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ABSTRACT OF THE DISSERTATION

Essays on Macroeconomics and Finance

by

Andrés Mariano Schneider

Doctor of Philosophy in Economics

University of California, Los Angeles, 2018

Professor Andrew Granger Atkeson, Co-Chair

Professor Mikhail Chernov, Co-Chair

The following essays contribute towards our understanding of the macroeconomic fundamen-

tals of financial assets. The dissertation is composed of four chapters.

Chapter one—Risk Sharing and the Term Structure of Interest Rates

I propose a general equilibrium model with heterogeneous investors to explain the key

properties of the U.S. real and nominal term structure of interest rates. I find that differences

in investors’ willingness to substitute consumption across time are critical to account for

nominal and real yields dynamics. When the endogenous amount of credit supplied by risk-

tolerant investors is low, the aggregate price of risk and the real interest rate are high. Thus,

real bonds are risky. I study nominal bonds under both exogenous and endogenous (Taylor

rule) inflation. I find that when the Taylor loading on inflation is greater than one, the

nominal term structure is upward sloping regardless of the correlation between nominal and

ii



real shocks. I use the model to shed light on two salient interest rate puzzles: (1) the secular

decline of long-term real and nominal rates since the 1980s, and (2) the sudden spike in real

yields at the height of the Great Recession.

Chapter 2—Endogenous and Exogenous Risk Premia

In this second chapter, I investigate how levered balance sheets amplify the effects of

exogenous aggregate volatility shocks on asset prices. Risk premia are determined by the

interaction of exogenous time-varying fundamentals with the endogenously determined lev-

ered balance sheets. When macro-volatility shocks hit the economy, asset prices decline,

levered agent loses relatively more net worth and aggregate risk aversion rises endogenously.

I find that this feedback between balance sheets and macro-volatility produces six times

more volatile premiums than an economy with only cash flow shocks, thus improving the

model’s ability to match the data. However, the effects on investment and growth are mild

Chapter 3—Liquidity Shocks, Business Cycles and Asset Prices

The third chapter is joint work with Saki Bigio. In the aftermath of the Great Recession,

macro models that feature financing constraints have attracted increasing attention. Among

these, Kiyotaki and Moore (2012) is a prominent example. In this paper, we investigate

whether the liquidity shocks and financial frictions proposed by Kiyotaki and Moore (2012)

can improve the asset pricing predictions of the frictionless RBC model. We study the

quantitative business cycle and asset pricing properties in an economy in which agents feature

recursive preferences, are subject to a liquidity constraint, and suffer liquidity shocks. We

find that the model predicts highly nonlinear time variation and levels of risk premia, which

are driven by endogenous fluctuations in equity prices. However, the model fails to account
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for a basic fact: Periods of scarce liquidity are associated with high asset prices and low

expected returns.

Chapter 4—A Macrofinance View of U.S. Sovereign CDS Premiums

The forth and last chapter of the dissertation is joint work with Mikhail Chernov and

Lukas Schmid. Premiums on U.S. sovereign CDS have risen to persistently elevated levels

since the financial crisis. We ask whether these premiums reflect the probability of a fiscal

default – a state in which budget balance can no longer be restored by raising taxes or eroding

the real value of debt by raising inflation. We develop an equilibrium macrofinance model in

which the fiscal and monetary policy stance jointly endogenously determine nominal debt,

taxes, inflation and growth. We show how CDS premiums reflect endogenous risk-adjusted

fiscal default probabilities. A calibrated version of the model is quantitatively consistent

with the observed CDS premiums.
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Chapter 1

Risk Sharing and the Term Structure
of Interest Rates
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1.1 Introduction

Long-term nominal yields on U.S. government bonds display a higher mean and lower volatil-

ity than short-term yields. Data from inflation-protected bonds (TIPS) show that the real

yield curve exhibits similar patterns, which suggests that real risks are important for under-

standing the nominal term structure. Characterizing the macroeconomic fundamentals that

drive these common features in the real and nominal yield curve, in a unified framework, has

been a long-standing challenge for macroeconomists and financial economists (Gürkaynak

and Wright, 2012). The main contribution of this paper is to propose a model in which

the credit market plays a key role in understanding these salient properties of U.S. real and

nominal yield curves.

Indeed, in theory and practice, interest rates are determined in the credit market, which

renders it a natural starting point for the study of term structure dynamics. The basic feature

of the credit market is that heterogeneous investors lend to and borrow from each other with

the purpose of sharing risks; heterogeneity creates gains from trade. I incorporate this

idea in a general equilibrium term structure model and find that the difference in investors’

willingness to substitute consumption across time is critical in capturing the properties of

the nominal and real yield curves we observe in the data.

Long-term nominal yields on U.S. government bonds display a higher mean and lower

volatility than short-term yields. Data from inflation-protected bonds (TIPS) show that the

real yield curve exhibits similar patterns, which suggests that real risks are important for

understanding the nominal term structure. Characterizing the macroeconomic fundamentals
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that drive these common features in the real and nominal yield curve, in a unified framework,

has been a long-standing challenge for macroeconomists and financial economists (Gürkaynak

and Wright, 2012). The main contribution of this paper is to propose a model in which the

credit market plays a key role in understanding these salient properties of U.S. real and

nominal yield curves.

Indeed, in theory and practice, interest rates are determined in the credit market, which

renders it a natural starting point for the study of term structure dynamics. The basic feature

of the credit market is that heterogeneous investors lend to and borrow from each other with

the purpose of sharing risks; heterogeneity creates gains from trade. I incorporate this

idea in a general equilibrium term structure model and find that the difference in investors’

willingness to substitute consumption across time is critical in capturing the properties of

the nominal and real yield curves we observe in the data.

In this economy, the quantity of credit generates endogenous fluctuations in asset prices.

In particular, term premia and yields are endogenously time-varying due to fluctuations in

a single state variable that summarizes the credit conditions in the economy: the market

value of leveraged investors’ net worth over the total market value of net worth. This state

variable has been underscored by many macro models that feature a credit market (with and

without frictions), but this paper is the first to explicitly examine its influence on the term

structure of interest rates.

The economic mechanism hinges on two assumptions. First, I motivate a credit market

by assuming that investors have different attitudes toward risks (Dumas, 1989; Wang, 1996;

Chan and Kogan, 2002; Bhamra and Uppal, 2009; Longstaff and Wang, 2012; Gârleanu

3



and Panageas, 2015; Barro et al., 2017; Hall, 2017a). Thus, in equilibrium, risk-tolerant

investors issue short-term debt to finance leveraged positions in risky assets, which implies

that their net worth is relatively more exposed to aggregate shocks. As a consequence,

the effect of exogenous i.i.d. shocks on asset prices is persistently amplified by risk-tolerant

investors’ net worth, which generates endogenous fluctuations in the term structure. Second,

I assume that investors with a high risk aversion (RA) coefficient exhibit a smaller elasticity

of intertemporal substitution (EIS) than that implied by time-additive constant relative

risk-aversion preferences. This assumption is key in capturing the quantitative properties

of the term structure, because agents with relatively low EIS must be compensated with

higher interest rates in equilibrium. Recursive preferences are essential to accommodate this

feature.

The main mechanism is as follows. A negative aggregate shock generates a contraction

in leveraged risk-tolerant investors’ net worth, reducing their aggregate ability to supply

credit. The contraction in aggregate credit produces an increase in the price of credit—i.e.,

the spot real rate. This is because a more risk-averse investor, who has a low EIS, must be

incentivized to reallocate his portfolio and smooth consumption over time. In addition, the

price of risk rises endogenously, because a more risk-averse investor is at the margin in the

market for risky assets. The increase in the real rate implies that real bond prices become

low in bad states: The marginal investor requires a positive premium to hold real bonds. .

This relationship between interest rates and the credit market delivers an average upward-

sloping real term structure. On average, fixing investors’ expectations about future short-

term rates, long-term yields are higher than short-term yields. This is because long-term

4



bonds command a higher term premium; the larger the horizon of a bond, the more likely

it will drop in value during bad states, because they have higher exposure to variations

in interest rates. Put differently, long-term bonds have a higher elasticity with respect to

endogenous changes in the share of net worth held by risk-tolerant investors (the model’s en-

dogenous state variable, which summarizes the amount of credit in the economy). I evaluate

this elasticity in the empirical section of the paper.

A further implication of the mechanism is that it takes time for the credit market to

recompose after a negative shock. Simply put, a contraction in aggregate credit implies

lower asset prices, which further implies that risk-tolerant investors can supply less credit.

This persistence shows up in equilibrium asset prices, and in particular in long-term bonds:

The longer the horizon of the bond, the larger the effect of the credit market’s persistence.

This translates into a higher volatility of long-term bond prices relative to short-term bonds.

However, since long-term bonds are stationary, this volatility grows at a slower pace than

the horizon of bonds.1 As a result, since yields are (log) bond prices divided by the horizon

of the bond, long-term yields are always less volatile than short-term yields.

After reviewing the main theoretical underpinnings of the mechanism described above,

I study the nominal term structure of interest rates. For this, I consider two alternative

inflation processes: exogenous and endogenous (derived via a Taylor rule).

The purpose of introducing exogenous inflation is to study a decomposition between the

real and nominal components of the nominal term premium. In this analysis, the nominal

component is driven by the exogenous negative correlation between cash flow and inflation

1I obtain an invariant distribution in the economy by using a simple OLG framework based on Blanchard
(1985) and Gârleanu and Panageas (2015). I review this in detail in Section 3.
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shocks (e.g., Cox et al., 1985; Wachter, 2006; Piazzesi and Schneider, 2006; Bansal and

Shaliastovich, 2013). That is, if inflation occurs in bad states, the marginal investor requires

a premium to hold nominal bonds. The real component is driven by the endogenous risk

generated in the credit market. In this decomposition, I find that even with a large negative

correlation between inflation and real shocks, the real component explains 80% of the average

nominal term premium observed in the data. This result is in line with recent studies showing

the importance of the real component in the nominal term structure (e.g., Abrahams et al.,

2016).

Motivated by this result, I derive a nominal term structure that is purely driven by

the real component. Using a Taylor rule, I derive an endogenous inflation process that is

consistent with both the policy rule and the marginal investor’s nominal pricing kernel (e.g.,

Gallmeyer et al., 2007b). As a result, inflation does not introduce new shocks, as in the

exogenous case—i.e., the nominal term premium is not driven by nominal risk. I obtain an

average slope of the nominal term structure that is in line with the data, driven by the fact

that the Taylor loading on the policy rule is greater than one. Sensitivity analysis shows

that the larger (smaller) the Taylor loading, the smaller (larger) the mean and volatility of

inflation, and the flatter (steeper) the nominal yield curve.

I next evaluate the central theoretical predictions of the model. For this, I first extract

aggregate shocks from macroeconomic data. I exploit the fact that I consider an aggregate

endowment with i.i.d. growth rates, and therefore aggregate shocks are straightforward to

identify (under the null of my model). Second, I feed the shocks into the model to study the

predictions for the endogenous state variables. In this step, I compare fluctuations in the
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amount of credit in the model against fluctuations in the data (total credit to private sector

over GDP), and I find the model captures these fluctuations relatively well. After checking

the predictions for credit, I compute the implied series for the endogenous state variable in

the model, and use those series to check whether the model’s key predictions are verified in

the term structure data.

In particular, I regress yields from the data onto the model’s endogenous state variable

(derived after feeding the macro shocks). The purpose of this is to test the main model’s

predictions: the sensitivity of both yields and slope (difference in yields) with respect to the

endogenous state variable. The model predicts that long-term yields are less sensitive to the

endogenous state variable than short-term yields (i.e., they are less volatile), and that the

slope is positive and nonlinearly related to the endogenous state variable. Regressions using

actual data for yields and the model’s implied series for the state variable confirm these two

central predictions.

I then study whether the endogenous state variable can capture the fluctuations in the

short-term nominal interest rate. This is the key prediction of the endogenous inflation case.

I find that the endogenous state variable can account for a significant portion of short-term

nominal interest rate variability, even after controlling for other well-studied macro factors

since Ang and Piazzesi (2003).

After validating the theoretical predictions, I provide an application of the model’s mech-

anism to shed light on two puzzles regarding yields (Campbell et al., 2009). These are: (1)

the sudden spike in the level and the reversion of the slope of the real term structure at the

height of the Great Recession; and (2) the secular decline of nominal and real rates over
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the last 30 years. The objective is not only to provide further evidence on the mechanism

I propose, but also to show that the connection between the credit market and the term

structure provides a coherent perspective for important macroeconomic phenomena.

Specifically, in both applications I stress the role of the aggregate EIS. The sudden

spike in real rates during the Great Recession can be rationalized as a sudden collapse in

credit that produced a drastic reduction in aggregate willingness to substitute consumption

into the future. The secular decline in nominal and real rates can be rationalized by the

observed contemporaneous increase in the amount of credit in the economy, which in the

model translates into a decrease in the price of credit (i.e., the spot risk-free rate). Due to

the single factor structure of the model, the decrease in short-term rates is also reflected in

long-term rates. In addition, the model implies a secular decrease in inflation expectations

pinned down by the Taylor policy rule—which is consistent with survey data, as shown by

Chernov and Mueller (2012), among others.

I conclude by comparing the model’s prediction for the state variable with an alternative

interpretation. Prior literature has interpreted risk-tolerant investors as the owners of finan-

cial institutions, or “credit suppliers” (e.g., Longstaff and Wang, 2012; Silva, 2016; Santos

and Veronesi, 2016; Drechsler et al., 2017). In this view, the net worth of financial firms

should be useful in capturing the credit conditions in the economy, and therefore yield dy-

namics. Following this alternative view, I construct the ratio of the market value of financial

firms over the total market value of firms. I report the time series of this measure and com-

pare it with those of the endogenous state variable in the model. In find the correlation of

these two variables is significantly positive.
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Literature. My paper fits into three strands of literature: heterogeneous agents and the

credit market, macro-finance models of the term structure, and empirical literature studies

that show the importance of credit measures in capturing yields dynamics.

First, my paper is related to recent papers in macroeconomics and finance that stress

the role of the credit market in determining the behavior of equilibrium asset prices. A

common theme in these papers is that agents exhibit heterogeneous exposure to aggregate

risks (i.e., a group of agents operates with leverage in equilibrium), driven by differences in

a technological feature (preferences, productivity, menu of assets, beliefs, information, etc.).

Within this strand, my work is in line with studies that focus on preference heterogeneity

and analyze the positive implications for asset prices and macroeconomic quantities with a

frictionless credit market (e.g., Dumas, 1989; Wang, 1996; Chan and Kogan, 2002; Bhamra

and Uppal, 2009; Longstaff and Wang, 2012; Gârleanu and Panageas, 2015; Barro et al.,

2017; Hall, 2017a; Schneider, 2017).2

Specifically, Longstaff and Wang (2012) study an endowment economy in which agents

feature heterogeneous constant relative risk-aversion preferences and analyze the role of the

credit market on asset prices. In particular, they find that real yields on perpetual bonds are

smaller than the short-term real yield (i.e., a downward-sloping real yield curve). Following

this line, Hall (2017a) studies an economy with differences in risk aversion and argues that

the secular decline in the average real rates can be explained by an increase in the wealth

share of risk-averse agents. An implicit result in this analysis is that real bonds are hedges,

and therefore the yields on long-term real bonds have a lower mean than short-term yields.

2Recent papers in the heterogeneous beliefs literature have analyzed the role of s is an important body
of literature that analyzes the implication of heterogeneous beliefs in many
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Gârleanu and Panageas (2015), extend the analysis to heterogeneous agents with recursive

preferences, in which the economy has a simple OLG structure to obtain a stationary wealth

distribution, and underscore the importance of heterogeneous preferences in determining the

equity premium; Barro et al. (2017) studies an economy in which heterogeneous agents share

aggregate risk in an economy subject to disasters and focus on the implications for the supply

of safe assets; Wang (1996) considers an economy with heterogeneous agents with constant

relative risk aversion and studies the theoretical properties of real yields; Schneider (2017)

studies an economy in which fluctuations in premiums are driven by the interaction between

endogenous changes in balance sheets and exogenous changes in macro volatility.

Relative to this first strand of literature, in this paper I show that the credit market

is a key macroeconomic fundamental to understand the real and nominal term structure

in a unified framework. In my results, I highlight the role of differences in investors’ EIS.

In fact, when investors exhibit the same EIS—but different RA—the economy exhibits a

downward-sloping real term structure with only 10% of the yields’ volatility we observe in

the data.

A second strand this paper is related to is the macro-finance models of the term structure

with a representative agent. This literature is extensive, but leading examples are Piazzesi

and Schneider (2006), who study a Long Run Risk economy, where the representative agent

exhibits very high risk aversion, and dislikes exogenous inflation such that more than com-

pensates the downward sloping real yield curve; Bansal and Shaliastovich (2013), who study

a Long Run Risk economy with stochastic volatility and analyze the implications for interest

rates and currencies; Relative to this second strand of literature, in this paper I focus on
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the role of the credit market in determining the properties of the real and nominal term

structure. This connection cannot be made in a representative agent setup.

Within the representative agent literature, Wachter (2006) introduces an exogenous time

variation in the habits framework of Campbell and Cochrane (1999) and finds an upward-

sloping nominal and real term structure of yields but also of their corresponding volatilities

(the 5-year yield is more volatile than the 1-year). In the data, however, the longer the

maturity of the bond (either nominal or real), the smaller the volatility of the yield. Also,

Wachter’s model predicts a slope of the nominal and real yield curves that are very similar.

In the data I report below, also documented by Backus et al. (2017), the slope of the

nominal term structure is at least twice the slope of the real term structure—the nominal

term structure is steeper than the real. In my paper, in addition to providing an economic

mechanism that links the term structure to credit market activity, I show that my model

can also capture the fact that long-term yields are less volatile than short-term, and also

that the nominal term structure is steeper than the real. Indeed, I show that the slope of

the nominal term structure vis-à-vis the real can be rationalized by the reaction of monetary

policy to the endogenous risks generated in the credit market.

Several papers have introduced further structure to the representative agent framework,

and they study the term structure in a large scale dynamic stochastic general equilibrium

model (DSGE) with production. Prominent examples are Rudebusch and Swanson (2008,

2012). The mechanism I propose in this paper, which generates endogenous time variation

in the aggregate RA and EIS, can be introduced in a reduced form in such large scale DSGE

models.
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Lastly, my paper is related to empirical papers that stress the role of macro variables

associated with the credit market in driving term premia over the business cycle. Haddad

and Sraer (2015) use a measure of banks’ exposure to interest rates (“income gap”) to

capture the key properties of term premia, using a partial equilibrium model to illustrate

the mechanism. Greenwood and Vayanos (2014) show empirically how the supply and the

maturity structure of government bonds affect bond yields and expected returns. Relative

to these papers, the state variable in my paper can be interpreted as a macro factor that is

helpful in capturing the yield’s dynamics.

1.2 Model

In this section I study an endowment economy populated by heterogeneous investors, and

I assume that the sole source of heterogeneity among investors is in their preferences. In

particular, investors differ in their RA and EIS. I provide a sensitivity analysis regarding

this assumption, and highlight the importance of heterogeneous EISs for capturing the term

structure dynamics.

Setup. I consider an exchange economy in which time is continuous, denoted by t > 0.

Uncertainty in the economy is characterized in a probability space (Ω,F ,P) with a standard

filtration. There is a single perishable good, the numeraire. Aggregate endowment of this

good follows a Geometric Brownian Motion (GBM)

dyt
yt

= µdt+ σdW1,t, y0 > 0 , (1.1)
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where W1 = {W1,t ∈ R;Ft, t ≥ 0} is a Brownian motion on (Ω,P,F) representing aggregate

uncertainty, and parameters µ > 0, σ > 0 are real numbers.

The economy is populated by two classes of investors, A and B. The aggregate population

remains constant and normalized to one. To obtain a stationary solution in the model, I

follow Gârleanu and Panageas (2015) and I consider a simple OLG framework in line with

Blanchard (1985). Investors face an exogenous death risk ϕ > 0, and a fraction ϕ of new

investors are born. The probability ϕ is the same for all investors regardless of age, preference,

or wealth. Of the newly born investors, a constant fraction x ∈ (0, 1) is of type A, while

1−x is of B-type. Newly born investors receive a “start-up” endowment, perfectly tradable,

in order to begin their operations in financial and goods markets.

Intuitively, since risk-tolerant investors operate with leverage in equilibrium, their net

worth grow faster when there is a sequence of positive returns. This implies that they can

end up dominating the economy (or disappearing, if the sequence of shocks is sufficiently

negative). The OLG setup prevents this outcome without changing the fundamental risk-

sharing properties driven by preference heterogeneity.3

To insure against exogenous death risk, investors can write contracts with perfectly com-

petitive insurance companies. The possibility of insuring against death risk, together with

the financial instruments specified below, implies that this economy has complete markets.

The contract specifies that the investor receives a flow of resources ϕ, proportional to his

3There are several ways to obtain stationarity, and some papers have already used a similar OLG device
I use in this paper (Drechsler et al. (2017), Dou (2017), Silva (2016), and Barro et al. (2017)). Also, Di
Tella (2017) assumes that leveraged agents (“experts”) face a probability of becoming unleveraged agents
(“households” ). Di Tella and Kurlat (2017) introduce an exogenous tax that redistributes wealth from
leveraged agents to unleveraged.
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net worth, per unit of time. For this, he agrees to pay his entire net worth to the insurance

company upon his death. Investors find it optimal to sign this contract, provided they have

no bequest motives (Blanchard, 1985). As I show below, this device is useful to introduce

stationarity in the model. I next introduce investors’ preferences and balance sheets.

Preferences and balance sheets. Investors feature recursive preferences, as in Duffie and

Epstein (1992b). For each investor i, his utility function Ui,t is given by

Ui,t = EP
t

[∫ ∞
t

f (ci,u,Ui,u) du
]
,

where

f (ci,Ui) =
1

1− 1/ψi
(1− γi)Ui

{
c

1−1/ψi
i ((1− γi)Ui)

1/ψi−1

1−γi − (ρ+ ϕ)

}
. (1.2)

In this notation, ψi represents the EIS and γi the RA, for this investor. Also, ci repre-

sents the flow of consumption and ρ the time preference, which is adjusted by ϕ (Gârleanu

and Panageas, 2015). These preferences are useful because they disentangle the RA coeffi-

cient from the EIS—a crucial aspect of the model that allows me to focus on the following

assumption.

Assumption 1. In the remainder of the paper, I assume

i) γA < γB ,

ii) ψA > ψB.
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This assumption means that A-type investors are relatively more risk tolerant and are rel-

atively more willing to substitute consumption across time. Qualitatively, this feature is

implicitly assumed under time-additive constant relative risk aversion (CRRA) preferences.

Each investor continuously trades two classes of financial assets: shares on a risky claim

and positions in risk-free money market account. I denote by qt the price of the risky

asset. This asset pays, each period, a unit of the endowment minus the amount of resources

allocated to the “start-up” wealth of the newly born. I denote si,t the number of shares a

given investor holds in this asset. The price of the risky asset follows an Itô process

dqt
qt

+

(
yt − ϕet

qt

)
dt = µq,tdt+ σq1,tdW1,t , (1.3)

where the drift µq,t and the diffusion σq1,t are determined in equilibrium, and et is represents

the resources for the newly born investors—which I describe below. Thus, qt accounts for

the total wealth in the economy.4

Let t̃i be the investor’s i birth time. Since investor’s optimal decisions will not depend on

their age, I simplify the notation and remove explicit dependence of variables to t̃i. The total

net worth ni,t of an operating investor in period t > t̃i is given by the following accounting

identity

ni,t = qtsi,t − bi,t , (1.4)

where bi,t is the value of the short-term money market account held by investor i. Positions

in this account receive a return of rtdt—i.e., the spot real risk-free rate.

4I show this in the appendix.
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Using (1.3) and (3.15), I can write the law of motion for the net worth of an operating

investor

dni,t
ni,t

=

[
rt −

ci,t
ni,t

+
si,tqt
ni,t

(µq,t − rt) + ϕ

]
dt+

si,tqt
ni,t

σq,tdW1,t, t > t̃i, (1.5)

and I define αi,t =
si,tqt
ni,t

as investor’s i portfolio share. Notice that investors receive ϕ from

the insurance company that collects his wealth upon his death.

Newly born investors receive an initial level of wealth and can immediately start operating

in financial and goods markets . These resources are perfectly tradable. I follow Gârleanu

and Panageas (2015) and assume that any investor, of any type, born in t̃ < t receives

an endowment process given by yt,t̃ = ωytG
(
t− t̃

)
, with ω ∈ (0, 1) and G a deterministic

function that controls the investor’s life-earning profile, specified below. Thus, in period t

the present value of initial earnings (i.e., initial endowment) for an investor born today in t

is

et = ytE
Q
t

[∫ +∞

t

exp

(
−
∫ h

t

rudu

)
ω
yh
yt
G (h− t) dh

]
. (1.6)

The expectation is computed under the equivalent martingale measure on (Ω,F ,Q), which is

guaranteed to exist since markets are complete and there are no arbitrage opportunities. At

an aggregate level, in a given period t, the resources associated with initial earnings account

for a total of êt (as a share of yt), denoted by

êt =
1

yt

∫ t

−∞
ϕ exp (−ϕ (t− u)) eudu

= EQ
t

[∫ +∞

t

exp

(
−
∫ h

t

rudu

)
ω
yh
yt
dh

]
. (1.7)
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The last step follows by normalizing the function
∫ t
−∞ ϕ exp(ϕ (u− t))G (t− u) du = 1, and

by a simple application of Fubini’s theorem. Notice that I can write êt = ω(qt/yt). Thus, the

endowment claim (total wealth) is basically the replication of two assets: aggregate earnings

êt and an asset q̂t that pays a dividend equal to (1− ω) yt per unit of time. That is

q̂t = EQ
t

[∫ ∞
t

exp

(
−
∫ h

t

rudu

)
(1− ω)

yh
yt
dh

]
. (1.8)

I can now write the dynamic problem of investor i, whose birth was in t̃i, as

max
{si,ci}

Ui,t

subject to

(1.5), (1.6),

where the control variables are the number of shares on the endowment claim, si, and the

consumption flow, ci. I next define a competitive equilibrium.

Definition 1 (Competitive equilibrium). A competitive equilibrium is a set of adapted

stochastic processes for the investor’s problem cA, cB, αA, αB, and a set of prices r, q such

that: (1) Given prices, policy functions solve investors’ problem; (2) and the goods and asset

market clears (money market clears by Walras’ Law)

∫
At
ci,tdi+

∫
Bt
ci,tdi = yt ,∫

At
si,tdi+

∫
Bt
si,tdi = 1 ,
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where At and Bt are the sets of investors A and B in period t, respectively.

1.3 Solving for the Equilibrium

The purpose of this section is to represent the model in a recursive fashion. The equilibrium

is characterized by the endogenous distribution of net worth across investors. However, the

state space can be simplified by using the fact that investor’s optimal choices are linear

in their net worth and that investor’s death risk is independent of their age. This implies

investor’s within a preference type undertake the same actions. Thus, I can derive the

equilibrium conditions as a function of the following endogenous state variable

xt =
nA

nA + nB
, (1.9)

where nA,t =
∫
At ni,tdi and nB,t =

∫
Bt ni,tdi. The variable xt ∈ (0, 1) is the relative market

value investor A’s net worth, and it captures aggregate conditions in the credit market.

Intuitively, when xt is low, the aggregate ability of risk-tolerant investors to supply credit

decreases. As shown below in Proposition 3, this type of investor choose an equilibrium

portfolio share that is greater than one (i.e., they are leveraged).

The law of motion of x follows from applying Itô’s lemma to ratio (1.9). This is important

for pinning down the dynamics of the endogenous variables in a Markov equilibrium. In what

follows, I express all aggregate endogenous state variables as a function of x. That is, I seek to

solve investors’ control variables (their consumption-wealth ratios and portfolio shares), the

price of the endowment claim (q/y) and the interest rate (r), as a function of x. The system
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of ordinary differential equations that characterize the equilibrium consists of investors’ value

function (Hamilton-Jacobi-Bellman equations), the no-arbitrage conditions for total wealth

and initial wealth, together with the market clearing conditions for consumption and shares

(the money market account clears by Walras’ Law).

Proposition 1 (Law of motion for x). The endogenous state variable x follows an Itô

process

dxt = µx,tdt+ σx,tdW1,t , (1.10)

where

µx,t = xt (1− xt)
(
cB,t
nB,t
− cA,t
nA,t

+ (αA,t − αB,t)
(
µq,t − rt − σ2

q1,t

))
+
ϕêt
pdt

(x− xt) ,

σx,t = xt (1− xt) (αA,t − αB,t)σq1,t,

x0 ∈ (0, 1) ,

with functions αA,t = αA (xt) ;αB,t = αB (xt) ;
cA,t
nA,t

= cA
nA

(xt) ;
cB,t
nB,t

= cB
nB

(xt) ; rt = r (xt) ;µq,t =

µq (xt) ;σq1,t = σq1 (xt) ; q/y = pd (xt) . The initial x0 is a number in (0, 1). Provided µx,t and

σx,t satisfy the usual uniform Lipschitz and linear growth condition in x, then the stochastic

differential equation (1.10) is strong Markov and has a unique solution.

Proof. See appendix.

Notice that the second term in the drift function µx,t is due to the demographic structure

assumed above. This term is key for obtaining an invariant distribution of x. Informally,

notice that for very small values of x, the diffusion tends to zero and the drift becomes larger
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and positive. Thus, the process never reaches zero. Similar logic implies an upper boundary

at one.5

The diffusion term, σx,t, depends on the differences in investors’ portfolio shares. If αi,t’s

were the same for both investors, then dW1,t shocks would not affect x. As a result, when

the economy reaches the stochastic steady state (i.e., when µx,t = 0), it remains there. This

implies that differences in investors’ exposure to aggregate risk are critical for obtaining

fluctuations in the wealth distribution in this setup.

Hamilton-Jacobi-Bellman Equation and investors’ first order conditions. The

investor’s problem can be written recursively

0 = max
ci,si

f (ci,t,Ui,t) + EP [dUi,t, ] (1.11)

subject to his budget constraint (1.5) and his initial wealth (1.6). To solve the recursive

problem, I appeal to the homotheticity properties of the value function and the constraints.

This implies that the value function can be written in the following power form:

Ui,t (xt, ni,t) =

(
ξ

1
1−ψi
i,t ni,t

)1−γi

1− γi
, (1.12)

where the known function ξi (xt) captures the investor’s valuation of the future investment

5Technically, the second term changes the speed of the process at the boundary. See Karlin and Taylor
(1981), chapter 15, for a discussion of the boundary behavior of Itô processes.
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opportunities. This function can be expressed as an Itô process,

dξi,t
ξi,t

= µξi,tdt+ σξi,tdW1,t , (1.13)

with adapted processes µξi,t = µξi (xt) and σξi,t = σξi (xt) determined in equilibrium. Using

(1.12) and (1.13) in (1.11), the problem can be written with ci
ni

(i.e., the consumption-wealth

ratio) and αi = siqt
ni

(the portfolio share) as control variables

0 = max{
ci
ni
,αi

} ψi
ψi − 1

((
ci
ni

)1− 1
ψi

(ξi)
1
ψi − (ρ+ ϕ)

)
+ EP

[
dni
ni

]
− γi

2
EP

[(
dni
ni

)2
]
(1.14)

+
1

1− ψi

[
µξi +

1

2

(
1− γi
1− ψi

− 1

)
σ2
ξi,t

]
+

(
1− γi
1− ψi

)
EP
[
dξi
ξi

dni
ni

]
,

subject to

(1.5), (1.6).

The first-order conditions (FOC) of this problem, for investor i, are given by

ci
ni

= ξi , (1.15)

αi =
µq − r
γiσ2

q

+

(
1− γi
1− ψi

)
σξi
γiσq

. (1.16)

Investors’ demand for the risky asset consists of a “myopic” term, µq−r
γiσ2

q
, and a “hedging”

term,
(

1−γi
1−ψi

)
σξi
γiσq

. In the representative agent economy, α = 1 by market clearing. However,

this is not the case in heterogeneous-investor economies in which different classes of investors

can participate in the market for the risky asset. In the next proposition, I characterize the
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A-type investor’s demand for the risky asset, and show that A-type investors operate with

leverage in equilibrium if and only if γA < γB.

Proposition 2 (Leverage and Risk Sharing). (1) A-type investor’s demand for risky assets

is given by

αA (x) =
1− (1− x)xR(x)

γB

x+ (1− x)
[
γA
γB
− xR(x)

γB

] ,

with

R (x) =

(
1− γA
1− ψA

)
ξx,A
ξA
−
(

1− γB
1− ψB

)
ξx,B
ξB

.

(2) Aggregate risk is concentrated in A-type investors (i.e., αA > 1), and thus positive

aggregate endowment shocks increase x if and only if γA < γB.

Proof. See appendix.

The variable R (x) above captures the risk-sharing mechanism. Mechanically, R (x) can

be written as the difference in the sensitivity of the value functions with respect to x. That

is,

R (x) =
d logUA
dx

− d logUB
dx

. (1.17)

A negative (positive) R implies that a marginal increase in x improves the utility of B (A)

relatively more. Notice that R would be zero if there were no motive to share aggregate risk

(and α = 1).

Discussion of assumption 1. There is a large literature documenting heterogeneity in

EIS among individuals (see Guvenen (2006) for a summary). In general, the evidence in the

literature shows that people who choose to be more exposed to aggregate risk (for example by
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holding stocks) exhibit a larger EIS. My assumption follows this line: in the model presented

above, low-RA investors choose to be more exposed to aggregate risk and I assume they have

a larger EIS. In my setup, heterogeneity in risk aversion is important because aggregate risk

is concentrated in risk-tolerant agents, and therefore x increases after a positive endowment

shock (i.e., σx > 0). Put differently, x would not react to macro shocks if γA = γB. In

contrasts, Guvenen (2009), who also studies an economy with heterogeneous EISs, finds

that differences in RA are not relevant in his results. This is because he studies an economy

in which there is limited market participation. This last assumption immediately implies

that stockholders (i.e., those who are allowed to trade the risky asset) concentrate aggregate

risk.

The assumption is qualitatively in line with time-additive preferences featuring CRRA

preferences. Under CRRA preferences, the EIS is set to be the inverse of the RA coeffi-

cient. Thus, the assumption of γA < γB would immediately lead to ψB < ψA, as stated in

assumption 1. This is consistent with Longstaff and Wang (2012), Wang (1996), and Hall

(2017a), among others. In the context of time-additive preferences, heterogeneous EISs can

be rationalized as differences in an agent’s willingness to substitute across goods (see, for ex-

ample, Atkeson and Ogaki (1996)). One interpretation of ψB < ψA is that type-A investors’

expected consumption is more sensitive to fluctuations in spot interest rates, but less than

one-to-one.6 As I show below, the distinction between RA and EIS is crucial in capturing

6Suppose consumption follows an Itô process with constant drift µci and diffusion σci for investor i, then

µci = ψi (r − ρ) + (1 + ψi) γiσ
2
ci,

so the greater ψi, the more sensitive is expected consumption to movements in r. If ψi < 1, movements are
less than one-to-one.
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the quantitative properties of the yield curve.

1.4 Term Structure of Interest Rates

Equipped with the equilibrium definition and the model’s solution, I can now characterize

the term structure of interest rates in the economy. Since the economy features complete

markets and there are no arbitrage opportunities, I can obtain a stochastic discount factor

“as if” there were a representative agent (Constantinides and Duffie (1996)). The properties

of the discount factor, characterized below in proposition 4, depend on the risk-sharing

dynamics of the economy.

After deriving the discount factor, I value zero-coupon bonds. I start by analyzing the

properties of real bonds, (i.e., assets that pay a unit of consumption in the future), and then

extend to value nominal bonds (i.e., assets whose cash flow is in monetary units). In this

analysis, money is solely a unit of account, and I assume the marginal investor can transform

money into goods (and vice versa) without any friction whatsoever.

I next derive the real stochastic discount factor.

Proposition 3. The state-price process m (xt) > 0 satisfies

dmt

mt

= −r (xt) dt− κ (xt) dW1,t ,
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with

κ (xt) =
σq1 (xt)− xt

(
1−γA

(1−ψA)γA

)
σξA (xt)− (1− xt)

(
1−γB

(1−ψB)γB

)
σξB (xt)

x
γA

+ 1−x
γB

, (1.18)

r (xt) = µq +
1

pd (xt)
− κ (xt)σq1 −

ê (xt)

pd (xt)
ϕ , (1.19)

where r (xt) and κ (xt) are adapted and bounded processes. The process for x is given by

(1.10).

Proof. See appendix.

Then, I can define the process ζt as

ζt = exp

(∫ t

0

κ (xu) dW1,u −
1

2

∫ t

0

κ (xu)
2 du

)
, (1.20)

which is a martingale in P and represents the Radon-Nikodym derivative dQ = ξTdP, pro-

vided regular conditions are verified. 7 With a standard application of Girsanov’s theorem,

I can define a Brownian motion in the equivalent martingale measure Q.

To derive the real yield curve, I calculate the price of real zero-coupon bonds. Let P
(T )
t

represent the price of an asset that pays a unit of consumption in T periods from now (t)

(i.e., a zero-coupon bond). So P
(0)
t = 1. Then

P
(T )
t = EP

t

[
mt+T

mt

]
≡ EQ

t

[
exp

(∫ t+T

t

r (xu) du

)]
≡ P (xt, T ) . (1.21)

7In particular, Novikov’s condition, EP
[
exp

(∫ T
0
κt (xs)

2
ds
)]

<∞, which holds since κ(x) is a bounded

function and x is Markov.
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The real yield can be computed from prices as y
(T )
t = − logP

(T )
t

T
, while forward rates from T

to T + j, y
(T→T+j)
f,t , follow immediately by no-arbitrage. I next characterize the value of the

real bond (1.21).

Problem 1 (Valuing real bonds). The price of the real bond P (x, T ) (a T-real bond)

solves the following Cauchy problem:

−P ′T (x, T ) + LP (x, T )− r (x)P (x, T )− κ (x)P ′x (x, T )σx (x) = 0 , (1.22)

P (x, 0) = 1, ∀x,

where L is the differential operator in x.

From (1.22), the term premium of a T-quarter real zero-coupon bond is given by

EP

[
dP

(T )
t

P
(T )
t

]
− rtdt = −covPt

(
dmt

mt

,
dP

(T )
t

P
(T )
t

)
︸ ︷︷ ︸

T-real term premium

, (1.23)

=
P
′(T )
x

P (T )︸ ︷︷ ︸
>0

κ (xt)σx (xt)︸ ︷︷ ︸
>0

.

The sign of the T-real term premium is characterized by the derivative P
′(T )
x , since κ (xt)σx (xt) >

0 ∀t by definition. Mechanically, bond prices are higher in states of nature in which the real

rate is lower (i.e., there is an inverse relationship between zero-coupon bond prices and rates).

In the model, r is high in states in which x is low. This implies that P
′(T )
x > 0. If those

states correspond to high prices of risk, the market will compensate the marginal investor

with a positive premium to hold a T-real bond. Below, I elaborate this intuition further,
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when I present the model solution and the term structure of interest rates. In particular,

when I show numerical results for the covariance term (1.23).

Nominal Term Structure: Exogenous Inflation. I first consider the case in which

inflation is exogenous, as in other papers in the macro-finance term structure literature

(e.g., Piazzesi and Schneider (2006), Bansal and Shaliastovich (2013), among others). That

is, I compute the nominal stochastic discount factor—which is used to discount future cash

flows denominated in dollars—by introducing exogenous fluctuations in the purchasing power

of a dollar (i.e., exogenous fluctuations in the price level).

The objective is to study the role of inflation risk, since in this case the nominal term

premium is driven by the assumption that inflation and real shocks are negatively correlated:

inflation occurs in high marginal utility states. In other words, this assumption implies that

the purchasing power of nominal payments decreases precisely when the marginal investor

require those resources the most. Therefore, the market has to compensate the marginal

investor with a premium to hold such an asset. In the quantitative analysis below, I provide

a decomposition of the nominal term premium in order to quantify the role of this negative

correlation vis-à-vis the real component.

I introduce an exogenous price process pt (CPI), as in Cox et al. (1985). That is,

dpt
pt

= πtdt+ σpσ (πt) dW2,t, p0 > 0 ,

dπt = λπ (π − πt) dt+ σ (πt) dW3,t, π0 > πL, (1.24)

with

σ (πt) = σπ
√
πt − πL ,
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where W2 = {W2,t ∈ R;Ft, t ≥ 0} and W3 = {W3,t ∈ R;Ft, t ≥ 0} are aggregate Brownian

motions in the probability space (Ω,P,F) representing shocks to inflation and shocks to

expected inflation, respectively. The parameters (λπ, π, πL) are real numbers, and are as-

sociated with the persistence, mean, and the lower bound on inflation. Importantly, the

exogenous process πt is stationary (see appendix).

I assume that processes W1 and W3 are correlated; that is, 〈dW1dW3〉t = φ13dt. In

particular, I assume that φ13 < 0, so shocks to pi and shocks to aggregate endowment

are negatively correlated (Piazzesi and Schneider, 2006). This implies that a nominal asset

is expected to produce lower real payments (i.e., inflation erodes the purchasing power of

nominal payments) in periods of low growth, which creates persistent inflation risk. I assume

that contemporaneous shocks to the CPI process are uncorrelated withW1 andW3. Similarly,

I assume that W2 and W3 are uncorrelated. It is worth emphasizing that 〈dW2dW3〉t =

〈dW1dW2〉t = 0 is without loss of any generality, either from a quantitative or a qualitative

perspective. This is because these shocks are i.i.d., so they have a minor role (whereas dW3

are persistent). I assume this to focus on the role of persistent inflation risk.

Then, I can define a nominal pricing kernel, m$
t = mt/pt. Using Itô’s lemma

dm$
t

m$
t

=
dmt

mt

− dpt
pt

+

(
dpt
pt

)2

− dpt
pt

dmt

mt

,

= −itdt− κtdW1,t − σpdW2,t ,
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where it represents the nominal interest rate

i (xt, πt) = r (xt) + πt − σ2
pσ (πt)

2 . (1.25)

Notice that (1.25) is the Fisher equation, plus an “Itô adjustment”, σ2
pσ (πt)

2, that is quan-

titatively small. With these elements, I next value zero-coupon nominal bonds. Let P
$,(T )
t

be the price of a nominal zero-coupon bond paying one dollar T periods from now. Thus

P
$,(T )
t = EP

t

[
m$
t+T

m$
t

]
≡ EQ

t

[
exp

(∫ t+T

t

i (xu, πu) du

)]
≡ P $ (x, π, T ) .

Problem 2 (Valuing nominal bonds: Exogenous inflation). The price of the nominal

bond P $ (x, π, T ), a T-nominal bond when inflation is exogenous, solves the following Cauchy

problem:

−P ′$T (x, π, T ) + LP $ (x, π, T )− i (x, π)P $ (x, π, T ) = κ (x)P ′$x (x, π, T )σx (1.26)

+κ (x)P ′$π (x, π, T )σ (π)φ13 ,

P $ (x, π, 0) = 1, ∀ (x, π) ,

where L is the differential operator in x and π.

