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Abstract

Metastability of Zero Range Processes
by

Chanwoo Oh
Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Fraydoun Rezakhanlou, Chair

This dissertation is about the metastability of a condensed zero range process on a fixed
finite set. Most of the time, nearly all particles of this zero range process are at one
single site. The site of condensate asymptotically behaves as a Markov chain. This is
proven for the reversible case, for the totally asymmetric case, and for the non-reversible
case using the martingale approach which requires precise estimates of capacities. We
prove the metastability of zero range processes on a fixed finite set with an approach
using solutions of Poisson equations. By this approach, we circumvent precise estimates
of capacities and prove the metastability for both reversible and non-reversible cases.
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Chapter 1

Introduction



Metastability is a dynamical phenomenon of some non-linear system with temporal
random forces (noises). Metastability can be seen as a first-order phase transition. Infor-
mally we say that a stochastic process exhibits metastability, if the process stays a long
time in a set in which the process equilibrates, and moves quickly to another set in a short
time, and repeat the same behavior. We refer to monographs [10} 22] for an overview on
metastability.

The study of metastability starts at the early 20th century. Notably, H. Eyring and
H.A. Kramers worked on the metastable phenomena in a chemical reaction. The modern
approach of metastability dates back to the late 1960s and the early 1970s by M.I. Freidlin
and A.D. Wentzell’'s work. They used large deviations on path-space. The development
based on their approach is called path-wise approach.

Alternatively, from around 2000 A. Bovier, M. Eckhoff, V. Gayrard and M. Klien
developed an approach to metastability, which is called now the potential-theoretic ap-
proach. This way consider the metastable phenomena as a sequence of visits of the path
of the process to different metastable sets. This concentrates on the precise analysis of
the hitting probabilities and hitting times of these sets.

J. Beltran and C. Landim proposed the Martingale approach in [3|, 4], which uses the
property that the Markov chain is a unique solution of the martingale problem.

In this dissertation, we investigate the metastability of a condensed zero range process
on a fixed finite set.

Some zero range processes exhibit condensation in the physics literature, which means
above the critical density, as the number of particles increases to the infinity, a finite
fraction of particles gather at a single site in the steady state. We refer to [12] for the
review of condensation.

The site of condensate of the zero range process follows a Markov chain asymptotically
after suitable time rescaling, which is the metastability of the zero range process. This
phenomenon proved in [B, 19, 24] by Beltran, Landim, and Seo using the martingale
approach. We refer to [6] for review of the martingale approach and differences between
this approach, the pathwise approach [I1], and the potential theoretic approach [8, 9.
Also, we refer to [20] for some review and recent progress.

We prove the metastability of condensed zero range processes on a finite set with an
approach using solutions of Poisson equations. The model is the same as one in [3], 19, 24],
in which the martingale approach is used. We assume that the invariant measure of the
underlying random walk is the uniform measure for simplification. We anticipate that
our approach can be applied for the case of the general invariant measure with little
modification.

There are some advantages of our method. The first advantage of our method is
that we circumvent sharp estimates of capacities. The martingale approach needs precise
estimates of capacities. Getting sharp estimates are challenging, especially for the non-
reversible case. It requires delicate construction of approximating objects. We use an
auxiliary function, which is similar to the approximating function for the reversible case



in [5]. The auxiliary function is simpler than approximating objects for the non-reversible
case. Handling the auxiliary function and the solution of the Poisson equation is easier
than handling approximating objects for the non-reversible case.

Also getting asymptotic mean jump rates is direct, and not from capacities of the
zero range process. For the reversible case, mean jump rates can be expressed in terms
of capacities(Lemma 6.8 in [3]). But for the non-reversible case, we don’t have a direct
relation between mean jump rates and capacities. The collapsed chain is introduced in [4]
as a tool for getting asymptotic mean jump rates. Also, a general method is established
in [24].

We expect that this method can be applied for other models such as the case of the zero
range process when the numbers of sites and particles of the zero range process increase
to infinity with a fixed ratio of numbers of sites and particles. The metastability of this
model is proven in [I] for a parameter o > 20. We hope to be able to use this method
for small a.. Recently, Rezakhanlou and Seo showed the metastability via this method for
reversible a small random perturbation of a dynamical system in [23].



Chapter 2

Metastability



In this chapter, we define the metastability for Markov chains. We follow the notations
and definitions in [20].

2.1 Informal Description

Suppose that the dynamical system with metastable behavior can be described as a
Markov Process.

Let n be a Markov process on a state set E. Let &, ¢ € I be disjoint subsets in F
such that, for n starting in &;, on a short time scale the process equilibrates in &;, and on
a long time scale it moves to some &;, j # ¢. In &; it again equilibrates on a short time
scale and moves some & on a long time scale. We call &;, i € I metastable wells. This is
illustrated in the Figure [2.1]

Figure 2.1: Dots: Metastable sets(wells, valleys), arrows: transitions between wells (taken
from Bovier-Hollander [10])

2.2 Notation and Trace Process

In this section, we define basic notations and the trace process.

Let (Ey : N € N) be a sequence of finite set and (p™(¢) : t > 0, N € N) be a sequence
of Markov processes on Ey. We consider the asymptotic behavior of n™.

Fix n € N. Let S = {1,2,...,n}. Let £y, &%, ..., EX be the disjoint nonempty subset

of Ey. We call them wells, Let Ex = U,cs €5 and Ay = Ex \ (Umes 5;@).

Define 7,4(n.) be the time spent by the process n™ (¢), t > 0 on the set A C Ey in the
time interval [0, ¢];



TA = /Otl{nN(s)eA}ds.

Define S be as the generalized inverse of T,4;

St = sup{s > 0: TA(n.) < t}.

For a subset A of Ey, the trace process n™:4(t), t > 0 is defined by V4 (¢) := n™(S7),
which is a strong Markov process with the state space A.

Define n°~(t) := n™év(t). Let a projection function Uy : Ey — S, Uy(n) =
Zmesx 1{77 € (c/’]g{,}

Denote by fx, N > 1 the speed-up constants. Define XY, := Wy (n®~ (Oyt)), which is
the S-valued trace process we use in the definition for metastability.

2.3 Definition for Metastability

We are ready to define the metastability.

Definition 2.1. (Metastability) The Markov chain "V exhibits metastability in the time-
scale Oy if there exists a partition {Ex,E%,...,ER} of Ey, S ={1,2,...,n}, and a Markov
chain X (t), ¢ > 0 on S satisfying the following conditions:

(T1) Fix z € S. For any sequences {y € €%, N > 1 and n starting from &y, the
sequence of laws of stochastic processes (Xgy: : t > 0) converges to Xy starting x in the
Skorohod topology.

(T2) The time spent in Ay is negligible: for any 7' > 0,

T
. N N _
&%EE%L‘E& [/0 1{77 (Ons) € AN}ds] =0.

We restrict ourselves to finite number of wells cases to avoid technical difficulty on the
martingale problem. There are other models which have an infinite number of wells and
the state state is countably infinite such as models in [I5] [14] [17, 18 [2].

2.4 Potential theory

In this section, we define the capacity for a Markov process. Consider a Markov process
on a state space U. Let L be the infinitesimal generator of the Markov process. Refer to
the Chapter 7 of [10] for the details.

Let A,B C U be two non-empty disjoint subset. Consider the following Dirichlet
problem



(=Lh)(z) =0, ze€U\(AUB),
h(x) =1, xz€A, (2.1)
h(x) =0, ze€B.
The harmonic function solves the previous problem is denoted by h 4 g, which is called
the equilibrium potential.
Define
eap(r) = (—Lhag) (x), x € A
This function is called the equilibrium measure on A.

Let v is the unique ergodic invariant measure. The capacity of the pair A, B is defined
by

cap(A, B) := Y v(z)ean(x).

zeA

For a function f from U to R, define the Dirichlet form associated the generator L by

D(F) == f(z) (Lf) (z) v(z).
zeU
There are variational principles for capacities in terms of Dirichlet forms for the re-
versible Markov process. One principle is the Dirichlet Principle as the following:

Theorem 2.2. (Dirichlet Principle) Let A, B, and U be sets in the above Dirichlet Prob-
lem in . Let ) p be the space of continuous functions on U such that D(f) < oo,
f>1onAand f <0 on B. Suppose that the Dirichlet problem has a unique solution,
the equilibrium potential ha g. Then

cap(A, B) = inf D(f).
WAB)= inf D(f)
There are other variational principles such as the Thomson principle and the Berman-
Konsowa principle. For detail, we refer to Section 7.3 of [10].
For the variational principles for non-reversible cases, we refer to Section 14.4 of [20].



Chapter 3

Zero Range Processes



In this chapter, we define the zero range process and describe properties of the zero
range process. Definitions and notations in this chapter are similar to [5]. We define a
zero range process on a fixed finite set, which exhibits condensation.

