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Abstract

It is widely assumed that cells must be physically isolated to study their molecular profiles. 

However, intact tissue samples naturally exhibit variation in cellular composition, which drives 

covariation of cell-class-specific molecular features. By analyzing transcriptional covariation in 

7221 intact CNS samples from 840 neurotypical individuals representing billions of cells, we 

reveal the core transcriptional identities of major CNS cell classes in humans. By modeling intact 

CNS transcriptomes as a function of variation in cellular composition, we identify cell-class-

specific transcriptional differences in Alzheimer’s disease, among brain regions, and between 

species. Among these, we show that PMP2 is expressed by human but not mouse astrocytes and 

significantly increases mouse astrocyte size upon ectopic expression in vivo, causing them to more 

closely resemble their human counterparts. Our work is available as an online resource (http://

oldhamlab.ctec.ucsf.edu/) and provides a generalizable strategy for determining the core molecular 

features of cellular identity in intact biological systems.
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INTRODUCTION

Identifying the molecular features that define cellular identities is a fundamental goal of 

biological research. Consequently, several ‘bottom-up’ methods have been developed to 

isolate cells for molecular profiling, including fluorescence-activated cell sorting (FACS), 

immunopanning (IP), and sorting of single cells (SC) or nuclei (SN). Although these 

methods are readily applied to many biological systems, their applicability to the adult 

human CNS is limited by technical factors and practical considerations. For example, FACS, 

IP, and SC typically require fresh tissue and have therefore been mostly limited to surgical 

samples from a handful of CNS regions and individuals1–3. SN4, 5 is compatible with frozen 

tissue but, like SC, suffers from technical noise caused by tissue dissociation, nucleus/cell 

capture, cDNA preamplification, and stochastic transcript coverage6. Furthermore, there is a 

trade-off between sequencing depth and the number of nuclei/cells that can be analyzed.

The adult human CNS is large, heterogeneous, and difficult to dissociate due to extensive 

myelin. It consists of ~170 billion cells, about half of which are neurons7. The remaining 

cells consist mostly of oligodendrocytes, astrocytes, and microglia, which are collectively 

referred to as glia. Identifying transcriptional differences among neuronal and glial subtypes 

is an important goal, since heterogeneity within CNS cell classes is incompletely 

understood. However, it is equally important to understand what CNS cell subtypes have in 

common. For example, is there a core set of genes whose expression is shared among all 

neurons? All astrocytes? Etc. Answering these questions will fill critical gaps in our 

understanding of CNS cell biology, produce novel experimental and analytical strategies, 

and provide important insights into the cellular origins of CNS pathologies.

Most studies of human CNS transcriptomes have analyzed intact postmortem samples. 

Because these samples are heterogeneous and cells must be destroyed to extract RNA, it is 

often assumed that these datasets contain no information about the cellular origins of gene 

expression. However, it is axiomatic that intact tissue samples from any biological system 

will exhibit variable cellular composition. Therefore, when many intact tissue samples are 

analyzed, genes expressed with the greatest sensitivity and specificity in the same cell class 

should appear highly correlated, since their expression levels depend primarily on the 

proportion of that cell class in each sample8. In support of this reasoning, which has 

motivated numerous in silico deconvolution strategies9–15, we previously discovered highly 

reproducible gene coexpression modules in microarray data from intact human brain 

samples that were significantly enriched with markers of major CNS cell classes16. These 

findings were replicated in studies of intact CNS transcriptomes from mice17, rats18, zebra 

finches19, macaques20, and humans21.

Gene coexpression modules corresponding to major cell classes are therefore robust and 

predictable features of CNS transcriptomes derived from intact tissue samples. Furthermore, 

the same genes consistently show the strongest affinities for these modules, offering 

substantial information about the molecular correlates of cellular identity16. Over the past 

decade, thousands of intact, neurotypical human samples from every major CNS region have 

been transcriptionally profiled. These data provide an unprecedented opportunity to 

determine the core transcriptional features of cellular identity in the human CNS from the 
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‘top down’ by integrating cell-class-specific gene coexpression modules from many 

independent datasets.

RESULTS

Gene coexpression analysis of synthetic brain samples accurately predicts differential 
expression among CNS cell classes

To illustrate the premise of our approach, we aggregated SC RNA-seq data from adult 

human brain1 to create synthetic samples that mimic the heterogeneity of intact tissue (Fig. 

1A). We performed unsupervised gene coexpression analysis to identify gene coexpression 

modules in each synthetic dataset that were maximally enriched with published markers22, 23 

of astrocytes, oligodendrocytes, microglia, or neurons (‘cell-class modules’; Fig. 1A). 

Intuitively, expression variation in a cell-class module primarily depends on the 

representation of that cell class in each sample. Mathematically, the vector that explains the 

most variation in a coexpression module is its first principal component, or module 

‘eigengene’ (Fig. 1A)24. This reasoning suggests that a cell-class module eigengene should 

approximate the relative abundance of that cell class in each sample. Because the precise 

cellular composition of each synthetic sample was known, we tested this hypothesis and 

found that actual cellular abundance was nearly indistinguishable from that predicted by 

cell-class module eigengenes (Fig. S1A).

