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Abstract

We previously developed orthosteric M1 muscarinic agonists (e.g., AF102B, AF267B, and 

AF292), which act as cognitive enhancers and potential disease modifiers. We now report on a 

novel compound, AF710B, a highly potent and selective allosteric M1 muscarinic and σ1 receptor 

agonist. AF710B exhibits an allosteric agonistic profile on M1 muscarinic receptor; very low 

concentrations of AF710B significantly potentiated the binding and efficacy of carbachol on M1 

receptors and their downstream effects (phopho-ERK1/2, phospho-CREB). AF710B (1–30 µg/kg, 

po) was a potent and safe cognitive enhancer in rats treated with the M1 antagonist 

trihexyphenidyl (passive avoidance impairment). These effects of AF710B involve σ1 receptor 

activation. In agreement with its anti-amnesic properties, AF710B (at 30 nM), via activation of 

M1 and a possible involvement of σ1 receptors, rescued mushroom synapse loss in PS1-KI and 

APP-KI neuronal cultures, while AF267B (1 µM) was less potent in PS1-KI and ineffective in 

APP-KI models, respectively. In female 3xTg-AD mice AF710B (10 µg/kg, ip/daily/2 months) – 

i) mitigated cognitive impairments in Morris water maze; ii) decreased BACE1, GSK3β activity, 

p25/CDK5, neuroinflammation, soluble and insoluble Aβ40, Aβ42, plaques and tau pathologies. 

AF710B differs from conventional σ1, M1 muscarinic (orthosteric, allosteric or bi-topic) or σ1/

muscarinic agonists. These results highlight AF710B as a potential treatment for AD (e.g., 

improving cognitive deficits, synaptic loss, amyloid and tau pathologies, and neuroinflammation) 

with a superior profile over a plethora of other therapeutic strategies.
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Introduction

Stimulation of the M1 muscarinic acetylcholine receptor (M1 mAChR) is an attractive 

therapeutic approach for Alzheimer disease (AD); reviewed in [1,2]. Accordingly, we 

recently generated compelling pre-clinical data, both pharmacology and genetically, that 

activation of M1 mAChR restores cognition and attenuates AD-like pathology in several 

animal models [3,4]. Mechanistically, it was found that M1 mAChR targets crucial enzymes 

involved in the synthesis of β-amyloid (Aβ) and phosphorylation of tau [1–4].

The sigma-1 receptor (σ1R) is another potential target for drug development for AD, as it is 

considered to play a fundamental role in cognitive function [5,6]. Notably, decreased levels 

of σ1R have been detected in early stage AD patients [7], and that stimulation of σ1R 

alleviates the depressive symptoms, neuronal cell death and cognitive deficits in AD mouse 

models [8,9]. Moreover, the mixed muscarinic/σ1R agonist ANAVEX2-73 resulted in 

significant inhibition of Aβ25–35-induced tau phosphorylation and Aβ1–42 seeding in mice 

[10] and was recently reported to exert positive cognitive effects in phase 2a clinical studies 

with AD patients (http://www.anavex.com/?post_type=news&p=1491).

σ1R is an endoplasmic reticulum (ER)-resident protein and a molecular chaperone, yet its 

functional role remains a mystery [5,6]. Under homeostatic conditions σ1R is concentrated 

at mitochondrial-associated membrane (MAM) junctions—sites of contact between ER and 

mitochondria—where it regulates InsP3R-mediated calcium signaling and ER lipids [11]; 

however, agonists or ER stress can cause σ1R to exit the MAM domain [6], allowing it to 

regulate the function of plasma membrane ion channels [5] and G-protein coupled receptors 

(GPCRs) [6,8,12,13]. Among other brain regions, the σ1R is expressed in hippocampal 

neurons with preferential localization to plasmalemmal, outer mitochondrial and ER 

cisternal membranes within somata, dendrites and post-synaptic elements [14]. 

Ultrastructural analysis also shows colocalization of σ1R with mAChR in post-synaptic 

densities [15]. However, the mechanistic nature of σ1R’s interactions with ion channels and 

GPCRs including mAChRs is poorly understood.

Over the past several years, our groups have focused on understanding the underlying 

molecular mechanism of M1 mAChR involvement in AD, and on development of 

innovative therapeutics to treat this insidious disease [1–4]. Thus we have created selective 

M1 mAChR orthosteric agonists in the “AF series” of compounds (e.g. AF102B, AF267B, 

AF292) that are cognitive enhancers and disease modifiers (reviewed in [1,2]):
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In a further expansion of our rational drug discovery programs we report here on AF710B, 

which is a novel and potent M1 mAChR/σ1R agonist:

We report here results of preclinical evaluation of AF710B in cellular and animal models of 

AD. Notably we found that AF710B showed exceptional efficacy in restoring cognitive 

decline associated with AD and with lessening BACE1, GSK3β activity, p25CDK5, 

neuroinflammation, soluble and insoluble Aβ40, Aβ42, accumulation of amyloid plaques 

and neurofibrillary tangles. As the stabilization of post-synaptic dendritic spines in 

hippocampal neurons is important for learning and memory, we evaluated the potential role 

of M1 mAChR and σ1R in the regulation of synaptic morphology. We recently found that 

mushroom spines are preferentially lost in PS1-M146V-knockin (KI) mouse [16] and APP-

KI mouse [17] models of AD. As mushroom spines are considered stable “memory spines”, 

their loss may underlie cognitive decline in AD [16]. We therefore examined the effects of 

AF710B vs. AF267B on hippocampal mushroom spine stability and tested the involvement 

of M1 mAChR and σ1R in the mechanism of action of AF710B. The results of this study 

indicate that AF710B, but not AF267B, efficiently rescues mushroom spines and normalizes 

other pathological features in AD models.

Methods

Compounds

1-(2,8-Dimethyl-1-thia-3,8-diazaspiro[4.5]dec-3-yl)-3-(1H-indol-3-yl)propan-1-one 

(AF710); (US Patent 8,673,931B2) was synthesized at IIBR and was separated by Chiral 

Technology Europe into two enantiomers, AF710A and AF710B. AF710B {>99.5% 

chemical purity; >99.5% enantiomeric excess; specific rotation [α] = −56° (C=0.303, 

Methanol)}, the active enantiomer was used in the studies reported in this paper (re US 

Patent 8,673,931B2).

AF267B {(2S)-2-Ethyl-8-methyl-1-thia-4,8-diazaspiro[4.5]decan-3-one} (>99.9% chemical 

purity; > 99.5 enantiomeric excess) was provided by IIBR. All other compounds were of 

analytical grade and were purchased from commercial sources.
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Receptogram profile in vitro

AF710B (10 µM) was tested in a high-throughput profiling that consists of a broad 

collection of 83 trans-membrane proteins (including GPCRs) and soluble receptors, sigma 

receptors, ion channels and monoamine transporters (CEREP, France; http://www.cerep.fr/

cerep/users/pages/catalog/profiles/DetailProfile.asp?profile=2118). AF710B was further 

tested in binding studies at a wide concentrations range on M1 mAChR (IIBR; re below), 

σ1R receptors, σ2 receptors, α4β2, α7 nicotinic receptors as well as in cellular functional 

assays on histamine 2, 5HT2A, 5HT2C, 5HT2B, and mu receptors; and at 5- HT2B 

receptors in an in vitro rat stomach fundus bioassay, respectively (CEREP, France).

Animals (rats and mice)

All procedures in which animals were used were in accordance with i) the NIH Guide for 

the Care and Use of Laboratory Animals, (1996), and were approved by Israel Institute for 

Biological Research (IIBR), Institutional Animal Care and Use Committee; ii) the NIH 

guidelines and were approved by the Institutional Animal Care and Use Committee of the 

University of Texas Southwestern Medical Center; and iii) the Principles of Laboratory 

Animal Care from NIH publication 85–23 and were approved by the University of 

California, Irvine, Institutional Animal Care and Use Committee.

