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ABSTRACT OF THE DISSERTATION

Computational Shoeprint Analysis for Forensic Science

By
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Shoeprints are a common type of evidence found at crime scenes and are regularly used in forensic

investigations. However, their utility is limited by the lack of reference footwear databases that

cover the large and growing number of distinct shoe models. Additionally, existing methods for

matching crime-scene shoeprints to reference databases cannot effectively employ deep learning

techniques due to a lack of training data. Moreover, these methods typically rely on comparing

crime-scene shoeprints with clean reference prints instead of more detailed tread depth maps. To

address these challenges, we break down the problem into two parts. First, we leverage shoe tread

images sourced from online retailers to predict their corresponding depth maps, which are then

thresholded to generate prints, thus constructing a comprehensive reference database. Next, we

use a section of this database to train a retrieval network that matches query crime-scene shoeprints

to tread depth maps. Extensive experimentation across multiple datasets demonstrates the state-

of-the-art performance achieved by both the database creation and retrieval steps, validating the

effectiveness of our proposed methodology.
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Chapter 1

Introduction

Examining evidence from a crime scene helps investigators identify suspects. Shoeprints are often

found at crime scenes, though they may have fewer distinct identifying features compared to other

biometric samples like blood or hair [16]. Nonetheless, analyzing shoeprints can provide crucial

leads that help investigators narrow down potential suspects.

In recent years, significant progress has been made in automated shoeprint matching. Some works

have introduced databases of crime-scene impressions and a corresponding set of reference lab

impressions [50, 89], while others have proposed methods to generate features and find similari-

ties between crime-scene shoeprints and reference databases [48, 47, 98, 76, 60]. Unfortunately,

current methods suffer from several fundamental limitations. First, the reference databases pro-

posed have been manually curated, making it impractically tedious to maintain a comprehensive,

large-scale database. Second, the matching algorithms are not generalizable because they largely

rely on hand-crafted or pretrained network features.

To overcome these limitations, we propose the automated creation of a large-scale reference database

by crawling shoe tread images advertised by online retail shops and generating depth map and

1



Figure 1.1: Crime-scene shoeprints are typically very noisy and appear across various mediums,
as shown in the images above. They are often partially visible and significantly degraded, with
clarity frequently compromised by overlapping prints. These prints can vary in type, such as those
made by dust or blood, and can occur on hard or soft surfaces. Therefore, methods for retrieving
the closest matching shoe models must be capable of handling these complex cases.

shoeprint predictions from them. Subsequently, we use a portion of this data to train a retrieval

network for matching crime-scene shoeprints to tread depth maps.

In this chapter, we start with a detailed description of the problem and its significance in Sec-

tion 1.1. Section 1.2 provides an overview of the general framework for automated shoeprint

matching systems. Next, we summarize the contributions of this dissertation in Section 1.3 and

acknowledge funding sources in Section 1.4. Section 1.5 provides an outline of its organization.

2



…

Model 1? Model 2? Model N?
query 

crime-scene 
shoeprint

Figure 1.2: Our goal is to identify the class characteristics of crime-scene shoeprints rather than
their acquired characteristics. Class attributes encompass general features of the shoe, such as
brand, model, and size. Acquired attributes are the unique traits that develop on a shoe over time,
such as holes, cuts, and scratches.

1.1 Problem Definition and Motivation

The goal of this dissertation is to assist investigators in the forensic analysis of footwear evidence

left at crime scenes by generating a list of shoe models that best match a query shoeprint. Specif-

ically, we aim to provide investigators with a ranked list of potential matches to a crime scene

shoeprint, even when it is severely degraded or only partially visible. Figure 1.1 shows example

crime-scene shoeprints, illustrating the challenges in analyzing these images. Shoeprints can be

made by various mediums (blood, dust, etc.) on different surfaces (hard tiles, soft sand, etc.), re-

sulting in prints with diverse characteristics. They can be occluded by overlapping prints or other

marks, and may only be partially visible. Retrieval methods must be capable of handling these

complexities.

The forensic examination of shoeprints provides insights into both the class attributes and the

acquired attributes of the perpetrator’s footwear. Class attributes include general features of the
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Figure 1.3: General framework for automated shoeprint matching systems. Clean shoeprint images
from a reference database are preprocessed and features are extracted from it. These database
features are stored, and whenever a new query image appears, it is also processed to generate
features and these features are compared to those from the database images to generate a ranking
of shoe models.

shoe, such as brand, model, and size. Acquired attributes refer to the unique characteristics that

develop on a shoe over time, such as holes, cuts, and scratches. Our focus is on facilitating the

investigation of the class attributes of shoeprints. This is illustrated in Figure 1.2.

1.2 Framework For Automated Shoeprint Matching Systems

In this dissertation, we investigate the automated matching of crime-scene shoeprints to aid foren-

sic analysis. An overview of automated shoeprint matching systems is shown in Figure 1.3. A

query crime-scene shoeprint undergoes preprocessing and feature extraction. Likewise, clean

shoeprint images from a reference database are processed to extract their features. These features

4



are stored in the database, and when a new query image is introduced, its features are compared to

the stored features to produce a ranking of shoe models. A forensic investigator can be expected

to look through the retrieved shoe models and make a judgment of whether the retrievals are true

matches to the crime-scene shoeprint.

1.3 Our Contributions

We make contributions in two parts of the automated shoeprint matching framework.

• Reference database. Currently, the proposed reference databases have all been manually cu-

rated, making their maintenance expensive and requiring tremendous human effort. To ad-

dress this, we introduce a method to automatically generate a large-scale reference database

that encompasses the vast and growing number of shoe tread patterns [81]. Our approach in-

volves crawling online retail stores that advertise shoe tread images and predicting the depth

maps and shoeprint patterns from these images. We develop a method called ShoeRinsics

that incorporates intrinsic image decomposition and domain adaptation techniques, outper-

forming prior art for this task. We develop a benchmarking protocol, with which we evaluate

existing methods of depth prediction using domain adaptation for this task.

• Feature extraction. While current literature relies on hand-crafted features or features from

pre-trained networks, we are the first to train a model on a large-scale database to extract

generalizable and relevant features [82]. Additionally, we introduce the concept of matching

crime-scene shoeprints to tread depth maps in the reference database instead of shoeprints,

leading to improved retrieval performance compared to traditional shoeprint matching meth-

ods. We develop a spatially-aware matching method named CriSp, which demonstrates su-

perior performance over existing methods in both shoeprint matching and image retrieval

tailored to this specific task. We propose a benchmarking protocol to evaluate our method
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against state-of-the-art approaches. This involves the creation of a new dataset, reprocessing

of existing datasets, and defining appropriate evaluation metrics.
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1.5 Dissertation Outline

The rest of this dissertation is organized as follows. In Chapter 2, we introduce a method to gen-

erate a reference database of tread images by crawling images from online retail stores, predicting

their depth maps, and thresholding these depth maps to make print predictions. In Chapter 3, we

use data generated in this manner to train a retrieval network to match crime-scene shoeprints to a

reference database of tread depth maps. Chapter 4 concludes the dissertation with a discussion on

limitations and future directions.
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Chapter 2

Creating a Forensic Database of Shoeprints

from Online Shoe-Tread Photos

2.1 Introduction

Studying the evidence left at a crime scene aids investigators in identifying criminals. Shoeprints

have a greater chance of being present at crime scenes [16], although they may have fewer uniquely

identifying characteristics than other biometric samples (such as blood or hair). Thus, studying

shoeprints can provide valuable clues to help investigators narrow down suspects of a crime.

Forensic analysis of shoeprints can provide clues on the class characteristics and the acquired

characteristics of the suspect’s shoe. The former involves the type of shoe (e.g., the brand, model,

and size); the latter consists of the individual traits of a particular shoe that appear over time as it is

worn (e.g., holes, cuts, and scratches). We are interested in aiding the study of class characteristics

of shoeprints.
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Figure 2.1: Predicting depth for shoe-tread images (collected by online retailers) is the core chal-
lenge in constructing a shoeprint database for forensic use. We develop a method termed ShoeRin-
sics to learn depth predictors. The flowchart depicts how we train our ShoeRinsics using annotated
synthetic and un-annotated real images (Sec. 2.4). We use domain adaptation (via image trans-
lators GS→R and GR→S) and intrinsic image decomposition (via decomposer F and renderer R)
techniques to mitigate synthetic-real domain gaps (Sec. 3.5). Our method achieves significantly
better depth prediction on real shoe-tread images than the prior art (Sec. 2.6).

Status quo. Traditionally, investigating class characteristics of shoeprints involve matching the

prints against a manually curated database of impressions of various shoe models [18]. The re-

search community has shown significant interest in automating this matching process [17, 22, 36,

37, 38, 5, 45, 52, 48, 95, 107]. However, in practice, the success of such work depends on the qual-

ity of the database to which the shoeprint evidence is compared. Yet, maintaining and regularly

updating such a database to include all shoe models is tedious, costly, and requires significant hu-

man effort. Shoeprint matching methods are decidedly less useful if the database does not include

the type of shoe the criminal wore! Partly because of this, shoeprint evidence is vastly underutilized

in the USA [85].

Motivation. To address the need for such a comprehensive database, we propose to leverage

imagery of shoe-treads collected by online retailers. High-resolution tread photos of various shoe
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products are readily available, and shopping websites are updated frequently (>1000 new products

appear each month based on our analysis on some websites). Fig. 2.2 (b) shows examples of such

shoe-tread images. Developing a method to predict the 3D shape from a shoe-tread image would

directly address the need for a comprehensive, up-to-date database of tread patterns. We formulate

this problem as depth prediction for shoe-treads; thresholding the depth map of a given shoe can

generate/simulate shoeprints sufficient for matching query prints.

Technical Insights. To learn depth predictors from single shoe-tread images, we would ideally

utilize supervised training examples of aligned shoe-tread images and their corresponding depth

maps. However, since such ground-truth data is simply unavailable, we develop an alternative strat-

egy. We create a synthetic dataset of rendered shoe-tread images and corresponding ground-truth

depth, albedo, normal, and lighting. This data can train a predictor in a fully supervised fashion.

However, the resulting model performs sub-optimally on real-world images due to the domain gap

between synthetic and real imagery. To address this, we introduce three additional techniques to

close the synthetic-real domain gap by incorporating methods of domain adaptation [113] and in-

trinsic image decomposition [44] (see Fig. 2.1). First, we train a translator that translates synthetic

shoe-treads to realistic images, which better match the distribution of the real shoe-treads. Sec-

ond, we use an adversarial loss to enforce that features of real and translated synthetic images are

indistinguishable. Third, we use a re-rendering loss that adopts a synthetically trained renderer to

reconstruct the real shoe-tread images using their predicted depth and other intrinsic components.

We find these three techniques in combination help close the domain gap and yield significantly

better depth prediction.

Contributions. We make three major contributions.

• Motivated to create a database of shoeprints for forensic use, we introduce the task of depth

prediction for real shoe-tread photos collected by online retailers.
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• We develop a benchmarking protocol, with which we evaluate existing methods of depth

prediction using domain adaptation for this task.

• We develop a method called ShoeRinsics that incorporates intrinsic image decomposition

and domain adaptation techniques, outperforming prior art for this task.

2.2 Related Work

Shoeprint Analysis. Automatic shoeprint matching has been studied widely in the past two

decades [74]. Existing works focus on generating good features from shoeprints and using them to

assign a class label (shoe type) from a database of lab footwear impressions. To study global fea-

tures (i.e., considering the whole shoe), [52] introduces a probabilistic compositional active basis

model, [48] explores multi-channel normalized cross-correlation to match multi-channel deep fea-

tures, and [95] employs a manifold ranking method, and [107] uses VGG16 as a feature extractor.

On the other hand, [63] studies a multi-part weighted CNN, [7] introduces a block sparse represen-

tation technique, and [8] applies multiple point-of-interest detectors and SIFT descriptors to study

the local features of shoeprints (i.e., keypoints [53]). Our work differs from the previous work as

it focuses on creating a database of prints rather than developing methods for shoeprint matching.

Creating such as database is a prerequisite for algorithmic explorations for shoe-matching.

Monocular Depth Prediction has been studied extensively since early works [42, 78, 77]. Previ-

ous methods invent features representations [13, 73, 32], deep network architectures [9, 57, 75, 46,

56, 101], and training losses [30, 84, 104]. [55, 34, 59] explore self-supervised learning in a stereo

setup while [72, 109] experiment with training on large datasets. Depth estimation has been further

improved by considering the camera pose [108]. Our work differs from the above as it aims for

depth prediction on real images by learning over un-annotated real images and synthetic images

(and their ground-truth intrinsics: depth, albedo, normal and light).
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Intrinsic Image Decomposition. Another line of work aims to explain image appearance in terms

of some intrinsic components, including albedo, normals, and lighting. However, predicting intrin-

sic images is difficult, if not impossible. Our approach is related to [44], which learns for intrinsic

image decomposition and uses a differentiable renderer to leverage un-annotated images with a re-

construction loss. [80, 64, 96] focus on face images and explore a similar reconstruction loop [80],

non-diffuse lighting models [64], and multiple reflectance channels [96]. [99] works on rotation-

ally symmetric objects with only object silhouettes as supervision. [79, 106, 112, 58, 105] study

decomposition on entire scenes. [6] learns photo-realistic rendering of synthetic data and intrinsic

decomposition of real images using unpaired data as input via an adversarial loss. In contrast,

our work utilizes intrinsic decomposition techniques to help learn depth prediction by leveraging

annotated synthetic and un-annotated real data via domain adaptation.

Domain Adaptation. Training solely on synthetic data can cause models to perform poorly on

real data. Adversarial domain adaptation has proved promising for bridging such domain gaps.

One way to approach this is to use domain-invariant features to map between the domains. [61]

proposes to reduce the Maximum Mean Discrepancy to learn domain-invariant features. [94] builds

on this idea and further improves domain adaptation performance in classification tasks. [93, 92,

33, 88] learn domain adaptation by aligning source and target features. Another direction of work

uses image-to-image translation [113] to stylize source images as target images. [41, 110] use the

stylized source images to learn from target images using source labels while performing alignment

both at the image and feature level. We use domain adaptation for depth estimation but take this

approach further by reasoning about the intrinsic components of unlabeled real data.
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Table 2.1: Overview of our datasets for training and testing, along with their shoe categories and
counts. It is worth noting that real-val contains formal and used shoes, which are not present in
training (i.e., the real-train set). We include these novel shoe types to analyze the generalizability
of different methods. See details in Sec. 2.4 and visual examples in Fig. 2.2.

Dataset Shoe Category Total Annotation

New-Athletic Formal Used

syn-train 88,408 0 0 88,408 depth, albedo, normal, light
real-train 3,543 0 0 3,543 none
real-val 22 6 8 36 print
real-FID-val 41 0 0 41 print

2.3 Problem Setup and Evaluation Protocol

Our motivation is to create a database of shoeprints for forensic use. The specific task is to predict

depth maps for shoe-tread images collected by online retailers. Below, we formulate the problem

and introduce an evaluation protocol to benchmark methods.

