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Abstract

This report presents research into a fundamentally new approach to �nding all

pairwise minimum cuts in a network that can utilize optimality conditions other than

those characterized by Mengers theorem or the max-
ow min-cut theorem. The focus

is on vertex degree domination, rather than construction of saturating paths. We have

not been able to show a polynomial-time, deterministic algorithm of this kind, but the

investigation has yielded many new insights into the structure of minimum cuts in a

network and heuristics for discovering them.

1 Introduction

The topic of network 
ows and minimum cuts has become well established within combi-

natorial optimization, to the point where it may be considered to encompass an invaluable

body of fundamental techniques second perhaps only to linear programming and its related

techniques in terms of the number and practical importance of its applications. Prominent

applications include e�cient communications, distribution, location, production, routing,

and scheduling problems with instances in almost any large-scale enterprise.

Combinatorial problems of practical interest generally fall into two classes: those that

are computationally tractable, i.e. have known polynomial-time solution algorithms, and

those that are not. Once a problem is discovered to be tractable, a good algorithm is

often discovered quickly and then little further progress is made even when no tight lower

bound is known. Among tractable combinatorial problems, network 
ows and cuts are

unusual for having yielded a steady progression of improved solutions by new techniques over

several decades. Like linear programs, 
ow and cut problems are characterized by a primal-

dual relationship that leads to e�cient solution techniques. The vertex version of Mengers

�
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theorem [24](1927) proved a strong duality between the problem of �nding a maximal number

of vertex-disjoint paths between a given pair of vertices, and the minimum number of vertices

whose removal leaves that pair in unconnected components. Duality between a maximal

packing of edge disjoint paths and a minimum set of edges whose removal separates the

pair of vertices is the edge version of this theorem. Until fairly recently, all algorithms for

�nding a minimum cut relied essentially on solving the dual problem of maximum 
ow, so

the history of minimum cut algorithms is largely that of maximum 
ow algorithms. In the

50's 
ows were formulated as a generalization of path packing that is applicable to directed,

capacitated networks, and the max-
ow min-cut theorem [9] was �rst proven. Perhaps the

�rst programmed, algorithmic method in this family of optimization problems was Dantzig's

linear program formulation of a transportation problem [6], which by relying on the simplex

method for solution, was not polynomial time bounded in the worst-case. Within the decade,

though, special-purpose polynomial time algorithms based on the augmenting path method

were known. Since then a number of small but steady improvements to augmenting path

algorithms have been introduced, including the ideas of blocking 
ows, pre
ows, and adaptive

length functions.

Although the maximum 
ow and minimum cut problems are duals, they are not exactly

equivalent, and their applications do di�er. Given the value of a maximum 
ow, the value of

the minimum cut follows, and it is fairly easy to construct a minimum cut from a maximum


ow. However, it is not easy to construct a maximum 
ow just from a minimum cut.

In the last decade, as max 
ow techniques have matured, several alternative approaches

have become known that represent improvements for some applications that need to �nd cuts

quickly, without needing 
ows. Gabow [10], building on a characterization of the problem

by Edmonds [8], which is more closely related to the edge version of Mengers theorem

than to the max-
ow min-cut theorem, introduced a method of �nding the global minimum

cut (the one smallest valued cut separating any two vertices) by constructing a maximum

directed tree packing. Nagamochi and Ibaraki [27] introduced a novel and e�cient method

for constructing maximal undirected spanning forests from which followed a new method for

�nding the global minimum cut. Karger [21] introduced a randomized algorithm that �nds

the global minimum cut with high probability without constructing any kind of packing

at all. Karger's technique yields a global minimum cut while giving very little assistance

to the discovery of an actual maximum 
ow crossing the cut. Moreover, its computational

complexity is less than that of any 
ow-based technique, suggesting that the min cut problem

is fundamentally easier than max 
ow, and does not require a packing approach.

This report is the result of research into possible techniques for �nding minimum cuts

without constructing maximum 
ows, or even any kind of path packing. In the broadest

scope, we attempted to �nd a new characterization for minimum cuts, leading to an e�cient

algorithm, that does not rely on any duality between cuts and path packings. We drew

instead upon a characterization of minimum cuts following from the Gomory-Hu result of

1961 [16] regarding the inter-relationships of all minimum cuts in a network. Rather than

identifying cuts individually, by the dual problem of max 
ow, we have sought to �nd

all fundamental min cuts in a network \simultaneously" by the necessary properties they

collectively satisfy in partitioning the network. Our main contributions include (1) new

problem formulations for �nding min cuts without max 
ows, (2) necessary and su�cient
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conditions characterizing their optimal solution, (3) a variety of new su�cient conditions and

heuristics for �nding minimum cuts, (4) the concept of self-dominating sets, their relation

to minimum cuts, and an algorithm for �nding them and (5) a new randomized algorithm

for �nding the Gomory-Hu cut tree directly.

2 Related Work

The minimum network cut problem has been very well studied. Its history is mostly that

of maximum 
ows. It is not appropriate to include an extensive overview of prior research

on that topic here (see Ahuja, Magnanti and Orlin [2] for a recent, comprehensive text on

network 
ow topics). However, we will summarize here some of the signi�cant results that

in
uenced the direction of our research e�ort.

The �rst major result in network 
ows and cuts as a topic in combinatorial optimization

was the max-
ow min-cut theorem proven by Ford and Fulkerson [9] (also credited to Kotzig

[23]) which states that the maximum 
ow between two vertices in a network is exactly

equal to the minimum cut separating them. This theorem is a generalization to directed,

capacitated networks of the basic duality for graphs �rst identi�ed by Mengers theorem [24].

Since then and until quite recently, all minimum cut algorithms have relied on this duality

to �nd minimum cuts by constructing a saturating 
ow.

A network 
ow is an assignment of value and direction to network edges in a way that

meets the basic 
ow feasibility requirements, i.e. the capacity of no edge is exceeded by its


ow value, and the net 
ow into every vertex (after 
ow out is subtracted) is zero, except

for a source, from which all 
ow originates, and a sink into which all 
ow terminates. The


ow concept is thus dependent on identi�cation of a source and a sink vertex. It is easy

to create an initial feasible 
ow from the source to the sink by �nding any path connecting

them. Such a path can be found by breadth-�rst search, for example. Increasing the 
ow

to maximum can be achieved by iteratively �nding augmenting paths from source to sink,

i.e. paths consisting of edges with unused capacity, or capacity that can be freed by feasibly

altering the existing 
ow. When no augmenting path remains, there must exist a collection

of 
ow saturated edge that partitions the network in two, and the current 
ow is provably

maximum. The augmenting path search component of a maximum 
ow algorithm can be

designed so that a minimum cut separating the source and sink vertices is easily identi�ed

from the saturated edges when no remaining augmenting path can be found.

Improvement in maximum 
ow algorithms has come mainly from techniques that discover

augmenting paths in a way that minimizes the number of augmentations necessary to saturate

the minimum cut. Landmark results in this e�ort include blocking 
ows [7], pre
ows [15]

and adaptive length functions [14]. Current best maximum 
ow algorithms have become

quite sophisticated, utilizing combinations of techniques, including sparsi�cation, to achieve

their worst-case bounds (see Goldberg [13] for a survey).

Although a 
ow is not explicitly a collection of disjoint (capacitated) paths, it is simple to

decompose it into one, so we can think of a maximum 
ow as a maximum packing of paths.

Only in the past decade have non-
ow and non-path-packing techniques been introduced for

�nding minimum cuts.
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The �rst algorithm for �nding the global minimum cut in a network was the Gomory-

Hu algorithm [16] that utilized an s-t min cut algorithm as a subroutine, up to n � 1

times. In 1990 Padberg and Rinaldi [29] published a report on a practical algorithm for

�nding the global minimum cut that, while still max-
ow based, was novel for incorporating

a number of heuristics that identi�ed lower bounds on some cuts in circumstances that

allowed far fewer than n� 1 calls of the max-
ow subroutine, in typical problem instances.

A more recent and comprehensive study [5] of minimum cut algorithm implementations

demonstrated the e�ectiveness of some of these heuristics for improving the performance of

almost all algorithms studied.

Gabow [10] introduced a method that does not utilize maximum 
ows, as such, but does

rely on an analogous concept, that of a maximum packing of arborescences. Gabow's algo-

rithm is based on a theorem of Edmonds [8] which states that the minimum cut separating

a vertex s from any other vertex in the network is equal to the maximum number of dis-

joint spanning trees rooted in s. (As stated, this theorem and the algorithm apply only

to unweighted graphs. Gabow and Manu [11] have extended the algorithm to capacitated

networks.) By using tree packings, Gabow's algorithm �nds the minimum cut separating s

from some part of the network by saturating it with simultaneous paths to every vertex t on

the other side of that cut.

Nagamochi and Ibaraki [27, 28] introduced a di�erent kind of exhaustive tree constuction

algorithm that has proven useful in two distinguishable ways for �nding minimum cuts. Their

algorithm for an undirected multigraph partitions the edges E into a series E

1

; E

2

; : : : ; E

k

of maximal spanning forests, where E

i

induces an acyclic subgraph that connects every

connected component of G

0

= (V;E � (E

1

[ E

2

[ : : : [ E

i�1

)). In the process, it assigns

a total ordering over the vertices, based on their adjacency to the previously ordered set.

For this reason their algorithm, especially its generalization to capacitated networks, is also

known as maximum adjacency indexing. A partitioning into maximal spanning forests di�ers

signi�cantly from a maximum packing of spanning trees in that there is no guarantee that

a given forest does not cross a given minimum cut multiple times, so that the �rst i forests

together may saturate a cut of value greater than i, even the global minimum cut (the least

cut that partitions V into two non-empty sets). However, this kind of forest partitioning

can be done very quickly, in O(m + n logn) time, and is thus useful as a technique for

sparsi�cation. A theorem says that if the minimum cut between vertices s; t in G = (V;E) is

� i, then the minimum cut between them in G

0

= (V;E

1

[E

2

[ : : :[E

i

) is still � i. Hence, if

we seek a minimum cut or maximum 
ow known to have some upper bound, sparsifying the

graph �rst by getting rid of edges in extraneous spanning forests can reduce the time needed

to �nd it. A second theorem leading directly to a new minimum cut algorithm is that the

minimum cut between the last two vertices indexed by maximum adjacecy is exactly equal

to the degree of the last. In other words, maximum adjacency indexing tells us the value of

the minimum cut between these two vertices, even though it does not appear to help �nd a

saturating 
ow between them (except by sparsi�cation, as mentioned). The global minimum

cut can thus be found by n�1 iterations of the maximum adjacency indexing algorithm, each

followed by contraction of the last two vertices. Although maximum adjacency indexing does

not explicitly reveal a maximal collection of disjoint paths between the last two vertices, the

proof of their minimum cut value essentially says that the forest partitioning implies that
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such a collection exists, hence one might consider it as still in the class of path packing

algorithms.

Karger [18, 22] has introduced the �rst complete minimum cut algorithms that do not

involve path or tree construction at all|nor max-
ow min cut duality|but instead are based

on random sampling. Rather than searching for the minimum cut between a particular pair

of vertices, such as is discovered by building one maximum 
ow, these algorithms target the

global minimum cut.

1

The key concept is that this minimum cut is distinguished by being

crossed by fewer edges than average, so that if we select an edge at random, the expectation

of it crossing the global minimum cut is low. Hence, if we contract a random edge (u; v), we

can expect that the minimum cut of the resulting network is the same as that of the original.

After n � 2 contractions, there is only one cut remaining, whose value and membership

are immediate. In any one run of n� 2 random edge contractions the chance that the last

remaining cut is the global minimum is low, so it is necessary to run the algorithm repeatedly

to raise the expectation that it is discovered in some run. However, by strategic allocation

of retrials where they help the most (and use of auxilliary techniques like sparsi�cation), the

expectation of discovering or approximating it within a relatively small number of runs can

be raised quite high.

3 Basics

In this section we present de�nitions of terminology used, together with some basic results

relevant to discovery of GH cut trees. Where results proven here are known to have been

previously discovered and published elsewhere, it is so noted. Other results are not known

to have appeared before.

3.1 Terminology

Our terminology is largely conventional. A graph G = (V;E) consists of a set of vertices

V and a set of edges E � V � V . Vertices are denoted by lower case letters, in the style

v

1

; v

i

; v

j

, or just u; v etc. Sets of vertices are denoted by capital letters, e.g. X; Y . Where

no confusion should arise, we allow v

i

to denote the set fv

i

g. For two sets, we use \�" to

indicate exclusion of common members, so X � Y denotes all members of X that are not

also members of Y . Consequently, if X \ Y = ;, then X � Y = X.

A network is a graph with a capacity function c : V � V ! R

+

over its edges. Unless

otherwise noted, we consider only undirected networks with non-negative real edge capacities.

For simplicity of notation, we allow the edge between vertices u; v to be written either (u; v)

or (v; u) but only count it as a single edge for measuring the size of E. Consequently,

c(u; v) = c(v; u). We make the usual assumption that jV j = n and jEj = m for notations

of complexity. The capacity function for edges is extended to pairs of vertex subsets, in a

1

Karger and co-authors have also introduced algorithms for �nding s-t cuts, based on random sampling,

but these utilize 
ow or path packing methods on a sparisi�ed network. See, e.g. Bencz�ur and Karger [4].
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natural way: if jXj � jY j then

c(X; Y ) �

X

u2(X�Y );v2Y

c(u; v):

Accordingly, in the special case of a single vertex v 2 X, c(X; v) = c(X � v; v).

A network cut is any partition of its vertices into two non-emtpy, disjoint and exhaustive

subsets. Cuts can be identi�ed by the set of edges between the two vertex subsets, or by one

of those subsets. We choose the latter. A cut may be identi�ed by either of its two de�ning

vertex subsets: if X � V identi�es a cut, then X = V � X is the complementary set that

identi�es the same cut. The value of such a cut is the total weight of edges that cross the

cut, i.e. connect a vertex in one subset with a vertex in the other. We denote the value of

cut X by

[X] �

X

u2X;v2X

c(u; v):

Observe that necessarily [X] = [X].

A cut can also be referred to in cases where we do not know the exact membership

of either subset that de�nes the cut. C(X; Y ) denotes any arbitrary cut separating the

necessarily disjoint vertex sets X; Y , and C

�

(X; Y ) denotes the minimum among such cuts.

For example, the minimum cut separating vertices u; v is denoted C

�

(u; v). From traditional

association with the maximum 
ow between arbitrary source and sink vertices, such a min

cut between two speci�c vertices is usually referred to as an s-t min cut.

In contrast, the global minimum cut is the least cut in the network. The notation �(X)

indicates the value of the least cut partitioning a non-empty subset of vertices:

�(X) � min

Y�X;jY j>0

c(Y;X � Y ):

We say that this function gives the inner strength of the subnetwork induced by X. Observe

that the global minimum cut of the network G has value �(V ).

For simplicity, we allow lexical adjacency to abreviate union of set parameters of these

various functions. For example,

c(XY;ABu) � c(X [ Y;A [ B [ fug):

A 
ow in an edge is a function f : V � V ! R modeling actual channel utilization for

shipment. Flows are easier to reason about in a directed network, which can be obtained from

an undirected network by treating each edge as two arcs of identical capacity but opposite

direction. A feasible 
ow must obey two general constraints

f(u; v) � c(u; v)

and

8v 6= s; t

X

f(u; v)�

X

f(v; u) = 0

specifying that the 
ow in no arc exceeds its capacity, and all 
ow is conserved everywhere

except the designated source and sink vertices. Without specifying its value, the maximum


ow possible from vertex s to vertex t is denoted f

�

(s; t).
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Figure 1: Non-crossing minimum cut
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3.2 Some Classical Results

The main classical result in this area is the max-
ow min-cut theorem [9], which asserts that

the minimum cut separating a source and sink vertex in any network has exactly the same

value as the maximum 
ow from source to sink. It proves that the two problems are duals:

a demonstration of any feasible 
ow imposes a lower bound on the minimum cut, while any

cut imposes an upper bound on the maximum 
ow. As duals, a pair of matching solutions

provides a certi�cate of optimality for both: a demonstration of a 
ow that saturates a cut

separating its source and sink su�ces to prove optimality of each solution.

Another classical result, due to Gomory and Hu [16], shows that all s-t minimum cuts in

a network can be characterized by only n � 1 fundamental cuts. (There are

�

n

2

�

choices of

s; t from V , and there may be more than one cut with the minimum value for many of these

pairs; the actual number of distinct s-t minimum cuts may be exponential in n.) Gomory

and Hu showed that there are exactly n � 1 non-crossing minimum cuts that partition the

network into a tree structure and give optimum values for every s-t min cut.

Two cuts X; Y are said to cross each other if each of the four sets

X \ Y; X \ Y ; X \ Y; X \ Y

is non-empty. The Gomory Hu result follows from the following theorem regarding non-

crossing of minimum cuts.

Theorem 1 (Gomory-Hu) Consider any minimum cut Y = C

�

(i; j) separating two arbi-

trary vertices i; j. Assume without loss of generality that i 2 Y , j 2 Y . For any two vertices

e; k 2 Y , if X = C

�

(e; k) is a minimum cut separating them, and X crosses Y then there

exists another cut Z such that [Z] � [X], k 2 Z, e 2 Z, and Z does not cross Y .

Proof. Let the network be divided into quadrants P;Q;R; S by the cuts X and Y as shown

in Figure 1. By de�nition, the value of the cut is equal to the complete capacity of the
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Figure 2: Flow equivalent networks
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connections between the sets of vertices on either side.

c(Y; Y ) = c(P;Q) + c(P; S) + c(Q;R) + c(R; S) (1)

Assume without loss of generality that i 2 Q, then since Y is the minimum cut separating i

and j,

[Y ] � c(P;Q) + c(Q;R) + c(Q; S): (2)

From equations 1 and 2 it follows that

c(R; S) � c(Q; S) (3)

and hence

c(P;R) + c(Q;R) + c(R; S) � c(Q; S) + c(P;R) + c(Q;R) + c(P; S)

c(R;P [Q [ S) � [X]:

Let Z = R and the proof is complete.

