
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
A Novel Systolic Architecture for Efficient Acceleration of Deconvolutional Neural Networks
at the Edge

Permalink
https://escholarship.org/uc/item/0rj5c794

Author
Daly, Jake M

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0rj5c794
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

A Novel Systolic Architecture for Efficient Acceleration of Deconvolutional Neural Networks at
the Edge

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in

Electrical Engineering (Machine Learning and Data Science)

by

Jake Daly

Committee in charge:

Professor Kenneth Kreutz-Delgado, Chair
Professor Vikash Gilja
Professor Michael Yip

2021

Copyright

Jake Daly, 2021

All rights reserved.

The thesis of Jake Daly is approved, and it is acceptable in quality and form for

publication on microfilm and electronically.

University of California San Diego

2021

iii

DEDICATION

This thesis is dedicated to my best friend and fiance, Ladan Behzadi, for all her support during
my time in graduate school.

iv

TABLE OF CONTENTS

Thesis Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vi

Acknowledgements . vii

Vita . viii

Abstract of the Thesis . ix

Chapter 1 Introduction . 1
1.1 A New Era Of Processing . 1
1.2 Deconvolution at the Edge . 2

Chapter 2 Background . 4
2.1 Deconvolution Operator . 5
2.2 Overlapping Sums Problem . 6
2.3 Input Data Re-Use vs. Output Data Re-use . 7
2.4 Coarse Overview of Acceleration Approaches . 8

2.4.1 Algorithmic Approaches . 9
2.4.2 Architectural Approaches . 13

2.5 Systolic Arrays . 14

Chapter 3 Existing Approaches to Deconvolution Acceleration 16

Chapter 4 Proposed Architecture & Dataflow . 19
4.1 On-chip acceleration of TDC . 20
4.2 Multicasting input network . 22
4.3 Systolic State Machine Controllers . 22
4.4 Systolic flow for TDC . 23

Chapter 5 Experiments . 29

Chapter 6 Conclusions & Future Work . 31

Bibliography . 33

v

LIST OF FIGURES

Figure 2.1. The increased capability and power of deep learning models over the past
decade has been due in large part to the exponentially increasing number
of parameters that these models use. Image source: Li and Gao [1] 5

Figure 2.2. Visualization of layer-level geometry of a deconvolution, where pink tiles
represent kernels (weights), blue tiles represent input feature maps, and
blue tiles with a pink border represent output feature maps. 6

Figure 2.3. Traditional deconvolution algorithm, shown with I = 2, KD = 2, S = 2, and
O = 6. At steps t2, t3, and t4 overlapping sums occur between adjacent
output products, as indicated by darker regions of blue. 7

Figure 2.4. Reverse deconvolution loops over the output space and for each element,
calculates the inputs and weights that are required as part of that element’s
sum of products. 10

Figure 2.5. Transforming a deconvolution operation into a single sparse convolution. . 11

Figure 2.6. Transforming a deconvolution operation into a convolution using the TDC
transform. 11

Figure 2.7. The notion behind a systolic architecture is analogous to the circulatory
system in that dataflow (red) is through processing elements (PEs) before
returning to memory, similar to how blood moves away from the heart (due
to systolic pressure) and through organs before returning. 14

Figure 4.1. Proposed architecture with on-line TDC transform/inverse transform, and
4x parallel systolic processors. 19

Figure 4.-2. Data flow through the systolic array (b,c, and d), demonstrating which
output products are accumulating at various stages (c, d) and the sequence
of completed matrix multiplications writing to the local output buffer (e). . 28

Figure 5.1. Layer level parameters for the implemented WGAN-MNIST network. . . . 29

Figure 5.2. Performance estimates for latency obtained for the WGAN-MNIST net-
work, in comparison with previous work [2] . 30

vi

ACKNOWLEDGEMENTS

I would like to first acknowledge Ian Colbert, who’s leadership, friendship, and advice

have helped me at every step of my journey over the last two years.

I would also like to acknowledge Dr. Srinjoy Das and Professor Kenneth Kreutz-Delgado

who’s inputs and wisdom have helped shape some of the key insights in this work.

Lastly but certain not least, I would like to sincerely thank Dr. Parimal Patel of Xilinx for

his generosity with his time, and for his willingness to share his deep knowledge of complex

tools and features of Xilinx products. Much of our lab’s work wouldn’t be possible without his

help.

vii

VITA

2016 B. S. in Electrical and Computer Engineering, University of California, Santa
Barbara

2016-2019 Applications Engineer, Keysight Technologies

2019-2021 Graduate Student Researcher, UCSD Calit2 Pattern Recognition Laboratory

2020-2021 Machine Learning Intern, Advanced Micro Devices

2021 M. S. in Electrical Engineering (Machine Learning and Data Science), University
of California, San Diego

2021 Machine Learning Engineer, Advanced Micro Devices

PUBLICATIONS

Ian Colbert, Jake Daly, Ken Kreutz-Delgado, and Srinjoy Das, “A Competitive Edge: Can
FPGAs Beat GPUs at DCNN Inference Acceleration in Resource-Limited Edge Computing
Applications?”, arXiv:2102.00294.