We assumed that the uniform measure is an invariant measure for the underlying
random walk of the zero range process for making calculation simpler.

3.1 Underlying Random Walk

Define S := {1,2, ..., L}, where L is a fixed natural number larger than 1. For z,y € S,
let 7(z,y) be the jump rate for a random walk on S. Assume that this random walk is
irreducible and has the uniform invariant measure on S.

3.2 Definition of Zero Range Process

For Sy C S, an integer N > 1, define

EN7SOZ:{77€N8'OI Z?’]z:N}

€Sy

Let By = Ens. Let o be a real number larger than 1.
Define a function g : Ny — R by

a(n)
a(n—1)

For z,y € S, we define a function o™ : Exy — Ex by the following way. For z # y,
n € Ey with n, > 1, define ¢™¥n € Ey by

(e}

g9(0) =0, g(1) =1, and g(n) = for n > 2, where a(n) = n®.

N —1 forz=u
(c™n), = ny+1 forz=y
N, otherwise .

If n, =0 or x =y, then define ™7 := n. ¢"¥n is the configuration obtained from 7
by moving a particle from z to y.

The zero range process is a jump-type Markov process on Ey g, whose infinitesimal
generator is given by

(LnF)(n) = > g(n)r(z,y) (F(o™n) — F(n)),

z,yesS

where F' is a function from Ey to R.

For the zero range process the jump rate from the site x to the site y is given by
g(nz)r(z,y), which is illustrated in the Figure [3.1]
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Figure 3.1: The zero range process

The interpretation for the zero range process is that we have N many particles that
are scattered on a periodic lattice with L sites. Each particle performs a random walk
with jump rate r, and the jump probabilities are adjusted by certain rules that depend on
the number of particles of the departing site. To experience a condensation phenomenon,
we choose g(n) to be a decreasing function of n > 2 so that the particles tend to pile up
at a site.

3.3 The Invariant Measure for the Zero Range Pro-
cess
This zero range process defined in the previous section has a unique invariant measure
Uy given by
N« 1 N* 1

= == 5 EE,
i) =z Wans = Zosam s e

where a(n) = [T,es a(n:) and Z ~.s is the normalizing constant.
Also define I'(ar) := 3232, a(l and Zg := LT (a)l
Fix a sequence of integers ({ : N > 1) with 1 <<y << N. For x € S, define

Ev={n€Ex:n.>N-—Ix},

which are called wells.
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Let En = Uses & and Ay == Ey \ <Ux€SE]x\7>' Then {E},E%,....,ER} forms a
partition of Ey.

Hereafter we omit the subscript N when there’s no confusion.

The following propositions hold.

Proposition 3.1. For every L > 2,
IHDALQKJZZWSZZ Zg ZZILF(Q)L_l.

Proof. See the proof of Proposition 2.1 in Section 3 of [5]. ]
Proposition 3.2. limy_,. uy(Ax) = 0.

Proof. See the derivation of the equation (3.2) in [5] O
Proposition 3.3. limy . un(EY) = % forall z € S.

Proof. By the definition of px, uny(E%)’s are the same for all z € S. By Proposition

we get limy o0 un(EX) = % H

Using the invariant measure we can define the Dirichlet form as follows: for a function
F from Ey to R, we define the Dirichlet form associated the generator Ly by

Dy(F):=— Y F(n)(LnF)(n) px(n)

nekEn

== > uvmgm:)r(z,y)F(n) (Flo™n) — F(n)).

z,weS NEEN

If the zero range process is reversible, then by an elementary calculation we get

Dy(F)= 3 Y un()gne)r(e,) (Flo™n) — F(n))*.

zzweS neEEN

Denote the capacity of the pair A, B C S for the underlying random walk by capg (A, B) .
When A = {z}, B = {y}, denote capg (A, B) by capg(z,y).



Chapter 4

Metastability of Zero Range
Processes

12
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We prove the metastability of the condensing zero range process on a fixed finite set
defined Chapter (3| using solutions of Poisson equations.

Organization of the chapter. In Section 4.1, we states main result of this chapter. In
Section 4.2, we outline the proof of the main result. In Section 4.3, we state and prove the
properties of the solution of the Poisson equation. In Section 4.4, we estimate asymptotic
mean jump rate for the zero range process. In Section 4.5, we prove main result using
outcomes in previous sections.

4.1 Main Result

In this section, we state theorems for showing the metastability of the zero range
process. As in the section we use the trace process of the zero range process.

Define 7t~ (t) := ™~ (t), the trace process of ™V (t) on the set &y. Let a projection
function Wy : Ey — S, Un(n) = Y,esx1{n € EL}. Define XY := Wy (nf¥(1)).

Let the speed-up constants Oy := N'** N > 1. Let I, := [} u®(1 —u)*du .

Define a Markov process (Y; : ¢ > 0) on S by the generator £ which is given by

I‘(j)] > capg(z,y) (f(y) — f(z)), for z € S.

@ yesS

L£f(x) =

Let P, be the probability measure on the path space D(R,,S) induced by £ starting
at z € S. Similarly let ]P)gV be the probability measure on the path space D(R,, Ey)
induced by Ly starting at £y € Eyn.

We impose a condition on £y, which is

€1+a(L—1)
. N o
W Ty =0 4

Then the following propositions hold.

Proposition 4.1. Fiz x € S. For any sequences Ex € EX, N > 1, the sequence of laws
of stochastic processes (Xgyt : t > 0) under ng is tight.

The proof of the Proposition [4.1]is in the Section

Theorem 4.2. The sequence of laws of stochastic processes (Xgy: : t > 0) in Proposi-
tion [{.1] converges to P, as N — co.

This theorem corresponds to (T1) of Definition [2.1] The proof of the Theorem is
in the Section F.5]

Theorem 4.3. Let vy be a probability measure on En, absolutely continuous with respect
to un. Denote vy = fyun. Assume (HfNHLQ(HN) :N > 1) is bounded. Let PY be the
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measure on the path space D(R,, Ey) induced by Ly with the initial distribution vy.
Then for every T > 0,

N—00 0

lim EP~ [ / Tl{nN (N'*es) € AN}ds] =0

This is a modification of (T2) of Definition 2.1 The proof of the Theorem is in
the Section [4.5]

The Theorem holds when vy = ¢,,, where ny € €% for fixed € S, which corre-
sponds to (T2) of Definition For the proof of this general case, refer to [3] 4].

4.2 Strategy and Outline of the Proof

First we get an estimate on the solutions of Poisson equations and obtain asymptotic
mean jump rates from the estimate. At the beginning, we investigate the properties
of solutions of speeded-up Poisson equations —0yLxFy(n) = hy(n) in the Section
Then we get asymptotic mean jump rates of the zero range process in the Section [4.4]
in the following way. We multiply an auxiliary function to the Poisson equation and
integrate the equation with respect to the unique invariant measure of the zero range
process. Using several estimates, approximation and manipulation, we get asymptotics
for the solutions of the Poisson equations. From asymptotic values of the solutions, we
obtain the asymptotic mean jump rates.

Second we prove that the site of condensate follows a Markov chain asymptotically in
Section [4.5] The asymptotic mean jump rates of the zero range process become the jump
rates of the asymptotic Markov chain. We show tightness and convergence of stochastic
processes using properties and estimate of the solutions of the Poisson equations in the
Sections [1.3] and martingale problems for Markov processes.

4.3 Properties of the solution of Poisson equation

We consider the solutions of the speeded-up Poisson equations.
The sequence of functions (F&’: N > 1) is defined by

—ONLNFN(n) = Hn € £} — 1{n € &Y} = by’ (n) (4.2)

| F e dp=o. (4.3)
En.s

Denote F&° by Fy or F and kS by hy or h when there’s no confusion.
We state and prove the following proposition.
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Proposition 4.4. The function Ff\”/b defined above satisfies the followings
(1) ming, g Fub = mingjbV F3P and maxp, g Fub = maxgs FP.
(2) supy On Dy (FE°) < 0.
(3) Let x € S. For any n,ny) € &k [Fy" (') — Fy" ()] = 0
as N — oo.

Proof. Let £t =&, £~ = &°.
(1) To see this, set

Mt = {ﬁ € Engs: F(n) :maXF}, M~ = {T_] € Ens: F(n) :minF}.

Ens En.s

We wish to show M* N E* £ (). Suppose for example that MT N ET = @. For every
n € M*, we have —LyFy(n) > 0. From the right hand side of the equation (4.2)), we can
see —LyFy(n) =0 and n € (' UE)L. Since the maximum of F is attained at 7, we
learn

neM", n,>0, r(z,y) >0 = o"™npe M".

By irreducibility of r, we can start from some 7) € M and reach a configuration on the
boundary of £ by applying the operation n — ¢®¥n finitely many times. This contradicts
M+ NET =(. The proof of M~ NE~ # () is identical.

