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Mathematical Models in Research on Perception and Learningl’
Richard C. Atkinson

~ ptanford University

IntrodumtiOn»‘

| The purpﬁée of this baper is to examine the role of mathematical
models in research on perception and learning. The reader, however,
.Bhould be warned at the outset that we will not- present a formal philo-
sophical analysis of the function of models but, instead, will examine
the development and application of & specific model. A formal analysis
would lead us inte a great deal of abstract discussion and would not
stress current developments in research techniques. The model that will
"be examined deals with a forced-choice gslignal detectlon sitvation. It
is particﬁlarly.useful for illustrative purposes because it combines two
guite distinet brocesses: & simple perceptual process and a learning
process. As the theory is developed, we will be able t¢ indlcate the
role -of mathematical models in determining programs of psychoclogical
research and in specifying the types of empirical cbserwvations to be

made .

lThe ideas presented in this paper have beer much infiuenced by discus-
sigpg with R. Kinchla and E.C. Carterette. The research was supported
by the National Institute of Mental Health under Contract M-5184. Por-
tions of the paper were presented at an Intermational Colloguium on the
concept and the role of models in mathematlics and science held in Utrecht

on January L4-8, 1960.

This paper was prepared as a contribution to a revised edition of

Pasychological Theory edited by Melvin H. Marx.
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Before turning to the example, & few general comments seem in order.
The use of_mathematical models is virtually synonomous with the construc-
tion of a quantitative theory of behavior. Fror a mathematical standpoint
4t is logically possible to have a theory of behavior that leads only to
gualitative predictions. However, in the history of science it is diffi-
cult to find theories of this sort that have had sustained empirical .
slgnificance. From the systematic standpoint a theory based only on
Qualitative distinctions leads to a relatively small number of testable
predictions. Further, as the set of phencmena that we study expands in
complexity so alsc does the reasoning necessary for the design of experi-
ments and the formulation of hypotheses. Ordinary logic becomes inadequate
and the elaboration of the theory requires the powerful tool of mathe-
maticél anstysis. |
In this regard, perhaps the most important role of mathematical

models in recent psychological research has been to provide a framework
- within which the detailed sequential aspects of behavior can be scruti-
nized. An experiment designed only to establish the existence of a gross
relation between two varisbles, such as response speed and reward magni-
.tude, ignores the mahy sequentisl properties of psychological phenomena.
Examination of these properties is a significant step forward in that it
provides a source of behavioral information that cannot he obtained Trom
an analysis of average performance curves. Theories stated only in
qualitative terms do not provide an adequate means for analyzing and

interpreting such complex sequential phenomena.
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. Further, the absence of precise systematization often leads to pseudc-
derivations from the theory; that is, derivations which require assump-
tions that are not part of the original theory. Some people claim to

be unconcerned with whether the predictions tested by an experiment
follow in a strictly logical sense from basic postulates. They maintain
that the essential act is the making of the prediction, not its deriva-
tion from fundamental theory. The reply to this point of view seems
obvious. The inability of a theory to yield significant predictions
without additiomal ad hoc assumptions is an indication that the theory
does not provide an objective analysis of behavior. An important
function of the mathematical model is to clarify this aspect of a theory.
Of course, many models can stem from the same fundamental theory. The
important factor is whether the theory will yield at least ocne well-
defined model in a non-arbitrary menner. The attempt to specify a medel
will in itself require an exact characterization of the theory and will
frequently reveal-gnstated assumptions.

Experimental Situation

The psychophysical experiment that we shall analyze was conducted
by Kinchla (1962), and he has kindly given us permission to present
some of his data. -He employed a forced-cholice visual detection situation
involving a series of over 800 discrete trials; we shall only consider
-data from s subset of 600 trials. Two areas were outlined on a uﬁiformly
.illuminated milk glass screen. Each trisl began with an auditory signal.
During the auditory signal one of the following events occurred. (a) A

