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ABSTRACT OF THE DISSERTATION 

 

Watershed Transport Processes of Anthropogenic Litter 

by 

Win C Cowger 

Doctor of Philosophy, Graduate Program in Environmental Sciences 
University of California, Riverside, September 2021 

Dr. Andrew Gray, Chairperson 
  

From abandoned vehicles to tiny plastic particles, anthropogenic litter ends up in 

the environment and damages ecosystems and economies. River ecosystems are 

highly impacted by anthropogenic litter and transport litter from land to the ocean. 

Managers, in particular, need information on watershed litter source and transport 

processes to make best management decisions. However, approaches to 

estimating anthropogenic litter fluxes are highly uncertain. In chapter two, we 

monitored litter accumulation on roadsides in the Inland Empire, CA. We 

determined that human transport was the primary process transporting litter from 

the sale location to the roadsides we studied. We quantified litter accumulation 

rates along roadsides as 1170 (917-1447) kg1km-1year-1 and established a 

harmonization tool in chapter three for comparing our results to other studies. Litter 

from roadsides is one source of macroplastics in river stormflow along with direct 

dumping and litter already within the channel. In chapter four, we investigated the 

sources of macroplastic in the Santa Ana River and tested the hypothesis that 
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discharge controled macroplastic concentration. The particle size distribution of 

macroplastic particles (validated with the methodology in chapter five) did not 

respond to hydrologic transport mode (i.e. stormflow vs lowflow) suggesting that 

macroplastics in riverflow were primarily sourced from the stream channel. We 

found that the relationship between discharge and macroplastic concentration was 

nonmonotonic, and there were path-dependent effects causing variability. We 

estimated annual macroplastic flux in the Santa Ana as 18.2 (2.9-222.2) metric 

tonnes per year. Within the channel, microplastics (small plastic particles < 5 mm) 

can be influenced by turbulence to create concentration depth profiles. In chapter 

six, we tested the hypothesis that microplastics are transported via a predominant 

concentration depth profile, commonly assumed in other studies. We found that 

microplastics can be transported in any transport mode and that misapplication of 

transport mode assumptions to monitoring and modeling approaches increase 

uncertainty or systematic bias by multiple orders of magnitude. Overall, these 

studies support the advancement of the science and management of 

anthropogenic litter by bringing us closer to accurately monitoring and modeling a 

watershed mass balance of anthropogenic litter, and its plastics constituents. 

 

 

 

 

 



xi 
 

Table of Contents 

ABSTRACT OF THE DISSERTATION ........................................................................... ix 

List of Figures ............................................................................................................ xv 

List of Tables ........................................................................................................... xviii 

Chapter 1: Introduction .................................................................................................. 1 

1.1 Impact of anthropogenic litter on the watershed environment ................................ 1 

1.2 Management of anthropogenic litter ...................................................................... 1 

1.3 History of watershed transport research on anthropogenic litter and open 

questions .................................................................................................................... 3 

1.4 Translating sediment transport fundamentals to anthropogenic litter ..................... 5 

1.5 Overview of research objectives and hypotheses .................................................. 6 

Chapter 2: Litter generation on roadsides ...................................................................... 7 

2.1 Abstract ................................................................................................................. 7 

2.2 Introduction ........................................................................................................... 8 

2.3 Methods ...............................................................................................................11 

2.3.1 Survey region ....................................................................................................11 

2.3.2 Survey methods ................................................................................................12 

2.3.2.1 Receipt dataset ..............................................................................................16 

2.3.2.2 Monitoring dataset ..........................................................................................17 

2.3.3 Statistical analysis .............................................................................................19 

2.3.3.1 Origins and transport processes .....................................................................19 

2.3.3.2 Litter accumulation rates ................................................................................20 

2.3.3.3 Litter composition ...........................................................................................21 

2.3.3.4 Data availability ..............................................................................................21 

2.4 Results .................................................................................................................22 

2.4.1 Origins and transport processes ........................................................................22 

2.4.2 Litter accumulation rates ...................................................................................24 

2.4.3 Litter composition ..............................................................................................26 

2.5 Discussion ...........................................................................................................28 

2.5.1 Origins and transport processes ........................................................................28 

2.5.2 Litter accumulation rates ...................................................................................29 



xii 
 

2.5.3 Litter composition ..............................................................................................30 

2.6 Conclusions .........................................................................................................31 

Chapter 3: Trash Taxonomy .........................................................................................32 

3.1 Abstract ................................................................................................................32 

3.2 Introduction ..........................................................................................................33 

3.3 Methods ...............................................................................................................36 

3.3.1 Developing Relational Tables ............................................................................36 

3.3.1.1 Approach and Assumptions ...........................................................................36 

3.3.1.2 Material-Item Relational Table ........................................................................38 

3.3.1.3 Misaligned Class Table ..................................................................................38 

3.3.1.4 Alias Tables ...................................................................................................38 

3.3.1.5 Hierarchical Tables ........................................................................................39 

3.3.1.6 Database Query Tool Development ...............................................................40 

3.3.1.7 Relational Table Cleaning and Valdation ........................................................40 

3.3.2 Assessment of the Current State of Trash Classification ...................................41 

3.3.2.1 Summary Statistics ........................................................................................41 

3.3.2.2 Factor Analysis...............................................................................................42 

3.3.2.3 Comparability Analysis ...................................................................................42 

3.4 Results and Discussion ........................................................................................44 

3.4.1 The State of Trash Taxonomy ...........................................................................44 

3.4.1.1 Relational Table Summaries ..........................................................................44 

3.4.1.2 Factor Analysis of Survey lists ........................................................................47 

3.4.1.3 Comparability Analysis of Survey list ..............................................................50 

3.4.2 Applications of the Trash Taxonomy Tool .........................................................55 

3.4.2.1 Practice Limitations ........................................................................................55 

3.4.2.2 Practitioner Collaboration ...............................................................................59 

3.4.2.3 Future of the Trash Taxonomy Tool ...............................................................60 

3.5 Data Availability Statement ..................................................................................62 

Chapter 4: Concentration discharge relationships of macroplastics ..............................63 

4.1 Abstract ................................................................................................................63 

4.2 Introduction ..........................................................................................................64 



xiii 
 

4.3 Study Location .....................................................................................................67 

4.4 Methods ...............................................................................................................69 

4.4.1 Field Methods ...................................................................................................69 

4.4.1.1 Macroplastic measurements...........................................................................69 

4.4.1.2 Hydrologic Measurements ..............................................................................71 

4.4.2 Plastic particle characterization .........................................................................72 

4.4.3 Estimating macroplastic concentrations and uncertainties .................................75 

4.4.4 Statistical analysis .............................................................................................78 

4.4.4.1 Lowflow and stormflow particle size distribution .............................................78 

4.4.4.2 Hydrograph hysteresis and storm timing ........................................................79 

4.4.4.3 Macroplastic concentration-discharge rating curve .........................................79 

4.4.4.4 Estimating annual mass flux ...........................................................................80 

4.4.4.5 Data and code availability ..............................................................................81 

4.5 Results and discussion ........................................................................................81 

4.5.1 Lowflow and stormflow particle size distribution ................................................81 

4.5.2 Hydrograph hysteresis and storm timing ...........................................................83 

4.5.3 Macroplastic concentration-discharge rating curve ............................................86 

4.5.4 Estimating annual macroplastic flux ..................................................................87 

4.6 Conclusions .........................................................................................................89 

Chapter 5: Open Spectroscopy.....................................................................................91 

5.1 Abstract ................................................................................................................91 

5.2 Introduction ..........................................................................................................92 

5.2 Experimental Section ...........................................................................................94 

5.2.1 Open Specy Features and Documentation ........................................................94 

5.3 Results and Discussion ........................................................................................98 

5.3.1 Review of the current tools ................................................................................98 

5.3.2 Validation of Open Specy ................................................................................ 100 

5.4 Conclusion ......................................................................................................... 102 

5.5 Data Availability ................................................................................................. 102 

Chapter 6: Concentration depth profiles of microplastics ............................................ 104 

6.1 Abstract .............................................................................................................. 104 



xiv 
 

6.2 Introduction ........................................................................................................ 105 

6.3 Materials and Methods ....................................................................................... 108 

6.3.1 Microplastic concentration depth profiles ......................................................... 108 

6.3.1.1 Theoretical basis for modified Rouse profile ................................................. 108 

6.3.1.2 Predicting theoretical microplastic concentration depth profiles .................... 113 

6.3.1.3 Estimating observed microplastic concentration depth profiles ..................... 115 

6.3.2 Application to positively buoyant microplastic concentration depth profiles ..... 116 

6.3.3 Potential surface sampling bias and uncertainty .............................................. 118 

6.3.3.1 Estimating the bias of surface sampling and assuming wash load ............... 119 

6.3.3.2 Estimating the potential bias of surface sampling and assuming surface load

 ................................................................................................................................ 120 

6.3.3.3 Estimating uncertainty of surface sampling at varying sample proportions due 

to concentration depth profiles ................................................................................. 121 

6.3.3.4 Bias and uncertainty model assumptions ..................................................... 121 

6.3.4 Data analysis software and workflow............................................................... 122 

6.4 Results and Discussion ...................................................................................... 122 

6.4.1 Microplastic concentration depth profiles ......................................................... 122 

6.4.2 Application to positively buoyant microplastic concentration depth profiles ..... 125 

6.4.3 Potential surface sampling bias and uncertainty .............................................. 126 

6.4.4 Future work ..................................................................................................... 130 

Chapter 7: Conclusion ................................................................................................ 132 

7.1 Advancements to watershed mass balances ..................................................... 132 

7.2 Future work ........................................................................................................ 134 

References ................................................................................................................. 136 

Appendix A – Chapter 2 supplemental information ...................................................... 162 

Appendix B – Chapter 3 supplemental information ...................................................... 165 

Appendix C – Chapter 4 supplemental information ...................................................... 170 

Appendix D – Chapter 6 supplemental information ...................................................... 174 

 

  



xv 
 

List of Figures 

Chapter 2 

Figure 2-1: Monitoring locations ......................................................................... 12 

Figure 2-2: Data flow .......................................................................................... 15 

Figure 2-3: Transport processes ......................................................................... 23 

Figure 2-4: Change in accumulation rates .......................................................... 24 

Figure 2-5: Accumulation rate spatial differences ............................................... 25 

Figure 2-6: Trash class proportions .................................................................... 27 

 

Chapter 3 

Figure 3-1: Relational Table Visualization .......................................................... 37 

Figure 3-2: Items Hierarchy ................................................................................ 45 

Figure 3-3: Materials Hierarchy .......................................................................... 46 

Figure 3-4: MCA Items ....................................................................................... 49 

Figure 3-5: MCA Materials .................................................................................. 50 

Figure 3-6: Average Comparability ..................................................................... 52 

Figure 3-7: Taxonomy Classification Example.................................................... 53 

 

Chapter 4 

Figure 4-1: Survey location ................................................................................. 68 

Figure 4-2: Sampling methodology ..................................................................... 70 

Figure 4-3: Sampling period hydrograph ............................................................ 71 



xvi 
 

Figure 4-4: Image analysis procedure ................................................................ 73 

Figure 4-5: Particle size differences for settling and rising particles ................... 77 

Figure 4-6: Particle size differences for lowflow and stormflow .......................... 82 

Figure 4-7: Count concentration-discharge hysteresis ....................................... 85 

Figure 4-8: Count concentration-discharge rating curve ..................................... 87 

Figure 4-9: Annual flux estimates ....................................................................... 89 

 

Chapter 5 

Figure 5-1: Workflow diagram............................................................................. 95 

 

Chapter 6 

Figure 6-1: Concentration-depth profile examples ............................................ 113 

Figure 6-2: Conceptual model for bias assessment .......................................... 120 

Figure 6-3: Potential concentration-depth profiles ............................................ 124 

Figure 6-4: Application of model ....................................................................... 126 

Figure 6-5: Bias assessment ............................................................................ 128 

 

Appendix A 

Figure A-1: Quantile regression for offset assessment ..................................... 162 

Figure A-2: Survey dates at monitoring locations ............................................. 163 

Figure A-3: Comparison of receipt source location and nearest source ........... 164 

 



xvii 
 

Appendix C 

Figure C-1: Cumulative water flux .................................................................... 170 

Figure C-2: Particle projected area to mass relation ......................................... 171 

Figure C-3: Mass concentration hysteresis ...................................................... 172 

Figure C-4: Mass concentration rating curve .................................................... 173 

 

Appendix D 

Figure D-1: Study region .................................................................................. 174 

Figure D-2: Particle size to rising velocity relation ............................................ 175 

Figure D-3: Differences between modeled and observed concentration-depth 

profiles .............................................................................................................. 176 

 

  



xviii 
 

List of Tables 

Chapter 3 

Table 3-1: Class groups ..................................................................................... 48 

Table 3-2: Lumping example .............................................................................. 55 

 

Chapter 5 

Table 5-1: Review of tool functionality .............................................................. 100 

 

Chapter 6 

Table 6-1: Concentration-depth profile descriptions ......................................... 112 

 

Appendix B 

Table B-1: Glossary .......................................................................................... 165 

Table B-2: Use Cases ...................................................................................... 166 

Table B-3: Comparability Metrics ...................................................................... 167 

 

 

 



1 
 

Chapter 1: Introduction 

1.1 Impact of anthropogenic litter on the watershed environment 

Anthropogenic litter causes economic, environmental, and human health issues. 

Anthropogenic litter on coastal beaches negatively impacts tourism if unmanaged1. 

Plastic is ubiquitous in our air and water and can be up to 84% of the anthropogenic 

litter items observed in the environment2. Plastic debris has proliferated in our 

oceans3,4, causing habitat damage5,6, wildlife endangerment7,8, impeded 

navigation9, and significant economic losses10. Aquatic life, from bivalves to 

whales, can be harmed by ingesting plastic of all sizes11. Larger particles present 

a physical hazard from entanglement and blockage of the digestive tract 7. Smaller 

particles are expected to present more significant hazards due to their ability to 

enter and damage tissues12. Widespread contamination13, ease of ingestion, and 

toxicity of inherent and adsorbed compounds14 heighten the potential for 

bioaccumulation and impacts to both marine life and human health15,16.  

1.2 Management of anthropogenic litter 

The Resource Conservation and Recovery Act of 1976 created waste 

management as we see it today in the United States by requiring regional planning 

of waste management and closing open landfills17. However, some waste still 

escapes management and ends up in our waterways. The Clean Water Act 

requires that streams in the United States are monitored to assess potential 
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pollution from a wide range of contaminants, including anthropogenic litter18. In 

California, the state adopted “The Trash Ammendments” in 201519 which regulate 

anthropogenic litter greater than 5 mm in length in rivers (macro-litter). Once a 

waterbody is determined "impaired" (polluted), responsible entities must develop 

plans for rectification by either installing trash capture devices in their storm drains 

or demonstrating the equivalency using a combination of other mitigation 

strategies (e.g., public education, street sweeping, river booms, and manual 

cleanup, and trash capture devices in storm drains.) Remediation of anthropogenic 

litter in United States' waterways costs hundreds of millions of dollars annually20,21.  

 

While some remediation of anthropogenic litter is necessary to undo environmental 

damage, prevention is key to avoiding damage22. Educational campaigns23, 

improved labeling on products24, waste bin placement25, and signage25 have been 

shown to prevent anthropogenic litter to varying degrees. In California, policy 

actions on preventing plastic macro litter include the straw ban26 and plastic bag 

ban27. Other similar bans are underway across the country. As efforts to prevent 

macro-debris have progressed, concerns over microplastic impairment have 

risen28. Recent regulations have targeted one type of microplastic, a ban on small 

plastic particles used in cosmetics (microbeads) (AB 888). There is a critical need 

by managers and policymakers to understand the sources and transport of 

anthropogenic litter to develop the best remediation and prevention practices and 

assess their effectiveness29. 
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1.3 History of watershed transport research on anthropogenic litter and open 

questions 

Plastic pollution research today is exponentially growing30. Plastic pollution 

sampling began in 1972 when Edward Carpenter noticed plastic on the Sargasso 

Sea surface and was catalyzed in 2001 when Charles Moore drew public attention 

to marine plastic pollution31,32. Today plastic pollution in the ocean is increasing33. 

Studies have concluded that the primary source of marine plastic pollution is land-

based and transported to the ocean via rivers34,35.  However, relatively few studies 

have been conducted in freshwater systems compared to marine systems36.  

 

A major objective of anthropogenic litter research is to establish strategies for 

removing anthropogenic litter from the environment and stopping it from getting 

there in the first place. A watershed mass balance for anthropogenic litter would 

facilitate assessing and prioritizing these management efforts on land37. The basic 

function for the watershed mass balance states that the change in storage within 

a watershed must be equal to the fluxes into the watershed subtracted by the fluxes 

out of the watershed. Fluxes of anthropogenic litter into the watershed include: 

littering, dumping, and other forms of unsound waste handling38. Fluxes of 

anthropogenic litter out of the watershed environment include: river anthropogenic 

litter flux35 and cleanup39. Early anthropogenic litter watershed mass balance 

models have proven uncertain by multiple orders of magnitude due to incomplete 

understandings of the fluxes into and out of the watershed40.   
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Baseline research on terrestrial anthropogenic litter fluxes in Southern California 

highlights the current understanding of watershed transport dynamics. Kim et al.41 

described anthropogenic litter transported from roadways to rivers through storm 

drains during runoff events. Van et al.42 found a correlation between plastic 

concentration on Southern California beaches and storm event occurrence, 

suggesting an increased plastic flux during stormflow when discharge is higher. 

Moore et al.43 conducted the first study of plastic flux in Los Angeles streams, 

where they found varying microplastic concentrations with stream depth, 

suggesting that microplastics have a variety of concentration depth profiles. Open 

questions remain about how litter gets to roadways, whether discharge can be 

used to predict anthropogenic litter concentration, and how to predict plastic 

concentration depth profiles.  

 

While research on anthropogenic litter transport processes advanced, large 

methodological gaps were revealed which hampered comparisons between 

studies and accurate characterization of anthropogenic litter. Studies worldwide 

were creating unique classification schemes for anthropogenic litter (e.g. paper, 

plastic, glass) without a strategy for merging those classes with other studies that 

may have used slightly different words44. This presented an opportunity to develop 

a relational database and software tool for harmonizing trash classes. Microplastic 

analysis began to adopt Raman and FTIR spectroscopy as the gold standards for 
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identifying polymer composition of plastic in samples 45. However, the commercial 

software available was prohibitively expensive and innaccurate46. This presented 

an opportunity to develop affordable and accurate software for FTIR and Raman 

spectral analysis of plastic samples. While conducting the primary research in this 

dissertation, we advanced these methodological components to support our 

research and the broader scientific community.  

1.4 Translating sediment transport fundamentals to anthropogenic litter 

While flux-based anthropogenic litter monitoring in rivers first began in the 

1990s47,48, suspended loads of 'natural' mineral and organic sediments have been 

monitored in rivers for over a century49,50. Fundamentals of natural sediment 

transport dynamics seem to apply to anthropogenic litter transport51,52, which is 

expected since anthropogenic litter is composed of particles of a wide range of 

shapes and sizes similar to natural sediment. However, the majority (> 99%) of 

mineral sediments found in streams display a narrow range of particle densities, 

most of which are greater than water53, unlike plastic density which varies from 

0.03 – 2.2 g1ml-1 51,54. Other anthropogenic litter factors like shape55 and rigidity56 

can also differ from mineral particles. Anthropogenic litter must always be initially 

sourced from human activities, but mineral sediment sources are naturally 

ubiquitous. These and other differences may compromise the generalizability of 

mineral transport equations. By studying the watershed transport of anthropogenic 

litter, we will develop a more robust understanding of particle transport as a whole.  
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1.5 Overview of research objectives and hypotheses 

In the chapters of this dissertation, we advance current knowledge gaps in the 

scientific understandings of watershed transport processes of anthropogenic litter 

and establish new methodologies for improving study comparability and accuracy. 

In chapter 2, we assess the sources and transport of litter accumulation along 

roadsides in the Inland Empire. In chapter 3, we introduce and discuss a method 

we developed for making the results found in chapter 2 comparable with other 

studies. In chapter 4, we assess sources of macroplastic and their concentration 

discharge relationships in Santa Ana riverflow. In chapter 5, we introduce and 

discuss a method we developed for accurately characterizing plastic material types 

of the macroplastic particles found in chapter 4. In chapter 6, we improve plastic 

flux estimation for fluvial systems by expanding the theory of particle concentration 

depth profiles to microplastic particles using the Rouse profile equation.  
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Chapter 2: Litter generation on roadsides 

2.1 Abstract  

Urban areas are the primary source of human-made litter globally, and roadsides 

are a primary accumulation location in urban areas. The goals of this study were 

to investigate how litter arrives at roadsides and determine the accumulation rate 

and composition of roadside litter. We monitored select roadsides in the Inland 

Empire, California, for litter abundance (count) and composition (material, item, 

and brand type) primarily during periods with little rain. Receipt litter with time and 

sale location information was used to investigate whether wind, runoff, or human 

travel were dominant transport agents. Only 9% of the receipts could have 

experienced runoff, and wind direction was not correlated to the receipt transport 

direction. However, human travel and receipt transport distances were similar in 

magnitude and distribution, suggesting that the displacement of litter from the 

place of purchase was predominantly affected by human travel during dry periods. 