Equation (1.26) shows that the nominal term premium can be decomposed into a real
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component and a nominal component. That is,

T − nominal term premium = −covPt

(
dm$

t

m$
t

,
dP

$,(T )
t

P
$,(T )
t

)
(1.27)

=

real︷ ︸︸ ︷
P

$,(T )
x

P $︸ ︷︷ ︸
>0

σx (xt)κ (xt)︸ ︷︷ ︸
>0

+

nominal︷ ︸︸ ︷
P

$,(T )
π

P $︸ ︷︷ ︸
<0

φ13︸︷︷︸
<0

σ (πt)κ (xt)︸ ︷︷ ︸
>0

Both terms in (1.27), the real and the nominal, are positive. The real component is

positive primarily because P
′$,(T )
x > 0 ∀ (x, π, T ) , and the intuition is the same as the one

described above for the real bond. The sign of the nominal component, however, depends on

the sign of the correlation between endowment shocks and inflation expectation shocks, φ13.

This is because P
′$,(T )
π < 0 ∀ (x, π, T ): An increase in inflation expectation increases the spot

nominal rate (via the Fisher identity established in (1.25)). Thus, the price of the nominal

bond price, for any finite maturity, decreases when inflation expectations increases—i.e., the

derivative with respect to π is negative across the state space. But since φ13 < 0, then

positive endowment, or “supply,” shocks are associated with negative shocks to inflation

expectations. Economically, this means that nominal payments are expected to be eroded

by inflation during periods in which investors value those resources the most. So the sign of

the φ13P
′$,(T )
π determines the sign of nominal component of the nominal term premium.

The Nominal Term Structure: Endogenous Inflation. Instead of extending the state

space by adding an exogenous inflation process, another alternative is to derive a process for

πt via a simple monetary policy rule, conducted by a monetary authority. Thus, I consider

a monetary authority that determines the inflation rate dpt
pt

in a way that is consistent with

30



the marginal investor’s stochastic discount factor (e.g., Gallmeyer et al. (2007b)). For this,

I consider a standard specification of such a rule in the form of a so-called Taylor rule

iMP
t dt = δ0dt+ δπ

(
dpt
pt
− πdt

)
, (1.28)

where iMP
t represents the monetary policy rate, δ0 is a constant (“intercept”), and δπ is the

“Taylor loading,” π the inflation target, and dpt
pt

= πtdt is the instantaneous change in the

CPI.8 Since I consider a fully flexible-prices endowment economy, there is no output gap in

this rule.

The nominal interest rate iMP
t has to clear the nominal bond market, and for this it must

be consistent with the nominal pricing kernel. This implies

iMP
t dt = −EP

t

[
dm$

t

m$
t

]
,

δ0 + δπ (πt − π) = r (xt) + πt , (1.29)

which is the standard Fisher equation. Thus, I can solve for the endogenous π (xt) by solving

(1.29). That is,

π (xt) =
δ0 − δππ
(1− δπ)

+
r (xt)

δπ − 1
. (1.30)

Equation (1.30) shows that under δπ = 1, inflation expectations are not well defined (i.e.,

a version of the Taylor principle is violated). Then, using (1.30), the nominal interest rate

8The monetary authority implements the rule such that, in equilibrium, the stochastic process for the
price level pt is locally “smooth,” i.e., σp,t = 0. That is, the monetary policy is consistent with the conditional
expectation of the stochastic discount factor.
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takes the form of

it = iMP
t ≡ δ0 + δπ

δ0 − δππ
(1− δπ)

+
δπ

δπ − 1
r (xt) .

This means that when δπ > 1 (which is commonly used in the literature) the loading on

the real component, δπ
δπ−1

, is greater than one. In other words, the nominal interest rate

magnifies fluctuations in the real risk-free rate.

With the derived πt = π (xt) , I can value nominal bonds. It is worth emphasizing that

inflation is not a state variable to value nominal bonds, as opposed to (1.26). Instead, the

sole state variable (other than time to maturity) is xt. That is, P
$,(T )
t = P $ (x, T ) . This

implies that the problem of valuing nominal bonds is similar to (1.22).

Problem 3 (Valuing nominal bonds: Endogenous inflation) The price of the nominal

bond P $ (x, T ), a T-nominal bond when inflation is endogenous, solves the following Cauchy

problem:

P ′$T (x, t) + LP $ (x, T )− iMP (x)P $ (x, T ) = κ (x)P ′$x (x, T )σx (1.31)

P $ (x, 0) = 1, ∀x ,

where L is the differential operator in x.

Before concluding this section and proceeding to the quantitative analysis, I provide a

proposition for the representative agent benchmark. In that case, all prices and quantities

can be solved in closed form. Under this benchmark, real yields are constant and exhibit

zero volatility.

Proposition 4 (Infinitely lived investor). If preferences are the same (i.e., γA = γB and
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ψA = ψB) and there is no mortality risk (i.e., ϕ→ 0), then

(i) the real risk-free rate is constant rt = r, with

r = ρ+
µ

ψ
−
(

1 +
1

ψ

)
γσ2

2
;

(ii) the real term structure is flat and the volatility of yields is zero at all maturities

y
(T )
t = rt = r, ∀ (t, T ) ,

var
(
y

(T )
t

)
= 0, ∀ (t, T ) ;

(iii) the price-dividend ratio is constant, pdt = pd ;

(iv) under exogenous inflation, the nominal term structure depends on inflation expectations

only. Nominal bond prices can be solved in closed form and equal to

P $,(T ) (π, t) = A (t) exp
(
B (t) π + C (t)

√
π − πL

)
,

where coefficients A (t) , B (t), and C (t) solve the system reported in the appendix; and 9

(v) under endogenous inflation, the nominal term structure is flat and the volatility of nom-

inal yields is zero at all maturities.

9The resulting partial differential equation for the nominal bond price is similar to the one resulting from
the “double squared root process” for the interest rate. I thank Francis Longstaff for bringing this point to
me.
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Proof. See appendix.

1.5 Quantitative analysis

In this section I explore the quantitative properties of the model. To that end, I solve the

model—and the corresponding partial differential equations for bond prices—numerically. I

use a global solution technique based on spectral methods (Trefethen, 2000; Boyd (2001)).

I start by describing the calibration procedure and then discuss the model’s solution. I

continue with an analysis of the real term structure, and conclude by studying the nominal

term structure (with both exogenous and endogenous inflation).

Calibration. I report the calibration in Table 1.2, in which I divide parameters into groups:

preferences, endowment and demography, and inflation. I calibrate parameters at a quarterly

frequency.

Regarding preferences, there are mainly four parameters: γA, γB, ψA, and ψB. I set

γB = 10 > γA = 1.5, which implies, on average, an aggregate γ of 5.1.10 These values

for risk aversion are within the range that have been used in the asset-pricing literature.

Regarding the EIS, I set values for the ψA and ψB as free parameters, and explore different

alternative specifications below. Intuitively, the larger the difference between ψA and ψB

(ceteris paribus), the larger the increase of the spot real rate after an endogenous reduction

in aggregate credit. In the baseline calibration, I use a ψA, ψB very similar to those in

10Aggregate γ is displayed in the denominator (1.18), which is the inverse of x
γA

+ 1−x
γB

.
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Gârleanu and Panageas (2015).

I calibrate the endowment parameters, the drift µ and diffusion σ, to match the mean and

volatility of time-integrated U.S. consumption data. Regarding demographic parameters, I

set a value of ϕ such that investors have an expected time operating in the financial market

of 30 years, and lastly I set x = 0.11 which stabilizes the share of risk-tolerant agents net

worth around 0.15 (I report the invariant distribution below). Lastly, I specify a function

G (t) = G1e
−g1t+G2e

−g2t (i.e., a double exponential) to be consistent with the hump-shaped

income pattern over the life cycle of the investor. I set (G1;G2) = (30.72/4;−30.29/4),

which implies a similar pattern to that of Gârleanu and Panageas (2015), but at a quarterly

frequency.

To derive the endogenous inflation expectations, I calibrate the Taylor coefficient δπ=1.5

as a baseline (see Taylor (1993), and many others). I set the inflation target π=0.005,

which implies a 2% annual target. For the exogenous inflation expectation process, I set

parameters σπ, θπ, πL, π such that the mean of inflation expectations is 0.9% per quarter to

match the level of the nominal yield curve, and inflation spends 99% of time in the range

[-0.5%, 2%] in quarterly terms. This captures the dynamics of observed inflation. I plot the

invariant distribution for π in the appendix. Lastly, I set the correlations between inflation,

endowment, and inflation expectation shocks as free parameters to illustrate their role in the

decomposition between nominal and real term premium. In particular, I set φ12 = φ23 = 0,

and I focus on the correlation between shocks to inflation expectations and shocks to the real

economy. I set φ13 = −0.5 as a plausible lower bound on this correlation, as many previous

studies have found a greater number in the data (for example, Piazzesi and Schneider (2006)
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find -0.2).11

The Economic Mechanism in the Model. Figure 1.1 shows the solution of the relevant

objects in the model that summarize the economic mechanism. First, notice that both the

real risk-free rate and the price of risk move in tandem across the state space: Real interest

rates are high (bond prices are low) when the aggregate price of risk is high. This occurs

when the relative market value of risk-tolerant equity is low, which implies that the total

amount of credit in the economy is low.

As shown in Proposition 3, negative aggregate shocks affect risk-tolerant investor’s net

worth relatively more. When risk-tolerant investors lose net worth, their ability to supply

credit at an aggregate level is reduced. Thus, total credit as a fraction of total equity in the

economy goes down. This produces an increase in the price of credit—the real rate —because

the market has to compensate agents with a lower EIS to smooth consumption over time.

On the other hand, since relatively more risk-averse investors are clearing the market, the

price of the risky asset goes down and the aggregate price of risk increases, as shown in the

Figure.

From a risk-sharing perspective, R (x) represents how changes in x affect investors’ utility,

11The closer φ13 is to zero, the smaller the nominal component of the nominal term premium. Even with
φ13 = −0.5, as discussed below, the nominal component is already relatively small in my model.
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as shown in (1.17). In Figure 1.1, R (x) < 0 across the state space, which means

R (x) =

(
1− γA
1− ψA

)
ξx,A
ξA
−
(

1− γB
1− ψB

)
ξx,B
ξB

< 0

⇒

d logUA
dx

<
d logUB
dx

Thus, changes in x improve B-type investor’s utility relatively more: An increase in x implies

that they have to bear less aggregate risk, and since they dislike risk relatively more, their

utility increases relatively more than that of an A-type. If there were no gains from sharing

risk, R would be zero.

The Real Yield Curve. Figure 1.2 shows the results for the term structure up to 80

quarters. On average, the slope of the real yield curve is upward sloping: Real bonds are

risky assets, since bond prices go down in states in which the price of risk increases. I report

the term premium (i.e., the covariance in expression (1.22)) below. Interestingly, the yield

curve features endogenous fluctuations across the business cycle. In particular, when there

is a contraction in risk-tolerant investors’ net worth (i.e., low x), the level of the real yield

curve increases and its slope becomes negative. That is, x is negatively correlated with the

level factor, and positively correlated with the slope of the curve.

A useful way to further understand the implications of the model is to study the interest

rate dynamics. That is, r (xt), where the state variable xt follows the law of motion in (1.10).
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Then, using Itô’s lemma, the interest rate dynamics are given by

drt = µr,t + σr,tdW1,t, (1.32)

with

µr,t = r′xµx,tdt+
1

2
r′′xxσ

2
x,t,

σr,t = r′xσx,t .

Panel (b) of Figure 1.2 shows the drift and diffusion associated with r. In particular,

notice that the expected change of r, µr,t, becomes more negative when x decreases; because

real rates are mean reverting, they expected to fall. The expectation that the short-term

rate will decrease in the futures is strong enough to imply the reversion of the slope in panel

(a).

I next study the term premium. Long-term rates consists of two components: the ex-

pectations of short rate dynamics and the term premium. More precisely, the premium a

long-term bond commands is represented in equation (1.23),

EP

[
dP

(T )
t

P
(T )
t

]
− rtdt = −covPt

(
dmt

mt

,
dP

(T )
t

P
(T )
t

)
.

In Figure 1.3 I show the model’s prediction for this covariance. The left-hand panel shows

the covariance across the state space, for three different maturities (4, 20, and 80 quarters).

The larger the horizon, the larger the premium the bond carries. Intuitively, the longer the

horizon of the bond, the more likely it will lose value in a bad state at some point of its
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lifetime. The right-hand panel of the figure shows the mean term premium across horizons.

This panel conveys the idea that long-term bonds are riskier than that of short-term, and

therefore should pay a higher return on average.

I next study the very long end of the yield curve, which may have several practical

purposes (from social security to government budget projections). To that end, I first solve

the real term structure that matches the short part (up to 40 quarters), but up to a horizon

where the yield curve becomes almost flat.12 Then, I compute the volatility of 10-year

forward contracts, which can be easily derived from bond prices. Figure 1.4 shows the real

term structure up to 800 quarters (i.e., 200 years), and the volatility of 10-year forward rates.

The figure shows that the average real term structure becomes flat at nearly 700 quarters,

and forward rates have substantial volatility up to 10-year contracts between 280 quarters

to 320 quarters (i.e., 70 years to 80 years).

Lastly, Table 2.3 displays the theoretical moments and illustrates the role of EIS hetero-

geneity in the model. As shown in Figure 1.2, the model matches the slope and volatility of

the real term structure. Qualitatively, the model captures the fact that the volatility of real

yields is downward sloping, although the volatility of the 40-quarters yield is higher than

in the data (42 basis points versus 30 basis points at a quarterly frequency, respectively).

The table also illustrates the risk-sharing mechanism that drives this result. Indeed, under

the baseline calibration, A-type investors consume 0.0108 of their net worth (represented

by ξA), whereas B-type consume a higher fraction, 0.0156. This is basically due to the fact

that A-type investors are operating with leverage, so they consume a smaller fraction of

12I show the properties of a perpetual consol bond in the appendix.

39



their net worth on average. Also, as expected, the volatility of the consumption-wealth ratio

of B-type investors is larger (they are less willing to smooth consumption intertemporally).

This implies that investors are sharing aggregate risk, a measure denoted by R in the Table.

When B-type investors feature CRRA preferences, i.e., ψB = 1/γB, the gains from shar-

ing risk are lower: Fluctuations in x have a relatively similar impact on investors’ utility

(R is close to zero). Table 2.3 shows that the consumption-wealth of both agents is rela-

tively similar and less volatile than in the baseline calibration. This implies that leveraged

investors are borrowing against investors who have a similar willingness to smooth consump-

tion intertemporally, and therefore the equilibrium spot rate does not fluctuate much. As a

consequence, the volatility of yields is roughly 3 times lower than in the data, and the slope

of the yield curve is significantly smaller: Long-term bonds are less risky, since interest rates

(and real bond prices) are not expected to fluctuate much.

In the case of ψB = ψA, investors are heterogeneous along the RA dimension only. This

implies that the volatility of real yields is virtually zero, and the slope of the real yield curve

is almost flat (indeed, slightly downward sloping).

The Nominal Yield Curve with Exogenous Inflation. Figure 1.5 shows the results

for the nominal yield curve when inflation follows an exogenous stochastic process. The left

panel fixes x at the steady-state value and displays the nominal yield curve for different

values of inflation expectations in the bivariate stationary density (shown in Figure 1.7). On

average, the yield curve is upward sloping, because both the real component and the nominal

components render nominal bonds risky assets, as shown in equation (1.27). I discuss the

decomposition between these two sources below. The real source of risk is explained above.
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The nominal source of risk comes from φ13 < 0: An exogenous sequence of positive inflation

expectation shocks is associated with negative shocks to the real economy. This means that

inflation is expected to erode the purchasing power of nominal payments precisely when the

marginal investor values those resources the most.13 Therefore, nominal bonds are risky.

Over the business cycle, the left panel of Figure 1.5 shows that when is π high, the

nominal term structure is downward sloping. This is denoted by the gray line. Intuitively,

when current inflation is high, nominal rates are expected to go down in the future (i.e., π

is mean reverting). A similar logic applies when π is low, since in such states of nature the

nominal interest rate is expected to increase. Thus, as shown by the blue line, the nominal

curve is even more upward sloping than on average.

On the right-hand side of Figure 1.5, I show the nominal term structure when π is a

steady state. The red line fixes the steady state of both x and π, which means it is the same

as on the left-hand side. In this case, when π is fixed to the steady state, the properties

of the nominal term structure are driven by x, so the intuition is very similar to that one

developed for the real term structure.

To understand the role of inflation risk, driven by φ13, I next study the decomposition

of the nominal and real components of (1.27). This is a useful analysis, because in models

in which the real term structure is flat, 100% of the nominal term premium is driven by

inflation risk. Even more, in models in which the real term structure is downward sloping

(such as the long-run risk models, e.g., Bansal and Yaron (2004a)), inflation risk has to more

than compensate for the negative real term premium to obtain an upward-sloping nominal

13This is clear from Figure 1.7, where low x states (blue line on panel (b)) are associated with higher
inflation states.
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curve consistent with the data.

Figure 1.6 illustrates this decomposition for an 80-quarter nominal bond.14 On the left-

hand side, the figure depicts the real and nominal components across the x dimension (i.e.,

fixing π at different values); on the right-hand side I shows the real and nominal component

across the π dimension (i.e., fixing x at different values).

On average, the real component explains about 80% of the nominal term premia. As

shown in the upper-left panel, an increase in x reduces the real component. This is because

effective risk aversion decreases as x increases and risk-tolerant investors rebuild their balance

sheets. This is scaled by the level of π: The greater π is (gray line), the smaller the real

component. The upper-right panel shows this from a different perspective: It fixes x and

shows the real component for different levels of π. The intuition for the dynamics over the

state space is similar to the one above: An increase in π means a reduction in the real

components, and this effect is scaled by the level of x.

The Nominal Yield Curve with Endogenous Inflation. Motivated by the previous

decomposition, in which the real component drives the nominal term premium, I next study

the nominal term structure with endogenous inflation expectations. As shown in equation

(1.30), endogenous inflation expectations depend on policy parameters, δ0 and δπ, and also

on the real interest rate r(x). In particular, when δπ > 1, the nominal interest rate moves

in the same direction as the real interest rate, by a factor δπ
δπ−1

> 1.

The difference in the magnitudes implies that the monetary authority anchors inflation

expectations by adjusting the policy instrument more than one-to-one to fluctuations in the

14Results in this decomposition are very similar for different maturities other than 80 quarters.
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real economy (represented by r(x)); and this will be captured by fluctuations in nominal

bond prices. In other words, the sensitivity of nominal bond prices to fluctuations in x will

be higher than that of real bond prices. That is the derivative with respect to x is higher in

a nominal bond than in a real bond

P ′$x (x, T ) > P ′x (x, T ) ∀ (x, T ) . (1.33)

Expression (1.33) implies that the Taylor coefficient magnifies the positive real term pre-

mium. In Figure 1.8, panel (a), I show the results for the nominal term structure under

endogenous inflation. The average nominal yield curve, with δπ = 1.5, is upward sloping

and in line with the evidence. Indeed, the slope of the nominal term structure in the figure

is higher than that of Figure 1.2 (almost twice, as in the data), precisely because of the

effect of δπ
δπ−1

and its impact in the derivative of bond prices. Interestingly, the nominal

term structure inherits the properties of the real economy, and thus exhibits endogenous

fluctuations across the business cycle.

In panel (b) of Figure 1.8, I show the properties of endogenous inflation expectations

and the corresponding nominal yield curves. The lower the Taylor coefficient δπ (which can

be interpreted as a relatively “loose” monetary rule), the greater the unconditional mean

and standard deviation of inflation expectations. A lower coefficient then translates into a

steeper nominal yield curve, because monetary policy reacts relatively more to changes in

the real economy, which implies a more volatile nominal rate and thus a greater derivative

P
′$,(T )
x (x, t). This can be seen on the right-hand side of panel (b) in Figure 1.8, where I show
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the normalized yield curves. (I normalize yields to 0 at maturity 0.)

1.6 Empirical Analysis

In this section I evaluate the empirical predictions of the model. I begin by extracting macro

shocks from the data, using the fact that the aggregate endowment is i.i.d. in the model. I

then introduce the realized sequence of shocks into the model and compute the time series

of the endogenous state variable x.

The first exercise consists of regressing yields from the data onto the implied series of

x. In particular, I consider two regressions that intend to capture the main theoretical

prediction of the model: Yields are persistently negatively exposed to x (i.e., P
′
x (x, T ) is

positive, and thus yields are negatively exposed to x). I regress yields onto x precisely to

capture this sensitivity at different maturities. I then regress the slope of the term structure

onto x. I compare the regressions results with the model’s prediction for both the sensitivity

of yields and slope.

The second exercise is to regress the short-term (1 quarter) nominal interest rates against

the model’s implied x, but controlling for several macroeconomic variables. In this analysis, I

follow (Ang and Piazzesi (2003)), and investigate whether x contains information to explain

fluctuations in the short-term nominal interest rate beyond other well-studied macroeco-

nomic factors (GDP growth, inflation, and unemployment). In this exercise I evaluate the

predictions in the endogenous inflation case, where the short-term nominal rate depends on

x.
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The third exercise is an application of the model to shed light on two salient interest-rates

puzzles (Campbell et al., 2009): (1) the sudden spike of real rates in the Great Recession;

(2) the secular decline of real and nominal long-term rates since the 80s. The purpose is to

provide further evidence on the mechanism I propose, which relates the credit market with

the term structure of interest rates. In these exercises, I use the time series implied by the

model.

I conclude this section by comparing x with an alternative interpretation of the model.

Previous literature (cited below) interprets risk-tolerant investors as financiers. According

to this view, the relative net worth of financial firms should be indicative of credit conditions

in the economy, and should be related to yields. I construct a “credit factor” that intends

to capture this view and compare it with x.

Business Cycle: Preliminaries. I begin by feeding the model with macro shocks. To that

end, I take advantage of the assumption that aggregate endowment is a geometric Brownian

motion, which means that log growth rates are i.i.d. at an aggregate level. Then, shocks can

be easily identified (under the null of the model):

d log yt −
(
µ− 1

2
σ2

)
dt = σdW1,t,

∆ log yt −
(
µ− 1

2
σ2

)
∆ = σ [W1,t+∆ −W1,t] . (1.34)

I discretize ∆ to make it equal to one quarter and use NIPA data for real personal consump-

tion expenditures at quarterly frequency. Figure 1.11 displays the series of the index and the

shocks. I then feed these shocks into the model, starting from the stochastic steady state in
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1971:Q2, to obtain predictions for the endogenous state variables. I start in 1971:Q2 to be

consistent the sample periods for which yields data are available (reported in Table 3.1).

Business Cycle, Credit, and Yields. I start by analyzing the model prediction for credit.

Figure 1.12 shows results for credit over total equity in the model and credit over GDP in

the data. The figure indicates the model captures the fluctuations in credit well. Motivated

by this, I compute the time series for the endogenous state variable x to compare it with

yields data. As described in the previous section, the model predicts that low x implies a

high level of rates and lower slope. In the next figure I show that the data show a similar

pattern.

Figure 1.13 compares fluctuations in the endogenous state variable in the model with

yields data. The implied series for x shows a negative correlation of -0.35 with the first

principal component of the real term structure, and -0.54 with the first principal component

of the nominal term structure. As has been shown by many previous studies (e.g., Litterman

and Sheinkman (1991)), the first principal component —the level of the curve—explains the

vast majority of yield curve fluctuations (more than 90% in any sample). The figure also

shows a positive correlation of 0.25 between the slope of the real term structure and the

implied series for x. This correlation is weaker in the case of the nominal term structure

(0.14).

Elasticities. I next study the sensitivity of yields, at different maturities, with respect to

x. This is a useful first step to verify the key theoretical prediction of the model, which is
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that the derivative of bond prices with respect to x is positive. That is,

P ′x (x, T )

P (x, T )
> 0.

More precisely, the idea is to use yields from data to capture the sensitivity of bonds to x

EP
[
∂ logP (x, T )

∂x

]
= EP

[
P ′x (x, T )

P (x, T )

]
≡ EP [T.y′(T )

x

]
,

where the last equivalence follows from the relationship between yields and prices of zero-

coupon bonds. To capture this relationship, I use data on real yields described in section 2,

with maturities N = (4, 8, 12, 20, 28, 40) quarters. I specify the following linear regression:

y
(N)
t = α

(N)
1 + β

(N)
1 xt + ε

(N)
1,t . (1.35)

I use the model’s implied series for x and yields from the data to estimate (1.35). Panel (A)

of Table 1.4 shows estimates for real yields. Results indicate that coefficients are all negative

and statistically significant, and they display the following pattern:

−β(10)
1 > −β(7)

1 > ... > −β(1)
1 .

In other words, long-term real yields are less sensitive to x (in absolute value). A similar

pattern holds, but is mechanically opposite, for bond prices: longer-term bond prices are

more sensitive to x. Intuitively, this indicates that bond prices are persistent (but stationary)
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processes. Yields inherit this property, but since they are proportional to maturity (we divide

by N), the persistence of bonds is offset by N . The longer the maturity, the stronger this

effect.

The model can capture this very well. Figure 1.9 shows the model’s prediction for the

sensitivity of yields with respect to x. The figure shows the unconditional derivative for yields

EP
[
y
′(T )
x

]
. The left-hand panel shows the derivative of yields with respect to x, over the

state space, for three different maturities. On the right-hand side, I show the unconditional

mean across maturities. Both are in line with the estimations reported in Table 1.4. In other

words, short-term yields are unconditionally more volatile (i.e., more sensitive to x) than

long-term yields, both in the data and in the model.

Panel (B) contrasts the results for nominal yields. The coefficients are larger than those

for real yields, which is consistent with the prediction in the endogenous inflation case (nom-

inal bonds are more sensitive to x, because Taylor loading is greater than 1). Although the

R2 are higher, the coefficients are not statistically different from each other as, they were for

the real yields.

Slope. I now evaluate whether the model’s predictions for the slope of the term structure

are consistent with the data. Figure 1.10 shows that the model predicts an average positive

slope, but with a nonlinear relationship against x. The intuition comes from the mechanism

elaborated on above: When x is low and real rates are high, rates are expected to fall in

the future; they are mean reverting. This effect is strong enough to imply that during low-x

states, long-term rates are lower than short-term short. When x is at its mean, the effect of

x on the slope is close to zero (i.e., the derivative of the slope against x, at the steady state,
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is close to zero).

To evaluate this prediction, I compute the slope of real yields at different horizons in the

data—that is, the difference in yields (i.e., the slope) as

slope (N) = y
(N)
t − y(4)

t , for N = (8, 12, 20, 28, 40) .

To capture the nonlinear aspect of the relationship predicted by the model, I specify the

following regression

y
(N)
t − y(4)

t = α
(N)
3 + β

(N)
3 xt + β

(N)
4 x2

t + ε
(N)
t , (1.36)

where the left-hand side represents the slope at different horizons and the quadratic term

intends to capture the nonlinearity predicted by the model, and is reported in Figure 1.10,

panel (a). In Figure 1.10, panels (b) and (c), I fit a kernel regression that indicates that the

quadratic specification in (1.36) is enough to capture the nonlinearities in the data.

In Table 1.5, I report the estimates of (1.36). The coefficient associated with x is positive,

but the coefficient associated with x2 is negative and larger (in absolute value). This implies

that changes in the model’s endogenous state variable produce significant nonlinear changes

in the slope of the real term structure. A marginal deviation of x from its mean, however,

does not create a significant change in the slope. This is what the row “Net effect” reports: It

evaluates whether the derivative of (1.36) is different from zero on average. This is consistent

with the model prediction, indicating that a marginal change in x, starting from the steady

state, is very small. But when x is small, an increase in x produces an increase in the slope.
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When x is large, a decrease in x produces an increase in the slope.

Model’s x as a Macro Factor. In this subsection I evaluate the key theoretical prediction

of the endogenous inflation case: I study how the short-term nominal rate changes with the

endogenous state variable x. For this, I follow Ang and Piazzesi (2003) and regress the short-

term nominal rate against several macro factors, in which I include x (the endogenous state

variable implied by the model). The macro factors I include have been widely documented

in the macro-finance term structure literature (proxies for inflation, GDP growth, and unem-

ployment). Since Ang and Piazzesi (2003), many papers have incorporated macroeconomic

variables into affine term structure models to provide an interpretation of the previous latent

factor models (e.g., Litterman and Sheinkman (1991)).

Table 1.6 shows the correlations between short-horizon nominal yields, x, x2, and x3.

The purpose of incorporating x2 and x3 in the analysis is to capture the nonlinear dynamics

implied by the model. As can be seen in the table, the yields’ dynamics are negatively

correlated with x. This negative correlation was implicitly described in Figure 1.13, where I

showed only the first principal component of nominal yields. Notice higher order terms are

also relevant.

I then regress the one-quarter nominal rate y
$,(1)
t onto different macro factors ft. The

regression is specified as in Ang and Piazzesi (2003):

y
$,(1)
t = α4 + β′4ft + vt, (1.37)

where ft is a vector of macroeconomic factors and vt is a shock that captures orthogonal
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information to macro variables (e.g., policy shocks). The factors I consider, in addition

to x, are: an inflation factor, a real activity factor, the CPI core, and the unemployment

gap.15 I construct the inflation and real activity macro factors in the same way as Ang and

Piazzesi (2003). This consists of computing the first principal component of various inflation

and real activity indexes. The CPI core and unemployment gap are representative of the

“policy factors” typically used by the Monetary Authority when considering adjusting the

short-term rate (Bauer and Rudebusch, 2017), so they are also useful controls for x.

Table 1.7 report regressions’ results. The first two columns are the specifications in which

x is not included. This is a useful benchmark to compare with. Notice that in column (1) and

(2), the only significant component is the one associated with inflation. This is consistent

with Ang and Piazzesi (2003), who report that real activity is sensitive to the sample period

considered. Also, column (1) indicates that the CPI core delivers a higher goodness of fit

than that of column (2); R2 is 0.54 with the CPI core and 0.18 with the inflation factor.

Column (3) shows the result of regressing the one-quarter nominal yield y
$,(1)
t onto x. As

expected, based on the correlation structure reported in Table 1.6, the coefficient is negative

and significant. The R2 is almost the same as the regression including inflation and the real

activity factor (0.17 versus 0.18, respectively). Indeed, as shown in column (5), when x is

included in the regression of y
$,(1)
t against the inflation and real activity factors, the goodness

of fit is more than twice (0.40 versus 0.18, respectively). Importantly, x remains negative

and statistically significant. Also, notice that in column (5), the coefficients for inflation and

real activity are 1.50 and 0.55, very close to those typically used in calibrations of the Taylor

15The unemployment gap is the difference between actual unemployment and the natural rate of unem-
ployment reported by the Congressional Budget Office.
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rule since Taylor (1993).16 Column (4) shows similar results but with unemployment gap

and CPI core: x remains negative and statistically significant and improves the goodness of

fit (although not as much as column (4) against (2)).

In column (6) I evaluate the effect of x, x2 and x3. The result indicates that x and x2 are

significant, although the goodness of fit of does not increase much (it increases only 0.01).

Then, in columns (7) and (8), I report the same specification as (4) and (5), but include the

higher-order terms x2 and x3. In both (7) and (8), the introduction of x, x2, and x3 increasea

the goodness of fit vis-à-vis (1) and (2). Importantly, x remains negative and statistically

significant.

These results are in line with the theory predicted above: They imply that when short-

term nominal interest rate is high in the data, the market value of leveraged risk-tolerant

investors is low in the model. Even more, these results indicates that x contains information

that is beyond the standard macroeconomic factors commonly studied in the literature.

Puzzle I: Sudden spike in real rates in the Great Recession. Early in Fall 2008, real

rates (measured by TIPS) showed a sudden spike, and the real term structure was reversed

(i.e., the short-term rate was above the long-term rates). As noted by Campbell et al. (2009),

there were several institutional and liquidity influences on TIPS yields during this episode.

These may have distorted, at least partially, their prices.

However, from a macroeconomic perspective, using the standard Fisher equation logic,

it was evident that real rates, on impact, increased. More precisely, on December 15, 2008,

the Federal Reserve set the short-term interest rate at 0%-0.25%. Also, according to the

16This does not indicate the coefficients are identified (Backus et al., 2016).
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Survey of Professional Forecasters (SPF), during the first and second quarters of 2009 the

one-quarter-ahead median inflation expectation was -9.5% and -2.4%, respectively (in annual

terms). Through the lens of the Fisher equation, this implies a very large spot real rate. For

example, in 2009:Q1,

rt = it︸︷︷︸
=0

− EP
[
dp

p

]
︸ ︷︷ ︸
−9.5%

(1.38)

Thus, even though certain distortions may have contributed to the sudden spike in TIPS,

the Fisher equation’s logic also indicates that real rates actually increased.

In Figure 1.14, I show the model’s time series predictions using the real macro shocks

reported in Figure 1.11. The left-hand side shows the business cycle fluctuations of the 10-

year real rate and the 1-year real rate. As it is evident from the plot, on average the real term

structure is upward sloping (black line is above red line). The model predicts that during

the Great Recession, the level of real rates increased pari passu with the drastic decrease in

credit—a reduction in x which implies the aggregate willingness to substitute consumption

intertemporally. Even more, it predicts an inversion of the real yield curve (red line crosses

the black line). Qualitatively, this is consistent with the evidence.

During 2009, the monetary authority started to intervene in a variety of markets, and its

balance sheet was multiplied by five. These interventions are not captured in the model, but

several studies have argued they have affected the behavior of yields (e.g., Krishnamurthy

and Vissing-Jorgensen (2011)). In the right-hand panel, I show the result of subtracting the

one-year real rate produced by the model from the nominal real rate in the data. This is a

proxy of inflation expectations. As shown in the figure, during the crisis the model predicts
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an expected deflation in line with the SPF. However, the model predict a more persistent

dynamics: it takes longer for the credit market to be rebuilt.

An intuitive interpretation of the Fed’s interventions during the Great Recession is that

they introduced willingness to substitute consumption intertemporally into the markets.

At the height of the financial crash (2008:Q4-2009:Q2), the marginal investor required a

large compensation to postpone his current consumption into the future. Thus, the market

would have to compensate him by providing a higher incentive (i.e., a high real rate) to

perform such delay in his consumption. Since the nominal rate was set to zero, the adjusting

economic force was deflation expectation (as shown in the SPF and predicted by the model).

Thus, when the Fed started to intervene, those policies prevented the scenario predicted by

the model, by “introducing” willingness to smooth consumption, thus reducing real interest

rates—even though the credit market remained impaired.

Puzzle II: Secular decline in real and nominal long-term rates. Several papers have

documented the fact that long-term nominal and real rates have been declining in the last

30 years (Caballero et al. (2008), Bernanke et al. (2011), Hall (2017a), among others). This

period also witnessed a significant increase in the size of the credit market. For example,

Philippon (2015) shows that the amount of assets intermediated in the financial sector rose

from approximately 2.5% of GDP in 1980 to 4% of GDP in 2008.

The theoretical mechanism in the model predicts that an increase in the amount of credit

is associated with a reduction in the price of credit—i.e., the spot real rate. Put differently, a

credit expansion produces an increase in aggregate EIS, and this implies that the market has

to compensate the marginal investor with a lower interest rate to incentivize him to smooth
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consumption over time. Due to the single-factor structure of the model and the endogenous

persistence in the credit market fluctuations, this reduction in the level of rates translates

into a decrease in long-term real rates.

To capture these dynamics, I study a transitional dynamics exercise (e.g., King and

Rebelo (1993)) by starting the economy 2 standard deviations below the stochastic steady

state of the endogenous state variable x. Then, introduce the same macro shocks reported in

the previous subsection and shown in Figure 1.11 and I compute long-term real rates in the

model at each period of time. I pin down nominal rates with the same Taylor rule reported

in the endogenous inflation term structure. That is, I keep the same calibration already

shown above.

Figure 1.15 reports the results and compares them with the evidence for long-term rates.

Panel (a) shows the model’s prediction for credit/total equity. In particular, notice that

the figure shows that the amount of credit as a fraction of total wealth in the model is

approximately multiplied by two. In the same period, the data on domestic credit to private

sector over GDP went from 92.4% to 188.0%17, which indicates that the increase in credit

predicted by the model is on the order of magnitude of that in the data. The red bars in

panels (b) and (c) show the average dynamics of the 10-year real rate in the model and in

the data. Nominal rates display a similar pattern, because they are pinned down by the

same Taylor rule (with δπ > 1) as shown in (1.30). That is, the monetary authority anchors

inflation expectations by moving the nominal rate in tandem with the real rate. Thus,

inflation expectations are also trending downwards—which is consistent with the evidence

17Source: World Development Indicators http://databank.worldbank.org/wdi
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reported in Chernov and Mueller (2012).

An Alternative Interpretation for x. Prior studies in the heterogeneous-agents literature

that interpret risk-tolerant investors as financiers (see Silva (2016), Drechsler et al. (2017),

Longstaff and Wang (2012), Santos and Veronesi (2016), among others). According to this

interpretation, the equity of financial firms should be important to capture credit conditions

in the economy; in theory, therefore, it should be useful to understand the behavior of yields.

In this line, I compute the market value of the financial sector equity 18 over the total market

value of equity in CRSP, and I define this as cf (credit factor):

cft =
market value of financial sector equity

market value of total equity
.

Under this alternative interpretation, a higher cft implies that a larger quantity of credit is

being supplied, which translates to lower real and nominal rates. In Figure 1.16, I compare

cf against other related measures. Panels (a) and (b) compare against the proposed measure

by He et al. (2016), in levels and in shocks. Panel (c) constructs cft using the market value

of equity in financial firms over the total market value of equity reported by the Flow of

Funds. Panel (d) compares, at an annual frequency, with the flow of intermediated assets in

the financial sector in Philippon (2015).

To understand how sensible this proposed factor is, I compare cf with the endogenous

state variable in the model. For this, I proceed as before and feed the model with the macro

shocks reported in Figure 1.11. Figure 1.17 compares the fluctuations in cf with the implied

18I consider SIC codes 60-64, which include a broad range of financial institutions.
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series for the endogenous state variable in the model, x. As shown in the figure, x and cf

exhibit a high correlation (0.8). Put differently, cf in the data is high in periods in which

risk-tolerant investors’ balance sheets are relatively well capitalized in the model.

Thus, in this interpretation, cf could be used in term-structure empirical analysis to

further understand yields’ properties (with some guidance from the theory elaborated on

this paper).

1.7 Conclusion

In this paper, I propose a model where the credit market is a key macroeconomic fundamental

for understanding the salient properties of the U.S. real and nominal term structure. In this,

I depart from the representative agent framework and propose a general equilibrium term

structure model with heterogeneous investors in which the amount of credit in the economy

is key in characterizing the equilibrium.

I find that differences in investors’ willingness to substitute consumption across time

is critical to match the salient properties of both the nominal and real term structure.

Endogenous contractions in the amount of credit lead to increases in the real interest rate

and the aggregate price of risk, to incentivize investors with high risk aversion and low

willingness to substitute consumption to clear the markets. Thus, real bonds are risky and

they are negatively exposed to the endogenous risk created by the credit market. This implies

that the marginal investor must be compensated with a premium to hold real bonds. At

an aggregate level, this mechanism generates dynamics for the real rate and aggregate price
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of risk that can be interpreted as a representative agent with time-varying, and negatively

correlated, risk aversion and elasticity of intertemporal substitution.

I provide a decomposition of the nominal term premium, between the endogenous source

of risk created by the credit market and exogenous inflation shocks. I find that, consistent

with recent studies, the model’s real term premium explains a significant portion of the

nominal term premium. Motivated by this, I derive a nominal term structure by introducing

a Taylor rule. I show that when the monetary authority adjusts the nominal rate more than

one-to-one to deviations of inflation from its target, this makes nominal bonds more sensitive

to real risks. Thus, the nominal term structure is steeper than the real term structure for

any correlation between inflation and real shocks. Put differently, the economy exhibits a

significant nominal term premium, even when inflation shocks play no role.

To validate the model’s key theoretical prediction, I introduce macro shocks to the model

and obtain the series of the endogenous state variable. I find that fluctuations in credit in

the model capture well the fluctuations in credit in the data. I use the implied series for

the endogenous state variable and data for yields to evaluate the model’s main theoretical

predictions: the relationship of yields and slope of the term structure with respect to the

endogenous state variable. I find that the data validate the model’s predictions. In addition,

I find that the implied series of the model’s endogenous state variable contain information to

explain short-term nominal interest rate variability that extends beyond well-studied macro

variables (GDP, inflation, and unemployment).

I then use the model to study two interest rate puzzles: the secular decline in long term

real and nominal bonds since the 1980s; and the sudden spike in real rates during the Great
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Recession. I show that these puzzles can be rationalized by the connection between the

credit market and yields. In particular, the sudden spike in real rates during the Great

Recession can be attributed to an endogenous collapse in the aggregate of credit (i.e., a

drastic reduction in the aggregate elasticity of intertemporal substitution). The secular

decline in real rates can be attributed to the contemporaneous increase in the amount of

credit during since the 1980s. Using the Taylor rule, nominal yields inherit the properties

of real yields, as discussed in Section 5. Thus, the model implies—also consistent with the

evidence—a decline in inflation expectations.