fixed increment in radiant intengity occurred in one of the two areas
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of the visual display. A trial will be termed a T, or T, trial
depending upon which_of the two signal areas had an increment in illumi-
nation. (b) No change in the radiant character of either signal area
occurred. Such blank trials will be denoted TO .
Subjects were instructed that a change would occur in one of the
two areas on each.tfial° Following the auditory signal the subject
was required to make either an Al or 'A2 response to indicate which
area he believed had changed in brighitness; thus, the subject was forced
to respond on every trial regardless of how confident he was of his choice.
In this particular study by Kinchla, the sﬁbject was given no information
at the end of the trial as.to whether his response was correct. In sum-
mary, on a given trial one of three events occurred (Tl’T2’TO)’ the sub-
ject made either an Al or A2 response, and a short time later the next
trial began.
For a fixed signal intensity the experimenter has the option of speci-
fying a schedule for presenting the Ti events. Xinchla selected a simplé

probabilistic procedure where the likelihood of presenting Ti on trial

n was congtant over all trials and independent of preceding responses

and events; i.e., Pr(Ti,n) =y where my +x, +my=1. Two groups
- of subjects were run. For Group I, My = M, = .4 and o = .2.. For
Group IT, = =m = .2 and =, = 6o,
“Model

The model that will be used to describe Kinchla's experiment is a
generalization of stimulus sampling concepts as originally formulated by
Estes (1950). Only those axioms that are relevant to the experiment will

be presented. The reader interested in a more comprehensive formulation .
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of stimulus sampling theory is referred to Estes (1959), Estes and Suppes

{1959), or Atkinson and Estes (1962); for a discussion of signal detec-

tion within the framework of stimulus sampling theory see Atkinson (1961).
In this paper, the stimulus situation is,.represented in terms of

two sensory elements 81 and N and a set 8% of stimulus elements

associated with background stimulation. These stimulus elements are
theoretical constructe to which we assign certain properties. Although
it is sometimes convenient and suggestive to speak in such terms, one
should not.assume that the stimulus elements are to be identified with
-any simple neurophysiological unit, as, for exsmple, recepbor cells. At
the present stage of theofy construction, we mean to assume..only that
‘certain properties of the set-theoretical model represent certain proper-
ties of the process of stimulation. If these assumptions prove to be ade-
guately substantiated when the model is tested against a wide range of
behavioral data,'then it will be in order to loock for neurophysiclogical
variables that might underlie the correspondence.

On every trial the subject samples a single element from the back-
ground set 5% and may or may not sample one of the sensory elements.

If the s sensory element is sampled an A

1 oceurs; 1f s, 1s sampled,

1
A2 oceurs. If neither sensory element is sampled the subject makes the
response to which the background element is conditioned. Conditicning

of elements in 5% may change from trial to trial via a simple lesrning
process. As will become evident in the statement of the axioms, we have

& PFechner-type threshold model that interacts with a2 learning process to

‘generate the subjects® protocol of responses.
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The axioms will be formulated verbalily. It is not difficult to
state them in mathematical form, but for our purposes this will not be
necesssry. -Thé-first group of axioms deals with the sampling of stimulugs
elements, the second group with the conditioning prccess, and. the third
group with responses.

Stimulus Axioms

“81. If Ti(i:=.l,2) occeurs, then sensory element N will be sampled

with probability h .

82, If T0 occurs, ithen neither 5) mor s, will be sampled.

©). Exactly one element is sampled from set &% on every trial. Given

the set 5% of N elements, the probability of sampling a particular

element is :% » independently of the trisl number and preceding events.

Conditioning Axioms

Cl. On gvery trial esach element in S¥ 1is conditioned to either Al

or Ay -

Cz2. If Si(i.= 1,2) 4is sampled on trial n , then with probability cf

the eglement sampled from S* on trial n becomes conditioned to

Ai at the start of trial n + 1 .

C3. If neither 5, nor s, are sampled, then with ﬁrobability ¢ . the

element sampled from S*¥ on trial n becomes conditioned with

equal likelihood 1o either -Al or .A2 at the start of trial n + 1.
‘Response Axiams

Rl. If sensory element si is sampled, then the _Ai response will occur.

Re. If neither sensory element is sampled, then the response to which the

éampled element from set S* 1s conditioned will occur.




