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RESEARCH ARTICLE
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Abstract

The oral, cervical, and genital mucosa, covered by stratified squamous epithelia with polar-

ized organization and strong tight and adherens junctions, play a critical role in preventing

transmission of viral pathogens, including human immunodeficiency virus (HIV). HIV-1 inter-

action with mucosal epithelial cells may depolarize epithelia and disrupt their tight and adhe-

rens junctions; however, the molecular mechanism of HIV-induced epithelial disruption has

not been completely understood. We showed that prolonged interaction of cell-free HIV-1

virions, and viral envelope and transactivator proteins gp120 and tat, respectively, with ton-

sil, cervical, and foreskin epithelial cells induces an epithelial–mesenchymal transition

(EMT). EMT is an epigenetic process leading to the disruption of mucosal epithelia and

allowing the paracellular spread of viral and other pathogens. Interaction of cell-free virions

and gp120 and tat proteins with epithelial cells substantially reduced E-cadherin expression

and activated vimentin and N-cadherin expression, which are well-known mesenchymal

markers. HIV gp120- and tat-induced EMT was mediated by SMAD2 phosphorylation and

activation of transcription factors Slug, Snail, Twist1 and ZEB1. Activation of TGF-β and

MAPK signaling by gp120, tat, and cell-free HIV virions revealed the critical roles of these

signaling pathways in EMT induction. gp120- and tat-induced EMT cells were highly migra-

tory via collagen-coated membranes, which is one of the main features of mesenchymal

cells. Inhibitors of TGF-β1 and MAPK signaling reduced HIV-induced EMT, suggesting that

inactivation of these signaling pathways may restore the normal barrier function of mucosal

epithelia.

Introduction

The oropharyngeal, ectocervical, vaginal, and foreskin epithelia consist of a multilayered, strat-

ified squamous epithelium supported by an underlying layer of fibrous connective tissue, the

lamina propria. The endocervical and intestinal mucosa are covered with monostratified sim-

ple epithelium. All mucosal epithelia form multiple intercellular junctions, including tight and
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adherens junctions [1–10], which are critical for maintaining the morphologic and physiologic

features of mucosal epithelia, including their barrier functions. Tight junctions of mucosal epi-

thelium form the physical tissue barrier between epithelial cells that protects the internal body

from the penetration of external infectious agents [11], including pathogenic viruses.

In individuals with HIV-caused acquired immunodeficiency syndrome (AIDS), tight junc-

tions in oral, intestinal, and genital mucosal epithelia are disrupted, leading to impairment of

mucosal functions [7, 12–18]. In vitro studies show that the interaction of HIV proteins gp120

and tat with mucosal epithelia may disrupt tight and adherens junctions of epithelial cells,

reducing their barrier functions [7, 19–26].

We have shown that prolonged interaction of HIV envelope protein gp120 and transactiva-

tor protein tat with oral and genital epithelia reduces the expression of tight junction proteins

occludin and zonula occludens-1, claudin-1, and adherens junction protein E-cadherin, lead-

ing to depolarization of epithelial cells [7, 19, 21, 22]. Downregulation of proteins of adherence

and tight junctions of epithelial cells and their depolarization may lead to an epithelial–mesen-

chymal transition (EMT) [27–29].

EMT is a normal multistep epigenetic process in embryonic development that regulates the

differentiation of cell lineage identity [30–32]. However, the EMT phenotype also plays an

important role in neoplastic processes, facilitating growth, migration and metastasis of tumor

cells [30, 33–39]. During cancer-associated EMT, epithelial cells lose cell-cell junctions and

become proliferative and invasive [40]. The TGF-β signaling pathway is the dominant canoni-

cal regulatory network for this process [41, 42]. Binding of mature TGF-β to TGF-β1 R2 acti-

vates TGF-β signaling, leading to activation of downstream molecules, including Smad family

transcription factor complexes [43]. These complexes activate the transcriptional regulators

Snail, Slug, and Twist1. Activation of Snail and Twist1 may lead to activation of other tran-

scription factors, ZEB1 and ZEB2 [44]. Cooperation between these transcription factors leads

to downregulation of E-cadherin and cytokeratin and upregulation of vimentin, fibronectin,

and N-cadherin expression [45–49]. Expression of fibronectin is critical for invasion of cancer

cells [50–52]. N-cadherin expression plays an important role in the transmigration of cancer

cells via endothelial cells, promoting spread and metastasis of neoplastic cells via blood circula-

tion [53–55]. Overexpression of Snail also represses expression of tight junction proteins clau-

dins and occludin-1, leading to depolarization of epithelial cells and EMT [27]. TGF-β may

activate Ras-MAPK signaling pathways, which also play a critical role in EMT induction by

phosphorylation of Smad2/3 and TWIST1 [56–63]. Crosstalk between TGF-β and MAPK sig-

naling is highly critical for induction and maintenance of the EMT phenotype [64].

The incidence of HPV-associated oropharyngeal cancer is increased in HIV-infected indi-

viduals [65–74]. HIV-positive individuals have about a sixfold greater risk for oropharyngeal

and tonsillar cancers [75–79] than do uninfected individuals. In addition to oral cancer, the

incidence of HPV-associated anal and cervical cancer is 80 and 22 times higher, respectively,

in HIV-infected individuals than in uninfected individuals [80–84]. Thus, in HIV- and HPV-

coinfected individuals, HIV-induced EMT may accelerate the HPV neoplastic process by

increasing the paracellular spread of HPV and the invasion of HPV-infected malignant cells.

The primary goal of this study was to investigate the role of HIV proteins gp120 and tat in

the induction of EMT in tonsil, cervical, and foreskin epithelial cells. We show here that expo-

sure of normal tonsil, cervical, and foreskin keratinocytes to tat and gp120 and to cell-free viri-

ons for several days leads to the development of the EMT phenotype in these cells, including

activation of TGF-β1 and vimentin expression and reduction of E-cadherin expression. HIV-

induced EMT of oral and genital epithelium may play a critical role in reducing the barrier

function of these epithelia, which may allow the penetration of various viral, bacterial, and fun-

gal pathogens through oral and genital mucosal epithelia.