The median distance receipts traveled from the sale location to the litter 

observation location was 1.6 km, suggesting that most sources were nearby to 

where the litter was found. Litter accumulation rates were surprisingly stable (mean 

40349 (33255-47865) pieces1km-1year-1 or 1170 (917-1447) kg1km-1year-1) despite 

our repeated cleanups and the COVID-19 stay-at-home orders. A new approach 

was employed to hierarchically bootstrap litter composition proportions and 

estimate uncertainties. The most abundant materials were plastic and paper. 
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Food-related items and tobacco products were the most common item types. The 

identified branded objects were from the primary manufacturers (Philip Morris (4, 

2-7 %), Mars Incorporated (2, 1-3 %), RJ Reynolds (2, 1-3 %), and Jack in The 

Box (1, 1-3 %)), but unbranded objects were prevalent. Therefore, identifiable 

persistent labelling on all products would benefit future litter-related corporate 

social responsibility efforts. Future studies should also investigate transport during 

wet periods, when runoff may be a more effective transport agent. High-resolution 

monitoring on roadsides can inform urban litter prevention strategies by elucidating 

litter source, transport, and accumulation dynamics. 

2.2 Introduction  

Urban areas are the primary sources of anthropogenic litter that damages aquatic 

and terrestrial environments34,35,39,57. The source of all anthropogenic litter is at the 

production location58. Production lines transform litter into various forms and 

transport it to a sale location. Consumers purchase the litter from the sale location 

and transport it further38. At any point across this system, there can be a loss of 

litter to the urban environment. Roadsides are the primary litter accumulation 

location within urban areas38. In the United States, the major roadside litter supply 

processes are suspected to be individual littering, illegal dumping, and improper 

household waste disposal59. Although these mechanisms are typically associated 

with consumer actions, the entire supply chain and governing bodies need to be 

engaged to solve litter pollution22. Producers can create more reusable or less 
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harmful products60, and governments can pass ordinances to regulate products 

and improve waste management strategies22. 

After humans mismanage litter and it escapes into the environment, it can be 

transported by wind61 or runoff62 to other locations or removed by cleanup activities 

or degradation. Litter observed during roadside monitoring campaigns will reflect 

an integration of these processes. Recent policy research has highlighted the 

importance of local action63 and source identification64 on ending litter 

accumulation. A strategy for identifying which sources are pertinent to a region 

could be a critical decision-making tool. Receipts are a novel piece of litter that 

often have location and time information about the sale location they originated 

from. The first goal of this study is to use receipt trajectories to unravel the relative 

importance of runoff, wind, and human transport mechanisms and describe the 

proximity of litter sources to litter observations.  

Identifying prevention strategies to end the accumulation of roadside litter is a 

critical step for improving urban environmental quality and avoiding the financial 

costs of cleanup65. A common observation in littering behavior research is that 

people are more likely to litter in littered areas66. We hypothesized that removing 

litter from roadsides to keep them clean would decrease litter accumulation 

throughout the study duration. During the COVID-19 pandemic other studies 

observed increases in the proportion of personal protective equipment and sanitary 

products67,68 and decreases in other types of pollution, e.g. air69. The second goal 
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of this study is to examine the role of frequent cleanup in reducing litter 

accumulation and the impact that the COVID-19 pandemic had on litter. 

Roadside litter composition is critical to describing litter properties (which inform 

hazard and fate assessment) and identifying litter sources. Typically, material type 

(resource) and item type (shape) compositions are assessed to describe litter. 

Brand information directly ties litter to a corporation that produces it and is less 

often measured70–72. Litter composition is often reported as a total proportion of 

litter classes (material, item, brand types) without any uncertainty metrics73. 

Information about brands can be used to hold producers accountable and improve 

environmental conditions through corporate social responsibility initiatives74. 

Corporate social responsibility initiatives are voluntary and mandatory actions by 

corporations to improve social and environmental quality. Corporate social 

responsibility initiatives could benefit from advancing tools that facilitate converting 

brand information to manufacturers and quantifying uncertainty in brand 

proportions observed on litter in the environment. Recently, a new relational and 

hierarchical classification system (Trash Taxonomy) was developed to thoroughly 

assess litter composition by material, item, and brand, but it has not been used in 

the peer-reviewed literature75. The third goal of this study is to assess gaps in 

current litter classification strategies and quantify the uncertainty of litter 

composition proportion estimates. 
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2.3 Methods  

This study monitored roadside litter in the Inland Empire, California, using high-

resolution surveying of litter accumulation and composition. We aim to assess 

transport, accumulation, and source dynamics of litter to inform policy and litter 

management. 

2.3.1 Survey region  

The Inland Empire includes San Bernardino County and Riverside County, 

California, United States (Figure 2-1). The topography of the area includes 

mountains and valley regions, and major land uses are natural vegetation (>90%), 

developed (2-5%), and agricultural (1-4%) areas76. The climate is Mediterranean 

with 50 cm of average annual precipitation, primarily falling as rain from October 

through April, and hot dry summers with little to no rain. The region has a mean 

population density of 60 people1km-2, median poverty rate of 41%, and median 

traffic density of 543 (vehicles-km1hr-1km-1)77–79. The Inland Empire has a robust 

waste management system that includes municipal and private street-side 

collection of three recovery streams (landfill, recycling, and yard waste), street 

sweeping, litter capture devices in storm drains and rivers, as well as regular and 

ad-hoc cleanups by municipal employees and community members. 
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Figure 2-1: Monitoring locations site numbers are labeled on the map and orange 
dots show locations where receipts were found. We used all receipts found in this 
study, but not all study locations met the standardization criteria for monitoring 
locations. That is why some receipts do not have a site label. Riverside and San 
Bernardino counties boundaries are in red (the Inland Empire). A red dot is placed 
on the inset map of the United States where the Inland Empire is located. Numbers 
on the borders are latitude and longitude coordinates.  

2.3.2 Survey methods 

Eighteen researchers each surveyed a unique ~100 to 1000 meter length of 

roadside for litter 1-3 times per week for two to four weeks in 2018 or 2019 in the 

following Inland Empire cities: Riverside, Moreno Valley, Loma Linda, San Dimas, 

and Palm Desert (Figure 2-1). Both sides of the road were surveyed at each site, 

including the curb, sidewalk, and back sidewalk margin. Private property was not 
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entered. Site length depended on litter abundance, and researchers were 

instructed to survey until approximately 100-300 pieces of litter were observed 

during their first survey. This strategy was used to ensure a low likelihood of non-

detect. Each researcher recorded the site conditions, observations, and any 

changes to the methodology. To maintain safety, researchers generally stayed on 

the sidewalk out of the road. Observations indicated that most litter was 

concentrated near the sidewalk curb and along the back sidewalk margin. 

Before beginning surveys, all surveyors were trained in person during a 1-hour 

session and joined a group called Our Clean Community in Litterati, a 

crowdsourcing litter app80 for data collection. Although we used the Litterati 

application in this study, Open Litter Map81 or geolocated images on any phone 

could produce the same results.  

During each survey, all litter (> 1 cm length) was recorded and removed from the 

study location. Litterati was utilized to photograph litter and record the material, 

item, and brand type. Location (± 7 m), date, and time (Figure 2-2). Digital images 

of each object were taken at a location within 1 m of where the object was found 

(Figure 2-2A) while ensuring branding marks were visible in the image (Figure 2-

2C). Receipts were flattened so that all information on the receipt was viewable in 

the image (Figure 2-2A). If multiple objects of the same type or fragments from a 

single object were found, those objects were logged together in one image. Bags 

full of litter were not deconstructed, but loose piles of litter were. Large or 
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hazardous objects were left at the site and only photographed on first observation. 

Images were retaken if blurry. Trash classes were recorded in the app during 

cleanup. Material and item types were categorized in Litterati (Figure 2-2C) using 

the most up-to-date version of the Trash Taxonomy75. When a litter class did not 

exist in the Trash Taxonomy, a new class was created to describe the litter. Brands 

were recorded when found on an object. 

Post survey, each researcher delineated their study area on a map using Google 

Maps (Figure 2-2B). Litter location accuracy was calculated as the mean distance 

from all points recorded outside the study area to the surveyed boundary (Figure 

2-2B). Each researcher cleaned their data by removing duplicate or inaccurate 

images, correcting incorrect tags, noting when multiple objects were in one image, 

and identifying any data points that were not for this study. In total, eighteen 

locations were surveyed, and 146 receipts were found. 
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Figure 2-2: All data from surveyors were compiled in a centralized database using 
Litterati. A) When receipts were found, they were laid out flat to ensure readability. 
Source identification in this study was described using the information on receipts 
found during the study. B) All litter observations for Site 7 are presented. Every 
piece of litter has a geographic coordinate and a timestamp. Survey boundaries 
(blue outline) were provided for each monitoring location. Litter accumulation rates 
were computed using the observations at each site on each day. C) During the 
survey, we described the material, item, and brand type of every piece of litter 
found and recorded images of the pieces of litter. This data was used to interpret 
litter composition. 

Data were archived by Litterati and accessible through their data portal80, including 

images, user input labels, time stamps, latitude, and longitude coordinates of every 

piece of litter (Figure 2-2). Further refinement of the data resulted in two datasets 

structured for our specific study objectives. The first dataset (Receipt dataset) 

includes 146 receipts found at all eighteen of the survey locations. Receipt 

observations were extracted from the total dataset by searching the tags for the 
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keyword "receipt".  Of the 146 receipts, 72 had both time and location information 

for the sale transaction, 85 had at least location information, and 75 had at least 

time information. The second dataset (Monitoring dataset) focused on data from 

survey locations with similar quality control procedures to compare and combine 

litter accumulation and composition data across sites. 

2.3.2.1 Receipt dataset  

We calculated transport metrics for receipts including time and distance traveled 

and corresponding precipitation, wind, and human transport metrics. Receipt travel 

distances were calculated as Haversine distance (straight line) from the latitude 

and longitude coordinates where the object was found to the address listed or 

nearest possible location. Haversine distance was divided by the time between 

when the receipt was created and when it was found to determine the transport 

rate (m1day-1). We compiled wind (mean daily wind direction, mean daily wind 

speed) and precipitation (total daily) data for the entire observation period from a 

weather station (KRAL) near the center of our study region using the Midwestern 

Regional Climate Center's cli-MATE application82. Mean daily wind directions were 

vector averaged with daily wind speed for the receipt's potential duration in the 

environment to estimate the vector mean wind direction the receipt could have 

experienced. We acknowledge that a single weather station cannot represent 

spatial variability of wind direction and speed. However, meteorological stations 

are limited in the study region and gridded climate products are prone to large 
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uncertainties. The receipt transport direction was calculated as the straight 

direction from the address on the receipt to where the receipt was found. Receipts 

with distances were collected from 2018-09-16 to 2019-11-18, and all were found 

in Riverside and San Bernadino counties. Data on human trip distances from 2019-

01-01 to 2019-12-31 in San Bernardino and Riverside Counties were acquired 

from the Bureau of Transportation Statistics83. These data were created using 

smartphone tracking data and aggregated daily to the county level. Trips were 

defined as movements with a stay of longer than 10 minutes. The trip distances 

for each day were aggregated in scaled histogram bins. We made the data 

continuous by randomly sampling the histogram bins with uniform probability 

distributions ranging from the smallest to largest value for the bin.  

2.3.2.2 Monitoring dataset  

The monitoring data passed final data cleaning and quality assurance protocols 

before being used in statistical analysis. All surveyors included in the monitoring 

dataset needed to have cleaned their data and removed trash from their entire site 

at some point during the study to ensure high quality and comparable data. Only 

7 of the 18 locations met this criterion and the others were excluded. When multiple 

objects occurred in one image, the image metadata was copied to create additional 

entries for different litter types. One site was unable to be fully cleaned during the 

first two days of the study, so the data for those first two days were omitted from 

the monitoring dataset. A technical malfunction in the app disrupted data logging 
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at one site during one survey, but the litter was manually tallied outside Litterati 

and added to the database without a timestamp or latitude and longitude 

information. One site was surveyed on two separate occasions. First, a year before 

the COVID-19 pandemic and second, during the 2020 stay-at-home orders issued 

by California Governor Gavin Newsome effective March 19, 2020. The activity of 

walking around the neighborhood (essential for conducting this study) was 

permitted by the stay-at-home order. The stay-at-home order continued throughout 

the second survey period.  

Datasets were reconciled to the Trash Taxonomy tables using Open Refine84 and 

reconcile-csv85, and socio-geographical information was added to them. We 

identified the Census tract for survey locations using the Census web explorer. 

Demographic and environmental data were extracted for each location by merging 

Census tracts with the 2015 Census tract planning database78 and 

CalEnviroScreen 3.0 dataset79. Population density was calculated by dividing the 

population in the tract by the tract area. Road length was calculated in Google 

Earth by tracing the centerline of the road in the monitoring area. At monitoring 

locations, mean population density was 1617 people-1km-2, median percent of 

people in poverty of 38%, median traffic density of 1529 (vehicles-km1hr-1km-1), 

containing only urban land use areas (residential and mixed commercial-

residential). Road widths ranged from 10 m to 25 m, and road lengths ranged from 

121 m to 483 m.  
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Litter accumulation rates were calculated for each date by dividing the number of 

litter observed by the total number of days since the previous survey and by the 

length of the surveyed road. We also computed the litter mass accumulation by 

conducting a literature review to find the average mass of each litter object72,86,87. 

When a reasonable estimate for an object's mass was unavailable, we used the 

suggested 82.5 g estimate86. The mass conversion table was applied to every 

found object to compute mass accumulation rates similar to the count 

accumulation rates. 

Litter composition was assessed using the Trash Taxonomy. Data were merged 

to the most up-to-date Trash Taxonomy material, items, and brand alias, and 

hierarchy tables. This procedure makes the data compatible with the 69 other litter 

surveys incorporated in the Trash Taxonomy. Litter composition was computed for 

each survey day by dividing the total number of pieces observed for an individual 

category by the total number of pieces observed. 

2.3.3 Statistical analysis  

2.3.3.1 Origins and transport processes 

We tested three potential litter transport mechanisms: runoff, wind, and people. If 

precipitation occurred between when the receipts were created and found, we 

considered runoff a possible transport mechanism. Receipts that had time 

difference data (75) were used for precipitation analysis. If the vector mean wind 
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and receipt transport directions were correlated by circular correlatio 88 (absolute 

value of correlation > 0.2 and p < 0.05), we would consider wind a possible 

important transport mechanism. Receipts that had time and location data (72) were 

used in the wind direction correlation analysis. We also implemented a spoke plot89 

for visualizing circular correlations, which was not implemented elsewhere in R to 

our knowledge. The cumulative distributions of litter transport distances and 

human trip distances were assessed for similarities and differences for the 85 

receipts with location data. Quantiles were derived for the receipt and human 

transport distance distributions at 0.01 – 0.99 for a 0.01 step size, and an ordinary 

linear regression was performed between the two log10 transformed distributions 

to assess the offset and goodness of fit.  

2.3.3.2 Litter accumulation rates  

The effect of persistent cleanup as an intervention to litter count accumulation was 

tested by plotting each survey site's litter accumulation time series and assessing 

the change in litter accumulation over each study duration using linear regression. 

We expected greater than a 50% difference in mean litter accumulation rate 

between pre-COVID-19 and during COVID-19 stay-at-home. The significance of 

differences were assessed using overlap in 95% confidence intervals. Mean litter 

accumulation confidence intervals were generated by bootstrapping (resampling 

with replacement, n = 10,000). Post hoc power analysis was conducted in R to 

determine what shifts in the mean litter accumulation rate could be visible if future 
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repeat studies were conducted. The mean litter accumulation rate from all 

monitoring observations, the total sample size, and the sample standard deviation 

were used in a t-test power analysis to determine the Cohens d effect size which 

would be necessary to achieve a power of 0.8 and a p value of 0.05 if the same 

study were repeated. 

2.3.3.3 Litter composition  

Differences between litter class proportions were assessed statistically using 

confidence intervals calculated using bootstrapped (resampling with replacement, 

n = 10,000) mean proportions for each survey. Sunburst plots were generated with 

the plotly package90 and the data.tree package91 to hierarchically display clustered 

proportions and their confidence intervals. Any material or item class with a mean 

proportion less than 10% was considered non-essential to display. Any brand class 

with a mean proportion of less than 1% was considered non-essential to display. 

2.3.3.4 Data availability  

All data and source code for data analysis and figure creation is provided open 

access (CC BY 4.0) with version control history on GitHub 

(https://github.com/wincowgerDEV/OurCleanCommunity). For original raw data 

from sources published beyond this study, please see references linked 

throughout the text.  
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2.4 Results 

2.4.1 Origins and transport processes  

Three plausible mechanisms could transport receipts in the Inland Empire:  runoff, 

wind, and people. The median receipt transport rate was 290 m1day-1, and 50% of 

the data fell between 147 m1day-1 and 1497 m1day-1. Although we do not have 

estimates of litter transport rates over land due to wind or runoff, we suspect the 

transport rates observed were much faster than those processes. Nevertheless, 

we rigorously tested the likelihood of wind and runoff transport. Based on the 

precipitation data during the receipt's potential duration in the environment, we 

determined that 68 out of 75 receipts (91 %) did not experience any precipitation 

(Figure 2-3A). We compared the vector mean wind direction during the receipt's 

potential duration in the environment to the mean transport direction using circular 

correlation (Figure 2-3B). The Pearson's product moment circular correlation 

indicated no correlation between wind direction and receipt transport direction 

(correlation -0.1, p value 0.357). The receipt transport distances followed a similar 

cumulative distribution function (log normal) to the human trip distance but were 

offset to smaller distances (Figure 2-3C). Of the 85 receipts with sale locations 

found in the Inland Empire, the maximum transport distance was 136 km and the 

minimum was 27 m (three times as large as the estimated mean location 

uncertainty (7 m)) (Figure 2-3C). Half of the receipts originated from less than 1.67 

km away from where they were found. Linear regression fit to log10 transformed 
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data between the paired quantile values revealed that the offset between receipt 

and human trip distances increased by 1.1 times per unit of human trip distance 

and had a y-intercept of -0.9 (Figure A-1).  

 

Figure 2-3: A) Precipitation occurring during the receipts potential time in the 
environment. YES stands for the receipt could have experienced precipitation, NO 
means the receipt couldn't have experienced precipitation. We found precipitation 
could not be a dominant process transporting the receipts. B) A spoke plot 
displaying the circular correlation between direction receipts came from (inner 
circle), and vector mean wind directions (outer circle). North (360o) is up. The lines 
connecting the points represent the paired directions for a single receipt. The plot 
can roughly be interpreted as similar directions when the line does not cross the 
central circle and different directions when the line does cross the central circle. 
The Pearson product moment circular correlation is -0.1 and p-value 0.36. There 
is no correlation between wind direction and receipt travel direction. C) ECDFs of 
distance to receipt address (red) and the human trip travel distance (blue) from the 
Bureau of Transportation. Receipts were slightly shifted to lower distances than 
the trips. Human travel appears to be the most probable mechanism for the 
majority of observed receipt transport. 
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2.4.2 Litter accumulation rates  

The majority of monitoring sites had relatively stable litter accumulation rates 

throughout the sampling period (Figure 2-4). Most observations at sites were within 

half an order of magnitude of one another (Figure 2-5). We did not find a steady 

drop in the litter accumulation rate at any monitoring locations (Figure 2-4). 

Instead, trends in litter accumulation rates seem random throughout each survey 

and none were significant (Figure 2-4). Power analysis revealed that a Cohen’s d 

effect size of 0.45 (small-medium effect) amounting to a shift of 37% from the 

current mean accumulation rate of the full monitoring dataset (Figure 2-5) would 

be required to attain a power of 0.8 and p value of 0.05 for future repeat studies.  

 

Figure 2-4: Litter accumulation rates for each monitoring observation (count per 
day per meter). Site name is indicated on the top axis. The total count observed 
during each sample date and a plot showing comparisons between sample days 
are indicated in the supplemental information (Figure A-2). Sample dates (x-axis) 
were reported as week numbers for the year and differed between sites. 
Confidence intervals (95%) for linear regressions were plotted for the time series 
to assess the effectiveness of persistent cleanup on litter generation. None of the 
sites show significant decreasing signals in litter accumulation. 
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Figure 2-5: Differences in median litter accumulation rate. X axis is the site name. 
Y axis is the litter accumulation rate in count per day per meter. Boxplots show the 
median line and notched 95% confidence intervals. Number of observations are 
indicated above each boxplot. Site 7A was before COVID-19 and 7B was during 
COVID-19 stay at home. Red error bars and red points correspond to the mean 
and bootstrapped confidence intervals for each. The total count of study days for 
each location is shown at the top. 

We observed a small decrease (20 %) in the mean litter accumulation rate during 

COVID-19 stay-at-home orders at Site 7 (0.2, 0.11-0.29 #1m-1day-1) compared to 

before COVID-19 (0.24, 0.21-0.26 #1m-1day-1), but the means were not significantly 

different. Site mean litter accumulation rates varied over an order of magnitude, 

ranging from 0.021 to 0.25 #1m-1day-1. Across surveys, most of the litter 

accumulation rates fell within a factor of four (0.045 - 0.166 #1m-1day-1) (Figure 2-

5). The total mean annual accumulation rate is estimated to be 40349 (33255-
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47865) pieces1km-1year-1 or 1170 (917-1447) kg1km-1year-1 for the region, similar 

to the city of Riverside estimate of 2855 kg1km-1year-192.  

