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We study the initial-state-radiation processes e�e� ! K�K������ and e�e� ! K�K��0�0�
using an integrated luminosity of 232 fb�1 collected at the ��4S� mass with the BABAR detector at
SLAC. Even though these reactions are dominated by intermediate states with excited kaons, we are able
to study for the first time the cross section for e�e� ! ��1020�f0�980� as a function of center-of-mass
energy. We observe a structure near threshold consistent with a 1�� resonance with mass m � 2:175�
0:010� 0:015 GeV=c2 and width � � 58� 16� 20 MeV. We observe no Y�4260� signal and set a limit
of BY!����� � �Yee < 0:4 eV (90% confidence level), which excludes some models.

DOI: 10.1103/PhysRevD.74.091103 PACS numbers: 13.66.Bc, 13.25.Gv, 13.25.Jx, 14.40.Cs

The nature of the Y�4260� resonance, which BABAR
recently discovered [1] through its production via initial-
state radiation (ISR) in e�e� annihilations and its decay
into J= ����, remains unclear. It is well above threshold
for the D��� �D��� decays expected for a wide charmonium
state, but no peak is observed in the total cross section
e�e� ! hadrons in this mass region. Some models [2]
predict a large branching fraction for Y�4260� into ���.
Moreover, the rich spectroscopy of the J= �� final state
motivates a thorough investigation of the analogous ���
state.

In this paper we update our previous analysis with ISR
of e�e� ! K�K����� [3]. We include more data and
relax the selection criteria, resulting in a fivefold increase
in the number of selected events. We obtain an improved
e�e� ! K�K����� cross section measurement over a
wide range of effective e�e� center-of-mass (C.M.) ener-
gies, and perform the first studies of the �����,
f0�980�K�K� and �f0 intermediate states. We also
present the first measurements of the e�e� !
K�K��0�0 cross section and its �f0 component.

We use data corresponding to an integrated luminosity
of 232 fb�1 recorded by the BABAR detector [4] on and off
the ��4S� resonance. Charged-particle tracking is provided
by a five-layer silicon vertex tracker (SVT) and a 40-layer
drift chamber (DCH) in a 1.5 T axial magnetic field. Photon
and electron energies are measured in a CsI(Tl) electro-
magnetic calorimeter (EMC). Charged particles are iden-
tified by specific ionization in the SVT and DCH, and an
internally reflecting ring-imaging Cherenkov detector
(DIRC).

We use a simulation package developed for radiative
processes that generates hadronic final states following
Ref. [5], multiple soft photons from the initial state using
a structure-function technique [6,7], and photons from the
final-state particles using PHOTOS [8]. We generate
K�K��� final states both according to phase space and
with a model that includes the ��1020� ! K�K� and
f0�980� ! �� channels. We pass the events through a
detector simulation [9], and reconstruct them in the same
way as we do the data. We generate a number of back-
grounds with this package, including the ISR processes
e�e� ! ���������, �����0�0�, ���, ��0� and
�����0�, and we also study e�e� ! q �q events gener-

ated by JETSET [10], e�e� ! ���� by KORALB [11], and
��4S� decays using our own generator [12].

The initial selection of events with a high-energy photon
recoiling against a set of charged particles and photons is
described in Refs. [3,13]. Here we accept all charged tracks
that extrapolate to the interaction region, and photon can-
didates with an EMC energy greater than 30 MeV. The
reconstructed vertex of the set of charged tracks is used as
the point of origin for all photons.

For each four-track event with one or two identified K�,
we perform a set of three-constraint kinematic fits (see
Ref. [13]). We assume the photon with the highest C.M.
energy to be from ISR, and the fits use its direction, along
with the four-momenta and covariance matrices of the
initial e�e� and the reconstructed tracks. A fit using the
�������� hypothesis returns a �2

4�. If the event con-
tains an identified K� and K�, we fit to the K�K�����

hypothesis and require �2
KK���� < 30. For events with one

identified kaon, we perform fits with each of the two
oppositely charged tracks given the kaon hypothesis, and
the combination with the lowest �2

KK���� is retained if it is
lower than 30 and �2

4� > �2
KK���� .