FIELDS OF STUDY

Electrical Engineering: Machine Learning and Data Science, Computer Architecture, Hardware
Acceleration

viii

ABSTRACT OF THE THESIS

A Novel Systolic Architecture for Efficient Acceleration of Deconvolutional Neural Networks at
the Edge

by

Jake Daly

Master of Science

University of California San Diego, 2021

Professor Kenneth Kreutz-Delgado, Chair

A new era of processing has dawned: the demands for low latency and low power

processing at the edge have ushered in unprecedented opportunity computer architects and

embedded designers. In pursuit of new performance standards, chip designers in industry and

academia have begun the march towards domain specific processors, a paradigm whose core

philosophy and methods are in many ways contrary to the mantras that dominate the processors

seen in today’s datacenters and technology hubs. The increasing complexity of neural networks

and deep learning algorithms being deployed at these edge locations has made this pursuit

anything but trivial. Some of the most powerful models that we are seeing deployed, known as

ix

deep generative models, use techniques that are effectively capable of generating new data by

capturing the full joint data distribution over some input space. These models frequently use

upsampling layers to take lower dimensional latent spaces to higher dimensional ones before

making inferences about our world. In this work, we perform a deep analysis of one of these

upsampling techniques, known as deconvolution (or equivalently transpose convolution), and

propose a novel computer architecture for low latency acceleration in edge applications. Our

work is the first to fuse together systolic processing and an algorithmic transformation known

in this area as the TDC method [3]. We illustrate how and why this pairing is so powerful for

inference acceleration and provide some preliminary performance numbers benchmarked against

a pre-existing Wasserstein Generative Adversarial Network (GAN).

x

Chapter 1

Introduction

1.1 A New Era Of Processing

The last decade has seen an explosion of interest in artificial intelligence, powered in

large part by the subfield called deep learning, which has time and time again provided state-

of-the-art results in tasks like image classification, language modeling, and game playing [4].

Deep learning most often refers to the training of multi-layered neural networks, which can be

deployed as universal function approximators [5]. The more data that is available to train on,

the more accurately these models converge to making useful predictions, especially in highly

parameterized ”deep” networks where the parameter search space is very large [4].

Of course, using more data to train these models does not come without cost. For years,

we had been able to meet the ever-increasing demand for computational speed by making devices

smaller and by turning up the clock frequency on our processors without many implications for

power density and thermal stability. This trend came to a screeching halt in the mid 2000s with

the end of Dennard Scaling [6], and a new trend subsumed its place: parallelization.

As demand for parallelization increased and neural networks progressively became even

more parameterized, we’ve seen an explosion in popularity of parallel platforms like FPGAs

and GPUs being used for deep learning acceleration. The last few years we have also seen the

development of even more highly specialized deep learning accelerators pop up, for example

the Google TPU that aims to optimize matrix multiplication [7]. This shift to domain-specific

1

processors has ushered in a hardware/software co-design approach [6] in which designers journey

deep into the fabric of a particular application or algorithm and look for opportunities to exploit

its idiosyncrasies such that both the algorithm and architecture are jointly optimized for maximal

performance.

1.2 Deconvolution at the Edge

Another driving force behind the trend to domain specific processors has been the

diversification of environments where applications are deployed. The same devices that accelerate

and power the training of deep learning agents in datacenters have much different resource

requirements than a small edge device that might deploy the same trained network for inference.

Edge computing refers to computation executed on electronic devices that are connected to

but distributed away from a centralized node like a datacenter [8], and we specify this context

because yielding performance gains at the edge is often more complex than simply achieving

higher throughput. While the user who trains the algorithm at the datacenter likely cares more

about raw throughput, the end user of an edge device may care more about her phone battery

lasting all day long, or her application running quickly.

This thesis focuses on accelerating the deconvolution operator in this context - low-power,

resource-constrained inference. Upsampling operators are a widely studied technique [9] and

can generally be separated into two groups: (1) interpolation-based methods, and (2) learnable

methods. Deconvolution (also known as transpose convolution) is a learnable upsampling opera-

tor commonly used in deep generative models such as Generative Adversarial Networks (GANs)

and Variational Autoencoders (VAEs) [2,3,10–16]. Whereas the convolution operator is used for

downsampling latent spaces in locally connected neural networks, the deconvolution operator

learns a higher dimensional latent space from a lower dimensional one. Unlike most other

learnable upsampling operations such as sub-pixel convolutions [17], the standard deconvolution

operator does this directly, without the need for expensive post-processing operations.

2

This work addresses the acceleration of the deconvolutional neural network layer, with a

combined architectural and data flow approach, implemented on an embedded SoC platform.

The main contributions of this work are:

1. An overview and analysis of existing algorithmic and architectural approaches to DCNN

acceleration

2. A novel architecture and data flow for deconvolution inference acceleration

3. An efficient means of performing the TDC transformation online

Before exploring the wealth of parallelism, pipelining, and data re-use that a systolic TDC

architecture affords, we provide some background on the problems that arise when accelerating

deconvolution layers, and approaches that have been proposed in recent years. After developing a

basic understanding of the challenges that arise, we will observe various algorithmic, architectural,

and combined approaches that have been proposed in recent years.

3

Chapter 2

Background

The past decade has seen an unassailable increase in quality and representational power of

artificial intelligence. The genesis of this can be accredited to, aside from the increased complex-

ity of machine learning models, the extreme extent to which models are being parameterized [1].

In Figure 2.1, we show how extreme this trend has been. To put some of these numbers into

perspective, the Turing-NLG model has a number of parameters (roughly 10 billion) equivalent

to over 10% of the total number of brain cells the average adult human brain is estimated to have

(86 billion) [18].

Some of the most impressive results that we are seeing across traditional applications

like computer vision and natural language processing come from models that are classified as

deep generative models. Although generative models have been around for quite some time, an

important diversion in recent years (from classical approaches to training generative models) has

been the injection of deep learning into the training processes. Arguably the most intrinsic power

of deep learning is that the user only needs to set a relatively small number of a neural network’s

hyperparameters and an optimization algorithm will do the heavy lifting of fitting the model’s

parameters (however many there may be) such that some objective loss signal is minimized. This

is in stark contrast to the parameter estimation techniques of classical generative modeling and

Bayesian statistics in which parameters are tuned by hand, evaluated, and iteratively improved

upon.

4

Figure 2.1. The increased capability and power of deep learning models over the past decade
has been due in large part to the exponentially increasing number of parameters that these models
use. Image source: Li and Gao [1]

A classic example of a deep generative model is a Generative Adversarial Network

(GAN) [19] in which a discriminative model such as a convolutional neural network (CNN) is for

example trained to extract features from some input image, and compress this information into a

latent space. A generator is then trained to use some upsampling technique to decompress these

features into a higher dimensional reconstruction of the latent information that was present in the

original training data. Whereas one popular way of performing the downsampling or compression

of information is via the convolutional operation, upsampling is frequently performed through

the transpose convolution operation (also known as deconvolution). Before understanding the

biggest problems that deconvolution poses for hardware systems, we need to review the nature

of the operation.