2.3.1 Problem Setup

Online shoe-tread photos do not have ground-truth depth. Thus, we cannot directly train a depth

predictor on them. Instead, we propose to create a dataset of synthetic shoe-tread images for which

we have a complete set of annotations, including depth, albedo, normal, and lighting (details in

Section 2.4.1). Therefore, the problem is to predict depth for real shoe-treads by learning a

depth predictor on synthetic shoe-treads (with annotations) and real shoe-treads (without

annotations). This requires (1) learning a depth predictor by exploiting synthetic data that has

annotations of depth and other intrinsic components, (2) addressing the synthetic-real domain gap.
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(c) real-val shoe and print
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shoe print

Figure 2.2: Shoe tread examples from (a) syn-train, (b) real-train, (c) real-val, and (d) real-FID-
val. Clearly, a domain gap exists between (a) syn-train and (b) real-train, demonstrating the need
to close the synthetic-real domain gap. Moreover, to study the generalizability, we evaluate on 2
datasets (c) and (d) and purposely hold out the formal and used shoe-treads which are not used for
training but for validation (c).

2.3.2 Evaluation Protocol

Recall that the created database, containing predicted depth maps and shoe-tread images, and will

serve for forensic use – an investigator will query a shoeprint collected at a crime scene by matching

it with depth maps within this database. Therefore, we evaluate the quality of predicted depth maps

w.r.t shoeprint matching.

To this end, we introduce two validation sets that contains paired “ground-truth” shoeprints and

shoe-tread photos (details in Section 2.4.2). For a given shoe-tread, a trained model predicts its

depth and the metric measures the degree of match between the ground-truth shoeprint and the

predicted depth. We develop a metric based on Intersection-over-Union (IoU). Specifically, we

generate a set of shoeprints using adaptive thresholding (with a range of hyperparameters) for the

predicted depth, and compute the IoU between the ground-truth print to each of these generated

shoeprints. The metric returns the highest IoU. We further average the IoUs over all the validation

data as mean IoU (mIoU) to benchmark methods. Refer to the supplement for further details.
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2.4 Data Preparation

During training, we have two data sources: a synthetic dataset (syn-train) that has annotations, and

a dataset of un-annotated real shoe-treads (real-train). To study models’ generalizability, we test

our model on two validation sets (real-val and real-FID-val). Each of these datasets contain shoe-

tread photos with aligned ground-truth shoeprints, which enable quantitative evaluation. Note that

to analyze the models’ robustness to novel shoe types, we constrain our training sets to contain only

brand-new athletic shoes while letting real-val also include formal and used (worn) shoes. Fig. 2.2

displays example shoe-treads and Table 2.1 summarizes the four datasets. Below, we elaborate on

the creation of the synthetic training set (syn-train), the real training set (real-train), and validation

sets (real-val and real-FID-val).

2.4.1 Synthetic Data for Training

Our synthetic dataset (syn-train) containing synthetic shoe-tread images and their intrinsic an-

notations (depth, albedo, normal, and lighting). We synthesize a shoe-tread image with a given

depth map, an albedo map, and a lighting environment (outlined in Fig. 2.3). We pass these to

a physically-based rendering engine [43] to generate the synthetic image. The final syn-train set

contains 88,408 shoe-treads with paired ground-truth intrinsic images.

Depth Map. We use an existing dataset [102] to generate plausible synthetic depth maps to create

syn-train data. For each of 387 shoeprints, we synthesize 10-15 different depth maps. Because

the shoeprints have noise that affects synthetic data generation, we first apply a Gaussian blur to

filter the noise. We then scale the blurred print image to create a “pseudo” depth map. To generate

more diverse depth maps we add random high-frequency textures. Lastly, we make tread shapes

more realistic by adding a priori features, such as slanted bevels on the tread elements and global

curvature of the shoe-tread (details in supplement).
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Figure 2.3: Generation of synthetic data. We scale off-the-shelf shoeprints to generate “pseudo”
depth maps. We sample a color distribution from a real-shoe example to create an albedo map. The
depth map and albedo map are combined with a lighting environment to render a synthetic image.
The lighting environment is demonstrated by visualizing a shiny sphere in place of the shoe. In
this example, directional light comes from a point on the right.

Albedo Map. The color palette for each rendered shoe comes from the color distribution of a real

shoe-tread photograph. Shoes tend to have only a handful of different colors across the entire tread.

We identify the primary colors on real shoe-treads using the mean-shift algorithm [31]. Albedo

maps for the rendered shoes are composed of these colors. First, we use depth maps to identify

shoe-tread elements and segment out areas of the shoe that can have different colors. Then we

assign colors to those segments from the color palette of a real shoe in the percentages in which

they are present. Fig. 2.3 shows one example.

Light environment. Online retail stores use specialized diffuse lighting rigs to capture shoe pho-

tos. We create a similar lighting environment for our rendered images. Shoes are photographed

with bright diffuse white light from all directions and some optional directional light. We use a to-

tal of 17 different light configurations. One light configuration is simply diffuse light coming from

all directions. Eight light configurations consist of single light bulbs shining from eight directions

around the shoe in addition to the diffuse white light. The remaining eight are similar but contains

two light bulbs at 120◦ to each other. The supplement has further details.
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shoe-tread pseudo albedo shoe-tread pseudo albedo

Figure 2.4: Generating pseudo albedo maps from shoe-tread images. We show two pairs. We
run the mean-shift algorithm [31] on a shoe-tread image to group RGB pixels, resulting in the
corresponding pseudo albedo map. We use the pseudo albedo maps as supervision signals to train
the decomposer (cf. Fig. 2.1).

2.4.2 Online Shoe Treads for Training and Prediction

Online retailers [1, 3] adopt photos of shoes for advertisement, which include shoe-tread images.

Real-train (3,543), cf. Table 2.1, consists of such shoe-tread images and masks computed by a

simple network to segment out the shoe-treads. This dataset does not contain any ground-truth and

consists only of new, athletic shoes.

2.4.3 Lab Data for Validation

Real-val. To quantitatively benchmark methods, we collect paired shoe-tread images and ground-

truth prints in a lab environment. Fig. 2.5 summarizes the procedure. We photograph shoes by

placing them inside a light box with a ring light on top. We collect prints from those shoes by

painting the treads with a thin layer of relief ink and pressing absorbent white papers onto the shoe-

treads. This method of collecting shoeprints is called the block printing technique and is one of

several techniques used in the forensics community to collect reference footwear impressions [16].

To improve print quality, we collect 2-3 prints for each shoe and average them after alignment to the

shoe-tread. We use thin-plate splines [25] with a smoothness parameter of 0.5 for alignment. We

threshold the average print as the final ground-truth shoeprint. Real-val contains 22 new-athletic

shoes, 6 new formal shoes, and 8 used athletic shoes. The formal and used shoes are not present

during training and thus serve as novel examples in evaluation.
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Real-FID-val. We introduce the second validation set consisting of shoeprints from the FID300

dataset [50] and shoe-tread images separately downloaded from online retailers (i.e., these images

are disjoint from those in the real-train set). We find matched FID300 prints (used as the ground-

truth) and the downloaded shoe-tread images, and align them manually. Real-FID-val contains 41

new, athletic shoe-tread images with corresponding ground-truth shoeprints and masks to segment

out the shoe-treads.

2.5 Methodology

We now introduce our ShoeRensics, a pipeline that trains a depth predictor for real images IR

by incorporating unsupervised adversarial domain adaptation and intrinsic image decomposition

techniques. Given synthetic images IS with their corresponding ground-truth intrinsics (albedo

Xa
S , depth Xd

S , normal Xn
S , and light X l

S) and unlabeled real images IR, our goal is to train a

model to predict depth dR for real images IR. Fig. 2.1 overviews our training pipeline. The main

components of our pipeline are a translator GS→R to stylize synthetic images as real images, a

decomposer F for intrinsic image decomposition, and a renderer R to reconstruct the input images

from their intrinsic components.

Synthetic-only Training. We train a decomposer F and the renderer R in a supervised manner

on syn-train. For an input image, the decomposer predicts depth X̂d
S , albedo X̂a

S , normal X̂n
S ,

and light X̂ l
S . The renderer R learns to reconstruct the input image from these predicted intrinsic

components. To train the decomposer F , we use an L1 loss to learn for depth, albedo, and normal

prediction and a cross-entropy loss LCE to learn for light (treating light prediction as a K-way

classification problem given the limited light sources). We minimize the overall loss below:

Lsup = λlLCE(X̂
l
S, X

l
S) +

∑
κ∈{d,a,n}

λκL1(X̂
κ
S , X

κ
S). (2.1)
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Figure 2.5: We collect a validation set of ground-truth shoeprints from shoes in a lab environment.
(a) shows an example shoe. (b) It is painted with a thin layer of relief ink, and a paper sheet is
pressed evenly onto the shoe-tread using a roller. (c) We repeat this to get 2-3 different prints. (d)
We align these prints to the shoe-tread using thin-plate spline [25] and (e) threshold their average
to obtain the final ground-truth shoeprint, which has better coverage.

where λ’s are hyperparamters controlling loss terms for the intrinsic components. To learn the

renderer R, we simply minimize the L1 loss between the original and rendered images, i.e.,

L1(IS,R(Xd
S, X

a
S, X

n
S , X

l
S)). Note that depth prediction is our main focus, and we find learn-

ing with decomposer and renderer significantly helps depth learning (cf. Fig. 2.1, Table 2.2). A

model trained on synthetic data only does not work effectively well on real data due to the notorious

synthetic-real domain gap. We address this issue using the techniques below.

Mitigating domain gap by image translation. Previous work [41, 113] addresses the domain gap

between image sources by translating images from one domain to the other. We adopt a similar

approach and translate our synthetic images to realistic ones by training a translator GS→R. We train

another GR→S that translates real images to synthetic style. Discriminators DR(I) and DS(I) are

learned simultaneously to discriminate translated images and used for training translators. This is

known as the adversarial domain adaptation [41]. We further translate the translated synthetic/real

images back to the original domain and use a cycle loss between the resulting and the initial images

to ensure that structure and content are preserved during translation. The following losses train the
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translators [41, 113]:

LS→R
GAN(IR, IS) = logDR(IR) + log(1−DR(GS→R(IS)))

LR→S
GAN(IS, IR) = logDS(IS) + log(1−DS(GR→S(IR)))

Ltran = LS→R
GAN(IR, IS) + LR→S

GAN(IS, IR)

Lcyc = L1(GR→S(GS→R(IS)), IS)+

L1(GS→R(GR→S(IR)), IR) (2.2)

With GS→R(IS), we translate syn-train images and keep their corresponding ground-truth intrinsics

unchanged. We use such translated data to finetune the renderer R.

Mitigating domain gap by image reconstruction. We additionally use an image reconstruction

loss to address the domain gap [44]. We reconstruct a real image from its decomposed intrinsic

components using the trained renderer R, which we freeze after finetuning on translated synthetic

data. We use R to regularize the training of the decomposer D on real images. Denoting re-

constructed real image as ÎR := R(Xd
R, X

a
R, X

n
R, X

l
R), we minimize the difference between the

original image IR and its reconstruction ÎR using an L1 loss, i.e., L1(ÎR, IR).

new, athletic
(seen)

used
(unseen)

formal
(unseen)

new, athletic
(seen)

image pred. albedo pred. normal pred. depth pred. print GT print

Figure 2.6: On images of the real-val set, we visualize ShoeRinsics’s predictions including depth
thresholding which generates predicted prints. Our method ShoeRinsics produces visually ap-
pealing intrinsic decompositions (depth, albedo, and normal). Importantly, on novel shoe-tread
displayed in the last bottom rows, ShoeRinsics produces very good depth and shoeprints by com-
paring against the ground-truth shoeprints. To display the predicted prints, we threshold the pre-
dicted depth to best match the ground-truth print (Sec 2.3.2).
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Mitigating domain gap by feature alignment. We further adopt the feature alignment technique

to mitigate the domain gap [113]. Specifically, we learn an adversarial discriminator Dfeat to

discriminate features extracted by the decomposer for the real images and the translated synthetic

images. We use this as a loss in training the decomposer and update the discriminator Dfeat while

training of the decomposer. This encourages the decomposer to extract features on real data that

are indistinguishable from synthetic data, thus helping mitigate the domain gap.

Exploiting Pseudo Albedo. Shoe-treads, like many other man-made objects such as cars and other

toys, tend to have piece-wise constant albedo. Building on this observation, we create pseudo

albedo for the real data by grouping pixels with the mean-shift algorithm [31]. Fig. 2.4 shows an

example pseudo albedo on two real shoes. As pseudo albedo is not ideal as ground-truth, we use

it to learn an albedo predictor through the the decomposer. We find this produces better albedo

maps than the pseudo ground-truth (see analysis in the supplement). To learn albedo prediction,

we minimize the L1 loss, i.e., L1(X̂
a
R,MS(IR)), where MS is the mean-shift clustering algorithm.

Stage-wise Training is common in training multiple modules, particularly with GAN discrimina-

tors. Our training paradigm contains four stages. First, we train the decomposer F and renderer

R on syn-train. Second, we train the image translators and discriminators GS→R, GR→S , DR, and

DS with Eq. 2.2. Third, we finetune R using the translated synthetic images by GS→R. Finally,

we freeze R and GS→R and finetune F on translated synthetic images and real images using losses

described above.

2.6 Experiments

We validate our ShoeRinsics and compare it against prior methods of depth prediction on our

benchmark. We start with implementation details, followed by a visual comparison and quantita-
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tive evaluation, and conduct an ablation study and analysis of why ShoeRinsics outperforms the

prior art.

2.6.1 Implementation

Training specifics. Instead of using high-resolution images (405x765) from the training set, we

crop patches (128x128) to train the models. We find this yields better performance, as shown in the

ablation study (Sec. 2.6.4). For a fair comparison, we train all models with patches for the same

number of optimization steps. During training, we sample patches from random positions. We use

Adam optimizer and set the learning rate as 1e-3 and 1e-4 for training the initial models (e.g., F

and R) and finetuning them, respectively. We set the batch size as 8 throughout our experiments.

Recall that we train our model in stages (Sec. 3.5). We train for 20M iterations in the first two

stages and 100K iterations in the last two stages.

Architectures. Our decomposer F and renderer R have a classic encoder-decoder structure as

used in [44]. We modify the light prediction decoder to be a 17-way classifier (given that our

synthetic data has only 17 lighting configurations). We also add residual connections between

layers to predict full-resolution maps for intrinsic components (depth, albedo, and normal). Our

translators and discriminators (GS→R,GR→S,DR,DS , and Dfeat) have the same structure as used

in [41]. The Dfeat is a convolutional network that uses a kernel size 3 to process the albedo, depth,

and normal features. It further takes as input the features of the lighting prediction branch. That

said, Dfeat learns to discriminate features of all the intrinsic components.

Hyperparameter setting. We denote the combined hyperparameters as λ̂ = (λa, λd, λn, λl) in

Eq. 2.1. The decomposer F is trained with λ̂ = (1, 1, 1, 0.1) in the first stage, and finetuned with

λ̂ = (1, 2, 1, 0.1) in the final stage. When finetuning, we set the weight to 3 for the reconstruction

loss, 2 for the pseudo albedo loss, and 1 for the feature alignment. We set the hyperparameters via

validation.
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Test-time augmentation. During testing, we consider test-time augmentation [28, 40]. For each

image, we produce 23 variants: 3 flips (horizontal, vertical, and vertical+horizontal), 4 rota-

tions (angles +5◦, +10◦, −5◦, and −10◦), 4 scalings (scale factor 0.5, 0.8, 1.5, and 1.8), and

12 flip+rotation versions (three flips times four rotations). For each variant, we predict the depth

and then transform back to the original coordinate frame. We average all the 24 depth maps as the

final prediction.