Binding studies to M1 mAChR in Rat Cortical Homogenates

Male Sprague Dawley rats, 250–300 gr, were sacrificed by decapitation and brains were 

removed. Cerebral cortex was dissected out and placed on ice, cleaned, weighed and 

transferred to 20 mM Tris-HCl buffer, 2mM EDTA, pH 7.4. The tissue was homogenized in 

the buffer (1:10 weight/volume) using a polytron homogenizer and after a −70°C freeze/

thaw cycle; the homogenates were centrifuged at 35,000g at 4°C for 10 min. The 

supernatant were removed and the pellets were resuspended in Tris buffer at a ratio of 1:6 

(weight/volume). The homogenates were divided into aliquots of 1 ml each and then stored 

at −70°C till use. The binding profile in rat cortical membranes of AF710B, carbachol and 

the effects of AF710B on carbachol binding to M1 mAChR, respectively, was studied in 

triplicates for each concentration of the tested compounds in displacement studies of the M1 

selective antagonist, [3H]-pirenzepine ([3H]PZ, 86 Ci/mmol, Perkin-Elmer, MA, USA). 

Each such study was replicated in 4–6 separate experiments. Competition curves, KH, KL 

and Ki values were derived using the GraphPad Prism software program, version 5.0.

Phospho-p44/42 MAPK (ERK 1/2) and phospho-CREB detection assay

Rat pheochromocytoma cells (PC12) stably transfected with rat M1 mAChR (PC12M1 

cells) were seeded in 6-well plates at a density of 2×106 cells/well. The following day, cells 

were washed twice with RPM1, and returned to the incubator with serum free media 

(starvation medium containing RPMI, 2mM Glutamine, 1% penicillin- streptomycin, 

2.5µg/ml Amphotericin B, 0.1 mg/ml G418). On the next day cells were pretreated for 3 

hours with AF710B at concentrations ranging from 0.1nM to 100nM, and then carbachol 

(10nM) was added for 10 minutes. In each plate, one well served as a control (no treatment) 

and one well as a positive reference in which the cells were treated with carbachol (10nM). 

Following this procedure, cells were collected and extracted with Ripa buffer (Sigma, 

Fisher et al. Page 4

Neurodegener Dis. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cerep.fr/cerep/users/pages/catalog/profiles/DetailProfile.asp?profile=2118
http://www.cerep.fr/cerep/users/pages/catalog/profiles/DetailProfile.asp?profile=2118


R-0278, 200µl) containing a Protease inhibitor Cocktail (Sigma, 1:100) and 

Phenylmethylsulfonyl fluoride (Sigma, 1:1000). Phospho-p44/42 MAPK (p-ERK1/2) 

(1:1000, Cell signaling) and Phospho-CREB (ser 133) (1:1000, Cell signaling) were probed 

with anti-rabbit antibodies.

Passive avoidance (PA) studies in rats

Naive Wistar rats, 225–250 gr (3 months old) were trained and tested in a two-compartment 

box: a small illuminated compartment (21×23×22 cm3) with a lamp (60w) at a height of 25 

cm above the compartment, and a dark, large compartment (37×23×22 cm3) equipped with 

grid floor. A door (7×5 cm2) separated the two compartments. The PA task is comprised of a 

training (acquisition) phase and a retention phase. In the training procedure each rat was 

individually placed in the small illuminated compartment and after 60 sec of familiarization/

adaptation, the door to the large compartment was opened and the latency to enter was 

measured (Initial latency). Immediately following entry into the dark compartment, the door 

was closed and an inescapable foot shock (0.6 mA for 3 sec) was delivered through the grid 

floor. A cutoff point of 180 sec was used for initial latency. Animals that failed to enter the 

dark compartment with all four paws within 180 sec were excluded from the experiment. 

After the acquisition trial the rat was returned to its home cage. Retention of the PA task was 

measured 24h later, by again placing the rat in the light compartment and after a 60 sec 

adaptation interval, the door was opened and the latency to re-enter the dark compartment 

was measured. A cutoff point of either 300 (Experiments 1&2) or 600 sec (Experiment 3) 

was used for retention latency. Animals that failed to step through within 300 or 600 sec 

were removed from the apparatus and a 300 or 600 sec latency was recorded for them.

In Experiment 1 we tested the effects of AF710B [100, 30 and 10 µg/kg, per os (po)] and in 

Experiment 2 lower doses (1 and 3 µg/kg, po). In both experiments the rats were divided into 

2 groups. One main group was treated with trihexyphenidyl (5 mg/kg, s.c) and the second 

main group was treated with vehicle (DDW-1 ml/kg, s.c.), 30 min before the shock. In each 

main group, rats were further divided in treatment subgroups (N=9–11): one subgroup was 

treated with saline (10 ml/kg, p.o.), and the other subgroups were treated with AF710B, 60 

min before the shock. In Experiment 3 rats were divided into 2 groups. One group was 

treated with trihexyphenidyl (5 mg/kg, s.c), and the second group was treated with vehicle 

(DDW- 1ml/kg, s.c.), 30 min before the shock. In each group, rats were divided into 

treatment subgroups (N=9–10): one subgroup was treated with saline (10 ml/kg, p.o.), and 

the other subgroups were treated with AF710B (10 µg/kg, p.o.), with or without the σ1R 

antagonist, NE-100 (1mg/kg, po), 60 min before the shock.

Statistical analysis

Initial latency and retention latency were analyzed by a two-way MANOVA. Specific 

comparisons were made by simple main effects contrasts analysis.

Hippocampal primary neuronal cultures and spine morphology analysis

PS1-M146V knockin (PS1-KI) [18] and APP-KI [19] homozygous mouse AD models were 

used in our studies. Nontransgenic mice (WT) of the same strain (B6 strain) were used as a 

control. Primary hippocampal cultures from WT, PS1-KI and APP-KI mice were established 
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from postnatal day P0–P1 pups and maintained in culture as previously described 

[16,17,20]. At DIV7, hippocampal cultures were transfected with a TD-Tomato plasmid 

using a high calcium phosphate method [16]. At DIV16 neuronal cultures were treated with 

placebo (NBA medium), AF710B (30 nM) and AF267B (1 µM) for 16 hours. Following 

drug treatment the cultures were fixed (4% formaldehyde and 4% sucrose in PBS [pH 7.4]) 

for imaging. Z-stacks of optical sections were captured using a 100× objective with a 

confocal microscope (Carl Zeiss Axiovert 100M with LSM510). Quantitative analysis for 

dendritic spines was performed by using the NeuronStudio software package (as in [16]). In 

brief, following classification of spine shapes (thin, stubby, mushroom), the percentage of 

mushroom spines was calculated for each neurite. For each genotype and drug combination 

12–20 cultured neurons were analyzed from at least 2 independent neuronal preparations. 

The data were pooled and averaged.

σ1R knockdown was achieved by lentiviral-mediated shRNA expression in hippocampal 

neurons. Bacteria containing plasmids encoding MISSION® shRNA targeting mouse σ1R 

(Clone ID:NM_011014.2-1138s21c1; Sequence: 

CCGGCCTGTAGTAATCTCTGGTGAACTCGAGTTCACCAGAGATTACTACAGGTT

TTTG) or scrambled shRNA were ordered from Sigma-Aldrich. Plasmids were purified 

using a Maxi-prep (NucleoBond Xtra kit; Macherey-Nagel). After replacing culture media 

(DMEM + 10% FBS) with NBA, plasmids for shRNA along with plasmids for Δ8.9 and 

VSVG for lenti-viral production and packaging were transfected into HEK293 cells using 

PEI. Culture media was collected 48 hours after transfection, centrifuged (2000 RPM for 5 

min), filtered (0.45 µm pore size) and aliquoted in cryotubes for storage at −80°C until use. 

