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RESEARCH Open Access

Advantages of Bayesian monitoring
methods in deciding whether and when
to stop a clinical trial: an example of a
neonatal cooling trial
Claudia Pedroza1* , Jon E. Tyson1, Abhik Das2, Abbot Laptook3, Edward F. Bell4, Seetha Shankaran5 and for the
Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network

Abstract

Background: Decisions to stop randomized trials are often based on traditional P value thresholds and are often
unconvincing to clinicians. To familiarize clinical investigators with the application and advantages of Bayesian
monitoring methods, we illustrate the steps of Bayesian interim analysis using a recent major trial that was stopped
based on frequentist analysis of safety and futility.

Methods: We conducted Bayesian reanalysis of a factorial trial in newborn infants with hypoxic-ischemic encephalopathy
that was designed to investigate whether outcomes would be improved by deeper (32 °C) or longer cooling (120 h), as
compared with those achieved by standard whole body cooling (33.5 °C for 72 h). Using prior trial data, we developed
neutral and enthusiastic prior probabilities for the effect on predischarge mortality, defined stopping guidelines
for a clinically meaningful effect, and derived posterior probabilities for predischarge mortality.

Results: Bayesian relative risk estimates for predischarge mortality were closer to 1.0 than were frequentist
estimates. Posterior probabilities suggested increased predischarge mortality (relative risk > 1.0) for the three
intervention groups; two crossed the Bayesian futility threshold.

Conclusions: Bayesian analysis incorporating previous trial results and different pre-existing opinions can help
interpret accruing data and facilitate informed stopping decisions that are likely to be meaningful and convincing
to clinicians, meta-analysts, and guideline developers.

Trial registration: ClinicalTrials.gov NCT01192776. Registered on 31 August 2010.

Keywords: Bayesian methods, Factorial trial, Hypothermia, Phase III trial, Stopping rules, Trial monitoring

Background
Decisions to stop randomized trials are often based on
traditional P values from sequential monitoring methods
that diminish the possibility of making false positive claims
of benefit or harm with repeated interim analyses [1, 2].
However, these decisions are often unconvincing to clini-
cians or guideline development panels [3]. The appropriate
stopping guidelines are unclear [3–12], and the decisions

are often difficult for data and safety monitoring commit-
tee (DSMC) members, who bear the responsibility for both
avoiding recommendations to continue trials too long once
harm or futility is suspected and for stopping trials too
soon because of misleading interim findings. Safety con-
cerns for patients enrolled in the current trial are self-
evident in the former case. In the latter case, an erroneous
conclusion that a truly beneficial therapy is ineffective or
harmful can also be detrimental to a very large number of
future patients, particularly if the therapy would in fact
reduce rates of major adverse outcomes.
Bayesian methods for monitoring efficacy, safety, and fu-

tility have been proposed [13–24]. Bayesian approaches
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have potential advantages [25–27] that include incorpo-
rating the results from prior trials to better assess the
likelihood of treatment benefit or harm and ensure that
treatment recommendations are well justified, based on
all relevant trials [16]. Another advantage of a Bayesian
approach is that uncertainty from all parameter esti-
mates is accounted for in reported summaries, which is
particularly important with sparse data [28, 29]. For
monitoring of trials, at a given interim analysis the pos-
terior probability of the treatment effect is computed
from the prior probability (referred to in this paper as
“the prior”) and the interim data. Then DSMCs can weigh
the current evidence for benefit, harm, or futility from the
posterior probability and decide whether to continue re-
cruitment, or to pause or terminate the trial.
A Bayesian approach can also incorporate a wide range

of viewpoints and indicate the magnitude of the difference
between treatment groups that would be needed at the
end of the trial to convince those who are skeptical, as
well as those who were enthusiastic about the value of the
therapy prior to the trial [16, 30]. Decisions to stop a trial
early based on the best available data from all relevant
trials and on the identification of clinically meaningful dif-
ferences are most likely to be convincing to meta-analysts,
practice guideline developers, and clinicians.
Despite these advantages, only a small percentage of

Phase III trials have adopted Bayesian monitoring methods,
largely due to the seemingly daunting task of specifying
priors [31], the perceived drawback of their subjective
nature, computational burden [21], and lack of familiarity
with implementation and interpretation of these methods
[32, 33]. The objective of this report is to illustrate the use
of a Bayesian approach and its advantages in trial moni-
toring with a concrete example of a major randomized
trial of hypothermia in neonates with hypoxic-ischemic
encephalopathy [34], a condition associated with a high
risk of death or severe impairment. This trial used a fre-
quentist monitoring plan and was stopped early for futility
and safety concerns though stopping boundaries were not
crossed. We present how Bayesian stopping guidelines
can be specified using clinically meaningful treatment
effects. We show how information from prior trials can be
incorporated and utilized in addressing whether even an
enthusiastic (about treatment benefit) clinician or investi-
gator should be convinced by negative interim findings.

