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Abstract

Decisions under risk have been classically studied with tasks
involving lotteries with explicit monetary rewards and uncer-
tain gambles. More recently, sensorimotor decisions, specifi-
cally single movements to targets yielding rewards and losses,
have been conceptualized as decisions under risk. While hu-
man choices between gambles have long been known not to
maximize expected gains, sensorimotor decisions have been
well described by statistical decision theory in many tasks.
However, because many naturalistic scenarios of sensorimo-
tor decisions are inescapably governed by the laws of physics,
the question arises, how people act under such circumstances.
Here, participants slid pucks to target areas, providing gains
and losses in a virtual environment so that the uncertainty in-
herent in motor control interacts with the physical relation-
ships governing objects’ motion. Using model comparison
with several generative models of participants’ sliding actions,
we find evidence that human motor decisions in scenarios with
prospective economic outcomes take Newtonian physics into
account.

Keywords: intuitive physics; decision-making; sensorimotor
control; embodied cognition; Bayesian modeling

Introduction
How do people make decisions under risk? Such decisions
are characterized by a single choice between alternative ac-
tions for which the outcomes are uncertain. Because of this
inherent uncertainty, decision alternatives can be character-
ized by the expected outcome of each of the available actions.
According to statistical decision theory, the rational choice is
then to select that action, for which the expected outcome
is highest among the alternatives (Von Neumann & Morgen-
stern, 1944; Savage, 1972). Decisions under risk are ubiqui-
tous in everyday life, such as deciding whether to play a lot-
tery or deciding which insurance to take out. However, more
recently, scenarios with sensorimotor decision under risk in-
volving motor actions have been investigated, blurring the the
strict dichotomy between decision-making and sensorimotor
control. Indeed, such situations are more closely related to
everyday tasks, such as the decision to take a turn in naviga-
tion or whom to throw a pass in sports. While the prescrip-
tions of statistical decision theory can be evaluated in all of
these cases, people’s behavior has been shown to deviate sys-
tematically from these prescriptions depending on a multitude
of factors.

Classically, decisions under risk in economic domains
or involving higher cognition are studied in experimental
paradigms using repeated putative lotteries, in which mon-
etary reward obtained by participants is often tied to the over-
all accumulated outcomes from their individual decisions. In
such tasks, information about outcome uncertainties are pro-
vided explicitly, often verbally, such as that a gamble has a
30% chance of an outcome of 1$ and a 70% chance of an out-
come of 0$. People have been shown to exhibit a multitude
of biases (Kahneman, Slovic, Slovic, & Tversky, 1982) with
pervasive violations of statistical decision theory (Von Neu-
mann & Morgenstern, 1944) including violations that seem
difficult to reconcile with statistical decision theory, such as
violations of stochastic dominance (Kourouxous & Bauer,
2019).

Decisions under risk in economic scenarios are often con-
trasted with decisions under risk involving motor control, i.e.
implicit sensorimotor uncertainties. In perceptual and mo-
tor domains, many studies have shown that people are well
calibrated to their internal visual and motor uncertainties and
that they take these uncertainties into account when carrying
out visuomotor decisions under risk (Ernst & Banks, 2002;
Körding & Wolpert, 2004), but see the review by Rahnev
and Denison (2018) for numerous deviations. In a motor
task where people quickly move their finger towards tar-
gets displayed on a screen, yielding different rewards de-
pendent on which target was hit, Trommershäuser, Maloney,
and Landy (2008) have shown that people integrate their mo-
tor variability with explicit economic outcomes according
to statistical decision theory. Even when variability is arti-
ficially increased, people are still able to perform close to
optimally (Trommershäuser, Gepshtein, Maloney, Landy, &
Banks, 2005). However, further experiments have shown that
the accuracy of responses depends on the amount of train-
ing (Neyedli & Welsh, 2013), how often one target config-
uration is presented consecutively (Neyedli & Welsh, 2014)
and how large the ratio of expected outcomes, i.e. gains and
losses is (Adkins, Lewis, & Lee, 2022). In a direct compari-
son between the domains, Wu, Delgado, and Maloney (2009)
find that in sensorimotor control people tend to be risk-affine
which they attribute to a different weighting of probability.
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However, many real world sensorimotor decision scenar-
ios are governed by the laws of physics, and thus the ques-
tion arises, how people make sensorimotor decisions un-
der uncertainty in scenarios with physical dynamics. The
field of intuitive physics exhibits a similar dichotomy as eco-
nomic decision-making. In explicit reasoning tasks, it has
been found that people fail at predicting physical dynamics
in coherence with Newton’s laws (McCloskey & Caramazza,
1980) or at least show biases (Todd & Warren, 1982). These
biases could be partly explained by assuming that people ap-
ply heuristics to predict physics (Gilden & Proffitt, 1994).
However, it seems that human capabilities of predicting phys-
ical dynamics are strongly dependent on the task context,
as prediction is better in familiar situations (Kaiser, Jonides,
& Alexander, 1986) and when situations are displayed dy-
namically (Kaiser, Proffitt, Whelan, & Hecht, 1992; Smith,
Battaglia, & Vul, 2018). More recently, peoples’ understand-
ing of physics has been found to be in coherence with New-
ton’s laws when accounting for perceptual and internal model
uncertainty, which has been called the ’noisy Newton’ frame-
work (Sanborn, Mansinghka, & Griffiths, 2013). This has
lead to the hypothesis that people posses an internal noisy
physics engine, which they apply to make judgements of sit-
uations with a physics context (Battaglia, Hamrick, & Tenen-
baum, 2013; Bates, Yildirim, Tenenbaum, & Battaglia, 2015).