2.6.2 Qualitative Results of ShoeRinsics

We visualize predictions on the real-val images by our method ShoeRinsics in Fig. 2.6. ShoeRinsics

predicts good depth maps, the thresholding of which generates shoeprints that match the ground-

truth prints. As a byproduct, our method also makes visually appealing predictions on other in-

trinsic components. We compare our predictions with those made by other methods on real-val

(Fig. 2.7) and real-FID-val (Fig. 2.8). Clearly, our ShoeRinsics produces more reasonable visuals

(depth and shoeprints) than the compared methods. The supplement has further visualizations.

2.6.3 State-of-the-art Comparison

ShoeRinsics outperforms prior methods in most of the validation examples (details in the supple-

ment). Table 2.2 and 2.3 list comparisons as analyzed below.

Comparison with intrinsic image decomposition. We compare our ShoeRinsics and RIN [44],

which learns for intrinsic image decomposition. As RIN [44] emphasizes normal prediction to

represent shapes, we use the standard Frankot-Chellappa algorithm [29] to integrate the normals

towards depth maps. Compared to [44], our ShoeRinsics explicitly incorporates domain adaptation

in the image and feature space. Doing so helps mitigate the synthetic-real domain gap. As a result,

ShoeRinsics outperforms RIN on both real-val and real-FID-val (Table 2.2 and 2.3). On real-val,
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Figure 2.7: Comparison with the state-of-the-art methods of domain adaptation tailored to depth
prediction on our real-val benchmark. Our ShoeRinsics performs better than others for both seen
and unseen shoe categories as highlighted by the red boxes.

23



image / 
GT print

ShoeRinsics 
pred. 

depth / print

CyCADA 
pred. 

depth / print

UDAB 
pred. 

depth / print

ADDA 
pred. 

depth / print

Figure 2.8: Comparison with the state-of-the-art methods for depth prediction and domain adap-
tation [33, 41, 93] on real-FID-val. Clearly, ShoeRinsics produces shoeprints which are visually
closer to the ground-truth than previous methods.
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Table 2.2: Benchmarking on real-val. We use IoU as the metric (in %), and break down the analysis
for different shoe categories (new-athletic shoes seen during training, and formal and used shoes
unseen in training). We compute mean IoU (mIoU) over all validation examples. Training on
only synthetic data yields poor performance, whereas our ShoeRinsics performs the best on both
seen and unseen categories. This clearly demonstrates the benefit of combining synthetic-to-real
domain adaptation with intrinsic decomposition. The ablation study (bottom panel) shows that
each individual component (discriminator, translator, and renderer, cf. Fig. 2.1) helps improve
shoeprint prediction. Lastly, from our syn-only ablation, decomposing to all intrinsic components
performs better than training a depth predictor for shoeprint prediction, further demonstrating that
incorporating intrinsic decomposition helps close synthetic-to-real domain gaps. Exploiting test-
time augmentation boosts performance from mIoU = 46.8 to 49.0.

Method
New-Athletic Formal Used

mIoU
(seen) (unseen) (unseen)

RIN [44] 30.0 39.7 24.4 30.4
ADDA [93] 46.5 41.4 27.2 41.4
UDAB [33] 46.0 40.4 29.6 41.4
CyCADA [41] 48.8 43.9 34.5 44.8

syn-only, depth only 41.3 41.2 28.4 38.4
syn-only, all intrinsics 41.8 41.5 27.1 38.5
ShoeRinsics 50.5 47.8 35.8 46.8

w/o discriminator 48.2 39.9 33.6 43.6
w/o translator 49.0 42.8 31.4 44.0
w/o renderer 49.0 46.4 34.7 45.4

ShoeRinsics w/ aug 52.4 52.9 36.9 49.0

it performs better than RIN by 20.5% mIoU on the (seen new-athletic) shoes, by 8.1% mIoU on

the formal unseen shoes, by 11.4% mIoU on used unseen shoes. On real-FID-val, ShoeRinsics

improves IoU by 5.6% mIoU over RIN.

Comparison with domain adaptation. Table 2.2 and 2.3 clearly show that our ShoeRinsics con-

sistently outperforms the compared domain adaptation methods (ADDA [93], UDAB [33], and

CyCADA [41]) on both the real-val and real-FID-val datasets. From ablation studies, as shown

in the lower panel of Table 2.2, we see that using the renderer (cf. Fig. 2.1) and the decomposer

(that learns to predict albedo, normal, and lighting as auxiliary supervisions) greatly improves the

performance. Qualitative comparison on real-val in Fig. 2.7 and real-FID-val in Fig. 2.8 show that

depth maps and the corresponding prints predicted by our ShoeRinsics have richer textures and
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Table 2.3: Benchmarking on real-FID-val. We report mean IoU (mIoU) over validation examples.
ShoeRinsics outperforms previous methods and improves further with test-time augmentation.

RIN ADDA UDAB CyCADA ShoeRinsics ShoeRinsics
[44] [93] [33] [41] w/ aug

mIoU 26.0 27.2 29.0 31.2 31.6 32.0

(a) real-FID-val (b) real-val
noisy shoeprint design mismatch

Figure 2.9: Comparison between real-FID-val (a) and real-val (b). The shoeprints from real-FID-
val are noisy and slightly misaligned with the corresponding shoe-treads. In contrast, shoeprints of
real-val contain the entire contact surfaces and are well aligned with the corresponding shoe-tread
images.

better-aligned patterns to the RGB input. When exploiting test-time augmentation (cf. ShoeRin-

sics w/ test-time aug), we boost the performance from mIoU = 46.8% to 49.0% on real-val and

from mIoU=31.6% to 32.0% on real-FID-val.

Performance on real-val vs real-FID-val. All the methods show lower mIoU numbers on real-

FID-val compared to real-val. This is owing to the noisy ground-truth prints of real-FID-val (see

Fig. 2.9). Note that the FID prints are obtained by pressing gelatin lifters onto dusty shoe-treads

followed by scanning the lifters [50]. This means that the shoeprints can be noisy as the contact

surfaces do not leave a full print. In contrast, for real-val shoeprints, we minimize such noise and

get more even coverage by averaging over multiple prints for the same shoe. Moreover, while

real-val consists of image and print pairs of the exact same shoe, real-FID-val consists of prints

from [50] with our manually discovered shoe-tread images, meaning that they might not be well

aligned, as visually seen in Fig. 2.9.
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Figure 2.10: Training ShoeRinsics with the renderer (which allows using the reconstruction loss)
produces visibly better depth than without. Using the renderer encourages the decomposer to out-
put depth maps that contain fine-grained details because it penalizes coarse predictions through the
image reconstruction loss. That said, the renderer regularizes the learning for depth prediction by
exploiting auxiliary supervisions from other intrinsic components (albedo, normal, and lighting).

2.6.4 Ablation Study

We conduct an ablation study (cf. Table 2.2 bottom panel) on the modules in ShoeRinsics, includ-

ing feature alignment (by learning discriminator Dfeat in the feature space), translator GS→R, and

renderer R. All three modules aim to mitigate synthetic-real domain gaps. We also study whether

predicting intrinsic components (albedo, normal, and lighting) helps depth prediction and whether

patch-based learning is better than full-image learning.

Effect of feature alignment by discriminator Dfeat. ShoeRinsics w/o discriminator removes the

feature discriminator Dfeat but keeps all the other modules. It yields 43.6% mIoU, 3.2% mIoU

lower than ShoeRinsics (cf. Table 2.2). This demonstrates the effectiveness of Dfeat for mitigating

domain gaps by aligning features.

Effect of image translator GS→R. ShoeRinsics w/o translator drops the translators but keeps

other components, achieving 44.0% mIoU, 2.8% mIoU lower than ShoeRinsics (cf. Table 2.2).

This shows the effectiveness of using translators to close the synthetic-real domain gap.

Effect of the reconstruction loss by the renderer R. ShoeRinsics w/o renderer drops the renderer

from ShoeRinsics, leading to 45.4% mIoU, 1.4% mIoU lower than ShoeRinsics (cf. Table 2.2).
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image pred. albedo pred. normal pred. depth pred. print
image pred. albedo pred. normal pred. depth pred. print

Figure 2.11: Failure cases. ShoeRinsics performs poorly in the presence of complex materials (e.g.,
translucence).

This validates the effectiveness of the renderer. Fig. 2.10 visualizes depth predictions with and

without the renderer during training. Clearly, with the renderer, the predicted depth has better

high-frequency textures. See the caption of Fig. 2.10 for details.

All intrinsics vs depth only. Comparing “syn-only, depth only” and “syn-only, all intrinsics” in

Table 2.2, we see that learning to predict all intrinsics performs slightly better (38.5% vs. 38.4%).

Importantly, this allows using the renderer as the reconstruction loss to regularize the training on

real images, yielding significantly better results in the final ShoeRinsics (46.8% mIoU).

Patches vs. full-resolution images. We compare the depth prediction performance by training the

decomposer on patches versus full-resolution images of the synthetic data. We find that the former

(patch-based) achieves 38.5% mIoU (cf. Table 2.2) as opposed to 36.5% mIoU for the latter (not

shown in the table). This demonstrates the benefit of depth learning on patches over whole images

in this setup.

2.6.5 Failure Cases

We analyze failure cases of ShoeRinsics in Fig. 2.11. We find that our method performs poorly on

shoes with complex materials. One reason is that the syn-train data does not contain any complex

materials. Future work may explore richer synthetic datasets to improve performance.
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2.7 Conclusion

Motivated by constructing a database of shoeprints for forensic use, we introduce a problem of

predicting depth for shoe-tread photos collected by online retailers. Because these photos do not

have ground-truth depth, we exploit synthetic images (containing shoe-treads and ground-truth

intrinsics including depth, albedo, normal, and lighting). We study domain adaptation and intrin-

sic image decomposition techniques and propose a method termed ShoeRinsics to train for depth

prediction. Our experiments demonstrate consistent improvements of ShoeRinsics over previous

methods on this task. We expect future algorithmic explorations on this task from the perspective

of domain adaptation, depth prediction, and intrinsic decomposition.
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Chapter 3

CriSp: Leveraging Tread Depth Maps for

Enhanced Crime-Scene Shoeprint Matching

3.1 Introduction

Examining the evidence found at a crime scene assists investigators in identifying suspects. Shoeprints

are more likely to be found at crime scenes, though they may possess fewer distinct identifying

features compared to other biometric samples like blood or hair [16]. Consequently, analyzing

shoeprints can furnish crucial leads to aid investigators in narrowing down potential suspects in a

crime.

The examination of shoeprints forensically offers insights into both the class attributes and the

acquired attributes of the suspect’s footwear. Class attributes pertain to the general features of the

shoe, such as its brand, model, and size. On the other hand, acquired attributes encompass the

unique traits that develop on a shoe with wear and tear, such as holes, cuts, and scratches. Our

focus lies in facilitating the investigation of the class attributes of shoeprints.
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Figure 3.1: We develop a method termed CriSp to compare crime-scene shoeprints against a
database of tread depth maps (predicted from tread images collected by online retailers) and re-
trieve a ranked list of matches. We train CriSp using tread depth maps and clean prints (Sec. 3.4)
as shown above. We use a data augmentation module Aug to address the domain gap between
clean and crime-scene prints, and a spatial feature masking strategy (via spatial encoder Enc and
masking module M ) to match shoeprint patterns to corresponding locations on tread depth maps
(Sec. 3.5). CriSp achieves significantly better retrieval results than the prior methods (Sec. 3.6)

Status quo. Traditional automated shoeprint matching methods [17, 5, 97, 49, 22, 36, 51, 7, 8]

typically use handcrafted priors to match crime-scene shoeprints with clean, reference impressions.

Recent approaches [107, 48, 63] propose using more generalizable features from Convolutional

Neural Networks (CNNs), yet they are limited to using CNNs pretrained on ImageNet [23] since

available datasets [50] are small and not suitable for training. Training on shoeprint-specific data

is expected to improve matching performance. Importantly, while existing methods match crime-

scene shoeprints to clean reference shoeprints, our findings suggest that matching to tread depth

maps containing 3D shape information is more effective (see details in Sec. 3.6.3).

Motivation. To address the need for a large-scale training dataset, our proposal leverages the

extensive collection of tread images of various shoe products available from online retailers. Tread

depth maps and clearly visible prints can be predicted from these images using [81]. Example tread

images and their depth and print predictions are illustrated in Fig. 3.3. It is important to note that

matching directly to RGB tread images causes models to overfit to irrelevant details such as albedo

and lighting (see Sec. 3.6.3). We formulate our problem as the retrieval of tread depth maps that
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best match crime-scene shoerpints by learning a representation from tread depth maps and clean

shoeprints.

Technical insights. We develop a method termed CriSp to address this problem using 3 key

components (Fig. 3.1). Firstly, we employ a data augmentation module Aug to generate simulated

crime-scene shoeprints from the clearly visible prints used during training. In an ideal scenario,

learning a feature representation to match crime-scene shoeprint images to tread depth maps would

require a dataset containing paired crime-scene shoeprints and corresponding tread depth maps. In

the absence of such data, our data augmentation module in combination with our training set of

paired tread depth maps and clean prints serves as a viable alternative. Secondly, we propose a

spatial encoder Enc to ensure that our model learns to match patterns in corresponding regions of

shoe treads. For instance, if a crime-scene shoeprint exhibits stripes on the heels, the model must

retrieve shoes with stripes in the heel region rather than other areas like the toe region. Thirdly,

we incorporate a feature masking module M to ensure that only the visible portions of shoeprints

affect our retrieval results when crime-scene shoeprints are only partially visible. We observe that

combining these three techniques facilitates effective feature learning and results in significantly

improved retrieval performance compared to existing state-of-the-art methods.

Contributions. This chapter makes three major contributions.

• We introduce the concept of matching crime-scene shoeprints to tread depth maps, leading

to improved retrieval performance compared to traditional shoeprint matching methods.

• We propose a benchmarking protocol to evaluate our method against state-of-the-art ap-

proaches. This involves the creation of a new dataset, reprocessing of existing datasets, and

defining appropriate evaluation metrics.

• We develop a spatially-aware matching method named CriSp, which demonstrates superior

performance over existing methods in both shoeprint matching and image retrieval tailored

to this specific task.
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3.2 Related Work

Automated shoeprint matching. The success of automated fingerprint identification systems [21]

has inspired researchers to study automated shoeprint matching. Current literature aims to extract

features from crime-scene shoeprints and match them to a database of laboratory footwear impres-

sions to identify the shoe make and model [74]. Holistic methods process the shoeprint image

as a whole. Examples of this method use Hu’s moment [5], Zernike moment [97], and Gabor

and Zernike features [49]. In contrast, local methods extract discriminative features from local

regions of the shoeprint, making them more adept at handling partial prints. For instance, [51]

exploit Wavelet-Fourier transform features, [7] introduce a block sparse representation technique,

and [8] combine the Harris and the Hessian point of interest detectors with SIFT descriptors. Re-

cent works [107, 48, 63] propose using features from networks pretrained on ImageNet [23] for

their generalizability. However, the lack of large-scale shoeprint datasets hampers their effective-

ness. To address this, we propose creating a large-scale training dataset by leveraging tread images

from online retailers and utilizing an off-the-shelf predictor [81] to estimate their depth and print.

