astro-ph/0305263].

[221] S. Dodelson and L. Hui, A Horizon ratio bound for inflationary fluctuations,
Phys. Rev. Lett. 91 (2003) 131301, [astro-ph/0305113].

[222] L. F. Abbott, E. Farhi, and M. B. Wise, Particle Production in the New
Inflationary Cosmology, Phys. Lett. B 117 (1982) 29.

[223] A. D. Dolgov and A. D. Linde, Baryon Asymmetry in Inflationary Universe,
Phys. Lett. B 116 (1982) 329.

[224] A. Albrecht, P. J. Steinhardt, M. S. Turner, and F. Wilczek, Reheating an
Inflationary Universe, Phys. Rev. Lett. 48 (1982) 1437.

[225] D. I. Podolsky, G. N. Felder, L. Kofman, and M. Peloso, Equation of state and
beginning of thermalization after preheating, Phys. Rev. D 73 (2006) 023501,
[hep-ph/0507096].

[226] J. B. Munoz and M. Kamionkowski, Equation-of-State Parameter for Reheating,
Phys. Rev. D 91 (2015), no. 4 043521, [arXiv:1412.0656].

[227] L. Dai, M. Kamionkowski, and J. Wang, Reheating constraints to inflationary
models, Phys. Rev. Lett. 113 (2014) 041302, [arXiv:1404.6704].

[228] K. D. Lozanov and M. A. Amin, Equation of State and Duration to Radiation
Domination after Inflation, Phys. Rev. Lett. 119 (2017), no. 6 061301,
[arXiv:1608.0121].

[229] D. Maity and P. Saha, (P)reheating after minimal Plateau Inflation and
constraints from CMB, JCAP 07 (2019) 018, [arXiv:1811.1117].

[230] S. Antusch, D. G. Figueroa, K. Marschall, and F. Torrenti, Energy distribution
and equation of state of the early Universe: matching the end of inflation and the
onset of radiation domination, Phys. Lett. B 811 (2020) 135888,
[arXiv:2005.0756].

315

http://xxx.lanl.gov/abs/1805.0736
http://xxx.lanl.gov/abs/1904.1191
http://xxx.lanl.gov/abs/astro-ph/0305263
http://xxx.lanl.gov/abs/astro-ph/0305113
http://xxx.lanl.gov/abs/hep-ph/0507096
http://xxx.lanl.gov/abs/1412.0656
http://xxx.lanl.gov/abs/1404.6704
http://xxx.lanl.gov/abs/1608.0121
http://xxx.lanl.gov/abs/1811.1117
http://xxx.lanl.gov/abs/2005.0756


[231] R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine, and A. Mazumdar, Reheating
in Inflationary Cosmology: Theory and Applications, Ann. Rev. Nucl. Part. Sci.
60 (2010) 27–51, [arXiv:1001.2600].

[232] J. Chluba, R. Khatri, and R. A. Sunyaev, CMB at 2x2 order: The dissipation of
primordial acoustic waves and the observable part of the associated energy release,
Mon. Not. Roy. Astron. Soc. 425 (2012) 1129–1169, [arXiv:1202.0057].

[233] J. Chluba et. al., Spectral Distortions of the CMB as a Probe of Inflation,
Recombination, Structure Formation and Particle Physics: Astro2020 Science
White Paper, Bull. Am. Astron. Soc. 51 (2019), no. 3 184, [arXiv:1903.0421].

[234] V. S. H. Lee, A. Mitridate, T. Trickle, and K. M. Zurek, Probing Small-Scale
Power Spectra with Pulsar Timing Arrays, JHEP 06 (2021) 028,
[arXiv:2012.0985].

[235] K. Van Tilburg, A.-M. Taki, and N. Weiner, Halometry from Astrometry, JCAP
07 (2018) 041, [arXiv:1804.0199].

[236] D. J. Fixsen and J. C. Mather, The Spectral Results of the Far-Infrared Absolute
Spectrophotometer Instrument on COBE, 581 (Dec., 2002) 817–822.

[237] A. Riotto, The Primordial Black Hole Formation from Single-Field Inflation is
Not Ruled Out, arXiv:2301.0059.