When viewing physical object interactions in the context of
decisions under risk, a central question is whether people can
integrate knowledge about physical dynamics with their sen-
sorimotor capabilities. Neupärtl, Tatai, and Rothkopf (2020)
have shown that people can make use of inferred physical ob-
ject properties during subsequent object interactions, under
the right circumstances they even show correct priors about
object dynamics (Neupärtl, Tatai, & Rothkopf, 2021). Still, it
remains open how people cope when object interaction yields
economic outcomes in the form of explicit gains and losses.

Here, we investigated whether people are able to make use
of their intuitive knowledge of Newtonian physics to make
informed choices in an object interaction task under risk.
For this purpose, we used a paradigm where subjects slide a
hockey puck at a target, which yielded a positive or negative
economic outcome. The task is inspired by the finger point-
ing paradigm of Trommershäuser et al. (2008) but adds non-
linear physical dynamics and elicits signal-dependent motor
variability in task relevant responses (Neupärtl et al., 2021).
This results in an increase in endpoint variability for longer
slides, which needs to be taken into account to maximize the
expected reward. By building a Bayesian actor model that
includes these factors and comparing it against an alterna-
tive model without any notion of physics or signal-dependent
variability, we test the hypothesis that people make use of
an internal model of Newtonian physics and integrate it with
prospective economic outcomes when sliding pucks.

Our results suggest that people take into account the in-
crease in variability introduced by the physics of sliding
pucks and compensate for it. This implies that they are gen-

erally able to include considerations of Newtonian physics in
their motor planning. Still, we find that people diverge from
the predictions of the Bayesian actor model, especially for
high prospective loss. Additionally, we observe high inter-
subject variability in behavior, which we account for by in-
troducing subjective utilities in our model.

Method
Participants
We recruited 9 undergraduate students who participated in
our study for course credit. Additionally, all participants were
awarded a bonus payment of 3−8C proportional to their cu-
mulative reward earned during the experiment. All of them
were naive with regard to the goals of the study. The experi-
ment was approved by the Ethics Committee of the Technical
University of Darmstadt and all participants gave informed
consent.

Apparatus
In our experimental setup, participants were placed in a
virtual representation of the room they were standing in,
presented through the HTC Vive Eye Pro and the Unity game
engine. They were tasked to slide a real common hockey
puck, which was tracked by a passive tracking system (6
Cameras operating with 150Hz, Qualysis Oqus 500+ and
510+), across a table. The puck was modified with weights
such that its mass amounted to 250g and equipped with felt
at the bottom to enhance its sliding properties. To track
the puck, four markers were placed on top of it. Thus,
participants could only grab it from the side.
In the real world, the puck’s trajectory was stopped short
to make it easily available for multiple consecutive slides.
However, just before stopping, its velocity was measured,
enabling a virtual continuation of the trajectory by simu-
lation. This transition took place after 50cm of the tables’
lenghth, which was visually marked by a virtual line for the
subjects. To ensure a timely release of the puck, we tracked
the subjects’ hand position.