Methods
Optimizing Cooling Trial
Therapeutic hypothermia may be considered the most
important advance in decades in the treatment of newborn
infants with hypoxic-ischemic encephalopathy, a condition
probably resulting from severe acute hypoxia-ischemia oc-
curring within hours before birth [35, 36]. Whole body
cooling to 33.5 °C for 72 h was shown to reduce the risk of

death or neurodevelopmental impairment at 18–22
months of age by 28 % (relative risk, 0.72; 95 % confi-
dence interval, 0.54–0.95) among term infants in a ran-
domized trial conducted by the Eunice Kennedy
Shriver National Institute of Child Health and Human
Development (NICHD) Neonatal Research Network
(NRN) [37]. However, even with cooling, only 56 % of
the infants survived without severe or moderate impair-
ment, and it was postulated that refined approaches to
cooling would further improve the outcome. Based on evi-
dence from studies on animals and neonates [38–42],
the NRN launched a trial (Optimizing Cooling Trial) in
18 centers to assess whether the use of deeper cooling
(to 32 °C), longer cooling (for 120 h), or both would further
increase survival without impairment over that achieved
with standard cooling [34–36].

Study design
The Optimizing Cooling Trial utilized a 2 × 2 factorial
design to test depth and duration of cooling. Infants of
36 weeks gestational age or older with severe acidosis or
need for resuscitation at birth with moderate or severe
hypoxic-ischemic encephalopathy were randomized to
four hypothermia groups: 33.5 °C for 72 h, 32.0 °C for
72 h, 33.5 °C for 120 h, or 32.0 °C for 120 h. Randomization
was stratified by center and severity of hypoxic-ischemic
encephalopathy (moderate or severe) with a dichotomous
composite primary outcome of death or moderate or
severe disability at 18–22 months of age. The sample
size calculation was based on frequentist marginal ana-
lyses of the two cooling factors (comparing 33.5 °C with
32 °C and 72 h with 120 h) and assumed that there was
no large interaction between duration and depth of
cooling. The trial planned to enroll a total of 726 in-
fants to detect the hypothesized relative risk (RR) of
0.73 in either factor with expected primary outcome
rates of 37.5 % and 27.5 % for the two marginal groups
with 80 % power and a two-sided α of 0.05 (Table 1). A
completed CONSORT 2010 checklist is provided in
Additional file 1.

Table 1 Hypothesized rates of primary outcome of death or
moderate or severe impairment at 18–22 months: these rates
were used for sample size calculation

Depth of cooling

33.5 °C 32.0 °C Margin

Duration of cooling

72 h 45 % 30 % 37.5 %

120 h 30 % 25 % 27.5 %

Margin 37.5 % 27.5 %
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Ethical considerations
The research study was approved by the local institu-
tional review board of the Women and Infants Hospital
of Rhode Island, Case Western Reserve University, the
Children’s Mercy Hospital, the University of Cincinnati
Medical Center, the Cincinnati Children’s Hospital Medical
Center, the Good Samaritan Hospital, the Duke University
School of Medicine, the University of North Carolina at
Chapel Hill, Emory University, Grady Memorial Hospital,
Indiana University, the Nationwide Children’s Hospital,
RTI International, Stanford University, the University of
Alabama at Birmingham Health System, the University
of California—Los Angeles, the University of Iowa,
Mercy Medical Center, the University of New Mexico
Health Sciences Center, the University of Pennsylvania,
the University of Texas Southwestern Medical Center
at Dallas, the University of Texas Health Science Center
at Houston, Wayne State University, the University of
Michigan Medical Center, the University of Rochester
Medical Center, and the University of Buffalo Women’s
and Children’s Hospital of Buffalo. Written informed con-
sent was obtained from a parent or guardian for each en-
rolled infant.

Trial monitoring
The trial was monitored for safety outcomes of cardiac
arrhythmia, persistent acidosis, major vessel thrombosis,
alteration of skin integrity, major bleeding, and death
using Pocock boundaries constructed to maintain an
overall α of 0.05 for each outcome. Prespecified safety
interim analyses were planned after the first 50 infants
were enrolled and then for every 25 infants thereafter.
The results of each interim analysis were reviewed by the
independent DSMC. Though not specified in the study
protocol, futility analyses of predischarge mortality were
also performed at the request of the DSMC during the
final interim check. These marginal analyses (comparing
two cooling factors) were performed by calculating condi-
tional power using the hypothesized treatment effect for
the primary outcome as the alternative hypothesis.