-Predicted and Cbserved Quantlties

We begin our analysis of the model by deriving an expression for
- the proportion of elements in set 8% conditioned to Al =zt the start
of trial n ; this quantity will be denoted as p, - Once an expression
~for P, has been obtained, we immediately can write an equation for the
probability of response Ai given event Ti on trial n . The expres-
sions are cbtained directly by applying axioms Rl and R2 and are as

'follows:

Pr(a) plT) ) =n+ (1 -n)p (1a)
Prihy T, ) =b+ (1 -n)(1 - 7)) (1b)
'Pr(Al,n{To}n) =P, (ic)

To obtain an expression for P, s it is helpful to proceed in a

.Series of steps. PFirst assume that on trial n a T event occurred

1
and an element conditioned to Al was sampled from set 5% ; the likeli-
hood of this event is “lpn . Given these events on trial n , the pos-

sible changes that can occur in p, are specified by the tree in Figure

1. On the upper branch an s sensory element is sampled with probability

1

h (see Axiom $1) and by Axiom (2 the element sampled from S* remains

conditioned to Al ; hence on this branch pn+l =D - On the lower

branch neither sensory element 1s sampled with prcbhability 1 - h . By

Axiom C3 there ls a probability % _that the element sampled from S*

will become conditioned to A, (and hence on this branch P = pnj-ﬁ)



Figure 1

Figure 2
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and a probability 1 - c + % that the element remains conditioned to

Ay (whence p = D ) . Thus with probability n,p, the value of

n+l n

Py =hp, *+ (L -h) [,(l_ - 3)p, +5(p, - % )]

or more simply p_ .. =P , %(1 - h)g ]

n

Similarly, if on trial n a T2 occurs and an element conditioned
to Al is sampled from .§% (the probability of the joint event belng
ﬁgpn) then the possible changes in p, are given by the tree in Figure
2. On the upper branch as 8, sensory element is sampled and by Axiom
C2 the element sampled Trom set 5% ﬁill become conditicned with

probabllity <! to A2 s ‘Whence D The lower branches of

ep - X
ntl - P, T
the tree are derived by application of Axiom C3. Hence with probability
is

ﬂapn the value of Pn+l

[pn - %][hc' + {1 - n) 122-] + D, [h(_l -e') + (1 - 'h)(l_-'.%)]

or more simply p_ . =P - % [hc' + (1 .- h) %] .

Following the same procedure we may derive a comparable expression

for —Pn+l given the Joint occurrence of event T, and an element sampled

0

from S¥ conditioned to A _eimilarly, expressions for P4 WAV be

17
obtained given the joint occurrence of an element sampled from 'S¥ con-
ditdoned to A, and event Ti(i =0, 1, 2) . If these six results are

combined weighting each by its likelihood of occcurrence the following

expression is obtained:
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Ppyl jtlpn[:pn"ﬁ‘(l_ h) %] * ﬁ2pn[Pn—_%£?c'+ (1-n) %}]+ ﬂopn[Pn- % gl
+my(1-p ) [p,* 5 {oet + (2= m) %}] RN B S(1- h) 5

REXCEENIENS

Collecting terms and simplifying yields a recursive expression in P, ¢
1 } 1
= - —_ 2
P+l Pn[l T e (2)

c ' c c
Where a = nlhci + (1 - h) 5+ ndh 5 and b= xghc' + (1-h) §~kﬂop 3 e

Mo

This difference equation has the well-known solution {(cf. Bush and

Mosteller, 1955; Suppes and Atkinson, 1960)

n-1

P, =Dy -~ pl)[.l - $a + b}] , (3)

where ©p = 2

@ P Dividing the numerator and denominator of P

by ¢ yields the expression

1 1
glh¢ +_§(1 - h) + n,h

o 3
0™ [T - 7)1 - &+ 0y) +x, (%)

P

T
Where V¥ = £, Thus, the asymptotic expression for P, does not

c
depend on. the actual values of ¢! and ¢ but only on thelr ratio.
With this expression at hand, we can now look at part of Kinchla's

data. Figures 3 and 4 present the observed mean proportiong for an Ai




OBSERVED PROPORTIONS

o ——-0 Pr(A1| Sl) ;, Group 11
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- Pr(Azlsz) , Group |’ -~ Pr(A2| S5) ; Group I
} ] | | ] i ]