[238] K. N. Ananda, C. Clarkson, and D. Wands, The Cosmological gravitational wave
background from primordial density perturbations, Phys. Rev. D 75 (2007) 123518,
[gr-qc/0612013].

[239] D. Baumann, P. J. Steinhardt, K. Takahashi, and K. Ichiki, Gravitational Wave
Spectrum Induced by Primordial Scalar Perturbations, Phys. Rev. D 76 (2007)
084019, [hep-th/0703290].

[240] K. Kohri and T. Terada, Semianalytic calculation of gravitational wave spectrum
nonlinearly induced from primordial curvature perturbations, Phys. Rev. D 97
(2018), no. 12 123532, [arXiv:1804.0857].

[241] J. R. Espinosa, D. Racco, and A. Riotto, A Cosmological Signature of the SM
Higgs Instability: Gravitational Waves, JCAP 09 (2018) 012, [arXiv:1804.0773].

[242] P. Adshead, K. D. Lozanov, and Z. J. Weiner, Non-Gaussianity and the induced
gravitational wave background, JCAP 10 (2021) 080, [arXiv:2105.0165].

[243] J.-P. Li, S. Wang, Z.-C. Zhao, and K. Kohri, Primordial Non-Gaussianity and
Anisotropies in Gravitational Waves induced by Scalar Perturbations,
arXiv:2305.1995.

316

http://xxx.lanl.gov/abs/1001.2600
http://xxx.lanl.gov/abs/1202.0057
http://xxx.lanl.gov/abs/1903.0421
http://xxx.lanl.gov/abs/2012.0985
http://xxx.lanl.gov/abs/1804.0199
http://xxx.lanl.gov/abs/2301.0059
http://xxx.lanl.gov/abs/gr-qc/0612013
http://xxx.lanl.gov/abs/hep-th/0703290
http://xxx.lanl.gov/abs/1804.0857
http://xxx.lanl.gov/abs/1804.0773
http://xxx.lanl.gov/abs/2105.0165
http://xxx.lanl.gov/abs/2305.1995


[244] Z.-C. Chen, C. Yuan, and Q.-G. Huang, Pulsar Timing Array Constraints on
Primordial Black Holes with NANOGrav 11-Year Dataset, Phys. Rev. Lett. 124
(2020), no. 25 251101, [arXiv:1910.1223].

[245] S. Garcia-Saenz, L. Pinol, S. Renaux-Petel, and D. Werth, No-go theorem for
scalar-trispectrum-induced gravitational waves, JCAP 03 (2023) 057,
[arXiv:2207.1426].

[246] C. Unal, Imprints of Primordial Non-Gaussianity on Gravitational Wave
Spectrum, Phys. Rev. D 99 (2019), no. 4 041301, [arXiv:1811.0915].

[247] V. Atal and G. Domènech, Probing non-Gaussianities with the high frequency tail
of induced gravitational waves, JCAP 06 (2021) 001, [arXiv:2103.0105].

[248] M. Maggiore, Gravitational wave experiments and early universe cosmology, Phys.
Rept. 331 (2000) 283–367, [gr-qc/9909001].

[249] K. Schmitz, New Sensitivity Curves for Gravitational-Wave Signals from
Cosmological Phase Transitions, JHEP 01 (2021) 097, [arXiv:2002.0461].

[250] A. Sesana et. al., Unveiling the gravitational universe at µ-Hz frequencies, Exper.
Astron. 51 (2021), no. 3 1333–1383, [arXiv:1908.1139].

[251] M. Braglia and S. Kuroyanagi, Probing prerecombination physics by the
cross-correlation of stochastic gravitational waves and CMB anisotropies, Phys.
Rev. D 104 (2021), no. 12 123547, [arXiv:2106.0378].

[252] NANOGrav Collaboration, G. Agazie et. al., The NANOGrav 15 yr Data Set:
Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951 (2023),
no. 1 L8, [arXiv:2306.1621].

[253] EPTA Collaboration, J. Antoniadis et. al., The second data release from the
European Pulsar Timing Array III. Search for gravitational wave signals,
arXiv:2306.1621.