HIV-1 proteins induce epithelial–mesenchymal transition
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Results

HIV-associated EMT in oral mucosal epithelial cells of HIV/AIDS patents

We have shown that the oral epithelia of HIV-infected individuals have disrupted tight junc-

tions [7] and that HIV tat/gp120 induces disruption of tight and adherens junctions of kerati-

nocytes in vitro [7, 21]. Since disruption of epithelial junctions is one of the critical features of

EMT [31, 35, 85], we immunostained buccal tissues from 10 HIV-infected and 3 uninfected

individuals for E-cadherin, pancytokeratin, and vimentin. Four HIV-infected individuals were

receiving antiretroviral treatment (ART) (#1- #4), and 6 were not receiving ART treatment

(#5 - #10) (Figs 1 and 2).

Three buccal epithelia of uninfected donors showed expression of E-cadherin and pancyto-

keratin, but not vimentin, in all epithelial cells (Figs 1 and 2), which is characteristic of normal

mucosal epithelia. E-cadherin expression in buccal epithelia of HIV-infected individuals

receiving ART was reduced by 20–50% compared to uninfected epithelia. A significant reduc-

tion of pancytokeratin expression was not detected. However, these tissues showed induction

of vimentin expression in 10–40% of epithelial cells (Fig 2). Buccal tissues from HIV-infected

individuals not receiving ART also showed a reduction of E-cadherin and pancytokeratin

expression. A substantial reduction of pancytokeratin expression was detected in 3 of 6 tissues

(50%) from HIV-infected individuals without ART. In these 3 tissues (#5, #9 and #10), 60–

80% of cells lost E-cadherin and pancytokeratin expression. This was well correlated with a

substantial induction of vimentin expression conforming to EMT phenotype in these epithelia.

Moreover, EMT induction of all 3 tissues was correlated with higher viral load (S1 Table) and

in 2 of them (#9 and #10) also was correlated with low CD4 count.

To confirm the HIV-induced EMT phenotype of oral mucosal epithelial cells, we isolated

buccal keratinocytes from 3 uninfected and 3 HIV-infected individuals not receiving ART.

Phase-contrast microscopy of oral keratinocytes showed that cells from uninfected individuals

had cobblestone-like morphology of epithelial cell sheets with tightly connected cell borders.

In contrast, keratinocytes from HIV-infected individuals had a spindle-like shape with weakly

connected cell borders, which is typical of the EMT phenotype (Fig 3A).

Immunostaining of keratinocytes for E-cadherin and vimentin showed that oral keratino-

cytes from uninfected individuals had E-cadherin expression but no vimentin expression (Fig

3A). In contrast, oral keratinocytes from HIV-infected individuals showed a loss of E-cadherin

and pancytokeratin and upregulation of vimentin (Fig 3A). These results were confirmed by

Western blot assay (Fig 3B).

HIV proteins tat and gp120 induce the EMT phenotype in oral and genital

epithelial cells

To determine the role of HIV-1 in EMT induction, we cultured normal tonsil keratinocytes

from uninfected individuals with HIV tat or gp120 proteins at their physiologically relevant

concentrations (10 ng/ml each) [86–89], as described in our previous work [7, 21]. In parallel

experiments, cells were treated with biologically inactive mutant tat lacking its basic arginine-

rich domain and RGD motif [90–92]. HIV gp120 was heat-inactivated. Keratinocytes were

maintained for 5 days with viral proteins, and culture medium was changed daily to add fresh

virus or proteins.

This treatment should reflect the in vivo prolonged HIV interaction with cells/tissues,

because in HIV/AIDS disease, virus progeny are detected in the blood/plasma, saliva, and cer-

vicovaginal secretions; i.e., virions may interact with cells/tissues for days, months, or years.

Phase-contrast microscopy of tonsil epithelial cells showed that untreated cells and cells treated

HIV-1 proteins induce epithelial–mesenchymal transition
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Fig 1. Oral epithelium of HIV-positive individuals has the EMT phenotype. Buccal tissues from HIV-infected and uninfected individuals were immunostained for E-

cadherin, vimentin, and pancytokeratin expression (red). Nuclei are stained in blue. GR, granulosum; SP, spinosum; BL, basal; LP, lamina propria. Original

magnification: x400. Representative immunofluorescence images are shown.

https://doi.org/10.1371/journal.pone.0226343.g001
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with control tat and gp120 had normal epithelial morphology (Fig 4A). In contrast, tonsil kera-

tinocytes treated with active tat and gp120 showed extensive changes in cell morphology, with

a spindle-like shape.

To examine the expression of epithelial and mesenchymal markers, at day 5 after treatment

we immunostained tonsil cells for E-cadherin, pancytokeratin, and vimentin. Immunofluores-

cence microscopy showed that untreated tonsil cells or tonsil cells treated with inactive tat and

gp120 showed expression of E-cadherin and pancytokeratin, but not vimentin (Fig 4B). How-

ever, cells treated with active tat and gp120 inhibited E-cadherin and pancytokeratin expres-

sion but upregulated vimentin expression (Fig 4B). Quantitative analysis of E-cadherin and

pancytokeratin expression showed that treatment of cells with tat and gp120 led to reduction

of E-cadherin and pancytokeratin expression in 70–90% of treated cells compared to control

cells (Fig 4C). Induction of vimentin expression in cells treated with active tat and gp120

reached 60–70%. Inhibition of E-cadherin and pancytokeratin and induction of vimentin

expression by a combination of tat and gp120 reached ~90%.

Western blot analysis of EMT markers in tonsil epithelial cells treated with gp120 and tat

proteins and their inactive controls showed that gp120 and tat substantially reduced E-cad-

herin expression and induced vimentin and N-cadherin expression (Fig 5). In contrast, inac-

tive controls of gp120 and tat did not reduce E-cadherin and did not activate vimentin and N-

cadherin expression. Furthermore, HIV-1 gp120 and tat activated phosphorylation of SMAD2

Fig 2. Quantitative analysis of EMT markers in oral epithelium of HIV-infected and uninfected individuals. For quantitative evaluation of EMT marker expression

in oral tissues of HIV-infected and uninfected individuals, epithelial cells expressing E-cadherin, vimentin, and pancytokeratin were counted from 10 randomly selected

regions of mucosal epithelia. Results are presented as a percentage of epithelial cells expressing E-cadherin, vimentin, and pancytokeratin. Data are shown as the

mean ± SD (n = 10). �P<0.05, ��P<0.01, ���P<0.001. E-cadherin, pancytokeratin and vimentin expression were compared in ART-treated or untreated samples from

HIV-infected individuals with HIV uninfected (control) samples.

https://doi.org/10.1371/journal.pone.0226343.g002
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and most of the critical transcription factors, including Slug, Snail, Twist1, and ZEB1, which

play critical roles in EMT induction (Fig 5).