For the events with two tracks, both identified as charged
kaons, and five or more photon candidates, all non-ISR
photons are paired, and combinations lying within
35 MeV=c2 of the �0 mass are considered �0 candidates.
We perform a six-constraint fit to each set of two non-
overlapping �0 candidates plus the ISR photon and the K�

and K� tracks, and the combination with the lowest
�2
KK�0�0 is retained if �2

KK�0�0 < 50. To suppress ISR
K�K��0 and K�K�� events, in which photons from an
energetic �0 or� combine with soft background clusters to
form two �0 candidates, we reject events with large dif-
ferences between the two photon energies in both �0

candidates. The fitted three-momenta for each charged
track and photon are used in further kinematical
calculations.

We consider three types of backgrounds. The first, which
peaks at low values of �2, is due to non-ISR events, and is
dominated by e�e� ! q �q events with a hard�0 producing
a fake ISR photon. To evaluate this background, we use
simulated mass and �2 distributions normalized to data
events in which the ISR photon combines with another
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cluster to form a �0 candidate. The second type of back-
ground, due to ISR e�e� ! ������ events with mis-
identified ��, also contributes at low �2 values. We derive
reliable estimates of their contributions from the known
cross sections [3]. The third type of background comprises
all remaining background sources and is estimated from
the control regions 30< �2

KK���� < 60 and 50<
�2
KK�0�0 < 100, as detailed in Refs. [3,13]. We subtract

these backgrounds, about 8%–10% (15%–20%) total con-
tribution, from the selected K�K����� (K�K��0�0)
events.

We measure the track-finding efficiency from the data,
and measure the kaon identification efficiency from a clean
sample of ISR e�e� ! �! K�K� events to a precision
of 2.0%, a fourfold improvement over our previous result
[3]. The �0 reconstruction efficiency is determined from
ISR e�e� ! !�0�! �����0�0� events and the
method described in Ref. [13]. The above procedures allow
us to correct the efficiency obtained from the Monte Carlo
(MC) simulation. In Fig. 1 we show the cross sections for
the two processes, calculated by dividing the background-
subtracted yield in each bin by the efficiency and the ISR
luminosity [3]. The errors are statistical only. The e�e� !
K�K����� cross section [Fig. 1(a)] is consistent with
both the direct measurement by DM1 [14] and our previous
measurement [3], but is far more precise. In addition to the
sharp J= peak, wider structures are visible near 1.8 GeV,
2.2 GeV and possibly 2.4 GeV. The e�e� ! K�K��0�0

cross section [Fig. 1(b)] shows the same general features,
including a J= peak and a steep drop around 2.2 GeV. The
total systematic uncertainty in the K�K�������0�0�
cross section ranges from 7% (10%) at threshold to 9%
(15%) at high EC:M:.

As seen previously [3], there is a rich substructure in the
e�e� ! K�K����� process, dominated by the
K�0�892�K� intermediate state, but with large signals
from the K1�1270�, K�02 �1430� and K1�1400� resonances.
The e�e� ! K�K��0�0 process is also dominated by the
K���892�K	�0 intermediate state. Understanding these
contributions via a partial wave analysis is outside the
scope of this paper.

Here we concentrate on events with an intermediate
��1020� and/or f0�980� state. Figure 2 shows scatter plots
ofm������ orm��0�0� versusm�K�K�� for the selected
events (including backgrounds) in the data. A �! K�K�

band is visible in both cases, as well as a concentration of
events indicating correlated production of � and f0. A
horizontal ��770� band is visible for the charged mode
only, and is due to K1 ! K� decays. Most of the K�

intermediate states are outside the bounds of these
plots. Selecting � events with jm�K�K�� �
1020 MeV=c2j< 10 MeV=c2, and subtracting events
with 10< jm�K�K�� � 1020 MeV=c2j< 20 MeV=c2