2.1 Deconvolution Operator

The deconvolution operator can be viewed as the operation inverse to the traditional

convolution operator: it is often used after a convolution has occurred and the original input

5

shape is trying to be recovered [20], or more generally when we are trying to upsample from

some latent space. The deconvolution operation is often implemented in practice as a neural

network layer in deep generative models like GANs [9, 21–25]. If we let OC be the number of

output channels of the deconvolution, and IC be the number of input channels, we obtain each

output channel by taking a set of IC kernels, deconvolving them against the given input feature

maps, and summing them per output channel, as shown in Figure 2.2. In this example, each of

the eight input feature maps deconvolves with a total four kernels and the resulting outputs are

summed across the input dimension (right to left in this figure) to obtain the four output feature

maps.

Figure 2.2. Visualization of layer-level geometry of a deconvolution, where pink tiles represent
kernels (weights), blue tiles represent input feature maps, and blue tiles with a pink border
represent output feature maps.

2.2 Overlapping Sums Problem

As shown in Figure 2.3, the traditional deconvolution operation involves multiplying an

input element (for example a pixel in an image) by every element in a kernel, and storing this

6

projection in some output buffer (t1). At the next time time step, the filter moves across the input

to the next element, projecting it on to the output at an offset of stride S from where it had stored

the previous output (t2). If S is smaller than the width of the deconvolution kernel KD, the output

of the operation ends up overlapping with the output of previous time steps (t2-t4). By the end of

the computation, after the filter has deconvolved over the entire input, we may end up with an

output that has a non-uniform number of sums of products.

Figure 2.3. Traditional deconvolution algorithm, shown with I = 2, KD = 2, S = 2, and O = 6.
At steps t2, t3, and t4 overlapping sums occur between adjacent output products, as indicated by
darker regions of blue.

The need to accumulate and re-write the same locations in the output causes a big issue

of efficiency and synchronization for the underlying hardware, known in the literature as the

”overlapping sums” problem [2, 3, 10, 13, 14, 16]. The inefficiency results from having to either

send the incomplete, intermediate results off-chip (a waste of memory bandwidth and energy) or

cache the intermediary products on-chip (a waste of space and on-chip resources).

2.3 Input Data Re-Use vs. Output Data Re-use

Data re-use refers to using the same data multiple times while it is in quick-access

memory (eg. registers), rather than having to fetch this data multiple times from slow memory

7

(eg. DDR). In an ideal world, we would like to maximize data re-use by loading data once,

performing all the necessary operations on it, and then discarding it when we’re done. Figure

2.2 shows why this is not always possible, especially for large networks with many input and

output channels: we would ideally like to use each of the eight input feature maps across all four

filters (ie. maximize data re-use over the input space). If we could finish all computations that

will require each input feature map, we wouldn’t have to load it again from DDR at a later point.

However, if we use the input feature map against all of the kernels, we would have to store all

output products somewhere, which can quickly become an overwhelming amount of data. If we

consider layer 5 of the well known PGAN-LSUN network [26], this would require caching over

16 MB of data per training sample (assuming 32-bit data).

On the other hand, we could instead try to maximize data re-use across the output space

by trying to completely finish one output feature map. Doing so would require loading each

input feature map one by one, and then performing the deconvolution of each with its first kernel.

The issue with this is we will have to end up loading each of the input feature maps a total of 4

times. Whether it’s more efficient to maximize data re-use over the input space or the output

space often comes down to the specific geometries of a network layer. For example a small

neural network layer might have few enough parameters to where maximizing re-use over the

input space doesn’t place to high of a burden on the system. Finding a more fixed source of data

re-use is, as we’ll see, an easy task for a TDC/systolic combined approach.

2.4 Coarse Overview of Acceleration Approaches

When considering approaches to designing a DCNN inference accelerator that addresses

the issues of overlapping sums and making efficient use of data, techniques can generally be

defined by their algorithmic or architectural features [2]. Almost all research in this area reflects

the more general trend discussed earlier of a domain specific, hardware / software codesign

approach.

8

In this thesis, we define algorithmic approaches as ones that take the viewpoint of making

changes to how the computation gets executed, whereas architectural approaches we define as

optimizing the underlying dataflow and hardware execution units that an algorithm would require

to execute. Designing at the hardware/software interface can blur the lines between what we

would consider an algorithmic versus an architectural approach. A guiding principle is that if

the technique could be implemented in software or a higher level programming language, it

is a an algorithmic approach. For this reason, we use the term ”software-based” approaches

synonymously with algorithmic approaches, and ”hard-based” approaches synonymously with

architectural approaches. The codesign of the hardware and software approaches that we will

discuss next can unlock powerful sources of efficiency. Before examining recent approaches to

the DCNN accelerator, we will introduce some common techniques that are seen across works.

2.4.1 Algorithmic Approaches

One way to view the overlapping sums problem is that the vanilla deconvolution operation

does a ’single shot’ sweep over the input space. When we say single shot over the input space,

we mean that the algorithm loops over the input space, only visiting each element once. This

contrasts to what would occur over the output space, where pixels might have overlapping

projections onto them, and thus might be accessed more than once. Algorithmic approaches to

efficient deconvolution acceleration most often champion the idea that being able to compute

elements in the output space in a single shot would circumvent the overlapping sums issue.

Reverse Deconvolution

For example in Figure 2.4, we can imagine stepping over the output and asking what

inputs and weights would be required to complete this output element? The authors of [2, 10]

proceed in this manner, calling their method REVD (reverse deconvolution), such that each

completed value could be streamed off as soon as there were enough data to make efficient use

of the memory bandwidth, avoiding the overlapping sums issue.