This work provides several avenues for future research. For example, it provides a frame-

work to study how unconventional monetary policies generated a reduction in real rates

together with an increase in inflation expectations after Spring 2009. In the model’s pre-

diction, in which policy interventions are not incorporated, the spike in real yields would

have been more persistent (the credit market takes time to rebuild). Also, incorporating the

credit factor into the empirical macro-finance term structure model can improve our under-

standing of how monetary policy affect long-term rates through the credit channel. Lastly,

the mechanism that generates time variation in the aggregate risk aversion and elasticity of

intertemporal substitution can be introduced, in a reduced form, into larger scale models.
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1.8 Tables and Figures

Table 1.1: Evidence

Maturity (quarters)
Panel A. Full Sample 4 8 12 20 28 40 80 diff(40-4)

Mean Nominal 0.0133 0.0139 0.0144 0.0152 0.0158 0.0165 0.0174 0.0033
TIPS 0.0043 0.0044 0.0046 0.0051 0.0055 0.0058 0.0015

St. Dev Nominal 0.0090 0.0088 0.0085 0.0080 0.0076 0.0072 0.0068 -0.0018
TIPS 0.0050 0.0046 0.0043 0.0038 0.0034 0.0030 -0.0020

Panel B. Short Sample I
Mean Nominal 0.0037 0.0042 0.0048 0.0061 0.0072 0.0083 0.0099 0.0047

TIPS 0.0002 0.0003 0.0005 0.0013 0.0021 0.0029 0.0027
St. Dev Nominal 0.0043 0.0040 0.0037 0.0032 0.0030 0.0028 0.0025 -0.0018

TIPS 0.0041 0.0036 0.0033 0.0029 0.0027 0.0024 -0.0017
Panel C. Short Sample II

Mean Nominal 0.0161 0.0167 0.0171 0.0177 0.0182 0.0187 0.0194 0.0026
TIPS 0.0053 0.0055 0.0057 0.0062 0.0065 0.0068 0.0015

St. Dev Nominal 0.0075 0.0072 0.0069 0.0066 0.0064 0.0061 0.0058 -0.0013
TIPS 0.0045 0.0039 0.0035 0.0030 0.0027 0.0024 -0.0021

notes: Full sample is 1971:Q3-2016:Q4. Short sample I is 2003:Q1-2016:Q4. Short sample II is 1971:Q3-

2008:Q2. Numbers are in decimals, at quarterly frequency. Source: Chernov and Mueller (2012), Gürkaynak

et al. (2007), and Gürkaynak et al. (2010).
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Table 1.2: Baseline Calibration

parameters (quarterly)

1. Preferences Value Description
γA 1.5 risk aversion investor A
γB 10 risk aversion investor B
ψA 0.7 EIS investor A
ψB 0.02 EIS investor B
ρ 0.001/4 time preference

2. Endowment and demography
µ 0.0055 drift growth
σ 0.019 diffusion growth
ϕ 0.008 birth/death rate
x 0.11 fraction of new investors A

3. Inflation
δπ 1.5 Taylor coefficient
λπ 0.08 persistence inflation expec.
σπ 0.012 diffusion inflation expec.
πL -0.01 inflation expec. lower bound
π 0.009 mean inflation expec.
φ12 0 cov(dW1, dW2)
φ13 -0.5 cov(dW1, dW3)
φ23 0 cov(dW2, dW3)

notes: I describe the calibration in the main text.
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Table 1.3: Theoretical Moments in the Model

ψB = baseline ψB = 1/γB ψB = ψA
Variable Description Mean St.dev Mean St.dev Mean St.dev
Model
ξA consumption/wealth investor A 0.0108 0.0006 0.0103 0.0002 0.0101 0.0001
ξB consumption/wealth investor B 0.0156 0.0022 0.0131 0.0005 0.0091 0.0001
R risk sharing -2.4514 1.2677 -0.0932 0.0277 -1.6006 0.1924

µq − r expected excess return 0.0146 0.009 0.0058 0.0019 0.001 0.002
σq vol. returns 0.1311 0.0503 0.0572 0.0101 0.007 0.002
r real risk free rate 0.0043 0.0046 0.0047 0.0016 0.0044 0.0004
y(4) real yield 4 quarter 0.0044 0.0046 0.0047 0.0016 0.0044 0.0004
y(40) real yield 40 quarter 0.0058 0.0042 0.0050 0.0015 0.0043 0.0004

y
(80)
t real yield 80 quarter 0.0066 0.0037 0.0052 0.0014 0.0042 0.0003

Data
y(4) 0.0043 0.0050
y(40) 0.0058 0.0030

notes: This table reports theoretical moments from the model and in yield’s data. Numbers

are in decimal, at a quarterly frequency. The first column, ψB = baseline, corresponds to the

parametrization in Table 1.2. The second column, ψB = 1/γB, corresponds to the case in which

B-type investors have CRRA preferences (i.e., ψB = 1/γB = 0.1). The third column, ψB = ψA,

corresponds to the case in which both types of investors have the same EIS. Data for real yields

are as in Table 3.1. Risk sharing R is as in equation (1.17), R (x) =
(

1−γA
1−ψA

)
ξx,A
ξA
−
(

1−γB
1−ψB

)
ξx,B
ξB

.
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Table 1.4: Regression: Elasticities

A. Estimates of the price elasticity,real : y
(N)
t = α

(N)
1 + β

(N)
1 xt + ε

(N)
1,t

β
(4)
1 β

(8)
1 β

(12)
1 β

(20)
1 β

(28)
1 β

(40)
1

OLS estimates -0.042*** -0.041*** -0.039*** -0.037*** -0.035*** -0.033***
Conf. Int. [-0.076;-0.007] [-0.070;-0.011] [-0.066;-0.014] [-0.059; -0.015] [-0.054; -0.016] [-0.049; -0.016]

R2 0.054 0.068 0.079 0.096 0.107 0.119

B. Estimates of the price elasticity, nominal: y
$,(N)
t = α

(N)
2 + β

(N)
2 xt + ε

(N)
2,t

β
(4)
2 β

(8)
2 β

(12)
2 β

(20)
2 β

(28)
2 β

(40)
2

OLS estimates -0.125** -0133*** -0.136*** -0.138*** -0.136*** -0.134***
Conf. Int. [-0.174;-0.075] [-0.177;-0.086] [-0.178;-0.093] [-0.176;-0.099] [-0.172;-0.101] [-0.166;-0.101]

R2 0.174 0.212 0.239 0.272 0.292 0.310

notes: Significance at 1%, 5%, and 10% is indicated with ***, ** and *. Hubert-White standard

errors. Sample period is 1971:Q3-2008:Q2 (i.e., Short sample II in Table 3.1), and the source of

the data for yields is Chernov and Mueller (2012), Gürkaynak et al. (2007), and Gürkaynak et al.

(2010). x is the implied endogenous state variable after feeding the model with the shocks described

in Section 7.
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Table 1.5: Regression: Term Structure Slope

y
(N)
t − y(4)

t = α
(N)
3 + β

(N)
3 xt + β

(N)
4 x2

t + ε
(N)
t

y(8) − y(4) y(12) − y(4) y(20) − y(4) y(28) − y(4) y(40) − y(4)

Constant -0.001*** -0.010*** -0.016*** -0.020*** -0.024***

β
(N)
3 0.071*** 0.123*** 0.19*** 0.239*** 0.290***

β
(N)
4 -0.197*** -0.336*** -0.52*** -0.654*** -0.788***

Net effect [-0.005, 0.003] [ -0.009; .0.006] [-0.013;0.01] [-0.016;0.014] [-0.016;0.017]
R2 0.050 0.051 0.054 0.059 0.066

notes: Significance at 1%, 5%, and 10% is indicated by ***, ** and *. Hubert-White robust

standard errors. Net effect is the confidence interval for the marginal effect
d
(
y
(N)
t −y(4)t

)
dx = β

(N)
3 +

2β
(N)
4 xt. Sample period is 1971:Q3-2008:Q2 (i.e., Short sample II in Table 3.1). Source of data

is Chernov and Mueller (2012), Gürkaynak et al. (2007), and Gürkaynak et al. (2010). x is the

implied endogenous state variable after feeding the model with the shocks described in Section 7.
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Table 1.6: Correlation x and Nominal Yields

y$,(1) y$,(4) y$,(20) x x2

y$,(4) 0.985***
y$,(20) 0.925*** 0.954***
x -0.413*** -0.441*** -0.564***
x2 -0.105*** -0.116 -0.199** 0.571***
x3 -0.333*** -0.369*** -0.474*** 0.842*** 0.721***

notes: Significance at 1%, 5%, and 10% is indicated by ***, ** and *. Sample period is 1971:Q3-

2008:Q2 (i.e., Short sample II in Table 3.1). One quarter (3 months) nominal yield y
$,(1)
t is from

Fama CRSP Treasury Bill files. Four-quarter and (y
$,(4)
t ) and 20-quarter (y

$,(20)
t ) Fama CRSP zero-

coupon files . x is the endogenous state variable in the model, after feeding the shocks reported in

Figure 1.11.

Table 1.7: Short-Term Nominal Rate Regressions, y
$,(1)
t = α0 + α′1ft + vt

(1) (2) (3) (4) (5) (6) (7) (8)
Constant 5.58*** 5.55*** 6.81*** 5.52*** 6.71*** 5.78** 5.45*** 5.94***
CPI core 2.22*** 1.98*** 1.94***

Unemp.gap -0.18 -1.02*** -1.42***
Inflation 1.43*** 1.50*** 1.49***

Real activity 0.02 0.55*** 0.86***
x –2.04*** -1.67*** -2.50*** -2.11*** -2.31*** -2.53***
x2 1.49** 1.90*** 2.31***
x3 -0.65 -0.62 -1.23***

adj-R2 0.54 0.18 0.17 0.60 0.40 0.18 0.63 0.46

notes: Sample period is 1971:Q3-2008:Q2 (i.e., Short Sample II in table 3.1). Significance at

1%, 5%, and 10% is indicated by ***, ** and *. y
$,(1)
t is the 1-quarter nominal interest rate from

Fama CRSP Treasury Bill files. ft is a vector of different macroeconomic variables considered in

each of the table’s columns. Inflation and real activity are constructed as in Ang and Piazzesi

(2003). Inflation is the first principal component of the CPI, PPI, and spot commodity prices.

Real activity is the first principal component of the growth rate of employment and growth rate of

industrial production. The unemployment gap is the difference between actual unemployment and

the natural rate of unemployment from the Congressional Budget Office, as considered by Bauer

and Rudebusch (2017). cf is described at the end of Section 7.

65



Figure 1.1: Model Solution
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notes: This figure shows the model solution, with the calibrated parameters from Table 1.2

(quarterly frequency).
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Figure 1.2: Real Yield Curve
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(a) Real yield curve
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notes: Panel (a) displays the real yield curve in the model for three different levels of x. The

blue (gray) line represents the real yield curve when x is 2 standard deviations below (above) its

mean. The red line represents the real yield curve when x is at its unconditional mean. Panel (b)

displays the expected change in the short-term rate, µr, and the diffusion for the short-term rate,

σr, reported in (1.32). Data is from Table 3.1, full sample.
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Figure 1.3: Term Premia in the Model: covPt
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notes: The left-hand panel shows the conditional covariance between the stochastic discount factor

and real bond returns, across the state space (red, blue, and gray lines correspond to 80, 20, and 4

quarters, respectively). The right-hand panel shows the unconditional covariance across maturities.
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Figure 1.4: The Long-Term Real Yield Curve and Volatility of Forward Contracts
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notes: The left panel shows the real yield curve conditional on different values of the endogenous

state variable x. The blue (gray) line represents the real yield curve when x is 2 standard deviations

below (above) its mean. The red line represents the real yield curve when x is at its stochastic

steady state. The right panel is the standard deviation of 10 forward contracts, starting with

the contract for 1q → 40q, continuing with 40q → 80q, 80 → 120, 120 → 160, and so on, until

280→ 320 in the last bar.
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Figure 1.5: The Nominal Term Structure: Exogenous Inflation Case
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notes: This figure shows the nominal term structure of interest rates in the exogenous inflation

case. In the left-hand panel, I set x to its unconditional mean, and I show the yield curve for three

different values of π . The red line is the nominal term structure when π is at its unconditional

mean level; the gray (blue) line is when π is two standard deviations above (below) its unconditional

mean level. In the right-hand panel, I set π to its unconditional mean, and I show the yield curve

for three different values of x . The red line is the mean x; the gray (blue) line is for x two standard

deviations above (below) x′s mean. By definition, the red line is the same in both panels. Data

from nominal yields are from Table 3.1, full sample.
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Figure 1.6: Decomposition of 80-Quarters’ Nominal Yield
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notes: This figure shows a decomposition of a 20-year nominal bond term premia. The left-hand

panel (both upper and lower) display the real and nominal components over the x state space.

The three lines represent difference levels for the other state variable, π. The red line is when

π is at its unconditional mean; the blue (gray) line is when π is two standard deviations below

(above) the steady state. The right-hand panel (both upper and lower) display the real and nominal

components over the π state pace. The three lines represent difference levels for the other state

variable, x. The red line is when x is at its unconditional mean; the blue (gray) line is when x is

two standard deviations below (above) the steady-state level.
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Figure 1.7: Invariant Distribution (x, π): Exogenous Inflation
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(b) Marginal distributions

notes: (a) shows the invariant bi-distribution in (x, π). (b) depicts the marginal distributions. In

(b), the left-hand panel shows the marginal invariant distribution for π, for different levels of x:

when x is 2 standard deviations below the mean (blue), when it is at its mean (red), and when it

is 2 standard deviations above the mean (gray). Similarly, the right-hand panel in (b) illustrates

the marginal invariant distributions for x, for different values of π. Marginal distributions are

computed by integrating the bivariate mass accordingly.
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Figure 1.8: The Nominal Term Structure: Endogenous Inflation Case
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notes: (a) shows the nominal term structure in the endogenous inflation case. The red line is

when x is at the steady state; the blue (gray) line is when x is two standard deviations below

(above) the mean. In (b), the left panel shows how the mean and volatility of inflation for different

Taylor coefficients δπ, and right panel shows the slope of the nominal term structure for different

Taylor coefficients δπ.
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Figure 1.9: Average Sensitivity Real Bond Yields in the Model: E
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notes: The left panel shows the derivative y
′(T )
x across the state space (red, blue, and gray lines

correspond to 80, 20, and 4 quarters). The right panel shows the unconditional mean across

maturities.
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Figure 1.10: Term Structure Slope
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notes: Panel (a) shows the slope of the real term structure in the model. The red line is the

spread of an 80-quarter yield minus a 4-quarter yield. The blue line is the spread of a 40-quarter

yield minus a 4-quarter yield. The black line is the spread of an 8-quarter yield minus a 4-quarter

yield. The gray line is the invariant distribution. Panels (b) and (c) show y(8)−y(4) and y(40)−y(4)

from the data and x predicted by the model. The red line is the kernel-weighted local polynomial

regression. I use an Epanechnikov kernel function.
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Figure 1.11: Personal Consumption Expenditure Shocks and Series
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notes: The left panel shows the log index of personal consumption expenditures from NIPA

Table 2.3.3. The right panel shows the shocks; following equation (1.34), ∆ log yt −
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)
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σ [W1,t+∆ −W1,t].
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Figure 1.12: Business Cycle Analysis: Credit/GDP Data vs Credit/Y model
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notes: The red line shows the implications for credit over total equity in the model after intro-

ducing the macro shocks in Figure 1.11. I start the economy from the stochastic steady state in

1971:Q3 . The black line is the fluctuations in total credit to the private sector over GDP in the

U.S. (source: The World Bank).
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Figure 1.13: Model Implied x and Yield Curve Data
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(d) x and the slope of nominal yields

notes: Variable x is the endogenous state variable in the model, after feeding the sequence of

macro shocks reported in Figure 1.11, and explained in Section 7. The first principal component

of nominal and real yields is computed over the yields considered in Table 3.1. The slope is the

10-year minus 1-year yield (i.e. ,40 quarters minus 4 quarters), and I compute the annual average

of this spread each quarter.

78



Figure 1.14: Puzzle I: Spike in Real Rates in the Great Recession
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notes: The left panel shows the 40-quarter (10-year) yield in black, and the 4-quarter (1-year)

in red, predicted by the model when I feed the series of macroeconomic shocks reported in Figure

1.11. The right panel shows the result of subtracting the model-implied 4-quarter real rate from the

- quarter nominal rate in the data. That is, this implies a proxy for implied inflation expectations.
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Figure 1.15: Puzzle II: Secular Decline in Long-Term Rates
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(b) Real and Nominal Long-Term Rates:
Model
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(c) Real and Nominal Long-Term Rates: Data

notes: Panels (a) and (b) show the model’s predictions after feeding the macro shocks reported in

Figure 1.11, when analyzing the transitional dynamics from 2 standard deviations below the mean

of x. Panel (a) shows total credit/total equity in the model. Panel (b) shows the implications for

10-year nominal and real rate in the model. Panel (c) shows 10-year nominal and real rates in the

data.

80



Figure 1.16: Comparing the Credit Factor
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(b) cf and He, Kelly and Manela (2016) factor:
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notes: Variable Credit Factor (cf), displayed in all panels, is the market value of net worth of

SIC codes 60-64 over total net worth (source: CRSP). I do a rolling linear detrending each quarter

to remove the persistent component. The availability of cf in CRSP is from 1926, although the

figure shows since 1971:Q3 to be consistent with the yields. Panels (a) and (b) compare with the

factor used in He et al. (2016). Panel (c) compares with the data in the Flow of Funds, Table

L.223. Panel (d) compares, at annual frequency, with the flow of intermediated assets in the

financial sector (source: Philippon (2015)).
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Figure 1.17: Credit Factor vs x in Model
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notes: This figure shows the implications for x in the model, after introducing the macro shocks

in Figure 1.11 . The black line is cf defined in Section 7, and displayed in Figure 1.16.
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1.9 Appendix

Proof proposition (law of motion for x). The law of motion follows by applying Ito’s

lemma in (1.9).

dxt
xt

=
dnA,t
nA,t

− dqt
qt

+

(
dqt
qt

)2

−
(
dqt
qt

)(
dnA,t
nA,t

)
, (1.39)

where the aggregate wealth for A-type investors can be computed as nA,t = x
∫ t
−∞ ϕe

−ϕ(t−ũ)nA,ũdũ,

and qt = nA,t + nB,t. Then

dqt
qt

= xt
dnA,t
nA,t

+ (1− xt)
dnB,t
nB,t

,

so, the terms in (1.39) are

dnA,t
nA,t

− dqt
qt

= (1− xt)
(
dnA,t
nA,t

− dnB,t
nB,t

)
,(

dqt
qt

)(
dqt
qt
−
(
dnA,t
nA,t

))
=

(
dqt
qt

)(
(1− x)

(
dnB,t
nB,t

− dnA,t
nA,t

))
,

= σ2
q1 (xtαA,t + (1− xt)αB,t) (1− x) (αB,t − αA,t)

= σ2
q1 (1− x) (αB,t − αA,t)

where the last step follows for market clearing for shares. Using Itô’s lemma in nA,t and nB,t
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dnA,t
nA,t

=

[
rt + ϕ− cA,t

nA,t
+ αA,t (µq,t − rt)

]
dt+ αA,tσq,tdW1,t + ϕ

(
x

xt

êt
pdt
− 1

)
dt ,

dnB,t
nB,t

=

[
rt + ϕ− cB,t

nB,t
+ αB,t (µq,t − rt)

]
dt+ αB,tσq,tdW1,t + ϕ

((
1− x
1− xt

)
êt
pdt
− 1

)
dt,

Then

σx = x (1− xt)
(
dnA,t
nA,t

− dnB,t
nB,t

)
= x (1− xt) (αA,t − αB,t) ,

µx,t = xt (1− xt)
(
cB,t
nB,t
− cA,t
nA,t

+ (αA,t − αB,t)
(
µq,t − rt − σ2

q1,t

))
+ xt (1− xt)

ϕêt
pdt

(
x

xt
− 1− x

1− xt

)
,

and then xt (1− xt)
(
x
xt
− 1−x

1−xt

)
= (x (1− xt)− (1− x)xt) = (x− xxt − xt + xxt) = (x− xt).

�

Proof proposition (leverage and risk sharing). As stated in FOC, the portfolio share

of A-type agents is

αA =
µq − r
γAσ2

q

+

(
1− γA
1− ψi

)
σξA
γAσq

,

where, notice,

σξA =
ξx,A
ξA

x (1− x) (αB − αA)σq

which means

µq,t − rt
σ2
q

= γAαA −
(

1− γA
1− ψA

)
σξA
σq

= γAαA −
(

1− γA
1− ψA

)
ξx,A
ξA

x (1− x) (αA − αB) .
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Use market clearing for shares

xαA + (1− x)αB = 1

(1− x) (αA − αB) = (αA − 1)

means

µq,t − rt
σ2
q

= γAαA −
(

1− γA
1− ψA

)
ξx,A
ξA

x (αA − 1)

= αA

[
γA −

(
1− γA
1− ψA

)
ξx,A
ξA

x

]
+

(
1− γA
1− ψA

)
ξx,A
ξA

x.

So, we can use this in the conditions for B

αA

[
γA −

(
1− γA
1− ψA

)
ξx,A
ξA

x

]
+

(
1− γA
1− ψA

)
ξx,A
ξA

x+

(
1− γB
1− ψB

)
ξx,B
ξB

x (αA − 1) = γBαB

αA

[
γA −

(
1− γA
1− ψA

)
ξx,A
ξA

x+

(
1− γB
1− ψB

)
ξx,B
ξB

x

]
+

(
1− γA
1− ψA

)
ξx,A
ξA

x−
(

1− γB
1− ψB

)
ξx,B
ξB

x = γBαB.

Define

Rx
t =

[(
1− γA
1− ψA

)
ξx,A
ξA
−
(

1− γB
1− ψB

)
ξx,B
ξB

]
x

then

αA

[
γA
γB
− Rx

t

γB

]
+
Rx
t

γB
= αB,

85



so

xαA + (1− x)αB = 1

xαA + (1− x)

[
αA

[
γA
γB
− Rx

t

γB

]
+
Rx
t

γB

]
= 1

xαA + (1− x)αA

[
γA
γB
− Rx

t

γB

]
+ (1− x)

Rx
t

γB
= 1

αA =
1− (1− x)

Rxt
γB

x+ (1− x)
[
γA
γB
− Rxt

γB

] ,
so

αA − 1 =
1− (1− x)

Rxt
γB

x+ (1− x)
[
γA
γB
− Rxt

γB

] − 1

=
(1− x) (γB − γA)

γBx+ (1− x) [γA −Rx
t ]
.

Notice αA > 1⇔

1− (1− x)
Rx
t

γB
> x+ (1− x)

γA
γB
− (1− x)

Rx
t

γB

1− x > (1− x)
γA
γB

γB > γA

�

Proof proposition (stochastic discount factor). Suppose there is a unique stochastic

discount factor m, with a drift given by a process r and diffusion (price of risk) given by κ.
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Then, the absence of arbitrage implies that

µq − rt = EP
t

[
dmt

mt

dqt
qt

]
(1.40)

= σq1,tκt.

We can solve for κt using the agent’s FOCs and market clearing-conditions. In particular,

I define εi,t = αi,tσq1,t as the exposure chosen by agent i to W1 shocks. The price of this

exposure is κt. Then,

αi,t (µq − rt) = εi,tκt.

Then the FOC for εi,t are

εi,t =
κt
γi

+

(
1− γi

(1− ψi) γi

)
σξi,

and using market clearing for shares, I get xεA + (1− x) εB = σq1, so

κ (x) =
σq1 − x

(
1−γA

(1−ψA)γA

)
σξA − (1− x)

(
1−γB

(1−ψB)γB

)
σξB

x
γA

+ 1−x
γB

where

σξi =
ξ′ix
ξi
σx.

Then, the risk free rate follows by the no-arbitrage condition (1.40). Following expression
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(1.9), and incorporating the laws of motion
dnA,t
nA,t

,
dnB,t
nB,t

, I obtain

dqt
qt

=

[
rt + δ + (xtαA,t + (1− xt)αB,t) (µq,t − rt)− x

cA,t
nA,t
− (1− xt)

cB,t
nB,t

]
dt

+ (xtαA,t + (1− xt)αB,t)σq1,tdW1,t

+

[
ϕ
et
qt
− ϕ

]
dt.

Thus, using market clearing for goods and shares, and then canceling out

dqt
qt

=

[
µq,t + ϕ

et
qt
− yt
qt

]
dt+ σq1,tdW1,t,

dqt
qt

+
yt − ϕet

qt
dt = µq,tdt+ σq1,tdW1,t.

By no-arbitrage, I obtain the expression in equation (1.19)

EP
[
dqt
qt

]
+
yt − ϕet

qt
dt− rt − σq1,tκt = 0.

Using pdt = qt/yt, this can be written as an ordinary differential equation in pd (xt). That is,

using Itô’s lemma in the function pdtyt = qt, I have µq = µpd (x)+µ+σpd (x)σ and σq1 (x) =

σpd (x) + σ. The functions are simply µpd (x) = pd′x
pd
E [dx] + 1

2
pd′′xx
pd
E [dx2] and σpd = pd′x

pd
σx. �

Proof proposition (infinitely lived investor). I first solve for the value function of

the representative investment investor in the economy with aggregate endowment (2.3). To

that end, I use the same power form as in (1.12), together with the first-order condition for
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consumption. Then, I can substitute to get

U =
c1−γ

1− γ ξ
(1−γ)ψ
1−ψ , (1.41)

with ξ being a constant (i.e., there are no endogenous fluctuations in the investment oppor-

tunity set). I can then use (1.41) in 0 = f (U ,c) + EP [dU ] to solve for ξ

0 =
ρ

1− 1
ψ

(ξ − 1) + µ− γ

2
σ2

ξ =
[γ

2
σ2 − µ

](1− 1
ψ

ρ

)
+ 1

The stochastic discount factor, following the martingale approach developed in Schroder and

Skiadas (1999), is given by

mt = exp

(∫ t

0

f ′U ,udu

)
f ′c,t , (1.42)

where the derivatives with respect to the value function U and c are given by

f ′c = ρc−
1
ψ ((1− γ)U)

( 1
ψ
−γ)

1−γ ,

f ′U =
ρ

1− 1
ψ

(
1
ψ
− γ

1− γ

)
c1− 1

ψ (1− γ)
1
ψ
−γ

1−γ U
1
ψ
−γ

1−γ − ρ (1− γ)

1− 1
ψ

,

so the risk-free rate is

rt = −EP
[
dmt

mt

]

89



Using Itô’s lemma in (1.42) and computing the expectation yields

rt = r ≡ ρ (1− γ)ψ

1− ψ [ξ − 1] +
1

ψ
µ− 1

ψ

(
1

ψ
+ 1

)
σ2.

To compute real bond prices, I use a guess-and-verify procedure. That is, I guess that real

bond prices are exponentially affine in the time dimension

P (T ) (t) = exp (A (t)) ,

with

P (0) (t) = 1, ∀t

where At is an unknown function of time. Real bond prices are characterized by the same

Cauchy problem as in the main text,

P
′(T )
t = rP

A′t = r (1.43)

with

A (0) = 0

so the ODE (1.43) is very simple: A (t) = rt. Then yields y
(T )
t = − 1

T
logP

(T )
t = r ∀ (t, T ) .

90



Then the price-dividend ratio is characterized by

pdt =
qt
yt

= EP
t

[∫ ∞
t

mt+u

mt

yu
yt
du

]
.

The pdt = pd is constant, and it has the standard Gordon growth expression. The partial

differential equation characterizing the nominal bond is

P ′t (π, t)

P (π, t)
= −r − π +

P ′π (π, t)

P (π, t)
λπ (π − πt) +

1

2

P ′′ππ (π, t)

P (π, t)
σ2
π (π − πL)

−P
′
π (π, t)

P (π, t)
γϕ13σσπ

√
π − πL, (1.44)

P (π, 0) = 1 ∀π.

I next change variables and assume that 4 (π + πL)λπ = σ2
π to ease calculations19

z = π − πL ,

and notice

P (π) = P (z + πL) ,

P ′π
P

=
P ′z
P
.

Use the solution

P = Ã (t) exp
(
B (t) z + C (t)

√
z
)

, (1.45)

19Notice that when πL = 0, this assumption would led to a violation of the so-called Feller condition.
Because πL < 0, the process is reflected at a point that is below 0.
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where Ã (t) is adjusted for the change in variables. Substituting (1.45) in (1.44), functions

Ã, B, and C solve a system of ordinary differential equations. In particular, the solution for

B follows a particular case of the Riccati equation:

B′t =
σ2
π

2
B (t)2 − λπB (t)− 1 ,

B (0) = 0 ,

the function C(t), associated with the
√
x term solves

0 = −C ′t − λπC (t)−B (t) γϕ13σσπ +
σ2
π

2
B (t)C (t) ,

C (0) = 0 ,

and the constant

0 = −Ã
′
t

Ã
− r + πL + λπ (π + πL)B (t)− 1

2
C (t) γϕ13σσπ +

σ2
π

2
C (t)2

Ã (0) = 1.

Although the solution for A(t), B(t), and C(t) can be solved in closed form, I omit it in

the interest of space(see Longstaff (1989)). However, this system of ODEs can be solved

numerically with any standard routine.

�
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Evidence for the U.K. In the table below, I report evidence for real and nominal yields in

the U.K.. The source of the data is the Bank of England.20 I use the same criteria adopted

for U.S. data and consider the Full Sample the largest available sample for real yields. This

includes 1985:Q1-2016:Q4 for the U.K. Short sample I and Short sample II are as in the

U.S. data, 2003:Q1-2016:Q4 and 1985:Q1-2008:Q2. I report real rates starting from 3 years,

because the shorter maturity available is 2.5 years.

Maturity (quarters)

Panel A. Full Sample 4 8 12 20 28 40 80 diff(40-12)

Mean Nominal 0.0134 0.0136 0.0138 0.0143 0.0147 0.0150 0.0139 0.0012

Real 0.0044 0.0048 0.0050 0.0053 0.0046 0.0006

St. dev Nominal 0.0094 0.0089 0.0085 0.0080 0.0077 0.0072 0.0062 -0.0012

Real 0.0051 0.0047 0.0044 0.0043 0.0040 -0.0011

Panel B. Short Sample I

Mean Nominal 0.0053 0.0057 0.0061 0.0071 0.0078 0.0085 0.0096 0.0028

Real 0.0000 0.0001 0.0001 0.0013 0.0015 0.0013

St. Dev Nominal 0.0051 0.0048 0.0045 0.0040 0.0036 0.0031 0.0022 -0.0017

Real 0.0044 0.0038 0.0034 0.0030 0.0024 -0.0014

Panel C. Short Sample II

Mean Nominal 0.0177 0.0177 0.0178 0.0179 0.0180 0.0179 0.0160 0.002

Real 0.0071 0.0072 0.0073 0.0074 0.0067 0.003

St. Dev Nominal 0.0070 0.0065 0.0062 0.0061 0.0060 0.0059 0.0061 -0.006

Real 0.0022 0.0021 0.0022 0.0022 0.0024 0.000

As can be seen in the table, the nominal and real term structures share similar properties:

20http://www.bankofengland.co.uk/statistics/pages/yieldcurve/default.aspx
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They are upward sloping on average up to 40 quarters (10 years) but then the average yield

of an 80-quarter bond is smaller than the 40-quarter. Small sample II is the exception,

in which on average both real and nominal yield curve are upward sloping. The volatility

of long-term rates is smaller than the volatility of short-term yields. Indeed, the volatility

of real and nominal yields is very similar in Short Sample I (as in the U.S.). Extension:
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Consol bond. In this extension, I consider the pricing of a perpetual (real) bond with

an exponentially decaying coupon, denoted δ. The purpose is to illustrate the main results

in the paper using these alternative financial instruments. To avoid redundancy with the

analysis presented above, I include this subsection in the appendix. The price of the consol

bond, denoted Ct, is

Ct = EQ
t

[∫ ∞
t

e−
∫ s
t (ru+δ)duds

]
≡ C(xt)

Thus, the yield of the bond is yC,t = 1/Ct − δ. The maturity of the bond is determined by

1/δ, and when δ = 0, the bond is a perpetuity. The consol bond is characterized by the

following ordinary differential equation:

− (r (x) + δ) +
1

C
+
C ′x
C
µx (x) +

1

2

C ′′xx
C
σx (x)2 − C ′x

C
σx (x)κ (x) = 0.

In the next figure, I show the yield of Ct for δ = 1/4(= δshort−term), δ = 1/120(= δlong−term),

and δ = 0(= δperpetuity). These are proxies for a 4-quarter, 120-quarter, and perpetual zero-

coupon bonds. The left panel shows the yield yC for different levels of x. The right panel

shows the standard deviation of the three yields. As in the main text, the term structure is

upward sloping and the volatility of yields decreases with maturity.

Lastly, the next figure shows the premium associated with each consol bond (i.e., covPt
(
dm
m
, dC
C

)
=

C′x
C
σx (x)κ (x)). The figure shows that long-term bonds pay an average higher compensation

for risk.

Numerical procedure. As mentioned in the text, I use a spectral collocation method

based on Chebyshev polynomials of the first kind to solve the problems numerically (model,
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real yield curve, nominal yield curve, consol bonds, invariant distribution for x, invariant

bivariate distribution for x and π). This technique yields a highly accurate global solution.

The solution of the model consists of 4 functions that depend on xt: two value functions,

ξA, ξB, the valuation of the aggregate earnings and the valuation of the endowment claim.

Equilibrium is characterized by a system of nonlinear ordinary differential equations with

the 2 HJB equations, the no-arbitrage condition for the endowment claim and the initial

earnings, the market clearing conditions for goods (xξA+(1−x)ξB = y/q), the market clearing

condition for shares, and the first order conditions. Real bond prices are characterized by

the partial differential equation in (1.22), where prices depend on two state variables (x and

t). Nominal bond prices with exogenous inflation are characterized by the partial differential
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in (1.26), where prices depend on three state variables (x, π and t).

The procedure is as follows. Consider a generic function h (x) : (0, 1) → R. Then, the

function can be written in a polynomial form as

h (x) =
K∑
i=0

aiΨi (ωi (x)) +O (K) , (1.46)

where K is the order of the polynomial, Ψ is the basis function (which in this case is the

Chebyshev polynomials), {ai}Ki=0 are unknown coefficients, ωi are the Chebyshev nodes, and

O (K) is an approximation error (which is of order 10−15 in the solutions I provide). The

Chebyshev nodes are

ωi = cos

(
2i+ 1

2 (K + 1)
π

)
, i = 0, ..., K.

Therefore, ωi ∈ [−1, 1] . Since in the model x ∈ (0, 1), I express the domain as 21 xi =

1
2

(1 + ωi) , and therefore x never reaches 0 or 1 for finite K. The Chebyshev polynomials of

order j > 2 can be represented in the following recursive form:

Ψ0 = 1 (1.47)

Ψ1 = ω

Ψj+1 = 2ωΨj −Ψj−1.

Based on (1.47), it is straightforward to compute the derivatives of h (x) using (1.46).

The rest of the procedure is to solve for the associated set of unknown coefficients as {ai}Ki=0

21For π, which is between πL and πmax —where I πmax is set to 5 standard deviations above the mean of
π —the nodes are πi = πL + πmax−πL

2 (1 + ωi).
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in each function, such that equilibrium conditions are verified. Since the state variable x is

strong Markov, based on Duffie and Lions (1992), the founded solution for the value functions

is unique. Solving PDEs for a function h(x, π) is a direct extension of this logic, by extending

the argument to a tensor grid to represent the two-dimensional state space.
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Invariant distribution of π. Let g (π, t, ; π0) be the density process associated with (1.24).

Informally, the invariant distribution is when ∂[g(π,t;π0)]
∂π

= 0 (i.e., g does not depend on time).

The Kolmogorov Forward Equation for the process π with initial condition π0 > πL is

0 = −∂ [g (π)µ (π)]

∂π
+

1

2

∂2
[
g (π)σ (π)2]
∂π2

,

where µ (π) = λπ (π − πt) and σ (π) = σπ
√
πt − πL, as in (1.24). So,

0 = ∂
∂π

{
−g (t, π)µ (π) + 1

2

∂[g(t,π)σ(π)2]
∂π

}
. I can omit the constant for now, it will be used to

integrate the density to one. Changing variables g̃ (π) = g (π)σ (π)2 . Then,

∂
∂π
g̃ (π)

g̃ (π)
= 2

µ (π)

σ (π)2 ,

which means

g (π) =
1

σ (π)2 exp

(
2

∫ u µ (u)

σ (u)2du

)
.

The integral boils down to

∫ u µ (u)

σ (u)2du =
λππ

σ2
π

∫ u du

(u− πL)
− λπ
σ2
π

∫ u u

u− πL
du

so

g (π) =
g

σ2
π

(π − πL)
2

(
λπ(π−πL)

σ2π

)
−1

exp

(
−2λπ
σ2
π

π

)
, π ∈ (πL,∞] (1.48)

where g is a constant to integrate to one. The following is a picture of g under the calibration

in the main text.
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Chapter 2

Endogenous and Exogenous Risk
Premia
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2.1 Introduction

Understanding why risk premia fluctuate is a key question in macroeconomics and finance

(Cochrane, 2011b). The Great Recession has underscored the importance of the credit

market and the role of levered balance sheets in amplifying aggregate uncertainty in the

economy. This body of research argues that risk premia fluctuate endogenously because of

the presence of levered agents. Yet, this view offers an alternative perspective to leading

theories where fluctuations in risk premia are driven by exogenous aggregate shocks to time-

varying fundamental volatility (for example, the Long Run Risk paradigm). How do these

two apparently disconnected views about risk premia interact in general equilibrium? What

is the quantitative importance of each? What are the effects on growth and investment?

In this paper I study an economy with a frictionless financial market where balance sheet

dynamics (i.e., the credit market) amplify exogenous macro-volatility shocks. When the

economy is hit by macro-volatility shocks, asset prices go down, which affect risk-tolerant

agents’ balance sheet relatively more (they are levered). As a consequence, they reduce

their positions in risky assets and asset prices go down even further, since relatively more

risk-averse agents must clear the market—and this affects risk-tolerant agents’ net worth

again.

In my calibrated model, I find that: i) The feedback loop triggered by macro-volatility

shocks creates risk premia fluctuations that are 6 times higher (and closer to the data) than a

model with only standard cash flow shocks (such as Longstaff and Wang (2012)); ii) Balance

sheets are responsible for a 20% of risk premia fluctuations, macro-volatility for 50% and
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the interaction of both account for the remainder 30%; iii) In the production economy setup

commonly used in the literature1, I find the effect of risk premia fluctuations on growth and

investment is mild.

The model has two central ingredients. First, the economy is populated by heteroge-

neous agents, and the sole difference between them is their attitude toward risk. This is a

parsimonious assumption to motivate the credit market, and it allows me to focus on the

mechanism, since one class of agents operates with leverage in equilibrium. Importantly, the

economy features perfect risk-sharing (e.g, Longstaff and Wang (2012), Santos and Veronesi

(2016), among others). That is, I abstract from any sort of financial friction that interrupts

the flows in the credit market. Therefore, my model provides a frictionless benchmark for

other classes of models2, and could potentially help to dissect the precise quantitative impact

of those frictions.

Second, agents in the economy exhibit recursive preferences and share two sources of

aggregate risks: the standard cash flow (or TFP) and, crucially, aggregate uncertainty

shocks—i.e., exogenous fluctuations in aggregate volatility. Recursive preferences are essen-

tial because they allow me to disentangle risk aversion from the elasticity of intertemporal

substitution (EIS). This feature is key in the amplification of macro-volatility shocks via

the credit market. For example, EIS is less than one, high macro-volatility increases asset

prices, strengthens levered agents’ balance sheets and increases the amount of credit in the

economy. This ultimately mitigates the effect of negative TFP shocks. However, an EIS

1He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), Di Tella (2017).

2Such as models that feature different types of financing constraints and/or idiosyncratic shocks.

102



greater than one implies a negative price of macro-volatility risk across the state space and

therefore macro-volatility shocks get amplified.

The main contribution of this paper is to show (theoretically and empirically) how ex-

ogenous fluctuations in aggregate volatility are amplified in a meaningful and nonlinear way

throughout the credit market. The presence of levered balance sheets increase both the

level and the volatility of the equity risk premium, but the amplification of only cash flow

shocks produce quantitatively small fluctuations in premiums. In this sense, the introduc-

tion of macro-volatility improves drastically the ability of the model to match asset prices

data. Put differently, a model with balance sheet dynamics where only cash flow shocks are

amplified have difficulties in reproducing realistic fluctuations in premiums.

I start my analysis by first studying an endowment economy. I show that a risk aversion

greater than one and an EIS greater than one are key to obtaining that both TFP and

macro-uncertainty shocks affect levered agents more than proportionately. Then, I investi-

gate the business cycle properties of the model by feeding an estimated series of shocks from

macroeconomic data. I estimate these shocks using Markov Chain Monte Carlo. In this

exercise I compare the series implied by the model vis-à-vis the ones produced by the rep-

resentative agent benchmark (i.e., no balance sheet dynamics) and by the economy without

macro-volatility shocks (i.e., only cash flow shocks). I find a highly non linear interaction

between macro-volatility and balance sheets: The model’s implied series of the equity pre-

mium have almost twice the level and volatility than the representative agent benchmark,

and 6 times higher volatility than the model with only cash flow shock.

I next estimate the two central predictions of the model. As stated above, the mechanism
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I propose relies on the fact that macro-uncertainty shocks reduce aggregate asset prices, thus

affecting levered agents’ balance sheets more than proportionally. A deterioration of levered

agents balance sheets’ lead to further changes in prices. The key objects capturing this

mechanism are the price-elasticities with respect to balance sheets and macro-volatility. In

other words, for a given price p(v, z), where v is macro-volatility and z is the levered agents’

relative net worth, the model predicts p′z/p > 0 and p′v/p < 0. The magnitude of these

derivatives pin down the volatility of risk premia in the model.

To accomplish this, I estimate the price-elasticities of the U.S. aggregate stock market.

The price-elasticity with respect to z is key in the heterogeneous agents and the credit

market literature (with or without frictions). The unambiguous prediction of these models

is that the price of the risky asset increases with levered agents’ relative net worth (i.e.,

p′z/p > 0). Recent literature on intermediary asset pricing (e.g., Adrian et al. (2014) and

He et al. (2016)) has tested the impact of shocks to intermediaries on asset returns. The

argument is that leverage is useful to capture financial intermediaries’ marginal utility of

wealth. However, the implications for leverage are model dependent: high leverage could be

representing high or low marginal utility of wealth, depending on the modeling assumptions

—leverage is an endogenous variable. To circumvent this, I test for p′z/p, which is ultimately

what governs the amplification mechanism.

I find that both the signs and the magnitudes of the estimates are consistent with the

predictions of the model. More precisely, I find statistically significant elasticities coefficients

of 0.304 and -0.146 for z (balance sheets) and v (macro-volatility), respectively. I show the

model is able to capture these two elasticities. Indeed, the model predicts a price-elasticity
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of 0.174 for z and -0.096 for v. This suggest the model can capture relatively well the role

of the credit market in amplifying aggregate uncertainty.

I conclude the paper by studying how the dynamics of risk premia affect growth and

investment. For this, I extend the analysis to consider an AK growth model with adjustment

costs to investment. I find that results for risk premia are qualitatively and quantitatively

similar than in the endowment economy, while growth and investment rates are mildly

affected. This result is in line with Backus et al. (2015), although in a different setup,

suggesting that fluctuations in discount rates may affect the macroeconomy through another

channel (for example, through the labor market, as suggested in Hall (2017b)).

Related literature. This paper contributes mainly to two strands of literature. First, it

relates to the literature on exogenous fluctuations in aggregate uncertainty (i.e., stochastic

macro-volatility) and their impact on asset prices and macroeconomic quantities. It is worth

emphasizing the distinction between idiosyncratic (or micro) uncertainty and aggregate (or

macro) uncertainty, since the objective of this paper is the latter. After the Great Reces-

sion, there has been a fast-growing literature studying aggregate effects of micro-uncertainty,

particularly using models featuring financing frictions.

