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Ahstrac.t 

Adaptive Mesh and Algorithm Refinement (AMAR) embeds a particle 
method within a continuum method at the finest level of an adaptive mesh 
refinement (AMR) hierarchy. The coupling between the particle region 
and the overlaying continuum grid is algorithmically equivalent to that 
between the fine and coarse levels of AMR. Direct simulation Monte Carlo 
(DSMC) is used as the particle algorithm embedded within a Godunov
type compressible Navier Stokes solver. Several examples are presented 
and compared with purely continuum calculations. 

'Permanent address: Physics Dept., San Jose State University, San Jose, Calf. 95192 
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1 Introduction 

When a large range of scales must be spanned, computational fluid dynamics 
(CFD) calculations often employ local mesh refinement so that a fine grid is 
used only in those regions that require high resolution. However, hydrodynamic 
formulations break down as the grid spacing approaches the molecular scale, 
for example, the mean free path in a gas. This paper describes Adaptive Mesh 
and Algorithm Refinement (AMAR), in which a continuum algorithm, such 
as a Navier-Stokes solver, is replaced by a particle algorithm, such as Direct 
Simulation Monte Carlo (DSMC), at the finest grid scale. 

As an illustration, consider the flow of a gas through a microscopic channel, 
such as between the head and platter in a disk drive [1]. The continuum de
scription of the flow and the quantities derived from it, such as wall drag, are 
not accurate whenever the Knudsen number Kn > 10-2 , where Kn == AIL, A is 
the mean free path and L is the channel width. [2] Kinetic theory extensions to 
the continuum equations (e.g., Burnett expansion) have had limited success. [3] 
Another approach is to introduce kinetic corrections to the boundary conditions 
but these are often not accurate [1, 4, 5] and can even give wrong qualitative 
features of the flow [6]. 

Rigorously, a kinetic formulation is required at microscopic scales, however, 
at hydrodynamic scales the continuum approximation is valid. AMAR uses 
a particle method in regions of a flow requiring microscopic resolution and a 
continuum method, with varying levels of refinement, to evaluate the flow at 
larger scales. Thus, AMAR provides an effective methodology to span a broad 
range of length scales while retaining the advantages of a kinetic formulation 
where required. 

At both rarefied and atmospheric densities the best particle method to use 
is direct simulation Monte Carlo. DSMC is several orders of magnitude more 
efficient than molecular dynamics for the simulation of gases, however it remains 
several orders of magnitude less efficient than continuum CFD methods. For 
these reasons several researchers have investigated coupling the DSMC algo
rithm to a hydrodynamic solver. There exist loosely coupled schemes for which 
a continuum method provides a boundary condition for a DSMC code [7] or in 
which the two methods calculate different quantities in the problem (e.g., con
tinuum method for the flow field and a particle method for the chemistry [8]). 
However, the focus here is on strongly coupled schemes where the DSMC and 
continuum methods simultaneously evaluate different regions of the flow and 
continuously exchange information across an interface. 

Wadsworth and Erwin first demonstrated such a scheme in calculating a 
one-dimensional shock wave profile [9] and a two-dimensional slit flow [10]. Re
lated hybrid schemes were developed by Eggers and Beylich [11]; Bourgat et 
al. [12]; Le Tallec and Mallinger [13]; and ourselves [14, 15]. Hash and Hassan 
performed detailed studies of a DSMC/Navier-Stokes hybrid using the Marshak 
condition for resolving fluxes [16]. They also demonstrated that a Chapman
Enskog distribution was required when the viscous fluxes were significant but 
that a simple Maxwellian distribution was adequate when the continuum region 
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was well approximated by the Euler equations [7]. Special purpose continuum 
solvers, which are closely tied to kinetic theory, have been proposed for use in 
hybrid schemes. Specifically, the kinetic flux-vector splitting (KFVS) [17] and 
Adaptive Discrete Velocity (ADV) Euler solver [18] have been tested. 

While Adaptive Mesh and Algorithm Refinement may superficially resemble 
other hybrid schemes, it differs fundamentally from all of them. First, AMAR 
is specifically designed to work as a multi-level method for simulating systems 
whose length scales span several orders of magnitude. AMAR is a natural 
extension of adaptive mesh refinement (AMR) and can easily be implemented 
within an existing AMR code. Second, the AMAR coupling between the particle 
and continuum regions conserves mass, momentum and energy to within round
off error. Not only does this eliminate any systematic drift in the solution (e.g., 
mass loss in a closed system), it also improves the numerical stability of the 
method. Third, the continuum solver can easily be changed to any conservative 
(i.e., flux-based) scheme, either implicit cir explicit. Only four basic subroutines, 
outlined at the end of section 4, couple the continuum solver to the particle 
algorithm. Finally, some hybrids schemes are limited, in theory or in practice, 
to the simulation of one or two dimensional problems; AMAR is fully three 
dimensional. 