Interim analysis using frequentist approaches
Enrollment started in October 2010. Following the recom-
mendation of the DSMC, the NICHD Director stopped
the trial for concerns about safety and futility on 27
November 2013, after the eighth DSMC review. A total
of 364 infants had been enrolled (Additional file 2). The
observed rates of predischarge mortality are shown in
Table 2. The RR (95 % confidence interval) for predis-
charge mortality, adjusted for level of hypoxic-ischemic
encephalopathy and center, was 1.37 (0.92–2.04) for the
duration of cooling comparison, and 1.24 (0.69–2.25)
for the depth of cooling comparison. Although the data
did not cross the stopping boundaries for safety, the

conditional power of 2 % for both marginal compari-
sons indicated a low probability of finding a statistically
significant reduction in predischarge deaths were the
study to continue to completion.
Data on the primary outcome of death or moderate or

severe disability at 18 to 22 months were available for
only a few infants and hence did not play a role in the
decision to stop the trial, a reason that some observers
might question this decision. Moreover, the predischarge
mortality with standard cooling (7 %) in the Optimizing
Cooling Trial was less than half that in a prior NRN trial
(19 %) using the same eligibility criteria [37]—and the
mortality rates for all three experimental groups (longer
cooling, deeper cooling, both) were less than 19 %. Thus,
the very low mortality in the standard group might be a
“random low” as in other trials when the interim findings
after an equal or larger number of patients proved to be
quite misleading [3, 4, 43, 44]. However, this low mortality
might be partly or fully due to improvements in care or
changes in the patient population between the two trials,
especially considering the 7 year gap between them. Com-
pared with cooled infants in the prior NRN trial, infants in
the Optimizing Cooling Trial were less likely to have se-
vere hypoxic-ischemic encephalopathy (23 % versus 32 %),
to be intubated at birth (79 % versus 95 %), or to have
seizures (29 % versus 43 %).

What could a Bayesian monitoring approach add to an
interim analysis?
In developing stopping guidelines, data from the prior
NRN trial could be used in identifying what negative in-
terim findings for predischarge mortality would be convin-
cing to enthusiasts as well as skeptics or neutral clinicians.
While no prior data exist for longer or deeper cooling, the
observed proportion of predischarge mortality for the
cooled group in the prior trial can inform the expected rate
for the standard group in the Optimizing Cooling Trial, as
well as realistic treatment effects for this outcome.
Another advantage of a Bayesian approach is that it

forces investigators to consider carefully what posterior
probability of benefit or harm would justify stopping the
trial—an exercise that requires close collaboration between
clinical investigators and biostatisticians. The appropriate
stopping probability threshold should arguably be lower

Table 2 Observed rates of predischarge mortality for the
Optimizing Cooling Trial

Depth of cooling

33.5 °C 32.0 °C Margin

Duration of cooling

72 h 7 % (7/95) 14 % (13/90) 11 %

120 h 16 % (15/96) 17 % (14/83) 16 %

Margin 12 % 16 %
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for treatment harms than benefits, meaning that less evi-
dence might be required for presence of harm than ab-
sence of benefit to stop a trial. Moreover, a particularly
high probability of benefit might be required for therapies
that are invasive, hazardous, or extremely expensive. Once
the threshold posterior probabilities have been selected,
simulations can be performed if necessary to satisfy regula-
tory agencies or verify acceptable frequentist characteristics
(type I error, power) [21, 26, 45].
While the P values required by frequentist stopping

guidelines can be modified based on these considerations,
this is rarely done in practice. Bayesian stopping guidelines
based on these considerations may thus be more flexible
as well as more easily explained and more meaningful to
clinicians and developers of practice guidelines. They also
have the added benefit of forcing difficult but productive
upfront discussions among clinical investigators and bio-
statisticians that can enrich all aspects of trial design.