2.4.3 Litter composition  

The most common material types found in the litter surveys were plastic (mean 

proportion: 56, 53-59 %) and paper (33, 30-35 %) (Figure 2-6A). Food-related 

items (38, 35-42 %) and tobacco-related items (14, 11-17 %) were the most 

abundant litter item types (Figure 2-6B). Correspondingly the top four brands were 

all cigarette and food producers: Philip Morris (4, 2-7 %), Mars Incorporated (2, 1-

3 %), RJ Reynolds (2, 1-3 %), and Jack in The Box (1, 1-3 %) (Figure 2-6C). The 

majority of objects were unbranded (66, 62-70 %), and there were also many 

brands (13, 11-15 %) that were identifiable but could not be merged with the Trash 

Taxonomy.  
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Figure 2-6: Sunburst plots show the relative composition of litter clustered by the 
hierarchy from the Trash Taxonomy. Each category lists the percent composition 
of that category to all litter found during the study, and uncertainties around the 
mean percent were bootstrapped (resampling with replacement, n = 10000) and 
listed. A) shows the material composition, any category less than 10% of the total 
was removed from the figure for visualization. B) Shows the item types, any 
category less than 10% of the total composition was removed from the figure. C) 
Shows the manufacturer names, any category less than 1% was removed from the 
figure.  
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2.5 Discussion  

2.5.1 Origins and transport processes  

We found that human trips were likely the primary transport mechanism of the 

receipts in our study sites. There is an offset between human trip distances and 

litter transport, which is likely due to the differences in the calculation of human 

trips (travel path) and receipt transport distances (as the crow flies), and the 

acquisition and/or deposition of litter within a given trip rather than at the trip 

endpoints. Receipt addresses were slightly further away than the nearest potential 

receipt address on average (Figure A-3). This result supports the observation that 

litter item purchase occurs at convenient locations along personal and work 

commutes. Human trip distance distributions could be a good proxy for estimating 

litter transport distances using quantile regression (Figure A-1). Although this 

research focuses on receipts in the Inland Empire, we expect that these metrics 

apply to similar litter morphologies on roadsides in the United States with similar 

human trip distributions, climate, and waste management practices.  

Most of the receipts found on roadsides in this study originated less than a 1.6 km 

away. Local action has been proposed as a strategy to combat litter 

accumulation63. If local actions in the Inland Empire targeted prevention of receipt-

like litter from sale locations within 1.6 km to litter hotspots, they would likely 

account for half of the sources supplying the litter.  
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2.5.2 Litter accumulation rates 

We were surprised by the persistence of litter accumulation rates despite our 

efforts to keep the sites clean and COVID-19 stay-at-home orders. Litter behavior 

studies have noted that keeping areas clean has some effect on the aptitude of 

people to litter, but that effect is generally small66, so we may not have had a long 

enough study period to detect it. Although only a small number of observations (6) 

were collected during stay-at-home orders, these data (and the prevalence of 

essential goods in the composition i.e., food items) point toward the idea that litter 

accumulation may be tied to essential everyday activities continued during the 

stay-at-home order. Pon and Becherucci93 found that litter standing stock on 

roadsides in Brazil was stable throughout the seasons of the year without removing 

any of the litter, similar to the first observations of standing stock at Site 7, which 

were both around 200 pieces (Figure A-2). Litter accumulation may be generally 

balanced by litter removal at these monitoring locations.  

We are concerned and delighted by the stable litter accumulation result. We are 

concerned that cleanup may never lead to prevention in the Inland Empire. 

However, as the cleanup did not impact the litter accumulation, this method will 

allow us to test other intervention strategies. Future repeat studies should expect 

the occurrence of an intervention capable of producing a shift in the mean 

accumulation rate greater than ± 37% or collect more data to be able to quantify a 

statistically robust effect. 
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2.5.3 Litter composition 

Plastic, food items, cigarette products, and brands with high market prevalence 

are also known to be the most prevalent litter objects in environmental 

compartments around the world70–73. Solutions have been proposed to decrease 

single-use plastic product availability and engage corporations through corporate 

social responsibility initiatives74. The approach we have developed for measuring 

the uncertainty in the proportion of objects attributed to manufacturers should 

assist in developing effective corporate social responsibility strategies. We would 

like to see the most prevalent manufacturers of litter found in the Inland Empire 

take an active role in decreasing the abundance of their waste in our region, and 

future studies could employ this monitoring technique to measure their efficacy. 

Unmerged and unbranded categories were prevalent, not useful, and resulted from 

a limitation of our current classification capabilities for litter. Unmerged categories 

are not currently in the Trash Taxonomy and should be added to the Trash 

Taxonomy in future work. Most objects were unbranded and therefore nearly 

untraceable to their producer. This discrepancy hampers corporate social 

responsibility initiatives for the producers of unbranded products. We advocate for 

improving material fingerprinting and branding policies that increase the 

identifiability of manufacturers who created the products94.  
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2.6 Conclusions 

In this study, we advance science relevant to government entities, individuals, and 

corporations so that all can work together to end litter by advancing the science of 

litter transport processes, accumulation rates, and composition in the Inland 

Empire of California. This study was the first of its kind to conduct high-resolution 

surveys of litter accumulation rates on roadsides and identify human transport as 

a primary mechanism for litter transport. However, this study was conducted 

primarily during dry conditions when runoff could not play a role in litter transport. 

Future studies should evaluate the roll of runoff in litter transport by surveying 

roadside litter, and downstream litter accumulation points during periods of 

precipitation. Roadsides are a significant input of litter to the environment, and this 

work reports a methodology for monitoring litter on roadsides and measuring the 

efficacy of interventions to litter accumulation there. The hierarchical litter 

composition and uncertainty analysis used here has vast implications for 

thoroughly interpreting litter compositions and brand composition assessment 

which could be instrumental in driving future corporate social responsibility 

initiatives. Removing litter from the studies locations made our efforts impactful in 

its own right, although this intervention did not reduce littering as we expected.  
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Chapter 3: Trash Taxonomy 

3.1 Abstract  

Despite global efforts to monitor, mitigate against and prevent trash pollution, no 

harmonized trash classification system has been widely adopted worldwide. This 

impedes the merging of datasets and comparative analyses. We undertook this 

study to 1) assess the state of trash classification, 2) develop a harmonized 

framework of relational tables and tools, and 3) inform practitioners about 

challenges and potential solutions. We analyzed 68 trash survey lists to assess 

similarities and differences in classification. We created comprehensive 

harmonized hierarchical tables and alias tables for item classes and material 

classes. On average, the 68 survey lists had 20.8% of item classes in common 

and 29.9% of material classes in common. Multiple correspondence analysis 

showed that the 68 surveys were not significantly different from one another 

regarding organization type, ecosystem focus, or substrate focus. We built the 

Trash Taxonomy Tool (TTT) web-based application with query features to give 

researchers access to tools at wincowger.shinyapps.io/trashtaxonomy. The TTT 

provides practitioners with tools that can allow for integration of datasets and 

maximization of comparability. Use of the TTT will facilitate analyses for 1) 

assessing trends across space and time, 2) identifying targets for mitigation, 3) 

evaluating the effectiveness of prevention measures, 4) informing policymaking, 

and 5) holding producers responsible. 
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3.2 Introduction 

It is widely recognized that the impacts of mismanaged trash on environmental 

systems pose substantial risks to ecosystems worldwide, including aquatic 

ecosystems where it can kill marine life through ingestion and entanglement95 and 

transport invasive species96,97. Surveys of trash in streams, beaches, sea, and 

other environmental compartments are conducted to assess those risks18, plan 

mitigation98, determine prevention priorities, and inform policymaking99. Trash 

surveys often include information about trash classes (e.g., bottle, plastic, 

cigarette), their abundances, and site descriptions. Trash mitigation through 

cleanup and capture is sometimes necessary to reduce the risks of mismanaged 

trash. For example, the California State Legislature now requires municipalities to 

manage trash flowing to streams via urban stormwater19 to achieve levels that do 

not adversely impact aquatic habitats. There are a growing number of efforts to 

control trash at its source, such as placing bans on single-use plastic items, which 

have relied on trash survey data for prioritizing banned items100,101. Trash surveys 

are essential to addressing anthropogenic trash pollution, but global trash 

classification is neither standardized nor harmonized. 

 

Trash classification systems are often developed with specific use cases or 

objectives in mind. Trash survey developers often try to minimize the number of 

classes they use to reduce complexity while focusing on the classes most relevant 

to their management questions. This approach decreases training requirements 
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and execution times. For example, a trash survey on a beach may explicitly list 

derelict fishing gear as a class, while other surveys may specify unique classes to 

fishing items, such as fishing poles and fishing wire. In this example, fishing gear 

cannot be easily split into fishing poles and fishing wire classes without those being 

explicitly listed on the trash survey102. So, while the structure of these surveys may 

serve individual objectives, some datasets cannot be readily used together or 

compared, even when those differences are only semantic. 

 

Standardization and harmonization between existing trash surveys will allow trash 

monitoring data to be readily used together. Harmonization involves developing 

taxonomic frameworks that facilitate relational and comparative operations 

between established and new surveys. Hierarchical and alias frameworks assist 

the harmonization of surveys that employ different levels of detail. For example, 

Vriend et al.44 developed a framework for harmonizing river trash monitoring 

strategies, outlining six hierarchical levels of trash classification: 1) 

organic/inorganic, 2) material, 3) polymer classes, 4) polymer type, 5) item type, 

and 6) the raw sample. JRC (Joint Research Centre) recently developed a 

hierarchical framework for their survey lists to allow heterogeneous surveys to be 

combined and analyzed103. There is a growing interest expressed by policymakers 

and managers in developing a standardized survey list by harmonizing those 

already widely used104. Standardization involves prescribing one survey list or a 

set of survey lists for different use cases. JRC (Joint Research Centre) and 
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OSPAR (Oslo/Paris Convention) created standardized trash survey lists focusing 

on European ecosystems and surveys. The OSPAR surveys have been 

successfully applied to other regions. Additionally, creating a standardized 

framework will improve computer vision technology by lessening labor-intensive 

image labeling. The challenge of standardizing and harmonizing heterogeneous 

datasets can be overcome by developing a schema matching tool and relational 

database structure105. Relational tables describe the relationships between data 

sets, and schema matching tools assist in combining datasets. By using both 

standardization and harmonization methods, it is possible to achieve a trash 

taxonomy system that can be used to describe survey classes that already exist, 

evaluate how they are related, and develop new lists optimized for given 

applications and cross-study comparability. 

 

This study aims to 1) develop and describe the use of a universal trash taxonomy 

framework of relational tables and schema matching tools, and 2) use the trash 

taxonomy to assess the current state and future of trash classification, trash survey 

types, and their comparability. To provide potential users with definitions we 

operationalized in this study, we present a glossary of terms used (Table B-1). 
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3.3 Methods  

3.3.1 Developing Relational Tables  

3.3.1.1 Approach and Assumptions  

We compiled 68 English-language survey lists from various countries and 

organizations, including government, research, nonprofit, and academic groups 

that describe trash survey types for freshwater and marine environments. 

Throughout this report we italicize class names when referring to trash classes. 

Three groups of classes were found across most of the surveys, which describe 

trash in terms of materials (the resource used to make the item, e.g., plastic or 

paper), item (description of the form of the object, e.g., bottle or fragment), and 

brand (the logo or manufacture’s name identified on the item). We also recognized 

two relational systems within the data: alias (synonymous words, e.g., cap and lid) 

and hierarchy (words that are parents or nested as children, e.g., spoon, fork, and 

knife nested under utensils). We developed relational tables for comparing words 

used within and between these structures. 

 

This primary assumption within this framework is that the trash classes used in 

each survey fully define each study object, which means that there are no 

differences between surveys in the definitions of a given class. An example of a 

violation of this assumption would be two surveys that define fragment based on 

size, but with different criteria: fragment = particles > 1 mm versus fragment = 
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particles < 5 mm. These surveys would classify different sets of objects using the 

same word. There are other types of information held within the methodological 

distinctions in definitions that we did not investigate further (e.g., color, shape, size) 

unless the methodological limitation was encoded in the class name (e.g., rope 

diameter <1 cm). This study compared the relationships between the words used 

to describe trash and how they relate to one another based on professional 

experience with trash nomenclature. 

 

Figure 3-1: Visual representation of relational tables and how they can be linked 
to one another. This database can be accessed in an interactive version at 
https://dbdiagram.io/d/5f3d9342cf48a141ff557dfe 
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3.3.1.2 Material-Item Relational Table 

We compiled a table listing the materials and items described by each 

organization’s classification system we reviewed for our study. Each row 

represented a unique material-item relationship (e.g., plastic and straw being listed 

in a row together). Sometimes it was unclear whether a class described a material 

class or an item class (e.g., disposable fork, typically made of plastic). These 

classes were placed in the item class, and the material class was not inferred to 

avoid introducing bias and adding words not used explicitly in the surveys. 

3.3.1.3 Misaligned Class Table  

We identified misaligned classes as classes that did not fit within the material, item, 

or brand classes. If the class was too ambiguous or did not describe trash in 

environments, we added it to a separate document called the misaligned class 

table. Some examples of misaligned classes include construction materials, fishing 

gear, and tree. The misaligned classes were omitted from the material-item 

relationship table because they neither described material nor item classes. 

3.3.1.4 Alias Tables  

We developed alias tables for material, item, and brand classes independent of 

one another (Figure 3-1). For the item and material alias tables, all words that were 

found to have the same meaning were linked using rows in a table where the first 

column defined the prime word, which is used as a key for joining to the hierarchy 
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(Figure 3-1), while all other columns were defined as aliases. Break Free From 

Plastic, a nonprofit organization promoting a global movement to create a future 

free from plastic pollution, developed the brand alias table by researching the 

manufacturers who own the brands found during their annual Brand Audit in 2018 

and 2019102. This table is formatted with recurring manufacturer classes in one 

column corresponding to each brand owned by that manufacturer. In the alias 

tables, prime words can be merged with the hierarchical tables and vice versa 

(e.g., fork and forks will be under the same alias). 

3.3.1.5 Hierarchical Tables  

Additionally, we developed hierarchy tables for item classes (Figure 3-2) and 

material classes (Figure 3-3). These tables specify the hierarchical position of 

prime words through multi-level grouping (e.g., the utensils class encompasses 

forks, knives, spoons, and straws; plastic in materials includes foam and soft 

plastic). The hierarchy tables only describe the prime words from the alias tables 

since those words are equivalent to the other words used to describe trash. 

Hierarchical groups were sometimes obvious. For example, one survey we 

reviewed used the class glass/ceramic while another split the classes into two 

glass and ceramic. In other cases, the relationships were more nuanced. For 

example, organic is a more general material description that includes materials like 

wood and cloth. 
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3.3.1.6 Database Query Tool Development  

The Trash Taxonomy Tool (TTT) is a database with a set of query tools and all 

previously mentioned relational tables accessible via an online application 

(wincowger.shinyapps.io/trashtaxonomy). The site was created using the shiny106, 

dplyr107, data.table108, shinyjs109, shinythemes110, DT111, shinyhelper112, 

data.tree91, and collapsibleTree113, packages in R (4.0.5) and R Studio (1.4.1106). 

This site allows users to upload a comma-separated value (csv) file of their survey 

list to process using our alias and hierarchy framework. In technical terms, the TTT 

is a schema matching tool because it matches and maps schemas from trash 

surveys to a unified format105. The TTT first uses an alias lookup to match and map 

the user-provided survey classes to prime word keys. It then locates the prime 

word in the hierarchy and allows users to display all words more or less specific in 

their item and material columns. It finds all parent words when the less specific 

function is called and all child words when the more specific function is called. If 

the user provides a word that is not in the relational table system, a notification will 

return for that particular word. In this way, the users can view all materials and 

items in the hierarchy that are less or more specific than the words they used. More 

detailed documentation and a video tutorial can be found on the TTT website. 

3.3.1.7 Relational Table Cleaning and Valdation  

We cleaned our relational tables using several tests. We created basic queries to 

identify duplicated terms, remove them, and ensure that all relationship links 
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between the tables (Figure 3-1) were equivalent in both directions for the alias to 

hierarchy relationships. The material-item table keys are equivalent to the alias 

and misaligned class keys combined. For example, the material alias table’s key 

column has the same terms as the key column in the material hierarchy table. We 

created a pipeline within our online tool to visually validate all the relational tables 

for nuanced relationships like semantic relationships within and between the 

tables. First, we upload the material-item relational table to the query tool, then 

return the relational table’s results and visually assess the matches. 

3.3.2 Assessment of the Current State of Trash Classification  

3.3.2.1 Summary Statistics  

We calculated summary statistics on each of the relational tables. The total number 

of classes was assessed by summing the number of unique words used within the 

survey lists (e.g., fork or spoon and fork/spoon are considered separate words). 

We assessed the number of unique classes by summing the unique prime aliases 

in the alias table (e.g., the two previously mentioned categories are joined to the 

same class). The number of levels of the hierarchies was assessed using the 

maximum number of levels of any given branch in the hierarchy tables. Diagrams 

were developed to demonstrate the depth and complexity of the hierarchical tables 

using the collapsibleTree113 R package. 
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3.3.2.2 Factor Analysis  

The similarities between the groups of survey types (organization, ecosystem, 

substrate) were assessed with multiple correspondence analysis (MCA), using 

FactoMineR114 and FactoShiny115. We expected that the survey lists within similar 

classes (e.g., marine trash surveys) would use similar trash classes since they 

would have similar study goals. We split organization classes into research, 

nonprofit, and academic; ecosystems were split into marine, riverine, estuary, or 

land; substrates were split into beach, surface water, underwater, or roadside. 

First, we joined all classes used in the materials-items table to the alias tables. 

Second, we converted all classes to a matrix with zero denoting that the survey list 

did not have the class and one denoting that the survey list did, and one-hot 

encoded the material and item classes used in each survey list. The MCA’s 

supplemental information (information not used to inform the model development) 

included the organization type, ecosystem type, and substrate type (Table 3-1). 

Confidence ellipses (95%) were plotted for each supplemental variable to 

determine if any of the group’s categories were statistically unique from each other. 

Overlapping ellipses were described as statistically similar. 

3.3.2.3 Comparability Analysis  

We assessed the comparability of each survey list to all the others by calculating 

the one-way percent of overlapping items or materials after joining them both to 

the alias table: 
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𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑀𝑒𝑡𝑟𝑖𝑐𝑋,𝑌  =  
𝛴 𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝑠 𝑖𝑛 𝑠ℎ𝑒𝑒𝑡 𝑋 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖𝑛 𝑠ℎ𝑒𝑒𝑡 𝑌

𝛴 𝐴𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖𝑛 𝑠ℎ𝑒𝑒𝑡 𝑋
          (1) 

 

where the Comparability MetricX,Y is a one-way test for how comparable survey X 

is with survey Y. The metric defines the proportion of the classes in survey list Y 

that are accounted for by the classes in survey list X after joining the lists to the 

alias table. We then averaged all comparability metrics for each survey by material 

and items independently and plotted them to identify the most comparable surveys 

and discuss strategies for creating a 100% comparable survey list. The 

comparability metric is a useful derivation to describe how much one survey 

accounts for the classes in another survey, a typical operation when merging trash 

survey lists.  

 

Another way to compare trash surveys is to lump them together using the 

hierarchy. We used the hierarchy and alias tables to compare the Stormwater 

Monitoring Coalition (SMC) survey list with the NOAA survey list. First, we added 

randomly sampled trash counts (a standard trash survey method) between 1 and 

10 for each trash class. We joined both surveys to the alias table and then to the 

hierarchical tables. We used the data.tree91 package in R to sum up the hierarchies 

to demonstrate how the two surveys are related based on the hierarchy. 
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3.4 Results and Discussion  

3.4.1 The State of Trash Taxonomy 

3.4.1.1 Relational Table Summaries  

Merging the material, item, and brand groups to their alias tables can inform us 

about the level of detail and potential applications for each group in use today. The 

alias lists condensed 87 classes to 25 unique materials, 1,138 items to 416 unique 

item classes, and 3,740 unique brand classes to 1,239 unique manufacturers. It is 

apparent that “material” is the most generic class used, “item” is more discretized, 

and “brand” has an even higher degree of subdivision. In survey development 

applications, reducing class choices to alias terms in the alias lists helps to make 

surveys more clear and data more consistent. If a user reduced classes to these 

alias terms before machine learning classification, they would improve their 

classification by clearly differentiating object classes and reduce labeling time. 

 

Inspecting the hierarchy tables can provide insight into the depth of information in 

the trash taxonomy and improve description clarity. There are four levels (parent-

child word relationships) for material classes and six levels for item classes in the 

hierarchical relational tables (Figure 3-2 and 3-3). The item hierarchy was more 

complex than the material hierarchy. We have not yet developed a hierarchy for 

brands, but we expect that one could be important for future developments. In an 

ideal hierarchical system, the terminal ends would encompass all possibilities of 
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their higher class. For example, fiberglass would encompass all possibilities of 

glass (Figure 3-3). However, that is not the case here since we are only 

characterizing the classes that surveys have made, and there are gaps in how 

trash surveys have characterized trash. Therefore, to accurately interpret the 

hierarchy, there is an implied other class as a subclass of each class wherever it 

is not explicitly made.  

 

 

Figure 3-2: A subset of the Reingold-Tilford tree diagram of items hierarchy list. 
The entire hierarchy can be seen online at 
trashtaxonomy.shinyapps.io/trashtaxonomy. White circles have no subclasses, 
and blue circles have subclasses that are not already expanded in the display that 
could be expanded. At the far left of the tree is the most general classification and 
at the terminal end of each branch is the most specific classification. For example, 
“item” is the most general term that could be used to describe item classes. 
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Figure 3-3: Reingold-Tilford tree diagram of materials hierarchy list displaying all 
hierarchical relationships among material words. At the far left of the tree is the 
most general classification and at the terminal end of each branch is the most 
specific classification. In the materials hierarchy, plastic is a subclass of material 
and soft plastic is a terminal end of the hierarchy and a subclass of plastic. 
 

Out of 1509 material and item classes in the surveys, 392 did not fit our typology. 