[see Figs. 3(a) and 3(c)] and MC simulated backgrounds,
we obtain the �-associated m���� distributions shown in

Figs. 3(b) and 3(d). Clear f0�980� signals are visible in
both cases, and there is an indication of f2�1270� !
����. The histogram in Fig. 3(b) is the result of a simu-
lation that includes f0�600�, f0�980� and a small fraction of
f2�1270� resonances and describes the general features of
the distribution. The curve in Fig. 3(d) shows a fit of two
Breit-Wigner functions corresponding to the f0�600� and
f0�980� with the relative phase set to �; events with
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FIG. 1 (color online). The (a) e�e� ! K�K����� and
(b) e�e� ! K�K��0�0 cross sections as a function of e�e�

C.M. energy. The direct measurements by DM1 [14] are shown
for comparison as open circles. Only statistical errors are shown.
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m��0�0�< 0:45 GeV=c2 are dominated by background-
subtraction uncertainties and are not used in the fit. The
fitted f0 parameters are consistent with PDG [15] values.
Figure 4 shows the m�K�K���� distributions in the char-
monium region for events with m�K�K�� in the � signal
and sideband regions. There is a strong J= signal in both
samples; from the signal-sideband differences of 103� 12
and 23� 6 events, we calculate

 B J= !����� � �J= ee �B�!K�K�

� �2:61� 0:30� 0:18� eV

and the first measurement of

 B J= !��0�0 � �J= ee �B�!K�K�

� �1:54� 0:40� 0:16� eV:

We also observe 10� 4  �2S� ! ����� decays, from
which we determine

 B  �2S�!����� � � �2S�ee �B�!K�K�

� �0:28� 0:11� 0:02� eV:

There is no signal for Y�4260� ! �����. In the region
jm������� �m�Y�j< 0:1 GeV=c2 we find 10 events,
and, assuming a uniform distribution, we estimate 9.2
background events from the 3:8–5:0 GeV=c2 region. This
corresponds to upper limits of 5.0 events and

 B Y!����� � �Yee < 0:4 eV

at the 90% confidence level, which is in agreement with the
upper limit obtained by CLEO [16] and is well below our
analogous measurement BY!J= ���� � �Yee � �5:5�

1:1�0:8
�0:7� eV [1]. This excludes models (e.g. [2]) in which

these two Y�4260� branching fractions are comparable.
We now consider the quasi-two-body intermediate state

�f0�980�. In each 25 MeV=c2 (40 MeV=c2) bin of
m�K�K���� we select K�K����� (K�K��0�0)
events with m������ (m��0�0�) in the
0:85–1:1 GeV=c2 region and fit their m�K�K�� distribu-
tion to extract the number of events with a true �. These
are shown in Fig. 5 with about 700 events for the
K�K����� channel and about 120 events for the
K�K��0�0 channel; there is a contribution of about
10% from e�e� ! ��� events where the pion pair is
not produced through the f0�980�. Both distributions show
the sharp rise from threshold as expected for a pair of
relatively narrow resonances, and a slow, smooth decrease
at high EC:M:, with signals for J= and  �2S� in Fig. 5(a).
Both also show a resonancelike structure at about
2:15 GeV=c2. There are no known meson resonances
with I � 0 near this mass.

Dividing by the efficiency, ISR luminosity, B�!K�K� �

0:491 [15], and Bf0!������0�0� � 2=3�1=3�, we obtain the
two consistent measurements of the e�e� ! �f0 cross
section shown in Fig. 6 (including about 10% ��� con-
tribution). We use the following function of s � E2

C:M::

 ��s� �
P�s�

P�m2
x�
�

��������Anre
�i x �

������
�0
p

mx�x
m2
x � s� i

���
s
p

�x

��������
2
; (1)

 Anr�s� � Nnr � �1� e
��	=a1�

4
� � �1� a2	� a3	

2�;