(2-1) First consider the case of reversible process.
Multiplying F' to the equation (4.2)) and integrating in du on Ey, we get

ONDN(F) = [ Flnydp— [ Fln)dy
= > Fn)u(n) — > Fn) uln

ne&t neE—

It suffices to show that there exist a constant C' > 0 satisfying

E+

OnDy(F) > C (Z F(n) pu(n) — Zﬂn)u(n)) :
=

By definition,

N1+a

OnDn(Fy) = Yo > unm)r(zw) g(n) {F(0™n) — F(n)}?.

z,weSneEEN

By the change of variable £ =n — 0.,
14« 2w
B e wes Snemy () 1(z,w) g(n:) {F(0*n) — F(n)}*

= N12+°‘ Zz,wES ZEEEN 1 Z]Y\jas a(lg) (Z w) {F(§ + 0w ) (5 + az)}Q
We can easily find a constant ¢; = ¢1(a,b) > 0 such that

%Ez,wesr(zv w) {f<w) - f(Z)}2 > (f(a’> - f(b)) ? for every function f S =R
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Fix a configuration £ € Ey_; and use the above inequality, then we get
N1+o¢ 1

B X wes Deern s 7y s ai (2 W) {F(E+00) — F(E+0:)}?
> N Y ey oy AP (E+00) = F(E+ )12

— Zn,s
Let & be the restriction of £ to sites z # a, b. the previous expression is equal or larger
than

1
S ge%;_l a(é)

> > E{F(Haa) — F(&+))

Gt <n -1k A(E)

{F(£+04) — F(E+0,)}?

= AEEk,S\{a,b

Let n € £T. Define a map o on configurations that swaps 7, with n,. Then o(n) € £~.
Let ) be the restriction of 7 to sites z # a, b. Let § = S\ {a, b}. Let us write n = (7; 7a, 7).
We can change n = (7; N—k—i, i) € ET too(n) = (7;1, N—k—i) € £~ by operations that
move a particle on the site a to the site b , where |7)] = k. We will use the Cauchy-Schwarz
inequalities.

The previous expression equals

e —_k
s s sy (FisN—k=1-j,j+1) = F(i;N =k = j, j))?
7 k=09€E, ¢ Jj=0
Vi N—-k—1
>Ny s LS (PN —k—1—j, j+ 1)~ F(isN —k - j, j))?
NS k=07€E, ¢ " j=0

> s v L1 Nx
— ZnN,s N a(n) [ oo 2
2 k=0n€EE, 4
nekby g <§ a(li)>

=0

. 2
l—k—1 J .. R ..
(, (26) (F(;N—k—=1=j,j+1) = F(i: N —k—j,j))°
_l’_

J
Nt (kNP o K o
D> an ] EOGN—k=1-j,j+1)=F@HN—-k—j, j)*+

j=f—k \i=0
N—k—1 (N—h-1=j 2 A o X N
2 | (FsN—k—=1—4,j+1)=F(N—k—j,j))
j=N—¢ =0 0
¢
c 1
> F(OZ)21ZN,S kz::() 776%‘; 5 Gke

—k—1 ( j o . o
D (Zoa(l)> (F(; N =k =3, j) = F(i; N =k —1-75,j))
2

N_t-1 [tk | A o . o
+ Y |\ X am] E@N—k=1-4,j) - F(); N —k—=1-7j,j)+
2

. 2
> (1)> (F(i3N—k—1—4,j)—F(); N —k—1—j, J)))
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by Cauchy-Schwarz inequality.

2
¢ —k
—___a _1 1 AN —k—g ) — A g
= F(a);ZN’S g::oae%cﬁ a0 (Eo 0] (F(i; N —k —1,1) — F(;i, N — k z)))
1

> ‘
> 2w
k=09€E; &

c1
= I'(a)?Zn,s

X

14 —k 2

Y Y i | X e Fy N —k =i, i) = F(i;i, N — k — 1))
k=01€E, s\ fapy " \i=0 “

by Cauchy-Schwarz inequality.

c1 1
> T(a)? Zns D@2 X

2
¢ 0~k
> X Y amem F@ N =k =i, i) = F(iy:d, N—k—i))) :
k=04€E,, ¢ i=0
Forn= (i N —k —i,i) € &Y,
e 1 11 Ne oo
Znsa(a(i)a(N —k—1)  Znsa(h)a(i)a(N —k—1i) = Zysa(i)a(i)

So the previous expression is equal or larger than
¢ —k
4{35@)‘?(2 Y X FN—k—i, i)u(; N —k—i, i)-

k=0 AEE,, g =0

w(n) = p(a(n))

2

= 2l (Syeer (F(n) pln) — Flo() plo(n)))”

. 2

= ot (Lgeer F(n) () = Syee- F(n) p(n))

Since Zy,s is uniformly bounded in N by the Proposition , this proves (2) for the
non-reversible case.

(2-2) Assume that the process is non-reversible. We write Sy = (Ly + L%)/2
for the symmetric part of Ly. Note the jump rates of underlying random walks for
Ly, LY, and Sy are respectively r(z,y), r(y,z) and 7(x,y) = (r(z,y) + r(y,x))/2. We
have OyDn(G) = Nt [ G(—LnG) dp = N'™* [ G(=SnG) dp. Recall h(n) =
h*(n) = 1{n € £} — 1{n € £} as the equation (4.2). We note that if

2
1 X Jp. Gh dp
@N:é:max{ GhdMQHNDN(G)}ngX{W ’
then 1 1

@:5/% dji = 56n Dy (F)

with F solving —0ySyF = h. Since we have the uniform bound on OnDy(F) for the
reversible case, we know supy ¢y < 00.
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Note that if we choose F' = Fy for G, we get

1
50 D (F) /Fh dpi — fQNDN( ) <e.

This gives a uniform bound on 6y Dy (F') for the non-reversible case.

(3) Since we have a uniform bound on GNDN(F),

Nty Y () [ (C+0.)— F(C+o)2<e
(EEN_1 %W )
for some constant c.
For n = (+0, € £ we know that %) (%
Hence

> [FCH) = F(CH0,)P < ol INT!

CGEN,1 Zﬂl)GS
r(z,w)#0

for some constant cg.
It takes O({y) jumps to go from any configuration to any other configuration in £%.
So for ', n? € E%

—a(L-1) .
) N~ and min, (. 20 7(2,w) > 0.

2 —
[F<771) - F(UQ)} < e byl FTINT = eI N

14a(L—1)
which converges to 0 since we have the condition 57— — 0 as N — oo, which is

) =

4.4 Estimate on mean jump rates
In this section, we prove the Proposition
Define the function f,; : S = R for a # b € S by
—Lfop(x) =1{r=a} —1{z=0b}, forallzesS (4.4)

and

Z fa,b(x) =0. (45)

zeSs

Proposition 4.5. Fiz z € S. For any sequence (n¥ € €% : N > 1),
. ab/ N\ __
Jim F(07) = fap(@).

We prove this proposition in the following subsections. To prove this proposition, we
will define a function Hy on Ey and multiply Hy to the equation (4.2)). Then we get

/E —QNLNFNHNd,UN:/E hnHy dpy.

From this equation, we will get the estimate.
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4.4.1 Proof of Proposition 4.5 for The Reversible Case

First consider the reversible case.

We define the function H§(n) = Hy(n) = H(n) on Ey.

Fix small 0 < e < ;5. Let 2 == {u € R} : Y, cqu, =1} . Let 0<d<landz € S.
Let7f = {ue Z:u,>1—-0} and &Y = {ueP:u,+u,>1-75}

Define#,* = X7 (€) := L7\ D5, y # .

There exists a smooth partition of unity
01:9 50,1, yes\ iz},

such that 3, c o\ (o} Oy (u) = 1foralluin Z, and ©7(u) = 1 for all uin Z,* and y € S\{z}.
Let A : [0,1] — [0, 1] be the smooth function given by

1 re®)
) = — / u*(1 —u)*du,
1, Jo

where [, is the constant defined above and ¢ : [0,1] — [0, 1] is a piecewise linear function
whose graph connects (0,0), (3¢,0), (1 — 3¢, 1), (1,1).

Let L be the infinitesimal generator of the underlying random walk.

Fix z € S. For y # x, define H,,(n) = H(" + min{™3=% ¢}) 1y € By,

Lny(z) =0, z#ux,y
( =1 and J-n =73, J.n,, the dot

)
(y) =0
product where J, = J(z) for z € S.
Let H = H, : Exy — R be given by H,(n) 1= X es\ a1 O3 () Hay(n).
We can see that

where J,,, : S —= [0,1] solves { .J,,
Juy

Hx(n) =1litn, > (1 - 3€)N7 (46)

H,(n) =0if n, <2eN. (4.7)

Since H and ©;’s are Lipschitz continuous, there exist a constant C. which depends
on ¢, not N such that

ZWw C€
max |[H(o™n) — H(n)| < 5 (4.8)
foralln € Eng.
We will define some sets in Ey g. Let a sequence (EN N > 1) be such that Iy < Uy,

SA+(L—2)a
limy_yoe —0and 1 << fy << N.