We did not put them in our alias or hierarchical tables and instead made a separate 

misaligned class table. The main reason for misalignment was the categorization 

of trash by use, such as fishing related or construction materials. The challenge 

with these descriptors is they describe too broad of a range of material, item, and 

brand classes, so it is not clear how they would fit within the framework we have 

developed. For example, the class smoking related lumps item classes like 

cigarette ends, tobacco packaging, matches, lighters, and pipes, along with 

material classes like plastic, organic, paper, metal, and glass. Additionally, while 

one organization may choose to include lighters as a smoking related item, another 

organization may choose to put lighters in a household item use class. These 

descriptors could be useful for practitioners who want to conduct rapid 

assessments with lumped use-based descriptors, but the descriptors were too 

ambiguous to incorporate into our current system. We recommend that future 
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surveys designed to assess trash use class first start by describing the material 

and item classes and then build their use classes by summing observations of the 

material and item classes that fit their uses. These descriptors might be brought 

into alignment within the current system when a framework is developed that 

relates material-item-brand combinations to the use classes but would likely need 

a NoSQL nonrelational database schema due to all of the overlap. The list of 

descriptors that did not fit the typology can quickly filter less often used trash 

classes and ambiguous trash classes during data mining routines. 

3.4.1.2 Factor Analysis of Survey lists  

Survey lists are often described as being for a specific type of organization, 

ecosystem, or substrate. We tested whether those descriptors reflected 

differences in the suite of material class (46 survey lists) or item classes (52 survey 

lists) they describe using MCA (Table 3-1, Figure 3-4). No significant differences 

in material or item classes were found between survey lists by organization, 

ecosystem, or substrate type (Figure 3-4 and 3-5). This suggests that there is 

substantial overlap between the classes used in all types of surveys. In effect, 

there is not a large difference between a government survey and a nonprofit survey 

or between a marine survey and an inland survey when use classes are not 

considered.  
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Table 3-1: Group nests the types. Type is a subclass of information within each of 
the groups. Materials is the number of survey lists that fit within the type and have 
material classes. Items is the number of surveys that fit within the type and have 
item classes.  

Group Type Materials 
(#) 

Items 
(#) 

Organization 
 

research 28 34 

government 5 5 

non-profit 10 10 

multiple 2 2 

unknown 1 1 

Substrate 
 

sediment 11 13 

water 6 2 

multiple 2 2 

unknown 27 35 

Ecosystem 
 

inland 7 6 

marine 28 28 

multiple 11 17 

unknown 0 1 
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Figure 3-4: MCA results for comparison of A) Ecosystem, B) Substrate, and C) 
Organization survey descriptors on the basis of item classes. Each point 
represents a trash survey. The first and second dimensions of the MCA analysis 
account for 32% of the variance in item classes. Ellipses outline the 95% 
confidence interval for a given survey type. Overlapping groups do not significantly 
differ. The minimum number of data points required to form an ellipse is 2. Groups 
without ellipses only have one data point. The outliers are caused by groups that 
have few categories. 
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Figure 3-5: MCA results for comparison of A) Ecosystem, B) Substrate, and C) 
Organization survey descriptors on the basis of material classes. Each point 
represents a trash survey. The first and second dimensions of the MCA analysis 
account for 39.5% of the variance in material classes. Ellipses outline the 95% 
confidence interval for a given survey type. Overlapping groups do not significantly 
differ. The minimum number of data points required to form an ellipse is 2. 
Categories without ellipses only have one data point. 

3.4.1.3 Comparability Analysis of Survey list  

In total, 4,556 comparability metrics were derived between all combinations of 

surveys for item and materials (Supplemental Information). We found that the 

average comparability metric was 29.9% and 20.8% for all materials and items, 

respectively (Figure 3-6 and Table B-3). Some pairs of survey lists were 100% 

comparable for materials (562) and items (302). These lists could be compared 

directly without any inference or interpolation. Only 15 of the 114 surveys were 

moderately comparable (> 40%) on average, and 33 surveys were somewhat 

comparable (40 - 20%) in item classes. A majority of the survey comparisons were 

0% comparable for material (2,470 pairs) and item (2,104 pairs) classes. In these 
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cases, lists pairs are incompatible for data aggregation and combination purposes 

at their current specificity level, a problem that cannot be rectified by the alias table 

alone. 

 

None of the surveys are 100% comparable with all others. However, the surveys 

produced by NOAA, SMC, OSPAR, Project AWARE, JRC, Marine Conservation 

Society, and Vandervelde were among the highest comparability on average for 

material and item types. These surveys are potential candidates for adoption by 

new practitioners to enhance comparability. The JRC survey has the highest 

average for item classes of 49% comparability, and the Rech survey has the 

highest average for material classes of 60% comparability. If the material classes 

from Rech were used and the item classes from JRC survey were used in a survey, 

that survey would be the most comparable survey to all others currently presented. 

The ultimate goal is, of course, to achieve a 100% comparable survey (Figure 3-

6). 
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Figure 3-6: Average comparability for each survey list by item classes and material 
classes. The proportion represented the average percentage of classes in other 
lists that the list plotted has. The x axis is the average comparability of the item 
classes, and the y axis is the average comparability of the material classes. An 
arrow points toward where we aim for survey comparability to go in the future. Full 
list of comparability metrics for all survey lists in the SI (Table B-3). 
 

How do we reach the goal of attaining more universally comparable surveys? The 

alias lists hold the answer. If a survey contains all of the prime words for material 

and item classes, it will be 100% comparable to all of the surveys included in this 

study based on equation 1. But how can we resolve the fact that there is an overlap 

in the definitions between many of the survey classes. The solution is to use the 

hierarchy as part of our classification routine. Essentially, every time a piece of 

trash is classified during a trash survey, the practitoner looks it up using the 
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hierarchy and chooses the most specific material and item classes (Figure 3-7). 

This allows for more general and more specific terms to be used simultaneously. 

Users can already do this on the TTT website using the collapsible trees on the 

reference table tab. Figure 3-7 demonstrates how the hierarchy can be used to drill 

down to the most specific material and item classes that can be used to describe 

the trash.  

 

 

Figure 3-7: The object in the center is being classified using the material and item 
hierarchies on the TTT website. In this example of classifying an unlabeled plastic 
bottle, we can tell that it is made out of hard plastic and that it is a beverage bottle, 
but we cannot tell what type of beverage bottle it is, so it should be classified 
generically as a beverage bottle. The classes hard plastic and beverage bottles 
are chosen to best represent the object in as much detail as possible, without 
assuming beyond the specificity we can observe. 
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Comparison of slightly comparable datasets could be improved by utilizing the 

hierarchy in addition to the alias. However, we do not see a clear “best” or “better” 

path forward within several possible options to lump and split datasets at the 

present moment. One strategy is to lump the values. All trash classes will lump to 

the class trash, but in some cases, it is possible to lump to more specific classes 

(e.g., forks in one survey and spoons in another survey could lump to utensils) 

(Table 3-2). Another strategy to unify data is to split into more refined classes using 

the hierarchy tables, e.g., if one survey has utensils and the other survey has forks, 

knives, spoons, an attempt could be made to split the utensils class into more 

resolved classes. However, the analyst needs to have a way to infer what 

proportions the higher-level class should be split by to equal the values of the 

refined class. This problem has yet to be solved for trash classification. Splitting 

may often not be possible because it requires additional information beyond that 

in the survey lists. A challenge for lumping or splitting arises when a survey focuses 

on a particular set of items and materials but does not count the rest of the trash 

classes in an other class. The analyst then needs to infer the quantity and classes 

of trash that they did not characterize or only compare the quantities they did 

characterize to other studies. As a first step toward combining survey lists, we have 

attempted to solve the lumping problem using Table 3-2. This example 

demonstrates lumping counts from multiple surveys using different categories that 

are related by the hierarchy. We wrote an R script to do this automatically for any 

of the survey lists in the TTT. Although this demonstrates that survey lists can be 
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merged by lumping programmatically, limitations due to the method differences 

previously stated are likely to remain. 

 

Table 3-2: Example of lumping analysis for SMC material classes with the NOAA 
material classes. Both data cards are first joined to the materials alias relational 
table, then to the hierarchical table. The final result can be plotted like this to show 
how a joined survey list could be lumped. The tree structure under Hierarchical 
Classes is tabbed to show finer levels of granularity in the descriptions. Count is 
the number of objects of that material type that the surveys observed. Total Sum 
is how those sums would lump given the hierarchy. The class missing counts the 
number of classes that were not integrated into the TTT. Zero indicates an 
accurate merge.  
 

Hierarchical Classes  Count  Total Sum 

• Trash    0  426  
o Glass or Ceramic 0  30 

▪ Glass  30  30 
o Metal   42  42 
o Missing  0  0 
o Organic  0  51 

▪ Cloth  25  25 
▪ Wood  26  26 

o Other   85  85 
o Plastic   223  254 

▪ Rubber 31  31 
 

3.4.2 Applications of the Trash Taxonomy Tool  

3.4.2.1 Practice Limitations 

Efforts to use the TTT to classify certain types of trash and waste will remain 

challenging because of the complex nature of trash and trash survey operations. 

Classification using the TTT will continue to be influenced by users’ objectives and 
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the users’ interpretations. One example of challenges is found in efforts to classify 

trash that results from tobacco use (currently being added to the TTT). In the field 

of global tobacco control, the emerging class tobacco product waste is increasingly 

being used to encompass all products that contain tobacco leaf (e.g., cigarettes, 

cigars, smokeless tobacco, bidis, waterpipe tobacco) as well as all ancillary 

products and items used for the consumption of tobacco leaf (e.g., cigarette 

packaging, cigar wrappers, matches, matchboxes, lighters, smokeless tobacco 

tins, waterpipes and charcoal). Tobacco product waste constructed this way is thus 

a considerably heterogeneous class. For example, it includes cigarette butts with 

cellulose acetate plastic “filter” rods and lighters with butane residue. However, 

one can find definitions of tobacco product waste that exclude ancillary products 

and items. The TTT user’s objectives in defining groupings of trash items (i.e., 

lumping versus splitting) will inevitably influence the application of the TTT, and 

the user’s interpretations of trash items during survey operations will also to some 

degree shape classification. Nevertheless, it is possible that as practitioners use 

the TTT throughout the world, the application of the TTT will generate harmonized 

classification schema for such groups of products and those harmonized schema 

will become more solidified.   

 

The use of hierarchy tables can also present challenges when practitioners are 

attempting to classify trash that results from the use of related products. For 

example, as electronic nicotine delivery systems (ENDS), commonly known as e-
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cigarettes, have been introduced into markets throughout the world, some tobacco 

control experts have argued that e-cigarette products should be classified under 

the broad category of tobacco products. This would suggest that post-consumption 

waste from e-cigarette use should also be classified as tobacco product waste. 

Others have proposed that post-consumption waste from e-cigarette use should 

be defined as a separate class e-cigarette product waste116. Such distinctions in 

class can be important. While e-cigarette products share a commonality with 

cigarettes and other combustible tobacco products in that they deliver nicotine, e-

cigarettes are distinct from combustible tobacco products in terms of function (i.e., 

producing aerosol rather than smoke) and materials (i.e, nicotine-containing e-

liquid, metal casing, electronic circuitry, batteries, and plastic components rather 

than nicotine-containing tobacco leaf, tipping paper, plastic “filter” rods and glue). 

Recognizing that some tobacco companies are promoting their e-cigarette 

products as  “clean” alternatives to cigarettes, one can argue that it is important to 

document environmental contamination from e-cigarette product waste as a 

separate class of trash. As practitioners use TTT, they will face challenges in 

determining what classifications are appropriate and useful globally. Despite these 

challenges, the use of hierarchy tables remains valuable for practical purposes. 

Distinctions in product function and trash materials are common, and some 

additional distinctions may be addressed in future iterations of TTT.  

 



58 
 

Some challenges may arise from the application of the alias tables in the TTT. 

Continuing with the example of tobacco product waste, a practitioner may have to 

decide whether menthol cigarettes can appropriately be defined as an alias class 

(synonym) of regular cigarettes. This may be problematic because, in some 

settings, there can be a public health social justice imperative to identify menthol 

cigarette butts and menthol packaging since historically and until now, tobacco 

companies have targeted teens with menthol cigarette advertising (to promote 

menthol cigarettes as “starter products”), and targeted US African American teens 

in particular117. So, on the basis of public health objectives a practitioner could 

reasonably wish to classify trash from menthol cigarette use separately and not 

define it as an alias of regular cigarettes. At high schools, practitioners may wish 

to define menthol cigarettes as a subset of cigarettes in a hierarchical structure 

rather than defining menthol cigarettes as an alias class of cigarettes. 

 

These examples demonstrate some of the challenges practitioners may face when 

using a hierarchical and alias relational table system within the TTT to achieve 

global harmonization. Also, at the current stage of TTT development, we did not 

use material-item or item-brand tables to analyze the state of trash taxonomy. 

Future work should be done to describe the variability within these types of tables. 

There are several other limitations noted in section 3.2.1.1, which could also apply 

to some practitioners. Developing tables that describe the classification structure's 

objective may help to remedy some of these competing classification needs and 
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definitions of trash classes in the future. The TTT provides a platform within which 

practitioners around the world can conduct their own investigations while 

simultaneously discussing and rigorously deciding upon shared taxonomies.    

3.4.2.2 Practitioner Collaboration 

Adjusting current survey lists and developing new survey lists with a standardized 

trash taxonomy will facilitate more effective trash management. By adopting a 

shared trash taxonomy framework, organizations across sectors can work together 

to contribute to broader research and management applications. The TTT will allow 

new practitioners to join in ongoing efforts to collect trash data in a harmonized 

way. If practitioners use the TTT to generate comparable data across 

organizations and projects, it will be easier for those analyzing data from multiple 

datasets to 1) assess trends across space and time, 2) evaluate the effectiveness 

of prevention measures, and 3) identify new targets for mitigation.  

 

Recent developments in trash taxonomic integration have been spurred by access 

to large and heterogeneous datasets with many different trash naming systems. 

Additionally, computer-assisted vision is now being used to classify trash in 

images118. Labeling images is labor-intensive and requires the development of a 

relational system for labels used. If the TTT is used to do the labeling, a single 

machine-learning system could produce an output that is comparable throughout 

all trash surveys we have assessed so far, rather than having to retrain staff and 
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relabel every new survey list. We have detailed many of these use cases and steps 

for tackling them in Table B-2. 

3.4.2.3 Future of the Trash Taxonomy Tool 

Trash taxonomy will continue to evolve as new materials and items are created 

and enter environments119 and as researchers create new technologies for 

collecting data about trash and develop new ways of describing trash120,121. Our 

framework, relational tables, and source code will assist in developing and 

expanding the field of trash taxonomy. Extensions to the TTT can be included by 

directly collaborating with us on Github 

https://github.com/wincowgerDEV/TrashTaxonomy and submitting requests and 

feedback to https://github.com/wincowgerDEV/TrashTaxonomy/issues. The 

source code and data are licensed open access (CC by 4.0) attribution only. This 

analysis will need to be expanded to other languages in the future to accommodate 

differences in how different languages map the alias and hierarchy relationships. 

Translations are already starting to be done with cross-country trash databases 

like the pan European Marine Litter Database122. Future work on database 

development should prioritize nonrelational mapping structures between the 

classes, develop a reconciliation service in a standardized format123, and assess 

the feasibility of incorporating semantic closeness and data value matching 

routines.105  
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There is still much work to be done on the fundamentals of trash taxonomy. 

Accurate brand identification is critical to ensuring the precise application of the 

principles of extended producer responsibility to hold manufacturers accountable 

for large loads of post-consumption trash and substantial environmental impacts 

that result from the use of their products. We suspect that it will take an ongoing 

large-scale effort to keep up with brand classes, and we applaud the work of Break 

Free From Plastic on this issue. Future work on brand classification within the TTT 

should include linking items, brands, and material combinations to identify the 

producers that ultimately should be responsible for the products they design and 

produce.  

 

Several ongoing projects are using the TTT that will be assisting in future 

developments. NOAA Marine Debris is using the TTT to update their trash survey 

classes. The harmonized tables developed in this study are already being used to 

develop machine learning image classification in the Clean Currents Coalition so 

that the labels on trash items can be as restricted as possible without 

compromising the harmonizability of the dataset. The Trash Monitoring 

Playbook124 suggested using the TTT to trash survey practitioners. 

 

The widespread adoption of the TTT can harmonize global efforts to measure and 

document trash loads, trash types, and the extent of trash pollution in 

environments. The adoption of the TTT can also contribute to facilitating the 
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aggregation of datasets from trash surveys, improving comparisons of trash risk 

assessments, and illuminating pathways for future work on trash taxonomy. We 

hope that TTT will be used to support research designed to inform mitigation efforts 

and prevention efforts, particularly in the realm of policymaking. We recommend 

using the TTT to foster collaborative research that will generate scientific evidence 

for holding producers accountable, ultimately by supporting “upstream” policy 

initiatives that reduce trash pollution of environments, promote changes in 

consumer behaviors, and mandate changes in producer practices.   

3.5 Data Availability Statement 

The tables and code are open access to encourage users to update and improve 

on our relational framework (https://github.com/wincowgerDEV/TrashTaxonomy). 

The tables and Shiny app tool have a CC BY 4.0 license. This gives users 

permission to remix, copy, and commercialize with attribution. Our intent is for 

others to build on these tools and use them widely. 
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Chapter 4: Concentration discharge relationships of macroplastics 

4.1 Abstract  

River macroplastic flux is a critical metric for the management of plastic pollution. 

Continuous measurement of macroplastic concentration is not currently possible, 

so surveyors must predict concentrations during unobserved periods to calculate 

flux. We monitored macroplastic concentration in the Santa Ana River, a small 

coastal urban catchment with a losing river, a Mediterranean climate, and low flow 

conditions dominated by released wastewater effluent. Particles in samples were 

biased toward positively buoyant particles (98%). All negatively buoyant particles 

were removed from the samples to focus the study on macroplastic particles likely 

transported as surface load. We developed a strategy for predicting particle mass 

using particle projected area. Uncertainties were propagated throughout the 

analysis for model regressions, means, and sampling bias using bootstrap 

simulation. Particles were determined to be in surface load transport using the 

Rouse derivations. Floating macroplastic particle size distributions were 

statistically equivalent between lowflow and stormflow samples. Concentrations 

fell during the falling limb of one hydrograph and rose during the rising limb, 

suggesting clockwise hysteresis. A generalized additive model revealed that 

concentrations of macroplastic increased in response to small increases in 

discharge but decreased for the largest discharges. We predicted the annual mass 

flux of floating macroplastic at our sample location using mean concentrations 
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(27.4, 2.8-84.8 tonnes1yr-1) and the generalized additive model predictions (18.2, 

2.9-222.2 tonnes1yr-1). These findings suggest that the main source of floating 

macroplastic was the channel and that surface transported macroplastics are 

predominantly supply-limited in rivers.  

4.2 Introduction  

Rivers are highly contaminated by plastic pollution and are the major conveyance 

of plastic from land to the ocean35. River plastic flux is a key variable in interpreting 

the magnitude of plastic to downriver ecosystems, the contamination at the study 

location, and changes in the magnitude of upriver plastic sources. Macroplastic 

(particles > 5 mm) are known to make up most of the mass of plastic in the 

environment and break down to form microplastic (particles < 5 mm)33. Therefore, 

rigorous estimates of river macroplastic flux are critical for addressing the global 

crisis of plastic pollution. 

 

River macroplastic flux is typically quantified by multiplying river discharge (m3s-1) 

by macroplastic concentrations (count or mass1m-3). Continuous river stage (m) 

measurements are available in many locations within the United States and are 

periodically calibrated to discharge, velocity (m1s-1), depth (m), and other river flow 

characteristics by the United States Geological Service (USGS). However, there 

is currently no way to continuously monitor river macroplastic concentration. To 
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quantify macroplastic flux, one needs to make predictions about unobserved 

macroplastic concentrations. 

 

Unobserved concentrations of fluvial particulate matter are often predicted using 

discharge hydrologic regime, hydrograph hysteresis, and rating curves fit to river 

discharge125. Changes in discharge reflect combined changes in the supply and 

transport of water to the monitoring stations and affect changes in the river’s 

transport properties (e.g., turbulence, velocity, depth). Changes in both water 

supply and water transport properties can result in changes in the loading of 

particulates to the channel through changes in connectivity between sources and 

the channel. The ratio between the flux of water and the flux of particulates at any 

moment is reflected in the average concentration of the particulate in the flow. 

Multiple orders of magnitude of variability around the concentration discharge 

rating curves are typical, particularly in the small mountainous rivers characteristic 

of coastal California126. This variability is due in part to stochastic processes like 

storm sequence127, spatio-temporal characteristics128, and antecedent watershed 

conditions129–131, which can result in variability in the processes controlling water 

and sediment delivery and routing132. Temporal structure to this variability can 

manifest in time-dependent concentration-discharge relationships, from 

hydrograph hysteresis133 (i.e., different rising vs falling limb concentration-

discharge relationships) to interdecadal scale trends126,134. The suspended load 

particle size distribution may shift with hydrologic mode and can be diagnostic of 
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sources and transport pathways of mineral sediment135,136. Investigation of 

temporal patterns in concentration-discharge relationships can provide insight into 

transport and supply processes and be used to refine flux estimation131,132,137.  

 

Early research on plastic pollution informed our study objectives. River 

macroplastic particle count to mass ratios are assumed constant in literature138 

despite changes in hydrological mode, suggesting stable particle size distributions.  