Physics simulation
The virtual trajectory of the puck was realized by the physical
approximation of motion with constant deceleration, which is
given by the following quadratic relationship:

s = f (v) =
1
2a

v2, (1)

where s is the traveled distance of the puck, a the deceleration
given by a = 9.81c with the friction coefficient c and the ini-
tial velocity v. To simplify the problem, we eliminated angles
from the simulation, i.e. after passing the measurement line,
the puck’s trajectory was directed parallel along the depth
of the table. Still, to keep the behavior as close as possible
to reality, we matched the surface qualities of the table in
the simulation by recording multiple trajectories with the
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Figure 1: Subjects had to slide pucks at targets and received
points for hitting the green Reward Area (RA) or the Loss
Area (LA). Rewards and losses were presented in 4 different
ratios, and the center of target was located at 3 different lo-
cations. Each of the 12 possible target configurations was
completed in blocks of 30 trials each.

tracking system and then estimated the friction coefficient
between the table’s surface and the puck c = 0.29.

Task
Subjects had to slide the puck across the table to hit a target
(see Figure 1), a green area as wide as the table and 20 cm
in depth, named the Reward Area (RA). A hit of this area
was rewarded by 1 point. In some trials, a red area, the
Loss Area (LA), of the same size was placed right behind
the RA. Hitting this area would amount to either −1, −3 or
−5 reward points, made apparent to the subject by a display
above the table. The center of the RA was placed at one of
three distances 0.5m, 1.15m, or 1.8m with respect to the
measurement line. If neither the RA nor the LA was hit, the
subjects received 0 points. The final puck position was shown
for 1s. At the same time, feedback about the reward achieved
in the current trial and the cumulative reward was shown
on a display above the table. Trials in which the subjects
overreached the measurement line had to be repeated.

Procedure
Subjects participated in the task on two consecutive days. On
day one, the subjects began with unrewarded training trials
where only the RA was presented. First, they completed 100
trials with variable distances ranging from 0.2 − 2m in or-
der to learn the puck’s dynamics. Afterward, trials were pre-
sented in blocks of 30 trials to avoid sequence effects such as
sensorimotor regression to the mean (Petzschner & Glasauer,
2011) and to ensure optimal performance (Neyedli & Welsh,
2014). To accustom the subjects with the specific distances
used in our task, they had to complete two blocks of training
trials per distance.
After the training phase, subjects began with the rewarded
phase of the experiment. As there were 4 different loss con-
ditions and three distances, this design amounted to 12 blocks

µ∗pcσp

v

c : conds.

p : particps.

σp ∼ Halfnormal(0,0.1)

µ∗pc = arg max
µ

Ev[r|µ,σp,c]

v ∼ Lognormal(µpc,σp)

Figure 2: Probabilistic graphical model of the Physics model
with a Lognormal-distribution for the release velocities v. Ev-
ery participant p has their own variability σp, under which
the optimal µ∗pc is determined for every condition c by max-
imization of expected reward, taking the non-linear physical
relationship into account.

of different configurations in randomized order, and therefore
360 trials in total. On the second day, subjects were only
given 10 training trials per distance, and then the rewarded
phase of the experiment was repeated. With this procedure,
we aim to investigate how well people have learned the phys-
ical properties of sliding pucks, because they had to transfer
their gained knowledge from the training to novel cost func-
tions in the rewarded phase of the experiment (Maloney &
Mamassian, 2009).

Modeling
We build a normative model of human sensorimotor actions
based on statistical decision theory (Trommershäuser et al.,
2008). In the classical finger pointing paradigm used by
Trommershäuser, Maloney, and Landy (2003), the movement
variability is independent of the target location, which allows
modeling the movement endpoints as homoscedastic normal
distributions. In puck sliding, however, Neupärtl et al. (2021)
find that variability increases with distance. In our model,
we assume that this increase in variability stems from two
sources. First, we assume that subjects regulate the puck’s
velocity v at release by controlling the location parameter µ
of the distribution

v ∼ Lognormal(µ,σ), (2)

with variability parameter σ. The Lognormal distribution
was chosen to account for signal-dependent motor variabil-
ity (Schmidt, Zelaznik, Hawkins, Frank, & Quinn Jr, 1979;
Harris & Wolpert, 1998).

Second, we need to account for the fact that puck sliding
involves non-linear dynamics. Specifically, the puck’s veloc-
ity determines its final position s= f (v) via the quadratic rela-
tionship in Equation (1), which defines a distribution p(s|µ,σ)
and further scales the endpoint variability with increasing dis-
tance.

