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· d h d' 1,2Mathematlcal Mo els in Researc on Perception an Learnlng

Richard C. Atkinson

Stanford University

IntJ?odi.llction,

The purpose of this paper is to examine the role of mathematical

models in research on perception and learning. The reader, however,

should be warned at the outset that we will notpreseot a formal philo-

sophical analysis of the function of models but, instead, will examine

the development and application of a specific model. A formal analysis

would lead us into a great deal of abstract discussion and would not

stress current developments in research teuhniques. The model that will

be examined deals with a forced-choice signal detection situation. It

is particularly useful for illustrative purposes because it combines two

quite distinct processes: a simple perceptual process and a learning

process. As the theory is developed, we will be able to indicate the

role ·of mathematical models in determining programs of psychological

research and in specifying the types of empirical observations to be

made.

lThe ideas presented in this paper have been much influenced by discus

sions with.R. Kinchla and E.C. Carterette. The research was supported
~_ jd,~

by the National Institute of Mental Health under Contract M-5184. Por-

tions of the paper were presented at an International Colloquium on the

concept and the role of models in mathematics and science held in Utrecht

on January 4-8, 1960.

2Th ·lS paper was prepared as a contribution to a revised edition of

Psychological Theory edited by Melvin H. Marx.
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Before turning to the example, a few general comments seem in order.

The use of mathematical models is virtually synonomous with the construc

·tionof a quantitative theory of behavior. From a mathematical standpoint

it is logically possible to have a theory of behavior that leads only to

qualitative predictions. However, in the history of science it is diffi

cult to find theories of this sort that have had sustained empirical

significance. From the systematic standpoint a theory based only on

qualitative distinctions leads to a relatively small number of testable

predictions. Further, as the set of phenomena that we study expands in

complexity so also does the reasoning necessary for the design of experi

ments and the formulation of hypotheses. Ordinary logic becomes inadequate

and the elaboration of the theory require$ the powerful tool of mathe

matical analysis.

In this regard, perhaps the most important role of mathematical

models in recent psychological research has been to provide a framework

within which the detailed sequential aspects of behavior can be scruti

nized. An experiment designed only to establish the existence of a gross

relation between two variables, such as response speed and reward magni

tude, ignores the ma~y sequential properties of psychological phenomena.

Examinati·on of these properties is a significant step forward in that it

provides a $ource of behavioral information that cannot be obtained from

an analys~s of average performance curves. Theories stated only in

qualitative terms do not provide an adequate means for analyzing and

interpreting such complex sequential phenomena.
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Further,the absence of precise systematization often leads to pseudo

derivations from the theory; that is, derivations which require assump

tions that are not part of the original theory. Some people claim to

be unconcerned with whether the predictions tested by an experiment

follow in a strictly logical sense from basic postulates. They maintain

that the essential act is the making of the prediction, not its deriva

tion from fundamental theory. The reply to this point of view seems

obvious. The inability of a theory to yield significant predictions

without additional ad hoc assumptions is an indication that the theory

does not provide an objective analysis of behavior. An important

function of the mathematical model is to clarify this aspect of a theory.

Of course, many models can stem from the same fundamental theory. The

important factor is whether the theory will yield, at least one well

defined model in a non-arbitrary manner. The attempt to specify a model

will in itself require an exact characterization of the theory ~~d will

frequently reveal unstated assumptions.

Experimental Situation

The psychophysical experiment that we shall analyze was conducted

by Kinchla (1962), and he has kindly given us permission to present

some of his data. He employed a forced-choice visual detection situation

invol~ing a series of over 800 discrete trials; we shall only consider

data from a subset of 600 trials. Two areas were outlined on a uniformly

illuminated milk glass screen. Each trial began with an auditory signal.

During the auditory signal one of the following events occurred. (a) A

fixed increment in radiant intensity occurred in one of the two areas
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of the visual display, A trial will be termed a Tl or T2 trial

depending upon which of the two signal areas had an increment in illumi-

nation. (b) .No change in the radiant character of either signal area

occurred. Such blank trials will be denoted

Subjects were instructed that a change would occur in one of the

~wo areas on each trial. Following the auditory signal the subject

was required to make either an Al or ~ response to indicate which

area he believed had changed in brightness; thus, the subject was forced

to respond on every trial regardless of how confident he was of his choic~.

In this particular study by Kinchla, the subject was given no information

at the end of the trial as to whether his response was oorrect. In sum-

mary, on a given trial one of three events occurred (Tl , T2, TO)' the sub

ject made either an Al or ~ response, and a short time later the next

trial began.