1 2 3 4 5 6 7 8 9 10 11
| BLOCKS OF 50 TRIALS '

Figure 3. Observed estimates of Pr(All Tl) and Pr(AZI T2) in successive 50~trial blocks.
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Figure 4. Observed estimates for Pr(Ali TO) in successive 50-trial biocks.
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_response given a 'Tj event in successive blocks of 50 trials. An inspec-
~tion of these curves indicates that all of the functions are gquite gtable
-over the last 400 trisls. In view of this observation we have estimgted
asymptotic response probabilities by averaging over the last 400 trials.
Table 1 presents these observed values for the two grOups; The corres-
ponding asymptotic proportions are specified in terms of Eq. 1 and Eq. k4
and are simply

lim Pr(a, _|T

n-—co

1,n l,n) =h+(1- h)Poo _ (52)

iim Pr(A2 D-[TE n) =h+ (1 - h)(1L - poo-) (5b)
n-oc T 77 :

lim Pr(4, n-I'TO 2 =D (5c)
n— oo ? ?

In order to generate asymptotic predictions we need values for h and V .
We first note by inspection of Eq. 4 that Py T % for Group I; in fact

whenever n. = #, we have D

1 o independent of the wvalue.of V¥ .

-1
o 27
‘Hence, taking the observed asymptotic value for Pr(AllTl) in Group I
(i.e., .645) and setting it equal to h + (1 - h) % yields an estimate
of h = .289 . The physical stimuli and the increments in radiant inten-
s8ity are the same for both experimental groups and therefore we would
require an estimate of h obtained from Group I to be applicable to
Group IT. In.order to estimate ¥ , we take the observed asymptotic

value of Pr(AllTO) in Group II and set itegual to Eq. & with h = .289,

A
My =1, = .2 and Iy = .5 3 solving for ¥ we obtain ¥ = 2.8 . Using
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these estimates of h and V¥ and Egs. 4 and 5 yields the asymptotic
predictions given in Table 1.

Over all the equations give an excellent account of these particular
response measures. However, the model provides a much richer analysis of
the experiment than the above.results indicate. For as we have said
before, the model predicté not only average performence but also detalled
seguential phenomena. In terms of our axioms, seguential effects are
produced by the trial-to-trial fluctuations that occur in the conditioning
of elements in set 8% ; such fluctuations, of course, can take place on
any trial and are not restricted to pre-asymptotic data. For example, even
at asymptote the likeiihood of making a correct response to a Tl event
depends in a very definite way on whether an Al or AAQ response
occurred on the precediﬁg trial.

It should be emphasized that one of the important contributions of
mathematics to behavior theory has been to provide a framework within
which seguential phencmena canr be analyzed. Prior to the development
of mathematical models relatively little attention was given to trial-to-
trial events; at the present time, for many experimental problems (espec-
ially in learning) such phencmens are viewed as the most basic. feature |
of the data. To indicate the type of sequential predictions that can-be

obtained, consider the prcbability of an A response on a 'Tl trial

1

given the various trial types and responses. that can occur on the preced-

ing trial; i.e.,

Pridy na [-Tl, n+124, 074, 0

)
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‘whére i=1,2 and j=20,1, 2 . Explicit expressions for these
guantitites can be derived from the axioms. “The actual derivations are
‘quite lengthy and will not be presented here; the reader interested in
the mathematical techniques involved should consult Atkinson and Estes
(1962)0 _Also; for purposes of this paper, the analysis of sequential
‘statistics will be confined tc asymptotic data. -Therefore, only theoret-
) will be given,

ical expressions for lim Pr(a | T

A, T,
Lo o L,n+yl' "1, n+1 1,07 J,n
and to simplify notation they will be written as Pr(_AllTlAiTj) . The

expressions for these quantities are as follows:

br O -8Bl (- 27!y gy

Pr.(AlI T4, 7)) % . -

(L - h)87(1 - PGD) (N - 1)X

Pr(All-TﬂETl.) = N(I - %) TR (&)
-"Pr(-f“*ll-TlAeTe) =.h7pm+ e + .(,;.Y- h)a'](l.- P . Eml)x (60)
.Pr(All‘rTlAng) = (';(;_r_l)zl;@ e -Nl)X (64)
Pr(Ay|T,4,T;) = % * KN—-ﬁl—)X | (6e)
_._Pr(Al[_irlAeTO) = %]i + SLNlE (61£)