With this formulation of variability, we can define the op-
timal location µ∗c of the velocity distribution in a particular
reward condition c as the one which maximizes the expected
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reward of slides:

µ∗c = argmax
µ

Ev[r|µ,σ,c] (3)

= argmax
µ ∑

A
p(A|µ,σ)rc(A), (4)

where r is the reward of a slide. The distribution p(A|µ,σ) =
p(s ≤ Au|µ,σ)− p(s ≤ Al |µ,σ) is the probability of hitting
an area A defined by upper and lower bounds (Au,Al), and
rc(A) is the reward (or negative reward in the case of loss)
received when hitting the area. For the loss configurations
in our experiment (Figure 1), this model makes two quali-
tative predictions about the shifts in endpoint positions with
respect to the center of the RA. First, endpoints should be
shifted away from the center of the RA more at larger tar-
get distances, because of the distance-dependent increase in
endpoint variability. Second, shifts should also be larger at
a higher ratio between loss and reward, because the model
maximizes the expected reward, resulting in more conserva-
tive shots for higher prospective losses.

The reward-maximizing model based on Newtonian
physics, which we will refer to as the Physics model, has
only one free parameter: the variability σ. As an alterna-
tive model, we consider a model without a notion of physics,
which we will refer to as the Normal model, as it simply as-
sumes a normal distribution s ∼ Normal(µ,σ) with one free
parameter σ for the position-independent endpoint variabil-
ity (Trommershäuser et al., 2008). Additionally, we consider
subjective versions of both models, which maximize subjec-
tive utility instead of the actual reward. For this purpose, we
introduce a parametric subjective utility function (Tversky &
Kahneman, 1992):

u(r,a,b) =

{
ra, if r ≥ 0
−(−r)b, if r < 0,

(5)

and assume that the agent maximizes the expected subjective
value u instead of the reward r. As we only have one positive
reward, we fix a= 1, but since we want to weight the negative
rewards (−1, −3 and −5) against the positive reward, we treat
b as an additional free parameter of the subjective models. We
assume that all participants have their own bp. Thus, we end
up with four models, the Physics model, the Normal model,
and their respective Subjective value versions.

The four models constitute different computational-level
descriptions of the task and its optimal solution from the
subject’s perspective. From the researcher’s perspective, we
build a probabilistic model of the subject’s behavior (Fig-
ure 2) and estimate the free parameters of the subject’s model
using Bayesian methods. Specifically, we implemented the
models with the Python probabilistic programming pack-
age numpyro (Phan, Pradhan, & Jankowiak, 2019) using
Metropolis-Hastings sampling. For each model, we drew
500000 samples in 4 chains, with 10000 burn-in steps and
thinning rate of 50. To compare the models, we use Pareto-
smoothed importance sampling as an approximation of leave-
one-out cross validation (PSIS-LOO) (Vehtari, Gelman, &
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Figure 3: Slide endpoint shifts from the center of the Reward
Area (RA, highlighted in green), aggregated for all subjects.

Gabry, 2017) as implemented in the Python package arviz
(Kumar, Carroll, Hartikainen, & Martin, 2019). Importantly,
PSIS-LOO is an estimate of the out-of-sample prediction ac-
curacy and therefore takes model complexity into account.

Results
For all analyses, we consider the data from both rewarded
sessions, except for three trials, which had to be excluded
because of malfunction of the tracking system. The central
quantity of interest is the shift of the slide endpoints relative
to the center of the RA, because it indicates how strongly sub-
jects adapt their behavior in response to different target dis-
tance and loss conditions.

Influence of experimental conditions
We first compare the distributions of the endpoint shifts rela-
tive to the center of the RA across conditions (Figure 3). The
endpoint variability increases with target distance (std: 0.5m:
0.08m; 1.15m: 0.13m; 1.8m: 0.20m), which indicates that the
modeling assumptions of incorporating position-dependent
variability are appropriate.

To quantitatively estimate the influence of the two manip-
ulations (amount of loss and target distance) on the slide end-
points, we fitted a Bayesian mixed-effects model with the
Python package bambi (Capretto et al., 2022). For this pur-
pose, we assumed a normal distribution of the endpoint shift
from the RA, treated both conditions as categorical variables
and included random effects across subjects for both condi-
tions. In the following, we report the posterior mean parame-
ters and 95% credibility intervals.