9

Figure 2.4. Reverse deconvolution loops over the output space and for each element, calculates
the inputs and weights that are required as part of that element’s sum of products.

Sparse Convolution

Another method that has been employed [11, 12, 27, 28], leverages the notion that any

deconvolution can be viewed as a sparse convolution in which zeros are inserted in between

input feature map elements (”fractional striding”). This way we avoid the issue of overlapping

sums because the convolution operation inherently completes the output in a single shot fashion.

This is shown in Figure 2.5 where we have transformed the same deconvolution that we have

been using throughout the chapter. Designers employing this technique have chosen, rather

than grappling with overlapping sums, to instead fight the battle of sparsity: the sparse input

feature maps that are obtained when using this approach cause many wasted operations (due

to zero multiplication and zero padding). To compare this with the example deconvolution we

observed earlier, there are 1152/128 = 9x as many operations, of which only about 11% are

non-zero operations. For problems with 2 dimensional deconvolutions (eg. any problem where

we are dealing with image data), the sparse convolution transformation has a number of zero

multiplications that grows quadratically with stride length, and superlinearly in the size of the

deconvolution kernel (due to padding).

TDC Transform

Another algorithmic approach is to alternatively view the deconvolution as a set of S2

smaller, dense convolutions, We obtain the convolution kernels by sampling the deconvolution

10

Figure 2.5. Transforming a deconvolution operation into a single sparse convolution.

kernel at stride S, and rearranging the resulting groups of samples into smaller kernels that

we then convolve with the input. This method has been referred to as the TDC (Transform

Deconvolution to Convolution) method [14]. We will not derive the algebra that is required to

perform this transformation in this work, as this has been the focus of other works [14, 15], and

also because the lower level details of the transformation aren’t relevant to understanding how it

can be used to aid in the acceleration of a deconvolution workload.

Figure 2.6. Transforming a deconvolution operation into a convolution using the TDC transform.

11

Figure 2.6 depicts the TDC algorithm. The deconvolution kernel gets sampled at stride

S, effectively splitting it into S2 convolution kernels. If the size of the deconvolution kernel is

not evenly divisble by the stride, padding is required such that PK,C = KC ·S−KD, where PK,C

is the padding required for the transformed convolution kernels, KC is the width of the new

convolution kernels, S is the stride of the deconvolution operation, and KD is the size of the

original deconvolution kernel. These S2 transformed filters are convolved across the input, which

is padded with KC−1 zeros.

Because the resulting transformation requires invoking a convolution operation in place

of a deconvolution, each output element is able to be computed in a single-shot. Although the

TDC transformation does result in more computational steps than the traditional deconvolution

2.3, each computational step involves fewer operations because the convolution kernels are

smaller than the original deconvolution kernel. With the toy example we have provided, there

are 4 elements * 2 operations (one addition and one multiplication) * 36 time steps = 288 total

operations, whereas the traditional deconvolution had 16 elements * 2 operations * 4 time steps

= 128 operations, and the sparse convolution had 16 elements * 2 operations * 36 time steps =

1152 operations. The sparse convolution and the TDC method both circumvent the overlapping

sums problem at the expense of increased operations (compared to the traditional deconvolution);

however for the vast majority of layer parameters, TDC will require less operations than a sparse

convolution because there is no need for zero insertion, and the padding scales with KC rather

than with KD.

The elementary example provided in this section highlights the trade-offs that different

algorithmic approaches pose. Even though one approach might expose (for example) more

operations than another, we cannot say for certain whether that approach will be less efficient

until we know more about how the underlying architecture can be hindered by or exploitative of

these idiosyncrasies. In domain specific hardware and software codesign, we indeed would only

choose one of these algorithmic approaches if we had an associated strategy that would allow us

to take advantage of these attributes. This is precisely why a deep understanding of the interplay

12

between architecture and algorithm are essential to implementing a high-performing accelerator.

In the next section we give some background on common architectural approaches employed for

deconvolution acceleration.

2.4.2 Architectural Approaches

The most canonical paradigm for data-parallel processing is single instruction, multiple

data (SIMD) processing, in which the same instruction is issued across an array of processing

elements and applied to a vector of data in parallel. Of course this method of acceleration works

best for data that can be partitioned into independent chunks, which is often the case in deep

learning when the majority of the computation that needs to occur is matrix multiplication. The

most famous example of a SIMD architecture is a GPU, which until recently [7, 29] has been

unrivaled in throughput. GPUs have been shown in recent years to have comparable or in some

cases worse performance per Watt in deep learning applications compared to TPU [29] and

FPGA [2].

The Tensor Processing Unit [7] (TPU) has made arguably the biggest splash in the realm

of hardware accelerators in recent years. The underlying architecture is classified as a complex

instruction set computer (CISC) and uses a systolic array processor to achieve throughput

numbers even higher than GPU [30]. Because systolic arrays are a large part of the architecture

employed in this work, we dedicate a whole section to explaining the basic concepts behind them

(Section 2.5).

FPGAs are yet another type of processor that is widely employed in this area as they can

be reconfigured and highly customized to do very specific tasks; they are of particular interest

in the edge computing space because of their relatively high performance per watt [2]. One

obstacle to designing with FPGAs is their slow design cycle and steep learning curve, however

high-level synthesis (HLS) tools have come a long way in recent years and aim to lower the

barrier to getting FPGA systems up and running quickly.

13

2.5 Systolic Arrays

The term systolic in the context of the human cardiovascular system describes a specific

phase in the heart’s cardiac cycle in which the muscle contracts, causing a ’systolic’ pressure

which results in blood being pumped to the body’s organs [31]. The word invokes an analogous

meaning in the context of parallel computer architectures: data is pumped through a (typically)

2D array of homogeneous processing elements, where each processor performs some operation

on the data and passes the original data and/or processed data onto neighboring elements [32].

This contrasts to other well known architectures like CPU and GPU in which data moves back

and forth between memory (most often registers) and a processor.