Bayesian monitoring of the Optimizing Cooling Trial
In addition to the necessary elements of an acceptable data
monitoring plan [46], three main components need to be
specified for a Bayesian monitoring plan: (1) prior evidence
(in some circumstances, expert opinion might also be con-
sidered) of treatment effect; (2) clinically important treat-
ment effect(s) for the primary outcome and any important
outcomes, including death, to be monitored; and (3)
probability thresholds for stopping a trial (Table 3). We

illustrate how these three components can be specified
in practice using the Optimizing Cooling Trial as an
example.
We performed a Bayesian reanalysis of predischarge

mortality data from the 364 infants enrolled in the Opti-
mizing Cooling Trial. We present posterior probabilities
for the comparisons of the three hypothermia groups
with standard cooling partly because the study protocol
stated the possibility of terminating one or more groups
for safety or futility and continuing the trial with the re-
maining groups. This approach of simultaneously moni-
toring all groups for futility was found to be superior to
or as good as an approach that first assesses an inter-
action term between the interventions and then exami-
ning the main effects if no significant interaction is
found [47]. To compare with the frequentist results, we
also provide posterior probabilities for the marginal
comparisons of longer cooling or deeper cooling.

Bayesian model
We used a binomial model with a log link to estimate the
RR of predischarge mortality with longer cooling, deeper
cooling, or both, compared with standard cooling. We in-
cluded the main effects of duration and depth of cooling
and the interaction term to assess its magnitude. Letting
yi be the outcome of predischarge death (1 = yes, 0 = no),
the model is expressed as:

Table 3 Summary of key components of a Bayesian monitoring plan

Component Specification Example

Prior distributions • Previous studies on the control rate or treatment
effect can be used as prior information

• Prior beliefs about the treatment effect should be
elicited from experts to inform the strength of the
evidence needed to convince them

Two-arm trial of Treatment A versus B (control):
• Evidence from three previous trials on rate of
outcome under treatment B: 17 %, 25 %, 30 %

• Evidence from two studies on treatment effect for
different population: RR 0.98 (95 % CI: 0.73–1.3);
RR 0.75 (95 % CI: 0.56–1.0)

Prior distributions, center (95 % CrI):
• Control rate: 25 % (5–55 %)
• Skeptical prior for treatment effect: RR 1.10 (0.7–2.0)
• Enthusiastic prior for treatment effect: RR 0.85 (0.5–1.0)

Clinically important treatment effect • Investigators should specify how big a treatment
effect needs to be in order to stop a trial and
recommend its use or advise against it

• A relative risk reduction of 15 % or more is needed to
recommend treatment A, RR < 0.85

• An absolute increase of 2 % in safety outcome would
be unacceptable, RD > 0.02

Stopping thresholds • For each type of monitoring, i.e., safety, efficacy,
or futility, the level of confidence to stop the trial
early needs to be specified

• For most cases, it should be based on a clinically
important effect

• Efficacy: the trial will stop early if the likelihood of
seeing a clinically important effect is very large, even
under a skeptical prior

• Futility: if the likelihood of a clinically important
effect is small even under an enthusiastic prior,
the trial would stop early

• Safety: the trial would stop if the probability of
increasing harm is large enough under an
enthusiastic prior

At any preplanned interim analysis, any of these
occurrences would make the DSMC consider stopping
the trial:
• Efficacy under skeptical prior:
Pr(RR < 0.85) > 0.99
• Futility under enthusiastic prior:
Pr(RR < 0.85) < 0.10
• Safety under enthusiastic prior:
Pr(RD > 0.02) > 0.70

DSMC, data and safety monitoring committee, CI, confidence interval, CrI credible interval, Pr, probability, RD risk difference, RR, relative risk
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yi ∼ Bernoulli pið Þ;

log pið Þ ¼ β0 þ β1 depthi þ β2 durationi þ β3 depthi

� durationi;

where pi is the probability of predischarge death for in-
fant i, depth and duration are coded as 1 for 32.0 °C and
120 h (experimental interventions) and 0 otherwise,
and β are regression coefficients. In the log RR scale,
the marginal effects of depth and duration are given by
β1 + β3/2 and β2 + β3/2, respectively, with negative
values of β indicating decreased mortality. β0 is the log
probability of predischarge death for the standard cooling
group. The effects of each of the three intervention
groups compared with standard cooling are β1 for dee-
per cooling given alone; β2 for longer cooling given
alone; and β1 + β2 + β3 when both therapies are given.
Thus, this model easily allows for the estimation of the
marginal treatment effect of the two factors as well as
individual treatment group comparisons [48]. We did
not include center or level of hypoxic-ischemic enceph-
alopathy variables in our analysis.
While this model gives direct estimates of RRs, it is

straightforward to derive estimates for other risk mea-
sures, such as absolute risk difference (RD) or its recip-
rocal, the number needed to treat (see Additional file 3).