Our first aim is to test the hypothesis that macroplastic particle size distributions 

are stable regardless of hydrologic mode. Stormflow events have been observed 

to increase macroplastic concentration compared to lowflow139. Our second 

objective is to test whether hydrograph hysteresis or storm timing may play a role 

in these event to seasonal scale concentration discharge relationships. Rating 

curves have been observed between plastic concentration and discharge as 

decreasing140, increasing or stable141, and nonmonotonic142, reflecting a similar 

diversity of rating curves to those seen in other particulate transport studies. Our 

third goal is to assess the macroplastic concentration-discharge rating curve in the 

Santa Ana River. Our final objective is to estimate the annual flux of macroplastic 

at our study location during the study year. In total, these objectives serve to inform 

science about transport processes of macroplastics in rivers and inform society 

about how best to manage macroplastic pollution. 
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4.3 Study Location  

The Santa Ana River drains a small mountainous watershed (total area: 6900 km2, 

area at sample site: 2341 km2), experiences a hot, dry summer Mediterranean 

climate regime, with > 90% of its 61 cm of average annual precipitation occurring 

between October-April (Figure 4-1). The study location on the Santa Ana River 

was located where the river crosses the Van Buren Bridge in Riverside, CA which 

is 1.8 km downriver from USGS river gage 11066460. The main stem of the Santa 

Ana River in the vicinity of sample collection displays two major hydrologic 

regimes: low magnitude (mean daily discharge (par 60, stat 00003) = 1.8 m3 s-1) 

flows supported entirely by wastewater discharge, and flashy storm flows (mean 

daily discharge: 14.0 m3 s-1; and 2 year recurrence interval daily flow of 64.3 m3 s-

1) (Figure C-1). For most of the time, the middle reach of the Santa Ana is a losing 

river with discharge decreasing downriver unless fed by a stormflow event or at 

wastewater input points. The sampled reach is low gradient (slope = 0.004), sandy 

fine gravel bedded, and includes a vegetated riparian corridor that persists 

between flood control levees.  
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Figure 4-1: The watershed (A) and survey location (B) of this study. White dot is 
the location where the samples were taken. In (A) the basemap is the National 
Land Cover Dataset (NLCD) showing land cover types143. The landuse legend is 
adapted from fair use NLCD materials144. Stream centerlines are added from the 
National Hydrography Dataset in blue145. The Watershed boundary was delineated 
using Streamstats from the USGS146. The National Inventory of Dam147 locations 
was plotted as blue dots. (B) Satellite imagery of the study reach is shown, and the 
survey location is downstream of the Van Buren Bridge in Riverside, CA. 
 

Sources and fate of macroplastic at the study reach are dependent on the 

management of water and trash within the watershed and channel. A large amount 

of accumulated trash exists as standing stock within the channel riparian area148, 

but there have not been previous studies on trash flux through the river. Potential 

sources of macroplastic to the channel are suspected to be runoff from upstream 

urban areas, direct dumping within the river, and waste from populations of 

unhoused people that live within the riparian area who do not have waste 

management services148,149. Urban runoff is actively mitigated via street sweeping 

and trash capture devices in storm drains92,150. However, to our knowledge, there 

are no mitigations implemented for removing the trash within the channel. The 

watershed upriver of the sample location is 31% developed land use. Immediately 
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adjacent and upriver of the sample location is the major metropolitan area of the 

Inland Empire, including Riverside and San Bernardino cities. Wastewater facilities 

that input to the Santa Ana have secondary or tertiary treatment before the 

wastewater is transferred to the channel. They are suspected to be a negligible 

source of macroplastic due to the filtration used during the treatment processes. 

Near the watershed's headwaters are mountains with primarily rural populations, 

but these sections are generally disconnected from the sampling reach due to 

dams at the foothills of many mountain tributaries and the losing nature of the river 

channel most of the year. Downriver of the study location is the Prado dam, which 

likely cuts off most trash flux from this reach to the ocean.   

4.4 Methods  

4.4.1 Field Methods 

4.4.1.1 Macroplastic measurements   

River macroplastic samples were collected in the Santa Ana River from the 

downriver side of the Van Buren bridge in Riverside, California (Figure 4-1 & 4-2). 

A steel box trawl (fabricated by Marcus Eriksen) with a square 0.16 m2 intake and 

5 mm mesh net was lowered from a bridge to the thalweg of the river using a 

portable crane (USGS Type A Crane with 3 Wheel Truck) attached to the trawl 

with rope and a boat shackle. On average, half of the net was submerged if the net 

was not resting on the river bed. To sample lowflows, we waded into the river and 
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set the net in the thalweg of the channel on the river bed. The total number of 

samples collected was limited to 20 due to the highly episodic, fast-moving, and 

high magnitude river flow in Southern California (Figure 4-3).  

 

 

Figure 4-2: A) Sample collection apparatus and B) deployment from a bridge. The 
net has a 400 mm square aperture and a 5 mm mesh. C) An example of a sample 
that will be sorted for plastic visually.  
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Figure 4-3: The hydrograph (mean daily average cubic meters per second) from 
October 1st 2018 to October 30th 2019. Red stars mark the days when samples 
were acquired. Hyetograph is inverted at the top with blue bars indicating the total 
daily precipitation in mm.  

4.4.1.2 Hydrologic Measurements  

All river hydrologic data were obtained from the USGS river gage 11066460, using 

the National Water Information System151, located 1.8 km upriver from the 

macroplastic sampling location. Continuous stage data (15 min) (par 65) was 

acquired along with measurements of channel discharge (par 61), river velocity 

(par 55), channel cross-sectional area (par 82632), and channel width (par 4) from 

2018-01-10 to 2020-04-21. The river cross-sectional area was divided by river 

width to estimate average river depth. USGS measurements were used to create 

rating curves using linear regression on log10 transformed stage and measured 
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variables. Log10 transformation bias was corrected using the approach of Ferguson 

152. The discharge rating curve was (log10(discharge) = 5.1 * log10(gage height) – 

1.49, adjRSQ = 0.76, log10 correction = 1.09, p = 10-16).  The velocity rating curve 

was (log10(velocity) = 1.24 * log10(gage height) – 0.58, adjRSQ = 0.44, log10 

correction = 1.02,  p = 10-9).  The depth rating curve was (log10(depth) = 2.67 * 

log10(gage height) – 2.03, adjRSQ = 0.73, log10 correction = 1.03, p = 10-16). 

Uncertainty in USGS rating curves was propagated using bootstrap simulation 

(resampling with replacement, n = 10,000) of the USGS measurements. River 

slope was estimated using the 1/9th arc-second digital elevation model from the 

National Elevation Dataset153 and Google Earth. River shear velocity was 

estimated as the square root of average river depth times acceleration due to 

gravity times the river slope. Daily precipitation (Figure 4-3) was downloaded from 

Midwestern Regional Climate Center's cli-MATE application 82 for the KRAL airport 

weather station near the sample location. 

4.4.2 Plastic particle characterization  

Macroplastic particles were visually sorted from the samples and photographed 

with a scale in the image (Figure 4-4A). We used Image J154 to quantify particle 

projected area (Figure 4-4B) for each particle using Image J's color thresholding, 

manual tracing, and particle size analysis routines (Figures 4-4A & 4-4B). Small 

artifact “particles” visible at the fringes of particles (Figure 4-4B) were removed by 

restricting the minimum particle size to 1 mm2. Nominal particle size was estimated 
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as the square root of the particle projected area. Particles are well separated by 

this technique and outlined precisely.  

 

Figure 4-4: (A) Plastic particles extracted from samples in the Santa Ana River. (B) 
An outline image showing the traced projected surface area of each plastic particle.  
 

All suspected plastic particles were subjected to a sink-swim test by placing them 

in fresh water from the lab de-ionized water faucet, agitating the particle until no 

surface bubbles were visible, and assessing if the particle floated or sank. All 

particles were labeled as settling or buoyant. 

 

A subset of 88 out of 944 particle identities were validated using FTIR 

spectroscopy and 30 with Pyrolysis GCMS. The smallest particles of the samples 

were chosen for validation because they were the most likely to be misidentified 

155. For FTIR, a Thermo Nicolet 6700 ATR FTIR was used at 4/cm spectral 

resolution with daily background recording for the spectral range from 400-4000 

wavenumbers (1/cm). Spectral analysis was done in Open Specy46 with smoothing 
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conducted with a Savitzky-Golay filter with a window size of 12 points and a 3rd 

order polynomial, baseline correction conducted with the imodpolyfit routine using 

an 8th order polynomial, and a min-max normalization before identification. 

Identification was conducted using Pearson correlation and a 0.5 uncertainty 

threshold using the entire spectral range. In FTIR, three particles were identified 

as non-plastics, sixty-seven were identified as plastic, and eighteen could not be 

identified accurately using FTIR. In Pyrolysis, the CDS-2000 Pyroprobe pyrolyzer 

used a hydrogen reacting gas at a temperature of 750 C. The Agilent 6890N GC 

used a  CDS-1500 Valved GC Interface oven program with a 320 C temperature 

and the hydrogen gas flow rate was 1.2 ml1min-1 in constant flow mode. The 

column characteristics were DB-5 (0.25 mm OD x 60 m L; 0.25 µ film thickness) 

fused-silica capillary column. The CDS-1500 GC Interface valve was closed after 

one min. The column oven temperature was initially held at 45°C for 2 min and 

then ramped to 320°C at 20°C1min-1 rate. The column oven was held at 320°C for 

19 min resulting in a total run time of 34.75 min. The MC electron Multiplier (EM) 

auto-tune voltage was adjusted by 200V above the auto-tune voltage. Data 

acquisition was performed in full-scan mode from 29-600 amu by using the Agilent 

ChemStation Software. The Injector and the Mass Spectrometer Transfer Line 

Heater were maintained at 320°C. The mass spectrometer Quadruple and Source 

temperatures were held at 150°C and  230°C.  Pyrolysis identified 28 of the 30 

particles as plastic.  
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Thirteen macroplastic particles from these samples with rising velocities were 

randomly chosen to measure rising velocities and reported on in another 

publication56. They were composed of expanded polystyrene, polyethylene, and 

polypropylene, and had powers roundness ranges from 2.2-5.9, Corey shape 

factor from 0.07-0.88, dimensionless diameter of 2.5-30.81, and rising velocities 

ranging from 0.221-1.69 m1s-1. 

4.4.3 Estimating macroplastic concentrations and uncertainties 

Three types of macroplastic concentrations (count or mass1 meter-3) were 

estimated, count, projected area, and mass concentrations along with their 

uncertainties. All three calculations required an estimate of sample water volume. 

Submerged net depth was set to 0.2 m (half of the net height) or the average river 

depth, whichever was smaller. We multiplied the depth of the submerged net by 

the width of the net (0.4 m) to get the submerged cross-section of the net. 

Uncertainty of submerged depth was incorporated by simulation for each sample 

using a uniform probability density function from 0.1 – 0.3 m. The average river 

velocity from the USGS rating curve (linear model on log10 transformed data with 

log10 bias correction) was multiplied by the submerged cross-sectional area and 

the sample duration to quantify the volume of water of the sample. River velocity 

rating curve uncertainties were incorporated into sample size uncertainty using 

bootstrap simulation of the model fit (resampling with replacement, n = 10,000). 
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We removed a subset of macroplastic particles from our observations that would 

have biased our results. Macroplastic particles can be transported in surface load, 

wash load, bed load, and rising or settling suspended load156. Surface sampling 

(conducted in this study) best measures surface load. Therefore, we wanted only 

to include particles that had a high likelihood of being in surface load transport 

(positively buoyant particles). We compared the freshwater settling plastics with 

the positively buoyant particles by size and count for all samples (Figure 4-5). We 

found that positively buoyant plastics were the most common plastic-type in the 

samples (98 %). We removed all settling particles from further analysis. We also 

noticed that the particle size distribution decreased in abundance around 5 mm in 

size, which corresponded to the net's mesh size. All particles smaller than 5 mm 

were removed from further analysis. We permuted all estimated shear velocities 

and all observed rising velocities of the particles. The largest mean Rouse number 

was -2.5, suggesting that most particles observed were in surface load transport. 

Therefore, we assumed that all particles in this study were transported at the 

surface of the water column. We used the depth-integrated average concentration 

estimate introduced by35 and demonstrated by156 to have a small level of bias for 

surface sampling particles in surface transport. 
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Figure 4-5: Nominal particle size distributions (the square root of the projected 
surface area) for settling and rising particles found in this study. Violin plots are 
centered with notched box plots within (95% confidence interval). Dots show points 
beyond 1.5 times the interquartile range.  
 

Count, area, and mass concentrations were calculated by dividing the abundance 

by sample volume. Count concentration was calculated by counting the number of 

particles in the sample (after removing bias causing particles described in 3.2) and 

dividing it by the total sample volume. Count uncertainty (due to fragmentation from 

handling, missing particles, and inadequate sampling of particle counts) was 

estimated as up to ±10% of the sample count and was propagated using a uniform 

probability density function from 0 – 10%. Area concentration was calculated by 
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summing the projected surface area from all particles in the samples and dividing 

it by the sample volume. Area uncertainty was estimated in the same way as count 

uncertainty. We measured the mass of 124 of the suspected macroplastic particles 

imaged for particle size measurement. We derived a linear regression on log10 

transformed data between the particle projected area and the mass of the particle 

(log10(particle mass (g)) = 1.13 * log10(particle area (mm2) – 4, adjRSQ = 0.63, 

log10 correction = 1.36, p < 10-16) (Figure C-2) and corrected for log10 

transformation bias152. Then we used the regression to estimate the mass of all 

particles from our samples. Mass concentrations were computed by dividing the 

total mass of macroplastic by the sample volume. Mass uncertainty was computed 

in the same way as area and count uncertainties. 

4.4.4 Statistical analysis 

4.4.4.1 Lowflow and stormflow particle size distribution  

Stormflow samples were separated from lowflow samples visually by using the 

slope change inflection points in the hydrograph. All particles from stormflow and 

lowflow samples were pooled to make two particle size distributions using 

empirical cumulative density functions. We used the two-sample Kolmogorov-

Smirnov test to assess the null hypothesis that the particle size distributions of 

stormflow and lowflow were from the same distribution.  
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4.4.4.2 Hydrograph hysteresis and storm timing  

We tested for hydrograph hysteresis and storm timing effects on the macroplastic 

concentration discharge relationship. To assess hysteresis, we connected the 

sample concentration-discharge values for each sampling day with a line, and 

drew an arrow indicating the relationship's direction through time. We assessed 

the relationship between the hydrograph domain (rising limb, falling limb) during 

each stormflow sampling event and the hysteresis. Stormflow periods were 

determined using the description in 3.5. The rising limb was separated from the 

falling limb by assessing whether the discharge increased (rising limb) or 

decreased (falling limb) at the sample time. Storm timing was assessed by plotting 

the 2018 water year discharge time series (October 1st 2018 - September 30th 

2019) plus the month of October 2019 to include the final sample in the study. We 

described the likely relationships between the timing and magnitude of the 

stormflows and the concentration discharge relationships observed. Since only two 

stormflow events were sampled, we did not compute statistics on these trends and 

used them as a heuristic tool to identify future areas of study. 

4.4.4.3 Macroplastic concentration-discharge rating curve  

We assessed the concentration discharge rating curve for count and mass 

concentrations using generalized additive modeling with a smoothing spline. We 

tested the assumption of normality for log10 transformed concentrations using the 

Shapiro-Wilk test, and decided that we would use the assumption of normality for 
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the model (count concentration, W = 0.92 p = 0.08 | mass concentration, W = 0.97 

p = 0.82). We fit the generalized additive model to log10 transformed macroplastic 

concentrations and discharge using a smoothing spline (k=7). We assessed our 

confidence in the model fit using the p-value (alpha = 0.05), and deviance 

explained. 

4.4.4.4 Estimating annual mass flux  

We tested two commonly employed techniques, mean concentration extrapolation 

and the concentration-discharge rating curve, for estimating the mass flux of 

macroplastic in water year 2018 at the site to assess the importance of 

uncertainties and concentration-discharge rating curves126. The continuous 

discharge of the water year 2018 was estimated from the continuous stage using 

a rating curve (section 3.1.2). Using mean concentration extrapolation, we 

estimated mass flux by assuming steady mean concentration using the mean 

mass concentration observed from our dataset. Total discharge for the water year 

2018 was multiplied by the mean mass concentration to predict the annual flux. 

Using the generalized additive model rating curve, we predicted concentration for 

every discharge on record (15 min interval discharge). Mass flux was computed 

for every 15 min discharge interval and summed for the entire year. For both 

methods, confidence intervals were derived using 10,000 simulations with 

bootstrapped datasets for all data and models (resampling with replacement). 
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4.4.4.5 Data and code availability 

All statistical tests and plots were written in reproducible R code, starting from raw 

data and ending with the outputs. The packages dataRetrieval157, dplyr107, 

ggplot2158, mgcv159, readxl160, data.table108, stringr161, viridis162, tidyr163, MASS164, 

and matrixStats165 were used in the code. Data and code are shared open access 

on Open Science Framework 

(https://osf.io/mrey8/?view_only=46e4a0e91fbf4fff85d810c28c963665) to ensure 

the reproducibility and comparability of this research. 

4.5 Results and discussion 

4.5.1 Lowflow and stormflow particle size distribution  

We tested for differences in the macroplastic particle size distributions during 

lowflow and stormflow. Smaller size classes were exponentially more abundant 

than larger sizes for both hydrologic regimes (Figure 4-6). A similar particle size 

distribution has been observed for microplastic particles54. There was a maximum 

distance between the two cumulative distribution functions of 0.080 (p-value = 

0.66). The particle size distributions of macroplastic particles in stormflow and 

lowflow samples were statistically indistinguishable. There was also high 

goodness of fit (adjRSQ = 0.63) between particle mass and particle projected area 

observed in our study (Figure C-2). Van Emmerik et al.140 assumed a constant 

count- mass ratio for macroplastic floating in rivers, which would be suspected if 
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the particle size distribution were also stable there. Assuming this stability 

continues in the future and is widespread, mean count-mass-area conversion 

ratios (common conversions in the field) should be constant regardless of 

discharge at a given site. Future work should compare the particle size distribution 

we found to distributions elsewhere to look for spatial variability.  

 

Figure 4-6: Empirical cumulative distribution functions for the nominal particle size 
(square root of particle projected surface area) of particles collected during 
stormflow and lowflow periods. Particlen refers to the total number of particles 
sampled during the respective transport mode. Samplen refers to the number of 
independent samples aggregated. 
 

What can the observed uniform particle size distributions of macroplastic particles 

in riverflow tell us about watershed macroplastic pollution sources and transport 

processes? The particle size distribution is an expression of the source’s particle 
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size distribution and the hydrologic transport characteristics at and above the 

sample location. Large, positively buoyant particles only need a minimum water 

depth to particle size ratio to become mobilized166. From a transportability 

perspective, it is unsurprising that we did not see a particle size preference 

because the river has an average depth of 0.16 m during lowflow conditions, which 

should mobilize the largest particle that can fit in the opening of our net (0.4 m). 

From a source fingerprint perspective, the water at our site is nearly 100 % 

wastewater effluent during lowflow conditions. Macroplastics during these lowflow 

conditions can only be sourced from the channel. A predominant source of 

macroplastics during stormflow may also be the river channel. Future inquiry into 

particle size distributions of surface transportable macroplastic particles in the 

channel bed, riparian area, and watershed would help us better understand 

differences in the particle size distributions between sources. Other quantifiable 

macroplastic fingerprints like probability density functions of shapes, colors, and 

polymer type may also assist source apportionment in future studies. 

4.5.2 Hydrograph hysteresis and storm timing  

We assessed the impact of hysteresis and storm timing on macroplastic 

concentration. Count concentrations ranged from 0.034 – 24 num1m-3 and had a 

median concentration of 0.25 num1m-3 and a mean of 1.89 num1m-3. Mass 

concentrations ranged from 0.00047 – 2.99 g1m-3 and had a mean concentration 

of 0.22 g1m-3 and a median of 0.016 g1m-3. Macroplastic concentrations rose during 
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the rising limb of one hydrograph and fell during the falling limb of another 

hydrograph (Figure 4-7). The same phenomenon was observed for mass 

concentrations (Figure C-3). Clockwise hysteretic behavior may be present for 

macroplastic particles, commonly found for natural mineral sediment167. Another 

macroplastic hydrograph sampling event in Northern California also observed 

clockwise hysteresis with macroplastic168 with the largest macroplastic 

concentration transporting during the very beginning of the stormflow. Stenstrom 

& Kayhanian169 also found that greater than 50% of litter flushes from roadsides 

during the first 2 hr of stormflow. Clockwise hysteresis can be described from 

source mobilization and transport processes. As discharge increases during the 

rising limb, it can mobilize available sources quickly and deplete them. By the time 

the falling limb happens, the river is no longer accessing new sources, and the old 

sources are already somewhat depleted, resulting in decreased concentration. 

This should particularly be the case for the positively buoyant macroplastic 

particles observed in this study because we expect that they will always be supply-

limited since discharge conditions were always more than sufficient to effect 

transport. Another explanation can be provided by the transport rate of the 

macroplastic compared to the peak of the discharge170. Floating particles are 

transported at the highest velocity of the river because the surface is where the 

fastest velocities are in the river channel. If a floating macroplastic pulse was 

released simultaneously with a discharge pulse, one would expect the peak in 

macroplastic concentration to arrive before the discharge peak because the 
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average velocity of the discharge peak is likely slower than the surface velocity of 

the stream.  

 

Figure 4-7: Concentration-discharge hysteresis for each sampling event. (A) 
Uncertainties from bootstrapped simulations are expressed as lines around the 
data points. Sampling events are uniquely colored, and hysteretic behavior is 
annotated using arrows to demonstrate the direction of the line during the sampling 
event. Dates are indicated nearest to each sampling event. The two storm 
hydrographs (B &C) are presented colored the same as the sampling event they 
are related to, and red dots are used to indicate the time a sample was taken.  
 

A "first flush" event is common for many pollutants in Southern California, whereby 

high sediment concentrations are flushed during the first large storm event of the 

year.  We found that an earlier storm event (1/17/2019) did not have higher 

concentrations than the later storm (2/2/2019). It is possible that we missed the 

first flush event since two stormflow events occurred before 1/17/2019 (Figure 4-

3). It is also possible that the first flush event occurred on 2/2/2019 that we 

sampled. First flush events require a minimum storm magnitude threshold before 
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they initiate171. Future inquiry into first flush events for macroplastics should 

attempt to survey the first few hours of each stormflow of the year to standardize 

effects from hysteresis and better assess the role of storm timing.  