Figure 2.7. The notion behind a systolic architecture is analogous to the circulatory system in
that dataflow (red) is through processing elements (PEs) before returning to memory, similar
to how blood moves away from the heart (due to systolic pressure) and through organs before
returning.

The systolic array philosophy is rooted deeply in two of computer architecture design’s

most fundamental principles: keeping architecture simple and keeping architecture small [33].

From a pure design perspective, keeping the systolic array’s processing elements simple and

small enables high modularity and uniformity across the units, resulting in a processor that is

easy to implement and easy to adapt to different constraints [34].

More importantly than the design advantages systolic architectures pose, they are

amenable to high degrees of pipelining (and thus can be run at high speeds) as well as huge

data re-use [35]. These two factors coupled together imply the potential for high-speed data

14

movement amongst processing elements, and efficient re-use of data–especially in algorithms

that use the same data multiple times across their computation (for example convolution as

we will see shortly). All of these would suggest a systolic architecture could be an excellent

candidate for a low-latency accelerator.

15

Chapter 3

Existing Approaches to Deconvolution Ac-
celeration

As cited previously, deconvolution acceleration has received a noticeable amount of

attention in recent years. Most work discussed in this section builds off of the general approaches

discussed in the Chapter 2, but here we elaborate on how specific approaches have been adapted

and augmented over the past five years.

Acceleration via Reverse Deconvolution

One of the earliest works in the space [10] developed the reverse deconvolution algorithm,

or REVD, which computes the output feature maps in a single shot, avoiding the overlapping

sums problem. The authors propose a three-step design methodology to systematically optimize

an accelerator to achieve optimal roofline performance by leveraging data statistics and design

space exploration. The biggest criticism of the REVD method has been that the algorithm loops

over the output space, and requires several expensive calculations (fixed point modulo arithmetic)

on each loop iteration to obtain the required input and weight indices [3]. Colbert et al. [2]

address the expensive address calculation arithmetic by pre-processing and caching the required

calculations. This work also improves the dataflow by reordering the loops, effectively improving

data re-use in the weight space and increasing the impact of their conditional execution units.

16

Acceleration via Sparse Convolution

It has been long known one alternative way to view deconvolution is as a sparse con-

volution, as we covered in Chapter 2; however, it hasn’t been until recent years that works

began exploiting this to avoid the overlapping sums issue. [11, 12] focus on the deployment of

a deconvolution accelerator for use in GANs. Their main focus is creating an architecture that

efficiently deals with the sparsity by rearranging and eliminating rows of zeros that would result

in wasted computation. The resulting processor, GANAX, uses a unified MIMD-SIMD architec-

ture that can operate in two distinct modes: it operates in SIMD mode when performing standard

convolutions (required in the discriminator network of a GAN), meaning that all processing

elements execute instructions that have been stored in a global instruction buffer. However, it can

switch into a combined MIMD-SIMD mode when required for executing transpose convolutions,

which potentially have a different number of operations per convolution window. They develop a

custom instruction set for carrying out these two modes of operation, and benchmark a handful

of popular GANs on their architecture. A key disadvantage of this approach is the complexity of

the architecture, which switches back and forth between modes of operation and maintains a

hierarchy of different instruction buffers to execute in one mode verse the other.

Xu et. al [27] investigate turning the deconvolution into a sparse convolution and

accelerating it on unmodified processors using software, attempting to avoid the development of

specialized hardware. They benchmark their method against off-the-shelf processors on a set of

realistic benchmarks and achieve reasonable (2.41x - 4.34x) speedup using a purely software

approach.

Another work employing the sparse convolution transformation is [28], who–similar to

this work–employ systolic processing in their compute engines. A main goal of their work is to

realize a uniform architecture for acceleration of 2D and 3D deconvolutional nets via a novel

mapping strategy that tiles larger networks to efficiently execute on their architecture. Their

accelerator significantly outperforms a CPU in terms of raw throughput, and outperforms both a

17

CPU and GPU in terms of energy efficiency.

Acceleration via TDC

Transforming the deconvolution into a set of S2 smaller convolutions is a more recent idea

that started circulating about a year after the reverse deconvolution algorithm was proposed [3,14].

The original authors targeted this idea at image super resolution, using Vivado HLS and a Virtex

7 FPGA, and claim an 81x speed up over the traditional DCNN algorithm, presumably using

HLS and the same FPGA. Tu [15] also uses the TDC method targeting GANs on an unmodified

CNN accelerator. The work of both Tu and Chang et al. perform the transformation of the

deconvolution kernels into convolution kernels off-line, which creates extra pre-processing away

from the accelerator, and is less end-to-end in the context of a full deconvolution accelerator.

18

Chapter 4

Proposed Architecture & Dataflow

The proposed approach in this work weds the extra sources of data level parallelism

that have been exposed by the TDC method with the systolic architecture. In this chapter we

elaborate on the synergistic relationship between the algorithm and architecture. Figure 4.1

shows a high-level overview of the system.

Figure 4.1. Proposed architecture with on-line TDC transform/inverse transform, and 4x parallel
systolic processors.

The main philosophy of the multi-core systolic array is to have as much of the transporta-

19

Algorithm 1. Deconvolution Kernel. Each kernel starts the necessary data streams, then loops over
output and input channels, sending each deconvolution to one of the systolic cores in a round-robin style.

1: procedure DECONVOLUTION
2: StartDataStreams()
3: Processor = 0
4: for oc in range(0,Oc) do
5: SendBias(Processor)
6: for ic in range(0, Ic) do
7: for wr in range(0,WR) do
8: SendWeightRow(Processor)
9: for ir in range(0, IR) do

10: SendInputRow(Processor)
11: WriteOutputAddress(Processor)
12: Processor = Processor + 1
13: if Processor == numberProcessors then
14: Processor = 0

tion and overhead processing as possible isolated away from the master control unit, so that

it can focus on keeping the cores and on chip data transport network as occupied and busy as

possible. This strategy of partitioning the memory accesses away from data processing is also

known as decoupled access execute [12].