Define T sy ={n€Bn:n+n,>N—"Iy}and T§ = Uyes\ (2} T
By multiplying H to the equation (4.2]) we get
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/ OyLyFyHdu= [  hHdpu. (4.9)
En,s

En,s

Let us consider the left hand side of this equation.

(LHS) = /E —GNLNFX,”’(n)HdM

— N't ZE ZS )r(z,w) (F(o*n) = F(n)) H(n)
SR S ula)gtn:)r (e ) (FLo™ ) = Fo)) (H(o™ ) = H)

since the process is reversible.

For functions F,G : Ex — R and a subset A of Ey, define

Dy(F,G; A) = Z > uln (z,w)(F(a*n) — F(n))(G(c*n) — G(n)).

7]€Az weS

Then,

(LHS) = OxDn(F,H;Ey)
On Dy (F, H; (T5)%) + Ox Dy (F, H; T3) (4.10)
= GNDN<F7H7 (T]ff)[:)—’_ Z GNDN<F7H;Txy>7

yES, y#£x

for sufficiently large N because of (4.6)), (4.7)).

Consider the first term Oy Dy (F, H; (T%)°).
We use the following lemma.

Lemma 4.6. For sufficiently large N,

Al > uln)g(n.)r(z,w) (H(o™n) — H(n))? < Ce

PV IEVERT
ne(Te )b zwes (6€N>a

where C¢ is a constant only depends on e.

Proof. See the proof of Lemma 5.2 in [5]. ]
The first term in is
QNDN(F H; (TN) )
= N e Lawes #(m)g(n:)r(z,w) (F(0™n) = F(n)) (H(o™"n) — H(n))
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< (M55 e Lewes #0)g(n:)r(z,w) (F(0™n) = F (77))2)1/2 x

(5 Sretige Toes nmga:)r (e )(H(Uzwn)—H(n))2)1/2

<c % )a r by the previous lemma and Proposition (2).
eln

Thus th_,oo GNDN(FN, HN; (TK;) ) = 0.

Consider the second term Y-, cg ., OnDn(F, H; T%9) in ([4.10)).

N1+a Ne 1
2 2wES (4o, el ZTVWQ“)T(Z’ w) (F(C+0,) — F(C+0.))

X (H(C+0,) — H(C+0.))

_NT ZNa(lc)r(zw)( (C+u) — F(C+102))

OnDy(F, H; T™) =

2 (eEEN_1 zwES Zya
CotCy>N—L
X (H(C+0,) — H(C+02.)) + AY (4.11)

Lemma 4.7. |[AY| < Ef;z where C, is a constant only depends on e.

Proof. Write n = ¢ +0.. Ifnx+77y>N—g,thean—|—CyZN—E. Ifnx+ny:N—f,
then (; + (¢, > N —lonlyif z =z, w#yor z =y, w # x.

So
. N1+a
AV < > Z o oy Tz w) [F(o™n) = F(n)| [H(o™n) — H(n)l
nely? zwes N CL
1/2
NIt N g(n.) 2
< ( =, Z7w€SZ7N a( )T(sz) ’F( )_F(n)’ )
1/2
Nite N“ g(ﬂz) zw 2

" ( 2 nezf’;‘ffy z,wGSTN a(n) T<Z7w) ’H(O— n) - H<n>| )

The first term is bounded by the Proposition [4.4] (2).
Consider the second term. 7 is the restriction of n to sites z # z, y.

w) |H(o™"n) — H(n)[

ZZ

T””/ z wES

N%g(n, o
=2 2 2 - )z w) (o) — Hn)? by 1 [T
AEE; |2¢N|<no <N—[3eN| zwes “N a(n)

Ny=N—L—ng
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From now C' is a constant which can vary line by line and C, is a constant depend-

ing only on € which can vary line by line too. We have that ¢(n,) is bounded and
|H((+0,) — H(C+0.)| < & by (L8). Also > r(z,w) is bounded.

zweSs

2 o 2loy oMt
NE€E; |2eN |<ne<N—|3eN| Zn a(n) AEE; |2eN | <ny <N—|3eN] Zn a(f)a(n:)a(ny)
My=N—Ll=1z Ny=N—L—1g
N @ 1 1
a(7) [2¢N | <na<N—|3¢N]| a(n.)a(ny,)
ny=N*l7*7h

By the Proposition ZneEg = = O(l~).

1

L%NthSN_UkNJamﬂamw<_L%Nk9h§N—BdW7ﬁ(N_LW$Y

ny:N—Z—ﬁz 5 _
Let N'= N — /. Since £ << N, Z %
26N | <naeN—|3eN | 18 (N=1=12)
= Z %L/ 11—2c¢
LQGNJSnz<N |3eN | ("w)"(w) N
= 215_36 ua(l e du O(N"'=2) = C.O(N'~2)

Summarizing these,

1/2
(N;“‘ Ty petE(zw) IH(UZ“’n)—H(n)|2> = C.O(I~°1?)

nejﬂy z wGS
Thus |AY| < EQ/Q O
Consider the first term of the equation (4.11)).
Define
Sw={Ce€BEN1:CGC+( 2N -1},
Also define
5% (a.b) ={C € Byo1: G+ (= N—la<( <b}.

Then the first term of the equation (4.11]) is
Ny MG (¢ 4 ,) — F(C+.)) (H(C +0,) — HC +.))

CeSyY zwes
=" > > 2 Lor(zw) (F(C+0,) — F(C+2.))
CeSFY(|4eN ], N—[4eN|) 7weS
xHj (C+0y) — (g+op
+ 55 ) N r(z,w) (F(C+0,) — F(C+0.))
ce§%¥ (1, [4eN]—1) zweS N

x (H(C+0,)— H(C+0.))
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+8 % X Lor(z,w) (F(C+0,) — F(C+0.))
CESTY (N—[4eN|+1, N) zweS “V

x (H(C+0,) — H(C+02.)).

Let the first term, second term, and last term in the previous expression be €2, (91, Q99

a+1

Lemma 4.8. If N is sufficiently large so that eN >> (y >> 1, then |Qg| < Ce*z |
Qo] < Ce “s* where C is a constant independent of N, .

Proof. In this proof, a constant C' can vary line by line.
Consider Q1. Assume ¢ € Ey_y1, ¢, + ¢ > N —{, (, < [4eN]| — 1.

J C+Jw

H(C+Dw)_ I / JC+Jz 1—U) du.

By the fundamental theorem of calculus, there exists ugbetween %, % such that

Hic+on) - e+ = (o( 5 ) o (5 s -

Here uy < Cﬁvﬁ < 5eN and |¢/(v)| < =

—6€”’
So
1|Jy—J.] 1 €

I N 1 — 6¢

for some constant C'. We used the condition € < ﬁ

|H(C+0y,) — H(C+0,)[ <

N1+2a

O — DS a(lomz,w) (F(C+0,) — F(C+0.))

22N CESTY(1, [4eN|—1) ZwES

X (H(C+0w) = H(C+02)) .

By the Cauchy-Schwartz inequity;,

) N1+2a\ 2 erw - )
() | X F e (e - Fic o)

CeSTY (1, [4eN]—1) 7weS

X( ) > <1<)T(Z’w) (H(<+0w)H(C+az))2)-
CeSTY (1, [4eN | —1) z,wES
By the Proposition (2),

> arlau) (P — P+ 0)) = 0 )

CeSY(L, |4eN|—1) zwES
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and

S0 L riw) (H(C o) — H(C +0.))°

¢e83Y(1, [4eN | 1) zwES a(¢)

SRS (10 (H(C+0,) — H(C +0.))° by [T
zZweS S3Y([2eN], |4eN]-1)
2 1

€
< L*C— ) —
T N e a(C)
CESTY(|2¢N], |4eN | 1)

The term inside the parentheses is

1 ‘
0=

0CEBL 9\ (2,4}

1 1
a(f) L2€NJ<CZZ45NJ 1 (Cx) a(Gy)

Cy: - Cz
where C is the restriction of ¢ to S\ {z,y}

>

CeSTY(|2eN], [4eN]-1) a

> 1 1
S > x| (4eN] — [2eN]) ———
E20 CeBp g oy UC) [2eN )" (%)

< OT(a) 2N where C is a constant.

So X S i r(zw) (H(C+0,) = H(C+0,))" < CettoN-172,
CeSYY(1, [4eN |- 1)Zw65
Thus || < Ce 2* for some constant C. Similarly we can get || < Ce™s . O
Consider the term €.
Assume [4eN| < (, < N — |4eN|, (€ Ex_q,and (, +(, > N — . Also assume N is
sufficiently large so that eN >> Oy >> 1.
Consider

1)

H(C+Dw) _H(C—i_bz) = T ¢(J.C+Jz)

u®(1 — u)® du.