This paper presents the framework for Adaptive Mesh and Algorithm Refine
ment and illustrates its use by incorporating a DSMC simulation at the finest 
level of an Adaptive Mesh Refinement hierarchy. The DSMC algorithm and 
AMR scheme are briefly described in sections 2 and 3. The AMAR technique 
for coupling these methods is presented in section 4 and results from AMAR 
calculations in section 5. Finally, section 6 describes future work. 

2 Direct Simulation Monte Carlo 

Direct simulation Monte Carlo (DSMC) is a well-established algorithm for com
puting gas dynamics at the level of the Boltzmann equation. For completeness, 
this section presents a summary of the method, emphasizing those elements that 
are relevant to formulating AMAR. The DSMC algorithm is described in detail 
in [19]; see [20] for a tutorial and [21, 22] for reviews. 

In DSMC, the state of the system is given by the positions and velocities of 
particles, {ri, vd. First, the particles are moved as if they did not interact, that 
is, their positions are updated to ri +Vi~t. Any particles that reach a boundary 
are processed according to the appropriate boundary condition. Second, after 
all particles have moved, a given number are randomly selected for collisions. 
This splitting of the evolution between streaming and collisions is only accurate 
when the time step, ~t, is a fraction of the mean collision time for a particle. 

The concept of "collision" implies that the interaction potential between 
particles is short-ranged. In the simulations presented here the particles are 
taken to be rigid spheres of diameter a. Extensions to other representations of 
the molecular interaction may be used to give more realistic transport proper
ties [19] and equations of state [23, 24]. For hard sphere particles, the number 
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of collisions among N particles in a cell volume V during a time step is 

M = N 2
7fa

2
(vr )l:lt 

2V ' 
(1) 

where (vr ) is the average relative speed among the particles. Bird's "no time 
counter" method [19] for computing collision frequency is used since it avoids 
the explicit evaluation of (vr ). 

Particles are randomly selected as collision partners with the restriction that 
their mean separation be a fraction of a mean free path [25]. This restriction 
is enforced by ensuring that cell dimensions are less than a mean free path. 
For hard spheres, the probability of selecting a given pair is proportional to 
the relative speed between the particles. DSMC evaluates individual collisions 
stochastically, conserving momentum and energy and selecting the post-collision 
angles from their kinetic theory distributions. For hard spheres, the center of 
mass velocity and relative speed are conserved in the collision with the di
rection of the relative velocity uniformly distributed in the unit sphere. This 
Markov approximation of the collision process is statistically accurate so long 
as the number of particles in a collision cell is sufficiently large, typically over 
tw~nty [26, 27]. 

These constraints on time step, cell size and number of particles make DSMC 
computationally expensive unless the physical domain is small or the gas is 
highly rarefied. For example, the efficiency of the method can be judged by the 
observation that a simulation of air at standard temperature and pressure re
quires about 106 particles per cubic micron and 104 time steps per microsecond. 

3 Adaptive Mesh Refinement 

In a computational fluid dynamics calculation, the standard hydrodynamic vari
ables are density p, fluid velocity u = lux U y uz ] and pressure P. From these 
one may obtain the conserved densities of mass p, momentum p and energy, e. 
The compressible Navier Stokes equations may be written in the conservative 
form, [28] 

au 
-+V'·F=V'·D at (2) 

where U is a vector composed of the conserved densities, F = (FX, FY, FZ) 
represent the hyperbolic flux terms and D = (DX, DY, DZ) the parabolic flux 
terms. More precisely, 

(3) 
where T and q are the stress tensor and heat flux, respectively, with similar 
expressions for the other flux terms. 
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In the AMAR methodology presented here, the compressible N avier Stokes 
equations are integrated using a second-order unsplit Godunov method to eval
uate the hyperbolic fluxes [29]· and a standard finite difference approximation 
using Crank-Nicolson temporal differencing to treat the parabolic terms. Thus, 
the discretization has the form 

Uijtl - Uijk + 
- ilt 

Fx,n+~ _ Fx,n+~ Fy,n+~ _ Fy,n+~ Fz,n+~ _ Fz,n+~ 
i+-2

1 ,j,k i--2
1 ,j,k+ ij+lk ij-1k i,j,k+-2

1 i,j,k--2
1 

, 2' '2' + = 
ilx ily ilz 

D z,n+l _ Dz,n _ Dz,n+l _ Dz,n ) .. 1 .. 1 .. 1 .. 1 
',3,k+ 2 ',3,k+ 2 ',3,k- 2 ',3,k- 2 

ilz . (4) 

The implicit discretization of the parabolic terms requires the solution of a 
nonlinear system of equations which is easily treated using standard nonlin
ear multigrid ideas. The computation of the hyperbolic flux terms using the 
second-order Godunov procedure is an explicit procedure so that the integra
tion algorithm has a time step restriction based on CFL considerations for the 
Euler equations (D = 0). 