200 µl of the collected lenti-virus media was added to each well of neuron cultures on DIV8. 

Both functional analysis in the spine loss assay and SDS-PAGE western blot analyis of 

lysates from neurons cultures (using σ1R (SC-137075; Santa Cruz) and β-tubulin (E7; 

DSHB) antibodies and the immunoblotting protocol below) confirmed efficient knockdown 

by si-σ1R.

Studies in 3xTgAD

3xTgAD mice harboring a presenilin1 mutation (PS1M146V), the Swedish double mutation 

in APP (APPKM670/671ML), and a frontotemporal dementia mutation in tau (tauP301L) were 

used for all experiments [21]. Strain matched nontransgenic mice (nTg), 129/C57BL/6, were 

used as controls. AF710B was administrated via intraperitoneal (ip) injection at dose of 10 

µg/kg/day. Mice were treated for 2 months, from 10 months of age to 12 months of age. No 

changes in body weight were found between vehicle- and AF710B-treated mice.

Morris water maze

Behavior paradigms to assess cognition were performed for all groups of mice two weeks 

before sacrifice as described previously [4]. Mice were trained to swim to a circular clear 

Plexiglas platform submerged 1.5 cm beneath the surface. Four trials were performed per 

day, for 60 seconds each with 5 minutes between trials. Mice were trained for as many days 

as needed for the group to reach the training criterion of 25 seconds. The probe test was 

assessed 24 hours after the last trial, with the platform removed. Performance was monitored 
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with the EthoVision XT video-tracking system (Noldus Information Technology, Leesburg, 

VA, USA).

Tissue preparation

Mice were deeply anesthetized with sodium pentobarbital and killed by perfusion 

transcardially with 0.1 M phosphate-buffered saline (PBS, pH 7.4) solution. The right brain 

hemispheres were fixed for 48 hours in 4% paraformaldehyde and cryoprotected in 30% 

sucrose for immunohistochemical analysis. Frozen brains were sectioned coronally into 40 

µm sections using a Leica SM2010R freezing microtome, serially collected in cold 0.02% 

sodium azide and stored at 4°C. The left hemispheres were snap-frozen on dry ice and 

subject to protein extraction sequentially using T-PER tissue protein extraction reagent 

(Thermo Scientific, Rockford, IL, USA) and 70% formic acid. The supernatant was 

aliquoted and stored at −80°C. Protein concentration in the supernatant was determined 

using the Bradford assay.

Immunoblotting

Equal protein amounts were separated on a 4–12% gradient SDS-PAGE, transferred to a 

nitrocellulose membrane and incubated overnight at 4°C with primary antibody. The 

following primary antibodies were used in this study: anti-Aβ1–16 (6E10) (Covance 

Research Products) phospho-GSK3β (Ser9), human APP-CT20, ADAM10, ADAM17, 

BACE1, GSK3β, CDK5 (Calbiochem, San Diego, CA, USA), human Tau (HT7), phospho-

Tau AT180 (phospho-Thr231), phospho-Tau AT270 (phospho-Thr181) (Thermo Scientific), 

PP2A, p35, GAPDH (Sigma- Aldrich, St. Louis, MO, USA) and phospho-Tau PHF-1 

(phospho-S396/S404) (Dr. Peter Davies, Albert Einstein College of Medicine, Manhasset, 

NY, USA). Following washing, the membranes were incubated with adjusted secondary 

antibodies coupled to horseradish peroxidase. The immunocomplexes were visualized using 

the SuperSignal West Pico Kit (Thermo Scientific). Band density measurements were made 

using ImageJ 1.36b imaging software (NIH, Bethesda, MD, USA).

Enzyme-Linked Immunosorbent Assay (ELISA)

For the determination of the Aβ levels, T-Per soluble fractions were loaded directly onto 

ELISA plates, whereas the formic acid supernatants (insoluble fractions) were diluted 1:20 

in a neutralization buffer (1 M Tris base, 0.5 M NaH2PO4) before loading. MaxiSorp 

immunoplates (Nunc, Rochester, NY, USA) were coated with mAb20.1 antibody (Dr. 

William E. Van Nostrand, Stony Brook University, Stony Brook, NY, USA) at a 

concentration of 25 µg/ml in coating buffer (0.1 M Na2CO3, pH 9.6) and blocked with 3% 

bovine serum albumin. Standard solutions for both Aβ40 and Aβ42 were made in the antigen 

capture buffer (20 mM NaH2PO4, 2 mM EDTA, 0.4 M NaCl, 0.05% 3-[(3-

cholamidopropyl)dimethylammonio]propane sulfonate, and 1% bovine serum albumin, pH 

7.0) and loaded onto ELISA plates in duplicate. Samples were then loaded (also in 

duplicate) and incubated overnight at 4°C. Plates were then washed and probed with either 

horseradish peroxidase-conjugated anti-Aβ40 (C49) or anti-Aβ42 (D32) (Dr. Vitaly 

Vasilevko and Dr. David H. Cribbs, University of California Irvine, CA, USA) overnight at 

4°C. The chromogen was 3,3',5,5'-tetramethylbenzidine, and the reaction was stopped by 

30% phosphoric acid. The plates were read at 450 nm using a plate reader (Molecular 
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Dynamics, Sunnyvale, CA, USA). The readings were then normalized to protein 

concentrations of the samples.

Immunohistochemistry

Free-floating sections were pre-treated with 3% hydrogen peroxide and 10% methanol in 

Tris-buffered saline (TBS) for 30 min to block endogenous peroxidase activity. After a TBS 

wash, sections were incubated once in 0.1% Triton X-100 in TBS (TBST) for 15 min and 

once with 2% bovine serum albumin (BSA) in TBST for 30 min. Sections were then 

incubated overnight at 4°C with phospho-Tau AT8 (phospho-Ser212/Thr214, Thermo 

Scientific) with 5% normal serum in TBS. After the appropriate biotinylated secondary 

antibody (1:200 in TBS + 2% BSA + 5% normal serum), sections were processed using the 

Vectastain Elite ABC reagent and 3,3'-diaminobenzidine (Vector Laboratories, Burlingame, 

CA, USA) according to the manufacturer’s instructions. Sections were then mounted on 

gelatin-coated slides, dehydrated in graded ethanol, cleared in xylene and coverslipped with 

DPX mounting medium (BDH Laboratory Supplies, Poole, England).

The immunostaining was assessed at six brain coronal levels. Specifically, six alternate 40-

µm sections of the brain with an individual distance of ~160 µm were obtained between 1.34 

and 2.54 mm posterior to the bregma. Images of stained hippocampal area were acquired 

using an Axiocam digital camera and AxioVision 4.6 software connected to an Axioskop 50 

microscope (Carl Zeiss MicroImaging, Thornwood, NY, USA). A threshold optical density 

that best discriminated staining from the background was obtained using the ImageJ 1.36b 

imaging software (NIH). All histological assessments were made by an examiner blinded to 

sample identities.

Immunofluorescence

Sections were first blocked with 3% normal serum, 2% bovine serum albumin and 0.1% 

Triton X-100 in TBS for 1 hr at room temperature. Using the same buffer solution, sections 

were incubated overnight at 4°C with the following primary antibodies: anti-Aβ1–16 (6E10) 

(Covance Research Products, Denver, PA, USA), anti-Iba-1, anti-GFAP (Millipore, 

Billerica, MA, USA), Human tau (HT7) and/or phospho-Tau AT8 (phospho-Ser202/Thr205) 

(Thermo Scientific). Sections were then rinsed and incubated for 1 hour with secondary 

Alexa Fluor-conjugated antibodies (Invitrogen, Carlsbad, CA, USA) at room temperature. 