Since 3e < L4t and L8 <1 — 3eN, ¢f (L5 ) = (Db ) = L

1—6e¢"
By the fundamental theorem of calculus, there exists ugbetween %, % such

that
J - Jw J - J,
H(C+0,) ~ HC+0.) =5 <¢> (CN+> ¢ (iJ)) u§ (1 = ug)®.

Write ug = % where vy is a real number between J,, and J,.

Cat J2C+ /.
Then ug = —ZZ#X; 2 < Sy LH
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Sincer>3eN,%gugg%(leg#):%(l—kO(%)).

Thus ug = § (1 + O(ﬁ)) - We get 1 —ug = Zz(ldj\?cﬁlﬂo. By changing the role of

(J.:z€)9) andCIto(l—JZ:zeS)andCy,weget1—u0:%(1+0(£)).

So
o)

)

H(C+0,) - (C+0 )

:Ia(11—6e) N (gé(HO(jV)))a(

e <§V> (JCV) <1~+ o
- g - e (1400 )

N—l 2a o o N
"~ L(1—6e) (Juw = J2) GGy + R(C,w, 2),

=&

2]~

where 7
[R(Cw,2)| < C NG (4.13)
Define
O =S¥ (|4eN|, N — |4eN|)
={CE€By1:CG+¢ >N -1 |4eN| < < N—[4eN]}.

Let

2 X 7Na w) (F(C+0u) = F(C+02))

CECW z,weS
1

_ a aN—l—Qa
X (1 o 66)[a (Jw JZ)Cx Cy

and

N1+a
Ql? -

2 Z () (F(C+0y) = F(C+0:)) R(C w, 2).

cecyy = weS

Then Ql = 911 + ng.
Consider €q7, which is

m 2 Y r(z,w)(F(C+0y) = F(C+0.))(Jw — J2),

Cecjgf]y (I(C) Z,WES

1
My =




26

where  is the restriction of ¢ to sites z # a,b.

Fix ¢. Then,
%Zgé r(z,w) (F(C+0y) — F(C+0,))(Jw — J2)
=3 2 _r(zw) (FC+00) = F(CH0:) (= L) 1L

Recall that L is the infinitesimal generator of the underlying random walk and Lf(z) =

Y wesT(z,w) (f(w) — f(2)) for the function f on S.
Then the previous expression is
=35 Yowes Tz, w) F(C +9.))(Jy — J.) 7 L since the underlying random walk is

reversible with the unifqrm measure
= - ZZES F(C + DZ)LJQZ)%L
=—LJ(z)F(¢+0,) — LJ(y)F(¢ +d,) by the definition of J.

= Leapg(z,y) (F(C+0:) — F(C+10y)).
Write n = (#; 15, 1,) where 7) is the restriction of 7 to sites without z,y. We have

_ Leapp(y) ! -
My = IoZn(1 — Ge) ge%”y a(¢) (F(CH0.) = F(C+0,)) (4.14)
Leapg (z,y) 1
= T.Zx(1—60) : F((+0,)—F((+d
LaZn(1 = Ge) I;)CEEE{Z ” a(¢) L461\2J§_%1}2/—CL4ENJ (F ) ( )

_ Lecapg(z,y) Z Z
I Z]\[(1_66 k= OCGEkS\{zy} )

x (F(GN =0+ 1,0—k—=1) = F(G LN -k =10)),

where { = [4eN .
Denote by nem*m€* for » € S the configuration where every partlcles are on the site z.

Then n°™e€" = (0; N,0). Let n = (0;N =+ 1,0—1), n** = (5N =0+ 1,0 - 1)

and n3* = (f;N—@+1,g—k— 1).
From now, C'is a constant which can vary line by line.
As in the proof of Proposition (3), we can see for the configuration n',n* € Ey g,

‘F(nl) - F(772)‘2 < O (Number of jumps to go from n' to n?)

X ( max a(g)> N—1T2e

¢ in the path from 5! to n?
where ¢ =7 — 0, when we move a particle at z to w in the configuration of 7.
Consider a path from 7*"e"€" = (0; N, 0) to n'® = (0 N—0+1,0- 1) We move a

particle at x to y one by one. We can make {NZ 0 in this path. Number of length of the
path is O(¢) and a(¢) = a(C)a((y)a((y) < N~
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So ‘F(ncenter,gz) —F(p'm)| < C %

Consider a path from n'* = (O;N —l4+1,0— 1) to >t = <O;N —0+1,0— 1). We
move a particle at « to y one by one. We can make ¢ = 0 in this path. Number of length
of the path is O(f) and a(¢) = a({)a(()a(C,) < N*. So |F(nt*) — F(n>®)| < C\/%.

Also consider a path from n?® = (O; N—10+ 1, /- 1) to
N3t = (é’;N — 0+ 1,0—k— 1). Move a particle at y to a site in S\ {z,y} one by one.
Number of length of the path is O(¢) and a(¢) = a({)a(C)a(g,) < COE2Nf. So
[F(P7) = F()] < C\/ ™™,

Then

‘F<ncenter7£""> . F(f;g, Nk — g)‘ _ ‘F(ncenter,c‘}"’) . F(n?),x)
< ‘F<ncenter,€f‘”> . F(,,,,l,x)
+[F (") = F0P)| + [F) = F ()

(l+a Jl+a 1+(L—2)a o

Oy T e T T e
Similarly consider a path from n™r&” = (0;0, N) to n*¥ = (0;!7, N — [7) We have
)F(n“”t”’gy) — F(nl’y)’ < C\/%. By considering a path from n'¥ = (O;E,N —57)

to n?¥ = (O;E,N —KA), we get |F(n'Y) — F(n*v)| < C\/ﬁltf;. By considering a path
from n?Y = (();[ZN—Z) to ¥ = (5;2,N—2—k;>, we have |F(n?Y) — F(np®¥)| <

1+ (L—2)apa
Oy =N

So
center,EY 25 A g“'a fl—&-a gl—o—(L—Z)aga
’F(n ter:& )_F(C;&N_K_ k)‘ S C N1+a +C\/N1+a +C\/T'
Thus
Lcap‘ (.’L‘, y) ¢ 1 center,ET center,EY
Q= ST S (P )
a N € k=0 éeEk,S\{w,y} CL(C)
[l+a 4o P1+(L—2)a o
+O< N1+a) + O< N1+a) + O(m))
Since th%OO Zi:o ZéeEk,S\{w,y} % = F(O[)L727 th*)OO ZN = ZS,

LC&pE(IE,y) ( )L—2
1,Z(1 — Ge)
a+1

% lim inf (FN<ncenter,5ﬁ,) _ FN<ncenter,£1?{,)) + O(ET)7

N—oo

lim inf Qll =
N—oo
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. Leapg(z,y) L—-2
lim sup Oy = L)
B =7 70 6o ()
% lim sSup (FN<ncenter,5§%) _ FN<ncenter,£JyV)) i O( a+1)
N—o0

Define gy (z) = [ex FN(n)duy for s € S.
By the Proposition (3),
Leapg (2, y)

lim lim inf Oy, = 1.7 [(a)*"*liminf (gn(z) — gn(y)) (4.15)
L —
lim lim sup 4, = Mf(a)L_Q limsup (gn(z) — gn(v)) - (4.16)
=0 N IaZS N—oo
Consider €5, which is
N1+a Ne 1 ~
2= Y Tl ) (F(CH0,) - FCHO)RC w.2).
Ceézy 2 WES N G(C)
Because of (4.13)),
1 0 1
(D] < S <0> > X 1z w) — |[F(C+0) = F(C+0.)|
21,Zn(1 —6€) \ eN cecey 2 s a(C)

By Cauchy—SChwarz inequality,
XX r(zw) 5 1F(C+w) = F(C+02)]

cecyy z,WES a(©)

1/2
< ( > r(zw) a(czzgcy))

Ceéﬁ/ Z,weS

1/2
S8 (w5 (F ((+Ow)—F((+DZ))2) .

Ceéxy PRI

By the Proposition (2),

1/2
(Z > ew) g (F (C+0w)—F(C+Dz))2) — O(N—5*).