For problems in fluid dynamics where there are a large range of scales that 
must be spanned, some form of adaptive mesh refinement is used to localize 
high resolution to the areas where it is required. In the AMR methodology, a 
block-structured hierarchical form of refinement, first developed by Berger and 
Oliger [30] for hyperbolic partial differential equations, is used. A conservative 
version of this methodology for gas dynamics was developed by Berger and 
Colella [31] and extended to three dimensions by Bell et al. [32]. 

AMR is based on a sequence of nested levels of refinement with successively 
finer spacing in both time and space. In this approach, fine grids are formed by 
dividing coarse cells by a refinement ratio, r, in each direction. Increasingly finer 
grids are recursively embedded in coarse grids until the solution is adequately 
resolved with each level contained in the next coarser level. An error estimation 
procedure based on user-specified criteria evaluates where additional refinement 
is needed and grid generation procedures dynamically create or remove rectan
gular fine grid patches as resolution requirements change. 

The adaptive time-step algorithm advances grids at different levels using 
time steps appropriate to that level based on CFL considerations. The time
step procedure can most easily be thought of as a recursive algorithm, in which 
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to advance level [ (level [ = 0 being the coarsest and [ = [max the finest), the 
following steps are taken: 

• Advance level [ in time as if it is the only level. Supply boundary condi
tions for U from level [-1 if level [> 0, and from the physical boundary 
conditions . 

• If [ < [max 

- Advance level ([ + 1) r times with time step ~t£+l = :~tl using 
boundary conditions for U from level [, and from the physical domain 
boundaries. 

- Synchronize the data between levels [ and [ + 1, interpolate correc
tions to higher levels if [ + 1 < [max' 

The adaptive algorithm, as outline above, performs operations to advance 
each level independent of other levels in the hierarchy (except for boundary 
conditions) and then computes a correction to synchronize the levels. Loosely 
speaking, the objective in this synchronization step is to compute the modifica
tions to the coarse grid that reflect the change in the coarse grid solution from 
the presence of the fine grid. There are two steps in the synchronization. First, 
the fine grid is averaged onto the coarse grid; i.e:, the conserved quantities on 
coarse grid cells covered by fine grid are replace by the average of the fine grid. 

The second step of the synchronization, called "refluxing", corrects for the 
difference in coarse and fine grid fluxes at the boundary of the fine grid. The 
basic approach used here is an analog of the procedure used by Almgren et 
al. [33] extended to the case of nonlinear parabolic terms. During the course of 
the integration step, flux information is saved at the faces on the boundary of 
the coarse and fine grid to obtain the difference between the fluxes calculated 
at level [ and the corresponding level [ + 1 average. The latter are the fluxes at 
level [ + 1 time averaged over the level [ time step and spatially averaged over 
the area of the level [ face. This time step- and area-weighted flux difference is 

(5) 

where F and D are the components of the convective and diffusive fluxes corre
sponding to the faces ineqn. (4) and A is the signed area of the face of a grid 
cell where the sign depends on the direction normal to the face, facing away 
from the fine grid. The sum over faces in eqn. (5) is a sum over all fine grid 
faces that cover the coarse face. 

The flux correction, of;' represents the difference between the flux used to 
update the coarse cells adjacent to the fine grid and the fluxes that are computed 
on the fine grid. To insure stability for low Reynolds numbers and to match 
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the implicit, Crank-Nicolson character of the diffusive step an implicit solve is 
performed 

8U - ~tV. D(un+! + 8U) = ~t8F , 
2 ~x~y~z 

(6) 

where Un+1 is the coarse grid solution after averaging the fine grid solution but 
before computing the correction. The coarse grid, un+! , is updated by 

Un+! = Un+! + 8U (7) 

The fine grid is updated by using a conservative scheme that interpolates the 
correction to the fine grid and to other finer grids contained within the fine grid. 
Finally, to capture the effect of the synchronization of level f and higher on level 
f - 1 the flux corrections F'--l are ,not updated until after the synchronization 
of levels f and f + 1. 

4 Adaptive Mesh and Algorithm Refinement 

Adaptive Mesh and Algorithm Refinement (A MAR) uses the same basic algo
rithmic outline as AMR, as presented in the previous section, except that the 
finest grid level is evaluated by a DSMC calculation. For the purposes of expo
sition, a DSMC region is considered embedded within a single-level continuum 
grid. 

At the start of a continuum time step, fluxes are computed at each cell face 
and used to advance the conserved densities (mass, momentum and energy) 
on the grid. All continuum cells are advanced by ~tcont' including those that 
overlay the DSMC region. For numerical stability, ~tcont = C~x/lc + vi where 
c is the sound speed, v is the maximum fluid speed and C < 1 is the Courant 
number. Next, the particle calculation advances to the same time by taking 
several, smaller time steps, ~tpart. Though ~tpart is a fraction of the mean 
collision time, for the finest continuum grid ~x ~ >. so ~tc ~ ~tpart. For the 
AMAR calculations presented in this paper, the width of the smallest continuum 
cells is two mean free paths and ~tcont < 4~tpart. 