For example, Di Tella (2017) studies a production economy where an increase in idiosyn-

cratic uncertainty generates an endogenous increase of aggregate risk. The key ingredient is

a moral hazard problem that creates incentives for some agents to take levered positions in

aggregate TFP shocks. Christiano et al. (2014) introduce agency problems into a standard

general equilibrium economy with production, and they allow the volatility of cross-sectional

idiosyncratic uncertainty to fluctuate over time. They argue that this is a key risk driving
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the business cycle. In a similar line, Dou (2017) shows that the impact of idiosyncratic

shocks on asset prices depends mainly on the source of that shock and the degree of risk

sharing in the economy.

In general, those papers suggest a negative correlation between the volatility of financial

intermediaries equity and aggregate asset prices/returns. As Figure 2.1 illustrates, the ev-

idence is not conclusive about this channel, with the exception of the Great Recession. In

fact, recent papers such as Herskovic et al. (2016) predict a positive relationship between

idiosyncratic volatility of the cross-sectional returns and price-dividend ratios at a firm level.

Figure 2.1 illustrate a similar relationship, but with respect to the aggregate price-dividend

ratio: the idiosyncratic volatility of financial sector equity and the aggregate price-dividend

ratio.3 Thus, based on this evidence, and in contrast to those papers, I take a different route:

I study the role of aggregate volatility (or macro-uncertainty shocks, in the sense of Bloom

(2014)) and its amplification in the credit system.

Aggregate volatility shocks have been widely documented by financial economists (e.g.,

Bansal and Yaron (2004a), Bansal et al. (2014), Campbell et al. (2016), Segal et al. (2015),

among others). In fact, Figure 2.1 shows that macro-volatility has a negative impact on ag-

gregate asset prices. Relative to this strand of literature, this paper contributes by studying,

theoretically and empirically, how these shocks are amplified in the credit market. For this,

heterogeneous agents are key.

The second strand of literature studies the role of heterogeneous agents and the credit

market in the amplification of aggregate shocks. This literature can be traced back to

3Several papers have documented that idiosyncratic volatility is a key factor to price the cross section of
returns. See Herskovic et al. (2016). My paper is silent about cross-sectional implications.
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Dumas (1989) and Wang (1996). This class of models study the implications of investors’

heterogeneity in a Merton (1971)/Lucas (1978) setup. Longstaff and Wang (2012) study an

economy with heterogeneous agents with different attitudes toward risks. Bhamra and Uppal

(2009) study an economy similar economy to show that the introduction of a risk-sharing

instrument generates endogenous volatility. A key distinction of my paper is that they

analyze time-additive preferences and do not incorporate macro-uncertainty shocks. Also,

Gârleanu and Panageas (2015) extends the analysis to recursive preferences, but they also

focus on cash flow shocks. Barro and Mollerus (2014) study a discrete time economy with

disaster risks, where agents exhibit recursive preferences, different risk aversion coefficients,

and a unitary EIS. Drechsler et al. (2017) and Silva (2016) apply this framework to study the

risk channel of conventional and unconventional monetary policy, respectively. Borovicka

(2016) studies an economy with recursive preferences where agents have different beliefs

about the fundamentals. In this sense, my paper contributes to this strand of literature by

taking the step of incorporating aggregate uncertainty shocks and quantifying the role of

balance sheets. This comes with the cost (and the benefit) of introducing an additional state

variable into the analysis but enriching our view of this class of models.

Structure of the paper. The rest of the paper is organized as follows. Section 2 introduces

the model. Section 3 characterizes the equilibrium and the main analytical properties. Sec-

tion 4 elaborates the quantitative exercises. Section 5 extends the analysis into a production

economy. Section 6 concludes.
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2.2 Model

I consider a continuous-time, infinite-horizon economy in which time is indexed by t ≥ 0.

Uncertainty is represented in a probability space (Ω, P,F) satisfying the usual conditions.4

The economy is populated by two types of agents: households and experts, denoted by h

and e, respectively. Total size of the population is normalized to one, and the sole difference

between these two groups of agents is their attitude toward risk. In the rest of the paper,

I assume experts (e) are the relatively more risk-tolerant agent, whereas households (h) are

the relatively more risk-averse agent.

Preferences and demography. All agents in the economy have recursive preferences as

in Duffie and Epstein (1992a). That is

Ui,t = Et
[∫ ∞

t

f (ci,u, Ui,u) du

]
, (2.1)

with

f (ci, Ui) =
ρ

(1− 1/ψ)
(1− γi)Ui

{
c

1−1/ψ
i ((1− γi)Ui)

1/ψ−1
1−γi − 1

}
, (2.2)

where γi is the risk aversion (RA) of agent i ∈ {h, e} and ci represents his level of con-

sumption. Both the discount rate ρ and EIS ψ are the same for h and e. As is well-known,

recursive preferences allow for separation between the EIS and the risk aversion. The special

case where 1/ψ = γi > 1 is the time separable CRRA additive preferences. Despite the fact

that the setup can be extended to incorporate differences in other parameters, in this paper

4Information flows in the filtration {Ft, t ≥ 0} , also with regular properties. See Øksendal (2014) or
Protter (1990).
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I consider only the case of differences in γ : γh > γe. This is a parsimonious assumption to

introduce a credit market and leverage in equilibrium and therefore a tractable alternative

to focus on the mechanism.

I introduce turnover risk to ensure a non-degenerate wealth distribution.5 There are several

alternative assumptions to obtain this.6 I follow Gârleanu and Panageas (2015), Drechsler

et al. (2017), Dou (2017), and Silva (2016). In particular, I assume agents die and are born

at each instant, with exponential probability λ. Agents do not have a bequest motive, and

their death risk is not measurable under the filtration generated by aggregate Brownian

processes (defined below), denoted by Ft. New agents are born in constant proportions z

and 1− z for e and h, respectively, and they are equally endowed in a per-capita basis. The

idea is that net worth of perished agents is pooled and then redistributed pro-rata. The

consequence of introducing mortality risk is that agents’ effective time preference parameter

is higher7—namely λ+ ρ for each agent.

Endowment. The aggregate endowment in the economy is given by

d log yt = µdt+
√
vtdW1,t, y0 > 0 , (2.3)

dvt = κv (v − vt) dt+ σv
√
vtdW2,t, v0 > 0 , (2.4)

5Intuitively, there is a non-zero probability that one group will dominate in the long term because shocks
affect agents differently

6For instance, Brunnermeier and Sannikov (2014) specify different time-preference parameters; Di Tella
(2017) introduce a probability of switching roles;. Di Tella and Kurlat (2017) introduce proportional taxes
and subsidies.

7In the solution, I explore low values for λ. Intuitively, if the death probability is high, agents will behave
as myopic investors.
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where W1 = {W1,t ∈ R; Ft, t ≥ 0} and W2 = {W2,t ∈ R; Ft, t ≥ 0} are standard Brownian

motions representing aggregate uncertainty in (Ω, P,F). All parameters in the process (2.3)-

(2.4) µ, v, κv, and σv have standard properties. The instantaneous expected percentage

change of log-output (log y) is represented by µ, while parameters v, κv, and σv related to the

mean, persistance, and volatility of the process vt, respectively. I explain them in more detail

below. Lastly, I assume d 〈W1W2〉t = ϕdt. That is, macro-uncertainty shocks (represented

by W2) and cash flow shocks (represented by W1) covary with coefficient ϕ < 0. A version of

this parameter has been intensively used in the option pricing literature since Heston (1993).

In (2.3)-(2.4), this assumption intends to capture the stylized fact that aggregate volatility is

higher when output growth is lower (and vice-versa). Below, I also investigate a production

economy where capital accumulation is subject to macro-uncertainty shocks.

Markets and balance sheets. I assume frictionless financial markets. All agents can

continuously trade shares of the aggregate endowment and locally riskless debt. Specifically,

each share pays yt per unit of time, and the total amount of shares is normalized to one.

I define qt as the price of such an asset and let si,t be the number of shares agent i holds.

Then, the cumulative return of this asset consists of the capital gains dqt/qt and the dividend

yield yt/qt. That is,

dRt =
dqt + ytdt

qt
= µR,tdt+ σq1,tdW1,t + σq2,tdW2,t , (2.5)

where µR, σq1, and σq2 are unknown functions to be solved in equilibrium. I assume ni,0 > 0

for i ∈ {e, h} . Agents can also trade risk-free debt. In that market, they can borrow and
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lend from each other at a risk-free rate rt. I next define the agent’s i net worth ni as

ni,t = si,tqt − bi,t , (2.6)

where bi,t is the value of short-term debt issued at time t. Based on (2.5) and (2.6), the

evolution of agent’s i net worth is given by

dni,t
ni,t

=

[
rt −

ci,t
ni,t

+
qtsi,t
ni,t

(µR,t − rt)
]
dt+

qtsi,t
ni,t

(σq1,tdW1,t + σq2,tdW2,t) ,

and as defined in (2.5), σq1 is the diffusion associated to “cash flow” shocks and σq2 to

macro-uncertainty shocks. With these elements in place, I next describe agents’ problem.

Agents’ problem. In this decentralized formulation of the economy, each agent solves

a standard dynamic problem as in Merton (1973). That is, each agent decides how much

to consume and how to wealth allocate in his portfolio of savings. More precisely, in this

economy both investors solve the following dynamic problem:

max
ci,si

Ui,t (2.7)

s.t.

dni,t
ni,t

=

[
rt −

ci,t
ni,t

+
qtsi,t
ni,t

(µR,t − rt)
]
dt+

qtsi,t
ni,t

(σq1,tdW1,t + σq2,tdW2,t) ,

ni,0 > 0,

where Ui,t is defined in (2.1), and the control variables (si,t, ci,t) are the number of shares

he buys and the level of consumption per instant, respectively. I define agent’s i portfolio
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share, denoted by αi,tas the market value of his asset holdings over the market value of his

equity: αi,t = qtsi,t/ni,t.

I next define a competitive market equilibrium in this economy. Despite the fact the economy

exhibits a continuum of heterogeneous agents, they are identical within each group/type.

And because their preferences are homogeneous, each agent within each group features the

same policy decisions. That is, agents within a group i ∈ {i, e} have identical consumption

rates ci,t/ni,t and choose the same portfolio holdings. Notice that demographic turnover does

not change the composition of the population and hence it is possible to aggregate variables

within each class of agents. I turn to the model solution after the following definition.

Definition 4 (Competitive equilibrium in the endowment economy). A competitive equilib-

rium is a set of aggregate stochastic processes adapted to the filtration generated by W1 and

W2. These processes are prices (q, r) and policy functions for each household and each expert

(ci, αi) and net worth ni such that:

i) Given prices and initial net worth, each group of agents i ∈ {e, h} solves his problem.

ii) Market clearing, defined in terms of policies for each group of agents i ∈ {e, h}, is as

follows

ce,t + ch,t = yt ∀t,

se,t + sh,t = 1 ∀t,

ne,t + nh,t = qt ∀t,

where the last condition ne,t + nh,t = qt holds by market clearing in the market for risk-free
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debt.8

2.3 Solving the Model

All agents face a dynamic problem and operate in frictionless markets. I solve for the de-

centralized version of the economy, since closed form solutions are unfeasible and therefore

there are no analytical gains from the Pareto formulation. A key property of the decen-

tralized specification is that the state-space can be simplified. Instead of keeping track of

the aggregate wealth of each agent, the system can be summarized with the wealth share of

agents e as a fraction of total net worth. I define that variable as

zt =
ne,t

ne,t + nh,t
. (2.8)

The solution method consists of looking for a Markov equilibrium in the state space (v, z) ∈

(0,∞)× (0, 1) . I next define the key elements of the model solution.

Exogenous state variable. The exogenous state variable is v and its law of motion is

given by (2.4), which is a standard square root process (e.g.,Cox et al. (1985)). This process

is stationary, and reflected at zero, provided 2κvσ
2/σ2

v > 1.9 The stationary distribution is

Gamma with shape parameter 2κvσ
2/σ2

v and scale σ2
v/2κv.

Endogenous state variable. As stated above, the homogeneity properties of preferences

and policies allow for a simplification of the state space. Instead of keeping track of the

8By Walras law, be+bh = 0. Introducing this into agents’ balance sheets yields ne,t+nh,t = qt. I introduce
this in the specification of the equilibrium because it is going to be relevant below.

9See Feller (1951) and Karlin and Taylor (1981) for a general treatment.
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aggregate net worth for each type of agent, I defined the wealth share of experts as a fraction

of total wealth in (2.9). Proposition 2 establishes the law of motion for z. The proof (in the

appendix) consists of the application of Ito’s lemma to equation (2.9).

Proposition 5 (Law of motion for z). The law of motion for z is given by

dzt = µz,tdt+ σz1,tdW1,t + σz2,tdW2,t (2.9)

with

zσz1 = z (1− z) (αe − αh)σq1 ,

zσz2 = z (1− z) (αe − αh)σq2 ,

zµz = z (1− z)

(
ch
nh
− ce
ne

+ (αh − αe)
(
µR − r − σ2

q2 − 2σq1σq2ϕ− σ2
q1

))
+ λ (z − z) .

where the functions are αe = αe (v, z) ; αh = αh (v, z) ; σz1 = σz1 (v, z) ; σz2 = σz2 (v, z) ; ch
nh

=

ch
nh

(v, z) ; ce
ne

= ce
ne

(v, z) ; µR = µR (v, z) ; r = r (v, z) ; σq1 = σq1 (v, z) and σq2 = σq2 (v, z) .

Proof. See appendix.

Hamilton-Jacobi-Bellman (HJB) and first-order conditions. The value function of

each agent is given by Ui,t (ni,t, zt, vt), and the recursive formulation of problem (2.7) is

represented by the following HJB for each agent:

0 = max
ci,si

f (ci, Ui) + E [dU ] . (2.10)

114



Since preferences are homothetic, the value function Ui,t (ni,t, zt, vt) has the following power

form:

Ui,t (ni,t, zt, vt) =
n1−γ
i,t

1− γJi (zt, vt) ,

where Ji is an auxiliary function capturing the marginal utility of wealth for each agent10,

which in fact fluctuates with the stochastic investment opportunity set. Notice that the

higher is J, the higher the marginal utility of wealth ni. To ease algebra, I will define a

monotone transformation of J and instead solve for ξi (z, v)
1−γ
1−ψ = Ji (z, v) . Notice that

1−γ
1−ψ > 0 provided γ > 1, ψ > 1, and therefore this transformation is increasing. The

unknown function ξi (z, v) follows an Ito process—that is:

dξi
ξi

= µξi,tdt+ σξi1,tdZ1,t + σξi2,tdZ2,t,

where µξi,t, σξi1,t, and σξi2,t are functions that must be solved in equilibrium. Then, using

(1− γ)Ui =

(
niξ

1
1−ψ
i

)1−γ

together with (2.2), the recursive formulation given in (2.10) can

be written as (omitting subscript t )

0 = max
ci,αi

ψ

1− ψ

[(
ci
ni

)ψ−1
ψ

ξ
1
ψ

i − (ρ+ κ)

]
+ r − ci

ni
+ αi (µR − r)−

γ

2
E

[(
dni
ni

)2
]

+
1

1− ψ

(
E
[
dξi
ξi

]
+

1

2

(
ψ − γi
1− ψ

)
E

[(
dξi
ξi

)2
])

+
1− γi
1− ψE

[
dni
ni

dξi
ξi

]
, (2.11)

10The derivative of Ui,t with respect to ni,t depends on Ji
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with αi = siq/ni —i.e., the portfolio share. First-order conditions of this problem are

ci
ni

= ξi , (2.12)

γiαi =
µR − r

σ2
q1 + σ2

q2 + 2σq1σq2ϕ
−
(

1− γi
1− ψ

)(
σξi1σq1 + σξi2σq2 + (σq1σξi2 + σq2σξi1)ϕ

σ2
q1 + σ2

q2 + 2σq1σq2ϕ

)
︸ ︷︷ ︸

hedging term

.

As is usual in portfolio problems à-la Merton (1973), the demand for risky assets has a

myopic component and a hedging component. While the former is a standard mean-variance

term, the latter contains several terms that illustrate how agent’s demand for risky assets

changes with the endogenously time-varying investment opportunity set. Before proceeding

with further analytical properties of the solution, I define a Markov equilibrium in the (v, z)

space. This definition will guide the solution for the following functions:

p (vt, zt) = qt/yt = pt ,

ξi (vt, zt) = ξt,i for i ∈ {e, h} ,

r (vt, zt) = rt.

Definition 6 (Markov equilibrium in the endowment economy). A Markov equilibrium in

(v, z) ∈ (0,+∞)×(0, 1) is a set of adapted stochastic processes p (v, z) , r (v, z) , ξe (v, z) , ξh (v, z)

and policy functions αe (v, z) , αh (v, z) , ce
ne

(v, z) , ch
nh

(v, z) , and a law of motion for z such

that:

i) ξe and ξh solve for experts’ and households’ HJB, and αe, αh, ce, and ch are the corre-

sponding policy functions.
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ii) Markets clear

zĉe + (1− z) ĉh = 1/p ,

zαe + (1− z)αh = 1.

iii) The law of motion of the endogenous state variable z satisfies and (2.9).

I next study the key analytical properties of the model that shed light on the mechanism

behind the results. I first discuss the role of balance sheets and the amplification of macro-

uncertainty shocks. The idea is to understand how z and v affect prices. I next solve for the

portfolio share in the first-order conditions (2.12). That is, I obtain an expression for αe as

a function of the endogenous functions p, ξe and ξh. And finally I derive the prices of risk in

the economy.

Amplification and balance sheet effects. In economies where there is a credit mar-

ket, the slope of the price function,∂p
∂z

> 0, is what generates the amplification of shocks

(see (Brunnermeier and Sannikov, 2016). The greater this slope, the higher the volatility

of returns. The intuition is as follows: A negative shock to dividends affects experts’ bal-

ance sheets more than proportionately, provided they operate with leverage. Therefore, z

decreases, ceteris paribus. Lower z implies experts are reallocating their portfolios by selling

risky assets. And this implies the price of the risky asset goes down again. The higher the

sensitivity of prices to z, the more pronounced this feedback loop between shocks, prices,

and balance sheets.

To understand the role of z and v, I next characterize the equilibrium diffusion processes
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associated to cash flow and macro-uncertainty shocks in (2.5). These diffusion processes are

functions σq1 (v, z) and σq2 (v, z) that show whether returns increases or decreases after a

W1 or W2 shock hit the economy. The diffusions, derived in the appendix as a step to prove

proposition 3, are given by

σq1 (v, z) =

√
v

1− pz(v,z)
p(v,z)

z (αe (v, z)− 1)
, (2.13)

σq2 (v, z) =

pv(v,z)
p(v,z)

σv
√
v

1− pz(v,z)
p(v,z)

z (αe (v, z)− 1)
. (2.14)

The terms
√
v and σv

√
v in the numerators of (2.13) and (2.14), respectively, represent

fundamental volatility. On the other hand, the term in the denominator captures the role

of balance sheets in the amplification of both types of aggregate shocks. Mathematically,

this term captures the geometric series of the feedback loop explained above. A key term is

pv (v, z) in (2.14). Its sign determines whether macro-uncertainty shocks increase or decrease

prices. Provided the intertemporal substitution effect dominates for both agents (ψ > 1),

then pv (v, z) < 0 across the state space. Intuitively, irrespective of which agent is holding

the asset, an increase in v (a positive shock in W2) reduces prices. And this reduction in

asset prices affect experts more than proportionately because they operate with leverage.

Thus, macro-volatility shocks reduce z and therefore prices again. In other words, macro-

uncertainty shocks are amplified by triggering the feedback loop described above.

With this mechanism in mind, it is useful to use the first-order conditions and other

equilibrium conditions to characterize the portfolio share of experts (αe) and analyze the

risk-sharing properties of the mechanism. I do that in the following proposition.
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Proposition 7 (solving for αe). Experts’ demand for risky assets, αe (v, z), is given by

αe (v, z) =
1− (1− z) Λ0 (v, z)

z + (1− z) Λ1 (v, z)
, (2.15)

where Λ0 and Λ1 are reported in the appendix, and

Rz (v, z) = (1− γe)
ξe,z (v, z)

ξe (v, z)
− (1− γh)

ξh,z (v, z)

ξh (v, z)
,

Rv (v, z) = (1− γe)
ξe,v (v, z)

ξe (v, z)
− (1− γh)

ξh,v (v, z)

ξh (v, z)
, (2.16)

T (v, z) =
σv

(
ϕ+ pv(v,z)

p(v,z)
σv

)
1 + 2σvϕ

(
pv(v,z)
p(v,z)

)
+
(
pv(v,z)
p(v,z)

)2

σ2
v

.

Proof. See appendix.

Proposition 4 solves for αe as a function of relevant objects in the model. In particular,

there are three functions: Rz, Rv, and T. I define expressions Rz and Rv as relative risk-

sharing elasticities with respect to z and v, respectively. Those functions are the difference in

the semi-elasticities ξx,i/ξi (adjusted by agents’ i risk aversion). This shows the percentage

change in utility after a unit change in state variable x ∈ {z, v} .11 I next analyze the

signs of T (v, z) and Rv (v, z) because they are important to understanding the risk-sharing

dynamics. Since I solve the model numerically, I explore the intuition using the signs of the

semi-elasticities.

Provided ψ > 1, the intertemporal substitution effect dominates for both types of agents.

Thus, an increase in volatility will induce agents to consume a higher fraction of their wealth,

11Taking log of Ui, then ∂ logUi

∂x = 1−γi
1−ψ

ξi,x
ξi
.
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save more in risk-free debt, and reduce their holdings of the risky asset. But this effect is

particularly strong for households, since γh > γe, and therefore they exhibit a stronger

“precautionary motive.” This implies their consumption-wealth ratio is more sensitive to v,

ξv,h (v, z) > ξv,e (v, z) > 0, which also means
ξh,v
ξh
− ξe,v

ξe
> 0: after an increase in volatility,

households increase the fraction of net worth they consume by more than experts. Therefore,

Rv (v, z) < 0. On the other hand, pv (v, z) < 0 implies T (v, z) < 0 provided ϕ ≤ 0.

Understanding the signs of Rv (v, z) and T (v, z) is important because they characterize

σz1 (v, z) and σz2 (v, z) , as I show in the next proposition. These functions σz1 (v, z) and

σz2 (v, z) represent how z is changes with W1 and W2.

Proposition 8 (Risk sharing and concentration of risk). Experts are relatively more exposed

to both cash flow and macro-uncertainty shocks than households (i.e., σz1 > 0 and σz2 < 0)

iff ψ > 1 and γh > γe > 1.

Proof. See appendix.

This means that a positive cash flow shock improves experts’ net worth relatively more

than that of households (σz1 > 0), and macro-uncertainty shocks deteriorate experts’ net

worth relatively more (σz2 < 0). This is at the core of the risk-sharing mechanism.

Figure 2.2 provides an illustrative characterization of the relationship between the EIS,

the risk aversion coefficients, and the impact of balance sheets and macro-volatility. As I

discuss in the calibration section, in the numerical solution I set ψ > 1 and γh > γe > 1.

This parameter configuration is central in the analysis because macro-uncertainty reduces

prices (pv < 0) and therefore drives z down (σz2 < 0). The reduction in the relative wealth
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of experts produces another round of price reduction (pz > 0).

A useful feature of this setup is that agents trade in frictionless financial markets where

there no arbitrage opportunities. This allows me to derive the implied prices of risk in the

economy “as if” the economy were populated by a representative agent. In other words,

there exists a state-price deflator π (z, v) in the economy following an Ito process

dπt
πt

= −rdt− σπ1dZ1,t − σπ2dZ2,t. (2.17)

The next proposition characterizes the prices of risk σπ1 and σπ2.

Proposition 9 (Prices of risk). Prices of risk σπ1 and σπ2 are given by

σπ1 = −ϕσπ2 (2.18)

+γ (z)

(
σq1 + ϕσq2 −

1

1− ψ

[
z

1− γe
γe

(σξe1 + σξe2ϕ) + (1− z)
1− γh
γh

(σξh1 + σξh2ϕ)

])
σπ2 = −ϕσπ1

+γ (z)

(
σq2 + ϕσq1 −

1

1− ψ

[
z

1− γe
γe

(σξe2 + σξe1ϕ) + (1− z)
1− γe
γe

(σξh2 + σξh1ϕ)

])
,

with

γ (z) =
γeγh

zγh + (1− z) γe
.

Equity premium. With the state-price deflator defined in (2.17) and (2.18), I can price

any security. Following Campbell (2003) and Abel (1999), I model the dividend processes of
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the aggregate stock market as div t = yθt . Applying Ito’s lemma to div t implies

d (div t)

div t
=

[
θµ+

1

2
θ (θ − 1) vt

]
dt+ θ

√
vdW1,t .

Let q̂t denote the price of the claim to future dividends div t and let p̂t = q̂t/div t be the

price-dividend ratio. By absence of arbitrage,

q̂t = Et

[∫ ∞
t

πs
πt

div sds

]
(2.19)

Proposition 10. p̂t solves the following PDE:

−r +
1

p̂
+ E

[
dp̂

p̂
+
d (divt)

divt
+
d (divt)

divt

dp̂

p̂
+
dp̂

p̂

dπ

π
+
d (divt)

divt

dπ

π

]
= 0. (2.20)

Proof. See appendix.

2.4 Results

In this section I describe the quantitative results, discuss the role of macro-uncertainty shocks

in the model, and perform an empirical evaluation of the theoretical predictions of the model.

I organize the content as follows. I first discuss the calibration of the parameters used in

the numerical solution and I study its properties. Next, I feed the model with an estimated

sequence of macro-uncertainty and cash flow shocks. This exercise allow me to study the
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quantitative properties of the model using the discipline imposed by the shocks.12 I estimate

the sequence of shocks using the calibrated parameters and Random-Walk Markov Chain

Monte Carlo (RW-MCMC), a widely used estimation technique to extract latent shocks from

data. Next, I validate the model empirically by focusing on the central prediction about the

role of balance sheets (z) and macro-uncertainty (v) in determining the price of risky assets.

That is, I estimate the elasticity of the price of the risky asset with respect to z and v, which

are at the core of the mechanism described in the model.

Calibration. Table 3.1 summarizes the calibration of the model at a quarterly frequency.

First, I calibrate the expected growth rate of the economy µ and the mean variance v to

match the mean and the variance of real per-capita growth of U.S. consumption expenditures

in the postwar period (1947:Q2-2015:Q4). The source of this data is the NIPA tables from

the Bureau of Economic Analysis. The persistence (κv) and volatility (σv) of the variance

factor are from Zviadadze (2016).13 The value for κv = 0.0649 implies a half-life of macro-

uncertainty shocks of 10.5 quarters, very similar to the one considered by the long-run

risk literature. Volatility of v, σv=0.0019, implies that the standard deviation of dlog(y)

is in the range [0.6% to 2.96%] (annualized) with 0.99 probability. I choose a correlation

parameter between W1 and W2 (i.e. ϕ) of -0.5 to capture the stylized fact that macro-

uncertainty shocks are negatively correlated with cash-flow shocks.14 Quantitative results

are not significantly affected by this choice, and they are robust to values in the interval

12Se, for instance, Hansen and Prescott (1993) and more recently Hansen and Ohanian (2016).

13I adapt the ARG(1) variance factor from Zviadadze (2016) into the square-root process for v by matching
the moments. The ARG(1) process estimated is the discrete time counterpart of the square-root process.

14See, for instance, Bansal et al. (2014), Berger et al. (2016), and Bloom (2014).
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ϕ ∈ (−1, 0]. The parameter θ is chosen to match the fact that aggregate dividends are 5.5

times more volatile than aggregate consumption in the data.

Second, I consider the calibration of agents’ preferences. As established in the main text,

the sole difference between the two classes of agents is their relative risk aversion parameter,

and I assume γh > γe. I choose γh = 20 and γe = 3 to match an average level of leverage of

3.65 in the stochastic steady state, following He and Krishnamurthy (2017)—they use 3.77.

It is worth emphasizing that there are several alternatives regarding the level of leverage

in the data. The main distinction has to do with the precise identification of the marginal

investor operating with leverage in the market for risky securities. For example, Adrian

et al. (2014) argue that those are security broker dealers, He et al. (2016) propose the

official list of primary dealers that are counterparts of the New York Fed, and Gertler et

al. (2016) argue a distinction between institutions within the FEeds regulatory framework

(“whosale banks”) and commercial banks (“retail”). Instead, He and Krishnamurthy (2017)

take a comprehensive view of the financial sector and consider a variety of heterogeneous

sophisticated intermediaries as marginal investors. I follow this line and consider a rather

conservative overall level of leverage of 3.5.

Another important preference parameter is the EIS. I follow the asset pricing literature

and set EIS=1.5. As mentioned above, this is important because a key consequence is that

the price of risky assets goes down when macro-volatility is high. I then calibrate the time-

preference ρ to match a low level of the risk-free rate. The last two parameters, z and λ, are

used to ensure the stationarity of the endogenous state variable. I choose an average experts’

population size of z =8% to match the relative market capitalization of the financial sector
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over the total market capitalization in the CRSP/Compustat database. Lastly, I use a low

death (and birth) rate of 0.004, which means that investors’ expected life is 250 quarters.

So agents’ discount factor is ρ+ λ = 0.0041.

Macro-uncertainty shocks and risk premiums. Figure 2.3 reports the behavior of the

equity premium across the state space. It is clear from both panels that this relationship

is nonlinear, even in the frictionless model environment considered in this paper.15 The left

panel shows that a deterioration in levered agents’ balance sheet is associated with higher

premiums. However, notice this dynamics depend on the level of aggregate uncertainty: a

drop in experts’ net worth affects premiums disproportionately when aggregate uncertainty

is high. The right panel shows it from a different perspective: an increase in macro-volatility

(i.e., vt) affects the risk premium disproportionately more when levered agents’ net worth is

weak.

To gain intuition about these dynamics, it is useful to observe Figure 2.4, which illustrates

σz,2 (the diffusion associated with macro-uncertainty shocks in the Ito process for dz) and

the risk-free rate. The bottom panels show that positive macro-uncertainty shocks have

negative balance sheet effects—that is, σz,2 < 0 across the state space. This is useful to

understand the intuition: positive macro-volatility shock will induce experts to reallocate

their portfolio by reducing their exposure to risky assets. When they sell, they share the

risk with relatively more risk-averse agents (households), that would be willing to take such

a risk at a lower price and higher expected return. Given that experts operate with leverage,

such a reduction in prices affects their net worth more than proportionately, and therefore

15For instance, by introducing an occasionally binding constraint, one could, in principle, obtain even more
nonlinear results.
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z declines. The decline in z affects the endogenous investment opportunity set, triggering

another round of sells, and the dynamics explained in Figure 2.3 follow. This is what means

σz,2 < 0.

On the other hand, the top panels show that the model has tight predictions for the risk-

free interest rate. Its dynamics are qualitatively similar to a “flight-to-quality”—i.e., episodes

of high macro-volatility, coupled with a deterioration of levered agents’ net worth. In those

episodes, there is a higher demand for the risk-free asset, driving its price up and reducing

its instantaneous return. However, those movements are quantitatively smaller than the

ones predicted by other models featuring financial frictions, such as He and Krishnamurthy

(2017) or Di Tella (2017). In those models, interest rate dynamics are qualitatively similar

but reach far more negative values in episodes when experts have low net worth.16 This is

important because that could explain why in those models risk premia spikes. In He and

Krishnamurthy (2017) this could be a result of log-preferences (coupled with the particular

financial constraint), while in Di Tella (2017) it could be a result of the calibration of the

parameters controlling the strength of the moral hazard problem. Here, instead, the real

risk-free rates do not exhibit a drastic swing in those episodes.

Invariant distribution and theoretical moments. I compute the invariant bivariate

distribution by solving the corresponding Kolmodorov Forward Equation (KFE) associated

16For instance, in Di Tella (2017), the real rate reaches -60% and in He and Krishnamurthy (2017) -5%.
Although they use a production economy model, my results for the interest rate are similar both in the
endowment and production setup.
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with v and z. That is, I define the density function g(v, z), and the KFE is given by

0 = −∂ [g (v, z)µv (v)]

∂v
− ∂ [g (v, z)µz (z, v)]

∂z

+
1

2

∂2
[
g (v, z)

(
σ2
z,1 (z, v) + σ2

z,2 (z, v) + 2σz,1 (z, v)σz,2 (z, v)ϕ
)]

∂z2

+
1

2

∂2 [g (v, z)σ2
vv]

∂z2
+
∂2 [g (v, z) (ϕσz1 (v, z) + σz2 (v, z))σv

√
v]

∂z∂v
.

Figure 1.7 shows the bivariate distribution, together with the corresponding marginal

distributions. This plot shows a similar logic to the one developed for the equity premium

and the real rate above. As shown in the left-hand side of panel (b), the marginal distribution

of z has a lower mean, the higher is v—since σz2 < 0 as shown above. The right-hand side

of panel (b) shows this from another perspective: in states of high z, macro-volatility has a

lower mean.

Equipped with the invariant distribution, I next analyze the theoretical moments of the

relevant endogenous variables in the model. Table 2.2 show the results. Conditional mo-

ments are computed with the marginal distribution of z, when macro-volatility is at its

unconditional mean. This helps to illustrate the role of each factor in explaining the results.

In particular, the table highlights two key results. First, the model predicts almost 6 times

more volatile premiums than when v is set to its mean. Thus, macro-uncertainty shocks

introduce significantly more variation in premiums relative to an economy with only balance

sheet dynamics and amplification of cash flow shocks. Second, risk premia dynamics in the

model have a higher level of premiums (approximately 70% higher) and almost twice the
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volatility than the equivalent representative agent economy. In other words, the meaningful

interaction between balance sheets and macro-volatility described above not only generates

time variation in premiums but also in levels. Indeed, the table suggest approximately 50%

of the total volatility of risk premia (1.2%) can be attributed to macro volatility (i.e., the

representative agent benchmark), 20% to balance sheets, and the remainder 30% to the

interaction of both.

In the second column of Table 2.2 I report the theoretical moments for an alternative

parametrization of θ and γh. I set an alternative θ to 7.5, which is indeed in line with

the relative volatility of real dividend growth and real consumption growth in the postwar

period when dividends are computed as in Cochrane (2008) instead of 12-month rolling sum

of dividends. I also set γh=30, which increases the level of leverage and the mean size of

levered investors. Notice now the (harmonic) mean risk aversion is 14.84 instead of 12.68 in

the baseline. In this alternative calibration I find higher (and more volatile) expected excess

returns. Leverage, however, is lower: experts have a higher unconditional mean (i.e., their

net worth has a higher relative market capitalization) and operate with lower leverage.

Endogenous and exogenous risk: The equity premium. I next study the quantitative

predictions of the model using macroeconomic data. To that end, I estimate both cashflow

and macro-uncertainty shocks. As in the calibration, I use real per-capita U.S. consumption

expenditures to filter the model (2.3)-(2.4) and obtain series for W1 and W2 using RW-

MCMC. In Figure 2.6 and Table 3.2 I show both the mean estimated series and the statistical

properties of the estimation. I then introduce the sequence of shocks into the model, starting

from the stochastic steady state, and I evaluate the predictions for the equity premium.
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Figure 2.7 illustrates the results. The solid line displays the equity premium implied

by the model, while the dashed line is the one implied by the model when I shut down

macro-uncertainty shocks—i.e., dW2,t = 0,∀t. These results suggest that introducing macro-

uncertainty generates substantial time-variation in expected returns relative to a model with

heterogeneous agents driven solely by cash flow shocks. For example, Figure 2.7 shows that

during the last recession, the expected return on equity predicted by the model is about 8%

while the one predicted by the model without macro-uncertainty shocks is about 4%.

In Figure 2.7, the blue dashed line shows the fluctuations in the equity premium in a

representative agent economy with the average risk aversion.17 The series clearly shows the

notion of amplification due to balance sheets: when solid black and dashed blue line are

compared, we see the former having a higher level and higher fluctuations.

Because the equity premium is not observable in the data, I next illustrate the predictions

of the model for the dividend-price ratio. It is important to highlight that the model does

not exhibit fluctuations in dividend news, and movements in the dividend-price ratio are

driven by changes in the discount rates. Figure 2.8 illustrates the behavior of the dividend-

price ratio. The level is in line with historical numbers for the aggregate stock market (i.e.,

between 4% and 5% per year), and I also show both the black and red lines for the actual

model and without macro-uncertainty shocks, respectively. Both display countercyclical

behavior—dividend-price ratios are increasing during crisis.

The figure also shows that fluctuations in dividend yields in the data are higher than

in the model. One plausible alternative to explain this is that the model does not feature

17The average risk aversion is the harmonic mean of the individual risk aversions γ =
[
z
γA

+ 1−z
γB

]−1

.
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fluctuations in dividend growth rates—the drift of dividends is constant. But this can help

to address the extent to which the equity premium predicted by the model is sensible or not,

since changes in dividend yields can be decomposed into changes in discount rates or changes

in dividend growth rates. In other words, if changes in dividend growth do not account for a

substantial fraction of changes in dividend yields, then the premiums predicted by the model

are rather conservative predictions.

Through the lens of the results described for the equity premium, a natural question to

ask is, what is the role of balance sheets in these results? In other words, how large is

the amplification mechanism generated by balance sheets, coupled with macro-uncertainty

shock? I describe this in the next subsection.

Endogenous and Exogenous risk: Quantifying the amplification mechanism. Re-

call in the main text, the price-dividend on the dividend claim p̂ = q̂/div is a function on

the state space (v, z) ∈ (0,∞)× (0, 1) . The variance of returns is given by

var (dR (v, z)) = σ2
q̂1 (v, z) + σ2

q̂2 (v, z) + 2σq̂1 (v, z)σq̂1 (v, z)ϕ, (2.21)

where, using Ito’s lemma, the expression for σq̂1 and σq̂2 are given by

σq̂1 (v, z) = (θ +A (v, z))
√
v, (2.22)

σq̂2 (v, z) =

(
p̂v (v, z)

p̂ (v, z)
+A (v, z)

pv (v, z)

p (v, z)

)
σv
√
v, (2.23)

with

A (v, z) =

p̂z(v,z)
p̂(v,z)

z (αe (v, z)− 1)

1− pz(v,z)
p(v,z)

z (αe (v, z)− 1)
, (2.24)
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where notice p is the price of the endowment claim and p̂ denotes the price of the dividend

claim. I refer to the term A (v, z) as the amplification factor. A central element of A (v, z)

is the elasticity (p̂z (v, z) /p̂ (v, z)) z, which I discuss in detail in the next subsection. Also,

notice that when there are no balance sheet effects (i.e. pz = p̂z = 0), then A (v, z) = 0.

Next, I define the fundamental variance of returns, which is given by (2.21) when A (v, z) =

0. This is when σq̂1 = θ
√
v and σq̂2 = (p̂v/p̂)σv

√
v. Finally, I define the ratio of the variance

of returns when there are balance sheet effects and where there are not

R (v, z) = var (dR (v, z)) /var
(
dR (v)

)
. (2.25)

Figure 2.9 shows the predicted series for (2.25), together with the time series for z. The

average amplification level 20.1%, and it is negatively correlated with z. This means that,

in the model, the returns to the risky asset would have a 20.1% higher variance than the

fundamental variance, due to the balance sheet effects summarized by (2.25). It is also clear

that the amplification mechanism is higher during recessions (periods of negative cashflow

shocks and positive macro-uncertainty shocks). This is because z is countercyclical, as shown

by the red dashed line. Notice that prior to the Great Recession, the relative size of experts

was 9%, and the fundamental shocks that hit the economy drove the size to roughly 5%.

Empirical validation of the model. The key elements to evaluate the theory are the

pro-cyclical behavior of p with respect to z and the countercyclical behavior with respect to

v. That is, p̂′z (·) > 0 and p̂′v (·) < 0, which are the model’s predictions. For this, I consider

the following two elasticities: i) βz = (p̂′z/p̂) z capturing the magnitude of the amplification
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effect, and ii) βv = (p̂′v/p̂) v capturing the role of macro-volatility on the risky price.

To accomplish this, I run several exercises based on the following regression:

log p̂t (zt, vt) = α + βz log zt + βv log vt + εt . (2.26)

This specification allows me to capture the relevant elasticities because βz and βv are indeed

βz = (p̂′z/p̂) z and βv = (p̂′v/p̂) v. In order to run (2.26), I need data on p̂, z, and v. For

these three variables, which I describe next, I use monthly data since January 1926 to

December 2015. Notice that this period is different than the postwar period considered in

the calibration. This is because I use the calibration to estimate the quarterly shocks for

real consumption expenditures and this data are only available in the postwar period. The

results presented in this section are robust in the postwar sample.

For p̂, I use CRSP data on the value-weighted portfolio, and I follow a standard practice

to construct the price-dividend ratio following Campbell and Shiller (1989). For v, I use the

realized variance of industrial production over the previous 12 months as in Bansal et al.

(2014).18

Lastly, to construct z I use the market equity of financial firms over the total market equity

of the firms listed in CRSP/Compustat. This measure is a proxy for the conditions in the

credit market. Even more, a central aspect of this sector is that they operate with leverage:

they issue short-term debt while they hold risky investments in their asset side, which is

18I run several robustness checks with different alternatives for v. I don’t report the results here, because
they are similar to the ones I report. These alternatives are, I consider i) expected variance (i.e. Et [vt+1]
from an AR(1)), ii) a GARCH(1,1) over industrial production growth rates, iii) realized variance over the
previous 6 months, iv) realized variance over the previous 24 months.
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a business model reminiscent to what risk-tolerant agents do in the model. Indeed, in the

data, financial firms hold five time higher leverage than any other sector in the economy.19

For this reason, I use the Industry Classification (SIC) codes 60 to 64. That is, I exclude

sector 65 and 67 (“Real State” and “Holding And Other Investment Offices”, respectively)

from the main Finance Division (i.e. Division “H”: Finance, Insurance, And Real Estate).

I compute market equity as in He et al. (2016), which is the number of shares outstanding

times the closing price at the end of each month.

By considering SIC codes 60 to 64, I include a variety of intermediaries that have been

documented in the literature (i.e., depositary institutions, non-depositary institutions, and-

security dealers, among others). Importantly, using z in the empirical analysis allows me to

circumvent the discussion of whether leverage is procyclical or countercyclical. In the data,

however, there is consensus for market leverage to be countercyclical (as in the model pre-

sented above). But another family of models predicts leverage is procyclical (as book value

of leverage in the data).20 However, the object I estimate has a tighter relationship with

theory: virtually any model in the literature of heterogeneous agents with a credit market

predicts p̂′z (z, ·) > 0.

Table 2.3 shows the statistical properties of these variables and Table 2.5 shows the main

regression for equation (2.26). I estimated all the regressions in this section using GMM.21

I first run the regression without v, in column (1), and I obtain a significantly positive

19Using the marked-to-market measure of leverage in He et al. (2016)

20See Adrian et al. (2014) and He et al. (2016), among others, for a discussion on the cyclical properties
of leverage.