4.5.3 Macroplastic concentration-discharge rating curve  

Our results show a significant rating curve between discharge and concentration 

(log10(count concentration) = s(log10(discharge)) – 0.47, log10 correction = 1.19, DE 

= 67 %, n = 20, p = 0.0002) (Figure 4-8). The same phenomenon was observed 

for mass concentrations (Figure C-4). The rating curve was nonmonotonic, with 

the highest macroplastic concentration in the center of the observed discharges 

and the lowest concentrations at the highest and lowest discharges. As discharge 

increased, it was able to tap into additional sources of macroplastic. However, the 

additional sources were outcompeted by water at the highest discharges, resulting 

in lower concentrations. In the Santa Ana River, the flow covers a larger region of 

the channel corridor between levees during higher flows and can access all 

available sources there. Increases in discharge thereafter increase the water 

volume but not the macroplastic input, which would result in a decrease in 

concentration. It is difficult to know if this relationship is driving the trend or if the 

trend is driven by the hysteresis discussed in section 4.2. A combination of both 

processes may be responsible. A recent study also observed a similar increasing 

trend with decreases in concentrations at the highest discharges142. However, 

increasing rating curves168, decreasing140, and no trend141 between concentration 
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and discharge have been observed in other regions. At this time, we do not know 

what the primary driving force of variability is in concentration-discharge rating 

curves between watersheds.  

 

Figure 4-8: The generalized additive model on log10 transformed count 
concentration and discharge. In the top left corner, we provide the equation 
coefficients, number of observations, deviance explained, and p-value. 
Uncertainties for each data point’s concentration and discharge values were 
bootstrapped and are provided as lines around each point. 

4.5.4 Estimating annual macroplastic flux  

We used two flux estimation strategies to assess the impact of accounting for the 

concentration-discharge rating curves we described in 3.3. The mean only annual 



88 
 

flux estimate was 27 (2.82-84.8) metric tonnes and the concentration-discharge 

rating curve estimate was 18.2 (2.9-222.2) metric tonnes (Figure 4-9). There is 

considerable overlap in the confidence intervals between the estimates. There was 

more uncertainty resulting from the model fit because we introduced the 

uncertainty of the generalized additive model into the estimate. Although the model 

was significant, accounting for measurement uncertainty revealed that we were 

less certain about the rating curve than the model alone would have suggested. 

This underscores the importance of robust uncertainty assessment in flux 

estimation strategies, which can change the interpretation of the suitability 

differences between models. At this time, we would recommend using the mean 

concentration to estimate flux since it is a simpler model. More data is required to 

assess the differences between these estimates. Future work should pursue the 

processes behind our preliminary findings of hydrograph hysteresis and 

nonmonotonic concentration-discharge relationships to decrease the uncertainty 

in those relationships for the Santa Ana River. Studies investigating fluxes 

elsewhere should assess whether similar relationships exist and account for them 

in their flux estimates accordingly.  
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Figure 4-9: Total annual flux estimates (point) and uncertainties (whiskers) for 
estimating macroplastic flux using the Generalized Additive Model (18.2 (2.9-
222.2) metric tonnes) (Figure 4-8) or the mean observed concentration (27 (2.82-
84.8) metric tonnes). 

4.6 Conclusions  

Lowflow and stormflow samples had the same particle size distribution, suggesting 

that the main source of the macroplastic we observed was likely the channel. 

Hydrograph hysteresis seemed plausible with higher concentrations observed 

during the rising limb of the storm and lower concentrations observed during a 

near-peak falling limb, suggesting depletion of sources early in storms or quick 

mobility of macroplastic. Storm timing did not have an apparent effect on 

macroplastic concentration. Macroplastic concentrations were nonmonotonically 

related to discharge. The highest concentrations were observed in the mid 
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discharges, suggesting that macroplastic sources were most efficiently mobilized 

near the mid discharge, perhaps due to channel morphology. Water year 

macroplastic flux estimates made using mean concentration and the 

concentration-discharge rating curve were not statistically distinguishable. Mean 

concentration should be used at the current time to estimate flux but future studies 

should follow up on the findings revealed here to decrease the order of magnitude 

of uncertainty in our flux estimate and further investigate the dependency of 

macroplastics concentrations on time at the event to seasonal scale, and 

discharge. These phenomena may be particularly important in small, mountainous 

semi-arid systems such as the Santa Ana River.  
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Chapter 5: Open Spectroscopy 

5.1 Abstract  

Microplastic pollution research has suffered from inadequate data and tools for 

spectral (Raman and infrared) classification. Spectral matching tools often are not 

accurate for microplastics identification and are cost-prohibitive. Lack of accuracy 

stems from the diversity of microplastic pollutants, which are not represented in 

spectral libraries. Here, we propose a viable software solution: Open Specy. Open 

Specy is on the web (www.openspecy.org) and in an R package. Open Specy is 

free and allows users to view, process, identify, and share their spectra to a 

community library. Users can upload and process their spectra using smoothing 

(Savitzky–Golay filter) and polynomial baseline correction techniques 

(IModPolyFit). The processed spectrum can be downloaded to be used in other 

applications or identified using an onboard reference library and correlation-based 

matching criteria. Open Specy’s data sharing and session log features ensure 

reproducible results. Open Specy houses a growing library of reference spectra, 

which increasingly represents the diversity of microplastics as a contaminant suite. 

We compared the functionality and accuracy of Open Specy for microplastic 

identification to commonly used spectral analysis software. We found that Open 

Specy was the only open source software, the only software with a community 

library, and Open Specy had comparable accuracy to popular software (OMNIC 

Picta and KnowItAll). Future developments will enhance spectral identification 
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accuracy as the reference library and functionality grows through community-

contributed spectra and community-developed code. Open Specy can also be 

used for applications beyond microplastic analysis. Open Specy’s source code is 

open source (CC-BY-4.0, attribution only) 

(https://github.com/wincowgerDEV/OpenSpecy). 

5.2 Introduction  

Spectroscopy is a critical step for polymer identification of microplastics172,173. 

Microplastics are plastic particles between 1 mm and 1 μm in size with various 

physical and chemical properties174,175. Raman and Fourier transform infrared 

(FTIR) spectroscopy are the most common techniques for identifying plastic 

particles in microplastic studies176. In environmental microplastic studies, plastic 

particles are extracted from an environmental matrix (e.g., sediment, water) using 

chemical and physical procedures. In some procedures, particles are filtered and 

the whole sample is analyzed using automated Raman or FTIR. Alternatively, 

particles are counted on a filter manually or extracted from a matrix, and individual 

particles are analyzed via Raman or FTIR. The spectra are first visually assessed 

for quality to determine if additional spectral measurements are necessary, then 

processed to amplify the signal-to-noise ratio and remove the presence of baseline 

signals, and finally matched using a reference library that contains plastic and non-

plastic spectra. 
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Because microplastics are a diverse suite of contaminants174, they require 

adaptable tools and extensive reference libraries for accurate matching. New 

specialized matching techniques that focus on peak regions of the reference 

spectra are shown to drastically outperform the standard techniques for 

microplastics research177. Open source software could be rapidly adapted to 

include this and other new techniques. Pure unweathered polymers are not 

commonly found in the environment56,178. Microplastic reference libraries should 

include many phases of particle degradation, additive mixtures, and colors for 

accurate matching179,180, but only a small number of spectra are openly available. 

A recently published review on microplastics data analysis techniques found that 

more than half of research groups duplicated efforts by developing in-house 

spectral tools and matching libraries, but not sharing them with the wider scientific 

community176. We developed an open source tool, library, and community called 

Open Specy to satisfy these needs while improving functionality and accuracy for 

identifying plastic particles compared to commercial tools and libraries.  

 

First, we describe the design of Open Specy and its supporting documentation. 

Then, we compare Open Specy’s functionality to other spectroscopy software. 

Lastly, we validate Open Specy for microplastic analysis by comparing its accuracy 

to commercial spectroscopy software and outline how Open Specy will foster a 

scientific community and better spectral identification moving forward. 
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5.2 Experimental Section  

5.2.1 Open Specy Features and Documentation  

Open Specy users can view, process, identify, and share their IR and Raman 

Spectra (Figure 5-1). We created Open Specy in R (4.0.4)181 using the RStudio 

IDE182, with the shiny106, ggplot2158, smoother183, dplyr107, plotly90, data.table108, 

signal184, shinyjs109, shinythemes110, shinyWidgets185, shinyBS186, digest187, 

config188, osfr189, knitr190, rmarkdown191, testthat192, mongolite193, loggit194, DT111, 

rdrop2195, hyperSpec196, and hexView197, libraries. Open Specy is online at 

www.openspecy.org and on CRAN as an R package198 with extensive 

documentation, help guidance, and error guidance on the website. In the R 

package, the base functions in Open Specy can be accessed to expand the 

existing functionality for other use cases. The source code (written in R) and 

reference library materials are available on Github 

(https://github.com/wincowgerDEV/OpenSpecy) and Open Science Framework 

(OSF, https://osf.io/x7dpz/). The code and databases are version-controlled so 

that older versions can be retrieved by users who need to revive an older working 

session for any reason. We also thoroughly detailed step-by-step instructions for 

using the tool199.  
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Figure 5-1. Workflow diagram for features and data pipeline in Open Specy. 
Interactive and updating version: 
https://lucid.app/lucidchart/invitations/accept/13cfe6c0-45c0-4e51-8c99-
83711121c54c 
 

A typical workflow for microplastic spectral identification in Open Specy consists 

of file upload, processing, and identification. Before upload, users select whether 

they want their uploaded data and session logs to be shared with the spectroscopy 

community or not. Shared data will help advance the tool and make users’ work 

reproducible. Users can add metadata to make their uploaded data more useful. 

Metadata explanations are given in a live document (https://osf.io/bgdqf/) and in 

the tool. Any shared data with metadata will be vetted by experienced 

spectroscopy experts and added to the tool if it meets our quality requirements 

(https://osf.io/w9s43/). All shared data is automatically shared under a license of 

the user's choice and uploaded on OSF as funding allows (https://osf.io/rjg3c/). A 
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test spectrum can be uploaded in several formats (asp, csv, spa, spc, jdx, and 0). 

Once uploaded, a spectrum can be viewed in an interactive window with zoom, 

pan, screenshot, and layer on and off functionality.  

 

Users can then process their spectrum using smoothing with Savitzky and Golay 

filter200, and baseline correction with IModPolyFit201. We translated the script 

provided at https://github.com/michaelstchen/modPolyFit for IModPolyFit from 

MATLAB to R202. The IModPolyFit function iteratively finds the baseline by fitting a 

polynomial regression of the specified order to the whole spectrum. Many of the 

large peaks are identified on the first iteration because they stand above the fit and 

are ignored for further iterations. The iterative process finalizes once the difference 

between successive fits is minimal. The processed spectrum can be downloaded 

as a csv file.  

 

Lastly, users can identify their spectrum to the onboard spectral library and 

interactively view the matches. The spectral library currently consists of a Raman 

library with 3696 spectra from RRUFF203, 759 spectra from the Raman Open 

Database204, 208 spectra from Cabernard et al.205, 58 spectra from the Raman 

Spectroscopic Library UCL Chemistry206, 44 spectra from the Open Specy 

community members Dora Mehn, Jennifer Lynch, and Claudia Cella, and 15 

spectra from Horiba Scientific. The FTIR library consists of 325 spectra from 

Primke et al.207, 272 spectra from Chabuka et al.180, and 39 spectra from Thermo 
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Fisher Scientific. These spectra have all been manually adjusted to remove 

baseline and noise. A second version of each reference library was made by 

removing signal regions that are not the peaks as described in Renner et al. 177. 

The user can choose to use the whole spectrum libraries or the peak spectrum 

libraries for identification. The matching procedure consists of a Pearson 

correlation between the chosen reference spectra and test spectrum. When 

matching is initiated, a grouped correction strategy first minimum-normalizes 

(intensity minus minimum intensity) over the whole spectrum or for each peak 

region depending on what the user specifies. The Pearson correlation coefficient 

is used directly as the hit quality index for ranking matches. The matches are 

returned in an interactive display that allows users to view matches individually 

alongside the test spectrum, and detailed metadata of any selected spectrum is 

displayed. To assess a good match, inspect peaks to ensure that the match has 

all of the same peaks with the same shape and the same height ratio. From our 

experience, when top matches are below 0.6 Pearson correlation coefficient, they 

should be suspected to be a result of incorrect preprocessing, poor quality spectra, 

or of a material type not currently in the reference library. User selections during 

preprocessing and matching are also logged to advance future developments of 

the application and ensure reproducibility of all manipulations to the spectra. 

 

Ensuring accuracy through validation, inclusivity, and transparency are primary 

goals for our group. Validation is conducted on Open Specy whenever new spectra 
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or default settings are added to the library (https://osf.io/zcafk/). Validation must 

demonstrate greater than 80% accuracy for the whole procedure for these updates 

to be made to the tool. Currently, the validation statistics are above 90%. Anyone 

can use Open Specy free of charge. As Open Specy grows, these features will 

become more robust and numerous. Everyone is welcomed to collaborate with us 

to write publications, develop the tool, and share data. We have detailed a 

framework for collaboration in the Open Specy group (https://osf.io/q94dc/), and 

anyone is welcome to take the project and build something new with it that they 

publish themselves. Furthermore, we respond to any bug reports and feature 

requests from users as quickly as possible and track updates that are pushed to 

the web (https://github.com/wincowgerDEV/OpenSpecy/issues).  

5.3 Results and Discussion  

5.3.1 Review of the current tools  

We searched for other Raman and FTIR spectroscopy spectral analysis tools and 

compared their base functionality to Open Specy (Table 5-1). We found that Open 

Specy has microplastic identification functionality that is not standard in all 

commercial spectroscopy software (e.g., standard OMNIC does not have a 

reference library and standard LabSpec cannot find a match to a library). Two other 

notable tools, siMPle208 and Spectragryph209, share their library spectra, are free 

to use, and are highly functional at processing spectra and spectral matching. 

siMPle was also developed with microplastic analysis in mind and was designed 
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to analyze full spectral maps from hyperspectral scanning devices208. Due to web 

hosting costs for large datasets, we have not yet implemented that functionality in 

Open Specy online. However, automation routines can be deployed using the R 

package functions from the Open Specy package, which could be iterated on a 

hyperspectral map or a large number of spectra. Only siMPle and Open Specy 

provided documented validation of the entire software routine for accurately 

identifying spectra. We suspect that the tools lacking validation documentation are 

undergoing validation, but the procedure is not transparent, which should be 

relevant to anyone using those tools. Most of the tools, including free tools like 

Open Specy and siMPle, offered users technical support. None of the spectral 

tools, besides Open Specy, made their source code available or had a 

crowdsourced library. Making the source code available will allow others to remix 

and reuse all the field components and subject the tool to perpetual peer review 

from users who identify software bugs as they arise and fix them. The 

crowdsourced library will make Open Specy competitive with commercial libraries, 

which rely heavily on pure materials for their reference spectra. Open Specy 

incorporates diverse spectra from diverse materials and already includes 

weathered materials to improve spectral identification accuracy for microplastic 

research180. The advancements brought by Open Specy are critical to the 

advancement of microplastic identification. Identifying microplastics accurately 

requires a maximum level of transparency and modularity in the tools.  
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Table 5-1. Meta-analysis of tool base functionality and utility for spectroscopy 
analysis software available today. Software tools are listed on the top axis. All 
software are assessed for basic functions/uses listed on the left axis. Tools are 
organized from most functions to least from left to right, and functions are 
organized from most common to least from top to bottom. “X” indicates that the 
tool has the functionality, and blank indicates the tool does not have the 
functionality. 
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Process spectra x x x x x x x  x x 

Find match to library x x x x x x  x   

Made for Raman and FTIR x x x x x  x x   

Technical support x x x x x x  x  x 

Free x x x    x  x  

Add spectra to library x x x x x      

Nonplastic spectra in library x x x x       

Plastic spectra in library x x x x       

Spectral map analysis  x       x x 

Library data open access x x x        

Environmentally weathered 
materials 

x x         

Documented Software 
QAQC 

x x         

Source code available x          

Crowdsourced library x          

5.3.2 Validation of Open Specy  

We compared the material identification accuracy of Open Specy to OMNIC Picta 

software for FTIR and KnowItAll and ID Expert for Raman spectra using 50 highly 

validated plastic materials published in another manuscript179. The samples 

included 1 to 10 representatives of 9 polymer Raman spectra and 1 to 5 
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representatives of 14 different FTIR ATR polymers. The Raman and FTIR spectra 

from these test materials did not exist in any of the software tested. We processed 

the test spectra using baseline correction and smoothing techniques to amplify the 

signal-to-noise ratio in each software, then had the software identify the spectra 

using the standard matching procedure and assessed the top ten matches for a 

true positive result to the known identity of the spectra. If at least one of the spectra 

in the top ten matches was true, we accepted the software answer as true. A 

detailed explanation of the validation procedure and supporting data is available in 

the SI (https://osf.io/6yjmc/). We found that Open Specy currently outperforms 

KnowItAll (correct: Open Specy = 48/50, KnowItAll = 44/50) for Raman spectra, 

and slightly underperforms OMNIC Picta for FTIR spectra (correct: Open Specy = 

48/50, OMNIC = 49/50). The Raman spectra misidentified in Open Specy were a 

polyethylene spectrum and a polyamide spectrum. The two misidentified FTIR 

spectra were polyethylene vinyl acetate and polyvinyl chloride. We are prioritizing 

additions of a greater diversity of these spectra in future releases of Open Specy 

and encourage community members to share references for these spectra. We 

expect that OMNIC Picta performed similarly to Open Specy because the Primkpe 

library207, which has a diverse suite of consumer plastic materials relevant to 

microplastic research, was installed in OMNIC. Since Open Specy is an open 

source tool, we will be able to increase the accuracy over time using community 

shared spectra (https://osf.io/rjg3c/). 
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5.4 Conclusion 

Over 2000 unique users have currently visited Open Specy, usage time on the 

website averages 250 hours per month, and nine peer-reviewed publications have 

already used and recommended Open Specy for microplastic spectral 

analysis176,218–225. We are dedicated to continual improvements in Open Specy, 

and we respond to all inquiries. In this way, the authors, their research groups, and 

the scientific community at large will support the development of a robust and ever-

growing spectral identification and processing tool. There is a growing list of 

feature requests that we will respond to as time and funding allow 

(https://github.com/wincowgerDEV/OpenSpecy/issues). Immediate future 

developments will incorporate machine learning (in process, https://osf.io/bes7h/) 

and fusion matching approaches180 to improve match accuracy and analysis 

simplicity. We made the source code for the tool entirely open source so that 

industry, scientists, and governments can develop and expand its functionality. We 

invite contributors to join us and have outlined how to contribute in the supporting 

documentation (https://osf.io/q94dc/). 

5.5 Data Availability  

All supporting information is cited throughout the manuscript as living documents, 

data, and source code, which will be indefinitely available on the OSF home page 

https://osf.io/3uatf/. These documents are downloaded into a zip file at the time of 

publication as part of the supplementary information but will not be perpetually 

https://osf.io/3uatf/
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updated like the OSF page. The zip file structure follows the OSF page. 

Documents are grouped by use. Folder names follow the citations referenced 

throughout the manuscript. ReadMe text files are written in folders that need an 

additional explanation about the files contained within and their relationships. The 

ReadMe files follow the documentation on OSF.  
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Chapter 6: Concentration depth profiles of microplastics 

6.1 Abstract  

River flow is a major conveyance of microplastic (1-5000 µm) pollution from land 

to marine systems. However, current approaches to monitoring and modeling 

fluvial transport of microplastic pollution have primarily relied on sampling the 

surface of flow and assumptions about microplastic concentration depth profiles to 

estimate depth-averaged concentration. The Rouse profile was adapted to show 

that fluvial transport of microplastic pollution includes all traditional domains of 

transport (bed load, settling suspended load, and wash load), as well as additional 

domains specific to low-density materials with rising velocities in water (rising 

suspended load and surface load). The modified Rouse profile was applied to 

describe positively buoyant particle concentration depth profiles and compared to 

field observations to showcase the utility of this approach. A procedure was 

developed for assessing the uncertainty and bias from using a surface sample to 

estimate depth-averaged concentration while assuming either surface load or 

wash load concentration depth profiles. Both assumptions may introduce a large 

amount of uncertainty due to the range of suspended microplastic concentration 

depth profiles. Monitoring microplastic pollution and estimating the depth-averaged 

concentration of microplastics in fluvial systems would further benefit from broader 

adoption of depth-integrated sampling, characterization of particle concentration 
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depth profiles, and estimation of uncertainties in depth-averaged concentration 

based on the sampling approach. 

6.2 Introduction  

Plastic pollution in rivers threatens aquatic organisms, riverine ecosystem 

services, and human health at the global scale226–228. Macro-scale plastic particles 

(> 5 mm) are known to cause harm to animals through ingestion and 

entanglement229, and there is increasing evidence for adverse ecosystem and 

human health impacts associated with microplastics (1 µm to 5 mm230,231) and 

even nanoplastic (< 1 µm) particles232. Microplastics are a diverse suite of 

contaminants with a wide range of shapes, sizes, colors, and chemical 

properties174. River discharge is also a dominant source of plastic pollution in the 

ocean35,233,234, where hydrodynamic processes may transport plastic particles over 

vast distances and expand the scope of adverse impacts235–237. Large (factor of 

10) differences between modeled and expected marine and fluvial plastic 

concentrations35 have raised concerns that the transfer of fluvial microplastic 

pollution to the ocean may be dramatically misrepresented by current approaches 

that do not consider the range of fluvial microplastics concentration depth 

profiles238–244. Preliminary studies have indicated that microplastics may be 

transported differentially throughout the water column, but there has yet to be an 

analysis on how monitoring and flux estimation techniques may contribute to model 

disparities. 
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Current efforts to model and monitor microplastic concentration in rivers are 

negatively impacted by untested assumptions favoring a given concentration depth 

profile. For example, Besseling et al.245 and Nizzetto et al.246 modeled fluvial 

microplastic transport by assuming that microplastic particle density was greater 

than water, whereby microplastics travel with river flow only as wash load 

(uniformly distributed across the flow field), settling suspended load (increasing 

concentration with depth), or bed load (mostly transported along the river bed). 