The DSMC region is surrounded by buffer cells (see Fig. 1). At the be~ 
ginning of each DSMC time step, particles are created within the buffer cells 
according to the hydrodynamic values (density, fluid velocity, temperature) and 
their gradients on the overlaying continuum grid. Since the continuum grid ad
vances first, these values are time interpolated between continuum time steps 
as DSMC is sub cycled to reach the same time as the continuum solver. Buffer 
cells do not need to be entirely filled with particles. Only particles within a 
sheath near the DSMC region are generated with the thickness of this sheath 
determined adaptively. The particle velocities are drawn from the appropriate 
distribution for the continuum solver: the Maxwell-Boltzmann distribution for 
the Euler equations and the Chapman-Enskog distribution [34] for the Navier
Stokes equations. 

Next, particles in both the main and buffer regions move a single DSMC 
time step. If a particle crosses the interface between these regions, that particle 
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contributes to the flux for the coarse grid face through which it passes. The 
contribution of all particles crossing a coarse grid face during the DSMC steps 
plays the same role as the sum over fine-grid continuum grid faces in eqn. (5). 
After moving the particles, those remaining in or those that moved into the 
buffer region are discarded and collisions among the remaining particles are 
evaluated. The cell structure used in evaluating DSMC collisions is separate 
from and independent of the condnuum grid. 

A technical but important issue that any particle/continuum hybrid must 
confront is the "corner problem." Specifically, when a particle passes into the 
continuum region, it changes the mass, momentum and energy density in a 
continuum cell. In AMAR, this particle's contribution is formulated as a flux 
on the cell side that lies on the interface between the continuum and particle 
regions. A similar flux contribution arises when a particle created within the 
buffer region crosses this interface. For example, in Fig. 2, when particle 1 passes 
from cell A to D (or vice versa), it contributes to the flux on the side between 
these cells. A more complicated case occurs when particle 2 passes from cell B 
to D. AMAR updates the flux on the side between cells B and E since that 
is where the particle crosses the interface. Finally, consider particle 3, which 
passes near the corner traveling from cell B to F. This particle contributes to the 
flux between cells Band C. There cannot be a flux contribution for cell F since 
it has no side bordering the particle/continuum interface. This last example 
illustrates that fluxes must be evaluatep where a particle crosses the interface 
and not from the cell that the particle moves into. If a simulation does not 
handle the corners correctly, steady state flows can exhibit a spurious drift, 
such as loss of mass in a closed system. 

When the DSMC region has advanced for an entire continuum grid time 
. step, two synchronizations are performed, analogous to the AMR case described 
above. First, the continuum cells that overlay the central DSMC region are reset 
according to the conserved densities computed from the set of particles within 
each continuum grid cell. Second, eqn. (6) is solved to obtain a correction to 
the fluxes for the continuum grid using as right hand side 

6Ft = ~tl(_Al(Fn+!,l - ~(Dn'l - D n+1,l)) + LFp , (8) 
p 

where the sum represents the flux of the conserved quantities through carried by 
particles p passing through the coarse face during the DSMC updates. Eqn. (7) 
is used to update the conserved quantities on the coarse grid. 

From the implicit solve in eqn. 6, the values of 8U on coarse cells covered by 
the DSMC region generate a correction 8p and 8e in the momenta and energy 
for DSMC cells; there is no mass correction because mass does not diffuse. The 
velocity of each particle within a given continuum cell is corrected as 

(9) 
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Figure 1: Schematic showing a DSMC region and its surrounding buffer cells 
embedded within a continuum mesh. Continuum cells (dashed lines); DSMC 
collision cells (dotted lines); DSMC/continuum interface (solid line); buffer cell 
sheath (dot-dashed line). 
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Figure 2: Particles and continuum cells near a corner of the DSMC/continuum 
interface. 

where (v') = (v) + 6p/ p, 

a = (1 + ~e + ek - e~ ) 1/2 , 

e - ek 
(10) 

with ek = ~pl(v)12, e~ = ~pl(v')12, and e = ~p(lvI2); the angle brackets indicate 
averages over particles within a continuum cell. These synchronization steps 
guarantee that, in the absence of external sources, total mass, momentum and 
energy are conserved to within round-off error in the computational domain. 
Note that when an explicit solver is used, as with the Euler equations, the 
correction is localized to the coarse cells adjacent to the DSMC region so no 
correction to the particles is required. 