Finally, sections were mounted onto gelatin-coated slides in Fluoromount-G (Southern 

Biotech, Birmingham, AL, USA) and examined under a Leica DM2500 confocal laser 

microscope using the Leica Application Suite Advanced Fluorescence software (Leica 

Microsystems, Bannockburn, IL, USA). The immunofluorescence was assessed at the same 

brain coronal levels described above. Confocal images were acquired by sequential scanning 

using a z-separation of 1 µm using the Leica Application Suite Advanced Fluorescence 

software (Leica Microsystems).

Thioflavin S staining

Sections were incubated in 0.5% thioflavin S in 50% ethanol for 10 min, differentiated twice 

in 50% ethanol, and washed in PBS solution. Staining was visualized under a confocal 

microscope. Volumetric imaging and image measurements were made using Imaris software 
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(Bitplane Inc., South Windsor, CT, USA). The thioflavin S levels represent the average 

value obtained by the analysis of images of the hippocampus.

Statistical Analysis

All data are expressed as mean ± SEM. The statistical evaluation of the results was carried 

out using one- or two-way analysis of variance (ANOVA). Following significant ANOVAs, 

multiple post hoc comparisons were performed using Bonferroni’s test. Some data were 

analyzed using the unpaired t-test. The accepted level of significance for the tests was P < 

0.05. All tests were performed using the Statistica software package (StatSoft Inc., Tulsa, 

OK, USA).

Results

AF710B shows high potency and selectivity to M1 mAChR and σ1R

In high-throughput receptogram profiling AF710B emerged as a potent ligand for M1 

mAChR and σ1R, respectively, as shown by displacement of an M1 muscarinic antagonist 

(tritiated-pirenzepine; an M1 mAChR radioligand) from rat cerebral cortex and of a σ1R 

agonist (tritiated-pentazocine; a σ1R radioligand) from guinea-pig cerebral cortex with a 6- 

and 2-fold order of magnitude interval between two binding sites (KH vs. KL), respectively 

(Fig 1A). Furthermore AF710B showed both high potency and selectivity for the M1 

mAChR and σ1R and very clean additional pharmacological profiles with regard to off-

target activity (Fig 1A). Thus AF710B was found to display no significant off-target activity 

when screened at 10 µM in a radioligand displacement screen at 83 other GPCRs, ion 

channels and transporters known to mediate human side effects (Fig 1A). AF710B (10 

nM-100 µM) was inactive as an agonist or an antagonist on histamine 2 and 5HT2A & 

5HT2C receptors while on 5HT2B receptor it is a very weak partial agonist (17% efficacy) 

at 100 µM; and a very weak agonist at mu receptor, EC50=13 µM. Additionally, AF710B 

(0.1nM-10 µM) did not bind to human α4β2 and α7 nicotinic receptors and to σ2R, while it 

showed agonistic effects on M1 mAChR, but not on M2–M5 mAChR (Table 1). In addition, 

AF710B application altered the neurochemical profile to a state typified by downstream 

signaling of M1 mAChR and/or σ1R. This was detected at concentrations in the nM range 

~3–4 orders of magnitude lower than effects on other screened GPCRs, ion channels and 

transporters mentioned above (detailed data not shown, Table 1).

To characterize the interaction of AF710B with the M1 mAChR we employed a 

combination of binding and functional assays. This was done first utilizing brucine, an M1 

positive allosteric modulator (M1 PAM) that potentiates M1 orthosteric, but not M1 

allosteric agonists [22]. Notably while brucine showed a modest cooperativity on M1 

mAChR with the orthosteric agonists, carbachol and AF267B, it failed to potentiate AF710B 

(tested in binding and calcium mobilization assays) and TBPB (another M1 allosteric 

agonist, [23]); (detailed data not shown; Table 1). Thus, AF710B binds to M1 mAChR on a 

location different from the orthosteric site, supporting an allosteric mechanism of action of 

AF710B.
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To further characterize the M1 allosteric profile of AF710B we tested its effects on 

carbachol. AF710B (0.1 nM) potentiated carbachol binding to M1 mAChR in rat cortical 

membranes as evidenced by a decrease by ca. two orders of magnitudes of the KH for 

carbachol. The ratio of KL/KH for a given agonist directly correlates with its efficacy. In this 

particular case, the ratio of KL/KH for carbachol in presence of AF710B 0.1 nM increased 

from 110 to 1650 (Fig 1B). Thus both the affinity and efficacy of carbachol are potentiated 

by AF710B.

Both M1 orthosteric and allosteric agonists increase phosphorylation of extracellular signal 

regulated kinase (ERK 1/2) [24,25]. The activated ERK/ mitogen activated protein kinase 

(MAPK) cascade has multiple targets, including cAMP response element binding protein 

(CREB), which mediates its ability to induce memory consolidation and long-term memory 

formation [26,27]. In this context we found that AF710B did not increase phopho-ERK1/2, 

yet it potentiated ERK 1/2 phosphorylation induced by 10 nM carbachol (Fig 1C). In 

addition AF710B increased carbachol-induced pCREB in starved proliferated PC12M1 cells 

(Fig 1D).

Taken together this indicates that AF710B is functioning like an M1 PAM mAChR. 

However, unlike reported M1 PAMs [23] AF710B binds to M1 mAChR with a high affinity 

and is also a direct M1 allosteric agonist, but different in several aspects from other reported 

M1 allosteric agonists (vide infra and Table 1).

AF710B reverses the cognitive decline induced by M1 mAChR antagonist, trihexyphenidyl 
via activation of both M1 mAChR and σ1R

To determine whether AF710B is a cognitive enhancer we tested its effects against cognitive 

impairments in a passive avoidance (PA) test induced by trihexyphenidyl in rats. 

Trihexyphenidyl induces cognitive deficits in rodents and humans and is a CNS penetrating 

and a relatively selective M1 antagonist [28].

In general, no significant difference was found in initial latency between any of the groups 

tested in Experiments 1–3 (data not shown). In Experiment 1 a significant interaction was 

found between trihexyphenidyl and treatments (F(2/63)=4.0, p<0.023). Retention latency of 

trihexyphenidyl rats treated with double distilled water, DDW (54.2±14.6sec) was 

significantly shorter than that of control rats treated with DDW (242.00±30.60 sec) 

(p<0.001). However, the retention latency of trihexyphenidyl rats treated with AF710B- 10, 

and 30 µg/kg (po) was significantly longer than that of trihexyphenidyl rats treated with 

DDW (p<0.001–0.01). The retention latency of trihexyphenidyl rats treated with 

AF710B-100 µg/kg, po was not different from that of trihexyphenidyl rats treated with 

DDW. AF710B-10 µg/kg was very potent, and significantly different from the higher dosage 

of 100 µg/kg, po (p<0.01). In Experiment 2 a significant interaction was found between 

trihexyphenidyl and treatments (F(2/52)=5.2, p<0.009). Retention latency of trihexyphenidyl 

rats treated with DDW (63.9±18.8sec) was significantly shorter than that of control rats 

treated with DDW (274.7±20.8sec) (p<0.001). However, the retention latency of 

trihexyphenidyl rats treated with AF710B (1 and 3 µg/kg, po), were significantly longer than 

that of trihexyphenidyl rats treated with DDW (p<0.001). The antiamnesic effects AF710B, 

1 and 10 µg/kg (po), were replicated two and four times, respectively and the tested 
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compound showed a long duration of action at these doses, since the retention time was 

significantly different vs. DDW treated trihexyphenidyl-rats, both 24 after 72 hours, after 

treatment (detailed data not shown).

As AF710B binds to both M1 mAChR and σ1R we explored whether its anti-amnesic 

effects are blocked by NE-100, a selective σ1R antagonist [29]. In Experiment 3 we found 

that the retention latency of trihexyphenidyl rats treated with DDW (122.0±29.2sec) was 

significantly shorter than that of control rats treated with DDW (525.7±51.0 sec) (p<0.001). 