Conversely, Lebreton et al.35 and Miller et al.247 characterized all microplastics as 

positively buoyant particles traveling at or near the surface (a region from the free 

surface to some depth below) of the river as surface load (transport only at the 

surface) or rising suspended load (increasing concentration toward the surface). 

Other monitoring-based studies assumed equally distributed concentrations of 

microplastic particles throughout the flow field (i.e., microplastics as wash load) 

regardless of particle size and the energetics of the flow field, evoking an 

assumption of neutral buoyancy248,249. The relatively few studies that have 

attempted to characterize variation in plastic particle concentrations across the 

flow field have documented transport as surface load250, wash load251,252, bed 

load,253 and as a complex mixture of all concentration depth profiles254. This 

diversity of assumptions and observations highlights the need for a process-based 

approach to predict microplastic concentration depth profiles in rivers. 

Concentration depth profiles in rivers are commonly predicted by the opposition of 

gravitational and turbulent forces, where particles with higher settling velocities 
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relative to the water's turbulent mixing are expected to display higher 

concentrations with depth255. Approaches to suspended particle (mineral sediment 

and organic matter) sampling have been refined to account for concentration depth 

profiles256,257. The Rouse profile model is often used as a heuristic and predictive 

tool51,52. Previous research on riverine concentration depth profiles has extensively 

validated the Rouse profile for predicting concentration depth profiles of negatively 

buoyant particles in natural systems (1.1-3.0 g ml-1)258–261. Microplastic particles 

have been observed to obey the same physical principles as natural particles 

commonly modeled with the Rouse profile51,52. Yet, microplastic particles span a 

wide range of densities higher, equal to, and less than that of water (0.022-2.2 g 

ml-1)51,54,262. Similar diffusivity equations to the Rouse profile have been used to 

describe the concentration depth profile of positively buoyant particles in the 

ocean263, and a recent study incorporated positively buoyant macroplastic particle 

concentration depth profiles in rivers using the Rouse profile264. However, no study 

to date has applied the Rouse profile to positively buoyant microplastic particle 

transport in rivers. There is a need to demonstrate the Rouse profile application 

for predicting positively buoyant microplastic particle concentration depth profiles 

observed in the literature to inform transport monitoring and modeling. 

Although microplastic particles are likely transported by river flow under a wide 

range of concentration depth profiles, many sampling efforts have focused on the 

surface of the water column265 (from the surface to some fraction of the total flow 

depth) and estimated flux on assumptions about the concentration depth profile. 
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This sampling strategy will likely underrepresent microplastics near the river bed 

and overrepresent microplastics near the surface. Despite this approach's 

predominance, the field does not currently have a mechanism for describing the 

potential bias and uncertainty introduced by the range of potential concentration 

depth profiles.   

We investigate three major questions. 1) What are the possible concentration 

depth profiles for microplastics in rivers? 2) How does the modified Rouse model 

compare to field observations of positively buoyant microplastics? 3) What is the 

potential range of bias and uncertainty introduced by current approaches to 

estimating average microplastic concentrations with surface samples? 

6.3 Materials and Methods 

6.3.1 Microplastic concentration depth profiles   

We utilized a modified version of the Rouse profile264 to predict the range of 

microplastic concentration depth profiles under theoretical and observed 

scenarios. 

6.3.1.1 Theoretical basis for modified Rouse profile  

Concentration depth profiles of particles in rivers are generated by the opposition 

of the rising or settling force of the particles (force accelerating particles toward the 

bottom or surface of the river) and the turbulent mixing force of the river (force 
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keeping particles in suspension). The Rouse number P (dimensionless) for settling 

particles is a non-dimensional representation of the concentration depth profile that 

describes the interaction between the particle settling velocity and vertical turbulent 

mixing: 

𝑃 =
𝑤𝑠

𝛽𝑘𝑢∗
                  (1) 

where ws (length per time) is the particle settling velocity, k (dimensionless) is the 

von Karman constant set to 0.4266, u* (length per time) is the shear velocity of the 

river, and β (dimensionless) is the parameter that adjusts the assumption of 

parabolic eddy diffusivity for the Rouse profile (equation 2) (assumed to be 1)260. 

The Rouse number has been used to describe the shape of the concentration 

depth profile of settling particles for over 80 years255, and remains one of the 

simplest models to deploy with few parameters. Although there are many 

assumptions, this model has been demonstrated to produce a 0.75 – 1.5 predicted 

to observed ratio of Rouse number values for mineral sediment profiles in most 

natural systems260. By inputting negative values of ws for particles with rising 

velocities, we derived the Rouse number of rising particles and generated the 

Rouse profile, a time-averaged transport equation, which describes the 

concentration depth profile with respect to a reference location and river depth: 

 
𝐶𝑎

𝐶𝑧
= (

(ℎ−𝑎)

𝑎
×

𝑧

(ℎ−𝑧)
)𝑃                       (2) 

where Ca (quantity per volume) and Cz (quantity per volume) are the concentration 

of particles at depths a (length), z (length), where z is the reference location, and 
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h (length) is the total depth of the water. The Rouse profile is derived from first 

principles simplified by the assumptions of steady and uniform flow, equilibrium 

between upward/downward turbulence and particle settling or rising velocities, 

uniform channel geometry, parabolic eddy viscosity (where diffusion is greatest at 

the center of the channel)267, uniform and constant Schmidt number of 1, and 

uniform and constant settling velocity264.  

In open channel flow, turbulent diffusion is often present throughout the water 

column and impacts the stratification of particle concentration between the river 

surface and bed268. Major components of hydraulic resistance that interact with the 

water column to induce turbulent mixing include the shear stress at the bed269, 

channel bed grain roughness269, bedforms268, structures like bridges270, 

vegetation271,272, and wind shear stress at the river surface273. Turbulence 

dampening effects can also occur in rivers from the stratification of particles in the 

water column when particle concentrations are very high274. Here, we investigate 

turbulent mixing induced from the vertical velocity gradient generated by the no 

slip boundary condition at the river bed. Bed shear velocity is simple to estimate, 

is present in all rivers, and is often a dominant component of turbulence throughout 

the water column273,275.  

We derived shear velocity as: 

𝑢∗ = √𝑔ℎ𝑠     (3) 
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where u* (length per time) is shear velocity, g (length per time squared) is the 

acceleration due to gravity, h (length) is mean water depth, and s (dimensionless) 

the water surface slope. This use of water depth instead of hydraulic radius 

assumes that the channel is much wider than it is deep. To derive the water depth 

for the river locations in this study, we fit a rating curve (general additive model 

with log-normal distribution) to observations by the United States Geological 

Survey USGS151 between discharge and channel depth (calculated by dividing the 

channel cross-sectional area by channel width). To derive channel slope, we used 

Google Earth and ArcMap to measure river distance and a 1/9th arc second 

elevation digital elevation model from the National Elevation Dataset153 to measure 

the downriver river surface elevation change. 

We assigned names to Rouse number ranges for settling particles following those 

commonly stated in other sources276 (Figure 6-1; Table 6-1) surface load, rising 

suspended load, settling suspended load, wash load, bed load, and immobile. We 

set thresholds based on the negative analog of settling particle domains for Rouse 

numbers of rising particles. 
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Table 6-1: Concentration depth profile domains are defined by Rouse number 
ranges with descriptions. 

Concentration Depth 
Profile Domain 

Rouse Number Description 

Immobile P > 7.5 Particles are in contact 
with the river bed and 
not moving. 

Bed load 7.5 > P > 2.5 Particles move 
primarily along the 
river bed by rolling, 
skipping and saltating 
along the bottom most 
portion of the flow field. 

Settling Suspended Load 2.5 > P > 0.8 Particles are partially 
distributed throughout 
the water column with 
higher concentrations 
at the river bed. 

Wash Load 0.8 > P > -0.8 Particles are equally 
distributed throughout 
the water column. 

Rising Suspended Load 
 

-2.5 < P < -0.8 
 

Particles are partially 
distributed throughout 
the water column with 
higher concentrations 
at the surface of the 
river. 

Surface Load P < -2.5 Particles are traveling 
only at the surface of 
the river. 
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Figure 6-1: Normalized depth is min-max normalized h from equation 7. 
Normalized concentration on the x-axis is min-max normalized Ca from equation 
7. This figure shows examples of boundary condition (Table 6-1) concentration 
depth profiles (equation 2). These are the boundaries for the concentration depth 
profile domains used throughout the study. The reference location for surface and 
rising suspended load was set to 0.95 (a reasonable surface sampling location). 
The reference location for immobile, bed, and settling suspended load was set to 
0.05 (a typical bed load boundary). Colors correspond to Figure 6-3 and boundary 
conditions are marked with their corresponding domain name (Surface load (P = -
2.5), Rising suspended load (P = -0.8), Wash load (P = 0), Settling suspended load 
(P = 0.8), Bed load (P = 2.5) and Immobile (P = 7.5)).  

6.3.1.2 Predicting theoretical microplastic concentration depth profiles  

To describe the global theoretical domains of microplastic transport, we used 

simplifying models. Rouse domains were calculated using the Rouse number 



114 
 

(equation 1) and thresholds for domain classification (Table 6-1). We defined the 

minimum and maximum u* as 0.01 mm s-1 (e.g., a low gradient shallow river)277 

and 1000 mm s-1 (e.g., a high gradient deep river)278. These theoretical bounds 

are for rivers with clear water flow and a smooth boundary and bed. We then 

calculated the theoretical range of maximum and minimum particle settling and 

rising velocities. We considered that not all particles would be within the Stokes 

domain of the drag curve and employed a computational solution:  

𝐶𝐷 =  
24

𝑅𝑒
+

2.6(
𝑅𝑒

5
)

1+(
𝑅𝑒

5
)

1.52 +
0.411(

𝑅𝑒

263000
)

−7.94

1+(
𝑅𝑒

263000
)

−8 +
0.25

𝑅𝑒

1000000

1+
𝑅𝑒

1000000

              (4) 

where a continuous drag curve is plotted as in Morrison279 for all particle Reynolds 

numbers < 106, CD (dimensionless) is the drag coefficient, and Re (dimensionless) 

is the particle Reynolds number. This drag curve only applies to spherical particles. 

Deviations from spherical particles will decrease the terminal rising or settling 

velocity280,281 by increasing the drag coefficient so this method estimates the 

maximum terminal velocity range. The dimensionless group CDRe2 was then 

calculated as per Rhodes:281 

𝐶𝐷𝑅𝑒2  =
4

3
(

𝐷𝑝
3∗𝜌𝑓∗𝑎𝑏𝑠(𝜌𝑝−𝜌𝑓)∗𝑔

𝜇2 )                              (5) 

where Dp (length) is the particle diameter, g (length per squared time) is the 

acceleration due to gravity, ρp (mass per volume) is the particle density, ρf (mass 

per volume) is the fluid density, and µ (force times time divided by area) is the 
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dynamic viscosity of water (set to 20 °C). The range of theoretical plastic particle 

density (ρp) values was chosen to represent those found for settling and rising 

particles reported in the litterature:51,54,262 ρp was set to 22 and 970 kg m-3 for rising 

particles and 1010 and 2200 kg m-3 for settling particles. Smaller particles generally 

have lower terminal velocities so we paired them with the density closest to water 

to find the lowest terminal velocity and larger particles with the furthest densities 

from water to find the highest terminal velocity. Microplastic particle diameter (Dp) 

was chosen to represent the smallest and largest particle characterized as 

"microplastic"230,231 and set to 5 x 10-3 m for densities furthest from water and 1 x 

10-6 m for densities closest to water. The intersection of the drag curve and the 

dimensionless group (a constant value with slope -2 in log-log space) specified the 

particle Reynolds number value used to calculate the rising or settling velocity: 

𝑤𝑠 =  
𝑅𝑒′∗𝜇

𝐷𝑝∗𝜌𝑓
                                                (6) 

where Re' (unitless) was the Particle Reynolds number found by the intersection 

of equations 4 and 5 and other units were previously mentioned in equation 5. After 

this calculation, terminal velocity ws was set to negative (rising particles) or positive 

(settling particles). 

6.3.1.3 Estimating observed microplastic concentration depth profiles  

Concentration depth profiles were calculated using the Rouse number (equation 

1) and thresholds for domain classification for observed microplastic particles282 
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(Table 6-1). The range of shear velocities was obtained from Baldwin et al.283 with 

equation 3. Baldwin et al.283 was used because it was an extensive microplastic 

pollution study found in our literature review, totaling 29 river systems, each with 

data available from the USGS sufficient to estimate shear velocity. The observed 

range of settling and rising velocities of microplastic particles were obtained from 

Waldschläger and Schüttrumpf51. The study conducted in Waldschläger and 

Schüttrumpf51 measured the settling and rising velocities of a wide range of 

microplastic particle sizes (0.3-5 mm), shapes (foam, sphere, pellets, fibers, 

fragments), and polymers (EPS, PP, PE, PS, CoPA, PVC, PET). 

6.3.2 Application to positively buoyant microplastic concentration depth profiles 

As a preliminary test of model performance, we applied the Rouse profile to a 

subset of positively buoyant microplastic concentration depth profiles observed by 

Lenaker et al.254 (Figure D-1). Lenaker et al.254 measured microplastic 

concentration in rivers in the Great Lakes region using nets (1.5 m long by 100 cm 

wide by 40 cm high) at two depths (surface and ~0.5*depth) during six time points. 

Two of their study sites were chosen for testing because they had non-estuarine 

flow conditions and observations of foam particles. Eight paired samples (surface 

and subsurface) were collected in total at these sites, but here we only examine 

the six that contained foam particles. They counted and characterized microplastic 

particles by size (small microplastics, 0.333-1 mm, and large microplastics, 1-5 

mm) and shape (foam, film, fragment, pellet/bead, fiber/line), and calculated 
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concentrations on the basis of sample particle counts and water volume estimated 

with the velocity area method. We transformed the sample concentrations to min-

max normalized values for each sample pair (equation 7). 

𝑋𝑛𝑜𝑟𝑚 =
(𝑋−𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)
     (7) 

Where Xnorm (dimensionless) is the min-max normalized set, X (any dimension) is 

any set of numeric values, Xmin is the minimum value in the set and Xmax is the 

maximum value. 

 

We limited this test to only foam particles in order to tightly constrain both density 

and shape. The foam microplastics that we have observed in the environment have 

been predominantly expanded polystyrene particles with similar densities and 

shapes56. The vast majority of "foam" particles in Lenaker et al.254 were confirmed 

as polystyrene using FTIR, and confirmed as the expanded form of polystyrene by 

the authors (personal communication). Foam particles were assumed to have 

similar geometry and density to those identified as "expanded polystyrene foam" 

described by Waldschläger and Schüttrumpf51 (expanded polystyrene foam 

particle sizes 0.8-5 mm). We derived a general linear model (slope = 0.047, 

intercept = 0.056, adjRSQ = 0.92 , p = 2.87*10-5, n = 9)(Figure D-2) between 

particle size and particle rising velocity for the particles in Waldschläger and 

Schüttrumpf51 to estimate the rising velocity of the mean particle sizes in each size 

range defined by Lenaker et al.254 (0.67 mm and 2.88 mm). The lower mean size 
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of foam in Lenaker of 0.67 mm was slightly smaller than the 0.8 mm particle size 

in the Waldschläger and Schüttrumpf51 dataset, but we felt it was close enough to 

perform the extrapolation. We used this model instead of the approach in section 

2.1 to estimate particle terminal velocities because the terminal velocities found in 

Waldschläger and Schüttrumpf51 included influences due to particle geometry and 

surface roughness not included in the Reynolds number derivation. River shear 

velocity was computed using equation 6. The Rouse number was fit using the root 

mean squared error to the observations. The Rouse numbers of the predicted and 

observed profiles were ascribed to concentration depth profiles using Table 6-1. 

The number of times each concentration depth profile occurred for a size class at 

a given observation location were summed, and the results were compared. 

6.3.3 Potential surface sampling bias and uncertainty  

Studies use surface samples (a sample that extends from the surface to some 

depth below the surface) to calculate depth-averaged concentration under the 

assumption of a certain concentration depth profile (usually wash load or surface 

load). We examined the range of potential bias introduced by these assumptions 

under an idealized scenario model with variable surface sample depth and a range 

of possible concentration depth profiles. 
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6.3.3.1 Estimating the bias of surface sampling and assuming wash load  

To calculate the potential bias introduced by assuming a wash load concentration 

depth profile, we derived a one-dimensional model to predict depth-averaged 

concentration by incorporating sampled depth and the Rouse profile (equation 2) 

in the unsampled region (Figure 6-2). We created the possible Rouse profiles using 

the range of Rouse numbers for suspended particles (P = -2.5 to 2.5). This range 

was determined as a possible range for suspended microplastic concentration 

depth profiles in section 2.1 and observed in discrete depth samples of total plastic 

by several studies251,252,254. All variables were min-max normalized (equation 7) so 

that they would be unitless. River depth h was set to 1, z was set to the center of 

the sampled depth d. Sampled depth d simulated a net opening that extends from 

the river's free surface down to the bottom of the net. d was varied from 0.99-0.05 

at 0.01 intervals. We chose 0.99 and 0.05 normalized depths because it is realistic 

to sample between these depths for most rivers, the Rouse profile needs to be 

constrained between depths 1 and 0 (where modeled concentrations trend toward 

infinity), and the Rouse profile poorly models concentrations below ~0.05 depth260. 

Ca was estimated with Cz set to 1 for depths from 0.05 to the bottom of the sampled 

depth using the Rouse profile at 0.00001 intervals. Within the sampled depth d, Ca 

was set to Cz at 0.00001 depth intervals. Cz was used as the wash load estimate. 

We then averaged all Ca estimates and divided the depth-averaged concentration 

by the wash load estimate to determine potential bias. In this case, the bias is the 
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value that the assumed concentration would need to be multiplied by to equal our 

model's depth-averaged concentration. 

 

Figure 6-2: Visualization of the model setup and parameters used to estimate bias 
and uncertainty from surface samples. The variables listed are used in equation 2. 
Ca is the concentration estimate, z is the reference location, Cz is the reference 
concentration, d is the depth where the bottom of the net is, a is a location in the 
water depth, h is the depth of the water column. The depth layer from the bed up 
to 0.05 is not included because this model poorly describes bed load. An arrow 
points in the direction of flow. 

6.3.3.2 Estimating the potential bias of surface sampling and assuming surface 

load  

To be consistent with the approach used in other plastic pollution literature to 

estimate flux under the assumption of surface load, we closely followed the 

methods outlined in Lebreton et al.35. Their approach assumed that the 
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concentration found flowing through the net was the concentration representative 

of "surface plastics," and no plastic was transported below this surface load. The 

sample concentration was multiplied by the proportion of the river depth sampled 

to determine the depth-averaged concentration of plastic under the assumption. 

The same approach used in section 2.3.1 was used here to iterate through 

potential concentration depth profiles and sample depths and derive the potential 

bias introduced by this assumption. 

6.3.3.3 Estimating uncertainty of surface sampling at varying sample proportions 

due to concentration depth profiles  

Potential uncertainty was defined as the sum of the maximum overestimation and 

maximum underestimation bias, in log10 absolute value space from sections 2.3.1 

and 2.3.2. Uncertainties do not vary between assumptions because they are 

constrained by the range of Rouse numbers tested (-2.5, 2.5), which was the same 

for each assumption setup in the model. We derived uncertainty estimates 

separately for rising particles, settling particles, and all particles, dependent on the 

proportion of the water column sampled (between 0.01 and 0.95). 

6.3.3.4 Bias and uncertainty model assumptions  

All assumptions carry over from those described for equations 1, 2, and 3. Since 

this is a 1D model, it does not account for concentration gradients across the river 

width. This model will best represent river conditions that are not rapidly changing 
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or ice-covered and long-duration samples. The model will best represent wide 

rivers with clear water flow and a smooth boundary. Lastly, bed load is not 

accounted for in the model, so bed load has to be ignored even though it is present.   

6.3.4 Data analysis software and workflow  

R studio with R version 4.0.1284 was used to do data manipulation, analysis, and 

figure creation. Data was kept in the rawest form possible to record all 

manipulations in the R Code. Packages used include: ggplot2158, dplyr107, 

data.table108, mgcv285, stringr161, readxl160, tidyr163, and viridis162. Several functions 

not available in any current packages were written in R. All code is shared along 

with raw data to make every step of the analysis reproducible 

(https://osf.io/azghy/). 