In summary, the interaction between the continuum solver and the DSMC 
region is encapsulated into four routines: 1) Passing the time-interpolated state 
to the particle buffer cells; 2) Passing the momentum and energy corrections, 
as computed in the implicit linear solve, to the DSMC region. 3) Receiving the 
fluxes recorded when particles cross the DSMC interface; 4) Receiving conserved 
densities for continuum cells overlaying the DSMC region. This coupling of . 
the continuum grid with DSMC makes the latter appear just like any level of 
refinement in the purely continuum case .. 
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5 Numerical Examples 

This section describes a series of numerical experiments that were performed 
to test and demonstrate the Adaptive Mesh and Algorithm Refinement frame
work. In each case a single DSMC region is embedded within a continuum 
grid on which either the Euler or N avier-Stokes equations are computed. In 
general, the particles in the buffer regions are generated using the Chapman
Enskog distribution [34]. However, for the purpose of comparison, when the 
Euler equations are used, both the Maxwell-Boltzmann and Chapman-Enskog 
distributions are considered. In the last example (flow past a sphere) the con
tinuum solver uses two grid levels so the DSMC region is embedded within a 
fine grid which is itself embedded in a coarse grid. For all other examples, a 
single continuum grid is used. 

The particles are treated as hard spheres of diameter 0' = 3.66 nm and 
mass m = 6.63 x 10-23 g (argon parameters). The reference density is Po = 
1.78 X 10-3 g/cm3 j the mean free path at this density is >'0 = 62.5 nm. The 
reference temperature is To = 273 K and the reference sound speed is Co = 
3.08 X 104 cm/s. The equation of state is the ideal gas law, P = pkT/m, where 
k = 1.3806 X 10-23 J/K is Boltzmann's constant. The viscosity and thermal 
conductivity are, 

5 JmkT 
/l- = 16d2 ----;-j 

as given by the Chapman-Enskog theory. 

15k 
'" = 4m/l-, (11) 

All the simulations are fully three dimensional with at least 16 continuum 
grid cells in each direction. When a single grid is used, these cells are cubes of 
length ~x = 2>'oj when there are two continuum levels, the cells are cubes of 
length ~x and 2~x. The reference CFL time step is ~to = ~x/Co = 4.06 x 
10-10 s and the Courant number is 0.25 for all of the runs. With this Courant 
number the DSMC region typically performs from one to four time steps for 
each continuum time step. 

At the reference density, the DSMC region contains 100 particles per >.~. 
The collision frequency is computed using cubic cells of length 1.0>'0, collision 
partners are selected within cubic subcells of length 0.5>'0 and statistical samples 
are measured in cubes of length 0.8>'0' The total number of particles in the 
various cases ranges from 5 x 104 to 6 X 106 • 

5.1 Thermodynamic equilibrium 

The simplest test case is thermodynamic equilibrium: the system is initially at 
rest with constant density and temperature. The continuum grid is 32 x 32 x 32 
with periodic boundary conditions on all sides. The DSMC region is a cube 
embedded in the continuum solver within the 4 x 4 x 4 cells at the center of the 
system. Although the system is initially uniform, DSMC produces spontaneous 
fluctuations with the correct equilibrium spectrum [35]. After 2000 continuum 
time steps, the total mass in the simulation is conserved to better than one part 
in 106 and the total energy to better than one part in 105 . 
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Figure 3: Number of particles in the DSMC region versus time step for thermo
dynamic equilibrium .. Euler AMAR using Maxwell-Boltzmann (x), Chapman
Enskog (+) compared with the N avier-Stokes AMAR (0) which varies about 
the initial value (dashed line). 

When the continuum solver employs the Navier-Stokes equations, the system 
remains in thermodynamic equilibrium. However, when the Euler equations are 
used in the continuum region, the number of particles in the DSMC region slowly 
increases and the energy density decreases so that thermodynamic equilibrium is 
not maintained. Since total mass, momentum and energy are strictly conserved 
(to within round-off error), the mass in the continuum region decreases and 
the energy density increases. This rise in the number of DSMC particles as a 
function of time is shown in Fig. 3. While the N avier-Stokes / AMAR preserves 
the correct average, after 2000 steps the number of DSMC particles in the Euler 
/ AMAR increases by 1.1% when using the Maxwell-Boltzman distribution in 
the buffer region and by 0.7% when using the Chapman-Enskog distribution. 
This error is reduced when the simulation uses more particles per cubic mean 
free path. For the runs displayed in Fig. 3 each continuum cell that overlays the 
DSMC region contains, on average, 800 particles. 

The anomalous drift away from thermodynamic equilibrium that is observed 
using the Euler equations is not a flaw in the AMAR methodology. Other 
DSMC/Euler coupling schemes also exhibit this drift at equilibrium [36, 37]. 
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Figure 4: Geometry for: a) Impulsively started piston; b) Rayleigh problem; c) 
Flow past a sphere. 