3.3 Flow Equivalence and the GH Tree

Two networks de�ned over the same vertex set V are 
ow equivalent i� the maximum 
ow

between any two vertices is the same in both networks. In consequence of the max-
ow

min-cut theorem, all pairwise minimum cut values are identical in any two 
ow-equivalent

networks, but the actual minimum cuts may di�er. Figure 2 shows two 
ow equivalent

networks in which C

�

(d; e) = fdg on the left, but C

�

(d; e) = fe; fg on the right.

The Gomory-Hu all-pairs minimum cut tree (hereafter referred to as the GH tree) of a

network is any tree that is 
ow equivalent to the network and has the additional property

that the weight of every tree link is equal to the value of the network cut identi�ed by the

subset of vertices on either side of the tree link. (For clarity, we usually speak of a network

as having vertices and edges and its GH tree as having nodes and links, though of course

the tree nodes are identi�ed one-to-one with the network vertices.)

A consequence of this de�nition of the GH cut tree is that the minimum network cut

between any two vertices is exactly equal to the minimum weight of a link in the GH tree

path joining the corresponding nodes. Note that, in general, multiple trees exist which satisfy

the GH tree de�nition. However, for simplicity in discussion we usually prefer the tree of

smallest diameter, and pick its internal node of greatest sum of link capacities as the root.
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3.4 Simple Properties of Tree Edges

Let G be any network, and T be the GH tree of that network. Any network edge that is

also a link in the tree is a tree edge. Any other network edge is a non-tree edge. Any link

in the tree that is not an edge in the network is a virtual tree edge. The capacity of a tree

link is denoted l(u; v), to distinguish it from the capacity of a network edge connecting the

corresponding vertices.

Lemma 2 If x is a leaf in the GH tree, and (x; y) is a tree link, then

f

�

(x; y) = l(x; y) = [x]:

Lemma 3 The degree of any vertex x in an undirected network must be at least as high as

the capacity of any of its edges in a 
ow equivalent network (including the GH tree).

Proof. The amount of 
ow out of a network vertex is limited by its degree; the 
ow between

any two nodes in a 
ow-equivalent network is at least as great as the capacity of an edge

connecting them; hence the degree of a vertex in the original network must be at least as

great as the capacity of any edge adjacent to that node in a 
ow-equivalent network.

Lemma 4 If x is the unique highest-degree vertex of a network, then x cannot be a leaf of

the GH tree.

Proof. Let x be the unique highest-degree vertex. assume without loss of generality that

the network has more than 2 vertices. Suppose towards a contradiction that x is a leaf in

the GH tree; then it must have an edge to some one other node y. Since x is a tree leaf,

C[xy] = c(x), i.e. the 
ow from x to y is equal to the degree of x. Then by the previous

lemma c(y) � c(x), but that contradicts our assumption that x is the unique highest-degree

vertex.

Lemma 5 If the GH tree is unique, then changing the weight of any tree edge changes the

value of exactly one of the n�1 fundamental min cuts, but changing the weight of a non-tree

edge changes the weight of two or more min cuts.

3.5 Contraction

An important property of the fundamental cuts encoded by the GH cut tree is that, because

they are non-crossing, all of the vertices on one side of any fundamental cut can be contracted

into a single vertex, and all of the fundamental cuts on the other side are unchanged in the

resulting network.

Contraction is the operation of substituting a single vertex for a subset of vertices, while

merging multiple edges into a single edge. For G = (V;E) the result of contracting subset

S � V is G=S = (V

0

; E

0

) where V

0

= (V � S) [ fv

S

g and v

S

is a new vertex resulting from

the contraction of S, and E

0

contains all edges of E joining vertices in both V and V

0

and

an edge (u; v

S

) for every vertex (u; v) 2 E where u 2 V

0

and v 2 S. There is also a new

9



capcity function c

0

for the contracted network which yields identical values for edges in both

E and E

0

but the capacity of an edge adjacent to v

S

is

c

0

(u; v

S

) =

X

v2S

c(u; v):

The result of contracting a single edge may be denoted in the style G=(u; v).

Lemma 6 If S � V contains all and only the vertices in a subtree of the GH tree of the

network, then the GH tree of G=S is identical to that of G, except that the subtree containing

S has been reduced to a leaf node.

A consequence of this lemma is that if, in a network, we contract the vertices of any GH

subtree, the pairwise minimum cut between any two remaining vertices is una�ected. An

important special case is that contracting a tree leaf into its parent does not a�ect any other

s-t min cut in the network.

3.6 Domination

In addition to saturation by a maximum 
ow, there is one other known way of determin-

istically identifying minimum cuts: the concept of vertex degree domination. The �rst

well-known algorithm to incorporate domination was described by Padberg and Rinaldi [29].

In the worst case their algorithm still requires approximately n�1 s-t max 
ow calculations,

but it includes a number of heuristics which enable it recognize some instances in which

two vertices cannot be separated by the global minimum cut, and hence can be contracted

without a�ecting that cut, thereby saving a max 
ow calculation.

The Padberg and Rinaldi domination heuristic is the simplest of the domination condi-

tions, one we call a dominating edge. An edge (x; y) is a dominating edge at y i�

c(x; y) >

X

v 6=x

c(v; y):

A dominating edge is a very special situation, that leads immediately to recognition of a

fundamental cut. A vertex may not have a single dominating edge, and if not, it then has

multiple dominating sets of edges. A dominating set of edges (or neighboring vertices) is

any set of edges of a vertex v whose sum of weights is strictly greater than [v]=2.

2

The

dominating factor of a vertex is the size (number of edges) of its smallest dominating set.

Lemma 7 If (x; y) is a dominating edge, then (x; y) is a GH tree edge.

2

A note on ties: In our de�nitions of dominating edge and dominating set we specify that the weight of

a dominating set be strictly greater than [v]=2. If we loosen this to � we can still discover fundamental cuts

by this concept, but ties (the equality case) admit di�erent possible shapes of the GH tree. By insisting

on strict inequality, we favor shallow and bushy GH trees over deep and narrow trees, minimizing the tree

diameter. However, in implementation an algorithm may choose non-strict inequality for the performance

advantage of more recognized dominating edges.
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Figure 3: Dominating edge is a tree edge

y y

x zx z

Proof. Assume without loss of generality that (x; y) is a dominating edge at y, and suppose

towards a contradiction that (x; y) is not a GH tree edge. In that case there must be some

other tree edge (x; z) on the path between x and y. Refer to Figure 3 for an illustration. The

claim that (x; z) is a tree edge is equivalent to claiming that the cut separating all the nodes

on one side of the tree from the other is the minimum cut separating x and z in the network.

However, because (x; y) dominates at y, we know that c(x; y) >

P

v 6=x

c(v; y). Therefore we

can decrease the sum of edge capacities crossing the cut by moving y from the right to the

left of the cut, as shown in the �gure, violating the assumption that the cut was minimal.

Therefore (x; y) must be a GH tree edge.

Lemma 8 If the dominating factor of every vertex is n=2, then the GH tree is a star (has

one internal node and n� 1 leaves).

Proof. Assume towards a contradiction that there are two internal nodes in the GH tree,

x; y. Let X be the vertices in the subtree rooted by x that does not contain y, and let Y be

the vertices in the subtree rooted by y that does not contain x. Because these are disjoint

subtrees of the GH tree there is a fundamental minimum cut separating X and Y . Assume

without loss of generality that jXj � jY j. Since x is an internal node, there must be some

other vertex z 2 X. By assumption, the dominating factor of z is n=2, but since jXj � n=2,

z has fewer than n=2 neighbors in X and must have strictly more edge weight adjacent to

members of Y than members of X. Therefore the cut between the disjoint subtrees rooted

by x and y could be decreased by moving z from x's subtree to y's, but that contradicts the

original assumption that x and y are two internal vertices in the GH tree.

Single dominating edges and the case of every vertex having a dominating factor of n=2

cover the two extreme cases of network topology. If a network is a tree, then every leaf has

a dominating edge. When those leaves are contracted with their parents the resulting leaves

have dominating edges. Hence, it follows from the dominating edge lemma that any tree

network is identical to its GH tree. The other lemma shows that any complete graph, or

network whose distribution of edge weights is su�ciently similar to that of a complete graph,

has a single star for its GH tree. For small networks, those of 5 vertices or fewer, attention

to these cases is su�cient to determine the GH tree without performing any 
ow calculation.

Lemma 9 If v is the only leaf of node u in the GH tree, then (u; v) is a dominating edge at

v in the network.

11



Figure 4: All �ve node trees

(b)

  

(a)

(c)

We will forego proof of this lemma, since it is a simple corollary of Theorem 27 to be

proven later.

Lemma 10 If jV j � 5, then either a dominating edge exists, or the GH tree has exactly one

internal node.

Proof. We need only show only for jV j = 5, since the other cases are simpler. For a 5

node tree, the only possible tree shapes are shown in Figure 4. Both trees (a) and (b) have

leaf nodes which are the only children of their parent, and hence by Lemma 9 must have

dominating edges. If no dominating edge exists, then (c) is the only possible tree.

3.7 Contractable Features

Lemma 6 together with the concept of domination suggests an approach to �nding all funda-

mental pairwise minimum cuts with little or no computation of maximum 
ows. Domination

conditions sometimes allow us to identify a tree edge. If we contract vertices in the subtree

on one side of that tree edge, the reduced network is simpler, yet preserves all of the mini-

mum cuts in the un-contracted portion. We may then be able to �nd another tree edge and

another opportunity for contraction, etc.

More generally, there are sets other than GH subtrees that can be contracted for the

purpose of simplifying the network and making progress in the analysis of fundamental min

cuts.

De�nition 11 A strong cluster is any cut X such that

[X] � [Y ] for any non-empty Y � X:

12



Figure 5: Chain network
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Another way of stating this is that a strong cluster is any subset of vertices X whose inner

strength is not exceeded by its cut value, i.e. [X] � �(X). Being a strong cluster is

independent of being a fundamental minimum cut. However, there are circumstances when

we can contract such a cluster, and preserve the structure of some of the fundamental cuts

in the rest of the network.

Lemma 12 If X is a fundamental minimum cut, then neither X nor X is necessarily a

strong cluster. If Y is a strong cluster, it is not necessarily a fundamental minimum cut.

Proof. Consider Figure 5. Set fh; ig with value 2 is the minimum s-t cut C

�

(i; j), but

[h] = 1. Next consider Figure 6. The subset Y forms a strong cluster because each of its

members has a capacity 6 connection to the rest of the set, but only a capacity 4 connection

to Y . However, it is not an s-t minimum cut. Due to the symmetry, we only need to examine

the case for i; j, where C

�

(i; j) = 3 < [Y ].

The righthand part of the �gure shows the GH tree for this network. Observe that the

strong cluster fails to be a fundamental minimum cut because Y is connected to the rest of

the tree by more than one link.

Lemma 13 If X and Y are any two crossing cuts, then

[Y ] � [X \ Y ]) [X \ Y ] � [X]:

Proof. Label the quadrants of the network P;Q;R; S as in Figure 1. By assumption

c(P;Q) + c(P; S) + c(Q;R) + c(R; S) � c(P;Q) + c(Q;R) + c(Q; S)

13



and then,

c(P; S) + c(R; S) � c(Q; S)

c(R; S) � c(P; S) + c(Q; S)

c(P;R) + c(Q;R) + c(R; S) � c(P;R) + c(Q;R) + c(P; S) + c(Q; S)

[X \ Y ] � [X]:

Corollary 14 If Y is a strong cluster then for any u; v 2 Y the value of C

�

(u; v) is the

same in G and in G=Y .

Proof. Take any u; v 2 Y and suppose that X = C

�

(u; v). If X does not cross Y , then

contracting Y does not a�ect the min cut between u and v. Suppose that X and Y do cross,

then X \Y is non-empty. Since Y is a strong cluster, [Y ] � [X \Y ], and then by Lemma 13

there exists another cut X \ Y whose value is no greater than X, and does not cross Y .

Hence contracting Y does not a�ect the value of the min cut between u and v.

4 Local Indexing

De�ne a local indexing algorithm as one that sequentially assigns indices 1 through n to

the vertices of a network by always selecting the best candidate from the neighbors of the

already indexed set, on the basis of properties which those vertices individually bear to the

indexed set, and which never changes the index of a vertex once it has been assigned. A local

indexing algorithm is thus a kind of greedy algorithm that establishes a total order over the

vertices. Many of the most basic and broadly useful graph algorithms known to computer

science are local indexing algorithms, or use one as an essential subroutine. Depth-�rst

search and breadth-�rst search are both instances, and so are Prim's minimum spanning

tree algorithm and Dijkstra's single-source shortest-path algorithm. In some maximum 
ow

algorithms, a local indexing is used to compute a distance function that is then used to �nd

a good augmenting 
ow.

With respect to �nding minimum cuts, probably the most useful known local indexing is

the maximum adjacency algorithm. In this section we examine various bounds on connec-

tivity implied by possible outcomes of this algorithm. Alternative indexing criteria to those

used by maximum-adjacency are possible, and have been investigated, but are not described

here because no more interesting bounds were discovered than those known for maximum

adjacency.

4.1 Maximum Adjacency

The maximum adjacency indexing technique was introduced in a series of papers by Nag-

amochi and Ibaraki [26, 27, 28] in which it is de�ned for unweighted multi-graphs and undi-

rected networks with non-negative real weighted edges. The second case is not signi�cantly

more di�cult to understand than the �rst, so we will proceed directly to it. The algorithm
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begins by assigning index 1 to an arbitrary vertex, and then iteratively assigns the next

index to the unassigned vertex of maximum adjacency to those already indexed, until all

have been assigned.

De�nition 15 Let v

i

denote the vertex of index i, and V

i

= fv

1

; v

2

; : : : ; v

i

g. Then v

1

; v

2

; : : : ; v

n

are indexed by maximum adjacency if for all 1 < i < j � n

c(V

i�1

; v

j

) � c(V

i�1

; v

i

):

In cases of ties in adjacency, this de�nition does not specify a preference for one vertex over

another. Nagamochi and Ibaraki showed how to implement a maximum adjacency indexing

algorithm e�ciently in O(m + n logn) time. Essentially, a priority queue of unindexed

vertices is maintained, sorted by adjacency to the indexed set, and every time we assign the

next index to a vertex we update its unassigned neighbors' adjacency and their position in

the queue.

For convenience in discussion of maximum adjacency indexing, we generalize with the

following de�nition.

De�nition 16 Disjoint sets A;B; : : : ; I constitute a maximum adjacency partition of V

i

if

V is indexed by maximum adjacency and

A = fv

1

; : : : ; v

a

g; B = fv

a+1

; : : : ; v

b

g; : : : ; I = fv

h+1

; : : : ; v

i

g:

With respect to �nding the global minimum cut, the main result proved by Nagamochi

and Ibaraki about a maximum adjacency indexing is that the minimum cut separating the

last two vertices indexed is equal to the degree of the last. We present an alternative proof

of this theorem similar to that of Stoer and Wagner [30].

Theorem 17 (Nagamochi-Ibaraki) If V is indexed by maximum adjacency, then C

�

(v

n�1

; v

n

) =

fv

n

g.

Proof. We will show this is true for an arbitrary case, without making any special assump-

tions, so we claim that it holds true in general.

Suppose that C

�

(v

n�1

; v

n

) = A [ C [ E, where A;B;C;D;E is a maximum adjacency

partition of V

n�1

(the other side of the cut is B [ D [ fv

n

g). We can always organize the

vertices on each side of a cut into sets that are consecutively indexed according to maximum

adjacency; in this case we arbitrarily assume that there are �ve such sets, plus the last vertex

v

n

. By de�nition of cut capacity we know that

c(ACE;BDv

n

) = c(A;BDv

n

) + c(B;CE) + c(C;Dv

n

) +

c(D;E) + c(E; v

n

): (4)

By de�nition of a maximum adjacency partition we know that

c(A; v

a+1

) � c(A; v

b+1

)

hence

c(A;BDv

n

) � c(A; v

b+1

(B � v

a+1

)Dv

n

):
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Substituting into equation 4 above we get

c(ACE;BDv

n

) � c(A; v

b+1

(B � v

a+1

)Dv

n

) + c(B;CE) +

c(C;Dv

n

) + c(D;E) + c(E; v

n

): (5)

Next observe that

c(B;CE) = c(B; v

b+1

) + c(B; (C � v

b+1

)E)

and

c(A; v

b+1

) + c(B; v

b+1

) = c(AB; v

b+1

)

so we can simplify equation 5 to

c(ACE;BDv

n

) � c(AB; v

b+1

) + c(A; (B � v

a+1

)Dv

n

) +

c(B; (C � v

b+1

)E) + c(C;Dv

n

) +

c(D;E) + c(E; v

n

): (6)

All cuts have non-negative capacity, so eliminating the terms c(A; (B � v

a+1

)Dv

n

) and

c(B; (C � v

b+1

)E), that we won't need for further simpli�cation, preserves the inequality.

c(ACE;BDv

n

) � c(AB; v

b+1

) + c(C;Dv

n

) +

c(D;E) + c(E; v

n

) (7)

Notice that we've now moved the �rst two vertex sets, A and B, that were on opposite sides

of the cut onto the same side. We continue by the same technique. Now that we've moved

A;B together we know by de�nition that

c(AB; v

b+1

) � c(AB; v

c+1

):

Again, we can separate the term

c(C;Dv

n

) = c(C; v

c+1

) + c(C; (D � v

c+1

)v

n

)

and substitute

c(AB; v

c+1

) + c(C; v

c+1

) = c(ABC; v

c+1

)

yielding the new relation

c(ACE;BDv

n

) � c(ABC; v

c+1

) + c(C; (D � v

c+1

)v

n

) +

c(D;E) + c(E; v

n

): (8)

Cancelling the non-negative term c(C; (D � v

c+1

)v

n

) and repeating the process two more

times yields the relation

c(ACE;BDv

n

) � c(ABCDE; v

n

) (9)

which completes the proof.
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Figure 7: Proof cases
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In terms of the GH tree, the previous theorem says that a maximum adjacency indexing

always assigns the last index to a leaf node.