For a fixed signal intensity the experimenter has the option of speci-

fying a schedule for presenting the T. events.
1.

Kinchla selected a simple

probabilistic procedure where the likelihood of presenting T. on trial
1.

n was constant over all trials and independent of preceding responses

and events; i.e., Pr(T. ); 1(.
lJn l

where = 1 c Two groups

of subjects were run. For Group I, 1(1 ; :J(2

Group II, :J(1;:J(O;.2 and :J(2 = .6 .

Model

.4 and 1(0; .2,. For

The model that will be used to describe Kinchla's experiment is a

generalization of stimulus sampling concepts as originally formulated by

Estes (1950). Only those axioms that are relevant to the experiment will

be presented. The reader interested in a more cmmprehensiive ..formulation.
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of stimulus sampling theory is referred to Estes (1959), Estes and Suppes

(1959), or Atkinson and Estes (1962); for a discussion of signal detec

tion within the framework of stimulus sampling theory see Atkinson (1961).

In this paper, the stimulus situation is. represented in terms of

two sensory elements sl and s2 and a set S* of stimulus elements

associated with background stimulation. These stimulus elements are

theoretical constructs to which we assign certain properties. Although

it is sometimes convenient and suggestive to speak in such terms, one

should not assume that the stimulus elements are to be identified with

any simple neurophysiological unit, as,for example, receptor cells. At

the present stage of theory constr-liction, 'we mean ·to· assume".only that

certain properties of the set-theoretical model represent certain proper

ties of the process of stimulation. If these assumptions prove to be ade

quately substantiated when the model is tested against a wide range of

behavioral data, then it will be in order to look for neurophysiological

variables that might underlie the correspondence.

On every trial the subject samples a single element from the back

ground set S* and mayor may not sample one of the sensory elements.

If the sl sensory element is sampled an Al occurs; if s2 is sampled,

~ occurs. If neither sensory element is sampled the subject makes the

response to which the background element is conditioned. Conditioning

of elements in S* may change from trial to trial via a simple learning

process. As will become evident in the statement of the axioms, we have

a Fechner-type threshold model that interacts with a learning process to

generate the subjects' protocol of responses.
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The axioms will be formulated verbally. It is not difficult to

state them in mathematical form, but for our purposes this will not be

necessary. The first group of axioms deals with the sampling of stimulus

elements, the second group with the conditioning process, and the third

group with responses.

Stimulus Axioms

Sl. T.(i; 1,2)
l

occurs 9 then sensory element 8
1

will be sampled

with probability h .

S2. If. TO occurs, then neither sl ~ s2 will ~ sampled.

S3· Exactly one element is sampled from set S* 2£ every trial. Given---
the set S* of N elements, the probability of sampHng ~ particular

element is 1N' independently of the trial number and preceding events.

Conditioning Axioms

Gl. On every trial each element in S* is conditioned to either Al

or ~ •

C2. If si(i; 1,2) is sampled 2£ trial n, then with probability c'

the element sampled from S* on trial n becomes conditioned to

Ai at the start of trial n + 1

C3. If neither sl Q.2r s2 are sampled, then with probability c the

element sampled from S* on trial n becomes conditioned with

egual likelihood to either Al or ~ at the start of trial n + 1.

Response Axians

Rl. If sensory element si is sampled, then the Ai response will ~.

B2. If neither sensory element is sampled, ~ the resp~ to which the

sampled element from set S*is conditioned will occur.
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Predicted and Observed Quantities

We begin our analysis of the model by deriving an expression for

the proportion of elements in set B* conditioned to Al at the start

of trial n; this quantity will be denoted as p ,
n

Once an expression

for has been obtained, we immediately can write an equation for the

probability of response Ai given event Ti on trial n, The expres

sions are obtained directly by applying axioms Rl and R2 and are as

follows:

Pr(Al ITl ) = h + (1 - hlp (la)
,n In n

Pr(A2 IT2 ·) h + (1 - h)(l - Pn) (lb)
,n ,n

pr(AliTO ) = Pn (lc)
,n ,n

To obtain an expression for Pn' it is helpful to proceed in a

series of steps, First assume that on trial n a T
l

event occurred

and an element conditioned to Al was sampled from set S*; the likeli

hood of this event is rtlPn' Given these events on trial n, the pos

sible changes that can occur in P
n

are specified by the tree in Figure

1, On the upper branch an sl sensory element is sampled with probability

h (see Axiom Sl) and by Axiom C2 the element sampled from S* remains

conditioned to A
l

: hence on this branch p - p , On the lower
o n+l - . n

branch neither sensory element is sampled with probability 1 - h Elf

Axiom C3 there is a probability ~ that the element sampled from S*

will become condi,tioned to ~ (and hence on this branch



Figure 1

Figure 2

Pn+1 = Pn - ~

Pn+1 = Pn
Pn+1 =Pn
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c+ 2" that the element remains conditioned to

h P + (1 - h) [.(1 _ .£)p + .£(p _ 1: )]
n 2n 2n N

or more simply Pn+l = Pn - ~(l - h)~

Similarly, if on trial n a T2 occurs and an element conditioned

to Al is sampled from S* (the probability of the j oint event being

rt2Pn) then the possible changes in Pn are given by the tree in Figure

2. On the upper branch as s2 sensory element is sampled and by Axiom

C2 the element sampled from set S* will become conditioned with

proliability c' to ~, whence The lower branches of

the tree are derived by application of Axiom C3. Hence with probability

the value of is

or more simply p = p - 1: [hC' + (1- h) -2
C]n+l n· N

Following the same procedure we may derive a comparable expression

for given the joint occurrence of event TO and an element sampled

frDm S* conditioned to Al ; similarly, expressions for Pn+l may be

obtained given the joint occurrence of an element sampled fromS* con-

ditioned to ~ and event T.(i=O,1,2).
l

If these six results are

combined weighting each by its likelihood of Occurrence the following

expression is obtained:
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+ 1t (1 - P ) [p + 10 .£]o n n N 2

Collecting terms and simplifying yields a recursive expression in Pn

, (2)

This difference equation has the well-known solution (cf. Bush and

Mosteller, 1955; Suppes and Atkinson, 1960)

n-l
p = p - (p - p ) [1 - 10( a + 1))]

n CD CDl N
,

where a
p =--"':""'-

CD a + b
Dividing the numerator and denominator of Poe

by c yields the expression

(4)

where c'ljr =-
c

Thus, the asymptotic expression for Pn does not

depend on the actual values of c' and c but only on their ratio.

With this expression at hand, we can now look at part of Kinchla's

data. Figures 3 and 4 present the observed mean proportions for an Ai
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response given a T
j

event in successive blocks of 50 trials. An inspec

tion of these curves indicates that all of the functions are quite stable

over the last 400 trials. In view of this observation we have estimated

asymptotic response probabilities by averaging over the last 400 trials.

Table 1 presents these observed values for the two groups. The corres-

ponding asymptotic proportions are specified in terms of Eq. land Eq. 4

and are simply

lim Pr(~ IT2 )
n ..-t co . ,n ,n

h + (1 - hlp
00

h + (1 - h)(l - P )
00

In order to generate asymptotic predictions we need values for hand *
We first note by inspection of Eq. 4 that 1 for Group I; in factpoo ~ "2

whenever we have 1 independent of the value of *1t ~ 1t2 poo ~2 , .
1

Hence, taking the observed asymptotic value for pr(A1IT1) in Group I

(i.e., .645) and setting it equal to h + (1 - h) ~ yields an estimate

of h ~ .289 The physical stimuli and the increments in radiant inten-

sity are the same for both experimental groups and therefore we would

require an estimate of h obtained from Group I to be applicable to

Group II. In order to estimate *, we take the observed asymptotic

value of pr(Al!T
O

) in Group II and set itequal to Eq. 4 with h ~ .289,

= .. 2 and 1t2 ~ .6 ; solving for we obtain
1\*~ 2.8
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these estimates of hand * and Eqs. 4 and 5 yields the asymptotic

predictions given in Table 1.

Over all the equations give an excellent account of these particular

response measures. However, the model provides a much richer analysis of

the experiment than the above results indicate. For as we have said

before, the model predicts not only average performance but also detailed

sequential phenomena. In terms of our axioms., sequential effects are

produced by the trial-to-trial fluctuati.ons that Occur in the conditioning

of elements in set S*; such fluctuations, of course, can take place on

any trial and are not restricted to pre-asymptotic data. For example, even

at asymptote the likelihood of making a correct response to a Tl event

depends in a very definite way on whether an A
l

or ~ response

occurred on the preceding tri.al.