To determine the affinity of each gene for each cell-class module, we calculated the 

Weighted Gene Coexpression Network Analysis measure of intramodular connectivity, 

kME
25. kME is defined as the Pearson correlation between the expression pattern of a gene 

and a module eigengene. In the special situation of a cell-class module, kME therefore 

quantifies the similarity between the expression pattern of a gene and the relative abundance 

of that cell class in each sample. Because each sample is a heterogeneous mixture of cells, 

high kME for a cell-class module suggests that expression of the gene in that cell class is 

sensitive and specific. We tested this hypothesis by performing differential expression 

analysis of SC RNA-seq data for each cell class, restricting our analysis to exactly the same 

cells used to construct the synthetic samples. As shown in Fig. 1B, the genes that are most 

significantly up-regulated in a cell class also have the highest kME values for the 

corresponding cell-class module. We obtained nearly identical results by aggregating SC 

RNA-seq data from adult mouse brain26 (Fig. S1B,C). These findings demonstrate that gene 

coexpression analysis of intact CNS samples can determine which genes are most 

differentially expressed among CNS cell classes. More generally, our results suggest that it 

is not always necessary to physically isolate cells in order to ascertain their defining 

transcriptional features.

Integrative gene coexpression analysis of intact tissue samples reveals consensus 
transcriptional profiles of major CNS cell classes in humans

To determine consensus transcriptional profiles of human CNS cell classes, we analyzed 

7221 CNS transcriptomes from 840 neurotypical adult humans by combining data from 

eight studies21, 27–33 and one resource (http://www.brainspan.org/). These data were 

generated from intact postmortem tissue samples using diverse technology platforms (Table 
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S1) and collectively represent billions of cells. Each sample was assigned to one of 19 broad 

neuroanatomical regions, resulting in 62 regional datasets (Fig. 1C). After data 

preprocessing and quality control, each dataset consisted of ≥25 samples (median: 76) 

(Table S1). For each dataset, we performed unsupervised gene coexpression analysis and 

identified the module that was maximally enriched with published markers22, 23 of 

astrocytes, oligodendrocytes, microglia, or neurons (Fig. 1D, Table S2). PC1 of these 

modules was used to estimate the relative abundance of each cell class over all samples and 

calculate genome-wide kME values (Fig. 1E,F). Finally, we combined kME values for 

significant cell-class modules from all 62 datasets, producing a single value (z-score) for 

each gene that quantifies its global expression fidelity for each cell class (Fig. 1G). 

Importantly, estimates of fidelity were highly robust to the choice of gene set used for 

enrichment analysis (especially for glia; Fig. S2). Canonical markers consistently had high 

fidelity for the expected cell class and low fidelity for other cell classes (Fig. 2A-D). High-

fidelity genes were also significantly and specifically enriched with expected cell-class 

markers from multiple independent studies (Fig. 2A-D). Compared to glia, the distribution 

of expression fidelity for neurons was compressed (Fig. 2A-D), likely reflecting neuronal 

heterogeneity among CNS regions. Genome-wide estimates of expression fidelity for major 

cell classes are provided in Table S3 and on our web site (http://oldhamlab.ctec.ucsf.edu/).

To further explore how estimates of gene expression fidelity derived from intact tissue relate 

to gene expression in individual cells, we analyzed droplet-based SN RNA-seq data from 

neurotypical adult human brains. Habib et al.4 analyzed 14963 nuclei from cortical and 

hippocampal samples from five individuals, detecting a median of 529 unique genes/

nucleus. Lake et al.34 analyzed 35289 nuclei from cortical and cerebellar samples from six 

individuals, detecting a median of 719 unique genes/nucleus. In general, expression patterns 

of high-fidelity genes were conserved in SN RNA-seq data (Fig. 2E). We extended these 

comparisons by examining concordance among top high-fidelity genes and top differentially 

expressed genes for each cell class from each SN study (Fig. 2F-I). For all comparisons, 

overlap was highly significant (p < 10−15), but less so for neurons, which likely reflects 

differences among CNS regions analyzed in each study. Given the shallow coverage that 

characterizes droplet-based SC/SN methods, we hypothesized that discordant results might 

also represent type II error in SN RNA-seq data (i.e. dropouts). To test this hypothesis, we 

compared expression levels of discordant and concordant genes. For all cell classes, 

discordant genes were expressed significantly lower than concordant genes in our collection 

of 7221 intact human CNS samples (Fig. 2F-M). Furthermore, discordant genes were 

detected far less frequently than concordant genes in single nuclei from both studies (Fig. 