Prior distributions
We assumed independent normal prior distributions
for the β regression coefficients: β0 ~ normal(μ0, τ0

2), β1 ~
normal(μ1, τ1

2), β2 ~ normal(μ2, τ2
2), and β3 ~ normal(μ3, τ3

2),
where the μ and τ are, respectively, the means and standard
deviations of the distributions. We specified a set of neutral
prior distributions and a set of enthusiastic priors for the
two marginal interventions. With both sets of priors, we as-
sumed an expected predischarge mortality rate of 19 % for
the standard cooling group, the observed rate in the
previous NRN trial. The prior for β0 has a mean of
log(0.19) = −1.66 and a standard deviation of 0.565, which
increases the uncertainty observed in the previous NRN
trial (0.19 in log scale) by a factor of three (to account for
population differences between the two cooling trials).

Neutral priors
We centered the RR at 1.0 (mean of 0 in the log RR scale),
indicating no a-priori difference between the treatments
being compared, and used a 95 % credible interval
(CrI; this interval is interpreted as having a 95 % prob-
ability of containing the true RR) of 0.33–3.0. While
empirical evidence from Cochrane systematic reviews
of neonatal studies [49] indicates that the great majority of
observed treatment effects on mortality are in the range of
0.5–2.0, there was very little previous information on the
two interventions being tested, and we broadened this

interval to allow for the possibility of greater harm or
benefit. The implied neutral priors for the β coefficients
have means of μ0 = −1.66 and μ1 = μ2 = μ3 = 0 and stand-
ard deviations of τ0 = τ1 = τ2 = 0.565 and τ3 = 0.14. The
prior standard deviation for β3 indicates an a-priori
probability of 0.025 of a qualitative interaction between
longer and deeper cooling (meaning that the effect of
longer cooling on the outcome changes direction in the
presence or absence of deeper cooling). This corre-
sponds to specifying that the likelihood of reducing the
relative risk by 24 % with longer and deeper cooling
(RR = 0.76) is only 0.025 when the treatment effect is
zero (RR = 1) in the presence of only one of the interven-
tions (i.e., Pr[β3 < log(0.76)|β1, β2 = 0] = 0.025) [50]. For sen-
sitivity analysis, we set τ3 = 0.408, which corresponds to a
0.25 a-priori probability of a qualitative interaction [48].

Enthusiastic priors
Predischarge death rates with cooling were available only
from the prior multicenter NRN trial. Based largely on
this trial, we chose to center the enthusiastic priors at a
treatment effect half the size of the hypothesized reduc-
tions for the primary outcome (death or impairment at
18–22 months). We used the same standard deviations
as for the neutral prior. For the two marginal effects, we
centered the prior at a RR of 0.85 (assumed rates of
16 % for longer cooling or deeper cooling and 19 % for
standard cooling). The implied priors for the β coeffi-
cients have means μ0 = −1.66, μ1 = μ2 = −0.1625, and
μ3 = 0. The prior for β3 is again centered at 0, since
there is no prior expectation of an interaction, with a
small a-priori probability (0.025) of a qualitative inter-
action between longer and deeper cooling.
Implied priors for the marginal comparisons and for

the three cooling groups compared with standard cooling
are shown in Figs. 1 and 2, respectively.

Interim monitoring for futility
We defined a futility stopping guideline for predischarge
mortality based on a clinically meaningful treatment effect
size [22, 24]. If the posterior probability of this clinically
meaningful mortality reduction dropped below a prespeci-
fied threshold, the DSMC would consider terminating the
trial. Suppose the investigators had decided when de-
signing the trial that the interventions had to reduce pre-
discharge mortality by 10 % or more, meaning a RR < 0.90
(or an absolute RD of 2 %). If the probability of one of the
cooling groups reducing predischarge mortality by at least
10 % fell below 0.10,

Pr RR < 0:90jInterim datað Þ < 0:10;

the cooling group would be stopped for futility. If all
groups met this threshold, the trial would be stopped.

Pedroza et al. Trials  (2016) 17:335 Page 5 of 11



Suppose that instead of a reduction in RR, the trial in-
vestigators were interested in an absolute RD, defined as
pcontrol − ptreatment, of at least 1 %. While a 1 % absolute
difference in mortality has been considered a small effect
in neonatal trials, differences of this magnitude for death
or for composite outcomes of death or major cardiovas-
cular events have been considered sufficiently important
to justify treatment recommendations from adult trials
[51–55]. With the number of disability free life years at
stake in a neonatal trial, a 1 % difference in mortality or
death or disability would likewise be important. The
stopping guideline was that a hypothermia group would
be stopped for futility if the probability of a RD of 1 %
or more fell below 0.10,

Pr RD > 0:01jInterim datað Þ < 0:10:

Interim monitoring for safety
As another example of what the investigators might have
selected as a stopping guideline in designing the trial,
enrollment in any intervention group could be stopped
if the probability of a 5 % absolute increase in mortality
(the RD being less than negative 5 %) were 50 % or
greater,

Pr RD < −0:05jInterim datað Þ > 0:50:

Acceptable operating characteristics would need to be
verified before using these thresholds [26].