It should be emphasized that one of the important contributions of

mathematics to behavior theory has been to provide a framework within

which sequential phenomena can be analyzed. Prior to the development

of mathematical models relatively little attention was given to trial-to-

trial events; at the present time, for many experimental problems (espec-

ially in learning) such phenomena are viewed as the most basic feature

of the data. To indicate the type of sequential predictions that can be

obtained, consider the probability of an A
l

response on a Tl trial

given the various trial types and responses that can Occur on the preced-

ing trial; i.e.,

Pr(A IT A. T. )l,n+l l,n+l l,n J,n
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'where i = 1, 2 and j= 0, 1, 2 • Explicit expressions for these

quantitites can be derived from the axioms. The actual aerivations are

quite lengthy and will not be presented here; .the reader interested in

the mathematical techniques involved should consult Atkinson and Estes

(1962). Also, for purposes of this paper, .the analysis of sequential

statistics will be confined to asymptotic data. Therefore, only theoret_

ical expressions for lim Pr(Al +llTl +lA. T. ) will be given,,n ,n l,U J,u
U_,l-t ())

and to simplify notation they will be written as Pr(Al!T1AiTj ) • The

expressions for these quantities are as follows:

(6a)

(N - l)K
N

(6b)

(6c)

(1 - h)Op. m
= N(l. - Y)

+(N - l)X
N

(6d)

o
=-+

N

0'
= -- +

N

(N - l)K
N

(N- l)K
N

(6e)

(6f)

where "y =c 'h + (1 - c') , "y' = c' + (1 - c')h , 0 = ~ h + (1 - ~) ,

0' "-~+ (1- ~)h, X = h + (1- h)poo' and Y = h +(1- h)(l- pool

It is interesting to note that the asymptotic expressions for
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lim Pr(A. IT. ) depend only on hand 0/, whereas the quantities
l,n J,n

in Eq.6 are functions of all four parameters N, c , c' and h .

Comparable sets of equations can be written for Pr(~IT2AiTj) and

pr(A1ITcfiTj) . We return to this point later.

The expressions in Eq. 6 are rather formidable, but numerical pre-

dictions can be easily calculated once values for the parameters have

been obtained. Further, independent of the parameter values, certain

relations among the sequential probabilities can be specified. As a

simple example of such a relation, it can be shown that pr(AlIT1A1TO) >

Pr(A
1

IT1A2T
O

) for any stimulus schedule and any set of parameter values.

To see this, simply substract Eq. 6f from Eq. 6c and note that 0> 0' .

In Table 2 the observed values for Pr(Ai ITjAkT
t

) are presented as

reported by Ki.nchla. Estimates of these conditional probabilities were

computed for individual subjects using the data over the last 400 trials;

.the average of these individual estimates are the quantities given in

the table. Each entry is based on 24 subjects.

In order to generate theoretical predictions for the observed

entries in Table 2, values for N, c, c· and h are needed. Of course,

estimates of h and c'0/ = -- already have been made for this set of
c

data,and therefore it is only necessary to estimate N and either c

or c' • We obtain our estimates of Nand c by a least squares

method; i.e., we select a value of Nand c (where
1\

c· = co/) so that

the sum of squared deviations between the 36 observed values in Table 2

and the corresponding theoretical quantities is minimized. The theoretical



Table 2

Predicted and Observed Sequential Response Probabilities at Asymptote

Group I Group II

Observed Predicted Observed Predicted

pr(~IT2A1Tl) ·57 .58 ·59 .61+

Pr(~IT2~Tll .65 .69 ·70 ·76

Pr(~IT2~'i'2) ·71 ·71 ·79 ·77

Pr(~ !T2Al T2 ) .61 ·59 .69 .66

Pr(~IT2A1TO) .54 ·59 .68 .66

Pr(~IT2~TO) .66 ·70 071 .76

Pr(AliT1A1T1) ·73 ·71 ·70 .65

Pr(Al !'i'lA2Tl)
I

.62 ·59 ·59 .52

Pr(A1 1Tl~T2)

I
·53 .58 ·53 ·51

Pr(Al !T01T2) .66 ·70 .64 .64

i I

. I ) .'72 ·70 .61 .63Pr(A1 ,T1Al TO i
I

pr(Al!T1~TO) I .61 ·59 .48 .52
I

I
Pr(~ ITd"lTl ) .38 .40 .47 I .49

Pr(~ITd"2Tl)
I

.56 .58 ·59
I

.66

Pr(~ ITd"2T2) I .64 .60 .67 .68I

Pr(~ ITd"lT2 ) .47 .42 ·51 ·51
I

Pr(~ 1Td"lTOl .47 .42 .50 Ii ·51
I

Pr(~ ITd"2Tol .60 ·58 .65
I

.66
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. l J

-14-

have not been pre-

sented in this paper but are of the same general form as those given

in Eq. 6.