This approach enables learning features from informative tread depth maps rather than shoeprints,

ensuring good performance even with partially visible prints.

Image retrieval. Image retrieval techniques have been a popular research problem for several

decades [111]. Traditional methods use handcrafted local features [62, 14], often coupled with

approximate nearest-neighbor search methods using KD trees or vocabulary trees [15, 39, 65, 68].

More recently, the success of CNNs in classification tasks [54] encouraged their use in image

retrieval tasks [12, 83]. Global features can be generated by aggregating CNN features [11, 91, 10,

35, 70, 90, 66, 71, 98], while local features can also be used for spatial verification [68, 66, 19,

98, 47] which ensure better performance by using geometric information of objects. Our problem

differs from this category of work since our query and database data come from different domains

- crime-scene shoeprints and depth maps of shoe treads. Even within our query set of crime-scene

shoeprints, images can be from various sources such as blood, dust, and sand impressions.
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Cross-domain image retrieval. More closely related to our work is cross-domain image retrieval

(CDIR), where the query and database images come from different domains. The fundamental

idea is to map both domains into a shared semantic feature space to alleviate the cross-domain

gap. Learning a distinct representation for each shoe model can be categorized as fine-grained

cross-domain image retrieval (FG-CDIR) as we aim to retrieve one instance from a gallery of

same-category images. It is harder than category-level classification [24, 26, 103] tasks since the

differences between shoe treads are often subtle. A popular problem of this category, fine-grained

sketch-based image retrieval (FG-SBIR), was introduced as a deep triplet-ranking based siamese

network [69] for learning a joint sketch-photo manifold. FG-SBIR was improvised via attention-

based modules with a higher order retrieval loss [87], textual tags [20, 86], and hybrid cross-domain

generation [67]. Recently, [76] leveraged a foundation model (CLIP) and [60] explicitly learned

local visual correspondence between sketch and photo to offer explainability. These works differ

from ours in that we do not have any ground-truth training data from our query domain, and thus

have to simulate it as best as we can. Additionally, our aligned query and database images enable

us to use spatially-aware techniques like spatial feature masking.

3.3 Problem Setup and Evaluation Protocol

Our goal is to retrieve shoe models that best match crime-scene impressions by comparing against

a comprehensive shoe collection. We propose using tread images from online retailers to build our

reference database. The problem formulation and evaluation protocol is outlined below.

3.3.1 Problem setup

Tread depth maps are more informative and relevant than RGB tread images (refer to Sec. 3.6.3).

Since there is no dataset of crime-scene shoeprints with ground-truth tread depth maps, we propose
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to learn from tread depth maps and clean shoeprints predicted from RGB tread images (details in

Sec. 3.4.1) instead. A crime-scene investigator may want to use our method to get a ranked list

of shoe models that match a crime-scene shoeprint and opt to manually inspect them. Therefore,

the problem is to generate a ranking [r1, r2, ..., rn] of shoe models from a reference database

of tread depth maps with shoe model tags where ri is more likely to be the shoe model that

left a crime-scene shoeprint than rj for all i < j by learning a representation from a dataset

of tread depth maps and clean, fully-visible prints. This requires (1) addressing the domain

gap between crime-scene shoeprints and clean prints, and (2) matching patterns to corresponding

locations of shoe treads.

3.3.2 Evaluation Protocol

To benchmark methods, we introduce two validation sets of crime-scene shoeprints with ground-

truth shoe model labels, which are linked to a large-scale reference database (see details in Sec.

3.4.2). Note that the ground-truth for a shoeprint may contain multiple shoe models since tread

patterns can be shared by different shoe models. In practice, we expect crime-scene investigators

to look through the top K retrieved shoe models and we set K to be a realistically small value

of 100, representing the top 0.4% shoe models in our reference database. We use two metrics to

compare models based on their top K retrievals. Our first metric, mean average precision at K

(mAP@K), is a standard metric to compare ranking performance. It considers both the number of

positive matches and their positions in the ranking list. The second metric, hit ratio at K (hit@K),

is more intuitive and represents the fraction of times we get at least one positive match in the top

K retrievals. This metric is useful because a positive match can be used in a query expansion step

to retrieve other good matches much more effectively [27]. Both metrics have values between 0

and 1, with higher numbers representing better performance. The supplement has further details.
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Figure 3.2: Dataset statistics. We have a reference database (ref-db) and two validation sets (val-
FID and val-ShoeCase) with crime-scene impressions to query against ref-db. We use a section of
ref-db for training (train-set) and leave the rest to study generalization. Ground-truth labels from
our validation sets connect our query crime-scene shoeprints to shoes in ref-db. See details in Sec.
3.4 and visual examples in Fig. 3.3 and 3.4.

tread image predicted depth predicted print

Figure 3.3: Examples from train-set. We create training data by leveraging shoe-tread images
available from online retailers and predicting their depth maps and prints as outlined in [81]. Note
that the depth and print predictions are not always accurate (2nd and 3rd shoe).

3.4 Dataset Preparation

We train our model on a dataset (train-set) of aligned shoe tread depth maps and clean shoeprints.

To study the effectiveness of models, we introduce a large-scale reference database (ref-db) of tread

depth maps, along with two validation sets (val-FID and val-ShoeCase) created by reprocessing

existing datasets of crime-scene shoeprints [50, 89]. We match shoeprints from the validation sets

to ref-db and add labels connecting shoeprints in val-FID and val-ShoeCase to ref-db to enable

quantitative analysis. An overview of the datasets is provided in Fig. 3.2, while Fig. 3.3 and Fig.

3.4 present example depth maps, clean prints, and crime-scene prints. In this section, we elaborate

on our training dataset (train-set), reference database (ref-db), and validation sets (val-FID and

val-ShoeCase).
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FID-crime FID-clean ShoeCase-blood ShoeCase-dust

FID-cleanFID-crime ShoeCase blood ShoeCase dustFigure 3.4: Examples from val-FID and val-ShoeCase. Val-FID contains real crime-scene prints
(FID-crime) and clean, fully visible lab impressions (FID-clean). We show FID-crime and FID-
clean shoeprints corresponding to the same shoe models for easier comparison. Note that we show
a yellow shoe outline on the FID-crime prints for visualization purposes and the outline does not
exist in FID-crime images. Val-ShoeCase contains simulated crime-scene shoeprints on blood
(ShoeCase-blood) and dust (ShoeCase-dust). All val-ShoeCase prints are full-sized, as opposed to
val-FID.

3.4.1 Online Shoe Tread Depth Maps and Prints for Training

Train-set. Online retailers [1, 3] showcase images of shoe treads for advertisement. Our training

set (train-set) contains depth maps and clean, fully visible prints from such tread images as pre-

dicted by [81]. We also apply segmentation masks as determined by [81] to the predictions. To

ensure consistency across all images, we employ a global alignment method to minimize variations

in scale, orientation, and center using a simple model. Sample shoe-tread images along with their

corresponding depth and print predictions are illustrated in Fig. 3.3. Online retailers categorize

shoe styles using stock keeping units (SKUs), which we use as shoe model labels. Shoes with the

same SKUs can have different colors and sizes. Sometimes different shoe models can share the

same tread pattern.

Statistics. Train-set contains 21,699 shoe instances from 4,932 different shoe models. Each shoe

model in our database can have shoe-tread images from multiple shoe instances, possibly with

variations in size, color, and lighting. The tread images in train-set have a resolution of 384x192.

Inaccuracies. It is important to note that the training dataset can have some inaccuracies since it

comes from raw data downloaded from online retailers. Some tread images might have incorrect

model labels, and some images may not depict shoe treads. Other inaccuracies come from imper-
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fect depth and print prediction (cf. Fig. 3.3), segmentation errors, and alignment failures. We hope

to mitigate the errors by including multiple instances per shoe model in train-set.

3.4.2 Reference Database and Crime-scene Shoeprints for Validation

Ref-db. We introduce a reference database (ref-db) by extending train-set to include more shoe

models. The added shoe models are used to study generalization to unseen shoe models. Ref-

db contains a total of 56,847 shoe instances from 24,766 different shoe models. The inclusion

of multiple instances per shoe model in ref-db allows the depth predictor some margin for error

(cf. Fig. 3.3), ensuring minimal impact on the overall matching algorithm performance since it

has multiple chances to match a query print to a shoe model. The supplement has details on the

distribution of shoe models from our validation sets in ref-db.

Val-FID. We reprocess the widely used FID300 [50] to create our primary validation set (val-

FID). Val-FID contains real crime-scene shoeprints (FID-crime) and a corresponding set of clean,

fully visible lab impressions (FID-clean). Examples of these prints are shown in Fig. 3.4. The

FID-crime prints are noisy and often only partially visible. It contains impressions made by blood,

dust, etc on various kinds of surfaces including hard floors and soft sand. To ensure alignment with

ref-db, we preprocess FID-crime prints by placing the partial prints in the appropriate position on a

shoe “outline” (cf. Fig. 3.4), a common practice in shoeprint matching during crime investigations.

We manually found matches to 41 FID-clean prints in ref-db by visual inspection. These are all

unique tread patterns and correspond to 106 FID-crime prints. Given that multiple shoe models

in ref-db can share the same tread pattern, we store a list of target labels for each shoeprint in

FID-crime. These labels correspond to 1,152 shoe models and 2,770 shoe instances in ref-db (cf.

Fig. 3.2).
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Val-ShoeCase. We introduce a second validation set (val-ShoeCase) by reprocessing ShoeCase [89]

which consists of simulated crime-scene shoeprints made by blood (ShoeCase-blood) or dust

(ShoeCase-dust) as shown in Fig. 3.4. These impressions are created by stepping on blood spatter

or graphite powder and then walking on the floor. The prints in this dataset are full-sized, and we

manually align them to match ref-db.

ShoeCase uses two shoe models (Adidas Seeley and Nike Zoom Winflow 4), both of which are

included in ref-db. The ground-truth labels we prepare for val-ShoeCase include all shoe models

in ref-db with visually similar tread patterns as these two shoe models since we do not penalize

models for retrieving shoes with matching tread patterns but different shoe models. Val-ShoeCase

labels correspond to 16 shoe models and 52 shoe instances in ref-db (cf. Fig. 3.2).

3.5 Methodology

In this section, we introduce CriSp, our representation learning framework to match crime-scene

shoeprint images S to tread depth maps d. An overview of our training pipeline is shown in Fig.

3.1. CriSp is trained using a dataset of globally aligned tread depth maps d and clean, fully-

visible shoeprints s (see details in Sec. 3.4.1). The main components of our pipeline are a data

augmentation module Aug to simulate crime-scene shoeprints, an encoder network Enc to map

depths and prints to a spatial feature representation, and a spatial masking module M to mask out

irrelevant portions from partially visible shoeprints.

Data augmentation. Our data augmentation module Aug simulates noisy and occluded crime-

scene shoeprints (cf. Fig. 3.4) from clean, fully-visible prints (cf. Fig. 3.3), denoted as Ŝ =

Aug(s). Aug uses 3 kinds of degradations (occlusion, erasure, and noise) as visualized in Fig. 3.5.

Occlusion can be in the form of overlapping prints or random shapes. Erasures achieve the grainy
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texture of crime-scene prints and noise adds background clutter to the images. Further details are

provided in the supplement.

Encoder for spatial features. Our encoder Enc maps tread depths d and simulated crime-scene

shoeprints Ŝ to a feature representation z, denoted as z = Enc(x) where x ∈ [d, Ŝ]. Enc consists

of a modified ResNet50 [40] with the final pooling and flattening operation removed followed by

a couple of convolution layers. Enc produces features of shape [C,H,W ] where C is the feature

length, and H and W are the encoded height and width, respectively. For CriSp we set C = 128.

Since our training data and query prints are globally aligned (cf. Sec. 3.4), Enc allows access to

features at each (course) spatial location of the image, facilitating comparisons in corresponding

locations of shoe treads. Enc has two input channels for depth and print, respectively. It processes

only one input at a time and pads the other input channel with zeros.

Spatial feature masking. During training, we simulate partially visible crime-scene shoeprints by

applying a random rectangular mask m to query prints. Our feature masking module M applies

a corresponding mask to spatial features z to obtain z̄ = M(z,m). M resizes mask m to a

dimension of [H,W ], uses it to zero out spatial features outside the mask, and normalizes the

masked features. This allows our model to focus on the visible portion of the prints. While it

would make sense to apply mask m to tread depth images as well, we opt not to do this as it would

necessitate recomputing all the database depth features for each query print image at inference

time, which is not scalable.

Training loss and similarity metric. We train our model using supervised contrastive learn-

ing [47], which extends self-supervised contrastive learning to a fully supervised setting to learn

from data using labels. For a set of N depth/print pairs {dk, sk}k=1...N from shoe models {lk}k=1...N

within a batch, and a randomly generated mask m per batch, we compute masked spatial features

{z̄i}i=1...2N and corresponding shoe labels {l̄i}i=1...2N where z̄2k = M(Enc(dk),m), z̄2k+1 =

M(Enc(Aug(sk)),m), and l̄2k = l̄2k+1 = lk. We treat z̄ as a vector of size CHW and apply the
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occlusion erasure noise simulated crime-scene shoeprints Ŝ

example simulated crime prints
Figure 3.5: Examples of data augmentation. Our data augmentation module Aug simulates crime-
scene shoeprints (cf. Fig. 3.4) from clean, fully visible prints in our training set (cf. Fig. 3.3). Aug
optionally (1) introduces occlusion such as overlapping prints and random shapes, (2) erases parts
of the print to create a grainy appearance, and (3) adds noise to mimic background clutter.

following loss.

L =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(z̄i · z̄p/τ)∑

a∈A(i)

exp(z̄i · z̄a/τ)
(3.1)

Here, i ∈ I ≡ {1 . . . 2N}, A(i) ≡ I \ {i}, and P (i) ≡ {p ∈ A(i) : l̄p = l̄i} is the set of indices

of all positives in the batch distinct from i. |P (i)| is the cardinality of P (i). The · symbol denotes

the inner product, and τ ∈ R+ is a scalar temperature parameter. This loss corresponds to using

cosine similarity to measure similarity between images.

Sampling. For the above loss to be effective, we must have positive examples for all shoe models

within a batch. However, if we pick shoe models randomly from a dataset with a very large number

of shoe models, we can expect to sample a set of unique shoe models each time. Then, this loss

would act like its self-supervised counterpart. To remedy this, we sample data in pairs, i.e. we

choose N/2 shoe models randomly and select two shoe instances from each shoe model.