In the next experiments, we compared HIV-1 tat- and gp120-induced EMT in tonsil, cervi-

cal, and foreskin primary epithelial cells by prolonged treatment of cells with HIV proteins tat

and gp120. Quantitative analysis of E-cadherin, pancytokeratin, and vimentin expression

showed that tat and gp120 proteins inhibited E-cadherin and pancytokeratin and upregulated

vimentin expression in all 3 epithelial cell cultures compared to controls (Fig 6). In cervical

epithelial cells, reduction of E-cadherin and pancytokeratin by tat and gp120 was ~50%. Inter-

estingly, in foreskin epithelial cells, tat and gp120 led to complete inhibition of E-cadherin

expression but did not drastically affect pancytokeratin expression. Nevertheless, induction of

vimentin expression was detected in ~70% of foreskin cells. These data indicate that HIV tat-

and gp120-induced EMT may occur in oral, cervical, and foreskin epithelial cells.

Fig 3. Oral keratinocytes isolated from HIV-infected individuals have an EMT phenotype. (A) Buccal keratinocytes propagated from HIV-infected and uninfected

individuals were subjected to phase-contrast microscopy (upper panel) and immunostained for E-cadherin, vimentin, and pancytokeratin (lower panels). (B) Oral

keratinocytes from 3 HIV-negative and 3 HIV-infected individuals were examined for E-cadherin, vimentin, and pancytokeratin by Western blot assay.

https://doi.org/10.1371/journal.pone.0226343.g003
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Fig 4. HIV proteins tat and gp120 induce the EMT phenotype in normal oral keratinocytes isolated from uninfected individuals.

(A) Normal tonsil keratinocytes isolated from HIV-negative donors were untreated or treated with HIV tat and gp120; their inactive

HIV-1 proteins induce epithelial–mesenchymal transition
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HIV cell-free virions via envelope gp120 induce EMT in oral and genital

epithelial cells

The experiments described above showed that HIV protein gp120 induced EMT, suggesting

that HIV cell-free virions may also induce EMT. To test this hypothesis, we treated tonsil, cer-

vical, and foreskin keratinocytes with cell-free dual-tropic HIV-1SF33, R5-tropic HIV-1SF170,

and X4-tropic HIV-192UG029 strains for 5 days. All three viruses reduced expression of E-cad-

herin and pancytokeratin and induced expression of vimentin (Fig 7).

To further confirm the role of HIV-1 gp120 in induction of EMT, HIV-1BAL gp120 protein

were preincubated with a pool of 5 neutralizing antibodies (b12, 2G12, F105, 39F and ID6) or

their isotype controls. Then tonsil cells were untreated or treated with gp120, gp120+isotype

antibodies, or gp120+ neutralizing antibodies. Cell medium was changed every day, and EMT

induction was evaluated after 5 days by quantitation of cells expressing E-cadherin, pancyto-

keratin, and vimentin. Results revealed that gp120 completely inhibited E-cadherin expression

and reduced pancytokeratin expression by ~50% (Fig 8A). Vimentin induction by gp120 was

in 50% of cells. In contrast, anti-gp120 antibodies prevented gp120-induced EMT in tonsil epi-

thelial cells; i.e., E-cadherin and pancytokeratin expression were reduced by ~20% and induc-

tion of vimentin expression was eliminated. The isotype control antibodies did not affect

gp120-mediated induction of EMT in tonsil cells.

To examine if gp120 from different viral strains induce EMT, gp120 proteins from 4 HIV-1

strains—HIV-1BAL, HIV-1IIIB, HIV-1CN-54, and HIV-196ZM651—were preincubated with a pool of 5

neutralizing antibodies or their isotype controls and then added to the tonsil epithelial cells. Quanti-

tation of cells expressing E-cadherin, pancytokeratin, and vimentin showed that gp120 proteins

from 3 HIV-1 strains induced EMT, and anti-gp120 antibodies protected cells from gp120-induced

EMT (Fig 8B). However, gp120 from HIV-1CN-54 did not induce EMT in tonsil epithelial cells.

The role of HIV gp120 in induction of EMT was examined by using HIV-1 Δenv-NL4.3

and HIV-1 NL4.3 viruses. Analysis of EMT of tonsil epithelial cells incubated with these

viruses showed that HIV-1 Δenv-NL4.3 failed to induce EMT in contrast to HIV-1 NL4.3,

which inhibited E-cadherin and pancytokeratin expression and upregulated vimentin expres-

sion (Fig 8C). These findings clearly indicate that envelope protein of gp120 of cell-free HIV-1

induces EMT in tonsil epithelial cells.

To determine if HIV-induced EMT is a common phenomenon in mucosal oral epithelium,

we incubated tonsil epithelial cells from 14 independent donors with HIVSF33 cell-free virions

for 12 days. Expression of E-cadherin and vimentin showed cell-free HIV-induced downregu-

lation of E-cadherin and upregulation of vimentin in tonsil cells from 8 of 14 donors (57%)

(Fig 9), suggesting that HIV-induced EMT may develop in oral mucosal epithelia in 50% of

HIV-infected individuals.

Activation of TGF-β1 and MAPK signaling in oral epithelia of HIV-

infected individuals

To examine the status of TGF-β1 and MAPK signaling in oral epithelia of HIV-infected and

uninfected individuals, we immunostained tissue sections of buccal biopsy samples from 3

forms were tested independently. After 5 days the live cells were examined using phase-contrast microscopy. (B) Tonsil keratinocytes

treated as described in panel A were immunostained for E-cadherin, vimentin, and pancytokeratin. (C) Tonsil keratinocytes untreated

or treated with HIV-1 gp120 and/or tat, and cells expressing E-cadherin, vimentin, and pancytokeratin were counted and presented as a

percentage of cells expressing E-cadherin, vimentin, and pancytokeratin. Data are representative of 3 independent experiments using

tonsil epithelial cells derived from three donors and are shown as the mean ± SD (n = 10). �P<0.05, ��P<0.01, ���P<0.001. E-cadherin

and pancytokeratin expression were compared with the gp120- and tat-treated and untreated (control) groups.

https://doi.org/10.1371/journal.pone.0226343.g004
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Fig 5. HIV gp120 and tat induce activation of EMT markers. Tonsil epithelial cells isolated from uninfected

individuals were treated for 7 days with gp120 and tat; their inactive controls were treated independently. Then cells

HIV-1 proteins induce epithelial–mesenchymal transition
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HIV-infected and 3 uninfected individuals for TGF-β1 and for phosphorylated and total

ERK1//2. Immunofluorescence analysis showed substantially higher levels of TGF-β1 expres-

sion in buccal epithelium of HIV-infected individuals than that in uninfected individuals (Fig

10A). Furthermore, ERK1/2 was highly phosphorylated in the oral epithelia of HIV-infected

individuals but not in that of uninfected individuals (Fig 10B). Our recent work showed that

HIV-tat/gp120-induced activation of MAPK in tonsil epithelial cells leads to reduction of E-

cadherin expression, suggesting the role of HIV-associated MAPK activation in EMT [21, 22].