However, the retention latency of trihexyphenidyl rats treated with AF710B 10µg/kg, po 

was significantly longer (361.7±67.1 sec) and NE-100 co-administered with AF710B, 

blocked significantly the anti-amnesic effect of AF710B in this model (185.4±44.0 sec) 

(p<0.02); (Fig 1F). Thus the effects of AF710B appear to be mediated at least in part by the 

σ1R. Notably, NE-100 was not significantly effective in inducing deficits in the PA task and 

also failed to affect the retention parameters of AF710B alone (Fig 1F). As trihexyphenidyl 

binds 70 fold more effectively to M1 mAChR vs. σ1R [30] and its amnesic effects may be 

attributed mainly to its M1 antagonistic effects, it can be deduced that AF710B exerts its 

cognitive effects in the trihexyphenidyl model via a combined activation of both M1 

mAChR and σ1R.

AF710B protects synapses via activation of M1 mAChR/σ1R

Synaptic loss is a main feature of many neurodegenerative disorders, including AD [31]. In 

previous studies we determined that mushroom synaptic spines are lost in primary 

hippocampal neuronal cultures from PS1-KI and APP-KI mice [16,17]. We confirmed these 

findings in the present experiments (Figs 2A–D). Application of AF267B (1µM, an effective 

concentration on M1 mAChR- mediated readouts; [2]) for 16 hours starting on day in vitro 

(DIV) 16 partially rescued mushroom spines in PS1-M146V.KI cultures, but not in APP.KI 

cultures (Figs 2A–B), indicating potential beneficial effects, but only for certain forms of 

AD. AF267B partially reduced the prevalence of WT mushroom spines, which could be 

related to a slight toxic effect or depression of synaptic strength. By contrast, 30 nM 

AF710B did not change the proportion of mushroom spines in hippocampal cultures from 

non-transgenic (nTg) animals when compared with vehicle, (Fig. 2A, 1B). Notably, AF710B 

markedly rescued mushroom spine loss in both AD transgenic mouse models, nearly to the 

level of non-transgenic animals (Fig. 2A,B), indicating that this compound exerts a disease-

modifying effect on AD neurons.

To explore the underlying molecular mechanism responsible for AF710B’s protective effect, 

similar studies with primary hippocampal cultures from APP-KI mice were performed in the 

presence of the M1 mAChR antagonist pirenzepine (1 µM) and/or the σ1R antagonist 

NE100 (1 µM) (Fig 2C). While the effect of AF710B on spine morphology was not affected 

by the blockage of σ1R, it was completely abolished in the presence of the M1 mAChR 

antagonist (Fig 2C, 2D). In addition, the combination of pirenzepine and NE100 did not 

show any additive or synergistic effects in the presence of AF710B (Figs. 2C, 2D). These 

results suggest that AF710B prevents mushroom spine loss in hippocampal neuron cultures 

from APP-KI mice by stimulating M1 mAChR activity.
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We further examined the possible involvement of σ1R in mushroom spine stability in WT 

mouse hippocampal neuronal cultures by using lentiviral-mediated shRNAi delivery. σ1R 

knockdown decreased the mushroom spine density from 38.4 ± 1.1% in hippocampal 

neurons transfected with scrambled siRNA to 22.1 ± 1%, significantly lower (p < 0.0001; 

Fig. 2E,F). As before, treatment of cultures with 30 nM AF710B for 16 hours had no effect 

on the mushroom spine density in control-siRNA expressing neurons (Fig. 2E,F). However, 

AF710B treatment failed to rescue mushroom spine loss in hippocampal neurons expressing 

siRNA against σ1R (si-σ1R) (Fig. 2E,F), indicating that ability of AF710B to stabilize 

hippocampal mushroom spines requires not only M1 mAChR function, but also σ1R 

expression. To explain these results we propose that AF710B may act by stimulating a M1 

mAChR/σ1R complex in the synaptic spines. Further biochemical experiments will be 

needed to test this hypothesis.

AF710B mitigates cognitive impairments in the 3xTg-AD mouse model

Given the marked effects induced by AF710B in vitro and in vivo, we sought to further 

investigate its effects on the cognitive decline induced by AD using the 3xTg-AD mouse 

model. As previously observed, 12-month-old 3xTg-AD mice performed significantly worse 

relative to age-matched nTg mice in the reference spatial memory version of the Morris 

water maze (MWM). Vehicle-treated 3xTg-AD mice exhibited longer latencies to find the 

platform in the training session (Fig. 3A) and reduced target quadrant preference during the 

probe trial (Fig. 3B) compared with age-matched nTg mice treated with vehicle. Notably, 

treatment with AF710B (10 µg/kg/day, ip, for two months) improved the cognitive function 

of 3xTg-AD mice during the training and probe sessions of the MWM (Fig. 3A,B). 

Importantly, the improvement in the cognitive performance in the AF710B-treated 3xTgAD 

mice are not directly related to changes in motor function, since no significant alterations of 

the swimming speed and total distance travelled in the water maze were observed when 

compared with vehicle-treated nTg and 3xTgAD mice (data not shown).

AF710B lessens AD-like pathology in the 3xTg-AD mouse model

Accumulation of Aβ and tau pathology coincides with the synaptic loss and cognitive 

decline in the 3xTgAD mice. Therefore, we next examined for changes in Aβ pathology. We 

found that AF710B treatment significantly reduced levels of Aβ40 and Aβ42, in both 

detergent soluble and insoluble fractions (Fig. 3C). Moreover, we found significantly less 

amyloid deposition in the AF710B-treated animals versus vehicle-treated animals, as 

indicated by the significant decrease in Thioflavin S positive plaques (Fig. 3D). To elucidate 

the mechanism by which AF710B reduces Aβ levels, we determined whether APP 

processing pathways were modified (Fig. 3E). Steady-state levels of APP and α-APP 

cleaving enzymes ADAM10 and ADAM17 were unaffected by AF710B treatment. 

Conversely, AF710B significantly diminished the expression of the putative β-secretase 

enzyme BACE1. Given the decline in BACE1 levels, we used the antibody 6E10 to detect 

full-length APP and its proteolytic fragments CTFβ [99-amino-acid long C-terminal APP 

fragment produced by β-secretase cleavage (C99)] and CTFα [83-amino-acid long C-

terminal APP fragment produced by α-secretase cleavage (C83)]. As expected, the levels of 

C99, but not C83, were significantly diminished in the AF710B-treated 3xTgAD mice 

versus vehicle-treated 3xTgAD mice.
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To examine the effect of AF710B administration on tau pathology, we first tested for 

changes in total phosphorylated-tau (p-tau) levels using the anti-AT100 antibody. Notably, 

p-tau was found reduced in AF710B-treated 3xTgAD mice versus vehicle-treated 3xTgAD 

mice (Fig. 3F). This data was further confirmed through confocal studies, which showed a 

reduction in AT8-positive neurons in AF710B-treated 3xTg-AD mice (Fig. 3G). 

Biochemical analysis of p-tau revealed significant decreases in the p-tau epitopes AT180, 

AT270, and PHF-1 (Fig. 3H). To determine if the reductions in p-tau levels were due to 

modulations in tau kinase function, we measured for changes in several kinases involved in 

tau phosphorylation. We found that AF710B administration significantly increased 

phosphorylation in GSK3β, at the inhibitory Serine-9 residue (Fig. 3H). This was also 

associated with an effect on p35 cleavage, since the brains of AF710B-treated 3xTgAD mice 

presented diminished levels of p25 fragment. However, AF710B did not affect the steady 

state levels of CDK5, GSK3β or PP2A. Overall, our data indicates that AF710B modulates 

tau pathology via the modulation of GSK3β and CDK5 activities.