4.1 On-chip acceleration of TDC

As we saw in Chapter 2, in order to transform the deconvolution to an equivalent

convolution operation, the TDC method requires sampling of the deconvolution kernels and

rearranging into smaller convolution kernels. This pre-processing step involves much more

irregular memory access patterns compared to convolution or deconvolution operation, which

in their standard forms have a sequential pattern [20]. In previous TDC works [14, 15], this

pre-processing step (as well as the post-processing step that is required to ’re-stitch’ the split

convolutions back into the deconvolution output) has been performed offline. We are the

first work (to our knowledge) to build custom IP to perform this transformation and inverse

transformation within the accelerator.

In large part, the transformation is applied to the weights and is done right after data is

20

read on chip, before it is sent to the systolic cores. As data is being read into on-chip block RAM,

a TDC translator waits for a full weight map to become available–this is the minimum size that

would be required to fully transform a deconvolution kernel into all completed (S2) convolution

kernels. Once this condition has been met, the translator samples this portion of the block RAM

according to the parameters of the deconvolutional layer, and stores them in a smaller buffer

where they are ready for the master control unit to issue the instruction that transports the weights

to one of the systolic cores. Because this transformation is automatically applied to weights as

they are read into the design, the master control unit is not burdened with this overhead, and can

focus its efforts on getting data to the different cores quickly and efficiently

For the inputs, the transform might require padding if the length or width of the trans-

formed convolution kernels is greater than one. Rather than sending the padded input over the

communication network to the cores (which would be wasting lanes on sending zero data), we

initialize a buffer in the systolic core with zeros, and then implant the actual input feature map at

the positions in the buffer that would be required to obtain the necessary padding.

The last step in moving data from the BRAMs to the processing cores is to move the

bias (if one is required), and for the master control unit to write the output address to the core.

After all of this information has been transformed and read into one of the systolic cores, a state

machine is triggered which handles the cores configuration and computation so that the main

controller can (in parallel) start preparing the next core for computation.

On the output side, the split outputs [15] are accumulated into a local output buffer where

they are stacked one after another. When the global output buffer is ready (ie. no other cores are

communicating with it), the local output buffer at the core starts reading the output data to the

global output buffer, sampling in a pattern necessary to re-stitch the split outputs back together

into the complete deconvolution output.

21

4.2 Multicasting input network

To transport the data efficiently from the global data buffers to the processing elements,

we implement a multi-casting network inspired by Eyeriss [36]. The basic idea is that each

processor is assigned a tag, and when we need to move data to one of the processors, we read it

from the global data buffer and attach a tag to it containing the processor ID of the destination

processor. The communication network broadcasts the tagged data to all processors, but any

processor whose ID does not match the tag on the data will reject it. The multi-casting network

contains separate buses for each of the input, weights, bias, and output address data, to ease the

complexity of the routing.

4.3 Systolic State Machine Controllers

To further offload the amount of work that the master control unit has to do, we design

each systolic core to be controlled by a state machine which completely controls the data

movement and computation within the core once the state machine has been kicked off. The

state machine’s operation and sequence of events are described by the following states:

1. Reset. There are two types of resets which could put the systolic state machine into a reset

mode: either a global system reset, or a local reset that occurs automatically when this

sequence has terminated.

2. Ready. This state is defaulted to automatically one clock cycle after a reset, and indicates

that the core is ready to be communicated with (ie. have any sort of data sent to it from the

master control unit).

3. Communicate. Once the master control unit writes any of sort of data (weights, bias,

input, or output address) to one of the cores, the systolic state machine enters into its

communication state.

22

4. Shift weights. After all of the weights have been read into the local weight buffer in a core,

the core will begin it’s weight shifting phase in which weights are shifted downwards and

stored into the local registers of the processing elements. The systolic core was designed

to be able to still receive other data during this phase so that the weight shifting could be

overlapped with other data communication, effectively eliminating the cost of shifting

weights into the array.

5. Compute. After all data has been received by the core and all the weights have been

shifted into the array, the compute phase kicks off, in which inputs are read from the input

buffer on every clock cycle into the array (for full details on dataflow, see Section 4.4).

This state finishes when all S2 convolutions (ie. one complete deconvolution) has finished

writing into the local output buffer.

6. Idle. The core then waits in an idle state for the global output buffer to signal that it is

ready to communicate with the core.

7. Write. In this state, the core first writes the output address to the module controlling the

global output buffer. After this module checks where the data is being stored, it signals

back to the core that it is ready to receive data. The core then writes all of the data

contained in its local buffer to the global output buffer, and when it has completed this

writing, it automatically enters a local reset in which variables are re-initialized to their

starting values so that core is ready for its next computation.

4.4 Systolic flow for TDC

As mentioned earlier, TDC exposes a new source of data-level parallelism that is not

available in any of the other algorithmic transformations mentioned in Chapter 2. Aside from

enabling S2 new sources of spatial and temporal parallelism, we also see an equivalent

gain in data re-use: each these S2 TDC kernels are convolved with the same exact input

23

elements. To illustrate this, we will show the computation being performed for the first layer of

WGAN-MNIST.

Figure 4.2a shows the dataflow through the array, which can be classified as a weight

stationary dataflow [36] because the weights are shifted in to the processing elements and remain

stationary until the computation completes. The processing core itself is organized as follows:

each core contains an array of processing elements K2
C rows long by S2 columns wide. Each

of the S2 transformed kernels are shifted into the columns of the array, such that each of their

K2
C elements reside in one row of the column, and that the columns preserve the same order of

kernel elements; for example, each column in the Figure 4.1b (from top to bottom) contains

the elements wc,1,1,wc,1,0,wc,0,1,wc,0,0, where c ∈ [0,3] represents any of the four transformed

convolution kernels.