A similar trend was observed in all 3 biopsy tissues of HIV-infected individuals. These data

indicate that TGF-β1 and MAPK signaling in the oral epithelia of HIV-infected individuals are

activated, consistent with their potential roles in the induction of EMT.

HIV-induced activation of TGF-β1 and ERK1/2 signaling was also examined in tonsil kera-

tinocytes in the in vitro experiments. Tonsil keratinocytes were treated with gp120 and tat pro-

teins and their inactive forms, as well as with cell-free virions of dual-tropic HIV-1SF33,

R5-tropic HIV-1SF170, and X4-tropic HIV-192UG029 strains for 10 days. After confirmation of

EMT induction by light microscopy, cells were examined for TGF-β1 and ERK1/2 activation

by Western blot assay. Data showed that tonsil keratinocytes incubated with active gp120 and

tat as well as cell-free virions of HIV-1SF33, HIV-1SF170, and HIV-192UG029 strains induce acti-

vation of TGF-β1 by the resulting formation of cleaved mature TGF-β1 protein (Fig 11). In

contrast, cells treated with inactive gp120 and tat proteins showed only the inactive form of

TGF-β1. Phosphorylated ERK1/2 was also detected, mostly in cells treated with gp120, tat, and

cell-free virions. These data clearly demonstrated that HIV proteins gp120 and tat are respon-

sible for the activation of TGF-β1 and MAPK signaling, which are critical for induction of the

EMT phenotype.

To confirm the functional roles of TGF-β1 and ERK1/2 signaling in HIV-induced EMT, we

treated tonsil, cervical, and foreskin keratinocytes with nontoxic concentrations of inhibitors

of MAPK UO126, TGF-β1 SB431542, and their combination. Drug-treated and untreated cells

were incubated with cell-free HIV-1SF33 virions. At 5 days after treatment, cells were immu-

nostained for E-cadherin, pancytokeratin, and vimentin. Quantitative analysis showed that

cells incubated with only HIV virions led to complete inhibition of E-cadherin and pancyto-

keratin expression and significant induction of vimentin expression; i.e., ~75–80% of cells

expressed vimentin (Fig 12). In contrast, cells incubated with HIV virions and inhibitors of

TGF-β1 or/and MAPK show reduction of E-cadherin and pancytokeratin expression in ~20–

40% of cells. Moreover, reduction of vimentin expression was highly significant, i.e., 50–80%.

Thus, inhibition of TGF-β1 and ERK1/2 signaling significantly prevented EMT induction in

tonsil, cervical, and foreskin epithelial cells by cell-free virions, indicating the critical roles of

TGF-β1 and ERK1/2 signaling in HIV-induced EMT.

Transmigration of HIV-induced EMT cells

It is well known that EMT cells are highly motile and have intensive migratory activity [36–

39]. To determine if tonsil, cervical, and foreskin cells incubated with HIV have migratory

activity, we incubated cells with gp120 and tat proteins and their inactive forms for 5 days.

Then, cells were seeded in Transwell inserts coated with collagen for 2 days. KGM medium

was added to the lower chamber with 10% serum as a chemoattractant. Transmigration of cells

via collagen-coated membrane pores was visualized by Giemsa staining (Fig 13A), and the rate

were examined for expression of E-cadherin, vimentin, N-cadherin, SMAD2, phosphorylated SMAD2, Slug, Snail,

Twist1, and ZEB1 by Western blotting. Similar data were obtained in two independent experiments. Immunoblots

were performed at least twice, and representative results are shown.

https://doi.org/10.1371/journal.pone.0226343.g005
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Fig 6. HIV gp120 and tat proteins induce the EMT phenotype in tonsil, cervical, and foreskin epithelial cells. Normal tonsil,

cervical, and foreskin keratinocytes were isolated from HIV-negative donors and untreated or treated with HIV tat and gp120; their

HIV-1 proteins induce epithelial–mesenchymal transition
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of transmigration and invasion was measured after 24 h by counting cells in the lower side of

the membranes. Quantitative analysis showed that gp120 and tat proteins increased transmi-

gration of cells by four- to fivefold compared to untreated cells or cells treated with inactive

gp120 or tat (Fig 13B). These data indicate that HIV gp120- and tat-induced EMT cells trans-

migrated via collagen-coated membranes; i.e., they are highly motile and invasive, which are

typical features of the EMT phenotype.

Discussion

Our findings clearly demonstrate that prolonged interaction of HIV proteins gp120 and tat

and cell-free HIV virions with tonsil, cervical, and foreskin epithelial cells leads to develop-

ment of the EMT phenotype in these cells. Loss of E-cadherin and upregulation of vimentin

expression in the buccal epithelial tissues and their in vitro isolated keratinocytes from HIV-

infected individuals suggest that HIV infection may play a critical role in EMT induction in

oral epithelium in vivo. This idea is fully supported by the induction of EMT by HIV gp120

and tat and cell-free virions in vitro in the tonsil, cervical, and foreskin keratinocytes isolated

from HIV-negative individuals.

A substantial reduction of E-cadherin and pancytokeratin expression and induction of

vimentin in oral biopsy samples from ART-untreated individuals with higher viral load suggest

that HIV infection may play a direct role in EMT induction. However, the moderate level of

EMT induction also was observed in oral mucosal epithelium of ART-treated individuals, sug-

gesting that oral intramucosal Langerhans cells, macrophages, and CD4+ T cells in the ART-

treated patients may still have replicating virus, as shown in our previous work [7]. It is possi-

ble that ART may not completely eliminate HIV from intramucosal immune cells [7] due to a

lower level of penetration of drugs into solid tissues [93–96]. We also cannot completely rule

out the possible contribution of HIV-associated systemic elevation of proinflammatory cyto-

kines in EMT induction [97–100].