Inflammation is another critical component of AD, and it is associated with increased 

numbers and/or size of microglia and astrocytes. We found significantly less reactive 

astrocytes and activated microglia in AF710B-treated animals, as indicated by the lower 

detection of GFAP and Iba-1, respectively. This anti-inflammatory effect was most 

prominent in the immediate vicinity of plaques. The immunofluorescence studies indicated 

lower amyloid load and glial reactivity (Fig. 3I).

Discussion

We report here on AF710B, which is a novel and highly potent mixed M1 mAChR/σ1R 

agonist with a unique mechanism of action leading to a concomitant activation of both M1 

mAChR and σ1R. Notably, AF710B showed both high potency and selectivity for the M1 

mAChR and σ1R and very clean additional pharmacological profiles with regard to off-

target activity (Fig 1A and Table 1). AF710B exhibits an allosteric agonistic profile on M1 

mAChR since very low concentrations of AF710B significantly potentiated the binding and 

efficacy of carbachol on M1 mAChR and some of the carbachol/M1- mediated downstream 

effects (e.g., ERK1/2 and CREB phosphorylation); Fig 1B–D. Furthermore, AF710B 

showed exceptional efficacy in vitro on downstream effects mediated by M1 mAChR and 

σ1R including ability to preserve synaptic elements (Fig 2), and in vivo in restoring 

cognitive deficits in animal models (trihexyphenidyl treated rats and 3xTg-AD mice) and 

with lessening major hallmarks associated with AD such as BACE1, GSK3β activity, p25/

CDK5, neuroinflammation, soluble and insoluble Aβ40, Aβ42, accumulation of amyloid 

plaques and neurofibrillary tangles (in 3xTg-AD mice) (Fig 1 and 3 and Table 1).

While pK studies were not yet performed on AF710B, its exceptional brain penetration and 

target engagement can be implied from the very high potency of the compound in in vivo 

studies. Notably, AF710B functions as a cognitive enhancer in the PA test involving 

trihexyphenidyl-treated rats at unprecedented low doses of 1–30µg/kg, po (Fig 1E). The 

effects of AF710B on cognition are enantioselective since the enantiomer AF710A is not 

active at 1 and 10 µg/kg, po (Table 1 and 2A). Strong enantioselectivity of AF710B vs. 

AF710A was consistently observed in vitro and in vivo (Table 1). How does AF710B 
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pharmacodynamics overcome existing compounds? We found that AF710B is the most 

potent cognitive enhancer and with the highest safety margin vs. a variety of compounds 

tested by us in the trihexyphenidyl model under same experimental protocols as tested for 

AF710B, including, inter alia, AF710A, AF102B, AF267B, AF292 and donepezil (Table 

2A).

To explore the mechanism of action in vivo of AF710B in ameliorating PA impairments 

induced by trihexyphenidyl we used NE-100, a selective σ1R antagonist [29]. We found that 

NE-100 co-administered with AF710B, significantly blocked the anti-amnesic effect of 

AF710B in this model (Fig 1F). Thus, the effects of AF710B appear to be mediated in part 

by the σ1R. However, NE-100 was not significantly effective in inducing deficits in the PA 

task and also failed to affect the retention parameters of AF710B alone (Fig 1F). As 

trihexyphenidyl binds to M1 mAChR > σ1R [30] and its amnesic effects may be attributed 

mainly to its M1 antagonistic effects, it can be implied that AF710B exerts its cognitive 

effects in the trihexyphenidyl model via a unique concomitant activation of both M1 

mAChR and σ1R.

Can such effects of AF710B be recapitulated with a mixture of separate agents acting on M1 

mAChR and σ1R, respectively? We tested this in the trihexyphenidyl model via a combined 

treatment of the M1 orthosteric agonist (AF267B) with donepezil. Notably the 

acetylcholinesterase inhibitor (AChE-I) donepezil, the current major treatment in AD 

patient, is also a potent σ1R agonist and its effects may arise from cholinergic mechanisms, 

as well as an interaction with the σ1R [32]. Importantly we found that the effects of AF710B 

could not be recapitulated by the combination of AF267B + donepezil as no significant 

potentiation was detected and in fact the beneficial effects of the M1 agonist were 

unchanged by donepezil (Table 2A). Thus it can be deduced that the mechanism of action of 

AF710B differs from a combination of a direct acting M1 orthosteric agonist and σ1R 

agonist.

As AF710B potentiated the effects of carbachol on three tested readouts (e.g., binding, 

phopho-ERK1/2, phospho-CREB; Fig 1B–D), it is possible that the affinity and efficacy of 

the endogenous agonist, acetylcholine, for the M1 mAChR is also potentiated by AF710B, 

which may explain improved memory performance in trihexyphenidyl-treated rat and 3xTg-

AD mice models. These findings already separate AF710B from M1 orthosteric agonists 

[e.g. AF267B, AF292, AF102B and others] or from σ1R agonists. Supersensitive M1 

receptors are induced by positive M1 PAMs that are currently under examinations by several 

major drug companies [23]. These M1 PAMs potentiate the whole repertoire of 

acetylcholine-induced M1 mAChR-mediated downstream responses, including release of 

intracellular Ca2+, [Ca2+]i. In contrast, AF710B diverges mechanistically from other M1 

PAMs and M1 agonists (allosteric or orthosteric) in in vitro studies and in spite of inducing 

a supersensitive M1 mAChR, it does not potentiate carbachol-mediated release of [Ca2+]i 

(detailed data not shown, Table 1). Notably, orthosteric, allosteric or bi-topic M1 agonists 

increase [Ca2+]i at the same concentration range that these compounds induce other 

downstream signaling. This is not the case for AF710B and therefore this compound 

diverges mechanistically from M1 orthosteric agonists (e.g., AF267B, AF102B, AF292, and 

more; [1,2]), M1 allosteric agonists (e.g., TBPB, and more), or M1 PAMs (BQCA, Brucine 
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and more; [23]); (detailed data not shown, Table 1). Interestingly, unlike AF710B, M1 

PAMs and M1 agonists (allosteric or orthosteric) were not reported to have σ1R activity. In 

addition, reported M1 PAMs or M1 allosteric agonists (or bi-topic M1 agonists) are 

effective as cognitive enhancers at doses >1mg/kg, unlike AF710B (effective at µg/kg 

range). Thus, AF710B exhibits a remarkably different mechanism of action vs. and superior 

profile vs. all these compounds.

Results from drug screening and the trihexyphenidyl model implied that AF710B might 

improve memory by combined activation of M1 mAChR and σ1R. As hippocampal 

mushroom spine loss may underlie memory deficits in AD [16], we tested a potential role 

for AF710B in stabilizing synaptic connections and found that AF710B rescues mushroom 

spine loss in vitro in PS-KI and APP-KI hippocampal cell culture models of AD. 

Considering the established role of σ1R as a sensor of ER Ca2+ dysregulation [11] and the 

deranged ER Ca2+ signaling in AD neurons [16,20], it is likely that σ1R activity is abnormal 

in spines of AD neurons. Indeed, σ1R agonists affect learning and memory, cognition and 

mood and show potent anti-amnesic properties [8] and σ1R knockdown causes hippocampal 

spine loss [33]. Additionally, σ1R agonists may have therapeutic potential in protein 

conformation diseases (e.g. AD. PD and more) and several neuropsychiatric disorders [8]. 

Conversely, σ1R KO mice are viable, but have a late-onset neurodegeneration phenotype 

[15]. Thus, it appears that partial loss of σ1R function or reduction in its expression may 

contribute to synaptic impairment and neuronal loss in these disorders. We therefore tested 

the potential involvement of σ1R in mediating the neuroprotective effects of AF710B. 