Implementation details
All models were fitted via Markov chain Monte Carlo
(MCMC) methods, since the posterior distribution of the
parameters is not in closed form [56]. We constrained all
pi < 1 in the models. All analyses were conducted using
WinBUGS 1.4.3 [57]. For each model, we used three
MCMC chains, each with 40,000 iterations, in addition to
an initial burn-in of 4,000 chains. We examined trace
plots of all the parameters to monitor convergence and
calculated the Gelman–Rubin diagnostic R̂. Additional file
3 gives the sample code for fitting this log binomial model
in WinBUGS, and shows how to calculate RRs and RDs
from the model parameters for both the two-factor mar-
ginal comparisons and the three intervention groups.

Results
For all models, trace plots showed good mixing of the 3
MCMC chains and the R̂ < 1.01 for all parameters, indi-
cating convergence.

−2 −1 0 1 2

72 vs 120 hours

Prior
Posterior

Neutral

−2 −1 0 1 2

Enthusiastic

−2 −1 0 1 2

33.5°C vs 32°C

−2 −1 0 1 2

Log Relative Risk of Predischarge Death

Fig. 1 Probabilities of treatment benefit (log RR) for marginal comparisons of cooling on predischarge mortality. Negative values favor the
experimental group. Left panel shows the marginal duration comparison (β2 + β3/2) and the right panel the marginal depth comparison
(β1 + β3/2). Top (bottom) panel shows the neutral (enthusiastic) prior and corresponding posterior for the two-factor marginal comparisons
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Marginal comparisons of longer cooling and deeper
cooling
Under neutral priors, the posterior distribution of the
RR for longer cooling has a median of 1.30, (95 % CrI,
0.82–2.04) and an 87 % probability of increased predis-
charge mortality with longer duration (Fig. 1, top left
panel). Deeper cooling has an 81 % posterior probability
of increased predischarge death compared with standard
cooling (RR: posterior median, 1.22; 95 % CrI, 0.77–1.87;
Fig. 1). The likelihood of the RR < 0.90 given the interim
trial data is 6 % and 9 % for longer cooling and deeper
cooling, respectively, which are below the 10 % futility
stopping threshold. Using the risk difference for moni-
toring, the probability of a RD > 1 % (indicating reduced
mortality of 1 % or more with intervention) is 12 % for
deeper cooling and 8 % for longer cooling, and longer
cooling would be stopped.
Figure 1 (bottom panels) shows the posterior distribu-

tions calculated from the enthusiastic priors. The pos-
terior median for the RR for duration of cooling is 1.27
(95 % CrI, 0.81–2.01) with 84 % posterior probability of in-
creased predischarge death with longer cooling. Compared

with standard cooling, deeper cooling has 76 % probability
of increased predischarge mortality (RR: posterior median,
1.18; 95 % CrI, 0.74–1.85). The probability of a 10 % or
greater reduction in predischarge mortality (RR < 0.90) is
7 % (9 % for RD >1 %) and 12 % (15 % for RD >1 %) for
the duration and depth interventions. Longer cooling
again crosses the futility stopping threshold.

Posterior distributions for three intervention group
comparisons
Table 4 and Fig. 2 give posterior summaries for the RRs
of the three cooling groups (longer cooling, deeper cooling,
both) compared with standard cooling. The posterior
medians for all three groups are above 1.0, indicating
increased mortality compared with standard cooling
under both neutral and enthusiastic priors. Under the
neutral prior, the probability of any reduced mortality is
small for the 32 °C for the 120 h group. However, an
enthusiastic prior gives a 25 % probability of reduced
mortality for the 32 °C for 72 h group. The probabilities of
treatment benefit of the three experimental groups
achieving a clinically meaningful value of RR < 0.90 are