Ce(}i{y z,wes

Also
T T g s 3 e & G
<12 Cezfvy a(szg)(Cy)
i
= /;)@,E{a " a(lé ) L4eNJS<§N—L4eNJ (6]

Cy:N*k*Cz



The last summation in the last line of the previous equation equals

12« zaN_k—Ia].
T S 8) )

[4eN]<(e<N—|4eN]

By sending N to the infinity,

: gr>“ (N—k—g,ﬁ)"‘ 1
lim > ( —) = =1,
N=o0 vy <coan—aen) \ Y N N

So Y alGalg) = ONTH),
[4eN |<¢e <N—[4eN]
Fi 1 L—2
And 375, 26eB 5 ton) a(d) = L™
So

1/2

CE@W z,weS C
Thus ‘ng| = ( N) and th—>oo ng =0.

putting together estimates for €21, Q19, Qa1, {2o9, we have

o _ Leapp(z,y) 1, 1o
lg%llzvrglo%f(LHS of L.9) = ﬁf( a) hmlnfyze:S gn(z) — gn(v))),

hm limsup(LHS of 4.9) = MF(Q)L,Q lim sup Z (gn () — gn(y)))-

=0 Nooo IaZS N—=oo yeg

Consider (RHS) of (4.9)), which is

(RHS)= [ (1{ne &) ~1{n e &) Hn) duy(n)
= pn(E)(Lz = a} — 1{z = b}), since jx(E%) = pu(€")

By sending N to infinity,

lim (RES) = Hr=at=Hr=0p

N—o0 L

By (4.18)), (4.19), (4.20) we have

l{x:a}—l{x:b}.

LD -2 i > (ovte) = ) - -

Substituting LT (a)=t for Zs,

. Leapg(z,y) 1f— _
]&E)HOOW%(QN(@ —gn(y) =Yz =a} — {z =1b}.
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(4.17)

(4.18)

(4.19)

(4.20)
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That is
]\P%rnoo —Lon(z) = 1{x =a} — 1{x = b}.

Also gy satisfies imy_,o0 3 4c5 gn (2) = 0 by Proposition [3.3 and [3.2]
Since S is a finite set, we can think £ as a matrix and gy, fq, are vectors. The

function f, is defined by , . As a matrix, £ has a rank L — 1. Also we know
that > ,cg fap(2) = 0 and limy 00 Ypeg gn () = 0. So we can think f,, as a solution
for a system of linear equations and gy as an approximate solution, where the matrix for
the system has full rank. This implies that imy_,c gy () = fop(2z) for all z € S.

By the Proposition (3),

lim Fﬁ/b(nN) = lim gn(z) = fas(2).

N—oo N—o0

This proves the proposition.

4.4.2 Proof of Proposition for The Non-reversible Case

Definition of H is same to the reversible case except the definition of .J.
Let L* be the adjoint of the infinitesimal generator of the underlying random walk.
L*J,(2) =0, z#ux,y
In the definition of H, J,, : S — [0, 1] solves < J,, () =1 and J-n =
Ty (Y) =0
>, J.n., the dot product where J, = J(z) for z € S.
As in the reversible case, multiply H to the equation . We get

/ GyLyFyHdu= [  hHdp. (4.21)
EN,S EN,S

Consider the left hand side of the previous equation. Denote by L3} the adjoint
operator of Ly and by r* the jump rate for the adjoint underlying random walk. Since
the uniform measure is invarint measure of underlying random walk, r*(z,y) = r(y, x).

(LHS) = —fy /E L F%(n)H dy

— Oy [ ) LiH dp
= NS ulmgn)rt(z,w) Fn) (H(o™n) — H(n))  (4.22)

neEN z,weS
N* 1
= —N'te (M Zn a0 > r*(z,w) F(¢ +0,)

CEEN,1 z,wGS

X (H(C+0y) = H(C +02))
Define F(¢) = + S yes F( +04).



31

Since the uniform measure is an invariant measure for the underlying random walk,

> (z,w) (H(o™n) — H(n)) = 0.

zZ,WES

So the expression of the equation (4.22)) equals

e 3 RO (e o) - FQ) (1 + o) - (G 22)

CGEN 12 ’LUGS

- F(np—d,) ifn,>0
Define F.(n) = (n ) . >

0 ifn, =0
Then the previous expression is
Ny Y nln (z,w) (F(n) = F.(n)) (H(e™"n) — H(n)).
neEN z,weS

For functions F,G on Eyg, and a set B C Ey g, define

AN(F,G:B) = =37 3 uln (z,w) (F(n) = Fo(n)) (H(o™"n) — H(n))

neB z,weS
Then the equation (4.22]) is

QNAN(F, H; EN,S) = GNAN(F, H; (T]@)C) -+ QNAN(F, H; T]a\v[)
= OnAN(F H; (TS + Y OnAn(F, H; T), (4.23)

yES, y#£x

for sufficiently large N because of (4.6)), (4.7)).

We will use the following lemma.

Lemma 4.9. For any function F' on Eyg, there is a constant C' which doesn’t depend
on N such that

> X ul (z.w) (F(n) = F.(n))” < C Dn(F).

HEEN S Z,WES

Proof. The idea of this proof is in the proof of Lemma 4.2 in [24].

33 ulaelnr ) (Fn) - Eo(m)’
=y T LY ) (FQO - FiC ) (1.2

CEEN,1 ZN a(C> Z,'LUES
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The last summation in z,w in the previous expression is

Z;*(z, w) (ZS iF(C +0,) — F(¢+ az)) (4.25)
LN e [(5 FEC) — P2
_z,%;s ( 7 ) (1%;5 L )

Define P = {(z,w) € S x S : r*(z,w) > 0} . Let

C) = (zr’flu%lépr*(z,w) and Cy = (ZIE%CP r*(z,w).

For u,v € S,consider a canonical path
u =21 (u,v), 22(u,v), -+, Zyuw) =V,

where (2;(u,v), zi4+1(u,v)) € P for 1 <i < k(u,v) — 1 and z;(u,v)’s are different. There
exists a canonical path since the underlying random walk is irreducible. We can see
k(u,v) < L.

The equation (4.25)) is bounded above by

Cy(

P L Y (F(C+0,)— F(¢+ 2.))? by Cauchy-Schwarz inequality
z€S u€esS
k(u,z)—1
gC Z L Z F(C+0,,) — (<+0ziﬂ))2
u,z€S =1
S C(L—=1L* Y (F(C+0,) = F(C+0.))°
(z,w)eP
_1\72
el S (2 w) (F(C+0,) — F(C+70.))?
Cl (z, w)ES
=C > v F(¢+0,) = F(¢+2.))"
(zw)es

So the equation (4.24)) is bounded above by

3 ZNG(CC 3o F(¢+0,) — F(¢+12.))* = C Dy(F).

CEEN_1 2,WES

Consider the first term Oy An (F, H; (T%)%) in the equation (#.23).
As in the reversible case,
On An(F. H; (T}))
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A

= —On e Lewes (Mg (n:)r*(z,w) (F(n) = F(n)) (H(o™“n) — H(n))
1/2

< (N”“ S et Sewes 1(m)g(n:)r(z,w) (F(n) - Fz(")f) x

gN” S et )p Sawes (Mg (n:)r(z,w) (H(o™n) — H(n))?)
The first summation is bounded above by a constant because of the Proposition

(2) and the Lemma 4.9, The second summation is bounded above by % C)f — as in the
€N

reversible case. .
SO hHlN%OO QNAN(FN,HN; (Tﬁ)c) =0. B
Consider the second term 3, cg ., OnAn(F, H;T) in the equation (4.23).

OnAy(FHT) = N7 3= S —e o (z,w) (F(C+0.) = F(O)

z,weS C+aze’f“9”y

X (H(C+Dw)—H(C+Dz))
—NTe f—r zw) (F(¢+0.) — F(C))

C€EN_1 zweS Zy alg
CotCy>N—L

X (H(C40y) — H(C+0,)) + AV (4.26)

The proof for the Lemma 4.7 for the non-reversible case, which states that | A}
is similar. The proof is the followmg
As in the proof for the reversible case,

|A£JE\?7J| S N1+a Z Z

neEN z, weS
Na+ny=N— l

ga/2?

) [F(n) = Ex(n)| |H (0" n) — H(n)

1/2

2
< NP Y Z |
nekbEN ZU)ES
Ne+ny=N—{

(z,w) |F(n) = E.(n)

1/2
N«

i w) [H(o™n) — HOn)P

% Nl-‘roz Z

neEn zZ,weSs
Ne+ny=N—1

The first term is bounded above by a constant by the Proposition (2) and the
Lemma . The second term is bounded above by C.O(f~%/) as in the reversible case.
This proves the lemma for the non-reversible case.

Consider the first term of the equation (4.26)).

As the reversible case, define

g}f[y:{CEENfl:gz‘i‘CyZN_g}-
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Also define
S (ab) ={CE€By 1 C+¢ =2 N—la<( <b).
Then
ey SR (v o) - F(Q)
Ceszyzwes )
x (H (C+0w)—H(C+D))
:—NH—O‘ — ) F(C—I—Oz)—F(C)
ces“’(vxez% N- L46NJ)“”Z€5 In a( T ( )
x  (H(C+0,)— H((+02.))
- N 1 _
=-N'* > Zeae” ) (F(¢+2.) - F(0))

CEST (1, |4eN | —1) ZwES
Ne 1 )
:—Nl—‘ra Ne 1 o | FC_'_az _FC
CeSny(N%:ENHLN) 2.wes ZN CL(C)T (2, w) ( ( ) ( ))

Let the first term, second term, and last term be 2y, )51, {299 as the reversible case.
a+1
The Lemma 8 holds for the non-reversible case, which states that [Q9;] < Cer,

Q| < Ce™z The proof is the following.