3.6 Experiments

We evaluate our CriSp and compare it with state-of-the-art methods on automated shoeprint match-

ing [48] and image retrieval [47, 98, 76, 60]. We begin with visual comparison and quantitative
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query CriSp top 10 retrievals

Figure 3.6: Visualization of the top 10 retrievals by CriSp on val-FID (rows 1-5) and val-ShoeCase
(row 6). CriSp retrieves positive matches (highlighted in orange) very early even when crime-
scene shoeprints have very limited visibility or severe degradation. Additionally, corresponding
locations on the retrieved shoes share similar patterns to the query print, even in negative matches
(highlighted in red).

evaluation, followed by an ablation study and analysis of our design choices. We will open-source

our code and dataset to foster research after acceptance of this work.
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query CriSp retrievals ZSE-SBIR retrievals SketchLVM retrievals FIRe retrievals

Figure 3.7: Qualitative comparison with state-of-the-art methods on val-FID (rows 1-5), val-
ShoeCase (rows 6-7). We show the top 4 retrieved results. CriSp demonstrates the ability to
localize patterns, allowing it to retrieve positive matches (highlighted in orange) much earlier than
previous methods. While prior methods identify similar patterns to the query print (highlighted
in blue), they cannot determine if they are from corresponding locations, as indicated by the red
boxes.

3.6.1 Qualitative Results of CriSp

Figure 3.6 shows the top 10 retrievals of our method CriSp on the val-FID and val-ShoeCase

datasets. Notable, CriSp can retrieve a positive match very early even when the shoeprint has

significantly limited visibility or is severely degraded. These retrievals show how CriSp effectively

matches distinctive patterns from corresponding regions of the tread. Additionally, Fig. 3.7 shows
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Table 3.1: Benchmarking on real crime-scene shoeprints from val-FID. We use hit@100 and
mAP@100 as our metrics and compare performance with prior methods trained on our dataset
both with and without our data augmentation (see details in Sec. 3.5), which simulates crime-
scene shoeprints from clean, fully-visible prints provided in the training data. Since MCNCC [48]
uses features from a pretrained network, it cannot be fine-tuned on our data. Clearly, all other
prior methods benefit greatly from using our data augmentation technique. Moreover, CriSp sig-
nificantly outperforms all prior methods on both metrics, even when they are trained with our data
augmentation.

method
w/o our data aug w/ our data aug

hit@100 mAP@100 hit@100 mAP@100

IJCV’19 MCNCC [48] 0.0849 0.0018 - -
NeurIPS’20 SupCon [47] 0.0472 0.0020 0.0755 0.0096

ICLR’21 FIRe [98] 0.1132 0.0014 0.2075 0.0398
CVPR’23 SketchLVM [76] 0.0849 0.0066 0.1981 0.0384
CVPR’23 ZSE-SBIR [60] 0.0943 0.0065 0.4528 0.1412

CriSp 0.0754 0.0174 0.5472 0.2071

a comparison with related methods fine-tuned on our dataset. Clearly, CriSp performs significantly

better at retrieving positive matches early. The supplement has further visualizations.

3.6.2 Comparison with State-of-the-art

CriSp consistently outperforms previous methods across most validation examples (details in the

supplement). Table 3.1 and 3.2 list comparisons on our two evaluation metrics introduced in Sec.

3.3.2. We analyze these results below.

Comparison with shoeprint matching. MCNCC [48] employs features from pretrained net-

works on ImageNet for automated shoeprint matching. However, leveraging learning on shoeprint-

specific data, CriSp exhibits superior performance on both val-FID (see Tab. 3.1) and val-ShoeCase

(see Tab. 3.2). Although MCNCC proposes to use clean shoeprint impressions as the reference

database to match with, we use tread depth maps to be consistent with other methods and to achieve

enhanced results. The supplement has details.
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Table 3.2: Benchmarking on simulated crime-scene prints from val-ShoeCase, which includes
prints made by blood and dust. We use hit@100 and ma@100 as our metrics and CriSp performs
the best across both metrics and print categories. Notably, all prior methods have been fine-tuned
on our dataset using our data augmentation technique, as they perform poorly otherwise (cf. Tab.
3.1).

method
ShoeCase-blood ShoeCase-dust

hit@100 mAP@100 hit@100 mAP@100

MCNCC [48] 0.0000 0.0000 0.0000 0.0000
SupCon [47] 0.0000 0.0000 0.0000 0.0000
FIRe [98] 0.3896 0.0275 0.8194 0.3779
SketchLVM [76] 0.6623 0.1058 0.5972 0.2696
ZSE-SBIR [60] 0.8052 0.1849 0.9444 0.4063
CriSp 0.8052 0.4355 0.9444 0.6792

Comparison with image retrieval. Table 3.1 and 3.2 demonstrate how our CriSp consistently

outperforms state-of-the-art methods in image retrieval (SupCon [47], FIRe [98], SketchLVM [76],

ZSE-SBIR [60]). We fine-tune these methods on our training data containing tread depth maps

and clean, fully-visible shoeprints. Additionally, we use our data augmentation module Aug to

simulate crime-scene shoeprints while training prior methods as the wide domain gap between

crime-scene prints and the training data causes them to perform poorly otherwise (cf. Tab. 3.1).

Even when prior methods use our data augmentation, CriSp significantly outperforms them on

both val-FID (Tab. 3.1) and val-ShoeCase (Tab. 3.2). The ablation study (Tab. 3.5) shows that our

spatial feature masking technique greatly improves the performance. Qualitative comparison on

both validation sets in Fig. 3.7 also confirm that CriSp is better able to match shoeprint patterns to

corresponding locations on tread depth maps, thus making positive retrievals early. This is reflected

by our mAP@100 values when compared to prior methods on both validation sets (Tab. 3.1 and

3.2).

Scalability. In practice, when dealing with a large reference database, scalability becomes crucial.

Unlike our closest competitor ZSE-SBIR [60], which necessitates the recomputation of all database

features for each query, CriSp offers a scalable solution. It can precompute spatial database features
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Table 3.3: Testing database image configurations. The hit@100 and mAP@100 values for FID-
clean shoeprints indicate that using only tread depth as the database image configuration yields the
best performance. Results for FID-crime are not reported in this experiment as we do not simulate
crime-scene prints.

Database config. FID-clean

RGB depth print hit@100 mAP@100

✓ 0.195 0.066
✓ 0.512 0.203

✓ 0.171 0.015
✓ ✓ ✓ 0.293 0.057

and efficiently perform feature masking and cosine similarity calculations for each query, enabling

rapid retrieval even with extensive reference databases.

Simulating partial print. Retrievals by prior methods on partial shoeprints in Fig. 3.7 reveal

instances of poorly segmented tread depth maps, where significant portions of the tread pattern

have been erased. This raises the question of whether prior methods would exhibit improved

performance if trained with masks simulating partial prints. However, it’s worth noting that prior

methods perform better when trained without such masks, as detailed in the supplement.

Val-FID vs val-ShoeCase. Methods show a wider variation in performance on Val-ShoeCase than

val-FID. This discrepancy arises from the fact that val-FID contains the diversity of real crime-

scene shoeprints, while val-ShoeCase systematically simulates crime-scene prints. Additionally,

val-ShoeCase contains prints from shoe models with only two unique tread patterns while val-FID

contains prints from 41 unique tread patterns (cf. Sec. 3.4.2).

3.6.3 Design Choices and Ablation Study

We conduct a study of our design choices by training a ResNet50 with a supervised contrastive

loss and then sequentially adding modules to investigate their performance impact. Specifically, we

analyze database image configurations, data augmentation techniques, and spatial feature masking.
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Table 3.4: Effect of our data augmentation. We train a ResNet50 with our data augmentation
and report hit@100 and mAP@100 values for FID-crime shoerpints. Our results confirm that each
component of our data augmentation (visualized in Fig. 3.5) individually improves retrieval results
and performs best when used together.

Data augmentation FID-crime

occlusion erasure noise hit@100 mAP@100

0.009 0.0000
✓ 0.019 0.0003

✓ 0.075 0.0098
✓ 0.170 0.0241

✓ ✓ ✓ 0.226 0.0520

Database image configuration. We start by testing the effectiveness of different types of database

image configurations (RGB tread images, depth, and print). Our analysis shows that depth is the

most relevant and informative modality, yielding the best results when used alone (Tab. 3.3). Print

can be derived from depth by thresholding [81] and the extra information in rgb tread images

(lighting and albedo) can be distracting.

Data augmentation. Next, we test the effectiveness of each component of our data augmentation

technique. Table 3.4 shows that all 3 components contribute to improved performance and work

best when used together, bringing our hit@100 and mAP@100 on FID-crime to (0.226, 0.0520)

from (0.009, 0.000).

Spatial features and feature masking. With our data augmentation in place, we study the effect

of spatial feature masking, which helps CriSp match query print patterns to the relevant spatial

locations of the database tread depth maps. Table 3.5 shows the influence of using spatial features

and feature masking. Our findings indicate that spatial features, feature masking, and query image

masking during training all contribute greatly to improving performance.
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Table 3.5: Effect of spatial features and feature masking. We validate the effect of using spatial fea-
tures and applying feature masking on both our encoder Enc, which incorporates spatial features
during training, and on a pretrained ResNet50 trained with our data augmentation (cf. Tab. 3.4).
For ResNet50, which does not utilize spatial features during training, we obtain spatial features
by removing the last pooling operation. We present results for FID-crime shoeprints from val-FID
using hit@100 and mAP@100 metrics. Using spatial features from a pretrained ResNet50 boosts
retrieval performance. Additionally, masking the spatial features improves performance further for
both the ResNet50 and our Enc. Furthermore, adding query print masking during training further
boosts performance to hit@100=0.5472 and mAP@100=0.2071.

encoder
train w/

spatial feat.
spatial

features
mask

features
mask query

print
FID-crime

hit@100 mAP@100

ResNet50 0.2264 0.0520
ResNet50 ✓ 0.3585 0.0863
ResNet50 ✓ ✓ 0.4245 0.1212

Enc ✓ ✓ 0.3774 0.1137
Enc ✓ ✓ ✓ 0.4528 0.1765
Enc ✓ ✓ ✓ ✓ 0.5472 0.2071

3.7 Discussions and Conclusions

Limitations. While CriSp significantly outperforms prior methods on this problem, it still has

some limitations. We use CNNs since it is straightforward to localize pattern matching to corre-

sponding locations on images by applying spatial feature masking. However, pairing localization

techniques with more sophisticated models such as vision transformers is expected to perform bet-

ter. We also assume that the crime-scene shoeprints are manually aligned before queries are made.

Methods that do not require this step are easier to use.

Potential negative impact. We introduce a method to aid in forensic investigations. However,

if investigators tend to rely solely on our retrievals for crime-scene shoeprint identification, then

criminals wearing shoe models that are not well-represented by CriSp would become harder to

identify. We have to always consider the possibility that the shoe model that left a crime-scene

impression may not be present in the top retrievals.
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Conclusion. In this chapter, we propose a method to retrieve and rank the closest matches to

crime-scene shoeprints from a database of shoe tread images. This is a socially important problem

and helps forensic investigations. We introduce a way to learn from large-scale data and propose a

spatial feature masking method to localize the search for patterns over the shoe tread. Our method

consistently outperforms the state-of-the-art on both image retrieval and crime-scene shoeprint

matching methods on our two validation sets that we reprocess from the widely used FID and

more recent ShoeCase datasets. Future explorations can investigate using architectures like vision

transformers and extend the problem to when alignment is not guaranteed.
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Chapter 4

Conclusion and Future Directions

In this dissertation, we tackle a significant societal challenge by contributing to the forensic inves-

tigation of crime scene evidence, particularly focusing on shoeprints, which are a prevalent form

of evidence encountered in criminal investigations. While shoeprints may not possess the individ-

ualized identification capabilities of biometric samples like blood or hair, they play a crucial role in

narrowing down potential suspects and providing valuable leads in criminal cases, especially con-

sidering the decline in the availability of other biometric evidence at crime scenes due to increasing

awareness of their forensic significance [100].

The forensic analysis of shoeprints encompasses both class and acquired characteristics. Our pri-

mary focus lies in identifying the class characteristics of shoeprints, such as brand, model, and

size, rather than examining acquired traits like cuts, scratches, or wear patterns that develop on a

shoe over time.

To address this challenge comprehensively, we propose a holistic approach to retrieve shoe models

that best match query crime-scene shoeprints. Our methodology involves automating the gener-

ation of a large-scale reference database to which crime scene shoeprints can be matched. Sub-

sequently, we train a retrieval network to identify the shoe models from this extensive reference
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database that best match the query crime-scene shoeprints. We have also generated a synthetic

dataset of tread images, with corresponding intrinsics (depth, albedo, normal, and lighting), and

real datasets for training and evaluation purposes. These datasets serve as valuable resources for

future research endeavors. Through extensive experimentation, we demonstrate the superiority

of both our depth predictor and retrieval method over existing state-of-the-art approaches across

multiple datasets, affirming the effectiveness and reliability of our proposed methodology.

4.1 Future Directions

Although our approach demonstrates significant advancements over the current state-of-the-art,

there are several steps remaining before it can be seamlessly integrated into professional forensic

investigations. Below, we delineate the necessary actions to transition our approach into a deploy-

able tool for forensic labs, along with suggestions for future enhancements to further refine our

methodology.

4.1.1 Application with a User Interface

While our research presents a promising approach for retrieving shoe models, its practical utility

hinges on its integration into an application and packaging it as a functional tool. This application

would necessitate a user-friendly interface enabling investigators to upload crime scene photos and

modify them as necessary through operations such as translation, rotation, and scaling. Addition-

ally, the interface should allow users to specify a mask indicating visible portions of the print.

To address this requirement, we have developed an application [2] where users can upload a crime

scene shoeprint and an accompanying mask to retrieve the closest matching shoe models from

a reference database compiled by downloading shoe tread images advertised by online retailers

(detailed in Section 3.4). The retrieved shoes are ranked, and the corresponding brand name,
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Figure 4.1: An application for retrieving the best matching shoe models to a crime-scene shoeprint.
We provide a tool [2] where you can upload a crime-scene shoeprint and a corresponding mask
and retrieve the best matching shoe models from a large-scale reference database of shoes created
from crawling online retail stores (see details in Section 3.4). This screenshot shows an example
crime-scene shoeprint queried on our tool and the retrieved results. The results and ranked and the
brand name, product name and intended gender for the shoe models are shown for each result.

product name, and intended gender for the shoe are displayed. The application is packaged as a

Jupyter Notebook compatible with Google Colab, ensuring accessibility across various computing

platforms. There is no setup required, as the notebook automatically downloads our model and

reference database in the background. A screenshot of our tool is presented in Figure 4.1.
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While the application is a step forward, further enhancements are necessary to maximize its utility.

This includes incorporating image modification capabilities into the interface, as discussed earlier.

Moreover, the application should connect to a dynamic reference database that remains updated

over time, unlike our static reference database. Such an advanced tool may warrant its own website

and server for hosting purposes.

4.1.2 Reference Database

Retrieval tools developed for forensic applications necessitate the maintenance of an up-to-date

reference database. A mechanism should be established to consistently gather data from the web

and process it through tasks such as global alignment, depth prediction, and print prediction. Reg-

ular monitoring is essential to ensure the system remains operational over time. Although we

developed a web crawler and conducted image processing steps to compile our reference database,

we ceased running it once we had gathered sufficient data for our research objectives. However, for

the utilization of our method by forensic investigators, it is imperative that this software remains

operational and is maintained accordingly.