−2 −1 0 1 2

32°C for 72 h

Prior
Posterior

Neutral

−2 −1 0 1 2

Enthusiastic

−2 −1 0 1 2

33.5°C for 120 h

−2 −1 0 1 2

−2 −1 0 1 2

32°C for 120 h

−2 −1 0 1 2

Log Relative Risk of Predischarge Death

Fig. 2 Probabilities of treatment benefit (log RR) on predischarge mortality for three experimental cooling groups. Negative values favor the
experimental group. Deeper cooling (β1; left panel), longer cooling (β2; middle panel), and both (β1 + β2 + β3; right panel) are compared with
standard cooling (33.5 °C for 72 h). Top (bottom) panel shows the neutral (enthusiastic) prior and corresponding posterior probabilities
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13 %, 8 %, and 6 % under an enthusiastic prior and
somewhat smaller under the neutral prior. Applying the
same futility criterion as for the marginal interventions,
only the 32 °C for 72 h group would not meet the stop-
ping threshold under the enthusiastic prior. Similarly,
using the futility stopping guideline based on a mini-
mum RD of 1 %, the 33.5 °C for 120 h and 32 °C for
120 h groups would be stopped with the interim data
(Table 5). Finally, only the 32 °C for 120 h group crosses
the safety stopping threshold for predischarge death.
Sensitivity analyses using a larger standard deviation

for the prior distribution of the interaction term resulted
in similar posterior probabilities (not shown) with no
differences in the crossing of stopping thresholds.

Discussion
The use of the best available prior information is one of
the main advantages of the Bayesian approach, as it allows
for formal evaluation of all available evidence. While no
prior data exist for longer or deeper cooling, we explain
how the data from a prior NRN trial of standard cooling
[37] could be used to identify what negative interim
findings for predischarge mortality should be convin-
cing to enthusiasts as well as skeptics or neutral clinicians.
The Bayesian analyses presented here incorporated this
information into the prior probabilities while excluding
large treatment effects, which are almost never observed
with clinical interventions [58, 59]. The resulting posterior
estimates of the RR being closer to 1.0 than the un-
adjusted frequentist estimates (e.g., 1.30 versus 1.50 for
duration of cooling) even under a neutral prior.

These Bayesian interim analyses illustrate how the
Bayesian approach can be used by DSMCs to evaluate
the “totality of available evidence” [60] when deciding
whether to stop a trial early. By using enthusiastic priors,
a DSMC can judge whether the current evidence should
be sufficient to convince an investigator with a strong
prior belief in treatment benefit that there is little chance
of benefit from the intervention. Under our proposed
priors and stopping guidelines based on RRs and focus-
ing on marginal comparisons, the trial data would not
support the existence of treatment benefit for longer
cooling but would not completely rule out the existence
of a clinically important benefit (12 % probability) for
deeper cooling.
We conducted a supplementary analysis using a neu-

tral prior (centered at 0) for the intercept (and the same
neutral priors for all other parameters) that essentially
ignored the evidence on the rate of predischarge mor-
tality from the previous NRN trial. The results are
given in Additional file 3 and show RR estimates that
are further away from 1.0 (indicating less shrinking to-
wards a null effect). Under this prior, all three experimental
groups cross the futility stopping threshold. Other priors
not presented here, such as a skeptical prior (centered at
RR > 1) or robust priors (e.g., Student’s t distributions) for
sensitivity analyses, could also be presented to give DSMC
members and investigators a complete picture of pre-
existing expert views of a therapy’s benefits and harms.
While the subjectivity of the prior is usually seen as the
biggest drawback of a Bayesian approach, we see it as
an advantage, since it formalizes how experts with

Table 4 Summaries of posterior probabilities of relative risk of predischarge mortality

RR posterior median
(95 % credible interval)

Evidence of any benefit
Pr(RR < 1.0)

Futility monitoring
Pr(RR < 0.90)

Neutral Enthusiastic Neutral Enthusiastic Neutral Enthusiastic

32.0 °C for 72 h 1.23 (0.76–1.92) 1.19 (0.74–1.87) 20 % 25 % 10 % 13 %

33.5 °C for 120 h 1.31 (0.82–2.09) 1.27 (0.80–2.03) 13 % 16 % 6 % 8 %

32.0 °C for 120 h 1.60 (0.82–2.97) 1.50 (0.79–2.83) 8 % 11 % 4 % 6 %

The three experimental hypothermia groups are compared with standard cooling (33.5 °C for 72 h) under a neutral and enthusiastic prior. RR values less than 1.0
favor experimental groups
PR probability, RR relative risk

Table 5 Summaries of posterior probabilities of the absolute risk difference of predischarge mortality

RD posterior mean
(95 % credible interval)