<

where 7y =<c¢'h + (L -c'), ' =c! + (l‘f cih, B = 5

C
h + (‘1. = §) )

. C C, .
8t =5+ (l-3zh,X=h+(1-h)p,_ ,and Y=h+(1-0)(1-p,)-

It is interesting to note that the asymptotic expressions for
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lim Pr(A, |T. ) depend only on h and 1 , whereas the quantities

i,n" " Jj,n
in Eq. 6 are functions of all four parameters N, ¢, c¢' and h .
lComparable sets of equations can be written for Pr(AEITEAiTj) and
Pr(.g.llTOAiTj) . :We return to this point later.

The expressions in Equ 6 are rather formidsble, but numerical pre-
dictions can be easily calculated once values for the parameters have
been obtained. Further, independent of the parameter values, certain
relations among the sequential probabilities can be specified. As a
gimple example of such a relation, it can be shown that Pr(AlITlAlTO) >
-Pr(AllTlAETO) for any stimulus schedule and any set of parameter values.
To see this, simply substract Eg. 6f from Eg. 6c and note that © > 87

In Table 2 the observed values for Pr(Ai|TjAkTE) are presented as

reported by Kinchla. Estimates of these conditional probabilities were
computed for individual subjects using the data over the last 400 trials;
the average of these. individual estimates are the quantities given in
the table. Bach entry is based on 24 subjects-

In order to generate theoretical predictions for the observed
entries in Table 2, values for N, ¢, c¢' and rh are needed. Of course,
estimates of h and ¥ = %;- already have been made for thig set of
data, .-and therefore it is only necessary to estimate N and either c
or c¢' . We obtaln our estimates of N and ¢ by & least squares
method; i.e., we select a value of N and c (where c' = c@) so that
the sum of squared deviations between the 36 observed values in Table é

and the corresponding theoretical gquantities is minimized. The theoretical

gquantities for Pr(AllTlAiTj) are computed from BEg. 6; theoretical




Table 2

Predicted and Observed Sequential Response Probabilities at Asymptote

Group I Group II
_ Observed | Predicted | Observed | Predicted

Pria, {T2A1Tl .57 .58 .59 6L
r(As [T AT, ) .65 .69 .70 .76
Pr(AEiTZAETE) .71 .71 .79 17
Pr(AEIT AT,) 61 .59 .69 .66
Pr(A2|T2A1T0 .5 .59 .68 66
Pr(AEETEAgT ) 66 .70 .71 .76
Pr(Alng 1 l) .73 71 .70 .65
Pr(Al|TlA2Tl) .62 | .59 .59 .52
Pr(A | A1) .53 .58 .53 .51
Pr(A TlAlTE) .66 .70 NN an
Pr(AllTl 1T J72 .70 61 .63
Pr(Al]TlAETO) 61 .59 L8 .52
,Pr(AgiTOAlTl) .38 4o A7 49
Pr(AngOAETl) .56 .58 .59 .66
Pr(A, | T AST,) 6k .60 67 .68
Pr(AEITOAlTe) 7 2 .51 .51
Pr(AEITOAlTO) A7 A2 .50 l51
Pr(AngcAgTo) .60 .58 .65 .66
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expressions for PT(AEITEAiTj) and Pr(AEITOAiTj) have not been pre-
sented in this paper but are of the same general form as those given
in Eq. 6.