The next theorem shows how a maximum adjacency indexing establishes lower bounds

on 
ows and cuts. This is an alternative statement and proof of the more general result of

Nagamochi and Ibaraki [27], which is the basis of the use of their algorithm for sparsi�cation.

The multigraph version of their algorithm applies labels f1; 2; 3; : : :g to edges as the vertices

are indexed by maximum adjacency. So long as a vertex remains unindexed, each of its

edges receives a new sequential label as soon as the corresponding neighbor is indexed. In

consequence, vertex v

j

has at least one edge with each label from 1 to the number of neighbors

of v

j

that were indexed before it. The theorem of Nagamochi and Ibaraki says that all the

edges with label i form a maximal spanning tree in the graph obtained by removing all edges

of label < i. For a network with capacitated edges the labeling is a little more complicated,

and it is not always possible to separate the edges into a packing of unit weight spanning

trees, but we can show equivalently that the maximum 
ow between any pair of vertices is

lower bounded by the minimum adjacency that either of them bears to any indexed set that

does not contain either.

Theorem 18 (Nagamochi-Ibaraki) For any maximum adjacency indexing,

f

�

(v

j

; v

k

) � min (c(V

i

; v

j

); c(V

i

; v

k

)) for i < j; k: (10)

Proof. This lemma is easiest to prove by induction on the length of an indexed pre�x.

Base case: The set V

1

consists only of one vertex. If c(V

1

; v

j

) > 0, then there exists an

edge (v

1

; v

j

); likewise for v

k

. Since both edges meet in the same vertex v

1

, if they exist at

all, f

�

(v

j

; v

k

) is clearly at least the minimum of the two edge capacities.

Inductive step: Suppose the lemma is true for all sets V

1

; V

2

; : : : ; V

i�1

; we will show it is

also true for V

i

. Figure 7 illustrates the relevant cases. Vertex v

i

is distinguished because it

is not in V

i�1

.
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In case (a) neither (v

i

; v

j

) nor (v

i

; v

k

) exists, therefore

c(V

i

; v

j

) = c(V

i�1

; v

j

)

c(V

i

; v

k

) = c(V

i�1

; v

k

)

and the lemma holds by inductive hypothesis.

In the second case shown in (b1) (v

i

; v

j

) exists but not (v

i

; v

k

). Assume without loss of

generality that c(v

i

; v

j

) = � + � where

� = min

(

c(v

i

; v

j

)

c(V

i�1

; v

k

)�min(c(V

i�1

; v

j

); c(V

i�1

; v

k

)):

(11)

Since edge (v

i

; v

k

) does not exist, it follows that

c(V

i�1

; v

j

) + � = min(c(V

i

; v

j

); c(V

i

; v

k

)):

The lemma thus asserts that

f

�

(v

j

; v

k

) � c(V

i�1

; v

j

) + �: (12)

By the inductive hypothesis we already know that the maximum 
ow is at least the �rst

term of the righthand side; we only need to show that it is at least � more. By the de�nition

of a maximum adjacency indexing, since v

j

; v

k

62 V

i

, it must be the case that

c(V

i�1

; v

j

) + � � c(V

i�1

; v

i

)

c(V

i�1

; v

i

) � �:

Assume without loss of generality that v

i

is linked to V

i�1

by edges (v

a

; v

i

); : : : ; (v

c

; v

i

). Then

we know we can route � worth of 
ow from v

j

through v

i

into V

i�1

by these edges without

interfering with any existing 
ow between v

j

and v

k

. In fact, we can replace (v

i

; v

j

) with

augmenting edges that go directly to the same vertices and whose capacities sum to � and

obey the restriction c(v

b

; v

j

) � c(v

b

; v

i

), without altering the maximum adjacency partition of

the graph. Therefore, the maximum 
ow between v

j

and v

k

passing through V

i

is equivalent

to the 
ow passing through the augmented V

i�1

shown in (b2). Since that augmented graph

is a feasible maximum adjacency indexing up through vertex i � 1, equation 12 follows by

inductive hypothesis.

In the third case, shown in (c1), both edges (v

i

; v

j

) and (v

i

; v

k

) have positive weight.

Assume without loss of generality that their weights are �+�+ � and �, respectively, where

� is de�ned as before. Observe that

min(c(V

i

; v

j

); c(V

i

; v

k

)) = � + � +min(c(V

i�1

; v

j

); c(V

i�1

; v

k

)): (13)

As in the previous case we know that we can augment V

i�1

to get a valid maximum adjacency

indexing through index i � 1 where the relative degree of v

j

is increased by �. Hence we

only need to show that an additional � worth of 
ow can be routed from v

j

to v

k

without

interfering with existing 
ows and exceeding any edge capacities in V

i

. And that is obviously

possible using the path v

j

; v

i

; v

k

that does not contain any edges in or linked to V

i�1

. Hence

f

�

(v

j

; v

k

) � �+ � +min(c(V

i�1

; v

j

); c(V

i�1

; v

k

)) (14)

and the lemma holds for this case. The intuitive idea of how the extra 
ow is routed is

shown in (c2). The other possible cases are symmetrical to cases (b) and (c), so the lemma

is proven.
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4.2 Extensions

Given the speed with which a maximum adjacency indexing can be computed, it would be

extremely convenient if we could get more information out of it, either in a single invocation,

or perhaps from several tries, starting with di�erent initial vertices. If would could �nd at

least one tree edge, for example, it would allow the GH tree and all fundamental cuts to be

computed faster than any known algorithm. Unfortunately, we have not been able to �nd a

way of using maximum adjacency to discover essential aspects of the GH tree structure. We

have counterexamples demonstrating that all of the following conjectures, for example, are

false.

1. There is a tree edge between v

n

and v

n�1

.

2. By varying the starting point (i.e. the vertex assigned index 1), it is possible for any

leaf node to be indexed last. (In fact, it is possible that as few as two nodes can receive

the last index, no matter which node is indexed �rst.)

3. If A;B;C;D is a maximum adjacency indexing, and jBj > jDj, then

c(AC;BD) � c(ABC;D):

4. Vertex v

n�1

is also a leaf node.

5. A maximum adjacency indexing respects the global minimum cut (or any bottleneck

cut), i.e. does not cross it until all vertices on one side have been indexed.

However, we have been able to prove a few new facts based on watching the minimum

and maximum values of certain adjacency measures during the construction of a maximum

adjacency indexing.

De�nition 19 If vertices V are indexed by maximum adjacency, then �

i

� c(V

i�1

; v

i

):

We say that a maximum adjacency indexing (pre�x) is monotonically increasing if the

adjacencies of the vertices at the time they are indexed forms a monotonically increasing

sequence, i.e. �

1

� �

2

� � � � � �

i

. The next lemma says that during construction of

a monotonically increasing maximum adjacency indexing, each time that the new vertex

indexed is on the opposite side of an arbitrary cut from the last vertex, the minimum value

of that cut must be at least the adjacency of the new vertex.

Lemma 20 If V

k

is a monotonically increasing maximum adjacency indexing, and Y is any

cut such that v

k

2 Y and v

k�1

2 Y , then

[Y ] � �

k

: (15)
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Figure 8: Lower bound on cut crossings { schema
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Proof. We perform induction on the size of V

k

.

Base case: For V

1

, the only possible cut separating v

0

and v

1

has the value �

1

.

Inductive step: Assume the lemma holds for V

1

; : : : ; V

k�1

. Let v

j

be the vertex of greatest

index, except for v

k

, in Y . By the inductive hypothesis we know that [Y ] � �

j+1

. Refer to

Figure 8 for an abstract illustration. Since adjacency is monotonically increasing, we know

that �

k

� �

k�1

� � � � � �

j+1

. Since the indexing is done by maximum adjacency we also

know that �

j+1

� c(V

j

; v

k

). By assumption v

j+1

; : : : ; v

k�1

2 Y , so C[Y; v

k

] � c(V

j

; v

k

) �

�

j+1

. Therefore, if �

k

> �

j+1

, then at least �

k

� �

j+1

edges must cross the cut from v

k

to

vertices in Y , and [Y ] � �

k

� �

j+1

+ �

j+1

, meaning that the lemma holds.

For a simple concrete example, refer to Figure 9. In this example, arrowheads on the

edges indicate the adjacency of a vertex to the indexed set at the time it is �rst indexed

(edges are still undirected).

4.2.1 Graphs

Maximum adjacency indexing can imply some stronger properties in the special case of 0; 1

graphs than in capacitated networks. The adjacency of an unindexed vertex can only go up

slowly, by adjacency to many indexed vertices, in contrast to the capacitated case where a

vertex with a single edge to the most recently indexed vertex can have maximum adjacency

by virtue of that one edge having a large capacity. Because adjacency to the indexed set can

only increase by 1, each time a vertex is indexed, it is possible to draw stronger conclusions
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about the inner strength of indexing pre�x sets.

The following lemmas indicate how a monotone-increasing maximum adjacency indexing,

in a graph, tends to indicate a region of signi�cant internal strength. Unfortunately, they

fall a little short of being able to prove that such a region is a strong cluster.

Lemma 21 In a maximum adjacency indexing of a graph, for all i; j

c(V

i

; v

j

) � c(V

i�1

; v

j

) + i:

Lemma 22 If V

k

is a monotonically increasing maximum adjacency indexing of a graph,

and Y is any cut through it such that v

k

2 Y and v

k�1

2 Y , then

min

v2Y

c(V

k

; v)� 1 � [Y ]:

Proof. Consider that the minimum internal degree in Y can be no greater than the internal

degree of any arbitrary vertex in Y , such as v

k�1

. By lemma 20 we know that the cut must

be at least the adjacency of the kth vertex

�

k

� [Y ]:

By lemma 21 we know that

c(V

k

; v

k�1

)� 1 � �

k�1

:

By de�nition

�

k�1

� �

k

so therefore

c(V

k

; v

k�1

)� 1 � [Y ]:

Lemma 23 The edge connectivity of any monotonically increasing maximum adjacency in-

dexing in a graph is no less than the minimum internal degree of any of its vertices, minus

1.

min

i�k

c(V

k

; v

i

)� 1 � �(V

k

) (16)

Proof. Consider an arbitrary cut Y through the set V

k

. Assume without loss of generality

that v

k

2 Y and v

j

is the vertex of greatest index in Y . For an illustration, please refer to

Figure 10. By lemma 22,

[Y ] � min

v2Y

c(V

j+1

; v)� 1

i.e. the cut must have been at least the minimum degree of any vertex in Y , minus 1, before

vertices v

j+2

; : : : ; v

k

were added. This component of the cut value is illustrated with dashed

lines in the �gure. Let

� = C[Y ; v

j+2

] + � � �+ C[Y ; v

k

]:
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Figure 10: Lower bound on � { schema

Y
_
Y

j+1

indices < j

indices > j+1

indices <= j

δ

This component is illustrated with solid lines in the �gure. Notice that [Y ] is increased

by � as the remaining vertices are added, while the minimum degree in Y is raised by no

more than �, since the minimum degree cannot be raised by more than the number of edges

crossing over into Y . That is,

min

v2Y

c(V

j+1

; v) + � � min

v2Y

c(V

k

; v)

and

[Y ] � min

v2Y

c(V

j+1

; v)� 1 + �:

Therefore

[Y ] � min

v2Y

c(V

k

; v)� 1:

Since the minimum internal degree of V

k

is also an upper bound on �, the above lemma

places edge connectivity within a range of 2, for any monotonically increasing maximum

adjacency indexing. So although it does not prove that such indexings are always clusters,

it shows that they are always very close to being clusters, and the proof reveals why they

are sometimes not.

4.3 Summary

We examined some properties of maximum adjacency indexing in detail, as they relate to

identifying regions of high connectivity. We presented alternative or new proofs, in particular

for the new concept of monotone increasing indexings. This style of local indexing was not

shown to provide great enough lower bounds on local connectivity to identify tree edges or

strong clusters (regions that can safely be contracted in the Gomory-Hu algorithm, so as

to simplify the remaining problem). Monotone increasing indexings may be of utility in a

Padberg-Rinaldi type algorithm to indicate contractable regions whose local connectivity is

greater than some already established upper bound on the global minimum cut being sought.
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5 The Non-Local Principle

In the previous section we examined some properties of maximum adjacency indexings. We

saw that a maximum adjacency indexing is always able to �nd a single leaf of the GH tree,

but cannot tell us which node is its parent, hence it does not necessarily �nd a tree edge.

We also showed other ways in which a maximum adjacency indexing can lower bound the

connectivity of subgraphs. In addition to the maximum adjacency rule, we have examined

alternative rules for selecting the next vertex to be indexed, without being able to �nd any

that is provably superior for determining network connectivity. In particular, we have not

been able to show a general algorithm for constructing the entire GH tree by application of

only a local indexing.

The non-local principle for minimum cuts expresses the fact that no local function can

be always su�cient for identifying edges or complete subtrees of the GH cut tree. It has

implications for the kinds of minimum cut algorithms that can be developed.

Non-local principle: Let N : (V;E) � 2

V

! 2

V

be the local neighborhood function for

undirected networks; for any S � V

N (G; S) = fvjv 2 S or c(v; S) > 0g:

A boolean functionF : 2

V

�2

V

! f0; 1g is a local test for some property ifF(G=N (G; S); S) =

1 if and only if S has the property in question in the original network G. In other words,

the function must be able to decide the property when there is no information about entire

network outside of the neighborhood of the subset in question, except its total adjacency

to each vertex in that neighborhood. Then, there is no local test for any of the following

properties:

1. being a GH tree edge

2. being an internal node of a GH tree

3. being a complete GH subtree

4. being a subset that is not partitioned by any min cut between two vertices in its com-

plement.

The principle can be proven simply by exhibition of two similar networks that are iso-

morphic under contraction of the complement of the local neighborhood, but which have

di�ering GH tree topologies for the subset in question. Figure 11 shows two 0; 1 graphs

which provide examples of all four non-local properties. The darker shaded vertices show

one possible set S, and the lighter shaded vertices are the vertices in its local neighborhood.

The set S is a complete GH subtree in (a), but not in (b). Similarly, S is not partitioned by

any min cut between two vertices in N (G; S) in (a), but in (b) a fundamental cut separating

N (G; S) also partitions S. Other subsets can be identi�ed that illustrate the other two cases.

A weighted network can illustrate similar cases with fewer vertices and no ties in degree.
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Figure 11: The non-local principle

(b)

(a)

        

5.1 Some consequences

It follows immediately that no local indexing algorithm can always identify any of the four

properties, when it has only indexed a proper subset of a network's vertices.

Recall that the Gomory-Hu meta-algorithm for �nding the cut tree relies upon an s-t min

cut algorithm to �nd each tree edge. An s-t min cut algorithm divides the vertices into two

sets, one containing s and the other t, such that each set constitutes a GH cut tree subtree

and the two are joined by a single tree edge.

Any s-t min cut algorithm, consequently, is thus necessarily non-local in the sense of the

principle. It is not always possible to �nd any subnetwork, on the basis of local tests, that

may be ignored (e.g. by contracting) when computing an arbitrary s-t min cut. Even if s

and t are adjacent and of relatively minor degree compared to vertices in other regions, in

the worst case an algorithm may have to examine nearly every edge in the network before

�nding their min cut.

The non-local principle does not establish that local indexing cannot be useful in comput-

ing min cuts, just that we cannot always �nd min cuts locally. Alternative ways of utilizing

local indexing that might initially appear of potential utility include computing indexings

from every vertex as a starting point, and comparing the results. However, we have not been

able to �nd any algorithm utilizing local indexing that deterministically discovers GH tree

edges, and does not essentially compute a saturating path packing.

Note that a pre
ow seems like a local test, in that it minimally expands its region of

partial 
ow analysis until it discovers whether its starting point is an internal GH tree

node, but in cases like those illustrated in Figure 11, its region of partial 
ow analysis will

necessarily include the entire network.
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6 Alternative Formulations

In order to better study the possibility of discovering minimum cuts without reliance on

the max-
ow min-cut theorem, we have de�ned two new problems whose optimal solutions

are provably equivalent to �nding the GH cut tree, but whose formulations suggest solution

methods other than max 
ow. These formulations apply to undirected networks with non-

negative weighted edges.

6.1 Minimum Communication Tree

One alternative formulation that has been known for some time is the minimum commu-

nication spanning tree: Given a network where the weight of each edge corresponds to the

number of dedicated wires that must be extended between the two stations modeled by the

vertices, �nd the spanning tree that minimizes total wire length when all dedicated wires

are routed along the tree edges, and all tree edges have unit length. Hu [17] proved that the

optimal solution is the GH tree of the requirement network, although neither 
ows nor cuts

are needed to de�ne the problem.

6.2 Optimum Sequential Contraction

A new problem formulation: Let the cost of contracting edge (u; v) be min([u]; [v]). Find the

least cost sequence of n� 1 contractions that reduces the network G to a single vertex.