The effect is due to the fact that fluctuations in the DSMC region transmit 
thermal and mechanical energy to the continuum region while only mechanical 
energy is returned "since the Euler equations have no heat flux even when a 
temperature gradient is present. Thus the thermal energy in the continuum 
region rises and the density falls so as to maintain mechanical equilibrium (i.e., 
constant pressure). This spurious effect is masked when there is a net flow 
across the system. If the simulation is initialized with a uniform fluid speed of 
0.05Co, after 2000 time steps the number of DSMC particles in the Euler AMAR 
increases by 0.6% when using the Maxwell-Boltzman distribution in the buffer 
region and by 0.4% when using the Chapman-Enskog distribution. 

5.2 Impulsive piston 

The first non-equilibrium case considered is a gas initially at the reference den
sity and temperature and moving at Mach 2 toward a thermal wall held at 
fixed temperature (Fig. 4a). This is equivalefit to an impulsively started piston 
traveling into a gas initially at rest, in the reference frame of the piston. A 
normal shock develops in front of the wall and the shock front moves into the 
gas. Basic shock relations [38] give a shock speed of Mach 3, a density ratio of 
3 across the shock and a temperature ratio of 11/3. The reference temperature 
in the undisturbed gas is 273 K so the wall temperature is fixed at 1001 K. The 
boundary condition on the opposite side of the system is a plane of reflection 
symmetry. The flow near that boundary (a rarefaction fan) does not affect the 
shock wave within the time of the simulation and thus is not analyzed. Periodic 
boundary conditions are applied in the other directions. 

The continuum grid contains 100 x 16 x 16 cells leading to a system of length 
12500 nm, width and depth of 2000 nm. The DSMC region, located next to 

13 



the wall where the shock forms, has width and depth of 2000 nm and length of 
either 625 nm or 1250 nm, equivalent to 5 or 10 continuum cells. In the larger 
DSMC simulation the number of particles is initially 2 x 106 and finally 6 x 106 

when the shock passes into the continuum region. For comparison, a calculation 
with only the Navier-Stokes solver and no DSMC region is also considered. 

Figs. 5 and 6 show the temperature and density profiles near the piston wall 
at t = 2 X 10-9 s. For the AMAR run with the 5 cell DSMC region, the shock is 
just passing out of the particle region and it is in the center of the region for the 
10 cell DSMC run. The AMAR runs are in good agreement with each other; as 
expected, the temperature profile in the entirely continuum run lags the DSMC 
data while the density profile is in better agreement [19]. The temperature and 
density profiles near the piston wall at t = 4 X 10-9 s are shown in Figs. 7 and 8. 
The temperature profiles of the two·AMAR runs are again in good agreement 
while the density profiles are in fair agreement. 

The impulsive piston is a severe test of the AMAR method· since it is well 
known that the N avier-Stokes equations do not accurately predict the profiles 
of strong shocks. This is because the Chapman-Enskog expansion, on which the 
equations are based, breaks down when the characteristic length scale of hydro
dynamic gradients is comparable to the mean free path. A breakdown parameter 
for the Chapman-Enskog distribution [34] is defined as, B = max{lrtil, Iqil}, 
where 

(12) 

and 
q": = _~ (2m) 1/2 aT 
• P kT aXi 

(13) 

are the normalized stress tensor and heat flux, respectively. This parameter 
is computed when the particle velocities are generated in the buffer regions; 
the validity of the distribution is questionable when B > 0.2. In the AMAR 
simulations of the impulsive piston, the maximum value of B was 1.3 - 1.4. For 
comparison, in the simulations of thermodynamic equilibrium B is not zero due 
to spontaneous fluctuations yet it did not exceed 0.13. 

For the impulsive piston, the Euler AMAR program produces results similar 
to those presented above. The Euler equations are adequate for this flow since 
the advective fluxes are much greater than the dissipative fluxes. The main dif
ferences are that the shock thickness depends on the solver~s numerical viscosity 
and that outside the DSMC region the density and temperature profiles of the 
shock front overlap. These differences between the Euler and Navier-Stokes 
solutions exist independent of whether or not the simulation includes a DSMC 
region. 

5.3 Rayleigh problem 

This problem concerns a gas initially at the reference density and temperature 
moving at Mach 2 parallel to a stationary wall held at the reference temperature 
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Figure 5: Temperature versus position for the impulsively started piston at 
t = 2 X 10-9 s. AMAR run with 5 cell DSMC region (0); AMAR run with 10 cell 
DSMC region (0); and purely continuum with no DSMC run (+). Open symbols 
DSMC data; filled symbols AMAR continuum data. Dashed lines indicate the 
location of the particle/continuum interface for the AMAR runs. 
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(Fig. 4b). This is the Rayleigh problem of an impulsively started wall shearing 
a gas initially at rest, as viewed in the reference frame of the moving wall. 
In time, the wall drags the gas to match its speed and the resulting velocity 
gradient produces viscous heating near the wall. The boundary condition on 
the opposite side is a plane of reflection symmetry; for short times the gas near 
this boundary remains undisturbed. Periodic boundary conditions are applied 
in the other directions. 