If HIV infection is indeed a biologically relevant contributor to EMT, then HIV proteins

should be present in the mucosal environment. Indeed, cell-free HIV-1 virions and viral

DNA/RNA can be isolated from oral and genital mucosal epithelium, as well as the saliva and

cervicovaginal secretions of HIV-positive individuals [7, 101–114]. HIV-infected lymphocytes,

macrophages, and Langerhans cells were detected in the oral and genital mucosal epithelia of

HIV-infected individuals, including those receiving ART [7, 101, 102, 107, 108, 112–115].

Secretion of HIV tat into blood has been shown [86, 87, 89]. HIV-1 gp120 and tat have also

been detected in blood, saliva and lymphoid tissues [7, 88, 116–120]. Mucosal epithelium may

therefore be exposed to cell-free HIV and tat and gp120 from multiple sources, including

saliva, cervicovaginal secretions, and circulating immune cells (Fig 14). Mucosal epithelium

may also serve as an HIV reservoir [113], as well as a source of proteins that induce EMT in

the setting of HIV infection.

HIV-1 gp120- and tat-induced EMT cells express most critical transcription factors, includ-

ing Slug, Snail, Twist1 and ZEB1, which downregulate epithelial markers and upregulate mes-

enchymal markers. Expression of these transcription factors was correlated with expression of

the mature form of TGF-β1; i.e., gp120- and tat-induced EMT is due to activation of TGF-β1

inactive forms were treated independently. After 7 days, cells were fixed and immunostained for E-cadherin, pancytokeratin, and

vimentin. Cells expressing E-cadherin, vimentin, and pancytokeratin were counted in 10 randomly selected regions. Results are

presented as a percentage of epithelial cells expressing E-cadherin, vimentin, and pancytokeratin. Data are representative of 2

independent experiments using tonsil, cervical, and foreskin epithelial cells derived from two donors and are shown as the mean ± SD

(n = 10). �P<0.05, ��P<0.01, ���P<0.001. E-cadherin and pancytokeratin expression were compared with the gp120- and tat-treated

and untreated (control) groups.

https://doi.org/10.1371/journal.pone.0226343.g006
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Fig 7. Cell-free HIV virions induce the EMT phenotype in tonsil, cervical, and foreskin epithelial cells. Normal tonsil, cervical, and foreskin

keratinocytes isolated from HIV-negative donors were untreated or treated for 7 days with cell-free dual-tropic HIV-1SF33, R5-tropic HIV-1SF170, and
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signaling. Blood levels of TGF-β are elevated in HIV-positive individuals [121–124]. HIV-1

gp120 and tat induce TGF-β expression in macrophages, CD4 and CD8 lymphocytes, and nat-

ural killer cells [89, 125–127]. HIV-associated elevation of TGF-β expression within the muco-

sal environment may play a critical role in induction of EMT in mucosal epithelia. We have

shown that HIV-1 gp120 and tat activate expression of matrix metallopeptidase 9 through

MAPK and NF-κB signaling [22]. It is possible that HIV-1 gp120- and tat-activated matrix

metallopeptidase 9 may contribute to cleavage of the TGF-β precursor protein, generating for-

mation of its C-terminal mature fragment, which binds to receptors and activates TGF-β sig-

naling [128, 129].

Both gp120 and tat activate MAPK signaling, which also plays a critical role in EMT induc-

tion. TGF-β expression is activated by the AP-1 transcription factor [89, 130], which is induced

by MAPK signaling [89, 131, 132], and this may lead to elevation of TGF-β expression. HIV-1

gp120 binds to the chemokine receptors CXCR4 and CCR5 and galactosylceramide (GalCer),

inducing MAPK activation [133–135] [24, 133, 134, 136]. HIV gp120 also binds to heparan

sulfate proteoglycans (HSPG) [8, 9, 137–140], which bind TGF-β superfamily proteins leading

to activation of TGF-β signaling [141]. Reduction of gp120-mediated EMT by anti-gp120 anti-

bodies suggested that gp120 interaction with one or more receptors on the epithelial surface

could be critical for the induction of EMT.

HIV tat binds to α5β1, α5β3, and αvβ3 integrins [142–146] and induces ras-dependent acti-

vation of MAPK [91]. We and others have shown that tonsil and genital epithelia express

receptors CXCR4 and CCR5, GalCer, and β1 and αv integrins [8, 9, 137–140, 147].

The lack of difference between X4, R5, and dual-tropic HIV-1 viruses in EMT induction in

tonsil, cervical, and foreskin cells suggests that gp120 interaction with these epithelial cells is

not dependent on viral tropism. However, the lack of gp120-induced EMT induction by one

of 4 HIV-1 strains suggests that some HIV-1 strains may have altered gp120, which may not

bind its epithelial receptors and induce EMT.

MAPK signaling may also play a direct role in EMT induction by phosphorylation of

Smad2/3 and TWIST1 [56–63].

HIV-1 tat may penetrate into cells and tissues through its protein transduction domain,

based on the amino acids arginine and lysine, which facilitate protein internalization into cells

and tissues by multiple mechanisms, including endocytosis and macropinocytosis [148–152].

Indeed, we have shown that recombinant HIV-1 tat is internalized into stratified oral epithe-

lium [7]. Intracellular tat may increase TGF-β expression by interacting with AP-1 [153], sug-

gesting that tat may activate TGF-β signaling by multiple mechanisms.

HIV proteins may also induce EMT through TGF-β- and MAPK- independent mecha-

nisms. HIV tat binding to integrins facilitates activation of epidermal growth factor receptor

(EGFR) [91]. HIV gp120 binding to GalCer of epithelial cells induces intracellular calcium

elevation, which leads to the activation of protein kinase C [24, 154, 155] and subsequent

activation of EGFR [156, 157]. Both tat- and gp120-induced activation of EGFR upregulate

expression of the transcription factor STAT3, which subsequently activates Twist1 and down-

regulates E-cadherin expression, initiating EMT.

HIV-1 gp120 and tat activate expression of proinflammatory cytokines, including tumor

necrosis factor alpha [158, 159], which may stimulate EMT [97–100].