Equivalence of the optimal solution of this problem to the GH tree can be seen by

observing that any sequence of contractions resulting in a single vertex de�nes a tree. Zero

contractions de�nes a tree consisting of a single node, so every vertex in the original network

corresponds to a tree of one node. Suppose that vertices u; v are contracted, where [u] �

[v]. The result corresponds to tree created by adding an edge from the root of the tree

corresponding to u, to the root of the tree corresponding to v, with u as a subtree. After

n � 1 contractions, a tree with n � 1 edges is de�ned. Under this de�nition, a weight can

be assigned to each tree edge corresponding to the cost of the corresponding contraction.

Observe that the tree edge weight then also corresponds to the value of the cut separating the

vertices on each side of the edge. So the minimum cost sequence of contractions corresponds

to the minimum total weight cut tree, which is the GH tree [16].

This problem formulation suggests the error bound minimization heuristic. In planning a

contraction schedule, suppose we decide next to contract vertex u into v, where [u] � [v]. If

this is not actually the optimum next contraction, how large an extra cost may we ultimately

incur? Observe that the degree of the resulting vertex in G=(u; v) is [u] + [v]� 2c(u; v). In a

series of n�1 contractions, every edge of the original network is contracted once, but by the

contraction cost de�nition, we may pay the weight of an edge multiple times if that edge is

adjacent to one, but not both of the vertices involved in several contractions. Taking only

a very local view, if we contract u into v, we will never be charged for for (u; v) again, but

may be charged again for each of u's other edges at least one more time. However, in some

alternative contraction schedule, where each of u's neighbors contracted into u, those edges

would each be charged for one time only. So, the extra-optimal cost of contracting (u; v) is
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upper bounded by [u]� c(u; v).

De�nition 24 (Error bound heuristic) In scheduling a sequence of contractions, always

schedule next the contraction that minimizes [u]� c(u; v).

This heuristic does not always yield optimum solutions (as implied by the non-local prin-

ciple), but makes sensible decisions based on a very local view. For example, it always

contracts dominating edges, where they exist.

6.3 Optimum Circle Partition

Another new problem formulation: Rather than characterizing the fundamental pairwise min

cuts by tree edges, we focus on the partition of vertices into nested subsets, by those cuts.

Intuitively, imagine drawing n � 1 circles around portions of a GH tree so that each circle

crosses exactly one tree edge, no two circles cross the same edge, and no circles intersect

without proper containment. Then, each circle encloses a unique and complete subtree. The

vertices inside each circle are the members of each subset in the partition.

De�nition 25 A legal circle partition is any assignment of the n vertices of a network into

n subsets of V called circles meeting the following restrictions.

1. Every circle is uniquely associated with one vertex, which the circle contains, and which

is called its host.

2. If X; Y are di�erent two circles, such that jY j � jXj, then either Y � X or Y \X = ;.

From this de�nition it follows that a legal circle partition corresponds to a tree, where every

circle contains a complete subtree, and the root of the subtree is that circle's host. There is

one \global" circle containing the whole network, for completeness. The n� 1 other circles

correspond to cuts. Any circle containing only one vertex is an atomic circle, and corresponds

to a tree leaf. Any legal circle partition must contain at least two atomic circles. All members

of a circle other than the host are themselves contained in subcircles. All subcircles directly

contained by a circle are said to be children of the host.

If we de�ne the value of a circle to be the total weight of network edges passing from

vertices inside a circle to vertices outside of it, then the optimum circle partition is the

partition with minimum total sum of circle values. That an optimum circle partition of a

network's vertices yields the GH tree of that network follows from the result of Gomory and

Hu [16] that the GH tree encodes the n� 1 partitioning cuts of least total value.

The optimum circle partition formulation yields some interesting theorems. The �rst

characterizes optimality of a circle partition in terms of local properties, with no reference

to maximum 
ows.

De�nition 26 Local optimality conditions for a circle partition:

1. Host Feasibility: The degree of the host of the circle must be strictly greater than the

value of the circle.
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2. Internal Adjacency: For any non-atomic circle X with host vertex x, for every set

S that is a union of children of x,

c(S;X � S)

[S]

> 1=2:

3. External Adjacency: Let y be the host of the circle directly containing circle X (i.e.

X is the child of y). For every set S that is a union of children of y such that S\X = ;,

c(S;X)

[S]

� 1=2:

4. Non-Invertability: For any non-atomic circle X with host vertex x, for every child

Y of x,

[Y ] � [X � Y ]:

Theorem 27 (Necessity) The local optimality conditions must hold at every applicable

circle in an optimum partition.

Proof. If a simple transformation exists that lowers the sum of values of some set of circles,

and leaves the values of all other circles unchanged, then the original circle partition cannot

have been optimal. For any violation of any of the above conditions, we will show that such

a transformation exists.

Host Feasibility: Suppose x is the host of X, and [x] < [X]. If we make x an atom,

moving all of its children outside, to become children of X's parent, then only the value of

x's circle changes, decreasing by [X] � [x]. (If X is the outermost circle, then [X] = 0 and

the condition holds for any host. If [X] = [x] then the transformation does not change the

sum of circle values, but we insist on strict inequality for structural simplicity, so that we

prefer 
atter partitions to deeper partitions of the same value.)

Internal Adjacency: Suppose that for some S, the union of children of x, host of X, S

has adjacency ratio < 1=2 with respect to X � S, that is

c(S;X � S)

[S]

< 1=2:

Then

c(S;X) > c(S;X � S)

and we can decrease the value of X by moving S outside, leaving the value of all other

circles unchanged. Again, the condition speci�es strict inequality just so that we prefer


atter partitions. (Note that if X is the outermost circle, then no such subset S can exist.)

External Adjacency: Suppose that some set S, the union of siblings of circle X, has

adjacency ratio greater than 1=2 with respect to X. Then we can decrease the value of X,

leaving all other circle values unchanged, by moving S inside X.

Non-Invertability: Suppose that Y is a child of x in X and Y satis�es the internal

adjacency condition with respect to X, but [Y ] > [X � Y ]. Then we can transform Y into
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Y

0

by making X

0

= X � Y a child of the host of Y . The value of circle X increases in the

transformation, but that of Y decreases. Observe that

[X

0

]� [X] = c(Y;X � Y )� c(Y;X)

[Y

0

]� [Y ] = c(Y;X � Y )

([Y

0

]� [Y ])� ([X

0

]� [X]) = c(Y;X)

[Y ] > [X

0

] ) c(Y;X) > 0

so the result is a net decrease in partition value.

Theorem 28 (Su�ciency) If the local optimality conditions hold for every circle where

applicable, then the entire partition is optimal.

Proof. By Theorem 27 we know that the conditions must hold everywhere in an optimal

partition. The method of this proof will be to show that there is a contradiction in assuming

that they can also hold everywhere in a non-optimal partition.

Assume towards a contradiction that every circle in partition P meets all of the applicable

conditions, but P is not optimal. Let P

�

be an optimal partition. As usual, one circle is

associated with every vertex, the one that hosts it. Since there are exactly n circles in both

partitions, and they cannot be identical, among all circles that di�er in these two partitions,

there must be at least one circle X that is shallowest in P. In other words, every child of X

is identical in P

�

, although they are not necessarily children of x in that partition, and not

every child of x in P

�

is a child of x in P.

The �gure illustrates an arbitrary example of X

�

2 P

�

and several X 2 P that show all

the essential possibilities. We assume that X

�

may lose some children and gain others in the

change to X. By cases we can show that the assumption that all applicable conditions are

met by all circles in both partitions leads to contradiction.

Case 1: X contains a child d that was not a child in X

�

. Since X is the shallowest

changed circle in P, we know that d is identical in both partitions. By internal adjacency in

P, it must be the case that

c(d; fx; cg)

[d]

> 1=2:

But then P

�

must be in violation of external adjacency with respect to d which is outside

of circle X

�

, and may also be outside of one or more circles Y

�

. It follows immediately that

external adjacency is violated if d is a sibling of X

�

. If an intermediate circle Y

�

exists,

consider that by assumption d is the same in P

�

and P, so d cannot be an atom hosting the

circle containing Y

�

, and hence it must also violate external adjacency with respect to Y

�

.

Case 2: A child b from X

�

is a child in a circle Z not containing x. It not possible for b

to satisfy internal adjacency of X

�

and also Z.

Case 3: A child a from X

�

is a sibling of a circle containing all of X

�

�a. In other words,

a is the outermost child no longer a child of x, but not a child in any circle not containing x.

Clearly, the adjacency ratio of a to X and any intermediate circle Y is > 1=2. By assumption
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Figure 12: Proof of su�ciency: cases
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a has identical structure in P and P

�

, so a cannot be a host. Therefore external adjacency

is violated by a.

Case 4: A combination of two or more of the previous cases. Clearly, b violates internal

adjacency, so we can assume that case does not exist. Then a is the outermost child, in

which case it violates external adjacency, so we can assume this case does not exist either.

Then by the argument above, d cannot be a child in X without causing a contradiction.

6.4 Implications of New Formulations

The necessary and su�cient conditions for optimality of a circle partition are local in the

sense that for each circle, we only need check properties of combinations of its top level

children and siblings. However, in the worst case, that locality extends to the entire network

and the number of such combinations is exponential, so theorems 27 and 28 do not obviously

lead to an e�cient GH tree algorithm. For example, if we begin with a default partition in

every vertex is in an atomic circle, except for the one vertex of global largest degree which

hosts the circle containing all others, then there are O(2

n

) subsets of siblings to be checked

in order to test the optimality of each atomic circle. However, if we are able to make a

lucky initial guess as to a good partition, then the theorems do lead to e�cient checking and

correction algorithms for some cases.

Theorem 29 Optimality of a circle partition can be checked in O(n2

B

) time, where no circle

has more than B child circles.

The parameter B is the maximum branching of the GH tree, i.e. the maximum number of

children of any internal node. When B is small, the cost of testing optimality of a purported

optimal circle partition by checking each of the conditions in De�nition 26 is also relatively

small.

6.4.1 A Correction Algorithm

Within the circle partition formulation, the potentially exponential cost of testing each circle

for optimality can be eliminated if we restrict attention to cases of the internal and external

adjacency conditions involving only pairs of circles. For example, testing that no single

child can improve the value of a circle by being moved outside, or a single sibling by being

moved inside. The non-inversion condition applies only to individual child circles, so it is

already polynomial time checkable. If we limit consideration to these cases, we can de�ne

an algorithm for correcting some near-optimum partitions.

It should be clear that this algorithm can be performed in O(m) time, always terminates,

and corrects all single-circle violations of the optimality conditions. Then, if we can devise

a heuristic or randomized method that is likely to guess close to an optimal partition, the

correction algorithm can be used to improve it, and perhaps converge on the optimal solution.

6.4.2 Favoring Arcs

The favoring arc concept derives from the optimum contraction sequence formulation, and

is a way of limiting the search space of feasible contractions, suggesting a possible approach
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Correct-Partition:

for every shallowest unchecked fundamental circle X,from bottom up, do

for every child circle Y do

if Y has adjacency to X of < 1=2,

push it out to the circle enclosing X.

else if Y has adjacency > 1=2 to any sibling circle Z,

push Y into Z and recheck Y within Z.

else if enclosing X � Y within Y lowers the total partition value,

do so.

to a dynamic programming algorithm.

De�nition 30 (Favoring Arc) Vertex u favors v, written f(u) = v, if c(u; v) � c(u; w)

for all w 6= v, and v < w for all w such that c(u; v) = c(u; w).

In other words, each vertex favors the vertex to which it has the single greatest capacity

edge.

Lemma 31 The favoring function f induces a forest F of directed arcs over V (the network

vertices). Each connected component of this forest contains exactly one pair of vertices that

favor each other; otherwise each component is acyclic.

For network G = (V;E) and any e 2 E, the favoring forests of G and G=e may be almost

identical, or signi�cantly di�erent.

Theorem 32 For any fundamental circle X � V , there is at least one arc in the favoring

forest F that joins two vertices both inside X.

Proof. Assume towards a contradiction that for every u 2 X, f(u) 62 X. Then, for any

potential host vertex h 2 X, the connection of this vertex to all the rest of X is less than

or equal to c(X � h;X) (because all of the internal edges to h are � to the favoring arcs,

which cross the cut). This implies that [h] � [X], and X cannot be a fundamental circle.

Corollary 33 For any fundamental circle X � V , there exists a sequence of arcs e

0

; e

1

; : : : ; e

k

belonging respectively to F

0

;F

1

; : : : ;F

k

, where F

0

is the favoring forest of G and F

i

is the fa-

voring forest of G=fe

0

; : : : ; e

i

g, such that X is contracted to a single vertex in G=fe

0

; e

1

; : : : ; e

k

g

and no other edges are contracted.

The preceding corollary says that in searching for the optimum contraction sequence,

the search can be restricted to favoring arcs. Although this considerably reduces the search

space, it is still exponential, and we have not been able to take advantage of the theorem in

order to construct an e�cient dynamic-programming algorithm.
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7 Minimizing s-t Min-Cut Calculations

The GH tree can be constructed by the Gomory-Hu algorithm [16] with only n� 1 s-t min

cut calculations, many of which are on contracted networks signi�cantly smaller than the

original. In this section we consider whether, independent of the s-t min cut algorithm

employed, that number can be reduced.

Suppose we have an s-t min cut oracle and wish to compute the entire GH tree with as

few calls to that oracle as possible. We have already shown that whenever a dominating

edge exists we can identify a tree edge immediately, and simplify the problem. Similarly, for

networks of 5 or fewer vertices the structure of the tree is immediate just by checking for

dominating edges. Is there a good way of picking a schedule of s-t min cut oracle calls so

that the number of small cases and dominating edges encountered is maximized, and hence

reliance on the oracle is minimized? There does not appear to be a deterministic way of

selecting such a schedule that is any cheaper than calculating the cuts, but here we provide

some justi�cation for the following heuristic: always next calculate the s-t min cut between

the two vertices of largest degree that have not yet been separated by a cut.

If we ask the oracle for an arbitrary s-t min cut and the size of the smaller cut set is

between 2 and 4, its subproblem is no larger than 5 and we can process it without any

further calls to the oracle. If it is larger than 4, then each resulting subproblem has no more

than � n� 4 vertices. In any of these situations, our ability to solve small networks without

use of the oracle implies that overall no more than n=2 oracle calls should be necessary.

However, if the cut turns out to separate only one vertex from the rest of the network, the

remaining subproblem still has n vertices, unless a contraction is feasible. If we index the

vertices v

1

; v

2

; : : : ; v

n

by decreasing degree, and then ask the oracle for the min cut C

�

(v

1

; v

2

),

then by earlier lemmas we know that if this cut is just fv

2

g, then v

2

is a leaf node of v

1

in

the GH tree, and we can contract the two vertices without a�ecting any other s-t min cuts.

Contraction may result in formation of dominating edges that can be contracted in turn.

This suggests that, unless we can anticipate �nding a roughly balanced cut for some other

pair (and we know of no way to guess this, except that heuristically two vertices of high

degree are more likely to be independent hosts than two vertices of low degree), we should

always apply the oracle to the largest two degree vertices. Then, with some luck, even if we

�nd many leaf cuts, we will still �nd a lot of dominating edges.

Suppose that the degree of each vertex in a network is �xed, but edge capacities are

randomly distributed such that, if w

ij

is a random variable whose value is the capacity of

edge (v

i

; v

j

), then its expectation is

E [w

ij

] =

[v

i

] + [v

j

]

2(n� 1)

:

(Observe that

P

(v

i

;v

j

)2E

E [w

ij

] =

P

v2V

[v]

2

which is the total capacity of edges.) Then, if

vertices are indexed by decreasing degree and we repeatedly call the oracle on the two vertices

of largest degree, �nd the second is a leaf of the �rst, contract them and continue, then we

can expect the ith largest degree vertex to be dominated by the contracted super-vertex of
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all larger vertices when

E

2

4

X

j<i

w

ij

3

5

� E

2

4

X

i<j

w

ij

3

5

X

j<i

[v

i

] + [v

j

]

2(n� 1)

�

X

i<j

[v

i

] + [v

j

]

2(n� 1)

which is true for i > n=2. In other words, even in this \worst case" where every oracle

call �nds a single leaf, by always asking for the min cut between the two vertices of largest

degree, we can still expect to get about 1=2 of the GH tree edges by dominating edges.

Unfortunately, while the foregoing probabilistic analysis supplies some credibility for the

heuristic, it does not really describe the worst case, and we cannot guarantee that any run of

the GH cut tree algorithm will �nd more than a very few dominating edges. The following

table shows the adjacency matrix of an example network of 16 vertices in which every vertex

but one is a leaf in the GH tree, but the heuristic requires us to call the s-t min cut oracle

n � 2 times. Observe that in this example all most all edge capacities are unique, and all

vertex degrees are unique, so it is not simply an artifact of permitting ties among edge

capacities. (Empty entries are zero.)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 deg.

1 100 93 9 202

2 100 99 2 201

3 99 98 2 199

4 98 97 2 197

5 97 96 2 195

6 96 95 2 193

7 95 94 2 191

8 94 71 24 189

9 93 67 27 187

10 9 2 2 2 2 2 2 71 63 30 185

11 24 67 59 33 183

12 27 63 55 36 181

13 30 59 51 39 179

14 33 55 45 44 177

15 36 51 45 43 175

16 39 44 43 116

8 Self-Dominating Circles

By Theorem 27 we know that in an optimal circle partition every member of a circle except

possibly the host must have an adjacency ratio of > 1=2 to the other members of the

circle. We have also seen that local indexing algorithms appear insu�cient for discovering

all fundamental cuts. In this section we investigate a di�erent style of local algorithm that
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�nds a structure called a self-dominating circle, and then consider how it may in turn be

used to �nd fundamental cuts.