Using this technique, estimates of the parameters are as follows:

N 4.23

c' 1.00
(7)

c = ·357

h = .289

The predictions corresponding to these parameter values are presented

in Table 2. When one considers that only four of the possible 36 degrees

of freedom represented in Table 2 have been utilized in estimating

parameters, the close correspondence between theoretical and observed

quantities in Table 2 may be interpreted as giving considerable support

to the assumptions of the model. Of course, for any given subject, N

must be an integer. The fact that our estimation procedure yielded a

non-integral value may signify that N varies somewhat between subjects,

or it may reflect some contamination of the data by sources of experi-

mental error not represented in the model. To answer these questions a

more detailed analysis of the data would be necessary in which estimates

of the parameter values are made for individual subjects. Such analyses

are too lengthy to discuss here.
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Discussion

No model can be expected to give a perfect account of fallible data

arising from real experiments as distinguished from the idealized experi

ment to which the model should apply strictly. Consequently, it is diffi

cult to know how to evaluate the goodness-of-fit of theoretical to

observed values. In practice investigators usually proceed on a largely

intuitive basis, evaluating the fit in a given instance against that

which it appears reasonable to expect in view of what is known about the

precision of experimental control and measurement. Statistical tests of

goodness-of-fit are sometimes possible (discussions of some tests that

may be used in conjunction with stimulus sampling models are given by

Suppes and Atkinson, 1960); however, statistical tests are not entirely

satisfactory taken by themselves, for a sufficiently precise test will

often indicate significant differences between theoretical and observed

values even in cases where the agreement is as close as could reasonably

be expected. Generally, once a degree of descriptive accuracy has been

attained that appears satisfactory to investigators familiar with the

given research area, further progress must come largely via differential

tests of alternative models.

The problems involved in making differential tests among various

models for signal detection are beyond the scope of this paper. However,

it is clear that alternative models can be formulated that deserve careful

analysis. For example, in this paper we have examined a very special

Markovian conditioning process defined on.the background stimuli; it

would be important to determine whether other formulations of the learning
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process, such as thoeedeveloped by Bush and Mosteller (1955), would

provide as good or even better fits, Also, it would be valuable to

consider variations in the scheme for sampling sensory elements along

lines developed by Luce (1959) and Restle (1961).

Independent of further analysis, it appears that this particular

model for signal detection provides an impressive account of average

response proportions and of various complex sequential events. Some

readers may object to the model and argue that the axioms are unrealistic

from a physiological viewpoint or in terms of a cognitive analysis, Such

objections are important if they generate new ideas. However, in the

absence of concrete suggestions that lead to testable models it is doubt

ful whether this type of criticism is meaningful, For on that basis one

might just as well object to the kinetic theory of gases because it

aSSQmes that gas molecules behave as perfectly rigid spheres or to clas

sical hydrodynamics because it postulates complete continuity of fluids.

Certainly there is no single true theory. Rather there is an infinite

number of hypotheses and theories that can explain an array of phenomena,

and We judge a particular theory not by some intuitive notion of reality

but in terms of the theory's ability to acco-QUt for the facts at hand

and to generate new predictions.

In our concluding remarks, it would be nice if we could refer to a

list of criteria or a decision rule that would evaluate the approach

taken in this paper and tell us whether this specific development or

related mathematical models are of genuine value in analyzing psychologi

cal phenomena, Of course, such decision procedures do not exist. Only
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the perspective gained by refinement and extension of these models with

empirical verification at critical stages will permit US to make such an

evaluation. Certainly within the last decade many behavioral phenomena

have been examined with reference to one or more mathematical models,

and there is no doubt that these analyses have led to a deeper understand

ing of the empirical findings. In addition, many new lines of experimental

research have been initiated by work on mathematical models. Despite

these developments some behavioral scientists maintain that psychology

has not yet reached a stage where mathematical analysis is appropriate;

still others argue that the data of psychology are inherently different

from those of the natural sciences and defy any type of rigorous system

atization. There is no conclusive answer to these criticisms. Similar

objections were raised against mathematical physics as recently as the

late 19th century, and only the brilliant success of the approach silenced

opposition. A convincing argument is yet to be made for the possibility

that mathematical psychology will not enjoy similar success.
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