X4-tropic HIV-192UG029 strains. Cells were fixed and immunostained for E-cadherin, pancytokeratin, and vimentin, and cells expressing these proteins

were quantitatively evaluated. Results are presented as a percentage of epithelial cells expressing E-cadherin, vimentin, and pancytokeratin. Data are

representative of 2 independent experiments using tonsil, cervical, and foreskin epithelial cells derived from two independent donors and are shown as

the mean ± SD (n = 10). �P<0.05, ��P<0.01, ���P<0.001. E-cadherin and pancytokeratin expression were compared with the gp120- and tat-treated and

untreated (control) groups. #, not detected.

https://doi.org/10.1371/journal.pone.0226343.g007
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Fig 8. HIV-1 gp120 is critical for EMT induction. (A) gp120 from HIV-1BAL was preincubated with a pool of 4 anti-gp120 antibodies or their

isotope controls. Normal tonsil keratinocytes isolated from uninfected donors were untreated or treated with gp120 with neutralizing antibodies

HIV-1 proteins induce epithelial–mesenchymal transition

PLOS ONE | https://doi.org/10.1371/journal.pone.0226343 December 23, 2019 15 / 36

https://doi.org/10.1371/journal.pone.0226343


HIV-1 gp120- and tat-induced EMT in tonsil, cervical, and foreskin epithelial cells indicates

that HIV-induced EMT could be common in oral and genital epithelia. Induction of EMT by

HIV-1 recombinant gp120 and cell-free HIV virions revealed that the initial interaction of the

cell-free virions envelope with mucosal epithelium from uninfected individuals may lead to

or isotype controls. Culture medium was changed every day and after 5 days, cells were quantitatively analyzed for expression of E-cadherin,

pancytokeratin, and vimentin. (B) Tonsil keratinocytes were untreated or treated with gp120 from HIV-1BAL, HIV-1IIIB, HIV-1CN-54, and HIV-

1JR-CSF strains with a pool of neutralizing antibodies or their isotype controls. At day 5, cells were quantitatively analyzed for expression of E-

cadherin, pancytokeratin, and vimentin. (C) Tonsil epithelial cells were incubated with HIV-1 Δenv-NL4.3 and HIV-1 NL4.3 viruses, and cells

were maintained for 5 days; medium was changed with fresh viruses. After 5 days cells were quantitatively examined for expression of E-cadherin,

pancytokeratin, and vimentin. Results are presented as a percentage of E-cadherin-, pancytokeratin-, or vimentin-positive cells. Data are

representative of 3 independent experiments using tonsil epithelial cells derived from three donors and are shown as the mean ± SD (n = 10).
�P<0.05, ��P<0.01, ���P<0.001. E-cadherin and pancytokeratin expression were compared in gp120-treated and untreated control cells. #, not

detected.

https://doi.org/10.1371/journal.pone.0226343.g008

Fig 9. HIV-induced EMT in tonsil epithelial cells isolated from multiple donors. Normal tonsil keratinocytes isolated from 14 uninfected individuals were treated

with cell-free HIV-1SF33 or untreated for 10 days. Cells were immunostained, and expression of E-cadherin and vimentin were quantitatively evaluated. Data represent

the mean ± SD (n = 10). #, not detected. �P<0.05. E-cadherin expression was compared with that of the virus-treated and untreated control cells.

https://doi.org/10.1371/journal.pone.0226343.g009
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Fig 10. Analysis of MAPK and TGF-β1 signaling in the oral epithelia of HIV-infected and uninfected individuals. Tissue

sections from HIV-infected and uninfected individuals were immunostained with antibodies against TGF-β1 (A) or
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the loss of epithelial junctions and paracellular penetration by HIV. However, the lack of HIV-

1SF33 cell-free virion-induced EMT in 45% of tonsil keratinocytes isolated from independent

donors suggests that not all mucosal epithelial cells have critical epithelial receptors or signal-

ing molecules for gp120.

HIV-1 gp120- and tat-induced EMT during HIV/AIDS disease may reduce the barrier

functions of oral and genital mucosal epithelium, leading to the spread of viral, bacterial, fun-

gal, and other pathogens. In the intact epithelium the assembled epithelial junction may

sequester receptors for viruses, reducing their infection and mucosal transmission. HIV-

induced EMT may liberate hidden receptors owing to the disassembly of epithelial junctions.

Indeed, we reported that nectin-1, a receptor for herpes simplex virus-1, is hidden within the

phosphorylated and total ERK1/2 (B) (both in green). Nuclei are stained in blue. EP, epithelium; LP, lamina propria; GR,

granulosum; SP, spinosum; BL, basal. Representative images of three independent biological replicates are shown.

https://doi.org/10.1371/journal.pone.0226343.g010

Fig 11. Activation of TGF-β1 and MAPK signaling by HIV-1 tat, gp120, and cell-free virions in tonsil cells with

the EMT phenotype. Normal tonsil keratinocytes isolated from uninfected individuals were treated for 7 days with

gp120, tat, and their inactive forms, and cell-free HIV-1SF33, HIV-1SF170, and HIV-192UG029 strains. Cells were lysed

and used to detect TGF-β1, phosphorylated and total ERK1/2, and actin by Western blotting using specific antibodies.
�Precursor; ��mature active form. A representative Western blot is shown from two independent experiments.

https://doi.org/10.1371/journal.pone.0226343.g011
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Fig 12. Inhibition of TGF-β1 and MAPK signaling reduces HIV-induced EMT phenotype in tonsil, cervical, and foreskin epithelial

cells. Normal tonsil, cervical, and foreskin keratinocytes isolated from uninfected individuals were incubated for 5 days with cell-free HIV-
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adherens and tight junctions of oral epithelium, and HIV-induced disruption of epithelial junc-

tions exposes nectin-1 to herpes simplex virus-1, facilitating rapid viral infection and spread [21].

HIV-induced disruption of epithelial junctions via EMT facilitates paracellular penetration

of oncogenic human papillomavirus (HPV) [7]. Moreover, HIV gp120- and tat-induced trans-

migration of EMT cells suggests that, if this occurs within the HPV-infected environment, it

may significantly accelerate invasion of HPV-infected malignant cells, leading to the progres-

sion of HPV neoplasia. Indeed, our ongoing studies show that HIV gp120 and tat substantially

increase migration and invasion of HPV-infected cervical cancer cells through EMT mecha-

nisms (manuscript in preparation).