8.1 Assumptions and De�nitions

The algorithms in this part modify a total ordering over vertices. Since we wish to identify

a vertex independent of its index (from 1 to n which induces the ordering), we grant each

vertex a name, such as \x", as necessary. To refer to a vertex by its current position in the

ordering, we use the style v

i

.

We continue the use of \circle" to denote any non-empty set of vertices with a designated

host, being the vertex of largest degree (not enclosed in any subcircle). A new concept is

that of a leader. The leader of a circle is the member vertex of largest index, in the current

index ordering.

A self-dominating circle (SDC) is any circle each of whose members, except possibly one

designated member, is strictly dominated by the other vertices of the circle. We identify an

open self-dominating circle as one in which the leader is the only vertex that need not be

dominated. A closed self-dominating circle is one in which we designate some initial vertex

as always and necessarily a member, regardless of whether it is dominated, and then require

all other vertices (including the leader, if distinct) to be dominated.

It follows from Theorem 27 that a non-atomic fundamental circle is necessarily self-

dominating (when its host is excused from the domination requirement), but not all self-

dominating circles are fundamental, because they can contain subsets of vertices that fail

the internal-adjacency criterion. An atomic circle is not considered to be self-dominating. A

proper subset of an extreme star may be self-dominating.

S is a pure host-feasible subset of a fundamental circle if (i) S is host feasible with its

largest degree vertex as host, and (ii) no member of S is a member of any fundamental circle

that does not contain all of S, unless the host of that circle is also a member of S. This

second condition allows that S may properly contain a second host of lesser degree and some

of its children.

8.2 Preliminary Facts

The following lemma is a direct consequence of Theorem 27 and the de�nition of self-

dominating circles.

Lemma 34 1. Every fundamental circle is a self-dominating circle if its host has index

greater than that of each member.

2. Every extreme star is a self-dominating circle if its host has index greater than that of

each child.

3. If vertices are indexed by increasing degree, the host of an extreme star has index greater

than that of any child. (In case of ties, either vertex can be host, so we let the one with

greater index be host.)

The discovery of a host-feasible circle implies that a related fundamental circle exists.
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Lemma 35 Let X be any host-feasible circle, with host x.

1. x is the host of a fundamental circle.

2. X contains a largest \pure" subset X

0

that is a subset of the fundamental circle hosted

by x.

3. X

0

contains a subset X

00

that is self-dominating with leader x, when x has index greater

than that of each other member of X

0

.

Proof.

(1) Host feasibility implies a bottleneck cut between x and every vertex outside. Hence,

x cannot be a leaf of anything outside, nor can it be a leaf of anything inside (since it is of

greatest degree), so x must be a fundamental circle host.

(2) Consider the subset Y � X consisting of vertices that are not actually members of x's

fundamental circle. By Theorem 27 collectively their adjacency ratio to X must be � 1=2,

so if we throw them all out of X, leaving X

0

, the result must still be host feasible.

(3) Next, consider any vertex in X

0

, other than x, that is not dominated. Throwing

it out cannot increase the cut. If we repeatedly throw out non-dominated single vertices

(other than x) until no more exist, then we must eventually be left with a self-dominated

circle having at least one non-leader vertex, because [X

0

] < [x] and if we threw out all of the

non-leader vertices this way, we would be left with [x], which would require raising the value

of the cut.

8.3 Algorithms to Find Self-Dominating Circles

8.3.1 Test-Leader

Suppose we have assigned an index ordering to the vertices { any ordering { and we wish

to test whether a particular vertex can be a leader of a self-dominating circle. The test-

leader algorithm does this in O(m) time.

3

The following description is for clarity and simplicity. Some minor enhancements are

known to be possible that will be described later.

Suppose that the vertices are indexed 1; 2; : : : ; n, and we want to test vertex 1 < k < n

to see if there exists an SDC of which it is the leader.

Algorithm:

1. Begin with a copy of the network in which each vertex and all of its edges are colored

black. We also assume that the total degree of each vertex is known.

2. Color all of the vertices 1,2,. . . ,k red (all the candidates for a SDC led by k begin red;

as we prove they cannot be members we re-color them black).

3

Actually, it can be done in time proportional to the number of edges adjacent to vertices of index � that

of the candidate leader, and in even less time under lucky circumstances. However, in the worst case, this is

O(m).
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3. Initialize redCount = k � 1, and establish an empty queue.

4. Iterate through vertices 1; 2; : : : ; k � 1. For each such vertex i do:

(a) Initialize the red-degree of i to 0.

(b) Iterate through its edges. For each edge, if the neighbor is red, color the edge red

and increment the red-degree of i by the weight of the edge.

(c) If the red-degree of i is � 1/2 of its total degree, enqueue i on the queue.

5. While the queue is not empty, remove the �rst index, say it is i. Subtract 1 from

redCount. Color vertex i black. Iterate through the edges of i: for every one that is

red, color it black and subtract its weight from the red degree of the neighbor. If this

edge color change causes the neighbor to go from red dominated to black dominated

(in case of tie, black wins) then enqueue it on the queue (except for vertex k { we don't

keep track of it's red degree).

6. When the queue is empty, if redCount = 0, then k is not the leader of any SDC. If

redCount > 0, then k is the leader of an SDC consisting of all the red vertices.

Discussion of test-leader It is not necessary that the queue used to hold red vertices

that are not red-dominated be FIFO. Black-dominated vertices can be cancelled in any order,

and the result is the same.

It is also possible to start this algorithm with only a subset of the vertices 1; 2; : : : ; k� 1

colored red, and then it determines whether an SDC exists that is a subset of the initial red

set.

It may be possible to make it a little quicker on average by starting the red set not as all

vertices of index � k, but �lling it in, on demand, as all vertices of index � k that are also

connected to k, which may be far fewer, in a sparse network.

8.3.2 find-first-leader

Using test-leader, it is straightforward to �nd the �rst leader in any ordered sequence

of vertices, by testing each vertex, from 2; : : : ; n � 1, to see if it leads an SDC. This is the

find-first-leader algorithm.

Discussion If no leader < n is found the whole algorithm takes O(nm) time. If we are

lucky and �nd one near the front of the sequence, it could take much less time. If there

are a number of disjoint SDCs, we could get lucky and �nd the �rst in O(logn) invocations

of test-leader by noting that self-dominating circles can be disjoint, and splitting the

problem in two parts, etc. However, we have not been able to �nd an algorithm that always

�nds the �rst leader in less than O(nm) time.

One algorithm that would be very nice to discover is one that tests in O(m) time whether

an SDC exists with a leader � k.
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8.3.3 Modifying find-first-leader for special conditions

It is easy to impose some special conditions on termination of find-first-leader. In

particular, in a later section, we will be interested in �nding the �rst self-dominating-set

that (i) contains a speci�c vertex as a member, and (ii) has a leader that is also dominated

by the other members. It should be clear that checking for these kind of conditions can be

added easily, without modifying the complexity of the algorithm described. We refer to the

algorithm with special conditions of this sort as special-find-first-leader.

8.3.4 The find-all-leaders Algorithm

The find-first-leader algorithm terminates as soon as it �nds the �rst leader. Since

this is already O(nm), with exactly the same worst case complexity we can compute the

�rst leader of every vertex in the network. The find-all-leaders algorithm computes a

�rst-leader table: for every vertex it gives the leader of the �rst SDC that dominates that

vertex. The �rst leader table essentially gives a tree, where every leader is an internal node,

with all of its followers as children.

The procedure is to initialize the �rst leader table with NULL as the �rst leader of each

vertex, from 1 to n. Then we use test-leader to test each of vertices 2; : : : ; n � 1 as

leaders. Suppose that k turns out to be a leader: then we iterate over the red vertices (other

than k), and for any one with a NULL entry in the table, we enter k as its �rst leader. At

the end, we replace any remaining NULL entries with n.

8.4 Filtering

Given the ability to �nd self-dominating circles, how might we use them to �nd fundamental

circles? In this section we sketch a method for constructing the GH tree that �rst �nds

at least one candidate self-dominating circle containing each fundamental circle, and then

�lters each such set in order to discover any fundamental circle it contains. The method

is incomplete because we cannot show a perfect �ltering algorithm guaranteed to run in

polynomial time. We describe an algorithmic approach that tends to organize the candidate

vertices properly, identify some properties that would yield a correct algorithm if they could

be computed e�ciently, and consider the relationship of the �ltering problem to a known

NP-complete problem.

8.4.1 Method Outline

Begin by indexing all vertices in order of increasing degree. By Lemma 34 we know that

every host of a fundamental circle is also the leader of an open SDC in this ordering. So,

compute the �rst-leader table for the initial ordering, and then apply the �ltering subroutine

to every SDC, in order of increasing leader index. When the �ltering routine �nds a (possible)

fundamental circle, it is contracted (which does not alter the �rst-leader table, except by

simplifying it). The order of contractions is almost an optimal contraction sequence, in the

sense of the formulation de�ned in Section 6.2. The only exception (assuming that �ltering

yields only correct answers) is that some internal vertices of low degree may have been
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Figure 13: Example network and its GH tree
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inverted, i.e. absorbed as children of hosts that should be their children. So, at the end of

�ltering each SDC, the GH tree is reconstructed from the contraction sequence, making any

necessary corrections via the child-exclusion rule, as described in Section 6.4.1.

8.4.2 Group Packing

Our �ltering approach utilizes a concept of a minimal-maximal self-dominating circle, closed

with respect to hypothesized members of a fundamental circle. The circle is maximal in

including all vertices dominated by its members, but minimal in not containing any smaller

self-dominating circle of the same kind. An example will help to clarify. Figure 13 shows

a network of 10 vertices, and its GH tree which has two internal nodes. (Unmarked edges

have unit weight.) One possible vertex ordering consistent with increasing degree is shown

below, with its �rst-leader table.

name d e f b a c x j l k

index 1 2 3 4 5 6 7 8 9 10

�rst leader c c c c c c x k k k

Consequently, the �rst self-dominating circle passed to the �ltering routine has leader c and

members d; e; f; b; a. This SDC does not actually contain a fundamental circle, which can be

detected by the �lterning routine. The second SDC to be passed to the �ltering routine is

a more interesting example with which to illustrate �ltering. It has leader x and members

d; e; f; b; a; c.

Filtering begins by creating a reduced network, in order to simplify the problem. Let S

be the self-dominating circle to be �ltered, with leader x. The �ltering hypothesis is that x

is a host of a fundamental circle X, where X � S. The reduced network G

S

contracts all

of S into a single vertex, and assigns weight 0 to edge (x; S). The initial index order of G

S

is identical to that of the original network, except that x is given index 1 (S remains at the

end of the order). Figure 14 shows the reduced network, and its initial index ordering is
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Figure 14: Reduced network
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given below, together with the closed SDC �rst-leader table based on hypothetical host x.

name x d e f b a c S

index 1 2 3 4 5 6 7 8

�rst leader c c c c c c

Recall that a closed SDC is one in which we begin with one vertex that is always a member

and exempt from the domination requirement, and then add other members each of which

must be dominated by the complete membership. A �rst closed SDC can be found by a

simple modi�cation of the find-first-leader algorithm. The table above does not show a

�rst-leader for x or S because they are the assumed hosts: the task of �ltering is to determine

which of the rest of the vertices in the reduced network belong on x's side of the minimum

cut between x and S.

The �rst group (from the left) is found by a process of iterative compaction and rota-

tion. In the compaction step we take every vertex in the �rst SDC, plus every other vertex

iteratively dominated by this set, and move them ahead in the ordering of all other vertices,

otherwise retaining all relative orders. In the example, the �rst SDC with leader c is already

compacted to the left, and there are no other vertices in G

S

to be dominated by it. The

candidate group is now d; e; f; b; a; c. In the rotation step we reorder the candidate group,

moving its �rst member to the end, then recalculate and recompact the �rst SDC. The

�rst-leader table of the rotated ordering is as follows.

name x e f b a c d S

index 1 2 3 4 5 6 7 8

�rst leader d d c c c d

After compaction we have:

name x b a c e f d S

index 1 2 3 4 5 6 7 8

�rst leader c c c d d d

Now the candidate group is just b; a; c which does not dominate any of the other vertices

in G

S

. Two more rotations testing permutations a; c; b and c; b; a �nd no further reduction,

so the �rst group is �nalized as b; a; c. (In this example, x [ fb; a; cg is host feasible and a

fundamental circle.)
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The next group is found by repeating the rotate and compact operation on the next

closed SDC (using x union all previous groups as the base), etc., until the vertex ordering

of G

S

has been completely partitioned into packed groups. Rotation and compaction are

performed up to k times on a candidate group of size k. The rule is that every vertex must

be last in the group for one trial, in order to test whether it is necessary.

The group packing operation can be run from the left, based on x, as in the foregoing

example, or it can be run from the right, based on S. To do that, conceptually all we must

do is reverse the initial ordering of vertices in G

S

, perform the packing, and then reverse the

ordering again. (In practice, the algorithm can just as easily run on the existing order, in

reverse.)

A packed group ordering in the reduced network satis�es some interesting properties.

Lemma 36 Any packed group ordering computed from the left is unchanged if recomputed

from the right, and vice versa.

Proof. Consider an arbitrary group W in a packed group ordering. Let x

0

denote the union

of x and all groups to the left of W , and let S

0

denote the union of S and all groups to the

right of W . Assuming that the group packing was performed from the left, then we know

that no member of W is dominated by x

0

, otherwise it would have been incorporated into

an earlier group. We also know that every member of W is dominated by x

0

[W , by the

de�nition of a self-dominating circle, so no member of W is dominated by S

0

. Similarly, no

member of S

0

is dominated by x

0

[W , and each must be dominated by S

0

. Therefore, W is

stable under repacking from the right.

Although the results of group packing from the left and right may di�er for an arbitrary

initial ordering of vertices, a group packing is stable under recomputation.

Lemma 37 If there exists a host-feasible X � S, then there are at least 2 groups in any

group packed order.

Proof. This lemma is a consequence of the repetition of rotation and compression in group

packing. Since x is the vertex of largest degree in S, and the outer algorithm contracts any

smaller fundamental circles, x will be the host of any such host-feasible circle, and we know

that it must contain some self-dominating circle X

0

� X based on x. Let Y = S�X

0

. If the

initial candidate group is smaller than S�x, then the theorem holds. If the initial candidate

group contains all vertices (other than x and S), then it also contains Y . In some rotation

a member of Y will be last in the group, and then a smaller group will necessarily be found

and compacted left, resulting in at least two groups.

Corollary 38 If there is only one group in a group packed order, then either S is a funda-

mental circle hosted by x, or S does not contain any host-feasible circle.

Actually, there is a slightly cheaper but equivalent test for the condition of S not properly

containing a fundamental circle. If we compute the �rst leader table from the left, and �nd

that the last vertex before S (call it z) is the �rst leader, then rotate z to just after x and
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compute the �rst leader table from the right, and again discover that z is the �rst leader,

then the condition holds.

De�ne a linear cut to be any pre�x of a complete vertex ordering. For example, fx; v

2

; v

3

; : : : ; v

i

g

is a cut, and fv

i+1

; v

i+2

; : : : ; Sg is its complement. A group packing respects a linear cut if

it does not change the membership of its de�ning sets.

Theorem 39 Group packing respects any linear cut that is a fundamental circle.

Proof. Suppose that fx; v

2

; : : : ; v

i

g is a fundamental circle. Then, it is a self-dominating

set, and does not dominate any other vertices in G

S

. During compaction, no vertices to the

right of v

i

will be members of any candidate group until all of v

2

; : : : ; v

i

have been packed.

8.4.3 A Recursive Approach

It should be clear that group packing tends to bring more adjacent vertices closer together

in the ordering, and Theorem 39 implies that if we ever do get an ordering that respects a

fundamental x-S cut, group packing will not disturb it. The situation suggests a recursive

approach: Once we have a group packed ordering for the reduced network G

S

, it is possible

to de�ne a \meta-problem" by contracting each group into a single vertex, retaining their

relative index order, yielding a further reduced network G

1

S

. Then we can apply the same or

a di�erent algorithm to G

1

S

that may establish a new order over its vertices. The result of

solving the meta-problem can be transfered onto the vertex ordering of G

S

by re-indexing

so that every group is still consecutive, but groups have the same relative order as the �nal

ordering of the corresponding vertices of G

1

S

.

To complete a correct algorithm of this kind, one of two things would be su�cient: (i) a

way of \purifying" groups in G

S

, or (ii) a way of �nding the min x-S cut in G

S

, given the

corresponding min cut in G

1

S

.

Suppose that we call a vertex \good" if it belongs to a fundamental circle hosted by x,

and \bad" otherwise. Then, a pure group is one consisting only of good, or only of bad

vertices. Observe that if all groups in a group packed ordering of G

S

are pure, then the

groups can be arranged, without splitting any of them, to respect the fundamental circle

hosted by x. Hence, if the vertices of the meta-problem are ordered such that its min cut

is a linear cut, then that order transferred onto the groups of G

S

reveals the min cut as a

linear cut. (And, the least linear cut can be found quickly.) So, if we can purify the groups

in G

S

, then we can do the same in G

1

S

and in its meta-problem G

2

S

, etc., until there are only

a small number of vertices in some highly reduced problem, whose min cut is obvious.

In the second case, we similarly get a recursive algorithm, though without the obligation

to purify the groups at one level, before calling the next.

Unfortunately, we do not know of a polynomial time way of doing either (i) or (ii)

that relies only on domination properties and does not essentially involve solving the min

cut problem by a conventional path packing technique. Perhaps some value can be gained

by considering possible recursive algorithms in more detail, and why they do not appear

promising.
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An easy theorem we will not bother to prove is that any mixed group (i.e. not pure) must

contain at least two good vertices and two bad vertices, and any pure group must contain

at least two vertices. Hence the size of a meta-problem is no more than 1=2 the size of the

original problem, and the depth of recursion is no more than logarithmic in the size of S.