Using this technique, estimstes of the parameters are as follows:

N = 4.23
e’ = 1.00
(7)
e = 257
h = 289

The predictions corresponding to these parameter values are presented

in Table 2. When one considers that only four of the possible 36 degrees
of freedom represented in Table 2 have been utilized in estimating
parameters, the close correspondence between theoretical and observed
guantities in Table 2 may be interpreted as giving considerable suprort
to the assumptions of the medel. Of course, for any given subject, N
must be an integer. The fact that our estimation procedure yielded a
non-integral value may signify that N varies somewhat between subjects,
or it may reflect scme contamination of the data by sources of experi-
mental error not represented in the wmodel. To answer these guestions a
more detailed analysis of the data would be necessary in which estimates
of thé parameter values are made for individual subjects. Such_énalyses

are to0 lengthy to discuss here.
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Discussion

No model. can be expected to give a perfect acccunt of fallible dats
arising from real experiménts as distinguished from the idealized experi-
ment to which the model should apply strictly. Consegquently, it is diffi-
cult to know how to evaluate the gcodness-~of-fit of theoretical teo
observed values. In practice investigators usually proceed on a largely
intuitive basis, evaluating the fit in a given instance against that
which it appears reasonable tc expect in view of what is known about the
precision of experimental control and messurement. Statistical tests of
goodnesg~of-fit are sometimes possible (discussions of some tests that
may be used in conjunction with stimulus sampling models are given by
Suppes and Atkinson, 1960); however, statistical tests are not entirely
satisfactory taken by themselves, for a sufficiently precise test will
often indicate significant differences between theoretical and cbserved
values even in cases where the agreement is as close as could reasonably
be expected. Generally, -once a degree of descriptive accuracy has been
attained that appears satisfactory to investigators familiar with the
glven research area, further progress must come largely via differential
teste of alternative models.

The problems involved in making differential tests among various
models for signal detection are TLeyond the scope of this paper. However,
it is clear that alternative models can be formulated that deserve éareful
analysis. For example, in this paper we have examined & very special
Markovian conditioning process defined on the background stimuli; it

would be important to determine whether other formulations of the learning
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process, such as thossdeveloped by Bush and Mosteller (1955), would
provide as good or even better fits. Also, 1t would be valuable to
consider variations in the scheme for sampling sensory elements along
lines developed by Luce (1959) and Restle (1961).

Independent of further analysis, it appears that this particular
rmodel for signal detection provides an impressive account of average
response proportions and of various complex sequential events. Some
readers may object to the model and argue that the axicms are unrealistic
from a physiclogical viewpcoint or in terms of & cognitive analysis. BSuch
objections are important if they generate new ideas. However, in the
absence of concrete suggestions that lead to testdble medels it is doubt-
ful whether this type of criticism is meaningful.. TFor on that basis one
might just as well cbject to the kinetic theory of gases because it
essumes that gas molecules behave as perfectly rigid spheres or to clas-
sical hydrodynamics becauss it postulates complete continuity of fluids.
Certainiy there is no single true theory. Rather there is an infinite
number of hypotheses and theories that can explain an array of phenomena,
and we judge a particular theory not by some intuitive notion of reallty
but in terms of the theory's ability to account for the facis at hand
and to generate new predictions.

In our concluding remarks, it would be nice if we could refer tc a
list of ecriteria or a decision rule that would evaluate the approach
taken in this paper and tell us whether this specific development or
related mathematical models are of genuine value in analyzing psychologi-

cal phenomena. Of course, such decislion procedures do not exist. Only
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the perspective gained by refinement and extension of these models with
empirical verification at critical stages will permit us to make such an
evaluation. Certainly within the last decade many behavioral phencmena
have been examined with reference to one or more mathematical models,

and there is no doubt that these analyses have led to a deeper understand-
ing of the empi?ical findings. In addition, many new lines of experimental
regearch have been initiated by work on mathematical models. Despite
these developments some behavioral scientists maintain that psychology

has not yet reached a stage where mathematical analysie is zppropriate;
8till others argue that the data of psychology are inherently different
from those of the natural sciences and defy any type of rigorous system-
atization. There is no conclusive answer to these criticisms. Similar
objections were ralsed against mathematical physics as recently as the
léte 19th century, and only the brilliant success of the approach silenced

opposition. A convincing argument is yet to be made for the possibility

that mathematical psychology will not enjoy similar success.
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