6.4 Results and Discussion 

6.4.1 Microplastic concentration depth profiles  

We modeled the theoretical concentration depth profiles for microplastics in rivers 

and the observed case study of fluvial microplastic concentrations reported in 

Baldwin et al.283 (Figure 6-3). While the range of the plot represents the extreme 

possibilities, the pink boxes are not extreme and are likely to be encountered in 

the real world. Recent experimental research52 indicated critical shear velocities 

for microplastic particles between 1.41 mm s-1 and 15.2 mm s-1 – similar to the 

range of shear velocities at the threshold for motion that we found for the Baldwin 
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et al.283 study conditions (Figure 6-3, lower pink box). Our results show that every 

concentration depth profile is possible under theoretical and observed ranges of 

common microplastic particle compositions and hydrologic conditions. One should 

not assume any particular concentration depth profile without additional 

information about particle and hydraulic characteristics or measurements of 

concentrations at various depths. This plot can also be used as a heuristic tool to 

provide a first estimate of which concentration depth profiles may be present in a 

given system. If a user knows the range of settling, rising, and shear velocities at 

their site (e.g., using equations 3-6 to get rough bounds), the user can draw 

bounding boxes around those regions on this figure to identify the potential 

concentration depth profiles of their particles.  
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Figure 6-3: The full figure shows the range of theoretically possible microplastic 
settling and rising velocities and shear velocities of rivers using the Rouse model. 
Theoretical ranges used include microplastic particles from 0.001 to 5 mm with 
densities of rising particles of 22 and 970 kg m-3 and 1010 and 2200 kg m-3 for 
settling particles and low gradient rivers to high gradient rivers. Particles are 
assumed to be spherical in the theoretical case. Pink boxes show the range of 
settling and shear velocities of real microplastic particles measured by 
Waldschläger and Schüttrumpf51 and real rivers Baldwin et al.283. The top pink box 
is for plastics PP, PE, EPS and the bottom pink box is for plastics PS, PVC, PET, 
and CoPA from Waldschläger and Schüttrumpf51 and both boxes are for low 
gradient rivers near the great lakes from Baldwin et al.283 (Figure D-1). Colored 
and labeled regions bin the concentration depth profiles of microplastic particles 
(Purple = Surface Load, Dark Blue = Rising Suspended Load, Gray = Wash Load, 
Yellow = Settling Suspended Load, Light Green = Bed Load, Teal = Immobile). Full 
definitions of concentration depth profiles are provided in Table 6-1 and Figure 6-
1. Direct interpretation of areas on this plot as probabilities assumes log uniform 
distribution of settling and shear velocities. 
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6.4.2 Application to positively buoyant microplastic concentration depth profiles  

We applied the Rouse profile to predict the concentration depth profiles of 

positively buoyant foam microplastic particles from Lenaker et al.254 (Figure 6-4). 

Large microplastic particles (1-5 mm) were predicted to be in surface load in all six 

samples, which was in agreement with observations in all but 1 sample, in which 

they were transported as wash load. Small microplastic particles (0.333-1 mm) 

were predicted to be transported in rising suspended load in all five samples, but 

were observed to be in either surface load or wash load. Suspended load is a 

narrow transitionary domain (Rouse numbers 0.8-2.5) between wash load and 

surface load. Limited sampling at two depths254 may have obscured the small 

microplastic particles' transitionary concentration depth profiles. Smaller positively 

buoyant particles have lower rising velocities in general, and we would expect them 

to be more evenly distributed with depth than larger particles with the same 

physical characteristics, which is suggested in the observations from Lenaker et 

al.254 and in the model predictions. Particle densities, shapes, and surface 

characteristics may have been higher and more irregular, respectively than those 

tested in Waldschläger and Schüttrumpf51 due to differences in extraneous matter 

association and weathering56.  
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Figure 6-4: Predicted vs observed Rouse concentration depth profile domains for 
both sample locations (top axis) in Lenaker et al.254 for large and small microplastic 
particles (right axis), delineating the number of times each concentration depth 
profile was present in a sample or prediction. Observed and predicted 
concentration depth profile domains for A) large microplastic particles (1 mm - 4.75 
mm) at Milwaukee River and B) at Menomonee River. Observed and predicted 
concentration depth profile domains for small microplastic particles (0.333 mm - 1 
mm) at C) Milwaukee River and D) Menomonee River. Full figures of concentration 
depth profiles for each sample are available in the SI (Figure D-3). 

6.4.3 Potential surface sampling bias and uncertainty  

These insights into fluvial transport of microplastic particles give rise to an 

important question: if samples are collected at the river surface, currently common 

practice35,265, how much bias could be introduced by assuming wash load or 

surface load concentration depth profiles? Our model shows (Figure 6-3) that 

microplastic particles have the potential to travel as any concentration depth profile 

under river conditions and plastic conditions measured by microplastic 

researchers. Settling suspended load is likely to be poorly characterized by surface 
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samples. Microplastic traveling as bed load would not be observed in a surface 

sample taken above the bed load layer, and the surface load would be dramatically 

over-represented. However, any sample location in the water column represents 

microplastic traveling as wash load because the particles are evenly distributed 

across the flow field. Here we consider the concentration depth profiles of 

suspended and wash load particles with Rouse numbers between -2.5 and 2.5 

(observed conditions, see Figure 6-3 and Lenaker et al.254), and estimate their 

difference from depth-averaged concentration estimates derived with surface 

samples using commonly assumed concentration depth profiles (Figure 6-5). 
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Figure 6-5: The proportion of river depth sampled (y-axis) ranges from 0.01 to 0.95, 
describing the proportion of the total water column sampled from the surface down. 
The Rouse number (x-axis for A and B) ranges from -2.5 to 2.5. Rouse numbers 
less than 0 are concentration depth profiles for particles with rising velocities, and 
Rouse numbers greater than 0 are concentration depth profiles for particles with 
settling velocities. Bias is the log10 value that the assumed concentration would 
need to be multiplied by to equal the modeled concentration. Bias greater than 0 
indicates underestimation, and bias less than 0 indicates overestimations. A) The 
bias (log10) from using surface measurements to estimate depth-averaged 
concentration with the wash load assumption due to the proportion of depth 
sampled and the Rouse number. B) The bias (log10) in estimating depth-averaged 
concentration with a surface load assumption given the Rouse number and 
proportion of river depth sampled. C) Potential uncertainty (sum of the maximum 
and minimum log10 absolute value biases in A and B) of either assumption given 
the range of potential concentration depth profiles for all particles, rising particles, 
and settling particles for river depth sampled. Uncertainty can be understood as 
being from the possibility that microplastic particles of extremely high or low density 
and size cases (rising suspended load and settling suspended load) could be 
dominating the samples. Regions with bias or uncertainty less than an order of 
magnitude are marked using numbers in all three subfigures. 

Our results show that surface sampling can cause a wide range of bias in 

estimating depth-averaged concentration in rivers due to concentration depth 

profiles (Figure 6-5). Under the assumption of wash load, surface samples will 

overestimate the depth-averaged concentration for positively buoyant profiles 
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(Rouse number < 0). In contrast, the surface load assumption can only result in 

underestimation for all concentration depth profiles. Surface sampling bias follows 

a similar shape and trend for both assumptions for settling profiles (Rouse number 

> 0). However, maximum underestimation is achieved with the surface load 

assumption when concentration depth profiles have positive Rouse numbers near 

2.5 (i.e., strongly settling suspended particles). A minimum of zero bias is reached 

when the entire flow depth is sampled or when the Rouse number is zero using 

the wash load assumption. Uncertainty is generally the least for surface samples 

when only rising particles are considered. This is because surface samples 

represent positively buoyant particles relatively well. 

Future surface monitoring efforts could consider limiting characterization to only 

freshwater positively buoyant particles to reduce uncertainty from surface 

samples. Samples could be subjected to a sink swim test or density separation to 

separate rising particles from settling particles234 or particles could be 

characterized by polymer type and their density inferred254. Depth and width 

stratified sampling at a river cross-section (i.e., flow integrated sampling, currently 

the standard for representative sampling of natural fluvial suspended sediment) 

would also address the problem of sampling bias. However, depth and width 

stratified sampling presents physical and time constraints that may be prohibitive 

for many practitioners286. Another potentially useful approach is the 

characterization of the concentration depth profile during initial monitoring 

operations, followed by estimation using surface samples and assuming a percent 
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missed by the surface sample287. These findings can be used as a heuristic guide 

for planning sampling and understanding uncertainty due to suspended 

concentration depth profiles in future studies.  

6.4.4 Future work  

Future work should advance beyond the limitations of this modeling approach and 

its assumptions. Throughout the study, the model's hydraulic assumptions 

correspond to straight, wide channels with smooth boundaries (e.g., concrete) 

during times of relatively stable, clear, open water flow. Many natural systems have 

opposite characteristics269,274, and these parameters could influence the 

turbulence in the river. The microplastic particles were modeled as spherical 

(section 2.1.2 only) and homogeneous and did not include effects from particle 

biofouling288, aging56, and aggregation289, which differs from many common 

microplastic particles. All of these particle characteristics operate against our 

assumption of uniform and constant settling velocity56. Advancements on rising 

particle transport in rivers should incorporate other turbulence generating 

mechanisms like wind and vegetation and consider losses to the system like 

burial290 and deposition291. This work, especially section 3.2, would benefit greatly 

from validation through controlled flume experiments to highly resolve 

observations of the relationship between river shear velocity and microplastic 

concentration depth profiles. Future studies should comprehensively examine 

turbulence (which changes through time and space), quantify the settling and rising 
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velocities of sampled particles, and monitor concentrations at more depths across 

the flow field and in more geographic locations. Our sample uncertainty 

evaluations assume representative, time-averaged sample collection that is hard 

to conduct accurately, and future work should assess the temporal component of 

sampling time in bias assessments292. The Rouse model is a 1D model, and future 

efforts should be made to resolve 2D and 3D effects, such as proximity to sources, 

where sources input (surface or subsurface), and mixing length scales through 

incorporation into hydrodynamic models. Comparing the biases and uncertainties 

from the assumptions and processes listed above to those presented in this study 

would improve prioritization of future research objectives. Future advancements 

on the uncertainty model would benefit from incorporating the probability density 

function of microplastic density, particle size and shape parameters, and river 

shear velocity to globally or regionally describe probable and average biases54,293.  

This study presents a precautionary tale about challenges involved in accurately 

monitoring plastic in river flow due to concentration depth profiles. We advocate 

for sampling and uncertainty estimation informed by transport processes. The 

methods and models we present will help researchers continue to develop robust 

methods to monitor and model microplastic transport and fate. The field of riverine 

microplastic pollution research has continued to progress rapidly and must now 

reconsider the transport complexity of this diverse suite of particulate pollutants.  
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Chapter 7: Conclusion 

7.1 Advancements to watershed mass balances  

In this dissertation, we focused on expanding the scientific understanding of 

anthropogenic litter transport processes operating on land and in rivers to inform 

the ultimate goal of advancing a watershed mass balance. We started by 

assessing how litter moves around on land to determine which transport processes 

were most responsible for bringing litter to the roadsides in the Inland Empire. Then 

we investigated the relationship between discharge and macroplastic 

concentration in the river to understand better how the Santa Ana river transports 

litter downstream. Last, we focused on microplastic concentration depth profiles to 

determine how microplastics behave in the water column of the river. We coalesce 

the major learnings here with a specific focus on how these findings might apply 

to an anthropogenic litter mass balance of the Santa Ana watershed (which drains 

much of the metropolitan area of the Inland Empire) and more broadly. 

 

We learned that human transport was the primary process mobilizing receipts from 

their sale location to where they were littered on the Inland Empire roadsides we 

studied during predominantly dry periods. At one study location, we found the 

same standing stock during repeat surveys a year apart, suggesting that the 

change in standing stock on Inland Empire roadsides may be close to zero, which 
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has also been observed in other studies. It is possible that roadside storage is 

generally balanced by cleanup opperations and flux down storm drains. 

 

We know from other work that runoff during stormflow is a major process 

transporting macroplastic from roadsides to river channels. However, we found 

that stormflow did not have a significantly different floating macroplastic particle 

size distribution than lowflow conditions and floating macroplastic concentrations 

seemed to increase most during the early stages of stormflow. Therefore, floating 

macroplastic is likely predominantly sourced from the stream channel during all 

flow conditions.  

 

Once in the streamflow, particle properties and stream turbulence will dictate 

where particles reside in the water column. We found that sinking microplastic 

particles can be immobile in streamflow or any possible transport domain. The 

immobilization of particles increases channel storage. All of these findings may 

indicate that a large amount of roadside litter that goes to the Santa Ana channel 

is being stored within the channel and remobilized later.  

 

These findings likely apply more broadly to small urban mountainous watersheds 

with Mediterranean climates around the world. These advances in our 

understanding of watershed transport processes of anthropogenic litter lead us to 

critical recommendations for future work. 
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7.2 Future work  

Future studies should investigate channel storage to determine how much channel 

storage is happening in the Santa Ana river corridor. Roadside storage did not 

appear to be very large, and channel storage seemed to be an important source 

of litter in river flux in the Santa Ana River, even for buoyant macroplastic particles, 

a highly mobile fraction of total litter. This suggests that a large amount of channel 

storage is happening in the Santa Ana River. If so, then the river corridor may be 

an important sink for anthropogenic litter and an ecosystem highly impacted by 

anthropogenic litter in the watershed. The change of channel storage of 

anthropogenic litter could be investigated by monitoring the trash stored within the 

entire channel corridor for multiple years.  

 

Future studies should decrease the uncertainties highlighted in this dissertation. 

We found that macroplastic concentration-discharge relationships in our study 

river were more complicated than a simple monotonic model, leading to an order 

of magnitude uncertainty in litter flux estimate. Floating particles may be more likely 

to be mobilized during the early stage of stormflow, making sinking particles 

relatively more abundant during later stormflow stages. Depth integrated sampling 

would benefit the analysis of that mechanism and may improve the analysis of the 

total flux, not just the floating component. Surface load transport and rising 

suspended load transport in rivers, described in Chapter 6, have not been 

thoroughly investigated in other studies. Experimental flume work should be 
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conducted to validate and calibrate the Rouse profile’s predictions of surface 

transport and rising suspended transport. It is possible that processes at the 

stream surface, like surface tension, may impact the concentration depth profiles 

of rising particles.  

 

Future studies should expand the methods we developed. The Trash Taxonomy 

and Open Specy are still early in development. The Trash Taxonomy needs to be 

simpler to use for practitioners. Right now, the barrier to entry is technical expertise 

in database management. We want to develop an intelligent system that takes in 

datasets in various formats and interprets them accurately. No other dataset exists 

like Open Specy’s community database, and it is playing an important role in the 

advancement of spectral analysis for plastics pollution research. The labeled and 

unlabeled community shared spectra should be incorporated into a 

semisupervised artificial intelligence routine for analyzing spectra. We hope that 

the collaborative spirit within the anthropogenic litter research community 

continues to flourish and look forward to seeing what we learn together in the 

future.  
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Appendix A – Chapter 2 supplemental information 

 

Figure A-1: Regression between paired quantile values for Human trip distances 
and Receipt transport distances. The equation for the blue line (the regression) is 
listed in the plot. Both axes and the equation are log10 scaled. The black line is a 
1:1 line showing that the slope is similar between the paired quantiles, but there is 
an offset to smaller distances for the receipts.  
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Figure A-2: Survey dates for at monitoring locations. Each point represents a 
survey. Total number of pieces of litter observed during the survey is plotted as a 
number connected to the survey date in order. Site 7 was repeated a year later 
and had a very similar initial standing stock of litter to the previous year (7A 2019: 
216 pieces, 7B 2020: 220 pieces). 
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Figure A-3: Empirical cumulative distribution functions of the distance that receipts 
traveled from the sale location (black line) and the distance to the nearest possible 
sale location the receipt could have come from. People are not going to the nearest 
locations only to where the littering occurs they are also going to places slightly 
further, potentially along convenient paths during their daily commutes. 
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Appendix B – Chapter 3 supplemental information 

Table B-1: Glossary definitions for terms used in the manuscript.  

Term Definition 

Trash/Waste Any object which no longer has a purpose.  

Classification Any type of system to describe trash 

Harmonization Facilitate comparative operations between 
existing and emerging surveys 

Split Separating one less spectific class into two or 
more more specific classes.  

Lump Taking two or more more specific classes and 
combining them into a less specific class that 
encompasses all. 

Relational system A system of connected relational tables 

Relational table A table with unique columns that contain a key 
term to be linked with terms in other relational 
tables in the relational system 

Standardization Prescribing one survey list, or a set of survey lists 
for different use cases 

Class A value used to describe a piece of litter (item, 
material, or brand) 

Survey lists List of classes used to describe trash in a list 
used when collecting samples 

Survey type A group of surveys based on ecosystem, 
organization, or Substrate focus.  

Taxonomy A suite of relational tables and tools that can be 
used to standardize and harmonize classification 
systems. 
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Table B-2: Some of the potential use cases of the Trash Taxonomy and the 
actions a user would need to achieve them.  

Use Case Action 

Update a survey with more 
specific classes 

Upload the current survey to the web 
tool. Click more specific items and 
materials. Choose from the options to 
replace less specific terms. 

Create a brand new survey Download the item and material 
hierarchy from the website and select 
words based on the needs of the study 
while avoiding overlapping terms. Add a 
class called "other" for things not in your 
list. 

Expand the Trash Taxonomy Download the misaligned class table and 
brand-item table and work on 
incorporating those classes into the 
framework. 

Compare between the survey 
lists in this study 

Download SI material in this study. 

Combine two surveys using 
lumping.  

Merge both surveys to the item and 
material hierarchies following the code 
shared in this publication. 

Validate the web tool Download material-item table from 
relational tables tab and upload to the 
query tool.  
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Table B-3: Average comparability metrics for each survey list (materials and 
items). 

 Organization Average 
Comparability 
Items 
(Proportion) 

Average 
Comparability 
Materials 
(Proportion) 

1 5gyres plastic beach 
microplastics protocol 

0.07 0.27 

2 aaas water diplomacy 
symposium list 

0.45 0.56 

3 abandoned and derelict 
vessels 

0.00 0.17 

4 baldhead island conservancy 0.45 0.56 

5 blue ocean society for marine 
conservation 

0.27 0.45 

6 clean ocean access 0.34 0.01 

7 cordeiro 0.06 0.04 

8 corpus christi storm water 
runoff 

0.45 0.56 

9 cressida list english 0.02 0.00 

10 debris items of local concern 0.06 0.00 

11 deciduous trees 0.00 0.00 

12 derelict crab trap list 0.00 0.17 

13 derwent estuary list 0.36 0.56 

14 dumping activities 0.03 0.00 

15 exxpedition 0.39 0.56 

16 fernandino 0.00 0.55 

17 fish aggregating devices 0.00 0.17 

18 fulbright vietnam project 0.28 0.37 

19 ga sea turtle center 0.47 0.50 

20 goal clean seas florida keys 0.46 0.56 

21 gracia 0.03 0.44 

22 icc data card 0.35 0.00 

23 jrc 0.49 0.50 
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24 keep america beautiful 0.00 0.44 

25 keep tampa bay beautiful 0.35 0.17 

26 lee 0.04 0.49 

27 lets do it world 0.46 0.50 

28 marine conservation society 0.28 0.45 

29 marine debris items 0.46 0.56 

30 marine debris list 0.01 0.00 

31 maryland department of the 
environment 

0.14 0.00 

32 mccormick 0.00 0.26 

33 medical and personal hygiene 0.01 0.00 

34 microplastics 0.03 0.27 

35 nat geo source to sea 
expedition list 

0.34 0.50 

36 nelms 0.16 0.02 

37 noaa 0.39 0.36 

38 ocean and waterway activities 0.06 0.00 

39 ocean conservancy 0.39 0.00 

40 ocean conservancy icc list 0.41 0.20 

41 oigman 0.00 0.45 

42 open litter map 0.31 0.00 

43 open ocean hourly 
observations 

0.00 0.17 

44 ospar 0.38 0.40 

45 our ocean youth summit 0.01 0.17 

46 project aware 0.39 0.50 

47 rapid trash assessment 0.00 0.49 

48 rech 0.01 0.60 

49 rozalia project long list 0.41 0.56 

50 rozalia project short list 0.31 0.56 

51 sarasota dolphin research 
program debris team 

0.45 0.56 
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52 seabin data collection 0.15 0.35 

53 sea education association 0.45 0.56 

54 shoreline and recreational 
activities 

0.10 0.00 

55 site assesment 0.06 0.00 

56 smc 0.28 0.57 

57 smoking related activities 0.02 0.00 

58 sustainable seas trust 0.45 0.56 

59 tetaitokerau debris monitoring 
project 

0.44 0.54 

60 the ocean race 0.38 0.31 

61 tracking california's trash 0.14 0.00 

62 usvi marine debris for noaa 0.45 0.56 

63 vandervelde 0.23 0.41 

64 vincent 0.00 0.17 

65 waste receptacles 0.00 0.00 

66 williams 0.12 0.00 

67 willis 0.00 0.54 

68 zylstra 0.08 0.00 
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Appendix C – Chapter 4 supplemental information 

 

Figure C-1: Cumulative water flux m3 by discharge (m3s-1) at the sample location 
from 1990-1-1 to 2019-12-31.  
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Figure C-2: Particle Mass (g) to projected Area (mm2) linear relationship on log10 
transformed data.  
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Figure C-3: Mass concentration hysteresis analysis. (A) lines around the points 
indicate bootstrapped uncertainties. Each sampling day has its of color and a line 
connects the samples by time of sampling. An arrow indicates the direction the 
concentration line is going through time. (B) Hydrograph during February 2nd event 
with sample times plotted as red dots on the hydrograph. (C) Hydrograph during 
January 17th event with sample times plotted as red dots on the hydrography. 
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Figure C-4: Generalized additive model using discharge to predict mass 
concentration. Deviance explained, sample size, and p value for the smooth term 
are given. Uncertainties were bootstrapped around each observation and 
uncertainty range in discharge and concentration is given for each observation.  
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Appendix D – Chapter 6 supplemental information 

 

Figure D-1: Central map of the United States with pull outs at sampling locations 
(green circles) in Lenaker et al. 254 (USGS sites 40870837 -S1A1- 4087000 -S1A2-
). Northing arrows and scale bars in bottom right hand corner of each pop out. 
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Figure D-2: General linear regression between particle size and rising velocity for 
foam particles from Waldschläger and Schüttrumpf.51  
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Figure D-3: Measured concentration depth profiles of foam particles at two 
locations (top axis) binned by particle size (right axis) using data from Lenaker et 
al.254 (black dots). The black dashed line denotes the modeled Rouse profile 
concentration depth profile. Concentration and depth are maximum normalized 
(equation 7). Paired samples are directly above one another. 

 