Without a certi�cate of optimality to prove that all groups are pure, or that the current

ordering reveals the min cut as a linear cut, it appears that any algorithm must terminate

by proving that no improvement is possible, perhaps by iterating to stability. For example,

we might do group-packing on G

S

, then recur on the meta-problem. When the recurrent

application terminates, we transfer the ordering onto G

S

, and group pack again. If the

second packing does not change the ordering, we are done. Otherwise, contract the groups

and recur on the meta-problem again.

4

Another possibility, to strengthen the algorithm, is

to add some local exploratory permutation of groups, in order to split mixed groups into pure

components. But the problem of showing an ordering of vertices which cannot be permuted

in order to split any groups, or improve the least linear cut, is suspiciously similar to the

NP-complete problem of Optimal Linear Arrangement [12].

An optimal linear arrangement of the vertices of a network is a linear ordering in which

the total sum of linear cuts is minimal. We can de�ne an s-t OLA as the ordering with s

�rst and t last that minimizes this sum. Clearly OLA reduces to s-t OLA in O(n

2

) time,

so s-t OLA is also NP-complete. Adolphson and Hu [1] showed that an s-t OLA respects

the s-t min cut. Unsurprisingly, if we could solve that problem we could �lter correctly.

Unfortunately, we cannot �nd any way of strengthening SDC group packing, except for just

solving s-t min cut by path packing, that guarantees purifying the ordering pre�x to reveal

the minimum cut between x and S without necessarily establishing the s-t optimal linear

arrangement. There is a relationship between recursive group packing and optimal linear

arrangement that is partially revealed by the following theorem. It may be possible to add

additional criteria to the group packing algorithm in order to correctly purify groups, but it

appears that such an algorithm must be worst-case as expensive as an algorithm for OLA.

Theorem 40 An s-t optimal linear arrangement of the vertices of G

S

, with x and S as the

two extreme vertices, is stable under recursive group packing.

Proof. We will show that if at any \level" of recursion, if the ordering is not group packed,

then it cannot be an optimal linear arrangement because an alternative arrangement has a

smaller sum of linear cuts.

Consider an arbitrary level of recursion where the ordered vertices are v

2

; v

3

; : : : ; v

k

, and

the �rst and last vertices are x and S, as usual.

Assume without loss of generality that all levels below (i.e. the product of fewer contrac-

tions of packed groups) are group packed, but that the ordering at this level is not group

packed. Then there exists another permutation � that is group packed. Let �(v

i

) denote

the index order of v

i

in this permutation, and assume without loss of generality that � is

conservative with respect to the original order, that is, the relative order of vertices di�ers

only as much as is necessary to establish group packing. Let v

j

be the rightmost vertex in

4

This particular recursive procedure often reveals the min cut between x and S as a linear cut, but does

not always do so.
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Figure 15: Schema for Theorem 40
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the original ordering that moves to the left of some other vertex in �, i.e. there exists v

i

such

that i < j but �(v

i

) > �(v

j

). Let v

i

be the rightmost vertex in the original ordering that

changes relative position with v

j

in ordering �. Let Y = fv

i+1

; : : : ; v

j

g be the consecutive

vertices following v

i

up through v

j

in the original ordering. The situation is illustrated in

the upper part of Figure 15. By the de�nition of group packing (and the assumption that

� is conservative), strictly less than half of the degree of v

i

is to vertices of index � �(v

j

) in

ordering �. Similarly, the set Y has at least as much connection to the left as to the right

in ordering �. Therefore, if we modify the original ordering by shifting v

i

to the right of v

j

then the linear cut preceding every vertex in Y and v

i

strictly improves, and no other linear

cut changes. The modi�ed ordering is shown in the lower part of Figure 15, where the cuts

that improve are shown by dashed vertical lines. If the level we have been considering is

not the bottom-most (i.e. its vertices are contractions of vertices in the original network),

then by the de�nition of group packing, all changed linear cuts in the bottom-most ordering

are either unchanged or strictly improved. Therefore, the original vertex ordering at the

bottom-most level cannot be an optimal linear ordering.

9 A Randomized Algorithm to Find Bottleneck Cuts

Recently, a randomized or probabilistic approach has proven useful in developing new the-

oretical bounds and fast new algorithms for a range of problems of interest in computer

science (see, e.g. Alon, Erd�os and Spencer [3] and Motwani and Raghavan [25]). The �rst

combinatorial algorithm for �nding minimum cuts in a network that did not essentially

rely on some version of Mengers theorem by constructing a saturating packing of paths or


ows (or spanning forests, like Nagamochi and Ibaraki's maximum adjacency indexing and

contraction algorithm [27]) was Karger's randomized contraction algorithm [21]. Karger's

algorithm �nds the global minimum cut (or all near-minimum cuts) in an undirected network

with high probability by repeatedly selecting an edge at random, uniformly by weight, and

contracting it. After n� 2 edges have been selected and contracted, the remaining network

has only two vertices, representing one cut in the original network. The key insight is that

a \typical" edge does not cross the global minimum cut. Under random selection there is

never a higher expectation of selecting an edge that crosses the minimum cut than there is
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of selecting one which does not (as long as there are more than a very few vertices), and

usually the expectation of selecting such an edge is quite small. Hence the last remaining

cut is at least as likely to be the minimum cut as any other, and it is feasible to run enough

trials that the expectation of at least one trial �nding the minimum cut is su�ciently high.

We are not aware of any non-path-saturating algorithms for �nding any cuts other than

global minimum and near-minimum cuts in a network|in particular, for �nding s-tminimum

cuts or bottleneck cuts. Karger has devised several other randomized algorithms for �nding

cuts that include s-t cuts [4, 19, 20], but they all employ random sampling to �rst reduce the

number of edges and then apply a max-
ow or tree packing algorithm to deterministically

�nd cuts in the sampled network. Karger's randomized contraction algorithm cannot be

applied within the Gomory-Hu meta-algorithm to �nd all s-t min cuts because Gomory-Hu

requires an s-t min cut algorithm as a subroutine, not a global-min cut algorithm. The

Gomory-Hu meta-algorithm leaves known leaf-cuts uncontracted, which a global-min cut

algorithm might �nd again and again, in lieu of making progress by �nding the unknown

fundamental cuts that need to be resolved.

In this section we present a randomized approximation algorithm based on the optimal

circle partition formulation which probabilistically discovers bottleneck cuts, even when all

near-minimum cuts are leaf cuts, and thence the structure of the GH tree. It does not

perform any path saturation or otherwise rely on a problem characterization following from

Mengers theorem. Recall that a bottleneck cut is any minimum cut separating two vertices

that is strictly less than the minimum of their degrees. Every non-trivial fundamental circle

is a bottleneck cut separating its host from at least one vertex of larger degree on the outside.

9.1 Research Goals

The randomized algorithm described here is intended as an approximation algorithm. The

goal is to �nd bottleneck cuts, which may not be detectable by Karger's algorithm. Analysis

of the algorithm's expected performance on some special cases will show that the di�culty

of �nding a bottleneck cut increases dramatically as the ratio between the value of the cut

and the degree of its host approaches 1. That is, let X be a fundamental circle with host

vertex x, and let 0 < � < 1 be assigned such that [X]=[x] = 1� �. Then, we will show that

for some cases, the lower bound on the probability with which the algorithm can correctly

�nd the fundamental circle X drops exponentially as �! 0. However, for a �xed �, the other

factors involved in time complexity do not appear unfavorable, so we have sought to prove

a lower bound that guarantees discovery of all bottleneck cuts within a su�ciently large �

in polynomial-time. So far, we have not been able to do so, but neither have we been able

to construct a counter-example case for which the algorithm's performance is devastatingly

bad. Our research e�orts have focussed on proving a worst-case complexity bound for the

algorithm, for any input, exploring possible worst-case inputs with highly non-random struc-

ture. It seems plausible that the algorithm may do a good job of �nding most bottleneck

cuts quickly, in some applications, although we do not have a good characterization of ex-

pected inputs in an application domain on which to evaluate this conjecture. In the following

subsections we de�ne the algorithm and present mathematical and empirical analysis that

provide some basis for anticipating its behavior.
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Figure 16: Edge shrinking
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9.2 Description of Algorithm

The general method is to begin with a default circle partition of the input network, and

repeatedly perform a sequence of randomly selected mergers in order to �nd an improve-

ment to the current partition, or probabilistically prove that no such improvement exists.

The �nal goal is a circle partition all of whose non-trivial fundamental cuts are within the

approximation bound of optimal. This partition immediately yields an equivalently good

approximation of the GH cut tree.

The algorithm begins with the default circle partition of the input network: this partition

designates the vertex of highest degree as host of the circle containing all vertices, and every

other vertex is host of its own circle, i.e. an atomic circle. The default partition corresponds

to a tree with a single internal node. In essence, the algorithm begins with the null hypothesis

that there are no bottleneck cuts, then seeks either to discover them, or to raise con�dence

in the correctness of the hypothesis to a su�cient level.

We distinguish between the actions of contracting a set of vertices and shrinking an edge.

Contraction is the familiar operation of merging a set of vertices into one, eliminating self-

loops and possibly merging multiple edges between remaining vertices. Shrinking is a similar

operation, applied to a single pair of circles, that performs a circle merger but which does

not lose information about the constituent vertices and their edges. Let X; Y � V denote

two disjoint circles with hosts x; y respectively, joined by edge (u; v) where u 2 X, v 2 Y .

Assume without loss of generality that [x] � [y]. If we shrink (u; v) the result is a circle

X

0

= X [ Y where the host of X

0

is x and the circles immediately contained within X

0

are

all of those that were immediately contained within X and Y plus an atomic circle hosted

by y. Figure 16 illustrates shrinking of such an edge between circles X and Y .

Two key concepts are those of the basic step and the active circle. At the beginning

of each basic step, the active circle is de�ned as the circle of least value among all eligible
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circles (gradually de�ned below). It is assumed that there is an arbitrary total ordering over

vertices, so that ties can be broken in favor of the circle hosted by the vertex of precedence. In

a basic step, the active vertex merges with one of its neighbors. If an edge dominating at the

active vertex exists, it is shrunk. Otherwise, one edge adjacent to the active circle is selected

randomly, uniformly by weight, and shrunk. If the two circles merged were both eligible, the

result is eligible; otherwise the resulting circle is not eligible. A run is a sequence of basic

steps beginning with some initial circle partition, and ceasing when the result of shrinking

an edge is host feasible, or when no eligible circles remain. At the start of each run, the

mergers of the last run are erased, reseting the partition to its original condition, so each

run is a randomized operation on the same starting partition. Eligibility of each initially

existing circle to become active is determined at the beginning of a run.

The algorithm is organized into recursive invocations of the check procedure. A single

invocation of the check procedure operates on a host feasible circle X, of host vertex x. This

circle is a candidate fundamental circle, or simply \candidate," and x is the candidate host.

The hypothesis to be checked is that X is a (subset of) a fundamental circle hosted by x,

with no undiscovered substructure: that all the child circles within X properly belong there,

and no nested, host-feasible circle exists. To do so, we assign eligibility to all and only the

child circles immediately contained within X, then temporarily violate partition legality by

removing all children from x's circle, so that it becomes atomic. (The atomic circle around

x is not eligible.) This is the starting partition for checking. The check procedure consists

of a sequence of runs, beginning each time with the starting partition, until either

(i) a host-feasible subset Y � X is found such that Y does not iteratively dominate

5

X � Y , or

(ii) it can be concluded with su�cient probability that no such Y exists, within the ap-

proximation bounds.

Case (i) has two subcases. In case (i-a) the host y of Y is not the same as the host x of

X. In this case Y is a nested candidate so we suspend the check procedure for X and begin

a nested check procedure invocation that processes Y . After we are �nished processing Y ,

which results in contraction of some vertices into a single vertex in the current partition,

we resume processing X

0

, which di�ers from X in that some of its members have been

contracted. In case (i-b), x is also the host of Y . In this case we reset X

0

to be Y union

the iteratively dominated members of X � Y , and continue this invocation of the check

procedure. In case (ii) we contract X into a single vertex, adding this contraction operation

to the end of a sequence S of contractions being accumulated, yielding a new circle partition,

and return to processing any pending check procedure at a higher level.

Note: as will be seen later, all that is needed to control the goodness of approximation is

to determine how many runs are necessary within the check procedure before case (ii) can be

concluded. If a lower bound 0 < p < 1 can be shown for the probability with which the check

procedure discovers bottleneck cuts properly contained within the circle being checked, then

the approximation bound can be guaranteed with high probability by performing no more

5

A vertex set X iteratively dominates a set Y if X dominates at least one vertex v

1

2 Y , X+v

1

dominates

at least one vertex v

2

2 Y � v

1

, etc.
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than O(

� log p

p

) runs in each invocation of the check procedure. But this is only practical if

1=p is polynomial in the size of the network, which we have not been able to show. In lieu

of this, a practical implementation of this algorithm might use some adaptive feedback to

try to estimate the likely utility of devoting more runs to a given invocation of the check

procedure.

Given the foregoing de�nitions, the algorithm can be stated as follows.

1. Form the default circle partition of the input network in which every atomic circle is

eligible. Call this P

0

.

2. Call the check procedure on P

0

to discover any non-trivial fundamental circles con-

tained within it, within the approximation bounds. The result is a single vertex formed

by a sequence S of vertex set contractions.

3. Generate the (approximate) GH tree from the contraction sequence S performing local

improvements with the correction algorithm described in Section 6.4.1.

9.3 Discussion

The basic insight motivating this algorithm is that while a \typical" edge may cross one or

more bottleneck cuts, less than half of the edge weight of any minimum degree vertex will

do so. Identifying leaf cuts is relatively easy; it is the bottleneck cuts between internal nodes

of the GH tree that are harder to �nd, and easily damaged by improper shrinking. However,

once we �nd the bottleneck cuts, all of the other cuts follow immediately. So, if we seek

to �nd all s-t cuts through random shrinking, we should restrict activity to the minimum

degree vertex.

Heuristically, the anticipated action of the algorithm is that during a run it will tend to

shrink GH tree leaf nodes into their host, or together with their siblings and then into the

host, until a host feasible circle is found. During a run, some children properly belonging to

a fundamental circle host may shrink an external edge to a member of another circle and

thus \defect," while some vertices that are not children of a given fundamental circle may

improperly \invade." More generally, during a run many vertices may become active, of

which relatively few are members of the fundamental circle corresponding to the �rst host-

feasible circle found. Starting a nested invocation of the check procedure on each host-feasible

subset found reduces the scope of activity so as to most e�ciently test the hypothesis that

the host-feasible circle found contains only the members of a particular fundamental circle.

Children that did not become active or defected will not become active during the check

procedure, and invading vertices will have multiple chances to make a correct edge selection

and then be eliminated as candidate members. Once we are con�dent in the membership

of such a circle, it may be accepted as a new leaf vertex, through contraction, and search

continues for the next depth-1 circle

6

.

Let us allow that the algorithm as de�ned above is correct if it �nds the correct GH

tree in some possible execution, with correction during reconstruction from the contraction

6

A depth-1 circle corresponds to a depth-1 subtree of the GH tree. All of the children of the host are

atomic circles.
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sequence. It should be easy to see that every vertex has at least one edge to another member

of its smallest enclosing non-trivial fundamental circle, and so the active circle always has

at least one correct edge to shrink. Hence, if every active circle shrinks a correct edge,

eventually one correct subset of a depth-one fundamental circle will be found, and can safely

be contracted. The only exception to this situation is if an internal node of the GH tree

corresponds to a low degree vertex in the network which must become active before any

depth-1 fundamental circle can be found. In this case we can argue that that internal vertex

has at least one edge to shrink that does not invade a given depth-1 circle, or we can allow

it to invade and rely on inversion correction during reconstruction to establish the correct

GH tree.

Essentially, the argument is that there is a non-zero probability of �nding a host-feasible

subset of a depth-1 fundamental circle in every run where such a circle exists to be found

(modulo errors that will be repaired by the correction algorithm). Consequently, there is a

non-zero probability of correctly �nding the GH tree.

If we grant this weak form of correctness to the algorithm, the salient question becomes

complexity: how many runs is it necessary to perform within the check procedure in order to

identify case (ii), and conclude with high probability that its result cannot be improved? In

subsequent sections we investigate lower bounds on the probability of correctly discovering

a host-feasible (subset of a) fundamental circle during a run, and how that may be used to

get a lower bound on expected performance of the entire algorithm.

9.4 Analysis

It is di�cult to give a tight mathematical analysis of the behavior of this algorithm. The

probability of a good or bad outcome in subsequent basic steps is too dependent on the

outcome of prior steps, as well as on the particular structure of the input network. We

have attempted to bound the worst-case behavior of the algorithm, for any input network,

by a sequence of steps: (1) identifying a worst-case input for the check procedure among a

restricted class, (2) proving a lower bound on the probability of that input being correctly

processed by the check procedure, (3) generalizing that lower bound to a lower bound on the

probability of a partially correct analysis of any input, (4) identifying from the probability

bound an upper bound on the number of times the check procedure must be repeated to

guarantee its results with high probability, and thus (5) upper bounding the size and num-

ber of check procedure invocations to correctly process an entire network, within a given

approximation bound. For the restricted class in (1) we examined fundamental circles with

no host-feasible proper subsets. We are able to show interesting lower bounds on two cases

within the restricted class, but those bounds do not generalize to all fundamental circles

with host-feasible proper subsets, so step (3) is incomplete. Some other bad cases have been

identi�ed for which the algorithm's empirically measured behavior is not too bad, but for

which we do not have an analytical lower bound. Hence it is unknown whether the algorithm

is worst-case polynomial time for all inputs (and su�ciently large �).