Although the σ1R antagonist NE100 did not block the rescue of mushroom spines by 

AF710B in hippocampal neurons from APPKI mice, inhibition of M1 mAChR prevented the 

rescue by AF710B. However, σ1R knockdown in wild type hippocampal neuron cultures 

compromised mushroom spine stability and AF710B treatment was unable to prevent this, 

indicating requirements for both σ1R and M1 mAChR activity in hippocampal mushroom 

spine stability. To explain these results we propose that AF710B may act by stimulating a 

M1 mAChR/σ1R complex in the synaptic spines. Notably, heteromers constituted by σ1Rs 

with D1Rs or D2Rs (both GPCRs) were reported [12,13] and it is reasonable to presume that 

other GPCRs, including the M1 mAChR, may also form heteromers with σ1R. Further 

biochemical experiments will be needed to test this hypothesis.

The hypothesis that AF710B targets a putative M1 mAChR-σ1R complex may be tied with 

the pro-cognitive effects of AF710B at unprecedented low doses in memory-based 

behavioral tasks in both trihexyphenidyl-treated rats (Fig 1E and F; Table 2A) and 3xTgAD 

mice (Fig. 3A,B and Table 2B). In this context, in the 3xTg-AD mice AF710B mitigated 

cognitive deficits, and decreased BACE1 levels, GSK3β and p25CDK5 activity, 

neuroinflammation, soluble and insoluble Aβ40 and Aβ42 plaques, and tau pathology (Fig. 

3). Furthermore, unlike the remarkable disease-modifying properties found with AF710B in 

3xTg-AD mice at very low doses (10µg/kg/day, ip, for 2 months), no in vivo disease-

modifying properties were reported for M1 PAMs or M1 allosteric agoinsts and M1 

dualsteric agonists in Tg mice or in other in vivo models [2,23].

Glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5) contribute to 

hyperphosphorylation of tau protein, one of the pathological hallmarks of the disease 
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(reviewed in [34]). Cdk5 activity is increased in AD patients, probably due to the conversion 

of the Cdk5 activator p35 to the truncated p25 protein (reviewed by [34]). Elevated p25 

levels are observed in AD patients [35]. CDK5 activator protein p25 preferentially binds and 

activates GSK3β [36]. All these data supported the hypothesis that Cdk5/p25 acts as a 

master regulator of neuronal cell death in AD, Parkinson's disease and several 

neurodegenerative diseases, [34]. Interestingly, activation of the M1 mAChR decreased 

several phosho-tau isoforms via GSK3β inhibition but not the phosho-tau isoform detected 

with PHF-1 [3], while activation of σ1R help maintain proper tau phosphorylation by 

potentially circumventing the formation of overreactive Cdk5/p25 [37]. Effective therapies 

for tauopathies may require inhibition of both Cdk5/p25 and GSK3β. AF710B fulfills this 

condition, and because it decreased all tested phosho-tau isoforms including PHF-1, it may 

be effective as a disease modifier even in more advanced stages of AD and also for other 

taoupathies. Overall, our data indicates that AF710B decreases tau pathology and may 

restore synaptic homeostasis by decreasing p25 and inhibiting GSK3β and Cdk5 activities.

In summary we identified AF710B as a novel comprehensive therapeutic agent to ameliorate 

cognitive deficits, synaptic loss, amyloid and tau pathologies, neuroinflammation, and 

neurodegeneration in AD and perhaps additional related protein aggregation diseases. 

AF710B appears to be a highly effective treatment for AD, when compared with competing 

drugs (Table 2 A,B). A drug like AF710B that works in extremely low doses provides far 

more dosing and testing options for future Alzheimer’s disease therapeutics.
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Abbreviations

AD Alzheimer’s disease

Aβ β-amyloid

APP-KI Amyloid Precursor Protein-knockin

BACE1 Beta-Secretase1

CREB cAMP response element binding protein

CDK5 Cyclin-Dependent Kinase 5

ER endoplasmic reticulum

ERK 1/2 extracellular signal regulated kinase

ip intraperitoneal

GPCR G-protein coupled receptor
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GSK3β Glycogen Synthase Kinase 3β

M1 mAChR M1 Muscarinic acetylcholine receptor

M1 PAM M1 positive allosteric modulator

MWM Morris water maze

PA Passive Avoidance

po per os

PP2A Protein Phosphatase 2A

PS1-KI Presenilin1-knockin

σ1R Sigma-1 receptor

3xTg-AD mice triple transgenic AD mice
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Figure 1. AF710B is a selective ligand for M1 mAChR and σ1R, potentiates the effects induced 
by carbachol and improves cognition in a passive avoidance test in trihexyphenidyl-treated rats
(A) In high-throughput receptogram profiling AF710B emerged as a highly selective ligand 

for M1 mAChR and σ1R, respectively as shown by displacement of tritiated-pirenzepine (an 

M1 mAChR radioligand) from rat cerebral cortex and tritiated-pentazocine (a σ1R 

radioligand) from guinea-pig cerebral cortex. (B) Very low concetrations of AF710B 

potentiates both carbachol-induced displacement of tritiated-pirenzepine from rat cerebral 

cortex and the efficacy of carbachol as evidenced by the ratio of KL/KH. (C) Very low 

concentrations of AF710B potentiated carbachol-induced phospho-Extracellular-signal-

regulated kinases (pERK1/2) in starved proliferated PC12M1 cells. *p<0.001 vs. carbachol, 

10 nM. (D) Very low concentrations of AF710B potentiated carbachol-induced phospho-

CREB (cAMP response element-binding) in starved proliferated PC12M1 cells. **p< 0.001, 

*p<0.01 vs. carbachol, 10nM. (E) AF710B reverts the cognitive decline induced by 

trihexyphenidyl, an M1 mAChR antagonist. In Experiments 1 and 2 the retention latencies 
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of trihexyphenidyl -treated rats with double distilled water (DDW) were significantly shorter 

than that of control rats treated with DDW (p<0.001). Experiment 1 and 2 were combined as 

no significant differences were observed between the trihexyphenidyl-treated rats with 

DDW in both experiments. The retention latency of trihexyphenidyl- treated rats with 

AF710B (1, 3, 10 µg/kg, po) and AF710B (30 µg/kg, po) were significantly longer than that 

of trihexyphenidyl-treated rats with DDW. The retention latency of trihexyphenidyl-treated 

rats with AF710B 100 µg/kg, po was not different from that of trihexyphenidyl-treated rats 

with DDW. *p<0.01, **p<0.001, compared to trihexyphenidyl + DDW.#p<0.01, compared 

to trihexyphenidyl + 100 µg/kg, po of AF710B. (F) Retention latency of trihexyphenidyl-

treated rats with DDW was significantly shorter than that of control rats treated with 

(p<0.001). The retention latency of trihexyphenidyl-treated rats with AF710B 10µg/kg was 

significantly longer and the σ1R antagonist NE 100 blocks the effects of AF710B. # p< 

0.02, vs Saline + AF710B + Trihexyphenidyl; * p<0.05, vs. Saline + AF710B + Saline; ** 

p<0.01, vs. Saline + AF710B + Trihexyphenidyl; *** p< 0.001, vs. Saline+ DDW+ Saline; 

***p< 0.001, vs. NE-100 + AF710B + Saline.
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Figure 2. Activation of M1 mAChR/σ1R complex by AF710B restores synaptic spines
(A–B) Primary hippocampal neuron cultures were prepared from wild type non-transgenic 

(nTg), PS1-M146V-KI (M146V.KI) and APP-KI (APP.KI) pups. Hippocampal neurons 

were transfected with TdTomato to visualize dendritic spine morphology. By DIV16 the 

prevalence of mushroom spines decreased in both AD models relative to wild type cultures. 