[254] EPTA Collaboration, J. Antoniadis et. al., The second data release from the
European Pulsar Timing Array - I. The dataset and timing analysis, Astron.
Astrophys. 678 (2023) A48, [arXiv:2306.1622].

[255] D. J. Reardon et. al., Search for an Isotropic Gravitational-wave Background with
the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951 (2023), no. 1 L6,
[arXiv:2306.1621].

[256] H. Xu et. al., Searching for the Nano-Hertz Stochastic Gravitational Wave
Background with the Chinese Pulsar Timing Array Data Release I, Res. Astron.
Astrophys. 23 (2023), no. 7 075024, [arXiv:2306.1621].

317

http://xxx.lanl.gov/abs/1910.1223
http://xxx.lanl.gov/abs/2207.1426
http://xxx.lanl.gov/abs/1811.0915
http://xxx.lanl.gov/abs/2103.0105
http://xxx.lanl.gov/abs/gr-qc/9909001
http://xxx.lanl.gov/abs/2002.0461
http://xxx.lanl.gov/abs/1908.1139
http://xxx.lanl.gov/abs/2106.0378
http://xxx.lanl.gov/abs/2306.1621
http://xxx.lanl.gov/abs/2306.1621
http://xxx.lanl.gov/abs/2306.1622
http://xxx.lanl.gov/abs/2306.1621
http://xxx.lanl.gov/abs/2306.1621


[257] NANOGrav Collaboration, A. Afzal et. al., The NANOGrav 15 yr Data Set:
Search for Signals from New Physics, Astrophys. J. Lett. 951 (2023), no. 1 L11,
[arXiv:2306.1621].

[258] EPTA Collaboration, J. Antoniadis et. al., The second data release from the
European Pulsar Timing Array: V. Implications for massive black holes, dark
matter and the early Universe, arXiv:2306.1622.

[259] M. Baumgart et. al., Snowmass Theory Frontier: Effective Field Theory, in
Snowmass 2021, 10, 2022. arXiv:2210.0319.

[260] H. D. Politzer, Power Corrections at Short Distances, Nucl. Phys. B 172 (1980)
349–382.

[261] H. Georgi, On-shell effective field theory, Nucl. Phys. B 361 (1991) 339–350.

[262] C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189–195,
[hep-ph/9304230].

[263] B. Henning, X. Lu, T. Melia, and H. Murayama, Operator bases, S-matrices, and
their partition functions, JHEP 10 (2017) 199, [arXiv:1706.0852].

[264] C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan, and L. Senatore, The
Effective Field Theory of Inflation, JHEP 03 (2008) 014, [arXiv:0709.0293].

[265] S. Weinberg, Effective Field Theory for Inflation, Phys. Rev. D 77 (2008) 123541,
[arXiv:0804.4291].

[266] J. M. Maldacena, Non-Gaussian features of primordial fluctuations in single field
inflationary models, JHEP 05 (2003) 013, [astro-ph/0210603].

[267] D. Seery and J. E. Lidsey, Non-Gaussian Inflationary Perturbations from the
dS/CFT Correspondence, JCAP 06 (2006) 001, [astro-ph/0604209].

[268] F. Arroja and T. Tanaka, A note on the role of the boundary terms for the
non-Gaussianity in general k-inflation, JCAP 05 (2011) 005, [arXiv:1103.1102].

[269] G. Rigopoulos, Gauge invariance and non-Gaussianity in Inflation, Phys. Rev. D
84 (2011) 021301, [arXiv:1104.0292].

[270] S. Renaux-Petel, On the redundancy of operators and the bispectrum in the most
general second-order scalar-tensor theory, JCAP 02 (2012) 020, [arXiv:1107.5020].

[271] R. H. Ribeiro and D. Seery, Decoding the bispectrum of single-field inflation,
JCAP 10 (2011) 027, [arXiv:1108.3839].

[272] C. de Rham and R. H. Ribeiro, Riding on irrelevant operators, JCAP 11 (2014)
016, [arXiv:1405.5213].