4.1.3 Legal Issues Regarding Use of Online Retail Images

We have downloaded several thousand images and used them for academic research. However, to

transition this to a commercial product, certain legal considerations must be addressed. Specifi-

cally, we need to obtain licenses to use the tread images downloaded from online retail stores.
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4.1.4 Statistical Confidence

The shoe model corresponding to a crime-scene shoeprint may not always be present in the ref-

erence database we compile from online retail stores. Therefore, it is crucial to identify when a

good match is not available within our reference database. Our current retrieval method does not

account for the statistical confidence of the retrieved shoe models. Future work can include a study

of statistical confidence scores, ensuring they can indicate the confidence level of their matches

and point out if the shoe model we are looking for is likely not present in the reference database.

4.1.5 Model Architectures

We utilize a variation of the ResNet50 model architecture for our retrieval network because it al-

lows for easy specification of spatial features. However, more modern architectures, such as vision

transformers, are expected to outperform our current approach when combined with localization

techniques. Similarly, our depth predictor is based on a classic UNet with skip connections. Em-

ploying more modern model architectures for the depth predictor could also improve performance.

4.1.6 Shoe Size

Our current methodology does not account for shoe size. Tread images from online retail stores

typically lack size labels or scale references. Retailers provide a representative image for a shoe

model without specifying the size that was photographed and do not offer different images for

each shoe size. Consequently, while we may know the scale of crime-scene shoeprints, this class

characteristic is missing in the tread images (or corresponding depth map predictions) from online

retail stores used for matching crime-scene shoeprints.
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4.1.7 Training and Testing Datasets

A neural network’s performance is highly dependent on the quality of the data it is trained on,

making it essential to have robust training and testing datasets. Our synthetic dataset for training the

depth predictor comprises various hypothetical shoe tread patterns that mimic real ones. However,

there is room for enhancement by making these synthetic tread images more realistic. Here are

some ways to improve the dataset:

• Incorporate Complex Materials: Including complex materials for shoe treads, such as

shiny or translucent materials, will enrich the synthetic dataset. Many real shoes are made

of such materials, and training with this data will enable the depth predictor to make more

accurate predictions on real shoes.

• Enhance Tread Shapes: Currently, we use 2D shoeprints to create 3D depth maps, resulting

in tread shapes that are not entirely representative of real shoes. We can achieve closer

imitation by scanning the shapes of actual shoes and incorporating these 3D shapes into our

synthetic treads.

In addition to enhancing our synthetic data, we can improve the real dataset used for training

our retrieval network. Currently, we use Stock Keeping Units (SKUs) as our shoe model labels.

SKUs are numbers used by online retailers to manage stock levels. While SKUs are generally

good indicators of shoe models, they are not always accurate. For instance, the same shoe model

can sometimes have different SKU numbers. This issue is illustrated in Figure 4.1, where the

retrieved results have different SKUs, yet the second and fourth results both correspond to the

Adidas Skateboarding, Samba Leather shoe. Developing an automated mechanism to consolidate

such examples would be beneficial. Additionally, exploring other data sources for training that do

not have these limitations could also be advantageous.
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4.1.8 Alignment

Our current method assumes that investigators will manually align crime-scene shoeprints before

querying them against the reference database. However, methods that eliminate this alignment step

would be more user-friendly. Furthermore, crime-scene shoeprints can often be highly degraded

or severely occluded, making it challenging to determine which part of the shoe the print is from.

This complicates the task of placing the shoeprint on a ”shoe outline” (as described in Section 3.4).

Therefore, future work can focus on extending our approach to handle cases where alignment is

not guaranteed.
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Appendix A

Creating a Forensic Database of Shoeprints

from Online Shoe-Tread Photos

Outline

We propose to create a forensic database of shoeprints by leveraging shoe-tread imagery collected

by online retailers. To do so, we strive to predict depth maps for these photos, thresholding whihc

generates shoeprints used to match a query print (collected from a crime scene). We propose

a novel method, ShoeRinsics, to learn depth estimation from synthetic data (along with intrin-

sic components) and real data (with no annotations). SheoRinsics incorporates synthetic-to-real

domain adaptation and intrinsic image decomposition techniques to mitigate domain gaps. We

validate our method with a defined evaluation protocol that measures the degree of match between

predicted depth and ground-truth shoeprints (collected in a lab environment). Results convinc-

ingly demonstrate that ShoeRinsics remarkably outperforms state-of-the-art methods for shoe-tread

depth prediction. In this supplementary document, we discuss the following topics:
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• Section A.1 details the process of matching a ground-truth shoeprint to predicted depth for

evaluation.

• Section A.2 shows qualitative analysis of our ShoeRinsics. We visualize of all predictions

of ShoeRinsics on real-FID-val images downloaded from the internet in Section A.2.1 and

compare to RIN [44] in Section A.2.2.

• Section A.3 compares performance of ShoeRinsics with related work for each individual

image from real-val and real-FID-val.

• Section A.4 provides details on our synthetic dataset generation. The process of depth map

generation is described in Section A.4.1 and the light environemnts used are visualized in

Section A.4.2.

• Section A.5 describes how we photograph shoe-treads and collect their prints to create a

validation set (real-val) for quantitative evaluation.

• Section A.6 details the architecture of each component of our ShoeRinsics.

• Section A.7 discusses the pseudo albedo generated for real shoe-tread images and compares

them to the albedo predicted by ShoeRinsics.
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Algorithm 1 Metric of Depth-Print Matching

1: Input: predicted depth X̂d
R, ground-truth shoeprint S∗, and mask m

2: Initialize best-matching IoU vmax = 0

3: determine per-pixel local depth, dl =
blurred depth
blurred mask

4:

5: for s ∈ [0.1, 0.11, 0.12, . . . , 2] do

6: if IoU(X̂d
R < sdl, S

∗) > vmax then

7: vmax = IoU(X̂d
R < sdl, S

∗),

8: set best-matching shoeprint Sbest = X̂d
R < sdl

9: end if

10: end for

11:

12: set p95 = value at the 95th percentile in sorted X̂d
R

13: for tnc ∈ [0.1p95, 0.1p95 + 0.01, 0.1p95 + 0.02, . . . , p95] do

14: determine shoeprint Stnc = Sbest AND (X̂d
R < tnc)

15: if IoU(Stnc , S
∗) > vmax then

16: vmax = IoU(Stnc , S
∗), Sbest = Stnc

17: end if

18: end for

19:

20: set p05 = value at the 5th percentile in sorted X̂d
R

21: for tc ∈ [p05, p05 + 0.1, p05 + 0.2, . . . , 30p05] do

22: determine shoeprint Stc = Sbest OR (X̂d
R < tc)

23: if IoU(Stc , S
∗) > vmax then

24: vmax = IoU(Stc , S
∗)

25: end if

26: end for

27: return best-matching IoU vmax
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(a) shoe-tread 
image

(f) ground-truth print(b) pred. depth (c) pred. print 
w/ global thresh.

(d) local thres. (e) pred. print 
w/ adaptive thresh.

Figure A.1: Effect of adaptive threshold. Given a shoe-tread image (a), we predict its depth (b). Notice
that the front of the shoe is curved up slightly (highlighted by the red boxes). Thus, a global threshold fails
to capture the print properly. Compare the print prediction using a global threshold (c) with the ground-truth
print (f). A solution is to use an adaptive threshold instead. As such, we first blur the predicted depth to get
the local mean depth dl. Using sdl as the local threshold (d) where s is an appropriate constant for scaling,
we get predicted print (e) which is much closer to the ground-truth (f).

A.1 Depth-Print Matching in Evaluation

We get the shoeprint prediction by thresholding the predicted depth X̂d
R of a shoe-tread image.

However, different thresholds can produce different predicted shoeprints. So, we develop a threshold-

free metric for evaluating how well our predicted depth matches a ground-truth shoeprint. Ideally,

we want to threshold the depth prediction in a way that produces a shoeprint prediction that most

closely matches the ground-truth shoeprint. We summarize our method in Algorithm 1.

Global thresholding vs. adaptive thresholding. Using a global threshold for print prediction

from depth prediction is troublesome since errors can creep into regions where the shoe-tread

curves upwards (for example, in the front of the shoe). Fig. A.1 illustrates this scenario with a

sample shoe from real-val. In such cases, although the shoe is curved upwards, it still leaves a

print when someone walks wearing those shoes. This is because the weight of the person flattens

out the shoe. Also, the physical motions of walking causes the curved parts to come in contact

with the ground. Assuming high depth values correspond to non-contact surfaces, a portion of the

shoe that curves up would have high depth values and a global threshold might incorrectly indicate

that region does not leave a print. We can solve this issue by using adaptive thresholding instead.
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(a) shoe-tread 
image

(b) pred. depth (d) pred. print w/ 
adaptive thresh.

(e) pred. print w/ 
adaptive thresh. 

+ tnc clipping

(c) local thresh.

Figure A.2: Effect of non-contact threshold tnc. A shoe-tread image (a), the corresponding depth prediction
(b), the local threshold (c), and the predicted print prediction with adaptive threshold (d) is shown. We can
see that using only the adaptive threshold can cause errors in large areas of non-contact surface as shown
by the red boxes. Assume non-contact surfaces have high depth values. Although the logo is correctly
predicted to have a high depth value, the local threshold also happens to be high in the region and causes
adaptive thresholding to undesirably predict the logo to leave a print. To correct this, we find an appropriate
non-contact threshold tnc for which regions where predicted depth is greater than tnc does not leave a print.
The resulting print is shown in (e).

(a) shoe-tread 
image

(b) pred. depth (d) pred. print w/ 
adaptive thresh.

+ tnc clipping

(e) pred. print w/ 
adaptive thresh. 

+ tnc clipping 
+ tc clipping

(c) local thresh.

Figure A.3: Effect of contact threshold tc. We visualize a sample shoe-tread image (a), the predicted depth
(b), the local threshold (c), and the print prediction after using adaptive thresholing with tnc clipping (d).
Parts of a large contact surface incorrectly leaves no print as shown by the red boxes because the local
threshold is very low in the region (assuming contact areas have low depth value). To correct this, we
determine an appropriate contact threshold tc such that regions where predicted depth is less than tc always
leave a print. (e) demonstrates the final result.

Details of adaptive thresholding. To perform adaptive thresholding, we first determine a per-pixel

local average dl for the predicted depth. This is achieved by blurring the predicted depth X̂d
R with
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image pred. albedo pred. normal pred. depth pred. print GT print

Figure A.4: Visualization of predicted shoeprints, as well as intrinsics, by our ShoeRinsics on real-FID-val.
Real-FID-val consists of images of real shoe-treads downloaded from online retailers and corresponding
ground-truth shoeprints. Visually, we can see our method works quite well w.r.t both shoeprint prediction
and intrinsic decomposition (albedo, normal, and depth).

a large square kernel of size 45 × 45. For comparison, our shoe-tread image and predicted depth

map resolution is 405 × 765. We note that boundaries and invalid depth values outside the mask

may cause artifacts in dl. To negate this effect, we set dl = dl
ml

where ml is the per-pixel local

average for the mask computed in a similar manner.

Next, we set our best-matching shoeprint Sbest = X̂d
R < sdl for some scalar multiplier s. Theoret-

ically, we want to sweep over all possible values of s and find the one which gives the highest IoU

between X̂d
R < sdl and the ground-truth print S∗. Practically, we sample values from range [0.1, 2]

at intervals of 0.01.

Threshold tnc for large non-contact regions. Although, our current best-matching shoeprint

estimation is good enough for most cases, it may have issues for very large non-contact surfaces.

Fig. A.2 illustrates how a large non-contact region can cause the local threshold sdl to be very
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image pred. albedo pred. normal pred. depth pred. print GT print

RIN

ShoeRinsics

RIN

ShoeRinsics

Figure A.5: Qualitative comparison between RIN [44] and ShoeRinsics on real-val. Along with input
images and ground-truth shoeprint, we show albedo, normal, depth, and print prediction. Note that RIN
does not directly produce depth predictions. We obtain them by integrating their normal predictions using
the well-established Frankot Chellappa algorithm [29]. As we can see, RIN produces poor quality albedo
and normal predictions, presumably because it does not explicitly perform domain adaptation. The albedo
predictions retain much of the shading information and the normal predictions are noisy. The substandard
normal predictions in RIN lead to unsatisfactory depth and print predictions. Comparatively, ShoeRinsics
is able to produce more likely albedo, normal, and depth predictions and thus predict shoeprints which are
much closer to the ground-truth.

high. This in turn can lead to incorrectly predicting some areas to leave a print (such as the logo

in Fig. A.2). We fix this by identifying the threshold tnc which gives the highest IoU between

ground-truth shoeprint S∗ and Sbest AND (X̂d
R < tnc) and update our shoeprint prediction Sbest.

We find it sufficient to determine tnc by sampling values in range [0.1p95, p95] at an interval of 0.01

where p95 is the 95th percentile of sorted X̂d
R values.

Threshold tc for large contact regions. A similar problem and solution apply for large contact

surfaces as demonstrated in Fig. A.3. In such regions, the local threshold is very low and can result

in “holes” in our predicted print. Our solution is to find threshold tc for which the IoU between

ground-truth shoeprint S∗ and Sbest OR (X̂d
R < tc) is highest. We can find an adequate value for tc

by sampling numbers from range [p05, 30p05] at intervals of 0.1 where p05 is the 5th percentile of

sorted X̂d
R values.
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Generic thresholds for print prediction. To determine shoeprint predictions from real images

without ground-truth print, we set s = 1, tnc = p97, and tc = p03 where px is the xth percentile of

sorted X̂d
R values.

A.2 Qualitative Results of ShoeRinsics on Real Shoe-Treads

In this section, we perform additional qualitative analysis of our ShoeRinsics. We visualize our

albedo, normal, depth, and print predictions (Fig. A.4) as well as compare shoeprint predictions to

that of RIN [44] (Fig. A.5).

A.2.1 Visualization of Predictions on Real-FID-val

One of the datasets we collected, real-FID-val, consists of images of real shoe-treads downloaded

from online retailers with corresponding ground-truth shoeprints. We visualize our intrinsic pre-

dictions (albedo, normal, and depth) and compare print predictions to ground-truth shoeprints on

the real-FID-val dataset in Figure A.4. We see that the intrinsic predictions are visually pleasing

and the predicted print closely resembles the ground-truth shoeprint.

A.2.2 Comparison with RIN

RIN [44] learns from unlabeled real images using intrinsic image decomposition. It breaks down

images into albedo, normal and light. We integrate their normal predictions to obtain a depth

prediction using the well-established Frankot Chellappa algorithm [29]. Thresholding this depth

prediction gives us the shoeprint prediction which we compare to the ground-truth shoeprint. In

Figure A.5, we compare the albedo, normal, depth, and shoeprint predictions of RIN on real-val

with that of ShoeRinsics. We find that RIN performs poorly on real shoes, presumably because it
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Table A.1: Comparison of Intersection over Union (IoU) values achieved by ShoeRinsics and related work
on each example in real-val. The best IoU per shoe example is written in bold and the second-best is
underlined. We can see that ShoeRinsics w/ aug is the clear winner while ShoeRinsics is the second-best.