After filling the array with weights, input feature maps begin streaming in from the input

buffer on the left 4.0c. Each clock cycle, K2
C inputs are read out of the input buffer, which

correspond to the first matrix multiplication of each of the S2 convolutions. Immediately after

being read out from the input feature map buffer, each read value will hit a number of delay

elements equal to the row that it has been read into. These delay elements allow the remaining

three products of the first column’s first matrix multiplication to meet with the accumulating value

as it passes down the first column on the correct clock cycle. With each pass, it picks up one of the

remaining values, until it reaches the final processing element, where the final accumulated value

containing all four products is stored in a local output buffer until the processing cycle completes

4.-1d. Due to the massive opportunity the systolic array provides for pipelining computation,

the remaining three matrix multiplications that are required to complete the convolution of i and

w0,:,: are trailing directly behind this one.

Meanwhile, while the products of a given matrix multiplication are being accumulated

and passed downwards, the input data shifts from left to right across the rows of the array. If

we look again at 4.-1d, input i0,0 will be re-used across all four convolution kernels. With each

advancement of i0,0 into a new column, a new matrix multiplication is started between the cth

24

convolution kernel and an equally sized portion of the input feature map. As a result, the entire

computation shown in the first column of 4.-1d is effectively replicated in every column against

a new convolution kernel, with the only difference being the increasing delay.

25

(a) Systolic array after weights and inputs have been loaded into their buffers.

(b) After the weight buffer is full, the local systolic controller will shift the weights into
the columns of the systolic array and then begin shifting in the inputs. The first 2x2 input
is shown being loaded here, which will be used across all S2 convolution kernels.

26

(c) As the weights start shifting into the array, they are delayed according to their row
so that the resulting products meet up with their counterparts on the appropriate clock
cycle.

(d) The first output of the array shown here is the first matrix multiplication of the first
convolution. In the next 3 clock cycles, this same column will produce the remaining
three matrix multiplications to complete the first convolution.

27

(e) If (d) shows the first output being completed at time tn, here we see which outputs
complete (and the corresponding convolution filters they belong to) on the following
clock cycles until the computation has finished all S2 convolutions (equivalent to 1
deconvolution)

Figure 4.-2. Data flow through the systolic array (b,c, and d), demonstrating which output
products are accumulating at various stages (c, d) and the sequence of completed matrix multipli-
cations writing to the local output buffer (e).

28

Chapter 5

Experiments

We designed the entire architecture using Verilog, and implemented the design using

Vivado for the Xilinx PYNQ SoC, which has a dual ARM core CPU and programmable logic

roughly equivalent to the Artix-7 FPGA.

Figure 5.1. Layer level parameters for the implemented WGAN-MNIST network.

The network we benchmarked our architecture with is WGAN-MNIST, a Wasserstein

GAN trained to generate the popular dataset of handwritten digits that was also used in [2] (the

network has the layer level parameters shown in Figure 5.1). To make the most efficient use of

the processing elements within the systolic array in terms of utilization, we use an array width

equal to S2 elements (this allows all S2 convolution kernels to be fit across the columns of the

array, as was shown in the data flow example in the 4). Through experimentation, we find that

using four separate systolic cores is the minimal number which allows the master control unit to

never be standing idle waiting for a core to be ready. Taking all of this into consideration, we

29

only use roughly 30% of the FPGA’s DSP slices, a relatively small number on an already small,

edge FPGA.

We obtain the estimates for latency (Figure 5.2) by taking the simulated network runtime,

and adding to it twice the average time that was measured to write over the memory mapped IO

(MMIO) interface between the processing system and programmable logic. The MMIO interface

is faster than the general purpose IO (GPIO) interface because it allows the user to write directly

to the memory mapped portion of the address space. The estimates shown were for an operating

frequency of 50 MHz, which leaves us optimistic that we will be able to reduce the latency even

further when we look to optimize and pipeline circuit paths in future work.

Figure 5.2. Performance estimates for latency obtained for the WGAN-MNIST network, in
comparison with previous work [2]

30

Chapter 6

Conclusions & Future Work

In this work, we highlighted some of the challenges of deconvolution accelerator design,

and showed the merits and drawbacks of existing approaches. We analyzed some of the common

algorithmic transforms that are performed to rearrange the deconvolution into a form that is

easier to design hardware for, and then observed how various architectures look to exploit these

transformed dataflows. Our proposed solution binds one of these transformed dataflows, the

TDC transform, with a systolic array architecture that is able to take full advantage of the extra

sources of parallelism that the TDC method creates, while simultaneously capitalizing on strong

data re-use and high degrees of pipelining. All of these advantages have resulted in an improved

latency over a similar work (employing a different architecture and dataflow but using the same

network) by an average of 45% across all layers.

In future work, we look to make several optimizations to the architecture. The first

optimization we will look to make is to increase the pipelining in the master control unit where

the longest combinational circuit paths were, which prevented us from passing a static timing

analysis at a higher frequency. Our design was .01 ns away (WNS) from passing a static timing

analysis at 100 MHz operating frequency, so we are optimistic that with little effort we will be

able to increase this frequency to 100 MHz and beyond. We will also look to unroll the loops in

our assembly code to cut down the overhead of the loops in our program, which we suspect will

further cut down latency. We will also start benchmarking the design against larger networks

31

with many more parameters, so we can quantitatively assess how well the architecture scales.

32

Bibliography

[1] C. Li and J. Gao, “Scaling up-researchers advance large-scale deep generative models,”
Apr 2020.

[2] I. Colbert, J. Daly, K. Kreutz-Delgado, and S. Das, “A competitive edge: Can fpgas beat
gpus at dcnn inference acceleration in resource-limited edge computing applications,” arXiv
preprint arXiv:2102.00294, 2021.

[3] J.-W. Chang and S.-J. Kang, “Optimizing fpga-based convolutional neural networks ac-
celerator for image super-resolution,” in Proceedings of the 23rd Asia and South Pacific
Design Automation Conference, pp. 343–348, IEEE Press, 2018.

[4] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient processing of deep neural networks:
A tutorial and survey,” arXiv preprint arXiv:1703.09039, 2017.