21I have also ran 2SLS with several lags as instruments to avoid potential endogeneity issues.
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βz. Notice the order of magnitude is around 0.5, meaning that a 1% increase in the relative

capitalization of the financial sector is associated with a 0.5% increase in the price-dividend

ratio. I next run the regression without z, but including only v. I obtain a statistically

significant negative βv. In column (3) I run precisely equation (2.26)—the main specification.

Results confirm the qualitative prediction of the model: the estimated coefficients show

β̂z > 0 and β̂v < 0. Two observations are worthwhile. First, the prediction for βv < 0

is a central element in the theory I presented in section 2, because that is the mechanism

through which macro-uncertainty shocks are amplified: positive macro-uncertainty shocks

reduce prices, affecting levered agents more than proportionately, triggering the amplification

mechanism discussed in section 2. Secondly, notice that the estimation show
∣∣∣β̂z∣∣∣ > ∣∣∣β̂v∣∣∣ ,

suggesting the relative importance of balance sheet vis-à-vis macro-volatility. Columns (4)-

(6) show the same regressions but exclude the Great Depression.22

In Table 2.6 I show a key robustness exercise.23 I control the regression by including a term

that captures the idiosyncratic volatility of the financial sector. This control is important,

since many researchers have been underscoring the role of idiosyncratic volatility, as I have

reviewed in the literature section. To compute that, I follow Herskovic et al. (2016), equation

1, and I run a regression of the changes in the market value of equity onto the Fama-French

factors. That is, I run dni,t = ai + b′iFt + ε̃i,t, where dni,t is the log-change in the daily

market equity of firm i in the financial sector24, and Ft are the three Fama-French factors.

22Results excluding the Great Recession and/or the Great Depression are similar.

23I performed several other robustness checks, such as computing macro-volatility with a GARCH(1,1),
with an AR(1), exclude SIC code 62 from the definition of z, regress only high-frequency components after
filtering data with Baxter-King filter, among others. In the interest of space, those are available upon request.

24The definition of the financial sector here is the same as above: SIC 60-64.
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Idiosyncratic volatility ṽt is then calculated as the standard deviation of the residuals over

each calendar month. I include ṽt as a regressor in regression (2.26).

Column (1) in Table (2.6) shows the following: When running a regression of the price-

dividend ratio of the aggregate value-weighted portfolio with respect to ṽt (a sensible proxy

for the idiosyncratic volatility of levered agents), the results show that higher levels of id-

iosyncratic volatility are associated with higher prices. In column (2), I show that when

including z, idiosyncratic volatility does not have a significant effect on prices. In column

(3) I run the regression with macro-volatility and idiosyncratic volatility, without introducing

the role of balance sheets. Results still suggest the opposite sign for idiosyncratic volatility

(with a t-statistic of 1.9) and a strongly significant effect for v. And in column (4) I show

that when I include both z and v, and control with idiosyncratic volatility (ṽt), the macro-

volatility elasticity βv is still negative and significant, and the elasticity βz is still positive

and significant.

The main lesson from these exercises is that the estimates validate the theoretical predic-

tions, namely βz < 0 and βv > 0, with the salient feature that |βz| > |βv| .

I conclude by comparing the estimated βz and βv with the theoretical counterparts in the

model, given by E [(p̂′v/p̂) v] and E [(p̂′z/p̂) z]. Figure 2.10 shows the model not only predicts

the qualitative feature that βz < 0 and βv > 0 but also has the quantitative prediction

for the relative magnitude
∣∣∣β̂z∣∣∣ > ∣∣∣β̂v∣∣∣, showing that the balance sheet factor affects the

price-dividend relatively more than macro-volatility. The red bars illustrate the model’s

predictions, whereas the black bars show the results from column (3) in Table 2.5 (i.e.,

the main specification). The model predicts quantitatively smaller balance sheet effects
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than those estimated in the data: while in the model a 1% increase in z is associated with

an increase of 0.174% in the price-dividend ratio, in the data is associated with a 0.280%

increase. And for v, the model predicts quantitatively higher effects than in the data: while

in the model a 1% increase in macro-volatility is associated with a reduction of -0.091% in

the price-dividend ratio, in the data it is associated with a -0.024% decrease.

2.5 Extension to Production Economy

The objective of extending to a production economy is twofold. First, to study the implica-

tions of risk premia fluctuations over growth and investment. Second, to study the extent to

which asset pricing dynamics are qualitatively robust to endowment economy assumption. I

purposefully follow the literature and specify an AK production technology with adjustment

costs to investment (see Brunnermeier and Sannikov (2014), He and Krishnamurthy (2017),

and Di Tella (2017), among others).

Technology. Both agents operate an AK technology and I assume they have the same

productivity to transform capital into final good, in order to keep differences in γi as the

sole source of heterogeneity. The production function for each agent is given by

yi,t = aki,t ,

where the change in “effective units” of capital is given by

dki,t
ki,t

= gi,tdt+
√
vtdW1,t .
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The function gi,t represents the expected growth rate of capital. As in Brunnermeier and

Sannikov (2014), I assume there are adjustment costs in the accumulation of capital. That

is, agent i has to invest ι (gi,t) ki,t to achieve a growth rate gi,t, where ι′ (g) > 0, ι′ (g) > 0.

As before, aggregate uncertainty is given as

dvt = κv (v − vt) dt+ σv
√
vtdW2,t.

Capital accumulation is subject to TFP shocks25, represented by W1, and aggregate uncer-

tainty shocks, represented by W2. I define W1 and W2 as in the endowment economy. Next,

the price of capital is denoted by qt

dqt
qt

= µq,tdt+ σq1,tdW1,t + σq2,tdW2,t ,

while total return on capital is represented in a standard way (capital gains plus dividend

yield)

dRi,t =

[
a− ιi (gi,t)

qt
+ µq,t + gi,t + σq1

√
vt

]
dt+ σR1,tdZ1.t + σR2,tdW2,t ,

where I have defined µRi,t = Et [dRi,t] , σR1,t =
√
vt + σq1,t, and σR2,t = σq2,t.

Balance sheets are as in Section 2, and since the static investment decision is the same for

all agents, the dynamic problem faced by each agent is analogous to that of section 2 (i.e.,

the HJB). I next define a Markov equilibrium in the production economy.

25W1 can be interpreted as TFP shocks if we let k be the “effective” units of capital.
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Definition 11 (Markov Equilibrium in the Production Economy). A Markov equilibrium in

(v, z) is a set of adapted stochastic processes ξe, ξh, q, r, and policy functions αe, αh,
ce
ne
, ch
nh
,

and a law of motion for z such that:

i) ξe and ξh solves for experts’ and households HJB, and αe, αh, ce, and ch are the

corresponding policy functions.

ii) Market clears

zĉe + (1− z) ĉh =
a− ι (g (q))

q

z
qtke
ne

+ (1− z)
qtkh
nh

= 1.

iii) The law of motion of the endogenous state variable z satisfies (2.9).

The convex cost function ι (g) have standard properties are ι′ > 0, ι′′ > 0. A commonly

used specification for ι is26

i (g) = κ1 (g + δ)2 + κ2 (g + δ) , (2.27)

where κ1 and κ2 are constants calibrated to match levels of investment and growth that

are consistent with the data. Therefore, the static optimization problem is to maximize the

26See Brunnermeier and Sannikov (2014), Brunnermeier and Sannikov (2015), Di Tella (2017), and He
and Krishnamurthy (2017), among others.
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expected return on capital by choosing g. That is:

ι′ = q,

g (q) =
q − κ2

2κ1

− δ, (2.28)

and for investment

ι (q) = κ1

(
q − κ2

2κ1

)2

+ κ2

(
q − κ2

2κ1

)
.

From (2.28), it is clear that an x% decrease in q will produce an approximately x
2κ1

% decrease

in the expected growth rate of the economy.

Figure 2.11 illustrates the behavior of the risk premium on productive capital and the real

risk-free interest rate. Overall, results are qualitatively similar to those in the endowment

economy: macro-uncertainty shocks affect premiums and rates more when experts’ balance

sheets are impaired. In Figure 2.12, I show the results for the investment rate (ι) and expected

growth rate of the economy (g). From a qualitative point of view, results are in line with

the analysis elaborated so far. However, both the expected growth rate of the economy and

the investment rate do not fluctuate as much as we observed generally in the data, and in

particular during in the Great Recession (a period characterized by a deterioration of levered

agents’ net worth).27

These results are consistent, for instance, with He and Krishnamurthy (2017), where the

investment rate moves from around 10.5% (in the first best) to 9% in a financial crisis.

27The QoQ annualized growth rate of GDP was -8.2% in 2008:Q3. The QoQ annualized % change of
private investment was -10% in that period with a minimum of -38.7% in 2009:Q1.
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It is important to emphasize that the results are robust to a specification where agents

feature different productivity levels as in Brunnermeier and Sannikov (2014), for instance.

As a matter of fact, if agents exhibit different productivity levels, when the low-productivity

type holds a larger fraction of capital, the expected growth rate of the economy and the

investment rate will go further below what is shown in Figure 2.12. However, the differences

in productivity needed to reconcile the empirical evidence may be extremely large. In other

words, the price of risky capital must show a drastic swing to put the expected growth rate

of the economy at a close level to the one realized in the Great Recession.

Overall, the results suggest that changes in volatility and discount rates may affect the

real economy though another channel (as in Backus et al. (2015)). Hall (2017b) shows that

the labor market is a relevant channel to understand the connection between discount rates

and the real economy.

2.6 Conclusion

There is a growing body of research in macroeconomics and finance investigating the role of

the credit market and the presence of leverage in generating endogenous fluctuations in risk

premia. In this paper I provide a quantitative and theoretical investigation of how the credit

market interacts in general equilibrium with exogenous fluctuations in aggregate volatility.

I develop a model with a frictionless credit market where macro-volatility shocks are am-

plified in a highly nonlinear fashion. In periods of high macro-volatility, asset prices are

low, and therefore levered agents lose relatively more net worth, which generates further
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declines in asset prices. I quantify this mechanism over the business cycle and find that:

i) The feedback loop triggered by macro-volatility shocks creates risk premia fluctuations

that are 6 times higher (and closer to the data) than a model with only standard cash flow

shocks (such as Longstaff and Wang (2012)); ii) Balance sheets are responsible for 20% of

risk premia fluctuations, macro-volatility for 50% and the interaction of both the remainder

30%; iii) Using the commonly analyzed AK production framework with adjustment costs of

investment, I find that results are similar for risk premia, but fluctuations in growth and

investment are mild.

The setup I use can be extended to introduce frictions in the credit market and evaluate

the quantitative implications of those vis-à-vis the ones implied by the frictionless benchmark

used in this paper. A comprehensive understanding about the quantitative implications of

endogenous changes in risk aversion, exogenous volatility and financial frictions is a task for

future research.
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2.7 Tables and Figures

Table 2.1: Calibration

description symbol value
1. Technology

Expected growth rate µ 0.0052
Mean variance v 0.00792

Variance persistence κv 0.0649
Variance volatility σv 0.0019
Corr(W1,W2) ϕ -0.5
Dividend variance θ 5.5
Capital/output a 3

2. Preferences
Time preference ρ 0.0001
Risk aversion e γe 3
Risk aversion h γh 20
EIS ψ 1.5

3. Levered agents
Mean proportion e z 0.08
Turnover λ 0.004

notes: This table shows the model’s calibration at a quarterly frequency. I describe the procedure

in the main text.
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Table 2.2: Theoretical moments

baseline γh = 30, θ = 7.5 rep. agent
Unconditional Conditional Unconditional Conditional Unconditional Conditional

Model Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev
x 9.86 4.42 9.54 4.45 11.35 4.64 10.91 4.69 0 0 0 0

αe (v, z) 3.64 0.49 3.67 0.51 3.12 0.43 3.15 0.45 0 0 0 0
µq − r 3.67 1.17 3.48 0.21 9.87 3.40 9.41 0.90 2.21 0.64 0 0
dp 4.41 0.12 4.42 0.09 7.79 0.44 7.87 0.33 5.59 0.07 0 0

Data
x 8.27 6.03
αe 3.77

µq − r 8.07 4.63
dp 3.54 1.49

notes: Numbers are in percentage annual terms. Baseline refers to the calibration in Table 3.1,

where Rep. Agent is the solution of the model with a single agent with the (harmonic) mean

risk aversion. Unconditional moments are computed with the bivariate distribution for v and

z. Conditional moments are computed with the marginal distribution for z when v = v (i.e.,

f(z|v = v). In the data, x is the market value of sectors SIC 60-64 over total market cap. in 1960

to 2016. αe is from He and Krishnamurthy (2017). Expected excess return, µq−r is from Cochrane

(2011b), table 1. And the dividend-price ratio is computed as in Cochrane (2011b).
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Table 2.3: Sample moments: Regressions

Mean StDev Skew. Kurt Min Max Obs P-Perron AR(1)
log pt 3.3953 0.4411 0 .27623 2.7839 1.9995 4.5456 1068 -3.45** 0.99
log zt 0.0778 0.34699 0.03337 3.9798 -1.6199 1.740 1068 -7.54*** 0.88
log vt -9.5435 1.4524 0.75929 3.1411 -12.6009 -5.0496 1068 -5.90*** 0.98

notes: P-Perron is the test statistic from Phillip and Perron (1988). The null hypothesis is that the

variable contains a unit root, and the alternative is that the variable was generated by a stationary

process. I use fourth-order Newey-West (1987) error correction. I compare the critical values for

the statistic from the interpolated Dickey-Fuller table, in Fuller (1976): 1% -3.96 (*** in the table),

5% -3.41 (** in the table), 10% -3.12 (* in the table)

Table 2.4: Correlations

Full sample (1926-2015) Postwar (1947-2015)
log(p) log(z) log(v) log(p) log(z) log(v)

log(p) 1 1

log(z) 0.4044 1 -0.5401 1
(3.4521) (-2.4282)

log(v) -0.5630 -0.3677 1 -0.5401 0.3474 1
(-2.1379) (-2.8453) (-2.4282) (1.1419)

Observations 1069 1069 1069 828 828 828

notes: This table show the correlation of the variables for both samples. In parentheses, I show
the t-statistic adjusted as in Agiakloglou and Tsimpanos (2012). That is,

t =
ĉorr√

1
T

(
1+ρ̂iρ̂j
1−ρ̂iρ̂j

) ,
where ρ̂i and ρ̂j are the estimated AR(1) coefficient associated to the series considered in the

correlation.
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Table 2.5: Main regression

(1) (2) (3) (4) (5) (6)
Full sample (1926-2015) Ex-Great Dep. (1935-2015)

log(z) 0.512 0.304 0.568 0.314
(0.0965) (0.276) (0.204) (0.167)

log(v) -0.171 -0.146 -0.182 -0.154
(0.0365) (0.0363) (0.0360) (0.0337)

Constant 3.356 1.763 1.977 3.373 1.664 1.900
(0.119) (0.276) (0.279) (0.0688) (0.337) (0.316)

Observations 1069 1069 1069 972 972 972

notes: I estimate regressions using GMM, with heteroskedastic standard errors (in parentheses)

based on Bartlett kernel with optimal lag selection (Newey and West, 1994). Columns (1)-(3) are

the results for the full sample. Columns (4)-(6) exclude the Great Depression. Results are similar

for the period 1935 to 2006 (i.e., excluding both the Great Depression and Great Recession), and I

do not report them to save space. The main specification of equation (2.26) is column (3) and (6).

The rest of the columns should the results. The data are monthly and the sample is 1926-2015. zt
is the market equity of the financial sector over total market equity. I linearly detrend the series of

log(zt) in real time. Financial sector is defined as SIC 60-64 (i.e., excluding Real State and Other

Investment Offices). vt is the realized variance of Industrial Production growth rates over the last

12 months (see Bansal et al. (2014)). pt is the price-dividend ratio of the value-weighted portfolio

(see Campbell and Shiller (1989)).
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Table 2.6: Main regression controlling for idiosyncratic volatility

(1) (2) (3) (4) (5) (6) (7) (8)
Full sample (1926-2015) Ex-Great Dep. (1935-2015)

log ṽt 0.232 0.159 0.162 0.1291 0.342 0.252 0.206 0.135
(0.116) (0.106) (0.085) (0.081) (0.098) (0.094) (0.840) (0.081)

log(z) 0.454 0.2639 0.418 0.296
(0.171) ( 0.133) (0.198) (0.158)

log(v) -0.161 -0.1422 -0.155 -0.135
(0.033) ( 0.0289) (.033) (0.028)

Constant 4.229 3.935 2.434 2.482 4.676 4.303 2.671 2.574
( 0.453) (0.413) (0.441) (0.3719) (0.384) (0.373) (0.442) (0.350)

Observations 1069 1069 1069 1069 972 972 972 972

notes: I estimate regressions using GMM, with heteroskedastic standard errors (in parentheses)

based on Bartlett kernel with optimal lag selection (Newey and West, 1994). Columns (1)-(3) are

the results for the full sample. Column (4)-(6) exclude the Great Depression. Results are similar

for the period 1935 to 2006 (i.e. excluding both the Great Depression and Great Recession), and I

do not report them to save space. The main specification of equation (2.26 ) is column (4) and (6).

The data is monthly and the sample is 1926-2015. zt is the market equity of the financial sector over

total market equity. I linearly detrend the series of log(zt) in real time (results are very similar.).

Financial sector is defined as SIC 60-64 (i.e. excluding Real State and Other Investment Offices).

vt is the realized variance of Industrial Production growth rates over the last 12 months (see Bansal

et al. (2014)). pt is the price-dividend ratio of the value-weighted portfolio (see Campbell and

Shiller (1989)). ṽt is the idiosyncratic volatility of the financial sector, computed as in Herskovic

et al. (2016), equation (1). That is, I run a regression log dni,t = αi + b′iFt + εi,t , where log dni,t
is the change in the market equity of the financial sector and Ft are the 3 Fama-French factors.

Idiosyncratic volatility is then calculated as the standard deviation of residuals within each calendar

month.
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Figure 2.1: Macro-volatility, idiosyncratic volatility, and asset prices
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notes: Panel (a) shows the idiosyncratic volatility of financial firms equity and the aggregate p/d

ratio. Id. vol. is constructed as in Herskovic et al. (2016), equation (1). That is, I run a regression

log dni,t = αi + b′iFt + εi,t , where log dni,t is the change in the market equity of a firm in the

financial sector (SIC 60-64) and Ft are the 3 Fama-French factors. Id. vol. is calculated as the

standard deviation of residuals within each calendar month. The data are monthly and the sample

is 1926 to 2015. The aggregate price-dividend ratio is based on CRSP data, following Campbell

and Shiller (1989). Panel (b) shows macro-volatility and aggregate p/d ratio. Macro-volatility is

constructed as in Bansal et al. (2014). That is, I compute the variance of the 12-month variance

of industrial production growth rates. Panel (c) shows changes in id. vol. and changes in the p/d

ratio. Panel (d) displays the time series of log id. vol. and the aggregate log p/d (standarized

values).
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Figure 2.2: The role of γe, γh, and ψ

notes: This figure illustrates the relationship between the risk aversion coefficients and the elas-

ticity of intertemporal substitution. The case of RA=1/EIS is when both agents have different risk

aversions and therefore different EIS.
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Figure 2.3: Equity premium in the endowment economy
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notes: This figure illustrates the equity premium implied by the model. The left panel considers

the endogenous state variable z in the x-axis and shows the equity premium for three different

levels of the exogenous state variable v. The right panel considers the exogenous state variable v in

the x-axis, and shows the equity premium for three different levels of the endogenous state variable

z. The levels are indicated in the legend, where “sss” means stochastic-steady state (i.e., when the

drift of the corresponding state variable is zero).
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Figure 2.4: Real Interest rate and σz,2
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notes: This figure illustrates the real interest rate and σz,2. The top panels show the real interest

rate. The upper-left panel considers the endogenous state variable z in the x-axis and shows the real

risk-free interest rate for three different levels of the exogenous state variable v. The upper-right

panel considers the exogenous state variable v in the x-axis, and shows the real risk-free rate for

three different levels of the endogenous state variable z. Similarly, the lower panels show for σz,2.

The levels are indicated in the legend, where ”sss” means stochastic-steady state (i.e., when the

drift of the corresponding state variable is zero).
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Figure 2.5: Invariant distribution (v, z) in the endowment economy

(a) Invariant distribution of (x, v)
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(b) Marginal distributions

notes: Panel (a) shows the invariant distribution in two dimensions. Panel (b) shows the invariant

distribution at different point of the state space . The left-hand side shows the marginal invariant

distribution for v for different levels of x: when x is at 2 standard deviations below the mean

(blue), at its mean (red), and 2 standard deviations above the mean (gray). Similarly, the

right-hand side illustrates the marginal invariant distributions for x for different values of v. The

marginal distributions are computing by integrating the bi-variate mass accordingly.
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Figure 2.6: Estimated shocks (series)
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Table 2.7: Estimated shocks (summary statistics)

A. statistics

W1 mean std skew kurt
0.00624 0.9938 -0.16339 3.2342

[-0.02729 0.04102] [0.91248 1.07269] [-0.37222 0.03761] [2.81364 3.87996]
W2

-0.02460 0.9899 0.06004 2.9393
[-0.07399 0.029246] [0.90508 1.07576] [-0.2415 0.372240034] [2.4457 3.6730]

B. correlations

corr(ε1, ε2) true mean
ρ = −0.5 -0.4332

[-0.523728727 -0.3383]

notes: The top panels illustrate the estimated shocks using per-capita total real consumption

expenditures in the United States for the postwar period. Series are standardized so they have zero

mean and unit variance. I report the mean estimation of the shock series. The table reports the

estimated moments, where 2.5% and 97.5% are in parentheses. I use 500,000 draws and I set a

tuning parameter to get around 50% acceptance rate in the RW-MCMC.
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Figure 2.7: Equity premium in the endowment economy, implied series
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notes: This figure illustrates the model’s prediction of the equity premium. The solid black line

shows the equity premium when both cash flow and macro-uncertainty shocks are considered. The

dashed red line is the equity premium when there I shut down macro-uncertainty shocks (i.e.,

vt = v ∀t)̇. Both series are initiated at the stochastic steady state in 1960:Q1. I consider the mean

estimation of the shock series of W1andW2.
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Figure 2.8: Dividend/price in the endowment economy, implied series
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notes: This figure illustrates the models’ implication of the divided-price ratio. The solid black line

shows the dividend-price ratio when both cash-flow and macro-uncertainty shocks are considered.

The dashed red line is the equity premium when I shut down macro-uncertainty shocks (i.e. . vt = v

∀t)̇.). Both series are initiated at the stochastic steady state in 1960:Q1, and I consider the mean

estimation of the shock series. The dashed blue line is the dividend-price ratio of the aggregate

stock market (NYSE/NASDAQ/AMEX) from CRSP. I rescale the series to coincide with the level

of the steady state implied by the model in 1960:Q1.
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Figure 2.9: Amplification of shocks, the ratio R (v, z) in the endowment economy
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notes: This figure illustrates the amplification of shocks as defined in (2.25) and I express it in %.

The left panel shows the time series for R, the right panel shows the time series for the endogenous

state variable z. I consider the mean estimation of the shock series.
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Figure 2.10: Elasticities in the endowment economy: Model versus data
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notes: This figure illustrates the estimated β̂z > 0 and β̂v > 0 in the black bars from equation

(2.26). The numbers are those reported in column 3, Table 2.5. The red bars are the elasticities

from the calibrated model.
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Figure 2.11: Risk premium and risk-free rate in the production economy
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notes: This figure illustrates the excess return on capita (upper panel) and the risk free rate

(bottom panel) in the production economy. In both panels, the endogenous state variable z is in

horizontal axis and the exogenous state variable v is on the right-hand side. The left panels (with z

in the horizontal axis) indicate the behavior of the variables for three levels of v. The right panels

(with v in the horizontal axis) indicates the behavior of the variables for three levels of z.
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Figure 2.12: Investment and expected growth rate in the production economy
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notes: This figure illustrates the investment rate (upper panel) and the expected growth rate of

the economy (bottom panel) in the production economy. In both panels, the endogenous state

variable z is in horizontal axis and the exogenous state variable v is on the right-hand side. The

left panels (with z in the horizontal axis) indicates the behavior of the variables for three levels of

v. The right panels (with v in the horizontal axis) indicate the behavior of the variables for three

levels of z.
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2.8 Appendix

Proof of proposition 1 (Law of motion for the endogenous state variable28). By

applying Ito’s lemma to (2.9), we get

dz

z
=
dne
ne
− dD

D
+

(
dD

D

)2

−
(
dD

D

)(
dne
ne

)
, (2.29)

where

dD

D
= z

dne
ne

+ (1− z)
dnh
nh

.

Therefore we can write (2.29) as

dz

z
= (1− z)

(
dnh
nh
− dne

ne

)
−
(
dD

D

)(
dD

D
− dne

ne

)
,

and we observe that

zσz1 = z (1− z) (αe − αh)σq1,

zσz2 = z (1− z) (αe − αh)σq2.

The drift zµz requires some additional steps of algebra. In particular, notice that

(
dD

D

)(
dD

D
− dne

ne

)
= (1− z) (αh − αe)

(
σ2
q2 + 2σq1σq2ϕ+ σ2

q1

)
,

28I omit time subindex to ease notation.
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where I have used market clearing conditions for the shares. On the other hand,

E
[
(1− z)

(
dnh
nh
− dne

ne

)]
= (1− z)

(
ch
nh
− ce
ne

+ (αh − αe) (µq − r)
)
,

and therefore

zµz = z (1− z)

(
ch
nh
− ce
ne

+ (αh − αe) (µq − r)− (αh − αe)
(
σ2
q2 + 2σq1σq2ϕ+ σ2

q1

))
+λ (z − z) ,

where the term λ (z − z) follows from the demographic turnover. �

Proof of Proposition 4 (Solving for αe). I first characterize the hedging term. For

this, I need the following terms σq1, σq2, σξi1, and σξi2.Note that

σξi1 =
ξz,i
ξi
zσz1,

σξi1 =
ξz,i
ξi
zσz2 +

ξv,i
ξi
σv
√
v,

where zσz1 and zσz2 are given by (2.9), and they are functions of σq1 and σq2. Therefore, the

hedging term depends entirely on the diffusions σq1 and σq2. Those functions can be solved

as follows. First, notice that following the definition for p

dy

y
+
dp

p
+
dp

p

dy

y
=
dq

q
, (2.30)
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and on the other hand, we know p (v, z) so using Ito’s lemma, it turns out

dp

p
= µpdt+

pz
p
zσz1dW1 +

pz
p
zσz2dW2 +

pv
p
σv
√
vdW2, (2.31)

where µp = E [Lp (x, η)], using L as the infinitesimal operator. So with (2.30), (2.31), and

(2.9) I can get σq1 and σq2:

σq1 =

√
v

1− pz
p
z (αe − 1)

, (2.32)

σq2 =

pv
p
σv
√
v

1− pz
p
z (αe − 1)

, (2.33)

and I have used the market clearing condition. Then, the portfolio share can be written

as

γiαi =
µq − r

σ2
q1 + σ2

q2 + 2σq1σq2ϕ
−
(

1− γi
1− ψ

)(
ξz,i
ξi

(αe − 1) z +
ξv,e
ξe
T

(
1− pz

p
(αe − 1) z

))
,

(2.34)

with the auxiliary function T = T (v, z), which is not indexed by i,

T =

(
ϕ+ pv

p
σv

)
σv(

1 + 2ϕpv
p
σv +

(
pv
p

)2

σ2
v

)
.

The next step is to use (2.34) and get an expression for the Sharpe ratio

µq − r
σ2
q1 + σ2

q2 + 2σq1σq2ϕ
= γeαe −

(
1− γe
1− ψ

)(
ξz,e
ξe

(αe − 1) z +
ξv,e
ξe
T

(
1− pz

p
(αe − 1) z

))
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and then the demand for households

αh =
γe
γh
αe +

{
z (αe − 1)Rz +

[
1− pz

p
z (αe − 1)

]
T vRv

}
1

(1− ψ) γh

and with a few steps

αh =

[
γe
γh

+
z

(1− ψ) γh

(
Rz −RvT

(
pz
p

))]
αe +

RvT
(

1 + pz
p
z
)
−Rzz

(1− ψ) γh,

which means

αh = Λ0 + Λ1αe

with

Λ1 =
γe
γh

+
z

(1− ψ) γh

(
Rz − T vRv

(
pz
p

))

Λ0 =

(
1 + pz

p
z
)
T vRv − zRz

(1− ψ) γh

and Rv, Rz, and T are defined in the main text. Using market clearing condition zαe +

(1− z)αh = 1, I get

αe =
1− (1− z) Λ0

z + (1− z) Λ1,

which is expression (2.15). �

Proof of proposition 5 (Risk sharing and concentration of risk). I show the “only

if” part of the proof. That is I assume αe > 1 and derive the conditions under which this is
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true. The “if” is similar. Using market clearing conditions for the shares market,

zσz1 = z (αe − 1)σq1

zσz1 = z (αe − 1)σq2

Since z > 0, I first show the αe > 1. Using (2.15), then

αe > 1

↔

1− Λ0 > Λ1

and I can write 1− Λ0 > Λ1, I find

γh >
T v
(
ξe,v
ξe
− ξh,v

ξh

)
(

1− ψ + T v
ξh,v
ξe

) + γe

(
1− ψ + T v ξe,v

ξe

1− ψ + T v
ξh,v
ξe

)
.

Now, I know T v < 0 provided the substitution effect dominates for both agents (ψ > 1).

Also, ξe,v
ξe
− ξh,v

ξh
< 0 because the precautionary motives are stronger for households than

experts. Also, the term
(

1− ψ + T v
ξh,v
ξe

)
< 0 provided ψ > 1 together with T v

ξh,v
ξe

< 0. This

means

T v
(
ξe,v
ξe
− ξh,v

ξh

)
(

1− ψ + T v
ξh,v
ξe

) < 0.
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And the term multiplying γe positive and less than one since
ξh,v
ξh

> ξe,v
ξe

> 0

0 <

(
1− ψ + T v ξe,v

ξe

1− ψ + T v
ξh,v
ξe

)
< 1

Then since γh > γe and ψ > 1 are assumed, this means αe > 1 in equilibrium. It follows

zσz1 > 0 since σq1 > 0, from (2.32). Also zσz2 < 0 since pv < 0 and experts are levered

(αe > 1). �

Proof of proposition 6 (Prices of risk) Define εi1 and εi2 as the desired ”exposures”

of agent i to W1 and W2, respectively:

εi1 = αiσq1,

εi2 = αiσq2.

The idea is to restate agent’s i problem with control variables ci, εi1, and εi2 instead of ci

and αi. To that end, define excess returns as

µq − r = −cov
(
dπ

π
,
dq

q

)
,

= σπ1σq1 + σπ2σq1 + (σπ1σq2 + σπ2σq1)ϕ.

So I can write

αi (µq − r) = εi1σπ1 + εi2σπ2 + (σπ1εi2 + σπ2εi1)ϕ.

First-order conditions (FOC) for εi1 and εi2 are
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[εi1] : σπ1 + ϕσπ2 − γi (εi1 + εi2ϕ) +
1− γi
1− ψ (σξi1 + σξi2ϕ) = 0 ,

[εi2] : σπ2 + ϕσπ1 − γi (εi2 + εi1ϕ) +
1− γi
1− ψ (σξi2 + σξi1ϕ) = 0.

Using market clearing condition for the shares, we have

zεe1 + (1− z) εh1 = σq1 (2.35)

zεe2 + (1− z) εh2 = σq2 (2.36)

so using FOC on (2.35),

z

(
σπ1

γe
+ ϕ

σπ2

γe
− εe2ϕ+

1− γe
(1− ψ) γe

(σξe1 + σξe2ϕ)

)
+ (1− z)

(
σπ1

γh
+ ϕ

σπ2

γh
− εh2ϕ+

1− γh
(1− ψ) γh

(σξh1 + σξh2ϕ)

)
= σq1

z

(
σπ2

γe
+ ϕ

σπ1

γe
− εe1ϕ+

1− γe
(1− ψ) γe

(σξe2 + σξe1ϕ)

)
+ (1− z)

(
σπ2

γh
+ ϕ

σπ1

γh
− εh1ϕ+

1− γh
(1− ψ) γe

(σξh2 + σξh1ϕ)

)
= σq2
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and inserting the following expressions in the σq1 and σq2 above

zεh2ϕ+ (1− z) εh2ϕ = ϕσq2 ,

zϕ
σπ2

γe
+ (1− z)ϕ

σπ2

γh
= ϕσπ2

[
z

γe
+

1− z
γh

]
,

we arrive to the σπ1 and σπ2 in (2.18). �

Proof of proposition 7 (Equity premium) Since the state-price deflator π follows an

Ito process with regular properties. Mπ

Mπ
t = Et

∫ ∞
0

πs
π0

div sds ,

which can be written as

Mπ
t =

∫ t

0

πs
π0

div sds+
πt
π0

q̃t , (2.37)

where q̂t is defined in (2.19). In the absence of arbitrage Mπ is a martingale with continuous

paths. Therefore, the expected infinitesimal change ofMπ
t must be zero. That yields equation

(2.20). �

Solution procedure.The model solution is characterized by a system of Partial Differ-

ential Equations (PDEs). I solve it using projection methods. The main idea consists on

constructing a tensor grid29 for the state space (v, z) ∈ (0,∞)× (0, 1) , and then project the

unknown functions in the state space,30 In particular, I have to solve for three functions:

29See Judd (1998).

30For a comprehensive review, see Boyd (2001) and Trefethen (2000).
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p (v, z) , ξh (v, z) and ξe (v, z) . I use the HJB for each agent and the market clearing condi-

tion for the consumption good. The remaining objects, are solved from their own definitions:

αe (v, z) , αh (v, z) , µq (z, v) , σq1 (v, z) , σq2 (v, z) , and π (v, z) . A key property of the model is

that both state variables are stationary and therefore a solution for Ue and Uh is guaranteed

to exists and to be unique, following Duffie and Lions (1992). Therefore, although I do not

provide a verification theorem, the argument for existance and uniqueness of the equilibrium

follows Duffie and Lions (1992).

MCMC procedure. In this part of the appendix I describe the MCMC procedure to

estimate the shocks {W1,W2} . I follow Johannes and Polson (2010) and Gamerman and

Lopes (2006) closely. I first discretize the process (2.3)-(2.4), where I consider the time step

a quarter, be consistent with the calibration of the parameters. Define gt = log yt+∆t− log yt

, where ∆ is the time-discretization interval.

gt+∆t = µ∆t+
√
vt∆tε1,t+∆t

vt+∆t − vt = κv (v − vt) ∆t+
√
vt∆tε2,t+∆t

ε1,t+∆t ∼ N (0,∆t)

ε2,t+∆t ∼ N
(
0, σ2∆t

)
corr (ε1,t, ε2,t) = ρ∆t

I assume the decision interval is a quarter. That is, I discretize at the same frequency of
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the data. Then

ε1,t+1 =
gt+1 − µ√

vt
(2.38)

ε2,t+1 =
vt+1 − κvv − (1− κv) vt√

vt
(2.39)

where31  ε1,t+1

ε2,t+1

 ∼ N


 0

0

 ,

 1 ρσv

ρσv σ2
v




Notice that (2.38) and (2.39) are implicitly describing

gt+1 = µ+
√
vtε1,t+1

vt+1 = α + βvt +
√
vtε2,t+1

where I have denoted α = vκv, β = (1− κv) and, I define ε2 = σvρε1 +
√
σ2
v (1− ρ2)ε3,

with ε1 ⊥ ε3. Following Jacquier et al. (2004), I use the following change of variable to ease

notation

σvρ = Ψ

σ2
v

(
1− ρ2

)
= Ω

31If

ε2,t+1 =
vt+1 − κvv − (1− κv) vt

σ
√
vt

then (
ε1,t+1

ε2,t+1

)
∼ N

((
0
0

)
,

(
1 ρσ
ρσ 1

))
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The next step is to compute the joint likelihood p (g, v|Θ) , where Θ is the vector of param-

eters. Using the bivariate normal function

p (g, v|Θ) ∝
T−1∏
t=0

p (gt+1, vt+1| vt,Θ)

=
T−1∏
t=0

1

vt

∣∣∣∣∣∣∣∣
 1 ρσ

ρσ σ2


∣∣∣∣∣∣∣∣
−1/2

exp

−1

2
trace


 1 Ψ

Ψ Ψ2 + Ω


−1 ε1,t+1

ε2,t+1

( ε1,t+1 ε2,t+1

)


simplifying, the joint likelikhood is

p (g, v|Θ) = Ω−T/2

(
T−1∏
t=0

1

vt

)
exp

(
− 1

2Ω

T−1∑
t=0

((
Ω + Ψ2

)
ε2

1,t+1 − 2Ψε1,t+1ε2,t+1 + ε2
2,t+1

))

The last step is to find the posterior distribution to sample the latent state. Using Bayes

Theorem

p (vt| vt−1, vt+1, g,Θ) =
p (vt, vt−1, vt+1, g,Θ)

p (vt−1, vt+1, g,Θ)
=
p (gt+1,vt, vt+1| vt−1,Θ)

p (gt+1,vt, vt+1|Θ)

p (vt−1,Θ)

p (Θ)

∝ p (gt+1,vt, vt+1| vt−1,Θ)

p (gt+1,vt, vt+1|Θ)
p (vt−1|Θ)

∝ p (gt+1,vt, vt+1| vt−1,Θ)
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I omit the algebra, the density p (vt| vt−1, vt+1, g,Θ) is proportional to the following 5 terms

exp

(
−(Ω + Ψ2)

Ω

(gt+1 − µ)2

2 exp (ht)

)

exp

(
Ψ

Ω

(gt+1 − µ) (vt+1 − α)

exp (ht)

)
exp

(
− 1

2Ω

(vt+1 − α− β exp (ht))
2

exp (ht)

)

exp

(
Ψ

Ω

(gt − µ) (exp(ht)− α)

vt−1

)
exp

(
− 1

2Ω

(exp(ht)− α− βvt−1)2

vt−1

)

where ht = log (vt) , to obtain positive draws while sampling.
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Chapter 3

Liquidity Shocks, Business Cycles and
Asset Prices
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3.1 Introduction

In the aftermath of the Great Recession, there has been increased interest by academics

and policy makers in macro models that feature financing constraints. The Kiyotaki and

Moore (2012) model (hereafter KM) of collateral constraints and liquidity shocks is a leading

example. The main idea is that liquidity shocks constrain the fraction of assets that may

be traded in a given period. These changes in liquidity can lead to fluctuations in aggregate

activity and asset prices by tightening firms’ ability to pledge collateral. Numerous studies

have followed KM’s lead (see Ajello (2016), Bigio (2015), Del Negro et al. (2016), Kurlat

(2013), Venkateswaran and Wright (2014)).

In this paper, we study the quantitative properties of liquidity shocks in a real business

cycle (RBC) framework, focusing on asset pricing properties and business cycle implications.

To accomplish this, we use a stripped-down version of KM, characterize the equilibrium, and

study the effects of liquidity shocks via global nonlinear analysis.

Our main findings are that liquidity shocks: (i) improve quantitative prediction of the

levels and volatility of equity premiums relative to the frictionless RBC; (ii) predict highly

nonlinear dynamics for premiums akin to models that feature balance sheet dynamics; (iii)

have negligible effects on the risk-free rate; (iv) improve the relative volatility of investment

to output growth rate; (v) on impact, have mild effects on the levels of investment and

output; and (vi) produce counterfactual dynamics for the correlation between liquidity and

the equity premium—i.e., periods of abundant liquidity are associated with higher expected

returns. Lastly, after we decompose expected returns into a liquidity component and a
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market component, we find that the liquidity component does not account for a large share

of the total premium. We demonstrate, in detail, why liquidity shocks fail to account for

the basic fact that in tranquil times—which are typically associated with abundance in

liquidity—expected excess returns are high.

The main mechanism in the KM framework is as follows. Investment has two character-

istics that cause liquidity to become a source of business cycles. First, access to investment

projects is limited to a fraction of the population, which means that resources must be

reallocated from agents who do not possess these opportunities to those who do. Such re-

allocation requires a credible promise to deliver investment projects, which in turn requires

collateral. Without collateral (or, in the model, less liquidity), that process is interrupted.

Second, repayment cannot be guaranteed. This characteristic requires that investment be

financed, in part, internally (investment requires a down payment). The combination of

these two features creates gains from trading existing assets, and doing so enables agents

to obtain internal funds to relax external financing constraints. Liquidity shocks interrupt

the amount of trade, which affects the supply side of credit. In other words, periods of low

liquidity are associated with a contraction in the supply schedule of claims to investment

projects. When liquidity shocks are sufficiently large, they drive aggregate investment below

its frictionless level. As a result, these shocks also drive a wedge between the price of capital

and its replacement cost, which is a measure of inefficiently low investment.

From an asset pricing perspective, we highlight the fact that the model predicts highly

nonlinear dynamics for risk premiums, together with sensible endogenous time variation. It

also predicts higher levels of premiums relative to those implied by the frictionless benchmark.
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In other words, the expected change in the price of equity is very sensitive to liquidity shocks.

These elements of the model can significantly improve quantitative asset pricing predictions

relative to the frictionless RBC setup.

The KM framework faces some challenges that we underscore throughout the paper. From

a business cycle perspective, liquidity shocks produce countercyclical consumption—it in-

creases in the recession triggered by a liquidity shock. However, the quantitative effect of

this shock on macro variables is small overall: On impact, a major liquidity dry-out pro-

duces a decrease in output of -0.1% from its mean. Regarding asset prices and returns, the

model predicts lower expected returns during periods of scarce liquidity. Thus, the model is

counterfactual in the sense that tranquil times (those of abundant liquidity) are associated

with high expected returns. Our results complement and reinforce other findings in the KM

literature (i.e., Shi (2015)), but our focus on asset pricing offers further insight into the KM’s

implications for risk premiums dynamics.

We next provide a brief review of the literature.

Literature. Our paper is directly related to the literature that follows the KM model.

Del Negro et al. (2016) is an example of this strand. A central element of that paper is the

introduction of nominal rigidities and a monetary policy that is subject to a zero lower bound.

Our paper complements theirs in the sense that we observe that without additional features,

liquidity shocks cannot account for the dynamics of premiums and macro quantities. More

precisely, we observe that liquidity shocks can improve frictionless predictions and come

closer to the observed evidence, although this is not enough. In addition, our focus on

risk premium dynamics emphasizes a central counterfactual element embedded in the KM
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constraint: In periods of abundant liquidity, expected excess returns are high. Lastly, our

paper differs from Del Negro et al.’s because we study the behavior of the model globally,

whereas theirs is restricted to a log-linearized version of the model.

Shi (2015) proposed an similar to ours, with a key difference in the analysis. In our

paper, the labor supply schedule is fixed; liquidity shocks reduce capital accumulation, and

this contracts labor demand. Thus, wages and hours decline in recessions. In contrast, Shi

(2015) uses a “single family” framework with strong leisure-consumption complementarities.