Q9 = —NHZQ Z Z L (2, w) (F(C +0.) - F(O)

N CeSY(1, [4eN|—1) zweS a(C)

X (H(C+0,) — H(C+0.)).

By the Cauchy-Schwartz inequity;,

) N1+2a 2 1 . a 9
Q21£< 7 ) ( > > @r(z,w) (F(C+OZ)F(§)))

N CeSTY(1, [4eN|—1) ZwES

( Yy s <H<<+aw>H<<+az>>2).

CeSTY(1, [4eN|—1) ZwES
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The first summation in the previous expression is

> Y ;or*(z,w) (F(¢+0.) - F(Q))

CeSY(1, [4eN | — 1)zw65 a

< Y Y rmw) (FCH0.) — FQ)

CEEN 12 ’ll)ES

( Yo > ——=r(zw) (F(C+0w) — (<+0Z>)2)

CEEN 12 U)ES

= ON<N . 2a>7

by the Proposition (2) and the Lemma [4.9]

As we show in the reversible case,

) > (10 (2, w) (H(C+00) — H(C+0.))% = o0y (N-172),

CeSTY(1, |4eN]—1) 2wES

This proves || < Ce™s* for some constant C. We can get || < CeaTﬂsimilarly.

Next we consider the term ;.

Since the definition of H is same as the one except the function J, as in the reversible
case

H(¢(+0,)—H((+0,)

N—1—2a oo R
= -6 (Jw = J2) (¢ + R(Cw, 2),
where i

[R(Gw,2)| < OGN (4.27)

Define
CV = Sy ([4eN], N — [4eN])
={CE€BEN1:G+¢ > N1 |4N| <G <N - [4eN]}.

Let

Q= =N Y Y DT (ew) (F(CH D) — F(Q)

cecyy 2 weS

1
_ «a aN—l—Qa
X (1 o 6€)Ia<Jw JZ)C:E gy
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and

gy = —N'*e 37 2 r*(z,w) (F(C+72.) — F(Q)R(C,w, 2).

CGCW zZ,wES ZN CL

Then Ql = Qll + ng.
Consider €24;. The computation is almost same as one of the reversible case.

1 1 _
911:— = - *z,w F Z—F Jw—JZ
L7560 25 alC) ( 2 e w (B - FOX >)
where C is the restriction of ¢ to sites z # a,b.
Fix f Then
-y F(¢+0.) = F(Q)(Juw — J2)
zZ,WES
- (— > (e ) (F(C+02) = F(O) — J»i) L
Z,WES

= (— > r*(z,w) F(¢+0.)(Jw — Jz)ll_/) L since ZL*

zZwES z€S

_ (Z _F(C+ oz)E*J(z)D L

z€S

=—L*J(x)F((+0,) — L*J(y)F(C+0,) by the definition of .J
= Leapi«(z,y) (F((+0;) — F(C+9y))
= Leapz (v, y) (F(C +0,) — F(¢+2,))

By writing n = (1); 1z, 7,) where 7 is the restriction of 7 to sites without x,y,

. Lcapi(x’ZD 1 _
Oy = 1o Zn(1 — Ge) gezé‘j”@y a(¢) oo = Flc o)

which is same to the equation (4.14)) in the reversible case. So we can get the following
equations which is same as (4.15]), (4.16]).

Lcapi(xay) L—27: :
11_1% h]\/Hi)lo%f Q= ﬁr(@) hNHLlO%f (gn(7) —gn(y)),

L _
tim i sup 1y = 2P )22 i sup (g () — g ()
=0 N0 1,75 N—oo



where gy (x) = Jes FN(n)duy for s € S.
Consider €25,which is

Qip = —N' Z Z r(z,w) (F(C+0.) —

cecyy zwes ZN CL

By (.27,

oul< 7 (Cy) S5

eczy 2,weS

By Cauchy-Schwarz inequality, B
> r(zw) 15 [FC+0.) = F(O)

Cec”'ify 2,weS

1/2
S ( Z Z T*(Z,’UJ) a(Cz)‘}(Cy))

ceCey zwes a(¢)

1/2
X(Z > M (z,w) (Q( ((+Dz)_p(§))2) .

celyy zwes

By the Lemma 4.9/ and Proposition (2),

1/2
(Z > r*(aw)Cl(lO(F(uaZ)F(o)Q)

CGéﬁfy z,weS

— O(N~

F(Q)R(C, w, 2).

1+2a
2

~—
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For the reversible case, we showed the equation (4.17)). By changing r(z, w) to r*(z, w)

in the derivation of this equation, we can get

(Z Z (2, w (Cx)a

ceCyy zwes C

Thus [Q15] = O(%) and limy . Q45 = 0.

So we have the same estimates for €211, (19, 51, {290 as ones of the reversible case.
By applying arguments of the end of the previous subsection, we can conclude

= fap(2).

. ab N\ _ 1z
i F0) = g

- gn(z)

1/2
a(G)a(y)
(€)

— O(N~

This proves the proposition for the non-reversible case.

142
2
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4.5 Tightness and convergence of processes

In this section, we prove Proposition 4.1 and Theorem [£.2]
Recall the definitions of 7,7~ S, which are

t
TEN = / 1{ns € Entds, t >0
0

and Stg N as the generalized inverse of 7;€N ;
SN = sup{s > 0: Ty(n.) < t}.
We use shorthands 7; for 7,7~ and S, for S5~

Then 75N = ns - Define S, = ngfvvt, which satisfies nggt = né\;‘s;. Define 7, =

7§Nt !
i S

is a stopping time with respect to (né\]fvt it > O) . (For proof, refer to Lemma 8.1. in [20].)

Proof of Proposition [{.1 To prove tightness, we use the Aldous criterion(see Theorem 16.10
in [7]).

Let ¢ > 0 and T > 0. Let Tr be the set of all stopping times bounded by 7.

We need to prove

>e}:().

lim lim sup sup PV HXN _ XN
510 N—oo VSI;) Teg; v [[HOn(TH7) ONT

The expression inside brackets is
Xovtrin = Xowe| > € = Xoyran) # Xopr
= Vzlnf{tZOXer\f(T—l—t)#Xé\][\rT}
=y >inf{t>0: Un(Y, ) # Uiy}
. £
= v >inf {t >0: Uﬁﬁ(ww € E‘IJN(”‘&T)} .

For ( € £y, denote the hitting time inf {t >0: ngj’vvt € £V~ where i~ = C} by o¢.

If v <4, then v > 0 ¢y implies § > 0 ¢y .
T]GNT nON‘r
So

sup sup ]P’gV HXéYV(Tﬂ) — XéYVT > e}

7§6 TEXT

< sup ng {5 > 0, ex

TEST ONT

< sup IP’éV [0 > 0o¢].
Ceén

We can estimate Pé\’ [6 > o¢] as the following.
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Fix # € S. We can choose functions h, f : S — R such that h(z) = 1, f(z) =
for 2 # x, 2 € S, f(z) > 0 and —£f = h in the following way. Define f; : S — R by
filx) =1, fi(z) =0for z £z, 2z € S. Let f = —£f1(x). Define f = % and h = —£f.
Then h, f satisfies the conditions.

Define hy : Exy — R by hy = X,cqh(2) 1gz . We can choose a sequence of functions
(Fn : Exy — R, N > 1) such that

—ONLnFy = hy
and for z € S and a sequence (n" € % : N > 1),

lim Fy (") = f(2)

N—oo

as follows. Since Y ,cg B( ) 0, h can be written as

Z p(H{z=a} —1{z =10b})
a,b€
for some coefficients ¢, € R. Define Gy : Ex — R by Gy = >, 4es ca,bF]‘f,’b where F]‘f,’b is

defined by (4.2) and (4.3). Define f = f(x). Define Fy = Gy + % Then Fy satisfies the
conditions because of Proposition [4.5] and linearity.
Since (né\jv it > O) is a Markov process,

MY = Fx(ngl) — Fn(m)) / OnLnFn(np ) ds

is a martingale.
Consider a sequence (CN ey N> 1). Let a hitting time

64N:inf{tZO:né\lfvtGg]f,wherenéV:CN}.

We use the optional sampling theorem for 0 and the ocv A St'. We use shorthand E
for K.~ and P for Pen.

Since gen A S; is an unbounded stopping time, we need to check the following condi-
tions(See Theorem 3.97 in [10].)