In the following we generally use p

m

and p

s

to indicate the probability of a \mistake" or

\success" (i.e. no mistake) in a single basic step, and P

m

and P

s

the probability of one or

more mistakes or no mistakes in a related sequence of steps. The exact de�nitions should be
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Figure 17: Edge classi�cation
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clear from the context.

9.4.1 Classifying some hard cases

A run within the check procedure is said to make a mistake if it shrinks an edge between

two circles when there exists a fundamental circle that contains all members of one, but not

the other. In order to bound the complexity of the algorithm, we would like to be able to

prove a lower bound on the probability that a run �nds a depth-1 fundamental circle (or

a host-feasible proper subset thereof) whenever one exists within the eligible scope of the

current check procedure invocation, without making a relevant mistake. We will �rst study

the case where the circle being checked actually is a depth-1 fundamental circle, with no

more substructure.

It is convenient to classify the network edges into 4 kinds, as illustrated by Figure 17.

With respect to a given depth-1 fundamental circle X, with host x, any edge between x and

a leaf is an �-edge, any edge between two leaves is a 
-edge, any edge from a leaf to a vertex

outside of X is a �-edge, and an edge between x and any vertex outside X is an !-edge. We

let �

i

denote the sum of all beta edges adjacent to vertex v

i

, and � denote the sum of all beta

edges; similarly for � and 
. In general, it is a mistake to shrink a �-edge, but safe to shrink

an �- or 
-edge. By working with the active vertex, we tend to avoid shrinking !-edges so

for immediate purposes of analysis, we assume that the active circle never contains x.

Lemma 41 For any depth-1 fundamental circle, � < �.

Proof. Observe that [x] = �+! and [X] = �+! so if � � � then [X] � [x] and a necessary

condition of optimality is not satis�ed, so X cannot be a fundamental circle.

Recall that the unit of contraction (i.e. acceptance of substructure) for the algorithm

is a host-feasible circle; the algorithm yields a correct answer if every circle it contracts is

either a fundamental circle, or a subcircle of the smallest fundamental circle that contains

two or more of its members. Hence, an extreme case for a single run is a fundamental circle
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that does not contain any host-feasible subcircle: one where the entire circle must be shrunk

without mistake before its host feasibility has been recognized. It turns out that restricting

such a circle to have a highly homogeneous structure tends to raise the di�culty. Also, for

a given �, the maximum di�culty is achieved when

[X]

[x]

! 1� �.

For probabilistic analysis we de�ne a normative case fundamental circle to have such

a homogeneous structure with a maximal �=� ratio. In the normative case, every leaf

vertex has identical degree, and every edge in the same class has identical weight. Thus, if

k = jXj � 1 is the number of leaves, then for all i � k, �

i

= �=k, �

i

= �=k, and 


i

= 2
=k.

Two distinct normative cases are of interest. In the normative complete case, every leaf has

a 
-edge to every other. In the normative cycle case, every leaf has exactly two 
-edges, that

connect the leaves in a cycle.

For convenience in analysis we normalize � = 1. Note that the ratio

[X]

[x]

is minimized

as ! ! 0, so for a given � we can make a worst-case assumption that ! is arbitrarily small

and dependently set the value of � to (1 � �). In general, the chance of making a mistake

is increased as 
 decreases, so another pessimistic assumption is to pick a minimal feasible

value for 
 for any �; �; k, based on the following lemma.

Lemma 42 Within any depth-1 fundamental circle with no host-feasible proper subset,


 �

(k � 1)(�� �)

2

:

Proof. Let X be a fundamental circle with host vertex x. One criterion for non-existence

of a host-feasible proper subset is that for every leaf v

i

,




i

� max (�

i

� �

i

; (�� �)� (�

i

� �

i

)) (17)

where 


i

is the total weight of 
 edges adjacent to v

i

, etc. If this criterion does not hold, then

a host-feasible proper subset will exist. The �rst case, 


i

� �

i

� �

i

, prevents a dominating

edge at v

i

, which would make fx; v

i

g host-feasible. The other case prevents X � v

i

from

being host feasible. This criterion could be generalized further, to rule out other subsets of

vertices, but this form is all we need to prove the lemma.

Case 1: For all leaves v

i

, (�� �)� (�

i

� �

i

) � �

i

� �

i

. Then,


 = 1=2

k

X

i=1




i

�

k(�� �)�

P

(�

i

� �

i

)

2

�

(k � 1)(�� �)

2

:

Case 2: For some leaf v

j

, (�

j

� �

j

) > (� � �)=2. Observe that there can be only one such

leaf, so every other 


i

is lower bounded by (�� �)� (�

i

� �

i

). Then,


 = 1=2

0

@




j

+

X

i 6=j




i

1

A

50



Figure 18: Normative complete and cycle cases
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j

) + (k � 1)(�� �) + (�

j
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j

)� (�� �))

�

(k � 1)(�� �)

2

:

Consequently, in a normative case circle of k leaves, with the minimal total weight of


-edges,




i

=

2


k

=

(k � 1)(�� �)

k

:

If we pick the maximum �=� ratio compatible with a given �, we get




i

=

(k � 1)�

k

:

In the normative complete case, each 
-edge has weight �=k. In a normative cycle circle

of k leaves, 


i

is the same, but each individual 
-edge has weight (k � 1)�=2k. Figure 18

illustrates the normative complete and normative cycle cases for k = 4 and � = 1=2.

9.4.2 Lower bounds on normative cases with no host-feasible proper subset

One interesting aspect of the normative cases is that they are amenable to analysis. Another

is that we suspect that the normative cycle and normative complete cases are worst-case

inputs to the check procedure within the class of fundamental circles with no host-feasible

proper subset. However, since worse inputs outside of this class exist, we will not elaborate
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the justi�cation for this conjecture, but merely show some lower bounds on the probability of

not making a mistake for these cases for the insight it yields into behavior of the algorithm.

As described in section 9.2, the basic step shrinks an edge that dominates at the active

circle whenever one exists, and only selects an edge at random when a dominating edge does

not exist. Precedence of dominating edges in this context is never a mistake, and hence can

only contribute to raising the likelihood of a mistake-free run. In the following analysis, we

assume that edges are always selected at random, with no precedence for dominating edges,

which makes the analysis easier, and yields a lower bound somewhat more conservative than

would actually apply. It is conjectured that the normative cycle case is the worst case when

precedence is not given to dominating edges, while the normative complete case is worst for

the actual algorithm that does select them with precedence.

Lemma 43 The probability of making k steps with no mistakes in one run on a normative

complete case fundamental circle of k leaves and no host-feasible proper subset is

P

s1

(k) �

e

�(1+�)=�

2� �

(18)

hence

P

s1

(k) = 
(e

�1=�

):

Before proving this lemma, we prove a simpler one.

Lemma 44 In a run of the check procedure on a normative complete case fundamental circle

of k leaves and no host-feasible proper subset, the probability of not making a mistake at step

i, conditional on not having made a mistake in any of the previous i � 1 steps, is lower

bounded by

1 + (k � j)�

2� � + (k � j)�

where j = 2

lg k�dlg(k�i+1)e

for 1 � i � k:

Proof. In such a run, it is clear that the �rst k=2 active circles are all atomic, because the

rule for picking an active circle is minimum degree, and the atomic leaves have smaller value

than any merged circle containing two or more vertices. At step dk=2e + 1 the active circle

may still be atomic, e.g. if one of the prior steps selected an �-edge, or it may be a circle

formed by the merger of two leaves. More generally, let a \cluster" of size i be the result of

merging i leaves in one circle. At step 1 � i � k, the active circle will never be a cluster of

more than

2

lg k�dlg(k�i+1)e

leaves, because if a cluster of larger than this size exists, then one of this size or smaller must

also exist, and will have smaller value, and hence have priority as the active circle. For an

active circle cluster of size i, the probability of not making a mistake is just the ratio of �

and 
 weight, to total degree:

p

s

(i) =

i�=k + i(k � i)2
=(k(k � 1))

i�=k + i�=k + i(k � i)2
=(k(k � 1))

:
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The 
 weight of such a cluster is the weight of a single 
-edge (2
=(k(k� 1))) times i(k� i).

Normalize � = 1, � = 1� �, and 
 = �(k � 1)=2. Then




i

= �(k � 1)

and for 1 � i � k we can simplify to

p

s

(i) =

1 + (k � i)�

2� �+ (k � i)�

:

Hence, the probability of not making a mistake at step i is

� p

s

(2

lg k�dlg(k�i+1)e

)

which gives the lemma.

Observe that i < j ) p

s

(i) � p

s

(j) i.e. the probability of making a mistake mono-

tonically increases with cluster size. Therefore, we can lower bound the probability of no

mistakes in all k steps of the benchmark run by the product of the probability of not making

a mistake on the largest cluster that may be active at each step. This prepares us to prove

the prior lemma.

Proof of Lemma 43. P

s1

(k) is lower bounded by the product of the probability of no-

mistake at each step, conditional on no-mistake in any of the previous steps. From Lemma 44,

P

s1

�

k

Y

i=1

p

s

(k)

�

k

Y

i=1

p

s

(2

j

) where j = lg k � dlg(k � i + 1)e:

Let k = 2

r

, and j be de�ned as above; observing that there are 2

r�j�1

identical factors for

each 0 � j < r, and one additional factor for i = k, we can simplify.

P

s1

� p

s

(k)

r�1

Y

j=0

p

s

(2

j

)

2

r�j�1

= p

s

(k)

r

Y

j=1

p

s

(2

j�1

)

2

r�j

=

1

2� �

r

Y

j=1

 

1 + (2

r

� 2

j�1

)�

2� � + (2

r

� 2

j�1

)�

!

2

r�j

(19)

=

1

2� �

r

Y

j=1

 

1 + (2

r

� 2

j�1

)�

2� � + (2

r

� 2

j�1

)�

!

2

r�j

=

1

2� �

r

Y

j=1

 

1�

1 + �

2� �+ (2

r

� 2

j�1

)�

!

2

r�j
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�

1

2� �

r

Y

j=1

0

@

1�

1

�2

j

1+�

(2

r�j

� 1=2)

1

A

2

r�j

�

1

2� �

r

Y

j=1

0

@

1�

1

�2

j

1+�

2

r�j

1

A

2

r�j

For further simpli�cation, let

t =

�(1 + �)

�2

j

and then take the limit as k !1.

lim

k!1

P

s1

� lim

r!1

1

2� �

r

Y

j=1

�

1 +

t

2

r�j

�

2

r�j

Using the identity

e

t

 

1�

t

2

n

!

�

�

1 +

t

n

�

n

we get

lim

k!1

P

s1

� lim

r!1

1

2� �

r

Y

j=1

e

t

 

1�

t

2

2

r�j

!

�

e

�

lim

r!1

P

r

j=1

t+ln

�

1�

t

2

2

r�j

��

2� �

Using the identity �x � ln(1� x) we see that

�t

2

2

r�j

� ln

 

1�

t

2

2

r�j

!

t�

t

2

2

r�j

� t+ ln

 

1�

t

2

2

r�j

!

so we can simplify further.
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Lemma 43 shows that the probability of no mistakes in a check procedure run on a

normative complete case fundamental circle with no host-feasible proper subset is lower

bounded by a constant, for any �xed �, but that this constant shrinks exponentially as

� ! 0. The constant lower bound is a consequence of the restriction to no host-feasible

proper subsets, which establishes a strong lower bound on 


i

, and the nature of the normative

complete case which has as many 
 edges as possible, so the total weight of un-shrunken 


edges decreases very slowly with each step. The normative cycle case concentrates 
 edges

as much as possible, so that the total weight of un-shrunken 
 edges decreases quickly. We

show that the analogous lower bound is not constant for the normative cycle case, but still

reasonable for large �.

Lemma 45 The probability of making k steps with no mistakes in one run on a 
-minimal,

normative cycle case fundamental circle of k leaves and no host-feasible proper subset, where

the vertex ordering is random, is

P

s2

(k) = 


0

B

@

e

�6�(1��)

��

2

 

k�

2 + �

!

�6(1��)

��

2

1

C

A

where � � 0:577 is Euler's gamma constant.

The proof requires �rst showing some bounds related to clustering behavior and the

average probability of making a mistake at each step. In the proof of Lemma 43, we made

the worst-case assumption that a run consists of k=2 size 1 clusters, k=4 size 2 clusters, k=8

size 4 clusters, etc. If we use this technique for Lemma 45 also, we will not be able to obtain

the bound stated. In fact, a run of this type is extraordinarily unlikely, because formation

of clusters is a random process that is roughly Poisson. Consider the following problem.

Spotted ball problem: There is an urn containing k balls. Upon each ball is painted

one spot. We follow a procedure with k� 1 steps. At every step we �rst exhaustively search

the urn and �nd a ball with no more spots than any other in the urn. This is the selected

ball. We then shake the urn to mix it and draw another ball at random, uniformly from

those in the urn, which is the drawn ball. We count the number of spots on the drawn ball,

paint that many new spots on the selected ball, replace the selected ball in the urn, and

discard the drawn ball. At the end of k � 1 steps, the urn always contains 1 ball with k

spots. In fact, at the end of every step, the total number of spots on balls in the urn is

always k. Let B

i

be a random variable whose value is the number of selected balls with i

spots. What is the expectation of B

i

?

For large k and a random vertex ordering, the number of clusters of size i that become

active should approximate B

i

. The number of spots on a ball is analogous to the number

of leaves in a cluster; selecting a ball is like picking the active circle; drawing another ball

is like picking an edge of the active circle at random, conditional on only 
-edges being

selected, and when vertex ordering is random and 
 edges are in a chain, so that expectation

of selecting a gamma edge to any other existing cluster is approximately equal. We can show

through analysis and experiment that E [B

i

] � k=i

2

. Suppose that i < j ) E [B

i

] > E [B

j

],

i.e. the expectation is strictly decreasing. Observe that when the selected ball has i spots,
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Figure 19: Experimental E [B
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it will gain � i additional spots. Let round i consist of all the steps in which the selected

ball has i spots. Then, between the beginning of round i and the end of round 2i� 1, only

balls that had between i and 2i�1 spots at the beginning of this time period can be selected

during it, and each will be selected at most once. Since there are a total of k spots at any

time, if they are all distributed among balls with between i and 2i� 1 spots each, there can

be no more than k=i balls, divided among i groups with the same number of spots. With the

monotone-decreasing assumption, we get an upper bound of k=i

2

on the number of selected

balls with i spots, and experiment justi�es this assumption. Figure 19 compares the average

number of selected balls with i spots to k=i

2

for 10

6

trials and k = 100. The solid curve

shows ln(k=i

2

), and the dotted curve shows experimentally estimated ln(E [B

i

]). .

Proof of Lemma 45. During a check run on a normative cycle case fundamental circle, the

number of active circles of size 1 � i � k=2 is upper bounded by k=i

2

. The total probability

of success, P

s2

, is the product of p

s

for each of the k � 1 steps. As before, let p

s

(i) indicate

the probability of success (not making a mistake) for a cluster of size i. Given the concavity

of 1=i

2

and the monotone decrease in p

s

(i), we can lower bound the product of p

s

for each

of the �rst k � 1 steps by:

7

P

s2

(k � 1) �

0

@

P

k=2

i=1

p

s

(i)=i

2

P

k=2

i=1

1=i

2

1

A

k�1

(20)

7

We thank Prof. E. Bender for assistance with this asymptotic analysis.
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Figure 20: Lower bounds and experimental values for normative cases
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How tight are the lower bounds proven for the two normative cases considered? Figure 20

plots the lower bound given by Lemma 45 for the normative cycle case with a solid line, and

that given by Lemma 43 for the normative complete case with a dashed line. Empirically

measured values for these two cases are plotted by dotted (cycle) and dash-dot (complete)

lines. For all curves � = 0:5 and both axes are in log scale, so the rightmost point shows

lnP

s

(2

10

). Every empirical point represents the average over 10

4

trials. It can be seen

that the theoretical lower bounds are not particularly tight, for small k. For the normative

complete case, the constant lower bound is just a limit as k !1. For the normative cycle

case, the main reason for underestimating P

s2

is that our analysis did not take the selection
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Figure 21: lnP

s2

(k) versus lg k: lower bound and experimental values
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of dominating edges into account. If the dominating edge selection rule is turned o� in

the experimental measurement program, the results are much closer to the theoretical lower

bound given by Lemma 45. Another reason for underestimating is that by using k=i

2

to

bound cluster activation density in the proof of Lemma 45, we assumed that no �-edges are

contracted until the k'th step, which is too conservative. For large k, there are likely to

be very few �-edge contractions in the �rst k=2 moves, but towards the end of a run of k

steps their frequency increases, and hence the frequency of large active clusters (with their

relatively high p

m

) is actually somewhat lower than estimated in the analysis.

The bound given by Lemma 45 implies that, roughly, P

s2

(k) = 
(1=k) for � >

6

�

2

+6

�

0:378, and O(1=k) for lesser values of �. One might consider this approximation value to

be a potential limit to practical e�ectiveness of the algorithm, since the lower bound decays

exponentially as � passes below this transition value. Figure 21 plots the natural log of the

theoretical and empirical curves for the normative cycle case versus lg k for two di�erent

values of �. Again, each point is the average over 10

4

trials. The curve for ln(1=k) versus lg k

is also shown, for reference. It can be seen that the transition value of � from practicality to

impracticality is actually signi�cantly lower in practice than predicted by Lemma 45.