We find that subjects perform shorter slides with in-
creased distance (β1.15 = −0.2,CI = [−0.04,−0.01]; β1.8 =
−0.9,CI = [−0.12,−0.06]; β1.8 − β1.15 = −0.07,CI =
[−0.10,−0.03]). Figure 3 suggests that this difference
could be attributed to the increased shift for higher losses
at larger distances. The presence of loss in general
leads to shorter slides (β−1 = −0.04,CI = [−0.05,−0.03];
β−3 = −0.05,CI = [−0.07,−0.04]; β−5 = −0.07,CI =
[−0.09,−0.05]). Furthermore, comparing the effects be-
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Figure 4: Model comparison with LOO, higher means better.

tween loss conditions suggests that the exact amount of
loss does have an influence on the shift, but not a large
one (β−1 − β−3 = −0.01,CI = [0.00,−0.03]; β−3 − β−5 =
−0.01,CI = [0.01,−0.03]). Still, when comparing the small-
est loss −1 against the largest, −5 the influence is more ap-
parent (β−1 −β−5 =−0.03,CI = [−0.01,−0.05]).

Model comparison
As the central test for whether subjects use an internal model
of Newtonian physics, we compare a Bayesian actor model
that includes the physical relationship (the Physics model)
against an alternative model without any notion of physics
(the Normal model). Bayesian model comparison with PSIS-
LOO (Figure 4) shows that the Physics model has a higher
predictive accuracy than the Normal model (dloo = 907.00,
sed = 85.25). Comparing the mean predicted shifts in indi-
vidual conditions with the model predictions (Figure 6), one
can see that even the Physics model does not predict the high
loss conditions well, at least in some subjects. This moti-
vated the extension of both models to versions with subjective
losses that differ from the actual losses in the experiment. In
both cases, the Subjective versions outperformed their respec-
tive non-subjective models (Normal: dloo = 443.12, sed =
41.04; Physics: dloo = 616.37, sed = 46.66). The Subjec-
tive Physics model outperforms the Subjective Normal model
(dloo = 1080.25, sed = 63.95). Importantly, even the Physics
model without subjective losses still has a higher predictive
accuracy than the Subjective Normal model (dloo = 463.88,
sed = 88.36).

Model predictions
To investigate the differences between the models more pre-
cisely, we compare the subjects’ slide endpoint shift means
against the means of the posterior predictive shifts per condi-
tion in Figure 5. The Normal model cannot account for the
fact that many subjects adjust the magnitude of their shifts be-
tween the different target distances. Especially, for 0.5m, the
Normal model strongly overestimates the magnitude of the
shifts, especially for high loss conditions. This overestima-
tion is still present at 1.15m, while the prediction in the 1.8m
condition is relatively accurate. The addition of subjective
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Figure 5: Mean shifts from the center of the Reward Area
(RA) compared with the posterior predictive means of the four
models. Each point in the plot shows the mean shift for one
subject.

losses does not improve the Normal model much, as it leads
to an underestimation of the shift magnitude in 1.8m distance
condition.

The predictions of the Physics model are more accurate
than those of the Normal and Subjective Normal models, es-
pecially in the 0.5m condition. It accurately predicts the data
of all participants at equal reward-loss ratios (-1 loss condi-
tion). However, for larger losses we see that some subjects
do not shift as much as predicted, while others are still rather
close to the prediction. These individual differences can be
accounted for by introducing the subjective value function to
the Physics model, resulting in accurate predictions in all con-
ditions and subjects.

Individual differences between subjects
The deviations between model predictions and data (Figure 5)
show that there are differences between the subjects’ strate-
gies. To investigate these individual differences, we show a
detailed comparison between the data and the prediction of
the Physics model for each subject in Figure 6. Some sub-
jects (e.g. 2, 5, 6) are quite close to the shift predicted by the
Physics model, but others do not shift as much as predicted
(e.g. 1, 8, 9). As noted before, this is especially true for
conditions with higher losses and at larger distances. These
differences also become apparent in the parameters estimated
from the Subjective Physics model, which can be found in
(Table 1), where participants 2, 5, and 6 have the highest val-
ues for βp (posterior means: .36, .65, .48, respectively), while
participants 1, 8, and 9 have the lowest values (.03, .03, .02).
Furthermore, we also find differences in how sensitive sub-
jects are to increased prospective loss, as for example partic-
ipant 3 compensates for larger distances but does not distin-
guish the amount of prospective loss.
Additionally, we conducted a model comparison on an in-
dividual subject level. For 6 out of 9 subjects, we find the
same pattern as described in the group level model compari-
son. For the others, differences are not as clear or the pattern
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Table 1: Posterior subjective loss parameters βp for individual subjects, estimated using the Subjective Physics model.