The continuum grid contains 100 x 16 x 16 cells, corresponding to a system 
of length 12500 nm with width and depth of 2000 nm. The DSMC region, 

- located next to the thermal wall has width and depth of 2000 nm, and length of 
either 625 nm or 1250 nm, corresponding to either 5 or 10 continuum cells. In 
the larger DSMC simulation the number of particles remains steady at about 
2 x 106 . For comparison, a calculation with only the Navier-Stokes solver and 
no DSMC region is also evaluated. Since the flow is entirely due to viscous drag, 
an Euler AMAR is not considered. 

Fig. 9 shows the component of momentum density parallel to the wall at 
t = 7.0 X 10-9 s. Note that there is good agreement between the two AMAR 
runs. The continuum solver uses no-slip boundary conditions at the thermal 
wall and thus fails to capture the Knudsen velocity slip at the wall. The slip 
length, that is the distance within the wall at which the velocity extrapolates 
to zero, is 69 nm, approximately one mean free path as expected from kinetic 
theory. [2] The normal component of momentum density is shown in Fig. 10. 
Because the flow in this direction is relatively weak, fluctuations are noticable 
in the data points within the DSMC regions. Again, the two AMAR runs are 
in agreement and differ significantly from the purely continuum run. 

The flow away from the wall is due to the pressure gradient that develops 
when the temperature rises due to viscous heating (Fig. 11). The AMAR runs 
reproduce the Knudsen temperature jump at the wall. The distance within the 
wall at which the temperature profile extrapolates to the temperature of the wall 
is 120 nm, approximately 185 mean free paths as expected from kinetic theory. [2] 
Finally, the density profiles, shown in Fig. 12 indicate that a significant quantity 
of gas moves away from the wall. At the DSMCjNavier-Stokes interface, the 
Chapman-Enskog breakdown parameter has maximum values of B = 0.20 and 
0.15 for the 5 cell and 10 cell DSMC regions, respectively. 

The difference between the AMAR results and the purely continuum results 
shown in Figs. 9-12 is primarily due to the Knudsen layer at the thermal wall. 
In order to investigate how thin a DSMC layer could still describe the wall 
conditions quantitatively, an AMAR run with a 1 x 16 x 16 cell DSMC region 
was analyzed. The temperature profile in Fig. 13 shows that this thin particle 
layer captures the correct temperature jump but not the entire profile. At the 
DSMCjNavier-Stokes interface, the maximum of Chapman-Enskog breakdown 
parameter is B = 0.50, which further indicates that the DSMCjcontinuum 
interface is too close to the wall. 
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5.4 Flow past a sphere 

As a final example, flow past a microscopic object was considered. The body 
is a sphere held at the reference temperature and fixed at the center of the 
system (Fig. 4c). Inflow conditions are Mach 1 flow at the reference density 
and temperature. The continuum solver uses characteristic outflow boundary 
conditions with no diffusive fluxes. Periodic boundary conditions are applied in 
the other directions. While the flow is axially symmetric for this simple body, 
the calculation is fully three dimensional to demonstrate AMAR's capacity to 
simulate large scale flows. 

The continuum solver uses two grids: a fine mesh embedded within a coarse 
mesh. The latter spans the entire system and contains 32 x 32 x 32 coarse cells 
covering the system size of 8000 nm in each direction. The fine mesh covers a 
ctibe of length 4000 nm located at the center of the system. The DSMC region is 
a cube of length 1000 nm embedded in the center of the fine mesh. The DSMC 
region contains some 4 x 105 particles and occupies less than 0.2% of the total 
volume, see Fig. 14. 

For both the continuum grid cells and the DSMC cells, the fractional volume 
occupied by the sphere is computed by a recursive method (Fig. 15). A cell is 
bisected in each direction; each comer of these sub cells lies either inside or 
outside the body. If all corners are occupied (or empty), the fractional occupied 
volume for that sub cell is one (or zero). Sub cells which are partially occupied 
are further subdivided and this recursion continues until the desired accuracy is 
obtained. When the deepest level of recursion is reached, a sub cell's occupied 
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Figure 14: Grids used in the simulation of flow past a sphere. Two outer grids 
used by Navier-Stokes solver; inner grid by DSMC. A finer subgrid, used within 
DSMC to select collision partners, is not shown. 

volume is estimated from the number of occupied corners. 
The diameter of the sphere is 5Ao (312 nm) thus Kn = 0.2. For Mach 

number Ma = 1 the Reynolds number is Re = 8.24. For these Knudsen and 
Reynolds numbers solutions of the Boltzmann equation predict a drag coefficient 
of CD = 1.95 when Ma« 1 [39]. A standing ring-eddy forms behind the sphere 
at Re > 24 [40] but since this numerical experiment is well below the critical 
Reynolds number vortices are not expected to form. 