9.5 Generalizing the Lower Bounds

Having shown lower bounds on the probability of a mistake-free run for normative case

fundamental circles with no host-feasible proper subsets, we next consider to what extent

these bounds may generalize to lower-bound the probability of discoving host-feasible circles

in an arbitrary network.

58



9.5.1 Host activity and !-edges

In the proofs of Lemmas 43 and 45 we assumed that the active circle always contained only

leaves of the target circle, never the host. This is true when the circle being checked really

is a depth-1 fundamental circle, but is not necessarily true when substructure exists. That

is, an active circle may contain the host of an as-yet undiscovered host-feasible circle. Even

though all of the leaves of such a host should become active �rst, by the active circle selection

rule, the host may become active if all of its children are in clusters with value larger than

the current circle around the host. So we must consider whether this situation can result in

behavior worse than that of the runs analyzed.

Consider a normative cycle case for k = 8, � = 1=2. This implies that the value of a

cluster of i leaves is

i=8 + i=16 + 7=16

which is � 1 for i � 3. So, even for very small !, in a mistake-free run the host will not

become active before any 3-cluster. In the previous analyses, we assumed that that ! is very

close to 0. In such a case, because its edge weight is almost entirely in the � category, if the

host does become active, its contribution to any active circle's chance of making a mistake

approaches 0. In fact, it tends to decrease the chance of a mistake; hence, not preventing

the host from activation can only increase P

s

.

One justi�cation for specifying that ! ! 0 in the previous analyses is that this allows us

to set � = (1��)�, maximizing the �=� ratio at each leaf. Recall that � is the approximation

bound for the algorithm, i.e. we would like to guarantee �nding any bottleneck cut such

that [X]=[x] � (1��), with high probability. If we increase !, then, for a constant � = 1 and

[X]=[x] ratio, � must decrease; when [X]=[x] is minimized, the chance of the host contributing

to a mistake can only be raised by decreasing the chance of a leaf contributing to a mistake.

The normative cases give us some understanding of the e�ects of the �=� ratio under no-

host-feasible proper subset conditions where the the 
-minimal value given by Lemma 42

applies. The 
-minimal value is determined by the �=� ratio, not the [X]=[x] ratio; for

�xed �=�, increasing ! thus decreases the [X]=[x] ratio, and escapes the requirement for the

algorithm to �nd the circle, if �=� � 1� �.

Hence, the extent to which !-edges can limit the generalizability of the normative cases

results depends on whether increased ! weight can increase the chance of mistake more than

it lowers the [X]=[x] ratio, and hence the approximation tolerance requirement. Consider

what happens to a normative cycle case of � = 1, � = 1� �, 
 = (k � 1)�=2, ! ! 0, as we

increase !; the implied approximation bound �

0

which would require the algorithm to �nd

the altered circle is

(1� �

0

) �

! + �

! + �

�

! + (1� �)

! + 1

�

0

�

�

! + 1

:

For k = 8 and � = 1=2, it is necessary to raise ! to 1 before the host can become active in

a mistake-free run, but this lowers the implied approximation bound to �

0

= 1=4, while the
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increased chance of mistake caused by additional ! is rather modest. It is not hard to see

that the implied lower bounds given by Lemmas 43 and 45 for �

0

decrease much faster than

the actual probability of success, for �xed �=� and increased !.

Therefore, we can safely generalize bounds obtained for cases where ! ! 0 to cases with

arbitrary (non-negative) values of !.

9.5.2 Host-feasible proper subsets

The relatively strong lower bounds on the probability of a mistake-free run proven in Lem-

mas 43 and 45 apply only to special cases with no host-feasible proper subsets. This restric-

tion implies strong bounds on the amount of 
-edge weight at each vertex, which is critical

to the proofs. In the general case, a depth-1 fundmental circle may have many host-feasible

proper subsets, so the amount of 
 weight at an arbitrary vertex need not be so great,

allowing p

s

to be lower. On the other hand, when multiple host-feasible subsets exist the

algorithm only need �nd and contract one in order to make progress. These two consid-

erations simultaneously argue for a decrease and an increase in the probability with which

one run of the check procedure discovers a circle that can correctly be contracted. It is not

immediately obvious which is more important, and whether existence of host-feasible proper

subsets is of advantage or disadvantage to the algorithm. Unfortunately, it also appears to

be more di�cult to give a mathematical analysis of the expected behavior of the algorithm

for this kind of case than it was for the normative cases with no host-feasible proper subset.

Let us consider how a depth-1 fundamental circle X with host-feasible proper subsets

might be constructed in order to minimize P

s

, which in this context is the probability of

at least one host-feasible proper subset being shrunk into a single circle during one run of

the check procedure applied to X. Suppose that [X]=[x] = 1 � �, and Y � X is a host-

feasible subset, then [Y ] > [X] and [Y ]=[x] < 1 � �. The decreased value/host-degree ratio

for the subset implies that that it will be less likely for the algorithm to shrink Y without

mistake than an equal size circle of larger ratio. In particular, any lower bound implied by

an approximation bound of � does not apply to this inner subcircle. Let X

0

� X consist of

all vertices that must be part of any host-feasible subset of X (x 2 X

0

, but it may otherwise

be empty). If jX

0

j > 1, then P

s

may be lowered relative to a fundamental circle with no

host-feasible proper subsets if active circles consisting of vertices not in X

0

have a greater

likelihood to defect, while the ratio [X

0

]=[x] is very close to 1, so that that circle itself is very

unlikely to shrink without mistake.

For example, consider the chain of vertices in Figure 22. The edge (x; v

1

) has weight

1, and the weights decrease linearly to the right, down to 1 � �. Properly, this is not a

depth-1 fundamental circle because every edge from x to v

k

is a dominating edge. However,

if the check procedure were applied to the vertices shown, the probability of shrinking all

and only these vertices together would be exponentially low, if dominating edges were not

preferentially selected. At each step, conditional on no �-edge shrinkings so far, the rightmost

circle would have smallest value so it would become active, and its probability of not shrinking

a �-edge would be approximately 1=2, so the probability of no �-edge shrinking would be

very roughly 
(2

�k

). However, in order to get a single host-feasible circle with x as host, it

is only necessary that a pre�x of v

1

; v

2

; : : : ; v

k

shrink into x, not the entire sequence, so it is
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Figure 22: Chain con�guration
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Figure 23: Cylinder con�guration
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not immediately obvious that this example can be generalized into a real bad case for the

algorithm.

Figure 23 shows a similar con�guration which is a single depth-1 fundamental circle, and

which largely avoids the creation of dominating edges during a run of the check procedure.

Instead of a single chain, vertices are arranged in a cylinder of length and circumference d

(equal to 5 in the �gure), so k = d

2

. In any circular cross-section of the cylinder, every vertex

has 4 edges of approxmately equal capacity, but towards the right end of the cylinder the

edge capacities gradually decrease so that the last cut (consisting of �-edges shown dotted)

is of value 4(1 � �), while the degree of the host is [x] = 4 (there are d vertices of degree

4 that may be host). Experiments with variations on this con�guration, decreasing the

weight of edges from left to right by various functions, and with various ratios of length to

circumference, have discovered cases in which P

s

(k) decreases faster than either P

s1

or P

s2

,

for the same �, but not hopelessly fast. Figure 24 shows lnP

s

(k) versus ln k for the worst

cylinder con�guration discovered and � = 0:5. The upper straight-looking line is the curve

for lnP

s2

(k) for the same �, and the lower line is the curve for ln 1=k.

It is unknown whether even worse cases exist, or whether a strict lower bound better than

ln 1=k can be proven for any depth-1 fundamental circle, and some � < 1. In subsequent

sections we use P

s

(k) (or �(k; �) when we wish to parameterize by �) to denote a hypothetical

lower bound function for general depth-1 fundamental circles, whatever it is.

9.5.3 Multiple depth-1 fundamental circles

In our analysis up to this point, we have assumed that only vertices of one depth-1 funda-

mental circle could become active. In actual application, the active circle selection rule only
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Figure 24: P

s

(k) for worst known cylinder con�guration
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guarantees that leaves �rst become active before their hosts; when the circle being checked

has undiscovered substructure, the leaves of many di�erent fundamental circles may become

active before a mistake-free run can �nd the �rst host-feasible subset. Here we consider the

e�ect of mistakes in one host-feasible circle on other circles. The next lemma says that we

can use a lower bound on the probability of a mistake-free run to upper bound the probability

of i or fewer mistakes.

Lemma 46 In one run of the check procedure on a fundamental circle of of k leaves, the

probability of selecting a �-edge in i or more separate steps is

P

m

(k; i) � (1� P

s

(k))

i

:

Proof. The key insight is that selecting and shrinking a �-edge does not raise the probability

of shrinking a �-edge in any subsequent step. It will tend to decrease because some �-capacity

has been removed, raising the relative proportion of � and 
 weight. Therefore, the chance

of i or more �-edge selections is upper bounded by i times the chance of at least one such

selection.

Next, consider application of the check procedure to the default circle partition, before

any substructure has been identi�ed. For simplicity, suppose that the network has only one

bottleneck cut, so that the GH tree has exactly two depth-1 fundamental circles: one of k

leaves, and the other of n � k � 2 leaves. In the worst case, an adversary can break ties

in selection of active circles so that n � 3 steps are necessary before either circle can be

found, and any single mistake (i.e. �-edge shrinking) eliminates the bottleneck cut, making

it impossible to �nd either circle. In this case, the chance of a no-mistake run guaranteed to

�nd one circle is lower bounded by the product of a no-mistake run con�ned to either circle,

which is minimized for k = 2 to P

s

(n=4� 1)

2

.
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Generalizing, consider a network whose GH tree has h depth-1 fundamental circles, each

of k = n=h�1 leaves. Again, assume that an adversary breaks ties and that � is small enough

and other factors unfavorable enough that any �-edge shrinking erases the bottleneck cut

between the two circles involved. In this case hk�1 steps are necessary to �nd the �rst circle,

and the probability of a mistake-free run of this length is lower bounded by P

s

(n=h� 1)

h

.

However, with this many depth-1 circles, it is not necessary to have a mistake-free run in

order that one circle be found. A single mistake, involving an active circle that is a subset of

one depth-1 fundamental circle, can corrupt no more than two such circles. Let us say that

an active circle Y invades a depth-1 circle X if Y \X = ; but the edge selected for merger

joins a vertex in Y to one in X. Similarly, a vertex u 2 X defects if it is part of an active

circle X

0

� X that merges with a circle containing a vertex not in X. Even if mistakes occur

during a run, fundamental circle X can still be found so long as none of its leaves defect,

and it is not invaded.

Lemma 47 When the candidate circle contains h depth-1 fundamental circles, a check pro-

cedure run successfully �nds one of them with probability

P

s

(k; h) = 


�

1� h

1

2

ln(1��(k;�))

�

where P

s

(k) = 
(�(k; �)) is the lower bound on a mistake-free shrinking of any depth-1

fundamental circle of size k satisfying approximation bound �.

Proof. The situation is very similar to that described by the coupon collector's problem

[25] for which it is known that if there is a large pool of n di�erent kinds of coupons, and

at each step we draw a coupon equally likely to be of each kind, then the expected number

of steps necessary to draw at least one coupon of each type is n lnn+O(n). When �-edges

are evenly distributed, then each �-edge selection has an equal probability of resulting in

the invasion of any of the other circles. (If they are not evenly distributed, then we can �nd

one with relatively light � weight where the situation is even more favorable, so without loss

of generality assume that they are.) The di�erences that do exist, relative to the coupon

collector's problem, all tend to decrease the probability of corrupting an uncorrupted circle,

so we will ignore them, and assume that at each step, the chance of a �-edge selection

involving a given circle is �

1�P

s

(k)

h

, for each circle. In the worst case, h=2 �-edge shrinkings

can corrupt all fundamental circles, so the probability of at least one circle being found

without being a�ected by a mistake is � 1=2 if the total number of �-edge selections is

<

h lnh

2

. By Lemma 46, the probability of this many �-edge selections is � (1�P

s

(k))

(lnh)=2

,

consequently the probability of at least one circle not being involved in a defection or invasion

is

P

s

(k; h) � 1� (1� P

s

(k))

1

2

lnh

� 1� (1� 
(�(k; �)))

1

2

lnh

� 1� O((1� �(k; �))

1

2

lnh

)

= 


�

1�

�

e

(1��(k;�))

�

1

2

lnh

�

= 


�

1� h

1

2

ln(1��(k;�))

�

:
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Figure 25: P

s2

(k; h) versus h for (k + 1)h = 256 and � = 0:5

6 8 10 12 14 16

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Lemma 47 says that the lower bound on the probability of �nding an undisovered funda-

mental circle by shrinking without any relevant mistakes actually goes up as more non-trivial

fundamental circles meeting the approximation bound exist. Figure 25 plots P

s2

(k; h) for

4 � h � 16 and constant (k + 1)h = 256. By the argument given earlier, the minimum

value ought to occur for h = 2, but the bound given by Lemma 47 is asymptotic, and not

particularly accurate for small h.

Figure 26 shows the lower bound given by Lemma 47 for 2 � h � 6, (k + 1)h � 64 and

� = 1=2, together with experimental measurement of the actual probability of success for the

normative cycle cases with these values.

8

The solid line shows the theoretical lower bound,

while the dotted line connects the experimental measurements.

The key theoretical points are: (i) even when multiple depth-1 fundamental circles exist,

the probability of success (here de�ned as fully merging one without relevant mistake) in a

single run is no worse than P

s

(n=2)

2

, and (ii) h = 2 is the worst case, as the probability of

success grows with h > 2.

9.6 Composition with Randomized Compression

Bencz�ur and Karger [4] give a nonuniform sampling algorithm for constructing a capacitated,

undirected network G

0

from a network G such that, for any 0 < � < 1, with high probability

the value of any s-t cut in G

0

is (1��) times its value in G. Moreover, the number of edges in

G

0

is O(n logn=�

2

), and construction can be done in O(m log

3

n) time. It may be possible to

reduce the running time of our randomized approximation algorithm by using their sampling

algorithm to preprocess the input network. The idea is let any desired approximation bound

� = �

1

+ �

2

, where 0 < �

1

; �

2

< 1. First compress G to G

0

within a tolerance of �

1

by the

Bencz�ur-Karger algorithm, then approximate the GH tree of G

0

within a tolerance of �

2

by

8

10

5

trials for each point.
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Figure 26: Lower bound and empirical values of P

s2

(k; h) for (k + 1)h � 64
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our algorithm. The resulting GH tree approximates every s-t cut within a factor of �, and

the factor ofm in the complexity bound is replaced by a factor of n logn=�

2

. The practicality

of this scheme is probably limited to fairly large �, primarily because our algorithm appears

questionable for � < 6=(�

2

+ 6), but secondarily because the Bencz�ur and Karger algorithm

does not signi�cantly sparsify the network for � � (m= logn)

�1=2

.

9.7 Summary

In this section we presented a randomized algorithm for approximating the GH tree of an

undirected network. The design of the algorithm is based on the idea of vertex degree dom-

ination, utilizing insights following from the new optimal circle partition formulation of the

problem. We gave some characterization of the cases on which the algorithm is likely to per-

form well or badly. We analyzed its behavior on some extreme cases, showing that its prob-

ability of success drops exponentially, when faced with bottleneck cuts of host-degree/value

ratio close to 1, indicating the algorithm is much more likely to yield approximate rather

than exact solutions when such cuts exist. We showed that presence of host-feasible proper

subsets can decrease the probability of success, but perhaps not too badly. We showed that

presence of many fundamental circles tends to increase the probability of success, so that

the worst-case input is a GH tree with a single internal link. It would be interesting to

experiment with performance of variations of this algorithm on a real application, but that

has not fallen within the scope of this research e�ort.

10 Conclusions

This report represents the highlights of a research e�ort that has substantially occupied

its authors over several years. The guiding intuition has been that the overall structure of
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minimum cuts in a network, as exempli�ed by the Gomory-Hu tree, has su�cient structure in

terms of necessary inter-relationships that it should be possible to discover the entire GH tree

with approximately the same worst-case computational complexity required to determine a

single s-t minimum cut. To date, the only known way to compute the GH tree remains the

computation of O(n) s-tminimum cuts by way of maximum 
ows or similar technique. While

speci�c goals of the e�ort evolved over time, much of our work concentrated on identifying

and trying to exploit properties of minimum cuts that are independent of the path-saturation

dualities identi�ed by Mengers theorem and the max-
ow min-cut theorem. We felt that

the �eld of max-
ow and similar algorithms is quite mature, and if a faster algorithm for

the GH tree exists, it ought to rely on some method of �nding the tree more directly, by

bypassing the need to compute max 
ows, rather than computing individual s-t 
ows faster.

Otherwise unmentioned in this report is, for example, work we did on trying to save partial

results in the context of a pre
ow-push max-
ow algorithm, so as to compute GH subtrees

in the same time as a single s-t cut, which was not successful.

While the ultimate goal of a revolutionary new minimum cut algorithm was not achieved,

this research e�ort did accomplish several notable positive results, which were described. In

broad terms, we made a systematic study of vertex degree domination properties and their

relation to minimum cuts. We gave a number of lemmas relating the properties of network

vertices and edges to those of GH tree nodes and links. In close study of the maximum

adjacency indexing algorithm, we proved that monotone-increasing indexings give strong

lower bounds on connectivity in cases that had not previously been identi�ed. We gave new,

equivalent problem formulations for the GH tree, and proved the �rst necessary and su�cient

optimality conditions for the problem that do not rely on any Menger-like theorem. We

described several sensible heuristics and algorithmic approaches based on these new problem

characterizations, including favoring edge contraction, computation of self-dominating sets,

and randomized shrinking from the minimum-value circle. Although we strove for theoretical

results and did not attempt to study performance in practice, it is possible that some of these

approaches may be of practical bene�t for some problems.
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