Shoe ID RIN [44] ADDA [93] UDAB [33] CyCADA [41] ShoeRinsics ShoeRinsics w/ aug

0001-L 25.7 29.9 34.1 38.8 41.4 43.5
0001-R 24.2 22.8 29.0 33.0 34.3 36.8
0002-L 27.8 29.3 27.8 35.5 29.6 32.4
0002-R 26.4 28.8 28.5 36.9 33.7 35.0
0003-L 20.3 24.5 30.2 32.3 37.7 37.9
0003-R 21.4 22.7 25.8 28.7 33.0 33.7
0004-L 26.3 31.0 31.0 38.0 39.6 39.7
0004-R 23.3 28.5 30.1 32.6 37.5 35.9
0005-L 29.2 50.4 56.0 59.2 60.5 59.9
0005-R 27.1 54.3 60.0 56.6 62.4 60.6
0006-L 31.5 36.2 36.3 37.7 42.2 43.2
0006-R 30.0 34.7 36.0 38.5 38.0 40.4
0007-L 19.6 19.3 19.4 17.1 22.8 63.3
0007-R 23.1 24.0 24.0 22.6 32.5 42.4
0009-L 48.8 48.8 48.9 58.4 55.8 49.7
0009-R 47.3 50.5 48.9 55.6 56.1 47.9
0010-L 52.5 56.2 54.8 56.4 66.6 61.0
0010-R 46.8 49.4 46.5 53.5 53.2 52.9
0011-L 22.4 24.6 25.0 25.0 25.0 25.1
0011-R 25.7 28.9 28.2 28.9 28.5 28.8
0012-L 32.1 77.5 68.2 75.8 76.2 83.3
0012-R 30.5 72.3 69.6 72.5 69.1 76.9
0013-L 24.2 35.7 31.7 31.5 31.2 32.8
0013-R 27.5 40.9 36.6 38.2 37.9 39.0
0014-L 13.6 23.9 21.2 18.8 27.7 31.4
0014-R 15.3 29.4 29.0 22.1 32.4 37.8
0015-L 24.9 36.8 29.8 35.0 35.3 34.4
0015-R 27.4 45.5 41.1 41.8 53.1 53.2
0016-L 21.7 63.4 61.1 66.0 63.9 68.6
0016-R 21.4 61.3 60.5 65.3 63.6 67.8
0017-L 24.8 47.6 47.3 56.3 55.3 57.1
0017-R 26.4 47.8 54.2 60.2 59.2 57.3
0018-L 34.8 35.3 37.3 46.4 51.8 50.6
0018-R 37.9 38.6 38.0 48.9 54.1 52.8
0019-L 66.4 69.2 72.0 73.5 71.4 75.4
0019-R 66.1 68.7 73.2 75.2 72.4 76.0

Average 30.4 41.4 41.4 44.8 46.8 49.0

does not explicitly perform domain adaptation. Even though our focus is on the depth prediction,

our albedo and normal predictions visually look better than the predictions made by RIN. Albedo

predictions from RIN retain much of the shape information. More importantly, noisy normal pre-

dictions from RIN integrate to give low quality depth predictions and thus unsatisfactory shoeprint

predictions.
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A.3 Further Details of Quantitative Analysis

We compare methods using our defined metric based on Intersection over Union (IoU). We analyse

the IoU values for each of the shoe examples in real-val (Table A.1) and real-FID-val (Table A.2)

to further demonstrate that ShoeRinsics outperforms the state-of-the-art domain adaptation and

intrinsic image decomposition methods. We can see from the Tables that ShoeRinsics w/ aug

performs the best, followed by ShoeRinsics in the second position.

A.4 Synthetic Data Preparation

To train our model, we need shoe-sole images with paired ground-truth albedo, depth, normal and

light information. Publicly available datasets that include shoe objects (among other categories) [4]

either do not focus on the shoe-sole and/or do not provide full decomposition into shape, albedo,

and lighting. Thus, we introduce our own synthetic dataset, syn-train.

For this purpose, we synthesize depth maps, albedo maps, and lighting environments. We observe

that commercial shoe tread photographs are taken under very diffuse lighting conditions where the

primary variations in surface brightness are driven by global illumination effects rather than surface

normal orientation (e.g., grooves appear darker). This necessitates the use of a physically-based

rendering engine [43] rather than simple local shading models. We discuss details of depth map

generation in Section A.4.1 and visualize the different light environment maps in Section A.4.2

A.4.1 Depth Map Generation

We use an existing shoeprint dataset [102] collected in a controlled lab environment. Sample

shoeprints are displayed in Fig. A.6. We convert the 2D shoeprints to 3D depth maps by adding

fake depth values to each point on the print. We generate 10-15 different depth maps from each
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Table A.2: Comparison of Intersection over Union (IoU) values achieved by ShoeRinsics and
related work on each example in real-FID-val. The best IoU per shoe example is written in bold
and the second-best is underlined. We can see that ShoeRinsics w/ aug is the clear winner while
ShoeRinsics is the second-best.

Shoe ID RIN [44] ADDA [93] UDAB [33] CyCADA [41] ShoeRinsics ShoeRinsics w/ aug

1 33.0 28.5 28.5 30.1 31.8 32.6
3 18.8 18.8 26.7 35.9 33.7 33.4
4 20.3 21.6 27.7 29.2 27.9 29.7
5 23.8 24.1 26.9 28.3 29.9 29.5
8 11.9 14.4 18.3 21.4 19.3 20.7
9 21.0 20.6 27.3 31.5 31.8 32.3
10 15.8 21.5 16.4 23.8 22.2 22.7
11 25.5 32.1 34.3 34.0 35.1 36.5
12 30.7 29.5 27.7 31.5 32.5 32.4
13 33.3 30.1 32.1 34.0 33.2 34.4
16 28.9 30.6 37.7 52.4 51.7 51.9
17 24.8 22.5 33.0 35.9 29.9 29.6
23 28.3 29.0 30.7 32.8 31.0 31.9
32 36.0 43.0 42.6 47.0 46.3 46.5
33 28.3 28.3 28.0 27.3 29.4 30.0
35 34.3 40.5 40.1 40.6 40.6 41.2
45 31.2 30.8 33.3 32.8 36.9 37.2
47 24.8 24.1 24.0 24.0 24.9 24.9
53 11.7 11.8 11.7 12.1 13.7 13.1
54 22.0 22.0 22.0 22.1 29.1 29.0
55 30.6 28.7 29.4 30.1 31.6 31.8
56 19.0 19.3 19.2 19.1 19.0 19.0
62 33.6 33.9 36.3 36.8 38.1 38.1
72 28.2 28.1 28.2 29.0 28.2 28.2
74 32.8 34.1 35.5 34.7 36.3 36.8
82 44.2 36.8 41.3 45.5 45.3 45.7
1040 42.0 37.8 40.3 45.4 46.0 47.1
1041 27.6 36.7 35.5 35.3 38.0 38.1
1044 19.5 20.7 20.6 21.5 23.9 24.3
1047 29.1 29.2 30.2 31.2 31.4 31.4
1048 23.5 27.7 28.5 28.1 28.0 28.6
1049 26.7 21.6 25.3 27.7 27.8 28.2
1050 26.4 25.4 26.4 26.1 26.5 26.4
1058 24.2 36.5 38.8 35.2 36.7 38.0
1062 19.0 21.0 23.5 25.6 29.1 28.6
1064 18.0 20.7 23.4 21.6 24.4 24.6
1071 11.7 16.5 19.2 19.8 18.3 18.3
1076 24.3 30.0 30.1 33.6 34.5 33.6
1079 26.4 28.4 29.4 29.3 31.3 31.4
1088 29.2 27.4 29.9 33.5 34.0 34.2
1095 26.8 29.7 28.7 37.7 38.1 41.4

Average 26.0 27.2 29.0 31.1 31.6 32.0

of the 387 shoeprints available in [102]. Fig. A.7 highlights major steps in depth map generation

from shoeprint images. Details of depth map generation is provided below.

Removing noise. Raw shoeprint data is noisy (as shown in Fig A.6). We employ two tricks to

filter noise. First, we compute a mask for the shoeprint to remove notes and dirt in the background

from consideration. Given that the shoeprints are orange colored and the background does not
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Figure A.6: Examples from an existing shoeprint dataset [102]. We use these prints as a starting point for
synthetic depth map generation. Note that even though these are shoeprints collected under a controlled lab
environment, the images are still quite noisy. This necessitates some preprocessing before these can be used
for synthetic depth map generation.

contain any of that color, we determine the mask using the concave hull of the orange colored

regions. Second, we filter noise by applying a Gaussian blur followed by a sigmoid function on

the gray-scale shoeprint.

Adding a realistic touch. At this stage, our depth map mainly consists of the two extreme values

representing contact and non-contact surfaces. To incorporate some texture, we add a moderated

amount of high frequency details (obtained from subtracting the blurred depth from the original

gray-scale shoeprint). Next, we optionally add slanted bevels to our depth map to make the tread

blocks look more natural. We further add a local curvature to the non-contact surfaces to give them

some dimension. Essentially, we square the euclidean distance transform of the depth image and

add the smoothed out result to our depth map. Finally, we also add a global curvature along the

edge of the shoe-tread to attain the natural upward curvature that is common in many shoes.

A.4.2 Visualization of Light Environments

We display the different light environments in our synthetic dataset (syn-train) in Figure A.8 and

also provide a video to better visualize the lighting effects. We have a total of 17 different light
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(a) raw shoeprint (c) blur + sigmoid(b) mask (d) high-frequency 
textures

(e) slanted 
bevels

(f) local curvature of 
non-contact surface

(g) global curvature 
of shoe-tread

Figure A.7: We illustrate major steps in depth map generation with an example. We first filter noise in a
shoeprint image (a) by masking out the background (b) and applying a Gaussian blur followed by a sigmoid
function (c) on the shoeprint image. Then, we add in some moderated amount high frequency details from
the shoeprint image as textures (d). To make our depth maps more realistic, we optionally add slanted bevels
(e), local curvatures for non-contact surfaces (f), and a global curvature along the edge of the shoe-tread (g).

environments in our dataset. One consists of diffuse white light. Eight light configurations consist

of a white light bulb providing directional light (from 8 different directions) in addition to the

diffuse white light. The other eight light configurations consists of two white light bulbs at a 120◦

angle to each other in addition to the diffuse white light. For each light configuration, we visualize

a shiny sphere in place of the shoe demonstrating the light placements. Additionally, we render an

example synthetic shoe under all the different light conditions to show the effect of each of them.

We see different light environments create different shadows on on the shoe-tread blocks.

A.5 Real Data Preparation for Evaluation

To quantitatively evaluate and compare methods, create real-val which consists of paired shoe-tread

images and ground-truth prints for real shoes.

Photographing shoe-treads. Real-val contains new-athlectic, used-athletic, and new-formal shoes.

The new shoes are collected from thrift stores which often sell new or very lightly used shoes. The

78



light rendered shoe light rendered shoe

Figure A.8: Visualization of the 17 different light types in our synthetic dataset (syn-train). We show
a shiny sphere representing the light in the environment and a shoe rendered under that light condition.
Our light environments consist of diffuse white light in addition to 0 to 2 light bulbs for directional light.
Different light sources produce different shadows on the shoe-tread blocks. Please refer to the attached
video for a better visualization.
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used shoes are worn-out athletic shoes donated by volunteers. We first clean all the shoe-treads

with soap and water and let them dry. Next, we photograph the shoe-treads in a brightly lit en-

vironment similar to that of a professional photography setting. We put together 5 square light

panels to create a light box and place the shoe on a holder inside the light box. We also illuminate

the shoes using a ring light on top.

Preparing ground-truth shoeprint. After photographing the shoes we proceed to collecting their

prints. We use a process called block printing technique which is widely used in forensics to collect

lab shoeprint impressions [16]. With the shoe resting on the holder, we paint the shoe-tread with

a thin layer of relief ink using a roller. Forgoing the roller and simply using a paint brush would

cause ink blobs to get stuck in the nooks and crannies of the shoe-tread leading to blotchy prints.

While the ink is still wet, we quickly press a slightly absorbent white paper onto the shoe-tread

using a roller. The use of the roller distributes pressure throughout the paper and thus produces

more uniform prints. We collect 2-3 sets of prints for each shoe, each time painting the shoe with a

new layer of ink. Notice how these individual prints are not identical and contain areas of uneven

coverage. To get a smoother result, we align all the prints to the shoe-tread image (using thin-plate

spline [25] and point correspondences between the shoe-tread image and the collected prints) and

average them. The average is a more complete and evenly colored print. Finally, the average print

is thresholded to get our binary ground-truth shoeprint.

A.6 Further Implementation Details

Decomposer F . Our decomposer consists of a classic encoder-decoder structure with skip con-

nections. We use separate decoders for albedo, normal, depth, and light predictions. All of the

encoded input is passed to each of these decoders. The light decoder consists of residual blocks

followed by a final convolution layer which outputs 17 numbers representing the probability of

predicting the 17 light types in our synthetic training dataset. We use the output of the second last
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layer of the albedo, normal, and depth decoder as the corresponding features. For light features,

we use the 17 light probabilities.

Renderer R. The renderer has a mirrored structure as the decomposer. It has separate encoders for

albedo, depth, normal, and light. The light encoder takes in a one-hot array representing the light

configuration. The encoded information from each of the encoders is concatenated and passed to

the decoder which predicts the synthetic or real shoe-tread image.

Connecting the decomposer and renderer. When passing decomposer outputs to the renderer

in our main pipeline, we ensure that the decomposer outputs look similar to the synthetic albedo,

depth, normal, and light used to train the renderer. We set the background (i.e., parts outside the

shoe-tread) pixel values to 1 in the albedo, depth, and normal predictions. We also use the Hard-

Gumble trick to represent the light predictions as one-hot vectors instead of fractional probabilities

for the renderer. This ensures that a path exists for gradient back-propagation through the light

decoder while providing a one-hot representation for the light probabilities.

Image translators GS→R and GR→S . We use a ResNet backbone for the image translators. The

two generators have the exact same structure. They consist of 2 convolution layers with stride 2,

followed by 9 residual blocks, and finally 2 convolution layers coupled with nearest 2D upsampling

layers with a scale factor of 2. The convolution layers and residual blocks in the generators are

interspersed with batch normalization and the leakyReLU activation function.

Image discriminators DS and DR. The discriminators used to learn image translation are Patch-

GANs and consist of 4 convolution layers with stride 2 followed by 2 convolution layers with

stride 1. Similar to the image translators, the discriminators also have batch normalization and the

leakyReLU activation function interspersed among the convolution layers and residual blocks.

Feature discriminator Dfeat. The discriminator for feature alignment takes in the concatenation

of the albedo, normal, and depth features as one input, and the light features as a second input.

These features are processed in two separate branches and the results are concatenated in the final
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output. Each of these branches consist of 3 convolution layers. The branch for the albedo, normal,

and depth features uses a kernel size of 3 (to encode some context), while the branch for light

features use a kernel size of 1.

pred. albedo pseudo albedoimage

Figure A.9: Visualization of difference between predicted albedo and pseudo albedo. Given that the albedo
for shoe-treads consists mostly of piece-wise constant segments, we use the mean shift clustering algo-
rithm [31] to determine pseudo albedo. ShoeRinsics learns to predict albedo for real shoe-treads using the
psuedo albedo as ground-truth. We do not use pseudo albedo directly instead of the albedo prediction be-
cause it is not perfect ground truth and contains deviating segment boundaries (row 1), over-segmentation
(row 2), and incorrect albedo labels for segments (row 3). Our ShoeRinsics learns to fix these errors.