As in our setup, liquidity shocks lead to declines in the investment-consumption ratio. With

leisure-consumption complementarities, labor supply contracts when liquidity shocks increase

consumption. As a result, although liquidity shocks trigger strong reductions in hours,

they also produce counterfactual movements in wages. In addition, our main focus is on

asset prices and risk premium dynamics. We use recursive preferences Epstein and Zin

(1989a), and we calibrate both the elasticity of intertemporal substitution and the risk-

aversion coefficient, as in the leading papers in the asset pricing literature. As noted by Shi

(2015), our results also suggest a relatively higher unconditional level of the equity premium,

but we extend the analysis to study its behavior across the state space.

Recent literature in macroeconomics has also predicted highly non-linear risk premium

dynamics, driven by fluctuations in agents’ balance sheets in models with financial frictions

(Brunnermeier and Sannikov (2014) and He and Krishnamurthy (2013) are prominent ex-

amples). Our results are in this vein, but with the crucial distinction that in our framework,

endogenous fluctuations in expected returns are driven purely by occasionally binding con-

straints. This is because, as in KM, we assume that investment opportunities are i.i.d., and
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therefore we do not have to keep track of investor’s balance sheets in the state vector.

The paper contains four sections. In Section 2, we present the model, characterize the

solution, and discuss the intuition behind the effects. We explore the quantitative predictions

of the model in Section 3, and Section 4 concludes.

3.2 Model

We begin by describing a version of the KM model, abstracting from fiat money. We consider

an infinite-horizon economy in which time is discrete and denoted by t = 0, 1, ... . There are

two populations, entrepreneurs and workers, each with unit measure . The former do not

work, but invest in physical capital, while the latter do not invest but supply labor. In each

period, entrepreneurs are randomly assigned to one of two types: investors or savers, labeled

by superscripts i and s.

The economy is subject to two sources of aggregate uncertainty: productivity and liquidity

shocks. We represent the productivity level in the economy by At ∈ A and liquidity by φt ∈

Φ ⊂ [0, 1]. The nature of liquidity shocks will affect the ability to sell equity and will soon

become clear. Importantly, we assume that both At and φt follow a finite-space stationary

Markov process with a stationary transition probability Π : (A×Φ)× (A×Φ)→ [0, 1] .

While φt and At are exogenous aggregate variables, there is endogenous capital accumula-

tion. We denote the level of capital in the economy by Kt ∈ K; this completes the description

of the state space. Hence, we define st = {At, Kt, φt} ∈ St ≡ (A×K×Φ) as the vector that

represents a point in the state space.
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We next describe the production side of the economy and then the entrepreneur’s problem.

3.2.1 Production

A representative firm produces final consumption goods. The firm hires labor from workers

and capital from entrepreneurs. Production is carried out according to a Cobb-Douglas

technology

yt = AtF (kt, Lt) ,

where yt is output and F (k, L) = kαL1−α. The profit maximization problem is standard,

and the firm demands
{
Ld, kd

}
to solve

πt = max
Ld,kd

At(k
d
t )
α(Ldt )

1−α − wtLdt − rtkdt , (3.1)

where wt is the real wage and rt the net return on capital.

3.2.2 Entrepreneurs and investment

Preferences. Entrepreneurs feature recursive preferences with Kreps-Porteus aggregator,

as in Epstein and Zin (1989a):

Vj,t =
[
cρj,t + βEt

[
V 1−γ
j,t+1

] ρ
1−γ
] 1
ρ

. (3.2)

In this notation, we use ρ = 1− 1/ψ, where ψ is the elasticity of intertemporal substitution

(EIS) and γ the risk-aversion parameter. We represent the certainty equivalent as µt =
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Et
[
V 1−γ
j,t+1

] 1
1−γ . Notice that both types of entrepreneurs j = (savers, investors) have the

same preferences, and the only source of heterogeneity is their investment opportunities.

Investment opportunities. Investment opportunities arrive randomly, are distributed

i.i.d across time and agents, and are independent of aggregate shocks.1 In particular, an

investment opportunity arrives with probability π. We label entrepreneurs who have an

investment opportunity “investors”—whose mass is π—and those without such opportunity

“savers”—whose mass is 1− π. Entrepreneurs face the following budget constraint:

ct + idt + qt∆e
+
t+1 = rtnt + qt∆e

−
t+1. (3.3)

The right-hand side of (3.3) corresponds to the resources available to the entrepreneur. The

first term is the return to equity holdings, where rt is the return on equity and nt is the

amount of equity held by the entrepreneur. The second term on the right is the value of equity

sales, qt∆e
−
t+1, where qt represents the price of equity. This term is the difference between

the next period’s stock of equity e−t+1 and the nondepreciated fraction of equity owned in

the current period λe−t . The entrepreneur uses these funds to consume ct, to finance down

payments for investment projects, idt and to purchase outside equity qt∆e
+
t+1. Each unit of e−t

entitles other entrepreneurs to rights to the revenues generated by the entrepreneur’s capital,

and e+
t entitles the entrepreneur to revenues generated by other entrepreneurs. Then, the

1This assumption facilitates aggregation, as we explain below.
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net equity for each entrepreneur and the law of motion for capital are given by

nt = kt + e+
t − e−t , (3.4)

kt+1 = λkt + it , (3.5)

where it is the aggregate investment we define below. The sole difference between investors

and savers is that the latter are not allowed to invest directly by using internal funds—they

do not have an investment opportunity. That is, they are constrained to idt = 0. Then, the

law of motion for outside equity and issued equity is given by

e+
t+1 = λe+

t + ∆e+
t+1, (3.6)

e−t+1 = λe−t + ∆e−t+1 + ist ,

and we next describe ist , which is the entitlements to others entrepreneurs ( given by an

investment contract).

Budget and financing constraints. When an investment opportunity is available, en-

trepreneurs choose a scale for an investment project, it. Projects increment their capital

stock one for one with the size of the project. Each project is funded by a combination of

internal funding, id, and external funds ift . External funds are obtained by selling equity

that entitles other entrepreneurs to the proceeds of the new project. Thus, the following

accounting identity holds: it = idt + ift . The investment project it can be also be divided

into final ownership iit of the investor and the ownership of other entrepreneurs, ist . That is,
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it = ist + iit.

Since we assume that equity is homogeneous and equity markets are competitive, investors

can raise qti
s
t funds. Thus, external financing is equal to ift = qti

s
t . Notice that at the end

of the period, the investing entrepreneur increases his equity in iit = it − ist , while he has

contributed only it − qtist .

In addition to the accounting principles stated above, investment is subject to moral

hazard: Investors can divert funds from projects. By diverting funds, they are able to

increment their equity up to a fraction 1−θ of the total investment. If they divert funds, the

remainder of the project is lost. No enforcement or commitment technologies are available.

Therefore, the incentive compatibility condition for external financing is equivalent to

(1− θ) it ≤ iit ⇒ ist ≤ θit , (3.7)

which means that outside equity holder’s stake in the project may not be higher than θ. It

is worth emphasizing that the distinction between inside and outside equity renders the KM

model a q-theory of investment. The wedge occurs as a combination of two things: First,

only a fraction of agents have access to investment opportunities, which generates a demand

for outside equity. Limited enforcement causes the supply of outside equity to be limited by

the incentive compatibility constraints. The value of q must adjust to equate demand with

supply and this price may differ from 1.

In addition to the incentive compatibility constraint implied by moral hazard (3.7), there

is a constraint on the sales of equity created in previous periods. Resellability constraints
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impose a limit the equity that can be sold at every period. These constraints depend on the

liquidity shock φt

∆e−t+1 −∆e+
t+1 ≤ λφtnt . (3.8)

Kiyotaki and Moore (2012) motivates these constraints by adverse selection in the equity

market. Bigio (2015) and Kurlat (2013) show that such a constraint can follow from adverse

selection in the quality of assets. There are multiple alternative explanations for why liquidity

may vary over the business cycle.What matters here is that liquidity shocks φt prevent equity

markets from materializing gains from trade. Our focus is to study how shocks to liquidity

can improve the predictions of business-cycle and asset-pricing theory without prying on

where these shocks come from.

The investor’s objective is to maximize her proceeds from total investment iit by choosing

a positive amount of ist . We solve that program subject to the accounting identities it =

qti
s
t +i

d
t = iit+i

s
t , and, importantly, the constraint ist ≤ θit. Once we substitute the accounting

identities, the investment decision —given by idt— is characterized by

max
{ist}

idt + (qt − 1) ist , (3.9)

st. ist ≤ θ
(
idt + qti

s
t

)
.

Interpretation of this problem is clear. For every project, the investing entrepreneur increases

her stock of equity idt + (qt − 1) ist , which is the sum of the down payment plus the gains

from selling equity corresponding to the new project, ist . The constraint says that the

amount of outside funding is limited by the incentive compatibility constraint. If qt ∈
(
1, 1

θ

)
,
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the problem is maximized at the points at which the incentive compatibility constraint

binds. Therefore, within this price range, for every unit of investment it, the investing

entrepreneur finances the amount (1− qtθ) units of consumption and owns the fraction

(1− θ) . This problem characterizes investors’ resource constraint, which we state in the

following proposition.

Proposition 12. [Investors’ resource constraint] When qt > 1, we can re-write investors’

budget constraint as follows

ci,t + qRt nt+1 =
(
rt + λqit

)
nt,

where qRt = 1−θqt
1−θ and qit = φtqt + (1− φt) qRt . When qt = 1, the budget constraint is identical

to that of savers, and is given by

ct + qtnt+1 = (rt + λqt)nt.

Proof. See appendix.

3.2.3 Agents’ problems

Workers. We assume that workers are hand to mouth, and therefore face a static problem:

choosing how much to consume and work. Their preferences are

Ut (cw,t, Lt) = cw,t −
κ

1 + ν
L1+ν
t , (3.10)
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and the budget constraint is just cw,t = wtL
s
t , where Lst is the supply of labor chosen to

maximize Ut.

Savers. For savers, the problem consists of maximizing the value function (3.2) by choosing

the level of consumption and equity

Vs,t = max
cs,t,ns,t+1

[
cρs,t + βEt

[
V 1−γ
s,t+1

] ρ
1−γ
] 1
ρ

(3.11)

s.t.

cs,t + qtns,t+1 = (rt + qtλ)nt ≡ ωs,t.

Investors. Similarly, investors maximize their value function, but their investment oppor-

tunity set is different from that of savers because their budget constraint encodes the optimal

investment decision through the price qit.

Vi,t = max
it,ci,t,ni,t+1

[
cρi,t + βEt

[
V 1−γ
i,t+1

] ρ
1−γ
] 1
ρ

(3.12)

s.t.

ci,t + qRt ni,t+1 =
(
rt + qitλ

)
nt ≡ ωi,t.

We next define the equilibrium and elaborate on the model’s solution.

3.2.4 Equilibrium

In this section, we first define equilibrium and characterize the optimality conditions for each

class of agents. We then provide a decomposition of the returns on wealth.
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Definition 13. [Recursive competitive equilibrium] A recursive competitive equilibrium is a

set of price functions {q, w, r}, real quantities cj, n
′
j, ij, L for j = s, i, a sequence of distribu-

tion of individual equity holdings Λt, and a transition (law of motion) for the aggregate state

of the economy Ξ, such that: (1) given prices, optimal policies solve agents problems (i.e.,

those of firms, workers and entrepreneurs); (2) goods market clears; (3) labor market clears

at price w; (4) equity market clears at price q; (5) aggregate capital evolves as K ′ = λK + I;

and (6) both Λ and Ξ are consistent with the policy functions that solve agents’ problems.

Notice that in the above definition, the distribution of equity holdings, Λt, is a relevant

state at an individual level but does not determine aggregate variables. In other words,

the distribution of equity is not an object in the aggregate state space. Intuitively, this is

because of the assumption that investment opportunities are i.i.d across investors.

Worker’s policy functions. The maximization of (3.10) is standard and yields

Lst =
[wt
κ

] 1
ν

,

where Ls stands for labor supply. Next, we characterize firms’ decisions and equilibrium

prices (wt, rt) .

Firms’ equilibrium and equilibrium prices. From firms’ maximization problem (3.1),

labor demand is given by

Ldt =

[
(1− α)At

wt

] 1
α

kt ,
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thus, using equilibrium Ldt = Lst , the equilibrium real wage is

κ
α
α+v [(1− α)At]

v
α+v k

αv
α+v

t = w∗t .

Lastly, define the equilibrium return on capital, using firms’ first-order conditions:

r∗t = αAt

[
(1− α)At

κ

] (1−α)
α+v

k
(α−1)ν
v+α

t . (3.13)

Next, after solving firms’ and workers’ optimal policies, we characterize the solution for

entrepreneurs.

Entrepreneurs. We define the right-hand side of savers’ and investors’ budget constraints

as ωst ≡ (rt + qtλ)nst and ωit = (rt + qitλ)nit. From (3.2), we obtain the intertemporal marginal

rate of substitution given by

M j
t,t+1 = β

(
cj,t+1

cj,t

)ρ−1(
Vj,t+1

µj,t

)1−γ−ρ

,

and therefore we need to solve for the value function. We proceed with a guess and verify

strategy. The next proposition characterizes optimal policies for investors and savers:

Proposition 14. [Policy functions] (i) Savers‘ optimal decision rules are

cs,t
ωs,t

= 1− ξs,t , (3.14)

qtns,t+1 = ξs,tωs,t . (3.15)
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(ii) Investors‘ optimal decision rules are, when qt > 1

ci,t
ωi,t

= 1− ξi,t , (3.16)

qRt ni,t+1 = ξi,tωi,t , (3.17)

it+1 =
ni,t+1 + (φt − 1)λnt

(1− θ) , (3.18)

where ξs,t and ξi,t are unknown functions of the aggregate state of the economy that must

be solved using equilibrium conditions. When qt = 1, savers‘ and investors‘ policies are

identical.

Proof. See appendix.

Returns. Following KM, we define the returns on wealth according to the alternative

entrepreneurs’ investment opportunity set.

Rss
t+1 =

rt+1 + qt+1λ

qt
, Ris

t+1 =
rt+1 + qt+1λ

qRt
, Rii

t+1 =
rt+1 + qit+1λ

qRt
; Rsi

t+1 =
rt+1 + qit+1λ

qt
.

Here, Rss
t+1 is the return on wealth obtained by a saver who continues as a saver in the next

period. In this case, the saver obtains—after holding 1/qt units of equity—the net return

on capital rt+1 plus the undepreciated portion of equity —valued at the spot price qt+1.

Similarly, Rsi represents the return for a saver who receives an investment opportunity in

the next period; recall this occurs with probability π. In this case, however, the undepreciated

equity is valued at qit+1, since he will face an investment opportunity and thus a weighted

price: A fraction φ is non-resellable —valued at qRt — and a fraction 1 − φ is resaleable at
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the spot price qt. Both Ris and Rii follow the same logic.

From here, we can decompose the conditional return on wealth for investors and savers.

In particular, we compute the conditional return on wealth faced by entrepreneurs and

decompose it between a “market value” that corresponds to fluctuations in market prices

and a “liquidity component” that arises from the frictions in the model. The idea is to

express all of the returns as a spread relative to a benchmark market return, Rss
t+1. The

return Rss
t+1 is the appropriate benchmark, because it is the market valuation of the future

flow of capital dividends.

Let Ri
t+1 be the investor’s return on wealth conditional on his individual state. In the next

proposition, we characterize a decomposition of this return into a “market component” and

a ”liquidity component”

Proposition 15. [Decomposition] The investor’s return on wealth Ri
t+1 can be decomposed

as

Ri
t+1 =

lt+1

qRt
+ ηtR

ss
t+1 , (3.19)

where lt+1 = −π λ(qt+1−qRt+1)(1−φt+1)

qRt
and ηt =

(
(1−θ)qt
1−θqt

)(
≡ qt

qRt

)
. Also , the return on wealth

faced by a saver, Rs
t+1, can be decomposed as

Rs
t+1 =

lt+1

qt
+Rss

s (3.20)

Proof. See appendix.

We define the intercept term lt+1 ≤ 0 as the “liquidity component”, which shows up both
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in (3.19) and (3.20), and captures the following intuition: There is a probability π that

the entrepreneur—regardless of his initial type—will become an investor in the next period.

In such a case, a fraction (1− φ) of the λ remaining equity becomes illiquid. Thus, if he

becomes an investor, his internal valuation of this illiquid equity is qRt+1 instead of the spot

price qt+1; the entrepreneur could have replaced that unit at price qRt+1. Since he values

that illiquid portion at price qRt+1 instead of qt+1, a fraction (1− φ) loses
(
qt+1 − qRt+1

)
with

probability π relative to the benchmark return. In either formula, the term lt+1 is scaled

by either 1/qRt or 1/qt depending on which was the initial cost of capital—for investors and

savers, respectively. The term ηt ≥ 1 in (3.19) is a multiplier on the market return over the

investor’s portfolio. This term simply captures the idea that for this entrepreneur, it costs

him qRt to build the capital that costs qt in the market. The greater the discrepancy, the

higher qt > 1, the greater this multiplier. As we explained earlier, the internal cost for the

investor qRt ≤ 1 ≤ qt captures the idea that the investor is effectively exploiting an arbitrage.

This concludes our specification of the model environment, definition of the equilibrium

concept, and characterization of the optimal policies. We now briefly discuss about the role

of liquidity in the model, then we we investigate the quantitative properties of the model.

3.2.5 Discussion

The optimal financing problem subject to the enforcement constraints is essentially static;

hence, we can use a static analysis to understand the effects of liquidity shocks. We illustrate

the model’s main mechanism using this approach.

Whenever qt > 1, external financing allows investing entrepreneurs to arbitrage. In such
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instances, the entrepreneur wants to finance investment projects as much as possible. We

have already shown that when constraints are binding, the entrepreneur owns the fraction

(1− qt) of the investment, but finances only (1− θqt). If he uses less external financing, he

misses the opportunity to obtain more equity. To gain intuition, it is convenient to abstract

from the consumption decision and assume that the investor entrepreneur uses xt ≡ qtφtλni,t

to finance the down payment. Thus, idt = xt.

The constraints impose a restriction on the amount of external equity that may be issued,

ist ≤ θit. External financing is obtained by selling ist equity at a price qt, so the amount of

external funds for the project is ift = qti
s
t . Since it = ift + idt , external financing satisfies

ift ≤ qtθ
(
ift + xt

)
. (3.21)

Figure 3.1 illustrates the simple intuition behind the liquidity channel—i.e., how changes

in the amount xt of sales of equity corresponding to older projects affect investment by

restricting the amount of external financing for new projects. Panel (a) in Figure 3.1 plots the

right- and left-hand sides of restriction on outside funding given by inequality (8). Outside

funding, ift , is restricted to lie in the area where the affine function is above the 45-degree

line. Since qt > 1, the left panel shows that the liquidity constraint imposes a cap on the

capacity to raise funds to finance the project. Panel (b) shows the effects of a decreases in xt

without considering any price effects. The fall in the down payment reduces the intercept of

the function defined by the right-hand side of Figure 3.1. External funding, therefore, falls

together with the whole scale of the project. Since investment falls, the price of q must rise
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such that the demand for saving instruments falls to match the fall in supply. The increase

in the price of equity implies that the amount financed externally is higher. The effect on the

price increases the slope and intercept, which partially counterbalances the original effect.

This effect is captured in panel (c) of Figure 3.1.

3.3 Quantitative analysis

In this section, we explore the models quantitative predictions by solving it numerically

using a global solution method. In the following seven subsections, we first describe the

calibration, then perform several exercises to shed light on all of the models properties.

Calibration. We divide parameters into three categories and fix the time period to a

quarter. Table 3.1 reports the list of parameters and values. We set the capital share to

α =0.36 and the depreciation rate 1-λ = 0.025; these two numbers are well established in the

RBC literature. The arrival of investment opportunities π is set to 0.012, a slightly greater

number than that of Del Negro et al. (2016). Using π = 0.009 as in their paper, implies

that the economy spends considerable time in the constrained region—i.e., the enforcement

constraint almost always binds. Since they solve their model by log-linearizing around a

steady state in which financial constraints bind, it is reasonable for them to use a small

value for π. In contrast, we choose a π that is close to theirs, but with this value the

economy also spends some time in the unconstrained equilibrium. In other words, we exploit

the global solution method to study an economy in which constraints occasionally bind. The

calibrated π allows us to match the observed fact the vast majority of firms do not exhibit
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investment rates greater than 20%.2 Next, we calibrate θ following the extensive literature

that analyzes financing constraints à-la KM. We set a value of 0.77—very similar to that of

Del Negro et al. (2016), who use 0.792. This implies that the upper bound for the spot price

of equity qt is 1/θ ≈ 1.3. Notice that this parametrization satisfies 0 ≤ θ ≤ 1− π = 0.988.

In terms of preferences, we calibrate β to 0.99 to match an annual real interest rate of

around 1.7% at an annual frequency. The EIS and the risk-aversion parameters are from

the asset-pricing literature, primarily following Bansal and Yaron (2004a). In particular, we

calibrate γ = 10 > ψ = 1.5 > 1, which implies that agents feature a preference for early

resolution for uncertainty. We explore the implications for the EIS below. Lastly, the Frisch

elasticity (1/v) is set to 1, which is commonly used in the RBC literature and is in range of

the macro estimates of Chetty et al. (2011), and the parameter κ is calibrated to obtain an

average 30% of working hours.

Finally, in terms of aggregate shocks, we first calibrate ρA = 0.95 and σA = 0.01, again

following the RBC literature and the behavior of US productivity quarterly time series.

The support of liquidity shocks (i.e., the maximum and minimum values for φ) is set to

[φL, φH ] = [0.05, 0.5], which yields an unconditional mean liquidity of 0.275. This is a smaller

value than that of Del Negro et al. (2016), who calibrate a steady-state level for liquidity

at 0.4. However, it is worth emphasizing that the concept of liquidity in their paper differs

from KM: They introduce a positive supply of government bonds to their analysis, and they

calibrate the steady-state level of liquidity to match the convenience yield in the data. In this

2Cooper et al. (1999) show that, using the US longitudinal survey (which covers US manufacturing
industries, but accounts for only about 45% of aggregate investment), 87% of firms display investment rates
lower than 23%. The calibrated π = 0.012 implies that 6% of firms have investment rates between 17% and
28%.
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paper, instead, we choose a lower unconditional mean of liquidity, since we do not introduce

government bonds. The last parameter for the aggregate shocks is the correlation between

aggregate productivity A and liquidity φ, which we set to 0.75. Bigio (2015) and Kurlat

(2013) study the relationship between liquidity and aggregate productivity when the former

is determined by the solution to a problem of asymmetric information. Both papers provide

theoretical results in which the relation between productivity and liquidity is positive. It

is worth emphasizing that quantitative results are not sensibly affected by this correlation.

[Table 3.1 about here: Calibration]

We finish the calibration section with the following observation. We purposefully avoid

calibrating the three key parameters of KM’s framework (i.e. θ, π, E [φ]) to match asset-

pricing or business-cycle dynamics. Instead, we adopt the practice of setting parameters

to reasonable micro evidence and evaluate the macroeconomic performance. This allows us

to do a comprehensive assessment of KM without departing from previous results in the

literature.

Equilibrium through the state space. We start with a description of the behavior of

policy functions and endogenous variables across the state space. All figures display the stock

of capital in the horizontal axis. Upper panels display the variable of interest in the 20%

percentile of the productivity level (“low productivity states”), while lower panels display

the 80% percentile (“high productivity states”). Similarly, left and right panels display the

20% and 80% percentiles of the liquidity level, respectively.

Figure 3.3 illustrates the spot price of equity q, the internal cost of capital for investors qR,
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and their liquidity-weighted price qi. The figure shows the inverse relationship between the

spot price of capital and the internal cost. The logic, as explained above, is that investors

own a fraction 1 − θ of final investment whereas they only put 1 − qθ of the funds in that

project. This means that as q increases, they fund a smaller share of their projects, because

they can sell claims to investment at a higher price. The figure then explains how q varies

with TFP, the capital stock, and liquidity. The lower the capital stock, the higher the returns

on capital. Therefore, when capital is low, savers have a high demand for investment, so for a

fixed level of liquidity, the price of capital must be high to clear the market. Similarly, Figure

3.3 shows that the higher the productivity, the higher the q. In contrast, when liquidity is

low, holding the return to capital fixed, the supply of investment projects is scarce. This is

why the panels on the left-hand side of the figure show how lower liquidity increases q. This

is an important feature of the model, and we explain below how it determines risk-premium

dynamics.

We next describe the policy functions for the consumption-wealth ratio. As shown in

(3.16) and (3.14), these policy functions are associated with each agent’s marginal valuation

of capital. When the EIS is greater than one, agents save more when returns are higher—that

is, the intertemporal substitution effect dominates the wealth effect. This is the case in our

calibration, and this force dominates the behavior of the marginal propensity to consume.

Figure 3.4 shows that the consumption-wealth ratio is an increasing function of capital since

the return to capital is decreasing in the capital stock3. The same is true when productivity

is relatively low: Returns are low, so the propensity to consume is high. However, the effect

3I.e., decreasing returns to scale in capital.
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of liquidity is different. When liquidity is abundant, the price of equity is low. In that case,

savers and investors feature similar consumption-wealth ratios. In contrast, when liquidity

is scarce, investors and savers face different effective prices of capital. For the saver, capital

is expensive and he faces low returns; as a result, he consumes a higher portion of his wealth.

For the investor, on the other hand, this is time to increase their investment rate and exploit

their arbitrage opportunities.4

We now study investment dynamics. Figure 3.5 displays the investment rate (I/Y )

throughout the state space. As we did with the previous policy functions, we first ob-

serve that the investment rate is decreasing in the capital stock dimension. This feature

depends on the EIS: Under the calibration in which EIS>1, agents invest at lower rates

when returns are lower. (We extend this logic below, when we analyze the role of the EIS in

the model.) On the other hand, both productivity and liquidity operate in the intuitive di-

rection: The lower the productivity/liquidity the lower the investment rate. Thus, negative

liquidity shocks depress investment rates. However, we can readily observe from this figure

that the effect of a liquidity shock is not quantitatively important. We explore this feature

further when we study the impulse-response dynamics of a liquidity shock.

Equity returns and liquidity. Next, we focus on equity return dynamics. In particular,

we study the return on equity and its decomposition into a market return, a liquidity factor,

and an amplification term. We start by analyzing the market return on equity—namely

Et [(rt+1 + λqt+1) /qt]. By constructing this return, we can study the equity premium in the

4There is a point at which productivity is sufficiently low, returns on equity are sufficiently low and the
economy operates under slack constraints. At such a point—and at lower levels of productivity—consumption
policies are equivalent for savers and investors.
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KM model and contrast it with previous asset-pricing literature.

Expected returns are the sum of expected dividend yield, Et [rt+1/qt], and expected capital

gains, λEt [qt+1/qt]. Figure 3.6 displays these three objects. With respect to capital, there

is a nonmonotonic relationship in total expected returns on equity. In principle, both the

dividend yield and capital gains could explain this nonmonotonic relationship, because both

Et [rt+1] and Et [qt] are decreasing in the capital stock—yet, the numerator term Et [rt+1]

dominates.5 Hence, the overall nonmonotonic relationship between total expected returns

and capital is explained by capital gains. This is because as the economy accumulates capital,

the liquidity constraint is less likely to bind, and hence qt approaches 1. Therefore, the term

Et [qt+1/qt] increases, because prices can only increase as qt ↓ 1. In other words, the direction

of future change in prices is only upwards; q is below its mean and expected to increase. In

contrast, when capital is low, the price of equity is high. However, the economy is expected to

accumulate capital, and thus, its price is expected to fall. Figure 3.6 also shows that expected

returns are lower when productivity is higher. This effect is unambiguous: It appears in both

expected capital gains and dividend yields. But this nonmonotonic relationship of expected

capital gains with respect to capital depends on the level of productivity. This is simply

because different levels of productivity affect the probability that constraints bind, which

ultimately dictates future changes in q. Notice that although expected returns can exhibit

negative values throughout the state space, the unconditional mean is 3.7% in annual terms.6

Importantly, liquidity affects expected capital gains—and therefore the expected return

5Dividend yields are decreasing in capital, simply due to decreasing returns to scale in the stock of capital.

6We elaborate on the quantitative properties below.
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on equity. In particular, the higher the liquidity, the higher the expected capital gains. This

feature is a key counterfactual element in the model: We usually think of periods of abundant

liquidity as tranquil times, during which expected returns on risky assets are low. This is

not the working logic in the KM model, however, in which tranquil times are associated with

lower levels of q—and thus expected changes in q are higher. This is a crucial point in this

model, which also dominates equity premium dynamics, as we discuss below.

We next discuss the liquidity component, Et
[
lt+1/q

R
t

]
, of returns and the amplification

(ηt) that arise in an investor’s return on wealth, as demonstrated in proposition 4 (equations

3.19 and 3.20). Figure 3.7 shows that the liquidity component is decreasing in both the stock

of capital and in the level of productivity. As mentioned above, this last feature is in line

with the logic proposed by Bigio (2015) and Kurlat (2013). We find that, conditional on a

level of aggregate liquidity, the liquidity component of returns is smaller (in absolute value)

when productivity is low. However, notice that this component is relatively stable across

the state space, as opposed to the “market” component described above. Also, the wedge is

decreasing in capital due to decreasing returns to scale: The higher the level of capital, the

lower the returns on capital; this implies that endogenous responses to the price of equity are

less pronounced. Thus, the endogenous wedge between qt and qRt is smaller, which decreases

Et [lt+1] .

Lastly, Figure 3.8 shows the amplification term ηt = qt/q
R
t . This term is useful, because it

illustrates the segments of the state space where the economy is constrained. The intuition for

the behavior of ηt is very similar than to the intuition for qt since qt ultimately characterizes

the behavior of qRt —and therefore the ratio qt/q
R
t . Thus, the idea of ηt being decreasing
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in capital is also similar; again, it follows due to decreasing returns to scale—i.e., returns

on capital are lower when the level of capital is higher. Also, by definition, the economy is

unconstrained in states in which ηt = 1—i.e., when qt = 1—, and the level of ηt > 1 gives a

sense of proportion between qt and qRt . In fact, this proportion depends on the value of θ, the

parameter that governs the enforcement constraint. The kink observed in the right panels of

Figure 3.8 is the precise point at which the constraint binds. Observing this feature is one of

the advantages of solving the model using global solution methods and of understanding the

state space of an economy with occasionally binding constraints—as in recent macro models

such as Brunnermeier and Sannikov (2014) and He and Krishnamurthy (2013).

The model does not explicitly introduce a one-period risk-free bond. However, we can price

such an asset by using the savers’ stochastic discount factor, which would be the marginal

agent pricing it7

1

Rf,t

= Et
[
M s

t,t+1

]
. (3.22)

Figure 3.9 shows that liquidity has overall negligible effects on the implied real interest.

However, it does fluctuate with capital and productivity. Those fluctuations are similar to

that of the neoclassical framework. That is, when the level of capital is high, the economy

is expected to have a lower growth rate. Lower expected growth in consumption implies

that real rates are lower in order to clear the goods market. Productivity level is simply

a scaling effect for this intuition: The higher the productivity level, the higher the growth

rate—and therefore also the risk-free interest rate. As shown in the figure, interest rates

7Investors are not the marginal agent who prices a riskless asset, because they have the opportunity to
invest in capital. Thus, E [Ms] > E

[
M i
]

always.
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could be negative when productivity is low. However, the unconditional mean is 1.7% in

annual terms, as we report in Table 3.2 and 3.3 (described below).

Lastly, we compute the (log) equity premium to evaluate whether the model can reproduce

sizable premiums, in line with the empirical evidence. In particular, we compute

rpt = Et

[
log

(
rt+1 + λqt+1

qt

)
− log (Rf,t)

]
. (3.23)

We express the premium in logs to make it comparable with the literature (see below), and

present the results in figure 3.10. The equity premium inherits the behavior of expected

returns—which, as explained above, are dictated by expected capital gains in the price of

equity. The evidence suggests that premiums are usually countercyclical: high in bad times

and low in good times. In Figure 3.10, we observe that premiums obey this logic with respect

to capital and productivity. In other words, in good time—i.e., high levels of capital and

productivity—expected returns are low. This is not the case, however, for liquidity. As

mentioned above, higher levels of aggregate liquidity imply lower prices and higher expected

capital gains and, therefore, premiums. Interestingly, the figure shows the nonmonotonic

relationship around the point at which constraints binds. This is a particular feature of

this model relative to the frictionless economy. A similar body of literature that studies

how balance-sheet dynamics affect risk premia also predicts a non-monotonic relationship

between excess returns and the distribution of wealth.8 This feature allows the framework to

capture the substantial volatility of excess returns—a feature well documented in the data

8Brunnermeier and Sannikov (2016) provide a comprehensive review.
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and one that the standard frictionless RBC economy cannot account for.

At this point, it is useful to further study the role of ψ and its implications over excess

returns. This is useful, because in leading asset-pricing models the signs of risk prices are

quite sensible to the parametrization of ψ (all other things equal9). When the EIS is less

than one, the consumption-wealth ratio is a decreasing function of capital. This translates

into higher investment rates in periods when capital is high. Thus, on average, prices for

equity are higher, and constraints are more likely to bind. For example, with ψ=0.5—and

keeping other parameters equal—constraints are very likely to bind throughout the state

space. That is, q > 1 almost always. Also, as is well known, the lower the EIS ψ, the higher

the mean risk-free rate.

Furthermore, when the EIS is lower than one, the equity premium is higher the greater

the level of capital. This is simply because the sensitivity of the interest rate with respect

to the capital stock is higher, and therefore an increase in the capital stock reduces the risk-

free interest rate relatively more than the expected return on equity. Thus, expected excess

returns are higher. It is worth emphasizing that the relationship with respect to liquidity

and productivity is the same as in the case of ψ greater than one.

In conclusion, the model offers a counter-factual result in terms of the impact of liquidity on

expected returns: Liquidity carries the wrong sign in the price of liquidity risks. This result

is independent of the EIS, and it fundamentally depends on expected fluctuations in the price

of equity. The model can reproduce a higher mean excess return and a considerably higher

volatility relative to the frictionless benchmark. We next assess the quantitative properties

9For example, Bansal and Yaron (2004a) show that when ψ is less than one, the price of volatility shocks
changes the sign.
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of business cycles.

Business-cycle properties. We now study the quantitative properties of the business cycle

predicted by the model. To do so, we follow both the RBC literature and the production-

based asset pricing literature—Jermann (1998), Campanale et al. (2010), Croce (2014),

among others—and compute key asset pricing and business cycle moments.

[Table 3.2 about here: Asset prices and business cycles]

Table 3.2 displays the results and the comparison to two other well-known models in the

production-based asset pricing literature. The model predicts fluctuations of investment al-

most 2.5 times more volatile than output, which is much more than the 1.46 predicted by

the frictionless RBC. This is not that far from what we observe in the data, especially taking

into account that our model does not exhibit adjustment costs to investment, as in Jermann

(1998) or Croce (2014). It is well known that this statistic could be easily matched by adding

such costs to investment, but we purposefully abstract from those to focus strictly on the

q-theory mechanism embedded in the KM framework.

We also see that the unconditional mean for the risk-free interest rate is above the one

observed in the data, but definitely smaller than the one predicted by the frictionless bench-

mark.10 In the other models we compare with, the low interest rates is driven by the

introduction of a small persistent component into the expected growth rates (Croce (2014))

or the calibrated process for the habits in preferences (Jermann (1998)).

The unconditional expected excess return on equity is 1.05% per annum. This magnitude is

10Although we could reduce the mean risk free rate by increasing β, we keep it at 0.99 to improve the
speed of convergence of the algorithm.
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considerably smaller than the one observed in the data. However, the model predicts a sizable

amount of variability in equity returns—and thus in expected excess returns. Although the

standard deviation we obtain is not as high as in the data, it is a considerable improvement

relative to the frictionless case in which variability of both returns and expected returns is

very small. Although the model predicts substantial variation, it is important to bear in

mind that the directions of such fluctuations are counterfactual to the evidence, as explained

in our description of expected excess returns over the state space.

Lastly, in Figure 3.2, we show the empirical distribution of excess returns, both in the data

and in the model. This figure complements Table 3.2. It is evident that excess returns in the

data display larger fluctuations than in the model; that is, excess returns are more volatile

than in the model. One potential avenue to address this is to introduce exogenous second-

order shocks to productivity (see Schneider (2017)). In this way, fluctuations in premiums

would be attributed in part to the endogenous component driven by occasionally binding

constraints, and also to exogenous second order shocks. It is useful to stress that the case

of the frictionless case RBC predicts a degenerate distribution very close to zero.

Decomposition. We next study the decomposition of returns. As established by (3.19)

and (3.20), returns on wealth can be decomposed into three terms: an intercept (or liquidity

component), a slope (or amplification component) and the market return on equity. In Table

3.3, we report the moments for each of these variables. We use the expression E[Et(xt+1)]

for a given variable x because we first compute the conditional expectation across the state

space, using the Markov transition probabilities, and then compute the unconditional expec-
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tation using the corresponding distribution—i.e. unconditional or conditional distribution.11

The appendix contains a detailed description of how we compute the unconditional and con-

ditional distributions.

[Table 3.3 about here: Decomposition]

As shown in Table 3.3, the compensation for liquidity is negative, and relatively smaller than

the pure market return on equity (in absolute terms). Intuitively, this is because there is

a strictly positive probability (π) that a fraction (1 − φ) of the equity will be valued at a

price (qR) that is inferior to that of the spot price (q). This is always the case, since there is

always a probability of switching between constrained and unconstrained parts of the state

space. In fact, the system spends 85% of the time in the constrained part of the state space.

Table 3.3 illustrates the key counter-factual element of the model: The conditionally con-

strained expected return on equity is considerably lower than the conditionally unconstrained

one. This is is counterfactual, because we usually think that constraints are slack in tranquil

times —i.e., when premiums are low. However, the volatility of equity returns is higher in

the constrained part of the state space. Thus, when financial constraints bind, returns on

equity are on average more volatile. This last aspect of the model is promising, since it can

potentially contribute to explaining the observed large fluctuations in excess returns.

The average effect of liquidity is notably similar across the state space—i.e., it does not

change significantly between constrained and unconstrained state space. Qualitatively, both

E [Et (lt+1)] /qRt and E [Et (lt+1)] /qt are on average higher, in absolute terms, when the econ-

11We would have used the law of iterated expectations if we had only included the unconditional column.
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omy is constrained. However, this difference is quantitatively mild. In other words, the

contribution of liquidity to total returns on wealth is relatively small and similar across the

state space.

The last element to analyze is the amplification factor η. From Table 3.3, we see that

the unconditional η is 1.94, while the conditionally constrained mean is somewhat higher

at 2.07. These values for η imply a somewhat unrealistic expected return on wealth for

investors, since η multiplies the gross market return and does not affect the intercept—i.e.,

the liquidity component. Thus, we see that the expected return on investor’s wealth is

E

[
Et (lt+1)

qRt
+ ηtEt

(
rt+1 + qt+1

qt

)]
= 1.95

Although we don’t have benchmark data to compare this number with, it seems to be

relatively large. This is because ηt works as an amplification of gross returns.

Impulse response functions. We next examine the economy’s to a liquidity shock. We

compute impulse-response functions (IRFs) using a simulation algorithm described in the

appendix. In Figure 3.12, we show the evolution of the economy after a relatively big liquidity

shock. The shock reduces liquidity from φt = 0.275—the steady-state level—, to φt = 0.05;

these results are in line with the intuition we developed above. We find that the response in

output is a drop of 0.12% (approximately 0.5% annualized). This is mainly explained by a

drop of 9.5% in the level of investment or, equivalently a 9.8% drop in the investment rate:

After the shock, the economy moves from a 23% investment rate to a 20.5% rate.

Both hours and wages drop, although consumption increases after the shock. The logic is
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that the shock affects the supply of capital, which reduces investment and, therefore, capital

accumulation. Output also drops, but since we have a closed economy with flexible prices,

consumption must increase to clear the goods market.

After the liquidity shock, we observe that the probability that constraints will bind in-

creases up to one. The price of equity, qt, increases about 15% above it’s mean. The expected

excess return, however, drops around 10% from it’s mean. This is the main counterfactual

element we highlighted above: Periods of scarce liquidity are associated with lower expected

excess returns. As noted above, this incorrect sign in the price for liquidity risk is not asso-

ciated with the entrepreneur’s EIS. Instead, it is embedded in the logic that liquidity shocks

affect the supply of equity without affecting its demand. As a result, the price for risky

equity increases, and investors expect that it will decrease in the near future.

Theoretical moments and invariant distribution. We conclude our quantitative anal-

ysis by analyzing the theoretical moments of endogenous variables. Table 3.4 shows the

theoretical moments. We complement this table with Figure 3.11. We provide a detailed

discussion in the appendix of how we compute the invariant distribution, but the idea is

to solve an eigenvalue problem associated with the Markov chain. In the table, we report

moments computed with three measures: unconditional, conditionally constrained, and con-

ditionally unconstrained. We observe that capital, investment and output have lower means

under the conditionally constrained distribution. Also, the conditionally constrained second

moments of capital, output, and investment are relatively higher than the unconditionally

constrained moments. This is consistent with the intuition we elaborate on throughout the

text.
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[Table 3.4 about here: Theoretical moments]

Interestingly, the skewness and kurtosis of the endogenous variables inform us that the

conditionally unconstrained distribution is negatively skewed and displays higher levels of

kurtosis. The intuition is that the unconstrained state is transitory; indeed, in our calibra-

tion the economy spends 87% of the time in the constrained state. Figure 3.11 illustrates

a similar intuition and is complementary to Table 3.4. At first blush, we can see that the

conditionally constrained distribution assigns smaller measures to relatively higher levels of

capital.

3.4 Conclusion

In this paper, we propose a stripped-down version of KM. Our objective is to evaluate the

quantitative predictions of liquidity shocks through the lens of asset prices and business

cycles. Our main conclusion is that liquidity shocks, coupled with financing constraints, are

a promising avenue of research that can potentially capture highly nonlinear risk premium

dynamics.