Subject 1 2 3 4 5 6 7 8 9
mean ± std .03± .03 .36± .08 .36± .08 .06± .05 .68± .09 .48± .09 .30± .08 .03± .02 .02± .02
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Figure 6: Shifts from the center of the Reward Area (RA)
compared with the posterior predictive means of the Physics
Model. Each point in the plot represents the mean shift for
one subject.

is changed. But, the Subjective Physics model performs best
for every subject.

Discussion
In this paper, we investigated whether people’s visuomo-
tor actions when sliding pucks at targets for monetary re-
wards take Newtonian physics into account. Specifically, the
physics of sliding pucks makes the variability of the slide
endpoint depend on the distance of the target. Accordingly,
if people took the physics into account in their puck slides,
they should shift their endpoints more at larger distances to
avoid hitting the loss region because of the larger variabil-
ity. We tested this prediction by building Bayesian genera-
tive actor models. A model with knowledge of this physical
relationship accounts for the data better than an alternative,
physics-unaware model with position-independent Gaussian
variability. This is consistent with the finding that people
can account for artificially increased motor noise in reaching
movements (Trommershäuser et al., 2005). Note, however,
that in the original study by Trommershäuser et al. (2005),
the experimental design was such that the variability due to
motor control led to an approximately Gaussian distribution
around an aim point. In our task, instead, the variability is
better described by a log-normal distribution combined with
the physical dynamics of the puck sliding task, because of the
signal-dependent motor noise playing out in the dimension of
the movement direction. Here, we show that people can adapt
to this increased variability.

However, as previous studies have observed (Adkins et al.,
2022; Trommershäuser et al., 2005), subjects deviated from
the normative reward-maximizing ideal when losses were

high relative to gains. We accounted for this by extending
the models to include a subjective loss function, which has
been successful at describing subjective utilities in economic
decision-making tasks (Tversky & Kahneman, 1992; Wu et
al., 2009). While the subjective loss versions of the models
explained the data better than their counterparts with veridi-
cal losses, we nevertheless found that all models including
physics performed better than all physics-unaware models.
While the subjective loss parameters estimated using the Sub-
jective Physics model were able to account for the subjects’
behavioral sensitivity to losses, the specific values for some
of the participants are lower than what is commonly reported
in the economic decision-making literature (Kahneman et al.,
1982; Abdellaoui, 2000). We are therefore cautious in at-
tributing the observed deviations from the Physics model ex-
clusively to subjective losses, and think that further research
on the reasons for these deviations is necessary.

Intuitive physics has mostly been investigated in the con-
text of physical reasoning, e.g. when making judgments
about trajectories (McCloskey & Caramazza, 1980), object
masses (Sanborn et al., 2013), liquid dynamics (Bates et
al., 2015), or the stability of object configurations (Battaglia
et al., 2013). Recent work has suggested that people also
use intuitive physics during actual interactions with objects
in naturalistic tasks (Bramley, Gerstenberg, Tenenbaum, &
Gureckis, 2018; Neupärtl et al., 2021). Here, we have
combined interaction with objects in a naturalistic setting
with a task with explicit monetary rewards. We thereby ex-
tend the result that people take their motor variability into
account when pointing their finger at targets on a screen
(Trommershäuser et al., 2003) to a naturalistic physical in-
teraction task. This task requires subjects to include intuitive
physics, which has usually been regarded as a higher cogni-
tive process, in their motor planning. Taken together, these
results suggest that sensorimotor behavior, intuitive physi-
cal reasoning, and economic decision-making might not be
fundamentally distinct domains, but instead rely on common
cognitive processes.

Further research should consider intuitive physics in the
context of motor planning, as this intersection is a good op-
portunity to investigate the interplay of different cognitive
abilities. We find that individuals show considerable differ-
ences in their strategies, which opens up ample room for
further empirical and computational investigations. To this
end, we see methods for inverse modeling, that allow infer-
ence over the internal, cognitive parameters in sensorimo-
tor decisions under risk as a particularly fruitful avenue, as
they reconcile normative and descriptive models of behavior
(Schultheis, Straub, & Rothkopf, 2021).
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