Futility monitoring
Pr(RD > 0.01)a

Safety monitoring
Pr(RD < −0.05)b

Neutral Enthusiastic Neutral Enthusiastic Neutral Enthusiastic

32.0 °C for 72 h −0.02 (−0.08, 0.03) −0.02 (−0.08, 0.04) 11 % 15 % 19 % 16 %

33.5 °C for 120 h −0.03 (−0.09, 0.02) −0.03 (−0.09, 0.03) 8 % 9 % 28 % 25 %

32.0 °C for 120 h −0.06 (−0.15, 0.03) −0.06 (−0.15, 0.03) 5 % 7 % 61 % 54 %
aRD > 0.01 indicates 1 % or more reduced mortality
bRD < −0.05 indicates a 5 % or more absolute increase in mortality
The three experimental groups are compared standard cooling (33.5 °C for 72 h) under a neutral and enthusiastic prior. Positive values of RD favor the
experimental groups
Pr probability, RD risk difference
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differing pre-existing opinions will view the results. A
DSMC can then consider whether the results of a trial
would be convincing to the whole community.
When factorial designs are used, the possibility of

dropping one or two treatment groups and continuing
the trial with the remaining groups should be discussed
before starting the trial. Here we illustrated Bayesian
monitoring for the three experimental cooling groups.
The results show that the futility stopping threshold
based on RRs and RDs would have been crossed for the
32.0 °C for 120 h and 33.5 °C for 120 h groups under
both priors. However, the 32.0 °C for 72 h cooling group
would not have crossed the threshold under either prior.
Of course, different stopping thresholds would lead to
different decisions. For example, if we instead used a RD
of ≥5 % to monitor futility, the posterior probabilities of
this treatment effect, Pr(RD > 0.05), would be less than
2 % for all three groups, even with the enthusiastic prior.
These results illustrate the need to fully explore at the
planning stage the choice of priors and relevant quan-
tities to monitor for efficacy, safety, and futility, as well
as the probability thresholds for stopping the trial. All
aspects of the trial design and monitoring plan can be
evaluated with simulation studies (using different sce-
narios to represent a range of potential treatment ef-
fects) to ensure adequate type I and II errors [26, 45].
As with frequentist monitoring rules, planned Bayesian
interim analyses and stopping guidelines should be pre-
specified in the protocol [61].
A frequentist interim futility analysis using conditional

power (the probability of obtaining a statistically signifi-
cant benefit given current interim data) calculations led
to the recommendation to stop this trial. A disadvantage
of this approach is that it might put too much focus on
an arbitrary level of significance [7] or a secondary out-
come. A high probability of not showing a statistically
significant benefit is not necessarily sufficient reason to
stop a trial, since significance may not be needed to justify
recommendation of a therapy with at least equivalent
benefit that is less invasive, hazardous, more convenient,
or less expensive than the comparison therapy. With the
overriding importance of death and of death or disability,
clinicians and their patients and families might consider a
lower rate of death or of death or disability for the in-
terventions assessed in the Optimizing Cooling Trial to
justify their use, even if the differences did not reach
statistical significance.
A Bayesian futility monitoring plan could alternatively

use the predictive probability of a successful trial at the
end of planned enrollment. This predictive probability is
analogous to the frequentist conditional power but ac-
counts for the uncertainty of the current parameter
values rather than assuming fixed values. However, we
would argue that it suffers from the same limitations as

conditional power. Although as Saville et al. [21] and
Emerson et al. [62] point out, any stopping rule based
on the posterior distribution can be converted into a
stopping rule based on the predictive probability. For
the Optimizing Cooling Trial, lack of primary outcome
data also precluded us from adopting a predictive prob-
ability approach.
Challenges to the wider use of Bayesian monitoring

methods include the perceived subjectivity of this ap-
proach, the difficulty of eliciting priors from investiga-
tors and previous studies, computational complexities,
and reluctance from funding agencies and journals to
embrace Bayesian methods in clinical research. Statisti-
cians and clinical investigators must collaborate to find
ways of overcoming these barriers to best inform decision
makers. For the Optimizing Cooling Trial, we prespecified
and planned to conduct a Bayesian final analysis for the
primary outcome of death or disability.

Conclusions
To help familiarize clinical investigators with Bayesian
monitoring methods, we reanalyzed the Optimizing
Cooling Trial, a neonatal trial that was stopped early
for safety and futility. We incorporated information on
predischarge mortality rate from a previous multicenter
neonatal cooling trial into the prior distribution. When
we incorporate external data and take the view of an
enthusiast, two of the three intervention groups would
be stopped for futility.
Bayesian analyses incorporating previous trial results

and different pre-existing opinions can help interpret
accruing data and facilitate informed stopping decisions
likely to be meaningful and convincing to clinicians,
meta-analysts, and guideline developers. Given the advan-
tages of Bayesian trial monitoring, investigators should
consider the use of Bayesian methods in Phase III
clinical trials.
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