HIV has been shown to cause EMT in renal epithelium. HIV infection is associated with

kidney failure due to severe nephropathy, characterized by the loss of the renal epithelial phe-

notype and acquisition of mesenchymal features, including dedifferentiation, depolarization,

and proliferation [160–167]. Accumulating evidence indicates that HIV-associated nephropa-

thy is caused by EMT [166] and that HIV infection may play a critical role in the induction of

EMT [160–165, 168, 169]. HIV replication has been observed in renal epithelial cells [169,

170]. Studies using HIV transgenic mice have shown that renal epithelial cells express HIV

mRNA and develop the EMT phenotype with decreasing E-cadherin expression [160, 171,

172]. Transgenic mice expressing the HIV proteins nef or tat show EMT-like changes in the

renal epithelium [173]. An HIV nef-induced EMT-like phenotype has been seen in experi-

ments with renal epithelial cells in vitro [173–176].

HIV-associated reduction of E-cadherin expression have been shown in lung and gut epi-

thelia [177, 178] suggesting HIV-induced EMT may also take place in other epithelial organs

in HIV/AIDS disease, such as skin, nasopharyngeal mucosal epithelium, and liver. HIV-

induced EMT may accelerate the epithelial neoplasia associated with other oncogenic viruses,

such as Epstein Barr virus (EBV), Kaposi sarcoma-associated herpesvirus, and hepatitis C

(HCV) and B (HBV) viruses. It is well known that HIV coinfection is common with EBV,

Kaposi sarcoma-associated herpesvirus, HCV, and HBV with the development of mutual path-

ogenesis for these copathogens [179–181].

In summary (Fig 14), we have shown that HIV-1 gp120 and tat proteins induce EMT in

oral and genital mucosal epithelia via activation of TGF-β and MAPK signaling. EMT-associ-

ated changes to the integrity of mucosal epithelia may reduce a wide spectrum of physiologic

functions of mucosa, including barrier, transport, secretion, and maintenance of the innate

and adaptive immune response by recruiting monocyte/macrophages, Langerhans cells, and T

and B lymphocytes [6, 182, 183]. Importantly, HIV-induced EMT may occur within premalig-

nant cells, which may accelerate the progression of neoplastic processes. Inhibition of TGF-β
and MAPK signaling pathways may inhibit development of HIV-induced EMT of oral and

genital mucosal epithelia, preserving their normal barrier and other functions.

Materials and methods

Ethics statement

This study was conducted according to the principles expressed in the Declaration of Helsinki

and was approved by the Committee on Human Research of the University of California–San

1SF33 in the presence or absence of MAPK UO126 or TGF-β1 SB431542 inhibitors. Cells were immunostained for E-cadherin,

pancytokeratin, and vimentin, and their expression was quantitatively analyzed. Results are presented as a percentage of E-cadherin-,

pancytokeratin-, or vimentin-positive cells. Data are representative of 2 independent experiments using tonsil, cervical, and foreskin

epithelial cells derived from two donors and are shown as the mean ± SD (n = 10). �P<0.05, ��P<0.01, ���P<0.001. Vimentin expression

were compared in cells incubated with HIV or HIV plus drugs. #, not detected.

https://doi.org/10.1371/journal.pone.0226343.g012
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Fig 13. Transmigration and invasion of HIV gp120- and tat-induced EMT cells. Normal tonsil, cervical, and foreskin keratinocytes were isolated from

uninfected donors and treated for 5 days with gp120 and/or tat and their inactive forms. Untreated cells served as a control. Transmigration of cells was
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Francisco (IRB approval #s 10–03277 and 19–27275). All human subjects gave informed writ-

ten consent for the collection of tissue samples. The parents provided informed consent for all

minors.

Collection of buccal tissues

Buccal biopsy samples from HIV-uninfected and HIV-infected individuals were collected by

the UCSF Oral AIDS Center. The main criteria of tissue collection were the lack of clinically

detectable HPV-, human cytomegalovirus (HCMV)-, HSV- and EBV-specific lesions and

inflammation.

examined in collagen-coated Transwell inserts. Cells were stained (A) and quantitatively evaluated (B). Transmigrated invasive cells were counted in 10

randomly selected regions. Results are presented as average number of cells per field. Data are representative of 2 independent experiments using tonsil,

cervical, and foreskin epithelial cells derived from two donors and are shown as the mean ± SD (n = 10). ���P<0.001. Cell numbers were compared with

those of the gp120- and tat-treated cells and their inactive forms (control).

https://doi.org/10.1371/journal.pone.0226343.g013

Fig 14. Model of HIV-induced EMT. In HIV-infected individuals, HIV-infected CD4 lymphocytes, monocyte/macrophages, and Langerhans cells migrate into

oropharyngeal, cervical, and foreskin epithelia and produce cell-free virions and secrete HIV proteins tat and gp120 in the mucosal environment (A). Interaction of cell-

free virions and viral proteins with epithelial cells activates MAPK and TGF-β, leading to induction of the EMT phenotype: Epithelial cells lose their cobblestone-like

morphology and acquire a spindle-like shape (B). Epithelial markers, including E-cadherin expression, are lost and the mesenchymal marker vimentin expression is

induced. EMT cells lose adherens and tight junctions and cell polarity, leading to impairment of the epithelial barrier. The lack of epithelial junctions causes the opening

of the paracellular space for penetration of viral, bacterial, fungal, and other pathogens. HIV-induced EMT cells of mucosal epithelia are highly motile and may migrate

through basement membranes. If HIV-induced EMT occurs in the premalignant or malignant mucosal epithelia, it may accelerate the neoplastic process, leading to

more migration and invasion of cancer cells.

https://doi.org/10.1371/journal.pone.0226343.g014
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Viruses, viral proteins, and cells

Laboratory-adapted dual-tropic (X4-R5) HIV-1SF33 and the primary isolates R5-tropic HIV-

1SF170 and X4-tropic HIV-192UG029 were grown in peripheral blood mononuclear cells, which

were isolated from heparinized blood using a Ficoll-Paque Plus density gradient (Sigma). Cells

were activated with 2.5 μg/ml phytohemagglutinin (Sigma) and 1 μg/ml interleukin-2 (BD Bio-

sciences) for 3 days. Viral stocks were purified using the Amicon Ultra-15 ultracentrifugation

filtration system (Millipore). Viral stocks were titered by p24 concentration using HIV-1 p24

ELISA (PerkinElmer) according to the manufacturer’s instructions.

Recombinant HIV-1Bal tat and its inactive form were purchased from ImmunoDX, LLC

(Woburn, MA). Inactive tat was created through substitution of its basic arginine-rich domain

at the 49–57 aa and the integrin-binding RGD motif in the C terminus with alanines [90–92].