16-hour treatment of cultures with 30 nM AF710B prevented the loss of mushroom spines, 

whereas AF267B (1µM) was only partially effective in M146V.KI cultures. (C–D) In 

APP.KI cultures, the spine rescue by AF710B was unaffected by the σ1R antagonist NE100 

(1 µM). Pirenzepine (1 µM) completely blocked the spine rescue by AF710B. The addition 

of NE100 had no additional effect. (E–G) Wild type hippocampal neuron cultures were 

transfected by lenti-viruses on DIV8 with plasmids encoding siRNA against σ1R (or 

scrambled siRNA as a control). Cells were harvested for western blotting on DIV17 to 

verify σ1R knockdown (F). (E,G) σ1R knockdown reduced the prevalence of mushroom 

spines to similar levels as in AD models. AF710B was unable to rescue mushroom spine 

loss from σ1R knockdown. *p<0.05, **p<0.001 and ***p<0.0001 in comparison to the 

respective control condition. ##p<0.001 in comparison to AF710B.
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Figure 3. AF710B reduces AD-like pathology in the 3xTg-AD mouse model
(A,B) AF710B (10 µg/kg/day, ip) improves cognition in 12-month old 3xTgAD mice, as 

demonstrated by the (A) decrease in escape latency times to the platform, but not on the 6th 

day and (B) increase in the amount of time in the target quadrant compared to vehicle-

treated 3xTgAD during the probe trial, in the Morris water maze. **P<0.01 between 

vehicle-treated nTg and 3xTgAD mice, #p< 0.05 between vehicle- and AF710B-treated 

3xTgAD mice. (C) ELISA analysis reveals that levels of soluble and insoluble Aβ40 and 

Aβ42 are decreased in in 3xTgAD treated with AF710B (10 µg/kg/day). (D) Thioflavin S-
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positive plaques are also reduced in AF710B-treated 3xTgAD mice, as shown by staining 

and volumetric analysis. (E) BACE1 and the C-terminal fragment of BACE cleavage of 

APP, C99, are significantly decreased in AF710B-treated 3xTgAD mice, while full-length 

APP and non-amyloidogenic enzymes ADAM10 and ADAM17 remain unchanged. 

Quantification of western blots was performed by densiometric analysis and is presented as 

a percentage of control, normalized to GAPDH. Activation of M1R/σ1R complex also 

reduces the phosphorylation of tau in the (F) AT-100 and (G) AT-8 epitopes in the 3xTg-

AD mouse model. AF710B treatment results in the reduction of several phosphoepitopes of 

tau, while total tau levels remain the same in versus vehicle-treated 3xTgAD mice. (H) The 

reduction in tau phosphorylation seen in AF710B-treated 3xTgAD mice is mediated through 

GSK3β and CDK5, as demonstrated by the higher phosphorylation at Ser9 of GSK3β and 

reduced levels of the CDK5 activator peptide p25, respectively. Quantification of western 

blots was performed by densiometric analysis and is presented as a percentage of control, 

normalized to GAPDH. (I) AF710B reduces inflammation, as we found significant 

reduction in the number of GFAP+-astrocytes and Iba-1+-microglia in the vicinity of 6E10+-

plaques. Graphs represent the volumetric analysis of Aβ, astrocytes and microglia. *P<0.05 

and **P<0.01 between vehicle- and AF710B-treated 3xTgAD mice.
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Table 1

AF710B: A compilation of neurochemical, behavioral and toxicological studies (re also Figs 1–3)

Effects of AF710B Results Comments

Receptogram Re Fig 1A Highly potent and selective for M1 mAChR and σ1R. Several 
effects mediated by M1 mAChR and σ1R and were detected at 
concentrations in the nM range which are lower by 3–4 orders 
of magnitude vs. interactions with any of the other tested screen 
of GPCRs, ion channels and transporters (Fig 1A). The M1 
PAM brucine potentated the binding of orthosteric agonists 
(carbachol and AF267B) but not of AF710B; not shown. Thus 
AF710B is an M1 allosteric agonist.

Selectivity for M1–M5 
mAChR in CHO cells; 
[Ca 2+]i readout

AF710B is a partial agonist at 100µM, 
inactive at 1µM. Selective for M1 
mAChR with no agonistic activity on 
M2–M5 mAChRs. Enatioselectivity: 
AF710A is a M1 muscarinic antagonist 
(not shown).

The M1 PAM brucine potentated the effects of the orthosteric 
agonists (carbachol and AF267B but not the effects of AF710B 
and TBPB (an M1 allosteric agonist); (not shown). Thus 
AF710B is an M1 allosteric agonist (not shown).

Potentiation of effects of 
carbachol (CCh) on M1 
mAChR

Potentiates CCh binding and efficacy (Fig 
1B) and CCh-mediated increase of p-ERK 
and p-CREB (Fig 1C& 1D)

Thus AF710B is a M1 PAM. Notably, AF710B differs from 
other M1 PAMs as it does not potentiate CCh-induced 
elevation of [Ca2+]i in CHO-M1 cells (not shown).

Tau phosphorylation Decreased tau phosphorylation in NGF-
deprived and Aβ25–35 -induced tau 
phosphorylation; effective at 100 
µM-1nM

M1 mAChR -mediated (e,g. blocked by atropine; detected in 
PC12M1 cells but not in PC12 cells devoid of M1 mAChR); 
(not shown).

GSK-3β activity Increased inactive form of GSK3β in 
NGF-deprived and Aβ25–35-induced 
decrease of inactive form of GSK3β; 
effective at: 100 µM-1nM

M1 mAChR -mediated (e,g. blocked by atropine; detected in 
PC12M1 cells but not in PC12 cells devoid of M1 mAChR); 
(not shown).

Neuroprotection; Bcl-2, Bax 
readouts

Neuroprotective against insults such as 
Aβ25–35 -induced neurotoxicity; NGF-
withdrawal, effective at: 1µM-1nM

These effects of AF710B are not modulated by the M1 mAChR 
as can be observed both in PC12M1 and PC12 cells. AF710B-
induced effects on Bax are mediated by σ1R (e.g. blocked by 
NE100) (not shown).

Mushroom spine stability AF710B rescued mushroom spines in 
hippocampal neuron cultures from PS1.KI 
and APP.KI mice. This was prevented by 
the M1 mAChR antagonist pirenzepine, 
but not the σ1R antagonist NE100. σ1R 
knockdown lead to mushroom spine loss 
in wild type hippocampal neurons. 
AF710B was unable to rescue this. 
AF267B also partially prevented 
mushroom spine loss in PS1.KI, but was 
ineffective in APP.KI cultures. Fig 2 A–F.

This indicates that the presence of σ1R and function of M1 
mAChR are required for hippocampal neuron mushroom spine 
stability, suggesting that AF710B may target an M1 
mAChRσ1R complex. Rescue of mushroom spines by AF710B 
may explain its ability to improve cognitive performance in 
spatial memory tasks. The less effective rescue of mushroom 
spines by AF267B suggests that targeting M1 mAChR function 
alone may not be sufficient to reverse some of the AD 
pathologies in AD.

Trihexyphenidyl-induced 
cognitive impairment in PA 
test in rats

Significantly effective at 1–30 µg/kg, po 
(Fig 1E); The effects of AF710B are 
mediated at least in part by σ1R (e.g. 
blocked by NE100; Fig 1F)

AF710B is the most potent cognitive enhancer [e.g. Donepezil, 
AF267B, AF292, AF102B, AF710A; re Table 2]
Wide safety margin (> 50,000). Enantioselectivity: AF710A 
(10 and 1 µg/kg, po) is inactive (not shown).

3xTg-AD mice Fig 3 AF710B was highly potent in restoring cognitive decline 
associated with AD and with lessening BACE1, GSK3β 
activity, p25CDK5, neuroinflammation, soluble and insoluble 
Aβ40, Aβ42, accumulation of amyloid plaques and 
neurofibrillary tangles.

Acute Toxicity (rats) No toxic or side effects (highest tested 
dose, 50 mg/kg, po); no gross pathological 
changes at necropsy

MTD > 50 mg/kg, po (not shown; Male and Female Sprague-
Dawley™ rats GLP study Harlan, Israel).
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