However, at the core of the KM mechanism, we find that negative liquidity shocks increase

the price of equity, and this translates into risk premium dynamics. Our results complement

and reinforce other findings in the literature (e.g., Shi (2015)). We extend our analysis

to study risk premium dynamics and highlight that although fluctuations in this variable

are considerably more realistic than in the frictionless benchmark, the directions of those

fluctuations are at odds with the evidence.
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Finally, we observe that the fact that liquidity shocks operate solely on the “supply side”

is a major restriction of this setup. A potential avenue of future research could shed light

on how liquidity affects the demand side of the credit market—that is, contractions in the

demand for credit would be associated with higher expected excess returns and lower asset

prices.
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3.5 Tables and Figures

Table 3.1: Calibration

Parameters (quarterly)

1. Technology Value Description
α 0.36 capital share
λ 0.975 1-depreciation
π 0.012 investment opportunities
θ 0.77 borrowing constraint

2. Preferences
β 0.99 time preference
γ 7.5 risk aversion
ψ 1.5 EIS
ν 1 Frisch elasticity
κ 8.5 scaling hours

3. Aggregate shocks
ρA 0.95 AR(1) productivity
σA 0.01 standard deviation log(At)
ϕ 0.75 corr(A, φ)
φL 0.05 minimum level of liquidity
φH 0.5 maximum level of liquidity

notes: The table shows the model calibration at a quarterly frequency. We describe the procedure

in the main text.
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Table 3.2: Asset prices and business cycles

Model/moments σ∆c/σ∆y σ∆i/σ∆y E[logRf,t] E[logRe − logRf,t] std(logRf,t) std(logRe)
KM 0.91 2.40 1.72 1.05 0.89 9.32

Frictionless 0.84 1.46 4.01 0.01 0.26 0.29
Croce2014 0.81 3.61 0.94 5.25 0.94 12.47

Jerman1998 0.49 2.64 0.82 6.18 11.46 19.86
Data 0.71 4.49 0.65 4.71 1.86 20.89

notes: This table shows the main business cycle statistics. We compute the moments by simulating

the model for 500,000 periods (we burn 10,000 periods). σ∆j/σ∆y is the standard deviation of

j=consumption, investment growth over output growth. KM is the model presented in the main

text. We also report theoretical moments for E[Rf ] and E[Re] in table 3.3. Frictionless is the

solution when there is neither incentive compatibility nor resellability constraints. Jermann1998 is

(Jermann, 1998) Table 1, Benchmark Model (habits+adjustment costs to investment). Croce14 is

Croce (2014) Table 3, column 3 (EIS>1). Data is from Croce (2014), which is annual data from

1929-2008.

Table 3.3: Decomposition

Variable Unconditional Constrained Unconstrained
Mean St.dev. Mean St. Dev Mean St. dev.

E [Et (lt+1)] /qRt -0.0079 0.0084 -0.0088 0.0086 -0.0021 0.0020
E [Et (lt+1)] /qt -0.0035 0.0020 -0.0037 0.0019 -0.0021 0.0019

E
[
Et

((
rt+1+qt+1

qt

))]
1.0093 0.0507 1.0026 0.0483 1.0561 0.0416

E [Rf,t] 1.0044 0.0062 1.0040 0.0062 1.0073 0.0054
ηt 1.9406 1.1414 2.0767 1.1596 1 0

notes: This table shows the moments under unconditional, conditionally constrained, and condi-

tionally unconstrained distributions of the state variables. Numbers are expressed in decimal units

and in quarterly terms. We discuss in the appendix how we compute unconditional, conditionally

constrained, and unconditionally constrained distributions.
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Table 3.4: Theoretical moments

Variable Moments
Mean St.dev. Skewness Kurtosis

Panel A. Unconditional Distribution
Kt+1 10.941 1.606 -0.154 1.404
At 1.000 0.030 0.071 2.524
φt 0.275 0.139 0 1.788
qt 1.091 0.071 0.358 1.944
Yt 1.051 0.098 -0.009 2.071
It 0.243 0.027 -0.151 2.512

Panel B. Conditionally constrained distribution
Kt+1 10.735 1.591 0.053 1.405
At 0.997 0.031 0.131 2.658
φt 0.248 0.128 0.157 1.969
qt 1.110 0.065 0.289 1.943
Yt 1.035 0.090 0.035 2.100
It 0.239 0.025 -0.177 2.557

Panel C. Conditionally unconstrained distribution
Kt+1 12.391 0.714 -2.132 7.645
At 1.021 0.0315 -0.641 2.997
φt 0.457 0.038 -0.547 2.423
qt 1 0 0 0
Yt 1.159 0.069 -1.146 4.822
It 0.272 0.019 -0.595 2.9157

notes: This table reports the theoretical moments of relevant endogenous variables in the model.
Panel A reports the moments computed with the unconditional distribution of the state variables.
Panel B reports the moments computed with the conditionally constrained distribution (i.e., condi-
tional con q > 1). Panel C Reports the moments under the conditionally unconstrained distribution
(i.e., conditional o q = 1). We report in the appendix how we compute these distributions. Kurtosis
and skewness are

kurtπ [z (s)] =
Eπ
[
(z (s)− Eπ (z (s)))4

]
(
Eπ
[
(z (s)− Eπ (z (s)))2

])2

skewπ [z (s)] =
Eπ
[
(z (s)− Eπ (z (s)))3

]
(
Eπ
[
(z (s)− Eπ (z (s)))2

])3/2

where π is the corresponding measure (unconditional, conditionally constrained, or conditionally

unconstrained).
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Figure 3.1: Intuition behind the effects
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notes: Panel (A) shows how borrowing constraints impose a cap on the amount of equity that

can be sold to finance a downpayment. Panel (B) shows how liquidity shocks affect the amount of

resources available as a down payment. Panel (C) shows the price effect of the shock, which may

or may not reinforce the liquidity shock.
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Figure 3.2: Empirical distribution of excess returns
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notes: This figure shows the empirical distribution for the risk premium(i.e., equation 3.10) in

the data and in the model. The model distribution is obtained by simulating the model 500,000

periods (we burn the first 10,000 periods). Data are constructed exactly as in Croce (2014), but at a

quarterly frequency and with an extended time window (1927q1-2016q4 instead of 1929-2004). For

the time interval considered in Croce (2014) and reported in table 3.2, the data used in this figure

yield very similar numbers: E [logRf,t] = 0.62%, E [logRe − logRf,t] = 5.5% , std (logRf,t) =

1.93% , std (logRe) = 19.55%, all annualized.
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Figure 3.3: Price of equity, qt
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notes: This figure displays q across the state space. The upper-left panel represents the variable

when liquidity and productivity are at their 20% percentiles. The upper-right panel represents

the variable when liquidity is at its 80% percentile and productivity is at its 20% percentile. The

lower-right panel represents the variable when liquidity is at its 20% percentile and productivity is

at its 80% percentile. The upper-left panel represents the variable when liquidity and productivity

are both at their 80% percentiles. Percentile values are A(20) = 0.97, A(80) = 1.03, φ(20) = 0.1192,

φ(80) = 0.4308. In all subplots, the x-axis represents the level of the endogenous state variable, K.

We provide details about the statistical properties of K in Table 3.3.
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Figure 3.4: Consumption-wealth ratio
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notes: This figure displays the consumption-wealth ratio across the state space. The upper-left

panel represents the variable when liquidity and productivity are at their 20% percentiles. The

upper-right panel represents the variable when liquidity is at its 80% percentile and productivity

is at its 20% percentile. The lower-right panel represents the variable when liquidity is at its 20%

percentile and productivity is at its 80% percentile. The upper-left panel represents the variable

when liquidity and productivity are both at their 80% percentiles. Percentile values areA(20) = 0.97,

A(80) = 1.03, φ(20) = 0.1192, φ(80) = 0.4308. In all subplots, the x-axis represents the level of the

endogenous state variable, K. We provide details about the statistical properties of K in Table

3.3.
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Figure 3.5: Investment rate I/Y
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notes: This figure displays the investment rate I/Y across the state space. The upper-left panel

represents the variable when liquidity and productivity are at their 20% percentiles. The upper-

right panel represents the variable when liquidity is at its 80% percentile and productivity is at its

20% percentile. The lower-right panel represents the variable when liquidity is at its 20% percentile

and productivity is at its 80% percentile. The upper-left panel represents the variable when liquidity

and productivity are both at their 80% percentiles. Percentile values are A(20) = 0.97, A(80) = 1.03,

φ(20) = 0.1192, φ(80) = 0.4308. In all subplots, the x-axis represents the level of the endogenous

state variable, K. We provide details about the statistical properties of K in Table 3.3.
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Figure 3.6: Expected return E [(rt+1 + λqt+1) /qt], capital gains and dividend yield
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notes: This figure displays the market return on equity, the dividend yield and the capital gains

across the state space. The upper-left panel represents the variable when liquidity and productivity

are at their 20% percentiles. The upper-right panel represents the variable when liquidity is at its

80% percentile and productivity is at its 20% percentile. The lower-right panel represents the

variable when liquidity is at its 20% percentile and productivity is at its 80% percentile. The

upper-left panel represents the variable when liquidity and productivity are both at their 80%

percentiles. Percentile values are A(20) = 0.97, A(80) = 1.03, φ(20) = 0.1192, φ(80) = 0.4308. In all

subplots, the x-axis represents the level of the endogenous state variable, K. We provide details

about the statistical properties of K in Table 3.3.
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Figure 3.7: Liquidity component Et [lt+1] /qRt
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notes: This figure displays the liquidity component across the state space. The upper-left panel

represents the variable when liquidity and productivity are at their 20% percentiles. The upper-

right panel represents the variable when liquidity is at its 80% percentile and productivity is at its

20% percentile. The lower-right panel represents the variable when liquidity is at its 20% percentile

and productivity is at its 80% percentile. The upper-left panel represents the variable when liquidity

and productivity are both at their 80% percentiles. Percentile values are A(20) = 0.97, A(80) = 1.03,

φ(20) = 0.1192, φ(80) = 0.4308. In all subplots, the x-axis represents the level of the endogenous

state variable, K. We provide details about the statistical properties of K in Table 3.3.
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Figure 3.8: Amplification,ηt
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notes: This figure displays amplification term across the state space. The upper-left panel rep-

resents the variable when liquidity and productivity are at their 20% percentiles. The upper-right

panel represents the variable when liquidity is at its 80% percentile and productivity is at its 20%

percentile. The lower-right panel represents the variable when liquidity is at its 20% percentile and

productivity is at its 80% percentile. The upper-left panel represents the variable when liquidity

and productivity are both at their 80% percentiles. Percentile values are A(20) = 0.97, A(80) = 1.03,

φ(20) = 0.1192, φ(80) = 0.4308. In all subplots, the x-axis represents the level of the endogenous

state variable, K. We provide details about the statistical properties of K in Table 3.3.
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Figure 3.9: Real interest rate
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notes: This figure displays the real risk-free interest rate across the state space. The upper-left

panel represents the variable when liquidity and productivity are at their 20% percentiles. The

upper-right panel represents the variable when liquidity is at its 80% percentile and productivity

is at its 20% percentile. The lower-right panel represents the variable when liquidity is at its 20%

percentile and productivity is at its 80% percentile. The upper-left panel represents the variable

when liquidity and productivity are both at their 80% percentiles. Percentile values areA(20) = 0.97,

A(80) = 1.03, φ(20) = 0.1192, φ(80) = 0.4308. In all subplots, the x-axis represents the level of the

endogenous state variable, K. We provide details about the statistical properties of K in Table

3.3.
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Figure 3.10: Equity premium
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notes: This figure displays the equity premium across the state space. The upper-left panel

represents the variable when liquidity and productivity are at their 20% percentiles. The upper-

right panel represents the variable when liquidity is at its 80% percentile and productivity is at its

20% percentile. The lower-right panel represents the variable when liquidity is at its 20% percentile

and productivity is at its 80% percentile. The upper-left panel represents the variable when liquidity

and productivity are both at their 80% percentiles. Percentile values are A(20) = 0.97, A(80) = 1.03,

φ(20) = 0.1192, φ(80) = 0.4308. In all subplots, the x-axis represents the level of the endogenous

state variable, K. We provide details about the statistical properties of K in Table 3.3.

219



Figure 3.11: Invariant distribution of capital
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notes: This figure shows the distribution of the endogenous state variable. The x-axis represents

the level of capital and the y-axis the measure. The gray area is the conditionally constrained distri-

bution (i.e., when constraints bind), while the black area represents the unconditional distribution.

We provide the details on the construction of these distributions in the appendix.
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Figure 3.12: Impulse-response functions
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notes: This figure shows the impulse response functions after a liquidity shock. As shown in

the figure, liquidity moves from its mean value of 0.275 to 0.05. We compute the response of the

economy with 60,000 Monte carlo simulations, starting from the unconditional expectation of the

state vector.
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3.6 Appendix

Proof of proposition 1 (Investor’s constraint)

We need to show that the budget constraint for investors, when constraints binds, is given

by

ci,t + qRt nt+1 =
(
rt + λqit

)
nt, (3.24)

where qit = φtqt + (1− φt) qRt . As shown in 3.3, the entrepreneur’s budget constraint is

ct + idt = rtnt + qt
(
∆e−t+1 −∆e+

t+1

)
.

Therefore, when constraints bind, we use
(
∆e−t+1 −∆e+

t+1

)
= λφtnt

ct + idt = (rt + qtλφt)nt.

Also

idt = (1− qtθ) it,

= (it − ist) qRt ,

So, using the law of motion for capital

ct + qRt it − qRt ist = (rt + qtλφt)nt,

ct + (kt+1 − λkt) qRt − qRt ist = (rt + qtλφt)nt.
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Now, using the identity, kt+1 = nt+1 − e+
t+1 + e−t+1, we have

ct + nt+1q
R
t +

(
−e+

t+1 + e−t+1 − ist
)
qRt − qRt λkt = (rt + qtλφt) .

Lastly, we use e−t+1 = λe−t +∆e−t+1 + ist and obtain the desired result (3.24). The computation

for saver follows the exact same steps. �

Proof of proposition 3 (Policy functions). We first establish the solution for the value

functions. Recall that the value function for agent j has the form

Vj,t =
[
cρj,t + βE

[
V 1−γ
j,t+1

] ρ
1−γ
] 1
ρ

.

We do a monotone transformation to ease the algebra

Vj,t = (ρvj,t)
1
ρ ,

so

vj,t =
cρj,t
ρ

+ βE

[
v

(1−γ)
ρ

j,t+1

]
.

The intertemporal marginal rate of substitution is

Mj,t+1 =

∂vj,t
∂cj,t+1

∂vj,t
∂cj,t

,

= β

(
cj,t+1

cj,t

)ρ−1

 v
1
ρ

j,t

Et

[
v

(1−γ)
ρ

j,t+1

] 1
1−γ


1−γ−ρ

. (3.25)
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We guess

vj,t =
1

ρ
(aj,tωj,t)

ρ .

So the certainty equivalent can be written as

Et

[
v

(1−γ)
ρ

j,t+1

] 1
1−γ

=

(
1

ρ

) 1
ρ

Et
[
π (ai,tωi,t)

1−γ + (1− π) (as,tωs,t)
1−γ] 1

1−γ

We consider the case of savers; the investors case is exactly the same. Substitute the guess

in (3.25)

Ms,t+1 = β

(
cs,t+1

cs,t

)ρ−1
 as,tωs,t

Et
[
π (ai,t+1ωi,t+1)1−γ + (1− π) (as,t+1ωs,t+1)1−γ] 1

1−γ

1−γ−ρ

.

(3.26)

Now we use cs,t+1

cs,t
= cs,t+1

ωs,t+1

ωs,t+1

ωs,t

ωs,t
cs,t

= 1−ξs,t+1

1−ξs,t R
ss
t+1ξs,t.(Where we have used the identity

ωs,t+1

ωs,t
= Rss

t+1ξs,t.) Then we can plug (3.26) in the first-order conditions and solve. The
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last step is to substitute

as,t = (1− ξs,t)
1−ρ
ρ

ai,t = (1− ξi,t)
1−ρ
ρ

ωi,t+1

ωs,t
= ξs,tR

si
t+1

ωs,t+1

ωs,t
= ξs,tR

ss
t+1

ωi,t+1

ωi,t
= ξi,tR

ii
t+1

ωs,t+1

ωi,t
= ξi,tR

is
t+1

Rs
t+1 = πRsi

t+1 + (1− π)Rss
t+1

Ri
t+1 = πRii

t+1 + (1− π)Ris
t+1

Together with the FOCs for investor, they define a system of equations in (ξs, ξi) . �

Verification. We now need to verify that our guess actually verifies the value function. In

the way we wrote the recursion, it is clear to see that any pair ξi,t, ξs,t that satisfies solving

the system of difference equations guarantee the functional form guessed for vi and vs. Notice

that the envelope condition is already embedded in the recursion.

Uniqueness. The proof of uniqueness of the policy functions consists of checking that

the recursion is in fact a contraction. That is, that is it satisfies the Blackwell’s sufficient

conditions. A general treatment of this technical aspect can be found in Epstein and Zin

(1989a).

Proof of proposition 4 (Decomposition). The proof consists in substitutingRss
t+1, R

si
t+1, R

is
t+1,
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and Rii
t+1 in Ri

t+1 and Rs
t+1.We start with Ri

t+1

Ri
t+1 = πRii

t+1 + (1− π)Ris
t+1 ,

= π

(
rt+1 + qit+1λ

qRt

)
+ (1− π)

(
rt+1 + qt+1λ

qRt

)
,

= π

[
rt+1 + qit+1λ

qRt
− rt+1 + qt+1λ

qRt

]
+
rt+1 + qt+1λ

qRt
,

= π

[(
qit+1 − qt+1

)
λ

qRt

]
+
rt+1 + qt+1λ

qRt
,

= π

[(
φt+1qt+1 + (1− φt+1) qRt+1 − qt+1

)
λ

qRt

]
+
rt+1 + qt+1λ

qRt
,

= πλ

[
(φt+1 − 1) qt+1 + (1− φt+1) qRt+1

qRt

]
+
rt+1 + qt+1λ

qRt
,

= −πλ
(
qt+1 − qRt+1

)
(1− φt+1)

qRt
+
qt
qt

rt+1 + qt+1λ

qRt
,

= −πλ
(
qt+1 − qRt+1

)
(1− φt+1)

qRt
+

(
(1− θ) qt
1− θqt

)
rt+1 + λqt+1

qt
,

= lt+1 + ηtR
ss
t ,

which is equation (3.19). The exact same steps for Rs
t+1 = πRss

t+1 + (1− π)Rsi
t+1 deliver

equation (3.20). �

Numerical solution. We start by constructing a tensor grid for the state space (A,K,Φ),

and the objective is to project all endogenous variables onto it. Our reported results are for

DA = 14, DK = 20, DΦ = 14. So the grid has DA × DK × DΦ = 3920 points. Results are

robust to a lower degree of coarseness in the grid.

Next, we guess values for the endogenous values. We pick a random number generator for

the ξs and ξi at every point of the state space (an educated guess would be β). We guess the

first value of the aggregate endogenous state variable (K ′)(0) = β (r + λ)K. We then start
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an iterative loop to solve for the policy functions, until convergence. The loop is as follows:

1. We start from the steady-state level of capital without constraints, and compute the

transition probabilities.

2. Compute expectations and obtain an updated vector for ξi, ξs.

3. Compute the excess demand in the equity market, to check whether the constraint is

binding.

4. If there is excess demand, we compute the q that clears the equity market in each state.

Otherwise, q = 1.

5. Compute the policy functions ci, cs, n
′
i, n
′
s, L and prices with the values we obtained for

q, qR, qi and w.

6. Verify these policy functions clear the goods market.

7. Compute (K ′)
(1)

= [πn′i + (1− π)n′s]K, and iterate until converge, i.e.,∥∥∥(K ′)
(I) − (K ′)

(I−1)
∥∥∥ ≤ tol , where tol is a small number.

Invariant distribution. We construct the exogenous Markov chain in the following way.

First, we discretize the state space of exogenous productivity, which follows an AR(1) (in

logs). For this, we proceed in line with Tauchen (1985, 1991). This give us a matrix PA, in

which each element is PA
i,j = Pr {At+1 = aj|At = ai}.

We then compute the joint Markov chain for liquidity and productivity. We denote this

joint transition probability matrix as PA,φ, where an element of the matrix represents
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PA,φ
i,j = Pr {φt+1 = φj, At+1 = aj|φt = φi, At = ai} (abusing notation, i is a pair) and is given

by

PA,φ
i,j = PA

i,j

(
ϕP

A(φ′)
i,j + (1− ϕ)Ui,j

)
,

where P
A(φ′)
i,j is an auxiliary matrix we construct to capture the correlation between produc-

tivity and liquidity, given by ϕ. This mapping is simply the order of elements in the liquidity

vector Φ, and Ui,j is a uniform probability matrix. PA,φ has all the desired properties of a

transition probability matrix.

The solution of the model gives us a transition matrix PK′,A,φ = P, where an element is

PK′,A,φ
i,j = Pr {Kt+1 = Kj;φt+1 = φj, At+1 = aj|Kt = Ki, φt = φi, At = ai}

Then, the invariant distribution, µ, simply solves the following eigenvalue problem

µ′ (I − P) = 0

where I is the identity matrix and the vector12 µ = limt→∞ µt = P (K∞, A∞, φ∞) , with

µ′t+1 = µ′tP. This vector has dimension (1× (NK ×NA ×Nφ)) . The problem is guaranteed

to have a solution because P is a Markov chain (positive semi-definite and rows sum to 1),

so we select the eigenvector associated with the (unique) unitary eigenvalue. Then, we can

compute unconditional theoretical moments of endogenous variables using this unconditional

measure, following theorem 2.2.3 in Ljungqvist and Sargent (2012). That is, for any random

12We normalize the vector to ensure that the sum of its elements is equal to one.
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variable z (s) , we compute the unconditional mean as Eµ [z (s)] =
∑N

i µizi (where µ is

normalized to be a probability measure.)

We compute the conditionally constrained distribution as follows. Let C = {s ∈ S : q (s) > 1}

be the set in which constraints bind (i.e., the spot price of capital is greater than one). Then,

we define the following random variable (an indicator function):

1C (s) =


1 if s ∈ C

0 if s /∈ C

Then

µ̃ = P (K∞, A∞, φ∞|C) =
Eµ [1C (s)]∑
{i:s∈C} µi

We can compute the conditional expectation numerically, by constructing this indicator

function across the state space. Then we can compute, for example, the conditionally con-

strained mean for a given random variable z as Eµ̃ [z (s)] =
∑N

i µ̃izi. Figure (3.11) displays

the results for µ and µ̃ (each bar represents the size of the measure for each point in the

K state). The conditionally unconstrained distribution can be computed in a similar way,

by simply defining the complement of C. In Table 3.4 we report statistics using these three

measures.

Impulse-response functions. We construct the impulse response functions (IRF) using
a standard simulation method. In Figure (3.12), we report the IRFs to a liquidity shock.
We start the economy in the unconditional means. We then simulate multiple paths of

the exogenous Markov chain to obtain a sequences of
{
A

(j)
t , φ

(j)
t

}T
t=0

, in each simulation

j = 1, ..., J. We simulate these paths with φ0 = 0.05 (i.e., in period 0 there is a liquidity
shock that moves liquidity from 0.275 to 0.5, as mentioned in the text). In each simulation,
we use the model solution to obtain the responses (i.e., the paths) of endogenous variables
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in each simulation. We then average paths across simulations. That is, for a given variable

z, we have J simulated paths
{
z

(j)
0 , z

(j)
1 , ..., z

(j)
T

}J
j=1

, so we take the mean 1
J

∑J
j=1 z

j = zirf .,

and we obtain the sequence zirf .
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Chapter 4

A Macrofinance View of U.S.
Sovereign CDS Premiums
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4.1 Introduction

The credit crisis brought about a visible change in the sovereign credit default swaps (CDS)

of economically developed countries. Near zero trading volumes at near zero premiums in

late 2007 expanded to active trading at substantial premiums of hundreds of basis points.

Although the crisis subsided, the sovereign CDS premiums remain elevated, and are nowhere

close to pre-crisis levels. The question that we address in this paper is what risks are so richly

compensated in these markets.

At a first blush, the answer seems to be obvious. After all, CDS are designed to insure

against default. But let us consider the United States as the most stark example. At the

height of the crisis the cost of the five-year protection was 100 bps, and it has traded around

20 bps since 2014. Is the U.S. default so likely, or is the expected loss so severe to justify

such premiums? According to basic reasoning, the answer would be no. For instance, some

observers believe that the U.S. is not going to default at all as it can either “inflate away”

its debt obligations, or increase taxes, or both. Furthermore, by the standard replication

argument, the CDS premium cannot be too different from the credit spread, which is the

difference between a par yield on a bond of the credit name and that of a U.S. Treasury, and

in the case of the U.S., is mechanically zero at any maturity.

There are a lot of reasons to think that frictions may arise from various institutional

features of the CDS markets, such as margin requirements, counterparty risk, capital con-

straints, and credit event determination. Such frictions could be responsible for a part of

the observed premium. We do not disagree with such a view. Rather than giving a full ex-

232



planation of the observed premium, our objective in this paper is to establish a quantitative

benchmark for the compensation based on default risk only.

These initial arguments prompt us to make a first step towards developing a formal macro-

based framework that allows us to evaluate the likelihood of and risk premium associated

with a sovereign default. The advantage of such an approach is that it allows to study the

impact of monetary and fiscal policies, and does not require an ability to replicate an asset

in order to value it.

Because it is a first step, we keep our setting as simple as possible. We directly specify the

dynamics of many key variables, such as aggregate output, consumption growth, and gov-

ernment expenditures. What holds it all together and allows us to investigate the questions

of interest is the government budget constraint (GBC). The government can tax aggregate

output and issue new nominal debt to finance its expenditures and repay its outstanding

debt. Thus, the GBC determines endogenously the relation between the issued debt and

taxes.

We specify monetary policy via a Taylor rule that determines behavior of inflation. In an

endowment economy monetary policy usually does not have real effects. In contrast, in our

setting with the GBC featuring nominal debt, inflation affects real quantities. Fiscal policy

responds to the amount of outstanding debt and expected growth in the economy.

Our model endogenously allows for states of the economy in which budget balance can no

longer be restored by raising taxes or by eroding the real value of debt by creating inflation.

In such situations, the government will have no other choice other than to default on its

debt. We refer to such a scenario as a fiscal default. Episodes of fiscal stress arise in our
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model because we assume that an increase in the tax rate has a small, negative effect on

future long-term output growth. Attempts to achieve a balanced budget by raising taxes

thus may come with a slowdown in taxable income, which can further exacerbate fiscal

conditions. Fiscal default then arises when taxes cannot be raised further without reducing

future tax revenues, in the spirit of a Laffer curve. This trade-off prompts our specification

of a maximum amount of debt outstanding, which is related to the expenditure and tax

rates, and ultimately determines the timing of default.

We complement our model with a representative agent who has Epstein and Zin (1989b)

preferences and uses her marginal rate of substitution to value assets. Consumption features

time-varying conditional mean similar to Bansal and Yaron (2004b). These assumptions

allow us to value nominal defaultable securities using inflation and timing of default implied

by the GBC and policy rules.

Qualitatively, we find that the model provides significant insights into the macroeconomic

determinants of CDS premiums on U.S. Treasury debt. In the model, episodes of high

government debt endogenously correspond to investors’ high marginal utility states. When

the government’s expenditures rise, the likelihood that it finds itself close to a fiscal limit, a

state in which further tax increases will reduce tax income, becomes more realistic. Default

probabilities, and the likelihood of incurring losses on government debt thus increase in high

marginal utility states. Writers of insurance against government debt thus face required

payments in high marginal utility states. In order to be compensated for exposure to that

risk, they earn high risk premia. Despite potentially small average losses on government

debt, and thus small average payments for insurers, they occur in the worst of all states.
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Within the context of our model, risk premiums thus make up a substantial part of CDS

premiums beyond expected losses.

We use our model to explore an endogenous rare and severe event that may affect the

U.S. economy. Despite the severity of default, exogenous consumption and, therefore, the

marginal rate of substitution are not affected. In this sense, we are contemplating a mech-

anism that is similar to that of Barro (2006), although without the rare disasters in con-

sumption. One implication of this setting is that the derived CDS premiums are likely to be

conservative.

Quantitatively, we find that our model can generate episodes of persistently elevated CDS

premiums similar to the recent U.S. experience. In simulations, our model produces CDS

premiums of up to a 100 bps on an annual basis. This is similar to peak values of U.S.

CDS premiums around the financial crisis in 2008. Perhaps more importantly, however, our

model predicts episodes of persistently elevated CDS premiums even during calmer times.

This is because in our setup with recursive preferences, investors will anticipate and dislike

occasional shocks to default probabilities, which will result in an elevation of CDS premiums.

The model is thus consistent with the notion that CDS premiums reflect investors’ rational

forecasts of the likelihood of U.S. fiscal stress.

We use the model to revisit the idea of avoiding default by increasing taxes or inflating

the government debt away. We represent these notions by changing the fiscal and monetary

policy stance, respectively. Raising less debt or responding to inflation less aggressively leads

to a decline in the average probability of default and to an increase in CDS premiums. This

happens because changes in the government’s policy stance also increases the volatility of
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taxes and inflation, respectively, implying higher risk premiums. We also evaluate changes

in the debt duration that serves as a metaphor for the combination of the Federal reserve

Board’s quantitative easing and U.S. Treasury’s debt maturity extension programs. Our

model implies that shortening duration leads to an increase in CDS premiums due to rollover

risk.

Notation. We use capital letters to denote the levels of the variables. Lowercase letters

are used for their logs. The changes in the variables are denoted by ∆.

Literature

Our work adds a macrofinance perspective to the growing literature on sovereign default

and the pricing of sovereign default risk. While there is considerable interest in sovereign

default both in macro and in finance, these literatures have evolved somewhat separately.

Our paper is a first step towards synthesizing insights from macro and finance and distilling

them into a quantitative framework that relies on standard building blocks.

There are a number of papers in the finance literature that are based on the contingent

claims approach (CCA), which was originally developed to analyze defaultable corporate

debt. In this approach a bond is treated as a (short put) option on the value of a firm’s

unlevered assets. Default is triggered by a combination of a firm’s difficulty in servicing

debt and the provisions of bankruptcy laws. When applying the CCA to sovereign debt,

unlevered assets are replaced with the present value of future output. The key difficulty is

that there is no bankruptcy law at the sovereign level, so the cause and timing of default is

not clear.
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Strategic default takes place when penalties such as limited access to international debt

markets, trade sanctions, etc. are outweighed by the debt burden. In the CCA framework,

these considerations lead to default when the present value of output under default exceeds

the present value under continuation of debt service (Kulatilaka and Marcus, 1987). Gib-

son and Sundaresan (2005) endogenize the strategic default trigger and the resulting risk

premiums (credit spreads) by embedding a bargaining game between the sovereign and the

creditors. The issue with this approach is that there is inconclusive empirical evidence re-

garding the impact of penalties on sovereign defaults. In our model, the government defaults

when it runs out of available debt-servicing tools (issue new debt, inflate debt, tax more),

and, thus, can no longer meet its long-term financial obligations.

Affine models of sovereign default are focused on estimating a realistic model of a default

probability and default risk premium in emerging economies using an intensity-based ap-

proach. Duffie, Pedersen and Singleton (2003) estimate a model of Russian credit spreads.

Pan and Singleton (2008) estimate risk-adjusted default arrival rate and loss given default

using sovereign CDS. Ang and Longstaff (2013) estimate a joint affine model of U.S. CDS,

U.S. states, and Eurozone sovereigns. We use our model to provide the economic underpin-

ning of defaults and to distinguish between risk-adjusted and actual probabilities of default

(recovery is fixed at a constant for simplicity, but this can be easily extended).

Augustin and Tedongap (2016) value eurozone CDS from the perspective of an Epstein-Zin

agent as well. The key difference from our approach is that they also follow an intensity-

based approach, that is, they assume a function connecting a sovereign’s default probability

to expected consumption growth and macro volatility. In our model, default probability is
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determined endogenously via interaction between fiscal policy and the GBC combined with

monetary policy.

Bhamra, Kuehn and Strebulaev (2010), Chen (2010) and Chen, Collin-Dufresne and Gold-

stein (2009) have linked models of endogenous corporate default with habit-based and re-

cursive preferences to value corporate bonds. The valuation mechanism in our paper shares

much with theirs as a high default risk premium generates substantial credit spreads while

keeping default probabilities realistically low. In contrast to this line of work, we focus on

sovereign default, which entails a different default trigger. Borri and Verdelhan (2012) use a

risk-sensitive consumption-based model based on habit preferences to study sovereign default

premiums in emerging markets.

Similarly to the CCA framework, strategic default is also at the core of the international

macroeconomics literature on sovereign default, in the spirit of Eaton and Gersovitz (1981).

Recent work along these lines includes Arellano (2008); Arellano and Ramanarayanan (2012);

Yue (2010). This important line of work solves general equilibrium endowment models of

small open economies in which governments default strategically in the best interest of

households and analyzes the implications for sovereign credit spreads. Our paper differs

from that work along several dimensions. From a quantitative viewpoint, we operate in

a risk-sensitive framework in which risk premia make up a sizeable component of spreads.

Further, we emphasize the limitations of fiscal instruments for restoring budget balance in

default.

In the latter respect, our work is closer to work by Leeper (2013) on fiscal uncertainty and

debt limits. Bi and Leeper (2013) and Bi and Traum (2012) analyze business cycle models
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that explicitly allow for fiscal limits and apply them to the recent episode of heightened

sovereign risk in Greece. In contrast to our work, they do not focus on CDS premiums or

spreads, and do not operate in a risk-sensitive framework. Moreover, we emphasizes a growth

channel of fiscal policy via elevated tax rates depressing future growth prospects, which is

absent in their work. This channel emerges endogenously from recent work linking long-run

risks with fiscal policy in models of endogenous growth (Croce, Kung, Nguyen and Schmid,

2012; Croce, Nguyen and Schmid, 2013), and is consistent with the empirical evidence, as

documented in Easterly and Rebelo (1993) and Mendoza and Tesar (1998). In this respect,

our work is closest to Chen and Verdelhan (2015), who examine the links between taxation

and sovereign risk, but do not focus on U.S. CDS premiums as we do.

4.2 A Primer on U.S. Sovereign CDS

We start by providing a basic background on corporate CDS. This information motivates

our interest in sovereign CDS and we use it to explain important differences between the

two types of contracts.

4.2.1 Corporate CDS

Prior to the introduction of the Big and Small Bang protocols in 2009, a long position in a

corporate CDS contract required no payments upfront, quarterly premiums, and, in case of

a credit event, delivery of allowed bonds of the corporate entity, or a cash payment with the

amount determined in a CDS auction in exchange for the full par (notional) paid in cash.
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The Big and Small Bang protocols have codified the use of bond auctions to determine

the payments by the long party. They take place within 30 days after a credit event. The

auctions allow delivery of any bond of a defaulted company from a pre-specified list leading

to the cheapest-to-deliver option. The value of this option should be small for corporate

names because their bonds tend to trade at approximately the same price after a credit

event (Chernov, Gorbenko and Makarov, 2013).

The protocols also established standardized CDS premiums (100 bps for investment grade

and 500 bps for speculative grade entities). The standardized CDS premiums simplified

the netting and offsetting of positions but introduced the need to pay an upfront fee to

ensure that the present values of all the cash flows line up. The CDS contracts continue

to be quoted on a par basis (zero payment upfront). For this reason, we ignore all these

institutional details in the paper.

It is easy to obtain a back-of-the-envelope estimate of the quarterly premiums using the

replication argument applied to par bonds. Par bonds have coupon payments such that the

bond value is equal to par immediately after a coupon payment. Assuming that par bonds

of matching maturity are available for both the entity and U.S. Treasury, consider shorting

the corporate bond, and buying the Treasury bond. Because these are par bonds, there

are no upfront payments. The running payment is the difference between higher corporate

and lower Treasury coupons, known as the credit spread. In the case of a credit event, the

Treasury bond can be sold at the par value, while the short position in the corporate bond

requires the purchase of the bond in the marketplace and delivering it to the original owner.

In practice, par bonds may not be available, so it could be difficult to find bonds with
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matching maturity, or corporate bonds could be much more expensive to short due to their

scarcity. All these complications introduce the non-zero difference between the CDS premium

and a bond’s credit spread, known as the CDS-bond basis (Blanco, Brennan and Marsh,

2005; Longstaff, Mithal and Neis, 2005). Typically, the basis is positive, reflecting the cost

of shorting a corporate bond. Because these costs vary with a trading party, there is always

“basis arbing” activity in the marketplace. As a result, with the exception of short-lived

periods of stress, the basis is very close to zero.

To summarize, if one were to take a macro-fundamental view of the determinants of CDS

premiums, there would be no new information relative to credit spreads obtained from bonds.

All the differences between the CDS premiums and credit spreads come from differences in

the institutional features of CDS and bond markets, liquidity, and the lack of a perfect match

between the terms of the two types of instruments.

4.2.2 Sovereign CDS

Figure 4.1 displays history of the U.S. CDS premiums for the most liquid contracts, which

are the five-year ones. The premiums rapidly increased from 0.2 bps in October 2007 to 20

bps during the Lehman Brothers crisis in September 2008. They continued escalating until

they peaked at 100 bps in March 2009. As the first round of quantitative easing went into

effect, the premium came down and reached the levels seen during the Lehman Brothers

default by October 2009. Thereafter, the premiums varied between 20 and 65 bps. The

premiums started declining in the middle of 2012 and most recently settled at about 20 bps,

which is 100 times larger than the pre-crisis level. In Figure 4.1, we also highlight some of
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the events associated with the variations in the cost of protection.

The replication argument applied naively to a sovereign CDS contract would imply zero

premiums for the U.S. sovereign CDS (U.S. CDS for short) regardless of a contract’s maturity.

This stark implication clashes with the evidence and prompts us to focus specifically on U.S.

CDS as opposed to similar contracts for other developed economies.

In fact, the replication argument is not wrong, it simply is not applicable in this case.

Corporate CDS could by valued via replication because cashflows on a risk-free combination

of a bond and its CDS are the same as those on a US Treasury bond of matching maturity

if a Treasury bond is risk-free. If a Treasury bond is risky then a risk-free combination of a

Treasury bond and its CDS cannot be replicated.

This lack of replication implies that one needs to use an equilibrium setting to determine

the CDS premium. An equilibrium setup, discussed in the next section, will naturally bring

out potential economic causes of a sovereign credit event. Our primary interest lies in how

such avenues as monetary and fiscal policies could trigger a credit event and how risks of

these contingencies are priced.

Failure to pay could be another trigger of payments on the CDS contracts and received

a lot of attention during the congressional debt ceiling debacles of 2011, 2013, and 2015.

Many observers believe that one reason for the high U.S. CDS premiums is the chance of

default due to the debt ceiling. Indeed, Figure 4.1 shows that the premiums increased from

40 bps to 60 bps during the first debt ceiling debacle of 2011. However, they declined

from 45 bps to 25 bps during the second debt ceiling crisis in 2013, and moved briefly

between 15 bps and 25 bps during 2015’s debacle. We find the debt ceiling avenue to be
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the least interesting economically because it is a hardwired outcome of a political decision-

making process (although the state of the economy may have an impact on a specific stance

of politicians). Furthermore, recovery is likely to be close to 100% in the case of such a

technical credit event, so it is unlikely to have a material impact on the magnitude of the

premiums.

There could be non-credit-related risks that we do not account for in our model, but are

potentially responsible for the U.S. CDS premium. First, U.S. CDS are denominated in euros

(EUR). The rationale for such a feature is to separate the sovereign risk that the contract

ensures from the payments made on this contract. Because U.S. Treasuries are denominated

in U.S. dollars (USD), the currency of all deliverable bonds is mismatched with the currency

of a contract. This feature complicates the ability to replicate the U.S. CDS using traded

securities. Because the date of a credit event is uncertain, one cannot use a currency forward

or swap contracts to perfectly offset EUR payments with the ones in USD. While less liquid,

the USD-denominated contracts started trading in August 2010 to mitigate this issue. Figure

4.1 contrasts the difference between the EUR and USD contracts, which offers a sense of

how large the foreign exchange premium can be. It averages 8 bps for the five-year contract

with a standard deviation of 4 bps.

Second, the contracts may command a liquidity premium because they are not the most

actively traded ones. We review a number of measures to gauge liquidity of the U.S. CDS

market. According to Augustin (2014), with a gross notional amount of $3 trillion, sovereign

CDS constitute about 11% of the overall credit derivatives market. Dealers have the largest

market share of 70%. In particular, the average gross (net) notional amount of outstanding
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U.S. CDS is $17 ($3.2) billion. To gain further insight into the trading activity of the U.S.

CDS, we report our crude measure of liquidity in Figure 4.2. Because CDS contracts on the

Italian government are the most actively traded sovereign CDS, we report the ratio of the

weekly net notional amount of U.S. CDS to that of Italian CDS.1 The average ratio is 18%

and it ranges between 6.5% in the beginning of the sample in 2008 to 33% in late 2011 at the

peak of the anxieties regarding the European credit crisis and the U.S. fiscal uncertainty. So,

clearly the contract is not the most liquid one, but nonetheless has a considerable trading

activity.

Third, the Basel III capital charge rule may impact the magnitude of the CDS premium

even if there is absolutely no credit risk. Dealers are allowed to buy protection against

sovereign default to reduce a capital charge associated with their counterparty risk exposure.

As pointed out by Klingler and Lando (2015), a sovereign protection seller would require

a positive CDS premium even if the sovereign is riskless because of capital constraints.

Anecdotally, some dealers began to implement the rule voluntarily in 2013. Klingler and

Lando (2015) empirically attribute a fraction of CDS premiums to this effect in their sample

from 2010 to 2014.

Fourth, there is legal risk associated with the credit event determination by a committee

comprised of 15 voting members: 10 from the sell side and five from the buy side. At present,

there is poor understanding of the incentives of committee participants and how this may

affect the decision of whether a credit event took place or not. Last, but not least, there is a

risk of uncertain recovery that is determined by the bond auction with a cheapest-to-deliver

1We are indebted to Patrick Augustin for sharing his data that was hand-collected from the Depository
Trust and Clearing Corporation (DTCC).
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option.

4.3 The Model

In our model, we use a standard framework to link nominal debt, taxes, inflation, and

aggregate growth to fiscal and monetary policy through the government’s budget constraint.

The government can maintain the budget balance either by issuing new debt, or raising

inflation or taxes. Fiscal default arises when the government can no longer service its debt,

rendering it insolvent. As a result, investors may want to buy protection against default

events through sovereign CDS contracts.

As we pointed out earlier, we cannot use the standard replication argument to value CDS

when Treasuries are themselves subject to credit risk. We therefore complement our setup

with a global investor with Epstein and Zin (1989b) preferences who uses her marginal rate

of substitution to value assets. This allows us to value any financial security.

In this section, we describe the details of our model. We start with the pricing kernel, which

we derive from the global investor’s preferences and her aggregate consumption process.

Next, we describe he dynamics of the aggregate economy and government. Then we specify

the interaction of the government’s fiscal and monetary policy stance with the real economy.

We conclude with the valuation of defaultable securities such as CDS.
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4.3.1 Valuation of Financial Assets

We assume the representative agent with recursive preferences:

Ut = [(1− β)Cρ
t + βµt(Ut+1)ρ]1/ρ ,

µt(Ut+1) = Et(U
α
t+1)1/α,

where ρ < 1 captures time preferences (intertemporal elasticity of substitution is 1/(1− ρ)),

and α < 1 captures risk aversion (relative risk aversion is 1− α). Aggregate consumption is

denoted by Ct.

With this utility function, the real pricing kernel is:

Mt+1 = β(Ct+1/Ct)
ρ−1(Ut+1/µt(Ut+1))α−ρ.