Fig. 16 shows the temperature contours for a cross-section through the center 
of the system; Fig. 17 is a blowup of the DSMC region. These and other profiles 
confirm that the flow is axially symmetric with little geometric distortion due 
to the rectangular grid. Irregularities in the contours are primarily due to 
statistical fluctuations in the DSMC region and finite grid resolution in the 
continuum region. The maximum value of the Chapman-Enskog breakdown 
parameter is B = 0.15, indicating that the Navier-Stokes equations are accurate 
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at the DSMCjcontinuum interface. 
For comparison, the temperature contours from a run with a 1500 nm DSMC 

region (over three times the volume) are shown in Fig. 18. There is close agree
ment with Fig. 16 showing that the 1000 nm DSMC region is sufficiently large, 
as was expected given the smallness of the breakdown parameter. The measured 
drag coefficient is CD = 3.11 for both runs, which is in good agreement with 
Bird's DSMC demonstration program. Finally, note that simulating the entire 
system using DSMC would require 200 million particles; a calculation of this 
magnitude is barely within the reach of the today's largest supercomputers. The 
AMAR results presented here were obtained in a few hours on a DEC Alpha 
workstation. 

6 Concluding remarks 

In the demonstrations given here the location of the interface between particle 
and continuum algorithms is fixed initially. While for some problems the suitable 
interface location may be known a priori, a more general approach is to have the 
simulation adaptively determine where to use each algorithm. The impulsive 
piston (section 5.2) is a good example of a problem where an adaptive interface 
would be useful, namely the DSMC region should move with the shock keeping 
the wave front inside it. After the shock passes a given location, cells can 
revert to the continuum algorithm, thus making the program more efficient by 
minimizing the size of the DSMC region. 

To implement an adaptive interface, a criterion that indicates the breakdown 
of the continuum formulation is required. Besides the breakdown parameter 
for the Chapman-Enskog distribution [34], several similar criteria have been 
proposed [41, 42, 43) and some have been implemented in DSMCjEuler hy
brids [18, 44). Such an adaptive AMAR code is being developed and breakdown 
criteria will be evaluated for different physical situations. 

In adaptive mesh refinement each grid level advances with its own time step, 
the coarsest grid using the largest time step: Thus an AMR calculation can 
span several orders of magnitude in both length scale and time scale; however 
the finest time scales are constrained by the finest length scales. In AMAR, 
the DSMC region uses a time step that is comparable to but smaller than that 
used by the finest continuum grid. Though DSMC is unconditionally stable the 
method is only accurate when the time step is a fraction. of the mean collision 
time. Both AMR and AMAR are useful for problems that span many time 
scales because a small time step is used only in those regions that require high 
resolution. When these regions occupy a small fraction of the system, as in the 
example of flow past a sphere (Section 5.4), most of the calculation advances 
at the larger time step. A variant of AMAR that uses the Schwarz alternating 
method [45] for computing steady flows is under investigation. 

_FUrther generalizations involve the implementation of the AMAR framework 
using other particle algorithms for applications at higher densities. The Consis
tent Boltzmann Algorithm (CBA) [23, 24], a generalization of DSMC to dense 
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gases, can be used without modification to the coupling scheme. An additional 
generalization involves having particles interacting at a distance using molecular 
dynamics [46]. The modification to AMAR is that the fluxes of momentum and 
energy produced by the finite range interaction have to be computed in order to 
guarantee conservation. For dense gases and liquids, the velocity distribution 
for particles in the buffer cells is not known a priori but may be generated using 
the Schwarz alternating method. 

Once these generalizations of the AMAR methodology have been developed . 
there are a large number of applications that could more realistically simulate 
actual flows, particularly those that involve boundaries or interfaces. For exam
ple, flows near a wall could be represented by an atomistically rough boundary 
with the particle region embedded in the layer of cells near this surface. In that 
way the arbitrary stick or slip boundary conditions in the continuum represen
tation could be replaced by a much more realistic one, possibly incorporating 
molecular surface scattering distributions [47]. One could also study how far 
boundary effects penetrate into the bulk fluid as a function of Reynolds number 
by increasing the width of the particle layer till the particle cells and continuum 
cells are equivalent. 

Another possible application is the study of the Rayleigh-Taylor and Richtmyer
Meshkov instabilities where the interface between the two fluids would be repre
sented by a few particle cell layers on each side. Besides giving a microscopically 
accurate representation of the interface, the spontaneous fluctuations in the par
ticle region eliminate the need to use artificial perturbations to break the initial 
symmetry. A final example is the propagation of a crack in a solid. [48] At 
the tip of the crack a particle representation is required because phenomena 
occur on an atomistic scale, but further away, embedding the crack in an elastic 
continuum model is perfectly adequate. Using AMAR would avoid the huge 
number of particles required in a conventional molecular dynamics simulation 
to study the long time evolution of the crack since edge effects are eliminated 
when the continuum region is sufficiently large. 
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