() Gev NS, is finite aus.,

e[

ol <o

(iii) limy o E [MNI /\S'>T} =0.

The condition (i) is true, since o~ is a hitting time for a recurrent Markov process.
Consider the condition (ii). The term inside the brackets is

N E'CN/\S£ N
B @] + [ oL F () ds

N
] = [P0
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Before the time o,

— OnLnFy (1)

1, € &x
Thijes = N (4.28)
0 , otherwise.

So

E'CN/\S; N St/ N
/0 —ONLNFN(ngNs)dSS/O —ONLnFNn(npys) ds

Since || Fn|| e < 00, is bounded. So the condition (ii) holds.

/

Sy

MN
&CN/\

If 6ov AS, > T, then

T v G NS, N
/0 —ONLNFn (1) ds S/O —ONLnFn(npy,) ds
<t,

the first inequality is because of the equation (4.28) and the we showed the second in-
equality in showing condition (ii).

So IM:]FV‘ <2||Fy|l e +tif Gev NS, > T. Since ||Fy| - is uniformly bounded in N,
‘M%V ‘ is uniformly bounded.

The Markov process n°¥ is recurrent. So limp_,. P {S; > T} = 0. This implies
limy_,oo P [64N A S; > T} = 0. We get

. TN
Jim B 51, ]

< lim (2||Fy | o + )P 6ex AS > T =0,

So the condition (iii) holds.
Thus we get
TN _m [N —
E {M%NASJ =E [M)] =0.

That is

E l:FN(né\iN/\S;) — FN <7’]év):| = |:/05§N/\St

<t

QNLNFN(né\][\,s) ds

Y

as we did in showing the condition (ii).
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The left hand side of the previous equation is

B[P (i ) = v ()] 2 B [P (o, ) 150x < )] + on()
since Fiy > on(1)
= (F+ov(1) P[oey < 8] +on(1)
= [P |5ev < 8] +on(1),
Thus P |:5'<N < S;J < %—i— on(1).
Since f depends on € S by the definition and S is finite, for ¢ € Ex
P [64 < S;} < Ct + on(1) for some constant C.

Also by the definitions of o¢, d¢, and S;, P [64 < St'} =Plo, <.
In conclusion,

lim lim sup sup P HXN — XN
ol Moo e e L T

. . N
> e} < 1(%1 ]\}gnoo CseugI])V P; [0 > o¢]

<lim lim (6 +ox(1))

=lim C¢
510

=0,

this proves tightness.

We showed the tightness of the sequence of laws, which is Proposition f.1 We need
to show the uniqueness of limit points. Let Qu be the law of (Xp,, : ¢ > 0) under IP’gV.
Without loss of generality, assume that Quy converges to Q. By the property of the
martingale problem, it’s enough to show the following lemma for the uniqueness of the
limit points.

Lemma. Under Q, Xy =z,

M, = F(X) ~ [(%) - [ £5(%)ds

is a martingale for every function f from S to R.

Proof of the Lemma. It’s enough to prove this lemma for f satisfying
—Lf(zx) =z =a}—1{x=0b}fora#be S

and

Zf(l?) =0.

€S
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This is because the following set spans the vector space of all functions from S to R,
which is

{f:S—=R|-£&f(x)=1{z=a} —1{z =b}for some a# b e Sand > f(z)=0}
zes
U{f:S— R|fisa constant function}.

Assume that f satisfies —£f(z) = l{z =a}—-1{z =b}fora # b€ Sand )5 f(z) =
We need to show that
B9 [g((X, 50 < u < )(F(X) = £(X,) - [ £7(X) dw)] =0,

for all 0 < s < ¢t and all bounded, continuous functions g : D([0, s, S5) — R.
The left hand side of the previous equation is

E® [g((Xu 0 < u < 8))(F(X0) = F(X) = [ £F(X,) du)]

= lim E® [g((X, : 0 < u < 9)(F(X0) = F(X) = JL £f(X,) du)]

= lim B [g((W0rEY,) 0 < u < ) (F(WrEN) — F(V (L))
— JLLf(W(n5,)) du)]

= lim B [g((W(EY,) - 0 < u < ) (F(5Y) — Fligy,)

N—oo
—f! HNLNF(nggu) du )}, F is the function defined by the equation (4.2))
and we use (3) in Proposition [£.4]

= Jim e [9((¥(oysy) 10 < u < 8)) (Fliys) = Flilgys)

N—oo

—J! OnLNF (ng,s) du)}, [@gv is the law of v starting at &y.
The last expression above is

JLONLFg,s) du = [5] Ox Ly F () Todv, since TSy = u.
= fit OnLNF (Noyv) %dv

d7:,, {1 > Moyw S gN

dv

Since

and QNLNF(T]G U) =0if Nonv ¢ 5]\7,
0, Noyo & En " "

s aT, s
| NI F () < 2o = [ OnLaF () o
s dv St

We apply the optional sampling theorem to the martingale
_ t
MY = F(n) = ) = [ OnLacF () ds
and stopping times S, > S.. Since S, is unbounded, we need to show the following

conditions like we did in the proof for tightness. We use shorthands E for E.~ and P for
Pe~.
¢
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(i) S, is finite a.s.,
(ii) E { Mg }
(ﬁﬂhmTﬁwE[M@q$>ﬂ::O

Since the process (né\jv 0 t>0

< 00,

is irreducible and recurrent, a stopping time S,; is finite

N—

a.s. So the condition (i) is true.
Let us check the condition (ii). The term inside the brackets is

_ St
‘Mgf + ’FN(U(JJV)’ + '/0 QNLNFN(né\][Vs) ds| .

< ‘FN(T]QZ/)

By the definition of Fly,

08 L Fx (3| =

_{1 L € ETUED

0 , otherwise.

So

S; S,
‘/0 OnLnFn(ngy,,) ds S/O IQNLNFN(T]é\][VS) ds

s,
S/ 1~ egNdS
0

nHNs

:7;:75.

Since ||Fyl| ;0 < 00, Mg is bounded . So the condition (ii) holds.
If S, > T, then
4 N T N S, N
‘/0 OnLnFN(1gys) ds S/O ‘9NLNFN(779NS) dSS/O ‘GNLNFN(%NS) ds

s
S /0 177éVNs€£N ds — T‘;g - t
So ’M%V‘ < 2||Fx|| e +tif S; > T. Since || Fiy|| is uniformly bounded in N,
is uniformly bounded.
Since the Markov process 7V is irreducible and recurrent, 7lim P {St' > T} = 0.
—00

S0 limy o0 [E [MP 1y || < limr o2 [|Fi || o + )P [S; > T] = 0.
Thus the condition (iii) holds.
Let’s get back to the original equation,

BN
Aim B g (W (ng) o) 20 < u < 8))(Fng o) = Flngys)
— [{ONINF (0] ) du)]

ey




. PN
= Jim B [g((W() ) 20 < u < ) (FY o)~ Flnl o)

N—oo
~ I3 Ox Ly F () dv)]
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= 0 by the optional sampling theorem. Here the function g(( ¥ (1, s ) : 0 < u < s))

u

is measurable by .7, ¢ the filtration at time OyS; for n.
So we proved the lemma.

This proves the Theorem [4.2]
Next we prove Theorem [4.3
Proof of Theorem[].3 Denote the sample space for ]P’JUVN as Q. Then,

o [ /O Tl{nN (M) e AN}ds]

= [ (ves) € avbasar,

T
= / / 1 {nN (NHas) € AN} dIP’f,VN ds by Fubini’s theorem
0 Jay

T
— [ 3 1{n e An} onln, N 0s)ds
0

nEEN
, where vy (n, N'™@5s) is the distribution of n™(-) at time N'*t%s

- /OT > L{neAn} fxln, N'"s) un(n) ds

nEEN
VN(777 NlJraS)

v (n)
The square of the summation in the last equation is equal or less than

( S (1{ne An})’ uw(n)) ( > fa(n, N'™os) uzv(n))

nekbn nebn

where fy(n, N**s) =

= un(Awn) ( > fa(n, N'os) m(n)) :

nekn

By differentiating the summation in the previous equation in s,

i(z F N*0s) mm)

neEn

= N N 2fn(n, N s) Ly fn(n, N %s) pun(n)

nekEn
= —2N'"“Dy(fn)
<0.
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So
S, NS un(n) < S0 f2(0,0) py(n) < M

neEN nEEN

for some M, since Y, cp, fa(n,0) pn(n) is uniformly bounded in N by the assumption of
the theorem.
Thus

EPy [ /0 T1{nN (M) AN}ds}

< /OT V1w (Ax) VM ds
=Ty pn(An) VM

By the Theorem , which is limy o pn(Ax) = 0, we get

lim EFW [/OT 1 {UN <N1+O‘S> € AN} ds] = 0.

N—oo
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