In our model, we assume the economy is cashless and we use money as a unit of account

only. Correspondingly, Pt denotes the price level. The agent is using the nominal pricing

kernel M$
t+1 = Mt+1Π−1

t+1, where Πt = Pt/Pt−1 is the inflation rate, to value nominal assets.

We provide the determinants of endogenous inflation below.

Consumption is assumed to have the following dynamics:

∆ct+1 = ν + xt + σcεt+1

xt+1 = ϕxxt + σxεt+1,
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where the shock εt+1 is N (0, 1). This assumption is similar to Bansal and Yaron (2004b),

Model I, by allowing for a time-varying conditional mean in consumption growth. The shock

to consumption growth and its expectation are perfectly correlated for simplicity. ν captures

the deterministic trend growth rate.

4.3.2 The Government and the Economy

We assume that output Yt evolves as follows:

∆yt+1 = ν + ϕy(τt − τ) + σyεt+1, (4.1)

where τt = log Tt is the (log) tax rate at time t and τ is its unconditional mean. The trend

growth rate of output growth is set to that of consumption growth, ν, to ensure a balanced

growth path. We assume the existence of one single tax rate and remain agnostic about its

precise nature. This tax rate is time-varying and its dynamics arise endogenously through

the fiscal authority’s response to debt, as specified below.2 An identical shock to output and

consumption serves as a modelling shortcut to the resource constraint that arises in general

equilibrium models.

Importantly, we assume that deviations of the prevailing tax rate from the mean affect

future growth prospects, through the parameter ϕy. Consistent with the evidence (Croce,

Kung, Nguyen and Schmid, 2012; Jaimovich and Rebelo, 2012), ϕy will be negative and

small in our calibration, so that raising taxes will depress future growth prospects. While

2One might worry that the economy can attain infinite output as the tax rate approaches zero. In practice,
such a scenario is not feasible due to the endogenous nature of taxes in our model.
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we assume this link directly, our specification is in the spirit of the literature on endoge-

nous growth and taxation in which an elevated tax burden endogenously decelerates growth

through its effect on innovation (Rebelo, 1991; Croce, Nguyen and Schmid, 2013).

Let Gt be the government expenditures as a fraction of output. Its log dynamics are given

as follows:

gt+1 = (1− ϕg)g + ϕggt − σgεt+1.

The minus sign in front of the volatility coefficient σg highlights the perfect negative cor-

relation between shocks to output and expenditures, so that a bad shock to the economy

corresponds to an increase in expenditures.

In order to finance expenditures, the government raises taxes and issues nominal debt. For

simplicity, we assume that the government directly taxes output, so that the tax revenue in

levels at time t is given by TtYt. We view this specification as a tractable way to capture the

link between taxation and the aggregate economy. We assume that the government issues

nominal debt with a face value Nt. The real face value of debt as a fraction of output is:

Bt = (Nt/Pt)/Yt.

The government finances its expenditures with two types of bonds: short-term with a price

of Qs
t and long-term with a price of Q`

t per $1 of face value. Short-term bonds mature in

one period. We think of the short-term bond as a monetary policy instrument. We model

long-term debt so as to allow for more realistic modeling of default and to be able to give an
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account of the quantitative easing episode within the context of our setup. For tractability,

we assume that short- and long-term bonds are issued in constant proportion: the nominal

amounts are N s
t = ωNt and N `

t = (1−ω)Nt, respectively. Variation in ω can represent shifts

in the overall maturity structure of government debt held by the public, such as those induced

by the quantitative easing program of the Federal Reserve. We explore these variations later

in the paper.

To retain a stationary environment with long-term debt, we model it via a sinking fund

provision in the spirit of Leland (1994). A long-term bond specifies a coupon payment γ

every period and requires a fraction λ of the debt to be repaid every period. This amounts to

a constant amortization rate of the bond. Although this is perpetual debt, it has an implicit

maturity that is determined by the repayment rate λ. If λ = 1, this simplifies the bond to

the one-period one; if λ < 1, then the implicit bond maturity is longer and proportional to

1/λ.

In the absence of default, the properties of debt and taxes are connected via the GBC:

TtYt +Q`
t(N

`
t − (1− λ)N `

t−1)/Pt +Qs
tN

s
t /Pt

= (γ + λ)N `
t−1/Pt +N s

t−1/Pt +GtYt. (4.2)

The GBC requires that government expenditures GtYt and due payments on short- and

long-term debt (coupon payments and amorization) (γ + λ)N `
t−1/Pt + N s

t−1/Pt have to be

covered either by tax income TtYt or by issuing new short- or long-term debt Q`
t(N

`
t − (1−
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λ)N `
t−1)/Pt +Qs

tN
s
t /Pt. The GBC implies the following tax rate:

Tt = Gt −QtBt + CFtBt−1Π−1
t (Yt/Yt−1)−1,

where Qt ≡ ωQs
t + (1− ω)Q`

t is the market value of one unit of the debt-to-GDP ratio, and

CFt ≡ ω + (1− ω)(γ + λ+ (1− λ)Q`
t) is the promised cash flow per one unit of debt.

We capture the monetary and fiscal policy stance by means of policy rules. In case of the

monetary policy, this is achieved by a standard Taylor rule linking the nominal short-term

interest rate to macroeconomic variables. In line with the literature, we assume that the

central bank responds to inflation and output growth, which we view as corresponding to

the output gap in the New-Keynesian literature.

In the case of fiscal policy, we assume that the government sets the amount of new debt

issued in response to the amount of debt outstanding and expected economic conditions xt.

Mechanically, then, the prevailing tax rate has to be such as to establish budget balance in

the GBC.

Our specification is related to policy rules examined in the recent literature on monetary-

fiscal interactions (Bianchi and Ilut, 2014; Leeper, 1991, 2013; Schmitt-Grohe and Uribe,

2007). In particular, it is shown by Schmitt-Grohe and Uribe (2007) that, in a rich New

Keynesian dynamic stochastic general equilibrium model, policy rules of this sort lead to

welfare levels that are quantitatively indistinguishable from those stemming from optimal

Ramsey policies, in which fiscal and monetary policies are designed to maximize welfare.

Relatedly, Cuadra, Sanchez and Sapriza (2010) show how debt and tax dynamics that are
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consistent with our specification arise endogenously in Ramsey optimal fiscal policies when

the government has the option to default.

Summarizing, the government controls the real debt and nominal interest rate through the

fiscal and monetary policies, respectively, as follows:

bt = ρ0 + ρbbt−1 + ρxxt + ξbt , (Fiscal policy)

−qst = δ0 + δππt + δy∆yt + ξqt , (Monetary policy)

where πt = log Πt is the (log) inflation rate. Intuitively, the parameter ρb determines how

fast the government intends to pay back outstanding debt. Similarly, we allow for the

possibility that the government increases public debt in bad times by responding to xt. The

parameter ρx < 0 determines the intensity of this interaction. Innovations ξbt ∼ N (0, σ2
b ) and

ξqt ∼ N (0, σ2
q ) capture the uncertainty about the future indebtedness of the government and

monetary policy, respectively. As is well-known, obtaining determinacy imposes restrictions

on the parameters of both the fiscal and the monetary policy rules (see Leeper, 1991, 2013),

which we discuss in the calibration section.

Given the real pricing kernel, the Taylor rule implies the dynamics of inflation as in

Gallmeyer, Hollifield, Palomino and Zin (2007a). This reflects the fact that the nominal

short rate implied by the nominal pricing kernel and that implied by the Taylor rule must

be consistent. In this line of work, which evolves around endowment economies with fully

flexible pricing mechanisms, monetary policy has no scope to affect real variables. In our

setting, the GBC is the channel through which monetary policy influences real quantities
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because it affects the real value of outstanding debt, which in turn impacts the tax rate and

output growth.

4.3.3 Fiscal Default

We think of government default in the model in the sense of fiscal default, namely scenarios in

which budget balance can no longer be restored by further raising taxes, as opposed to mere

technical defaults resulting from the political decision-making process. Our model captures

the negative effect of taxes on the tax base by means of the output growth equation (4.1).

This effect limits the future stream of surplus the government can generate in any state, and

thus the maximal amount of debt it can repay.

Limits to raising taxes arise frequently in macroeconomic models with distortionary taxes

in the context of Laffer curves. Laffer curves relate the government’s tax revenue to the

prevailing tax rate. While they typically start out increasing for low tax rates, they often

reach the “slippery slope” (Trabandt and Uhlig, 2011), where raising tax rates actually lowers

tax revenue, so that tax policy becomes an ineffective budget-balancing tool. This is because

distortionary taxation tends to negatively affect the tax base, such as in the case of labor

taxes, where excessive taxation reduces work incentives.

To capture this Laffer curve intuition, we introduce two notions of expected surplus. One

is the present value of tax receipts minus the expenditures:

St = Et

∞∑
j=1

Mt,t+j(Tt+j −Gt+j)Yt+j/Yt. (4.3)
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Note that St coincides with the market value of debt, QtBt, only if there is no default. The

second one is expected sustainable surplus. It corresponds to the maximal tax rate, T ∗t , that

is feasible without lowering tax revenues:

S∗t = Et

∞∑
j=1

Mt,t+j(Tt+j ∧ T ∗t −Gt+j)Y
∗
t+j/Y

∗
t ,

and T ∗t solves St = S∗t . The notation Y ∗t highlights the different dynamics of output if the

tax rate changes from the one prescribed by the GBC. If Tt > T ∗t , then the shrinking tax

base would decrease the surplus.

These equations capture the idea that if Tt becomes greater than T ∗t , then the current

government policies will not be sustainable. So, the government should either adjust one of

its policies, or default. We assume that the government is committed to its expenditures,

as well as monetary and debt management rules. Expenditures reflect, to a large extent,

various entitlement programs that are hard to renegotiate. We intentionally do not allow

changes in the policy rules. By doing so we effectively assume that the Fed will never be

insolvent separately from the Treasury, that is, the Fed has fiscal support of the Treasury

(Reis, 2015). These assumptions allow us to highlight the default channel of CDS premiums.

In practice, many changes may take place in an extreme fiscal situation. Studying all the

possibilities is beyond the scope of this paper.

Indeed, if Tt becomes greater than T ∗t , the expected surplus required to service debt exceeds

the surplus that the government can sustain by committing to its policy rules. In this case,

the government will no longer be able to honor its long-term financial obligations. At this
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stage, rational investors will not be willing to roll over the short-term debt. Being unable to

access the bond market, the government has to default.

Fiscal theory of the price level (FTPL) also features a prominent role for the GBC in a

similar situation of fiscal stress. FTPL requires the GBC to hold. As a result, the price level

Pt is determined via the equality of the market value of debt, QtBt, and expected surplus

(4.3). Cochrane (2011a) points out that in this case reaching the top of the Laffer curve

leads to fiscal inflation instead of default. As Leeper (1991); Woodford (2003) show, such

a mechanism leads to determinate equilibrium only when the fiscal policy is active (locally

non-Ricardian) and the monetary policy is passive.

In our model, the monetary policy rule satisfies the Taylor principle implying a unique

bounded path for inflation, Pt/Pt−1. The fiscal policy operates on the stock of government

debt and with ρb < 1 ensures unique bounded path for this stock. Thus, both policies are

active, so they are uncoordinated (Cochrane, 2011a). This is feasible because we allow for

default via violation of the GBC.

4.3.4 Defaultable Securities

We denote default time by:

tD = min{t : τ ∗t ≤ τt},

and probability of default by PD
t . So default will take place at time t+ 1 if tD = t+ 1. Given

the definition of the one-period ahead default probability, one can value the short-term bond
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as:

Qs
t = Et

(
M$

t,t+1

[
(1− 1{tD=t+1}) + (1− L)1{tD=t+1}

])
, (4.4)

where L is the the loss given default. We can also value the long-term bond by relying on

one-period ahead default probabilities via the following recursive representation:

Q`
t = Et

(
M$

t,t+1

[
(γ + λ+ (1− λ)Q`

t+1)(1− 1{tD=t+1}) + (1− L)1{tD=t+1}
])
.

A CDS contract has two legs: the premium leg pays the CDS premium CDSTt every

quarter until a default takes place. It pays nothing after default. The protection leg pays

a fraction of the face value of debt that is lost in default and nothing if there is no default

before maturity. Accordingly, the value of the fixed payment to be made at time t + j is

CDSTt × Et(M$
t,t+j1{t+j<tD}). As a result, the value of the premium leg is equal to:

PremiumT
t = CDSTt ·

T∑
j=1

EtM
$
t,t+j1{t+j<tD}.

The protection leg can be represented as a portfolio of securities, each of them maturing on

one of the days of the premium payment, t+ j, and paying L if default took place between

t+ j − 1 and t+ j, and nothing otherwise. Thus,

ProtectionTt = L ·
T∑
j=1

Et(M
$
t,t+j1{t+j−1<tD≤t+j}).
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The CDS premium CDSTt is determined by equalizing the values of the two legs.

Importantly, CDS premiums depend on the joint behavior of the nominal pricing kernel and

default probabilities. While we specify the process for the real pricing kernel exogenously,

default probabilities reflect the endogenous responses of our economy to shocks. To the

extent that the endogenous dynamics of our economy are predictive of high government

indebtedness in times of low consumption growth prospects, the global representative agent

in our model will require compensation for potential default losses during such episodes.

In other words, the prices of default-sensitive securities will reflect a risk premium beyond

expected losses.

4.3.5 Discussion

In our simple model of the U.S. economy, we allow for scenarios that endogenously trigger

the government’s default on its debt. Before we describe the model’s solution, we briefly

review its ingredients.

There are four building blocks. In the first block, we describe the dynamics of the aggregate

economy as given by (4.1). In the second block, we outline governement-related objects,

such as the fiscal and monetary rules, as well as the GBC. in the third block, we describe

the default condition that is based on the Laffer-curve argument. Finally, in the fourth

block we derive a risk-sensitive pricing kernel from recursive preferences given a process for

consumption growth. While blocks one and four reflect a standard structure familiar from

the literature on long-run risks following Bansal and Yaron (2004b), we add a specification

of the government’s and the central bank’s policy instruments and default event in blocks
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two and three. Although we do not complete the model in general equilibrium, we link all

these blocks through the government budget constraint.

Inflation arises endogenously as the nominal interest rate implied by the Taylor rule has

to coincide with that implied by the nominal pricing kernel. Inflation thus has real effects in

our model, because it affects the real value of debt and thus the prevailing tax rate, which

in turn impacts expected growth. Growing debt-financed government deficits can lead to

episodes of elevated tax rates, which may trigger default.

Default probabilities are reflected in the pricing of defaultable bonds. Treasury bonds

and thus the central bank’s policy instrument are themselves subject to credit risk. Even

the value of a hypothetical nominal bond that has no cash flow risk depends on the default

probability because inflation does. This is because the combination of fiscal and monetary

policies and the GBC imply that inflation depends on the risky government debt.

4.4 Quantitative Analysis

In this section, we evaluate to what extent the possibility of a U.S. fiscal default can quan-

titatively account for the CDS premiums observed since the onset of the recent financial

crisis. We calibrate our model in a way that is quantitatively consistent with salient features

of the recent U.S. monetary and fiscal experience. We check whether the calibrated model

implies CDS premiums consistent with the ones in the data. Moreover, our risk-sensitive

specification allows for a decomposition of CDS premiums into a default probability and a

default risk premium. Finally, we can use our calibrated model as a laboratory for a set of
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counterfactual experiments that highlights the different channels that affect valuation of the

sovereign default risk. We start by describing our calibration approach, and then illustrate

the main mechanisms driving the quantitative results and counterfactuals.

4.4.1 Calibration

We report our baseline parameter choices in Table 4.1. We calibrate the model at a quarterly

frequency, consistent with the availability of macroeconomic data. We need to calibrate pa-

rameters from four different groups. First, we follow the literature on long-run risks to select

our preference parameters. Second, we pick parameters governing the exogenous stochastic

processes in our model, such as output growth, consumption growth and, critically, govern-

ment expenditures. We do so by matching time series moments of their empirical counter-

parts. Because our data on CDS spreads cover a relatively short and recent time period,

we focus on a similar sample to construct the empirical counterparts for the macroeconomic

moments. Specifically, we use the period from 2000 to 2014. Third, we choose parameters

controlling the maturity and payment structure of government debt. Finally, we specify the

fiscal and monetary policy rules to match the recent U.S. policy experience in a high debt

environment. We remove deterministic trend by setting ν = 0.

Our choice of preference parameters follows Bansal and Yaron (2004b). As is well-known,

the combination of relatively high risk aversion and an intertemporal elasticity of substitution

above one allows the rationalization of sizeable risk premia in many markets. In a similar

vein, the calibration of the consumption growth process reflects long-run risks, and the

parameter choices follow Bansal and Yaron (2004b). To calibrate Gt, we fit an autoregressive
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process to the GDP-government expenditures ratio, which helps us to determine its mean,

autocorrelation, and volatility. Turning to the output dynamics, a critical parameter is ϕy,

which is the elasticity of output growth with the respect to taxes. Intuitvely, we would

expect a raise in taxation to be bad news for trend growth. By setting ϕy = −0.024,

based on the empirical estimate obtained in Croce, Kung, Nguyen and Schmid (2012), our

parameter choice is consistent with that notion. We choose σy to match the relative volatility

of consumption and output growth observed in the data.

The weighted average maturity of U.S. Treasury bonds is 59 months on average, but it

has been rising consistently over the past few years, reaching about 69 months by the end of

2015 (U.S., 2010). In addition, debt of maturity that is less than one year represents about

20%-30% of all outstanding debt. These numbers allow us to select the (ω, λ) combination.

We pick ω to be 0.2 to match the latter fact. In order to match the long-term average

maturity, we select λ = 0.04. Finally, there is little guidance about the recovery rate in a

potential default of the U.S. government. Perhaps erring on the conservative side, we assume

a recovery rate of 80% (L = 0.2) in our benchmark calibration. This is quite a bit higher than

in the U.S. corporate bond market, where recovery rates around 50% are a good starting

point, as reported, for example, in Chen (2010).

Our calibration of the parameters in the policy rules is quite standard. We choose the pa-

rameters of the Taylor rule following the parameterization in Gallmeyer, Hollifield, Palomino

and Zin (2007a). This choice implies an average inflation rate in line with the data. In order

to determine the parameters in the fiscal rule, we run a regression of the debt-to-GDP ratio

on its lagged value, and a proxy for expected consumption growth. We compute an estimate
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of xt from data on consumption growth using the Kalman filter and the assumed model

parameters.

4.4.2 Quantitative Results

We now present quantitative results based on model simulations. The possibility of default

induces strong nonlinearities in both payoffs and the discount factor. Therefore, we use a

global, nonlinear solution method. Endogenous variables are approximated using Chebychev

polynomials and solved for using projection methods. Appendix 4.6 outlines the procedure.

We start by discussing the macroeconomic implications of the model. Taking these as a

benchmark, we proceed to examine the quantitative implications for CDS premiums.

Matching Quantities

In table 4.2, we summarize the main implications for the macroeconomic quantities. The

average market value of debt to GDP ratio in the model is about 0.92, which is within

one standard error of the one in the data. Identifying and dtermining one single relevant

aggregate tax rate is complicated by the tax code. We use the estimates from McGrattan and

Prescott (2005) as our sample statistics. Our model matches these numbers quite closely.

Average inflation is matched as well.

While matching basic macroeconomic moments is important to discipline our analysis,

our main interest is the potential for fiscal defaults. The results in table 4.2 provide a sense

of the possibility of such events in our model. The results suggest that the unconditional

mean of the debt limit is in the range of a 120% to 165% percent debt-to-GDP ratio. These
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numbers are well within the range of the CBO long-term debt projections (CBO, 2016).

The corresponding tax limit is 70% to 97%. These are large numbers as compared to the

average current tax rate. Yet the low bound is not far from that of Trabandt and Uhlig

(2011). Moroever, we would expect debt and tax limits to fall during economic downturns.

We confirm this intuition below.

The estimated distribution of the tax limit determines fiscal default probabilities in the

model. Our benchmark calibration yields a one-year ahead default probability of 0 to 0.4%.

As one external validation of this magnitudes, Moody’s estimates this probability at 0.05%

(Tempelman, 2011). Below we explore to what extent such a default probability can account

for observed CDS premiums.

Inspecting the mechanism

To dissect the main economic mechanism underlying our quantitative results, we inspect the

response of our economy to a negative one-standard deviation shock to the long-run trend,

xt. In our model, innovations to variables other than policy shocks are perfectly correlated,

as is the case in a general equilibrium environment. Thus, the behavior of the variables will

be driven by the properties of the long-run trend. Figure 4.3 illustrates the comovement

of all our variables. The same patterns are also reflected in the unconditional correlations

reported in Table 4.3.

A negative shock to the long-run consumption trend triggers a raise in government expen-

ditures. This is consistent with the countercyclicality of government expenditures. Naturally,

these expenditures give rise to financing needs. Our fiscal policy rule then requires that they
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are partially financed by the government issuing debt. Due to the fiscal rule, the government

debt is realistically countercyclical. However, the GBC requires budget balance, so that

elevated expenditures also lead to a rise in the tax rates. Our specification of the fiscal block

of the model thus is consistent with countercyclical fiscal policies.

Let us now examine how fiscal and monetary policy interact in our model. First, given our

specification of the process governing output growth, a higher tax rate depresses expected

output growth. As a result, an accommodative central bank tries to stimulate the economy

by lowering the nominal short-rate, thereby creating inflation. This is because the central

bank adheres to the Taylor rule. As a result, inflation increases in response to a negative

shock, generating countercyclical inflation.

While inflation displays substantial short-run volatility, it also exhibits a small, persistent

component. This reflects the central bank’s response to long-lasting bad news about output

growth induced by a persistent rise in taxes. This small persistent component is important for

generating realistic nominal term structure in the model. This is because endogenous long-

run inflation risk generates negative correlation between expected inflation and consumption

growth, implying a substantial inflation risk premium.

Since the tax base shrinks when taxes go up, and government expenditures increase persis-

tently, the fiscal limit (maximal sustainable tax rate) declines, and default probabilities rise.

Note that this rise in default probabilities coincides with an upward jump in the stochastic

discount factor, or marginal utility. In other words, in our model episodes with high default

probabilities and thus high potential losses endogenously coincide with high marginal utility

times. To bear the risk of such losses, agents in our model thus require a credit risk premium
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to hold defaultable securities. It is this credit risk premium that allows our model to generate

non-trivial CDS spreads.

Term Structures of Risk-free and Defaultable Securities

As discussed above, the standard replication approach for corporate CDS contracts does not

apply in the context of U.S. sovereign CDS premiums due to the lack of a risk-free benchmark.

While U.S. Treasury bonds are often conveniently interpreted as such a benchmark, the very

notion of observed non-zero CDS premiums on U.S. government debt invalidates this view.

When U.S. government debt is subject to credit risk itself, approaches other than replication

are called for when determining CDS premiums. Our equilibrium model offers such an

approach.

The pricing kernel in our model implies an equilibrium term-structure of real risk-free

yields. The term structure of U.S. Treasury yields cannot serve as an empirical counterpart

to these yields. There are two sources of discrepancies. First, the term structure of Treasury

yields refers to nominal bonds. Second, and more importantly, these bonds are not insulated

from credit risk as highlighted above. Nonetheless, one can infer a theoretical counterpart

to U.S. Treasury yields from our model by using the nominal pricing kernel and accounting

for a possibility of default similar to expression (4.4).

In table 4.4, we summarize three yield curves inferred from our calibrated model. We show

the term structure of risk-free yields that correspond to expectations of the equilibrium real

pricing kernel at various horizons. We report what we call the term structure of pseudo

risk-free nominal yields. This curve corresponds to expectations of the equilibrium nominal
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pricing kernel. We label them pseudo risk-free, as endogenous inflation in our model reflects

the risk of a government default, while the real discount factor does not. We also report the

yield curve of nominal, defaultable bonds that correspond to expectations of the nominal

pricing kernel accounting for government default probabilities at various horizons, that is,

the term structure of default probabilities.

The term structure of real risk-free yields is mildly downward sloping, which is consistent

with the long-run risk paradigm. In the context of our model, this is an implication of a high

intertemporal elasticity of substitution. Empirically, no clear consensus about the average

slope of the real term structure has yet emerged. Various researchers have interpreted the

data on inflation-protected bonds (TIPS) in the U.S. as pointing to an upward sloping real

yield curve, while others point to the short data sample and conflicting evidence from a

longer data sample on inflation-indexed bonds in the U.K. Neither line of argument provides

guidance for our purposes, as even an upward sloping term structure of real yields does not

allow disentangling the effects of inflation and default risk, which is at the core of our setup.

Given the real risk-free term structure, our model generates nominal pseudo risk-free yield

curves that are on average upward sloping. Thus, our model predicts a realistically upward

sloping term structure of inflation expectations and, importantly, inflation risk premia. As

described earlier, inflation is endogenously countercyclical in the model. Indeed, adhering to

the Taylor rule requires the central bank to raise inflation in response to elevated government

indebtedness, in order to restore budget balance by eroding the real debt burden. This is

because high debt leads the government to raise taxes, which typically depresses long-term

growth prospects, and lowers the output growth, which the central bank reacts to. Inflation
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thus erodes away the payoff to holding debt precisely in high marginal utility states, so that

bond holders will require an inflation risk premium to hold government bonds.

We find that the term structure of nominal defaultable yields – the model counterpart of

U.S. Treasury yield curves - is upward sloping as well. This curve reflects inflation expecta-

tions and an inflation risk premium adjustment, and it also accounts for the term structure

of default expectations and a default risk premium. The default risk premium accounts for

the fact that the model is naturally predictive potential government defaults that may occur

during high debt episodes, which we show to endogenously coincide with high marginal util-

ity states in the model. Notably, the defaultable term structure is steeper than the nominal

pseudo risk-free curve, implying that default risk cannot be avoided by inflating away debt.

Such default premia thus reflect market expectations about the limits to the ability of the

central bank to restore budget balance by means of inflation. This is consistent with the

empirical evidence in Hilscher, Raviv and Reis (2014) on the limited ability of inflation to

balance the government budget. We explore this further in the counterfactual analysis.

Fiscal Defaults and CDS Premiums

We now examine the pricing of CDS contracts and the link between CDS premiums and the

probability of a U.S. fiscal default. Table 4.5 provides the results. We report average CDS

premiums from the data and from the model, in basis points. Columns (1) to (3) report

various versions of the data depending on the contract denomination (EUR in (1) and (2),

and USD in (3)), and sample (2007-2016 in (1), and 2010-2016 in (2) and (3)). The main

differences in the averages are driven by the currency of the contract denomination rather
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than the sample.

The model-based averages are reported in column (4) of table 4.5. Overall, we see that our

model delivers an upward sloping term structure of CDS premiums with magnitudes that are

consistent with the data. They are particularly close to the USD-denominated numbers. This

is natural as we ignore currency risk in our model. There are some quantitative discrepancies,

but, as highlighted in section 4.2.2, we do not account for the risks associated with various

institutional features of the contract in our model. On balance, the results suggests that

accounting for default risk goes a long way toward explaining the magnitudes of the CDS

premiums.

Traditionally, credit models better fit premiums at the longer end of the curve than at

the short end. This is a standard implication of structural models of the defaultable term

structure, especially consumption-based ones. We find magnitudes that are consistent with

the data because our default boundary is moving over time and time is discrete, so there is

no perfect anticipation of default in the next instant.

The CDS premiums we find are substantial despite modest default probabilities in the

model. As in all models of defaultable securities, default spreads can be decomposed into

two components: expected losses, and default risk premia. In our model, losses given default

are known, so the default risk premium reflects the compensation protection sellers require

in order to bear the risk of experiencing the default event in high marginal utility states.

The calibrated loss is relatively small. It is conservative because the burden of fitting CDS

premiums rests on the ability of our model to generate high default risk premiums.

Indeed, the results of column (5) of Table 4.5 confirm that the risk premiums are substan-
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tial. The column displays the size of CDS premiums if investors were risk-neutral. The ratio

of the numbers in column (4) to the ones in column (5) reflects the magnitude of the afore-

mentioned default premium. This ratio is approximately equal to 3 across all maturities.

The default premium is so large because fiscal default endogenously is more likely to happen

in high marginal utility states, so that selling default insurance earns a high covariance risk

premium, akin to default risk premia in other debt markets, such as corporate bond markets.

The model is thus consistent with high CDS premiums, reflecting investors’ rational forecasts

of the likelihood of U.S. fiscal stress.

Inflating and Taxing Away Debt

A common view is that a U.S. default is unlikely as the government can always resort to

higher taxation or creating inflation to restore budget balance. We now examine a potential

effect of such scenarios through the lens of our model. We represent an attempt to inflate

away the debt burden with a shift towards a looser monetary policy stance. This is captured

by a shift towards lower values of δπ in the Taylor rule. Similarly, we can represent a shift

towards a fiscal policy with more aggressive taxation by lowering ρb. This means that new

debt is issued in smaller amounts, which would imply higher taxes via the GBC.

We now quantitatively evaluate variation in the policies using counterfactual analysis.

Table 4.6 reports the results for the monetary policy. Loosening of the monetary policy

stance has the desired effect of increasing the average inflation rate. Similarly, as expected,

the average debt is reduced, which comes with a reduction in default probabilities.

Remarkably, CDS premiums rise. This happens because an increase in mean inflation is
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accompanied by an increase in its volatility. Larger shocks to inflation make the fiscal limit

more volatile, thus it can fall more relative to its mean, as highlighted in Figure 4.3. This

decrease in the fiscal limit is accompanied by an increase in default probability even though

its mean declines. As a result, the risk premium amplification mechanism that we discuss in

the previous section delivers larger risk premiums despite the decline in expected losses.

We obtain a similar result in the case of an attempt to “tax away” debt. As Table 4.7

shows, using taxes more aggressively to respond to economic conditions does lead to a fall in

the average debt burden and default probabilities, while the average tax rate goes up. The

volatility of taxes also goes up, and, again according to Figure 4.3, the fiscal limit declines

relative to its mean. As a result, the same mechanism is at play.

Our counterfactual exercises illustrate some of the pitfalls associated with the notion of

inflating or taxing away the government debt obligations. While these policies tend to

have the desired effects for the first moments of debt, taxes, and inflation, they come with

endogenous movements in second moments. These movements are priced in our risk-sensitive

framework and push CDS risk premiums in the opposite direction.

Shifting Debt Duration

In our model, we represent monetary policy through a standard Taylor rule linking the

short-term interest rate to inflation and output growth. In response to the recent financial

crisis, the Federal Reserve increasingly relied on non-standard monetary policy instruments.

Under the label of quantitative easing (QE), these measures effectively shifted the average

duration of outstanding Treasuries. Arguably, the use of these instruments critically shaped
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the Treasury markets in our sample.

We now discuss our analysis of how shifts in debt duration affect default probabilities

and CDS premiums, through the lens of our model. In our quantitative experiments, we

capture shifts in debt duration by variations in λ, that is, the amortization rate of long-term

debt in the government’s debt portfolio. Greenwood, Hanson, Rudolph and Summers (2014)

emphasize that the Fed’s QE activities were offset by the Treasury’s maturity extension

program. As a result, the maturity of the consolidated balance sheet of the two entities

experienced relatively little change. Our model is silent about the different roles of the two

entities, so our exercises with varying effective maturity of debt apply to the joint implication

of the Fed’s QE policy and the Treasury’s debt management.

In table 4.8, we report the results. Increasing λ effectively corresponds to a shortening of

debt duration. We see that in our model such shifts come with elevated default probabilities,

and hence CDS spreads. The last columns give a sense of the mechanism at work, in that

shortening debt duration is accompanied by increases in the volatility of taxes as well as

the volatility of the market value of debt. This is consistent with the notion of elevated

rollover risk. When λ goes up, the fiscal rule dictates that the government has to refinance

debt, or roll over, a larger fraction of debt in episodes with depressed long run growth

prospects. Intuitively, refinancing thus occurs when bond prices fall and expenditures are

high, so that tax rates have to increase relatively more to restore budget balance. Clearly,

more pronounced tax raises only exacerbate default probabilities, as reaching the tax limit

is more likely.
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4.5 Conclusion

Premiums on U.S. sovereign CDS rose to unprecedented levels during the recent financial

crisis, and still remain at elevated levels today. Given the apparent size of these premiums,

commentators have widely speculated whether they indeed reflect financial market expecta-

tions about an impending U.S. default. After all, casual inspection suggests that the U.S.

government can always balance the budget by raising taxes or else, by inflating away the real

value of debt. In this paper, we ask whether the likelihood of a fiscal default, namely a state

when tax- or inflation-based finance is no longer available, justify the size of the observed

premiums.

We develop an equilibrium model of the U.S. economy with a representative agent featuring

recursive preferences, in which monetary and fiscal policy jointly endogenously determine

the dynamics of growth, debt, taxes and inflation. Fiscal default obtains when the economy

approaches the slippery slope of the Laffer curve, where a further increase of the tax rate

reduces tax revenue. Our equilibrium approach allows us to value CDS contracts reflecting

risk-adjusted probabilities of fiscal default, thereby overcoming the challenge that standard

replication arguments for CDS pricing fail in the absence of the risk-free benchmark.

We find that our model quantitatively generates premiums on CDS contracts in line with

the U.S. experience since the recent financial crisis. Annualized CDS premiums peak at

around 100 bps in the model. This is because high debt and default probability episodes

endogenously correspond to high marginal utility states in the model, so that selling default

insurance earns high risk premia. Importantly, CDS premiums raise persistently even in
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response to small shocks to the likelihood of fiscal default, as investors with recursive pref-

erences anticipate and dislike such states. Our model is thus consistent with the view that

high CDS premiums reflect investors’ rational forecasts of the likelihood of U.S. fiscal stress.

Our results also cast a doubt on the notion that the government can restore budget balance

by simply inflating or taxing away debt. In the context of our model, elevated mean inflation

and taxes do come with a reduction of average debt, and default probabilities, but similarly

they bring about endogenous movements in the second moments of these variables, both in

volatilities and correlations. While our partial equilibrium model merely suggests that such

policies can also lead to a raise in risk premia, such movements would likely have welfare

implications in a richer general equilibrium framework.
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Table 4.1: Calibration

Parameter Description Value

1. Preferences
β Subjective discount factor 0.997

ρ IES=(1− ρ)−1 1/3
α RRA=(1− α) −9

2. Exogenous processes
σc Volatility of shocks to ∆c 0.014
σx Volatility of LLR process σc × 0.044
ϕx Autocorrelation of LLR 0.936
σy Volatility of shocks to ∆y 0.022
ϕy Elasticity output growth - taxes −0.024
σg Volatility of G 0.075
ϕg Autocorrelation of G 0.990

3. Different Maturities and Default
ω Share of short term debt 0.200
λ Repayment rate 0.040
γ Coupon payment 0.050
L Losses in the default event 0.200

4. Policy parameters
δπ Inflation loading coefficient 1.500
δy Output growth coefficients 0.500
σq Monetary policy shock 0.003
ρb Debt loading coeffcient 0.960
ρx Expected growth coeffcient −0.220
σb Fiscal rule shock 0.008

Notes. We describe the calibration in section 4.4.1.
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Table 4.2: Macroeconomic Moments

Data Model
Mean Std Mean Std

Market value of debt (QtBt) 0.916 0.086 0.903 0.112
Taxes (Tt) 0.326 0.031 0.354 0.124
Annual gross inflation (Πt) 1.011 0.012 1.012 0.027

Debt limit (S∗t ) 1.414 0.119
Tax limit (T ∗t ) 0.829 0.068
Default probability (PD

t ) 0.002 0.001

Notes. This table reports basic macro moments. The empirical moments come from the
BEA quarterly data and cover the sample period 2000: Q1 to 2016: Q2. All moments are
annualized. To compute theoretical moments, we simulate the data at quarterly frequency
100 times for 15 years and average across simulations.
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Table 4.3: Correlation

log(QtBt) τt gt s∗t τ ∗t logPD
t logEt(Πt+1)

∆ct −0.305 −0.680 −0.509 0.493 0.627 −0.904 −0.478

Notes. This table reports correlations between main variables in our model. We simulate
the data at quarterly frequency 100 times for 15 years and average across simulations.
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Table 4.4: Term Structure

Maturity, Model Data
years Real yields Pseudo risk-free yields Yields Yields

1 0.52 1.90 2.09 2.01
3 0.46 2.27 2.48 2.53
5 0.38 2.59 2.83 3.03

10 0.21 3.41 3.68 3.76

Notes. This table reports annualized mean yields across horizons of various fixed income
instruments in the model and the data. The empirical moments correspond to U.S. nominal
Treasury bonds in the sample between 2000: Q1 and 2016: Q2. We simulate the data at
quarterly frequency 100 times for 15 years and average across simulations.
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Table 4.5: CDS Spreads

Maturity, Data e Data e Data $ Model L·Mean(PD
t )

years (1) (2) (3) (4) (5)

1 16.13 15.61 13.29 11.42 3.97
3 22.18 21.66 17.32 15.94 5.62
5 29.34 31.29 23.11 20.72 7.30

10 40.79 46.86 34.92 33.91 12.16

Notes. This table reports annualized mean CDS premiums across maturities in the data
and the model. Column (1) displays EUR-denominated contracts from 2007: Q2 to 2016:
Q2. Column (3) displays USD-denominated contracts from 2010: Q3 to 2106: Q2. Column
(2) shows EUR-denominated contracts for the same sample as the USD-denominated ones.
Column (4) shows the theoretical premiums. The table also reports theoretical expected
losses on the government debt portfolio in column (5). We simulate the data at quarterly
frequency 100 times for 15 years and average across simulations.
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Table 4.6: Monetary Policy and CDS Premiums

Mean Std
δπ QtBt PD

t CDS5 Πt Πt

1.50 0.9034 0.0024 21 1.0123 0.0274
1.35 0.8829 0.0022 23 1.0181 0.0315
1.20 0.8538 0.0019 24 1.0236 0.0382

Notes. This table reports theoretical moments corresponding to various magnitudes of mon-
etary policy response to inflation, δπ. Means and standard deviations are annualized. We
simulate the data at quarterly frequency 100 times for 15 years and average across simula-
tions.

Table 4.7: Fiscal Policy and CDS Premiums

Mean Std
ρb QtBt PD

t CDSt(5) Tt Tt
0.96 0.9034 0.0024 21 0.3540 0.1237
0.94 0.8729 0.0021 23 0.3817 0.1365
0.92 0.8515 0.0019 25 0.4022 0.1443

Notes. This table reports theoretical moments corresponding to various magnitudes of fiscal
policy response to debt, ρb. Means and standard deviations are annualized. We simulate the
data at quarterly frequency 100 times for 15 years and average across simulations.

Table 4.8: Debt Duration and CDS Premiums

Mean Std
λ PD

t CDSt(5) Tt QtBt

0.01 0.0021 18 0.1190 0.1081
0.04 0.0024 21 0.1237 0.1124
0.16 0.0032 27 0.1436 0.1317

Notes. This table reports theoretical moments corresponding to various magnitudes of the
amortization rate of long-term debt, λ. Means and standard deviations are annualized.
We simulate the data at quarterly frequency 100 times for 15 years and average across
simulations.

277



Figure 4.1: History of U.S. CDS premiums
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Notes. We plot the time-series of premiums on five-year contracts. The dark line represents quotes

in EUR from April 2007 to June 2016, and the light one is in USD from August 2010 to June 2016.

The time series are complemented by the highlights of major economic and political events during

that period. The premiums are expressed in basis points per year.
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Figure 4.2: Liquidity of U.S. CDS
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Notes. We plot the time-series of liquidity of the U.S. CDS market. CDS contracts on Italian

government are the most actively traded sovereign contracts. For this reason, our liquidity measure

is equal to the ratio of the weekly net notional amount of U.S. CDS to that of Italian CDS. The

time series is complemented by the highlights of major economic and political events.
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Figure 4.3: Impulse Responses
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4.6 Appendix

Computational procedure

The model is summarized by a system of expectational difference equations. Solving for

the endogenous variables in the system is complicated by (i) the nonlinearities induced

by the pricing kernel and the possibility of default and (ii) the endogeneity of the default

boundary τ ∗, which depends on present values of endogenous variables. We deal with (i) by

adopting a global, nonlinear solution method based on projection techniques, and with (ii)

by implementing an iterative algorithm based on Monte Carlo methods.

Our solution strategy to deal with (i) is to approximate the endogenous vari-

ables πt, q
s
t , and qlt with flexible Chebyshev polynomials in the state variables ςt =

{τt−1, bt−1, gt−1, xt−1, εt, ξ
b
t , ξ

q
t }. This amounts to solving for the coefficients of these poly-

nomials that satisfy the model equations at specific points, namely the Chebyshev nodes.

To find those, we choose bounds on the state variables and map those linearly into [−1, 1],

the domain of the Chebyshev polynomials. The bounds on the persistent stochastic vari-

ables xt and gt come from the Tauchen (1986) procedure to approximate an AR(1) process.

Finding the coefficients of the Chebyshev polynomials at the relevant nodes thus translates

into solving a nonlinear system of equations. To aid convergence, we start with lower order

polynomials and successively increase the number of nodes.

To find the default boundary, we proceed as follows. For some initial default boundary

τ
∗(0)
t ≡ τ ∗(0)(ςt), we obtain the corresponding bond prices and inflation q

s,(0)
t , q

l,(0)
t , and π

(0)
t

using the Chebyshev collocation method described above. With these solutions at hand, we
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evaluate the expected sustainable (log) surplus s∗t in any state ςt via Monte Carlo simulations.

Starting from any state ςt, we simulate the model forward for T periods to obtain s∗t and an

updated τ
∗(1)
t for that state. Note that this τ ∗(1)(ςt) depends on the endogenous variables

q
s,(0)
t , q

l,(0)
t , and π

(0)
t , which were obtained as functions of the initial default boundary τ

∗(0)
t .

We choose T sufficiently large to accommodate the persistence of the underlying processes.

Our algorithm then iterates back and forth between the projection step and the simula-

tion step. More precisely, starting from any τ
∗(j)
t , we obtain an updated default bound-

ary τ
∗(j+0.5)
t by solving the model with projection and simulating it forward. Our aim

is to iterate that procedure to convergence, so that maxςt ‖τ ∗(j)(ςt) − τ ∗(j+0.5)(ςt)‖ < ε̄.

To facilitate convergence, we implement a relaxation scheme by introducing τ ∗(j+1)(ςt) =

(1− ζ)τ ∗(j)(ςt) + ζτ ∗(j+0.5)(ςt), where ζ is a relaxation parameter. The convergence criterion

becomes maxςt ‖τ ∗(j)(ςt) − τ ∗(j+1)(ςt)‖ < ε̄. We also check that bond prices and inflation

stabilize in the iterative process.

With the default boundary τ ∗t at hand, it is straightforward to evaluate the CDS premiums

CDSTt on the grids. Our model statistics are computed from 100 simulations of 15 years of

data, to be consistent with our empirical targets.
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