318

http://xxx.lanl.gov/abs/2306.1621
http://xxx.lanl.gov/abs/2306.1622
http://xxx.lanl.gov/abs/2210.0319
http://xxx.lanl.gov/abs/hep-ph/9304230
http://xxx.lanl.gov/abs/1706.0852
http://xxx.lanl.gov/abs/0709.0293
http://xxx.lanl.gov/abs/0804.4291
http://xxx.lanl.gov/abs/astro-ph/0210603
http://xxx.lanl.gov/abs/astro-ph/0604209
http://xxx.lanl.gov/abs/1103.1102
http://xxx.lanl.gov/abs/1104.0292
http://xxx.lanl.gov/abs/1107.5020
http://xxx.lanl.gov/abs/1108.3839
http://xxx.lanl.gov/abs/1405.5213


[273] L. Bordin, G. Cabass, P. Creminelli, and F. Vernizzi, Simplifying the EFT of
Inflation: generalized disformal transformations and redundant couplings, JCAP
09 (2017) 043, [arXiv:1706.0375].

[274] S. Garcia-Saenz, L. Pinol, and S. Renaux-Petel, Revisiting non-Gaussianity in
multifield inflation with curved field space, JHEP 01 (2020) 073, [arXiv:1907.1040].

[275] L. Bordin and G. Cabass, Graviton non-Gaussianities and Parity Violation in the
EFT of Inflation, JCAP 07 (2020) 014, [arXiv:2004.0061].

[276] D. Green and E. Pajer, On the Symmetries of Cosmological Perturbations, JCAP
09 (2020) 032, [arXiv:2004.0958].

[277] E. Pajer, Building a Boostless Bootstrap for the Bispectrum, JCAP 01 (2021) 023,
[arXiv:2010.1281].

[278] D. Ghosh, K. Panchal, and F. Ullah, Mixed graviton and scalar bispectra in the
EFT of inflation: Soft limits and Boostless Bootstrap, JHEP 07 (2023) 233,
[arXiv:2303.1692].

[279] H.-L. Li, Z. Ren, M.-L. Xiao, J.-H. Yu, and Y.-H. Zheng, On-shell operator
construction in the effective field theory of gravity, JHEP 10 (2023) 019,
[arXiv:2305.1048].

[280] X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities,
JCAP 04 (2010) 027, [arXiv:0911.3380].

[281] D. Baumann and D. Green, Equilateral Non-Gaussianity and New Physics on the
Horizon, JCAP 09 (2011) 014, [arXiv:1102.5343].

[282] D. Baumann and D. Green, Signatures of Supersymmetry from the Early
Universe, Phys. Rev. D 85 (2012) 103520, [arXiv:1109.0292].

[283] X. Chen and Y. Wang, Quasi-Single Field Inflation with Large Mass, JCAP 09
(2012) 021, [arXiv:1205.0160].

[284] T. Noumi, M. Yamaguchi, and D. Yokoyama, Effective field theory approach to
quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051,
[arXiv:1211.1624].

[285] V. Assassi, D. Baumann, D. Green, and L. McAllister, Planck-Suppressed
Operators, JCAP 01 (2014) 033, [arXiv:1304.5226].

[286] N. Craig and D. Green, Testing Split Supersymmetry with Inflation, JHEP 07
(2014) 102, [arXiv:1403.7193].

319

http://xxx.lanl.gov/abs/1706.0375
http://xxx.lanl.gov/abs/1907.1040
http://xxx.lanl.gov/abs/2004.0061
http://xxx.lanl.gov/abs/2004.0958
http://xxx.lanl.gov/abs/2010.1281
http://xxx.lanl.gov/abs/2303.1692
http://xxx.lanl.gov/abs/2305.1048
http://xxx.lanl.gov/abs/0911.3380
http://xxx.lanl.gov/abs/1102.5343
http://xxx.lanl.gov/abs/1109.0292
http://xxx.lanl.gov/abs/1205.0160
http://xxx.lanl.gov/abs/1211.1624
http://xxx.lanl.gov/abs/1304.5226
http://xxx.lanl.gov/abs/1403.7193


[287] E. Dimastrogiovanni, M. Fasiello, and M. Kamionkowski, Imprints of Massive
Primordial Fields on Large-Scale Structure, JCAP 02 (2016) 017,
[arXiv:1504.0599].

[288] P. D. Meerburg, M. Münchmeyer, J. B. Muñoz, and X. Chen, Prospects for
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