Recombinant gp120 proteins from HIV-1BAL, HIV-1IIIB, HIV-1CN-54, and HIV-196ZM651

strains were provided by the NIH AIDS Reagent Program. gp120 was inactivated by incuba-

tion at 85˚C for 30 min [184–186]. All HIV proteins were stored at –80˚C in the dark before

use.

Wild-type and HIV-1 NL4.3 and HIV-1 NL4.3-E (HIV-1 Δenv) lacking envelope protein

were obtained from the NIH AIDS Reagent Program. HIV-1 NL4.3 and HIV-1 NL4.3-E Δenv

were propagated in HEK293 cells, purified using the Amicon Ultra-15 ultracentrifugation fil-

tration system (Millipore), and titered by p24 concentration using HIV-1 p24 ELISA.

Primary tonsil epithelial keratinocytes were established from tonsil tissue from 20 HIV-neg-

ative children <5 years of age after routine tonsillectomy. Primary cervical keratinocytes were

established from ectocervical tissue specimens from 4 HIV-negative donors. Foreskin kerati-

nocytes from three independent donors were obtained from Lonza (Hayward, CA). Keratino-

cytes were grown in keratinocyte growth medium (KGM gold) (Lonza). Epithelial cell purity

and absence of mesenchymal cells were determined with a cocktail of antikeratin antibodies

containing Ab-1 and Ab-2 (Thermo Fisher Scientific). Only epithelial cell populations with

100% keratin were used. Keratinocytes were used at early passages and frozen in liquid

nitrogen.

Treatment of tonsil, foreskin, and cervical epithelial cells with cell-free HIV

virions and HIV proteins gp120 and tat

Cervical, foreskin, and tonsil epithelial cells were treated with active tat and gp120, inactive

mutant tat, and heat-inactivated gp120 at a concentration of 10 ng/ml (each) for 5–12 days.

Cells were exposed to dual-tropic HIV-1SF33, R5-tropic HIV-1SF170, and X4-tropic HIV-

192UG029 at a concentration of 10 ng/ml of p24. Culture medium was changed daily to add

fresh virus or proteins. One set of cells was treated with MAPK inhibitor U0126 (Sigma) or

with TGF-β1 inhibitor SB431542 (Tocris Bioscience) at 10 μM each. The absence of a toxic

effect by virus, tat, gp120, U0126, or SB431542 was confirmed by the MTT cell viability assay

(Biotium). Cervical, foreskin, and tonsil epithelial cells were also exposed to HIV-1 NL4.3 and

NL4.3-E Δenv viruses at 10 ng/ml.

To neutralize the EMT induction effect of gp120 in tonsil epithelial cells, gp120 from HIV-

1BAL, HIV-1IIIB, HIV-1CN-54, and HIV-196ZM651 were incubated with a pool of 5 neutralizing

antibodies—b12, 2G12, F105, 39F and ID6—or pool of their isotype controls for 1 h at 37˚C at

1 μg/ml of each. Then gp120 with antibodies were added to the tonsil epithelial cells. Cell cul-

ture medium was changed every day with fresh proteins and antibodies, and after 5 days, cells

were quantitatively analyzed for expression of E-cadherin, pancytokeratin, and vimentin.

gp120 and antibodies were obtained from NIH AIDS Reagent Program.
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Immunofluorescence assay

For immunofluorescence assays, cells or tissue sections were fixed with 4% paraformaldehyde

and 2% sucrose in PBS for 5 min, and then permeabilized with 0.01% Triton X-100 in 4% para-

formaldehyde for 5 min. Normal donkey serum (5%) in PBS was used to prevent nonspecific

binding. E-cadherin was detected using either rabbit or goat antibodies (Vector Laboratories

and R&D Systems, respectively). Vimentin was detected using goat antibodies (Millipore), and

pankeratin was detected using rabbit antibodies (Life Technologies). Primary isotype control

antibodies were used as a negative control to confirm the specificity of each antibody. Primary

antibodies were incubated for 1.5 h. Secondary antibodies used in this assay include Dylight

488, Dylight 594 (Vector Laboratories), and Alexa Fluor 594 (Jackson ImmunoResearch Labo-

ratories). Cell nuclei were counterstained with DAPI (Molecular Probes). Images were cap-

tured with a Nikon Eclipse E400 fluorescence microscope (Nikon) at magnification 200x.

Quantitative analysis of EMT was undertaken by counting E-cadherin-, vimentin-, and pancy-

tokeratin-expressing cells relative to the total number of cells per image in 10 separate, ran-

domly chosen fields on each slide (n = 10). Cell counting was performed independently by 2

investigators (KL, WM).

Western blot assay

Cells were extracted with 1.0% Triton X-100 buffer (150 mM NaCl, 10 mM Tris/HCl, pH 8.0,

and a cocktail of protease inhibitors). Proteins were separated on an SDS-polyacrylamide gel

with a 4–20% gradient. The following antibodies were used: rabbit antibody to E-cadherin

(R&D); rabbit antibodies against N-cadherin, vimentin, SMAD2, Slug, Snail, and ZEB1 (Cell

Signaling); rabbit antibodies against phosphorylated SMAD2 (Abcam); mouse monoclonal

antibodies against TGF-β1 (Thermo Fisher Scientific and Abcam); rabbit antibodies against

ERK1/2 total and ERK1/2 phosphorylated. An equal protein load was confirmed by the use of

beta-actin (Ambio).

Transmigration assay

In vitro transmigration and invasion assays were performed using the Collagen Cell Invasion

Assay-Colorimetric (8 μM) (EMD Millipore) according to the manufacturer’s protocol. Cells

were treated with HIV-1 gp120 and tat proteins or their inactive controls for 5–7 days, and

5x104 cells/insert were seeded in the collagen-coated inserts in basal KBM medium without

supplements. KMB alone or KGM containing 10% fetal bovine serum as chemoattractant was

added to the lower chamber. Cell migration and invasion were evaluated 24 h later using light

microscopy to count individual cells that invaded the collagen inserts. To quantify cell migra-

tion/invasion, cell numbers on 10 randomly selected fields were counted under various experi-

mental conditions; data are presented as average number of cells per field.

Statistical analysis

Statistical comparisons were made by a two-tailed Student’s t-test. A p value of<0.05 was con-

sidered significant. Results are expressed as mean ± SD.

Supporting information

S1 Table. Antiretroviral therapy status, viral load and CD4 counts of oral biopsy of donors.
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