[5] B. C. Csaji, “Approximation with artificial neural networks,” 2001.

[6] J. L. Hennessy and D. A. Patterson, “A new golden age for computer architecture: Domain-
specific hardware/software co-design, enhanced security, open instruction sets, and agile
chip development,” in 2018 ACM/IEEE 45th Annual Internal Symposium on Computer
Architecture (ISCA), 2019.

[7] N. P. Jouppi, C. Young, N. Patil, D. A. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley,
M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann,
R. C. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu,
K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps,
J. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance analysis of a tensor
processing unit,” CoRR, vol. abs/1704.04760, 2017.

[8] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,”
IEEE Internet of Things Journal, vol. 3.5, 2016.

33

[9] Z. Wang, J. Chen, and S. C. Hoi, “Deep learning for image super-resolution: A survey,”
IEEE transactions on pattern analysis and machine intelligence, 2020.

[10] X. Zhang, S. Das, O. Neopane, and K. Kreutz-Delgado, “A design methodology for
efficient implementation of deconvolutional neural networks on an fpga,” arXiv preprint
arXiv:1705.02583, 2017.

[11] A. Yazdanbakhsh, M. Brzozowski, B. Khaleghi, S. Ghodrati, K. Samadi, N. S. Kim,
and H. Esmaeilzadeh, “Flexigan: An end-to-end solution for fpga acceleration of gen-
erative adversarial networks,” in 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 65–72, IEEE, 2018.

[12] A. Yazdanbakhsh, K. Samadi, N. S. Kim, and H. Esmaeilzadeh, “Ganax: A unified mimd-
simd acceleration for generative adversarial networks,” in Proceedings of the 45th Annual
International Symposium on Computer Architecture, pp. 650–661, IEEE Press, 2018.

[13] S. Liu, C. Zeng, H. Fan, H.-C. Ng, J. Meng, Z. Que, X. Niu, and W. Luk, “Memory-
efficient architecture for accelerating generative networks on fpga,” in 2018 International
Conference on Field-Programmable Technology (FPT), pp. 30–37, IEEE, 2018.

[14] J.-W. Chang, K.-W. Kang, and S.-J. Kang, “An energy-efficient fpga-based deconvolutional
neural networks accelerator for single image super-resolution,” IEEE Transactions on
Circuits and Systems for Video Technology, 2018.

[15] K. Tu, “Accelerating deconvolution on unmodified cnn accelerators for generative adversar-
ial networks–a software approach,” arXiv preprint arXiv:1907.01773, 2019.

[16] J.-W. Chang, S. Ahn, K.-W. Kang, and S.-J. Kang, “Towards design methodology of
efficient fast algorithms for accelerating generative adversarial networks on fpgas,” in 2020
25th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 283–288,
IEEE, 2020.

[17] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang,
“Real-time single image and video super-resolution using an efficient sub-pixel convolu-
tional neural network,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1874–1883, 2016.

[18] F. A. Azevedo, L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti, R. E. Leite, W. J.
Filho, R. Lent, and S. Herculano-Houzel, “Equal numbers of neuronal and nonneuronal
cells make the human brain an isometrically scaled-up primate brain,” Feb 2009.

[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing
systems, pp. 2672–2680, 2014.

[20] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,” arXiv
preprint arXiv:1603.07285, 2016.

34

[21] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution convolutional neural
network,” 2016.

[22] T. Tong, G. Li, X. Liu, and Q. Gao, “Image super-resolution using dense skip connections,”
2017.

[23] M. Haris, G. Shakhnarovich, and N. Ukita, “Deep back-projection networks for super-
resolution,” 2018.

[24] S. D. Das, N. A. Shah, S. Dutta, and H. Kumar, “Dsrn: an efficient deep network for image
relighting,” 2021.

[25] Z. Li, J. Yang, Z. Liu, X. Yang, G. Jeon, and W. Wu, “Feedback network for image
super-resolution,” 2019.

[26] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved
quality, stability, and variation,” arXiv preprint arXiv:1710.10196, 2017.

[27] D. Xu, Y. Wang, K. Tu, C. Liu, B. He, and L. Zhang, “Accelerating generative neural
networks on unmodified deep learning processors - a software approach,” arXiv preprint
arXiv:1907.01773v3, 2020.

[28] D. Wang, J. Shen, M. Wen, and C. Zhang, “Towards a uniform architecture for the efficient
implementation of 2d and 3d deconvolutional neural networks on fpgas,” in 2019 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1–5, IEEE, 2019.

[29] Y. E. Wang, G.-Y. Wei, and D. Brooks, “Benchmarking tpu, gpu, and cpu platforms for
deep learning,” 2019.

[30] B. Chin, “Lecture notes in parallel computation,” December 2020.

[31] G. J. Betts, Anatomy and Physiology. OpenStax, 2013.

[32] H. Kung and C. E. Leiserson, “Systolic arrays for vlsi,”

[33] D. A. Patterson and J. L. Hennessy, Computer Organization and Design, Fifth Edition: The
Hardware/Software Interface. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 5th ed., 2013.

[34] H. Kung, “Why systolic architectures?,” 1982.

[35] S. M. Afroze, “Lecture notes in advanced logic synthesis.”

[36] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), 2016.

35

	Thesis Approval Page
	Dedication
	Table of Contents
	List of Figures
	Acknowledgements
	Vita
	Abstract of the Thesis
	Introduction
	 A New Era Of Processing
	Deconvolution at the Edge

	Background
	Deconvolution Operator
	Overlapping Sums Problem
	Input Data Re-Use vs. Output Data Re-use
	Coarse Overview of Acceleration Approaches
	Algorithmic Approaches
	Architectural Approaches

	Systolic Arrays

	Existing Approaches to Deconvolution Acceleration
	 Proposed Architecture & Dataflow
	 On-chip acceleration of TDC
	 Multicasting input network
	Systolic State Machine Controllers
	Systolic flow for TDC

	 Experiments
	 Conclusions & Future Work
	Bibliography