	 �
���
s
p
�m0; P�s� �

��������������������
1�m2

0=s
q (2)

where Nnr normalizes the amplitude of the nonresonant
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spectrum, �0 is a peak cross section for the hypothesized
resonance, and mx, �x and � x are the mass, total width
and relative phase of the nonresonant amplitude to the
standard Breit-Wigner amplitude. The factor P�s� gives a
good approximation of the two-body phase space factor for
particles with similar masses; both the ��1020� and
f0�980� have small but finite widths, and our selection

cut of m����> 0:85 GeV=c2 defines an effective mini-
mum mass, m0 � 1:8 GeV=c2. The form of Anr is deter-
mined from a simulation that takes the � and f0�980� line
shapes into account. A very sharp exponential cutoff (pa-
rameter a1) is needed to describe the simulation well, but
does not affect the spectrum well above threshold. There is
no theoretical prediction for the form at high s, other than
that, in the absence of resonances, it should fall smoothly
with increasing s. A second order polynomial (parameters
a2 and a3) describes the simulation, so we fit Eq. (2) to the
data, floating Nnr, a1, a2 and a3. The result without a
resonant component is shown as the dashed curve in
Fig. 6. The �2

0 � 80:5=�56� 5� has confidence level
P��2

0� � 0:0053, and the fitted parameter values are close
to those from the simulation; it is unlikely that a simple,
smooth threshold curve can accommodate the data.

Including a single resonance [Eq. (1)], we obtain a good
fit with �2

x � 37:6=�56� 9� [P��2
x� � 0:84], shown as the

solid line in Fig. 6. The fitted resonance parameter values
are

 �0 � 0:13� 0:04� 0:02 nb;

mx � 2:175� 0:010� 0:015 GeV=c2;

�x � 0:058� 0:016� 0:020 GeV=c2 and

 x � �0:57� 0:30� 0:20 rad:

The first error is statistical and the second is systematic.
Monte Carlo simulations show that the probability of such
a signal arising by chance is less than 10�3. The modestly
negative value of  x provides constructive interference
below the resonance peak and destructive interference
above it, in accordance with the data. Variations in the
resonance parameters are used to estimate the systematic
errors. The fit of the mass spectra in Figs. 5(a) and 5(b)
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with Eq. (1) with normalization to the number of events
under the Breit-Wigner curve gives 170� 63 and 31� 15
events for ���� and �0�0, respectively. Note that the
observed structure is close to the � �� production threshold
at 2:23 GeV=c2 and the opening of this channel may also
contribute to the �f0 cross section.

We perform a number of systematic checks. Treating
selected K�K�K�K� and ������ events as signal
(replacing two kaon masses by pion masses, or vice versa),
we observe no structure. Selecting K��892�K� events,
which have little kinematic overlap with �f0�980�, we
see no structure. Excluding the dominant K��892�K� in-
termediate states and selecting events with m������ in
the range 0:6–0:85 GeV=c2 for the charged mode, we
observe structure at 2:15 GeV=c2 with a similar yield.
Because of the many overlapping intermediate states, we
cannot perform a quantitative measurement. This will be
the subject of future investigation. Events with no f0�980�
candidate do not exhibit a structure in the K�K��0�0

mode. We conclude that the new structure decays to
�f0�980� with a relatively large branching fraction. We
estimate

 B x!�f0
� �xee �

�x�0m2
x

12�C
� �2:5� 0:8� 0:4� eV;

where we fit the product �x�0 to reduce correlations, and
the conversion constant C � 0:389 mb �GeV=c2�2.

In summary, we present the most precise measurements
of the cross sections for e�e� ! K�K����� and
e�e� ! K�K��0�0 from threshold to 4.5 GeV. In the
��� channels, we observe the J= and  �2S� but not the
Y�4260�. In the �f0 channel, we observe a new resonance-
like structure, which might be interpreted as an s�s analogue
of the Y�4260�, or as an s�ss�s state that decays predomi-
nantly to �f0�980�.
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