A.7 Discussion on the Pseudo Albedo

We provide pseudo supervision on the albedo prediction of real images. Fig. A.9 shows exam-

ples of pseudo albedo and the albedo predictions made by ShoeRinsics on real shoe-tread images.

The following is a discussion on pseudo albedo generation and how pseudo albedo differs from

predicted albedo.
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A.7.1 Pseudo Albedo Generation

Creating pseudo albedo segments. We first group the pixels in the real image using the mean-

shift algorithm [31]. To generate the pseudo albedo labels, we work with the LAB color space

since it is easier to distinguish hue (A and B) from brightness (L) in this color space. Additionally,

to ensure that shading does not interfere with pixel grouping, we scale the L channel by a factor

of 0.15. Note that ignoring L altogether would make it difficult to distinguish between black and

white. It turns out that we do not need to work on full resolution images for pixel grouping. So, we

first downsize our real-shoe images to 67 × 150 for faster computation. After running mean-shift

on the resulting shoe-tread pixels, we get an initial segmentation of the pixels in the real image.

We define the color of each segment as the average color across that segment.

Refining pseudo albedo segments. The initial segmentation is very grainy as expected. Thus,

we proceed to iteratively refine the segments for a maximum of 10 iterations. For each iteration

we merge ‘nearby’ segments and update the color of the segments to reflect the segment updates.

To merge segments, we find segments which are small in size and close to another segment both

physically (share segment boundary) and numerically (have similar segment color). After merging

segments, we update the color of the resulting segment as the average color across all the pixels

in the new segment. We break the iterative refinement loop when we reach an iteration where the

segmentation does not receive any updates or when the maximum iteration count (10) has been

reached. Since this is a time-consuming process, we predetermine the pseudo albedo for all real

shoes and save them to be used directly during training.

A.7.2 Comparing Pseudo Albedo to Predicted Albedo

It may seem counter-intuitive to learn to predict albedo when we can simply determine the cor-

responding ground-truth pseudo albedo. However, as we can see in Fig. A.9, pseudo albedo is

only approximate and can contain deviating segment boundaries (row 1), over-segmentation (row
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2), and incorrect albedo labels for segments (row 3). ShoeRinsics learns to fix these errors when

trained using pseudo albedo as ground-truth.
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Appendix B

CriSp: Leveraging Tread Depth Maps for

Enhanced Crime-Scene Shoeprint Matching

B.1 Outline

Our aim is to identify shoe models resembling crime-scene impressions by comparing them to

a comprehensive shoe database. Leveraging tread images from online retailers, we construct our

reference database, prioritizing tread depth maps over RGB tread images for their greater relevance

and informativeness [81]. As there is no dataset of crime-scene shoeprints paired with ground-truth

tread depth maps, we propose learning from tread depth maps and clean shoeprints predicted from

RGB tread images instead. We utilize a data augmentation module Aug to bridge the domain gap

between clean and crime-scene prints, and a spatial feature masking strategy (using spatial encoder

Enc and masking module M ) to match shoeprint patterns with corresponding locations on tread

depth maps. CriSp achieves significantly better retrieval results than prior methods.

In this supplementary document, we discuss the following topics:
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Table B.1: Distribution of ground-truth shoe models from validation sets (val-FID and val-
ShoeCase). We partition the ground-truth shoe models to assess generalization capabilities. In
val-FID, there are 1152 shoe models, while val-ShoeCase comprises 16 shoe models. It’s impor-
tant to note that different shoe models may share tread patterns. Thus, we also distinguish between
seen and unseen tread patterns during training. Val-FID encompasses 41 unique tread patterns,
whereas val-ShoeCase contains 2 unique tread patterns.

shoe models unique tread patters
seen unseen total seen unseen total

val-FID 229 923 1152 20 21 41
val-ShoeCase 2 14 16 1 1 2

• Appendix B.2 presents visualizations of retrievals by CriSp and also compares them with

those of prior methods.

• Appendix B.3 provides a detailed quantitative comparison to state-of-the-art methods. We

study generalization to unseen shoe models in Appendix B.3.1 and further detail the perfor-

mance of methods on each unique shoe tread pattern in Appendix B.3.2.

• Appendix B.4 elaborates on the training process of prior methods. We investigate the perfor-

mance of fine-tuning these methods using masks to simulate partial prints in Appendix B.4.1

and compare the performance of MCNCC[48] when using a reference database of shoeprints

vs. tread depth maps in Appendix B.4.2.

• Appendix B.5 defines the mean average precision at K, which serves as a metric for evaluat-

ing and comparing methods.

• Appendix B.6 analyses how the ground-truth shoe models are distributed within our refer-

ence database.

• Appendix B.7 provides detailed insights into our data augmentation technique.

• Appendix B.8 shares some implementation specifics of CriSp.
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query CriSp retrievals

Figure B.1: Qualitative results of CriSp on val-FID. CriSp retrieves positive matches early even
with partially visible or severely degraded prints.

B.2 Qualitative Results of CriSp and Comparison to State-of-

the-art

We display visualizations in this section. Figure B.1 and B.2 show the top 10 retrievals by CriSp

from crime-scene prints sourced from val-FID and val-ShoeCase, respectively. These illustra-

tions demonstrate CriSp’s capability to retrieve positive matches even from severely degraded or
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query CriSp retrievals

Figure B.2: Qualitative results of CriSp on val-ShoeCase. We show the performance on prints
from two different categories: blood prints (rows 1-2) and dust prints (rows 3-4). Despite the
severe degradation present in the prints, CriSp can retrieve positive matches early.

partially visible crime-scene shoeprints. Furthermore, Figure B.3 and B.4 provide a qualitative

comparison between retrievals made by CriSp and those of prior methods. Notably, CriSp excels

in matching patterns to corresponding regions on the tread, enabling it to retrieve positive matches

early.
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query CriSp retrievals ZSE-SBIR retrievals SketchLVM retrievals FIRe retrievals

Figure B.3: Qualitative comparison to state-of-the-art on val-FID. CriSp outperforms prior meth-
ods by retrieving positive matches much earlier.
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query CriSp retrievals ZSE-SBIR retrievals SketchLVM retrievals FIRe retrievals

Figure B.4: Qualitative comparison to state-of-the-art on val-ShoeCase. CriSp outperforms prior
methods by retrieving positive matches earlier, as evidenced by the top 6 rows displaying blood
prints and the bottom 4 rows displaying dust prints.

B.3 Detailed Quantitative Comparison to State-of-the-art

B.3.1 Generalization to Unseen Shoe Models

We compare our CriSp to state-of-the-art methods to study generalization to unseen tread patterns.

Note that we perform this study in terms of seen and unseen tread patterns instead of shoe models
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Table B.2: Benchmarking on validation sets to study generalization. We train prior methods on our
dataset with our data augmentation technique. We compare the retrieval performance of methods
using mAP@100. We categorize the shoeprints in the validation sets based on whether their corre-
sponding tread patterns were seen during training or not. Note that we perform this study in terms
of seen and unseen tread patterns instead of shoe models since multiple shoe models can share the
same tread pattern. Notably, CriSp demonstrates significantly superior performance to all prior
methods on unseen tread patterns. However, ZSE-SBIR exhibits slightly better performance than
CriSp for seen tread patterns on val-ShoeCase.

method
val-FID val-ShoeCase

seen unseen seen unseen

IJCV’19 MCNCC [48] 0.0002 0.0030 0.0000 0.0000
NeurIPS’20 SupCon [47] 0.0009 0.0000 0.0000 0.0000

ICLR’21 FIRe [98] 0.0671 0.0198 0.1103 0.2697
CVPR’23 SketchLVM [76] 0.0539 0.0270 0.0032 0.2770
CVPR’23 ZSE-SBIR [60] 0.1659 0.1230 0.2653 0.1350

CriSp 0.1749 0.2309 0.2495 0.4405

since multiple shoe models can share the same tread pattern. Our findings, detailed in Table B.2,

demonstrate that CriSp exhibits superior generalization to unseen tread patterns compared to prior

methods.

B.3.2 Comparison on Unique Tread Patterns

We conduct a detailed analysis of CriSp relative to prior methods on each unique tread pattern

from val-FID. Recall that val-FID has 41 unique tread patterns among the 1152 ground-truth shoe

models. Table B.3 presents the comparison of methods based on mAP@100 for each tread pattern,

where CriSp exhibits superior performance in the majority of cases.
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Table B.3: We shoe mAP@100 for all unique tread patterns in val-FID. CriSp achieves the highest
performance on 22 tread patterns, while ZSE-SBIR outperforms on 10 tread patterns. FIRe and
SketchLVM exhibit the best performance on 1 tread pattern each.

tread pattern ID FIRe SketchLVM ZSE-SBIR CriSp

000001 0.0000 0.0000 0.2583 0.0027
000003 0.0000 0.0000 0.0079 0.2333
000004 0.3108 0.0000 0.6137 0.6430
000005 0.1694 0.2083 0.5000 0.4105
000008 0.0025 0.0010 0.0034 0.0616
000009 0.0000 0.0000 0.0053 0.0000
000010 0.0000 0.0000 0.0250 0.5000
000011 0.0000 0.0000 0.4275 0.5060
000012 0.0067 0.0022 0.0713 0.0854
000013 0.0348 0.1145 0.2401 0.0111
000016 0.0000 0.0000 0.0563 0.0707
000017 0.1641 0.0227 0.0105 0.0118
000023 0.0000 0.3950 0.0009 0.0148
000032 0.0000 0.0000 0.0000 0.0000
000033 0.0000 0.0000 0.2969 0.5711
000035 0.0000 0.0002 0.0027 0.0000
000045 0.0147 0.0000 0.0000 0.2500
000047 0.0000 0.0066 0.0000 0.0312
000053 0.0156 0.0000 0.0029 0.0427
000054 0.3148 0.0000 0.9444 0.0265
000055 0.0000 0.0000 0.0000 0.3258
000056 0.0000 0.0000 0.0000 0.0000
000062 0.0000 0.0000 0.0000 0.0000
000072 0.0018 0.0140 0.0054 0.0821
000074 0.0000 0.0000 0.0000 1.0000
000082 0.0000 0.0000 0.0000 0.0026
001040 0.0029 0.0000 0.0460 0.0044
001041 0.0000 0.0034 0.0027 0.2000
001044 0.2640 0.3070 0.4100 0.5091
001047 0.0000 0.0000 0.0000 0.0000
001048 0.0000 0.0000 0.1036 0.0000
001049 0.0000 0.0100 0.0238 0.8333
001050 0.0038 0.1704 0.0437 0.3410
001058 0.0000 0.0000 0.3998 0.0201
001062 0.0000 0.0000 0.0000 0.4111
001064 0.0000 0.0000 0.0000 0.0006
001071 0.0000 0.0000 0.0000 0.0108
001076 0.0000 0.0000 0.0000 0.0000
001079 0.0000 0.0000 0.0000 0.0000
001088 0.0000 0.0000 0.5000 0.0903
001095 0.0000 0.0000 0.0000 0.0000

B.4 Training State-of-the-art Methods

B.4.1 Fine-tuning State-of-the-art Methods Using Simulated Crime-Scene

Masks

When evaluating state-of-the-art methods, we train them on our dataset and apply our data augmen-

tation to simulate crime-scene prints during training. Here, we compare the performance of related
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Table B.4: Benchmarking on real crime-scene prints from val-FID, we assess the impact of simu-
lated partial print masks. Using hit@100 and mAP@100 as metrics, we compare the performance
of prior methods trained on our dataset with our data augmentation. The mAP@100 values reveal
that prior methods tend to perform better when trained without masks simulating partial prints.
CriSp consistently achieves superior performance on both metrics, regardless of the presence of
masks.

method
w/o masks w/ masks

hit@100 mAP@100 hit@100 mAP@100

IJCV’19 MCNCC [48] 0.0849 0.0018 - -
NeurIPS’20 SupCon [47] 0.0755 0.0096 0.0849 0.0001

ICLR’21 FIRe [98] 0.2075 0.0398 0.0660 0.0030
CVPR’23 SketchLVM [76] 0.1981 0.0384 0.2547 0.0445
CVPR’23 ZSE-SBIR [60] 0.4528 0.1412 0.4623 0.1358

Ours 0.4528 0.1765 0.5472 0.2071

methods with and without using masks to simulate partial prints. Our findings are summarized in

Table B.4, demonstrating that CriSp outperforms other methods in both settings.

B.4.2 Reference Database Configuration for MCNCC

When comparing MCNCC against a database of shoeprints, it yields a hit@100 of 0.0283 and

mAP@K of 0.0008 on crime-scene shoeprints from val-FID. These metrics are notably lower

compared to when using tread depths from the shoe database, where MCNCC achieves a hit@100

of 0.0849 and mAP@100 of 0.0018.

B.5 Evaluation Metric - Mean Average Precision at K

Mean average precision at K (mAP@K) considers both the number of positive matches and their

positions in the ranking list. It rewards the system’s ability to retrieve positive matches early.
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MAP@K is defined as follow:

mAP@K =
1

Q

Q∑
q=1

AP@Kq (B.1)

where AP@Kq is the average precision at K for query q. AP@K is calculated as follows:

AP@Kq =
1

N

K∑
k=1

Precision@k × rel(k) (B.2)

where N is the total number of positive matches for a particular query. Since we are only interested

in the top K retrievals, we limit N to an upper bound of K. Precision(k) is the precision calcu-

lated at each position and is defined as posk
k

where posk represents the number of positive matches

in the top k retrievals. The final term, rel(k), equals 1 if the item at position k is a positive match

and 0 otherwise.

B.6 Distribution of Shoe Models From Validation Sets in Ref-

erence Database

Table B.1 provides insights into the distribution of ground-truth shoe models from our validation

sets within the reference shoe database. Additionally, we present the count of distinct tread patterns

that were either seen or unseen during training to facilitate comprehension. In Appendix B.3.1, we

assess the generalization performance of our model compared to state-of-the-art methods.
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B.7 Data augmentation to Simulate Crime-Scene Shoeprints

Our data augmentation module Aug simulates noisy and occluded crime-scene shoeprints from

clean, fully-visible shoeprints. It introduces three types of degradation: occlusion, erasure, and

noise.

• For occlusion, we simulate overlapping prints and quadrilaterals. Overlapping prints mimic

the common occurrence of multiple shoeprints overlapping at a crime scene. We achieve this

by randomly rotating and translating the predicted print and overlaying it onto itself. Quadri-

laterals, resembling papers, rulers, or other marks, are added to simulate typical occlusions

found in crime-scene shoeprint images.

• Erasure is incorporated to mimic the grainy nature of prints left at crime scenes. This in-

volves selectively removing parts of the predicted shoeprint using either a Gaussian or Perlin

distribution. Gaussian distribution is a standard choice for data augmentation, while Perlin

noise provides a more nuanced representation of noise variations found in real images.

• Noise is added to represent background clutter. Gaussian or Perlin noise is overlaid on the

predicted prints to simulate the clutter typically present in crime-scene images.

These degradations are applied dynamically during training, with each being optional.

B.8 Implementation Details

We use a batch size of 4, where we randomly select 4 shoe models and then include two random

instances per shoe model in each batch. During our experiments, training images of size 192 x 384

are encoded to a dimension of H=6 and W = 12. We use an Adam optimizer with a learning rate

of 0.1 and set τ = 0.07.
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