S3). For an orthogonal perspective, we analyzed expression of discordant genes in cell 

classes purified by immunopanning from adult human temporal lobe surgical resections3. In 

all cases, gene expression fidelity correctly predicted the dominant cellular source of mRNA 

(Fig. 2N-Q). These results underscore the sparse nature of current droplet-based SN RNA-

seq data. Comparisons of fidelity and differential expression results for all genes are 

reported in Table S4.
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High-fidelity genes reveal the core transcriptional identities of major CNS cell classes in 
humans

The genes with the highest expression fidelity for major CNS cell classes are consistently 

coexpressed across regions and technology platforms (Fig. S4). We visualized the top 50 

genes ranked by expression fidelity for each cell class to compare their expression levels, 

mutation intolerance, literature citations, cellular localization, and protein-protein 

interactions (PPI) (Fig. 3A-D). Overall, expression levels of high-fidelity genes were highest 

for neurons and lowest for microglia (Fig. 3A-D, red tracks). However, each cell class had a 

wide range of expression levels for high-fidelity genes, suggesting parallel regulatory 

mechanisms and/or differential transcript stability.

To assess the tolerance of high-fidelity genes to loss-of-function (LoF) mutations, we 

analyzed data from the Exome Aggregation Consortium (ExAC), which summarizes the 

prevalence of coding mutations in ~61K human exomes35. Unexpectedly, high-fidelity 

neuronal genes were significantly less tolerant to LoF mutations than high-fidelity glial 

genes (Fig. 3A-D, black tracks). We then searched PubMed to determine whether high-

fidelity genes have been studied in their respective cell classes (Fig. 3A-D, green tracks). 

Interestingly, many searches returned no citations, highlighting critical gaps in our 

understanding of CNS cell biology. For example, the top microglial gene (amyloid beta 

precursor protein binding family B member 1 interacting protein, or APBB1IP) is unstudied 

in microglia.

We also examined the cellular localization of proteins36 encoded by high-fidelity genes. 

Among those shown in Fig. 3A-D, membrane localization was reported for 33 in astrocytes, 

22 in oligodendrocytes, and 30 in microglia, but only 13 in neurons (inside track). This 

result may reflect the homeostatic functions of glia as regulators of extracellular CNS 

environments. More generally, the non-random distributions of cellular localizations suggest 

that high-fidelity genes are expressed as proteins in their corresponding cell classes. Indeed, 

PPI37 among high-fidelity gene products for each cell class revealed significantly more 

interactions than expected by chance (Fig. 3A-D, interior lines).

Because high-fidelity genes should encode optimal biomarkers, we searched for high-fidelity 

genes in the Human Protein Atlas (http://www.proteinatlas.org) to identify novel reagents for 

labeling human CNS cell classes. We identified validated antibodies for PON2 (astrocytes), 

DBNDD2 (oligodendrocytes), APBB1IP (microglia), and CELF2 (neurons) (Fig. 3A-D). 

Dual immunostaining with canonical markers revealed almost perfect concordance in human 

frontal cortex (Fig. 3E-H; Fig. S5).

Gene coexpression analysis of intact tissue samples reveals the core transcriptional 
features of diverse CNS cell classes

Variation among intact tissue samples can also reveal transcriptional features of less 

abundant human CNS cell classes. Following the general strategy outlined in Fig. 1, we 

calculated genome-wide expression fidelity for human cholinergic neurons, midbrain 

dopaminergic neurons, endothelial cells, ependymal cells, choroid plexus cells, mural cells, 

oligodendrocyte progenitor cells, and Purkinje neurons (Figs. 4, S6; Table S3). This analysis 
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correctly assigned high fidelity scores for canonical markers of these cells. For example, 

choline acetyltransferase (CHAT), the high-affinity choline transporter (SLC5A7), and the 

vesicular acetylcholine transporter (VACHT) all ranked within the top ~0.2% for genome-

wide cholinergic neuron expression fidelity, while claudin 5 (CLDN5), tyrosine kinase with 

immunoglobulin like and EGF like domains 1 (TIE1), and platelet and endothelial cell 

adhesion molecule 1 (PECAM1) all ranked within the top ~0.3% for genome-wide 

endothelial cell expression fidelity (Table S3). High-fidelity genes were significantly and 

specifically enriched with published markers of each cell class from multiple independent 

studies; furthermore, novel markers predicted by our analysis were validated by in situ 
hybridization in adult mouse brain38 (Figs. 4, S6).

High-fidelity genes enable predictive modeling of gene expression in transcriptomes from 
intact tissue samples

The reproducibility of gene coexpression modules corresponding to major cell classes (Table 

S2, Fig. S4) suggests that transcriptomes of intact CNS samples can be modeled as a 

function of cellular abundance. We explored this topic systematically by performing 

multiple linear regression in 47 CNS datasets with ≥40 samples to determine how much 

expression variation in a shared set of ~9600 genes could be explained by variation in the 

abundance of neurons, astrocytes, oligodendrocytes, and microglia. To estimate the relative 

abundance of each cell class in each dataset, we summarized the expression patterns of high-

fidelity genes (Fig. 5A). To avoid circularity, we used a leave-one-out cross-validation 

strategy to redefine high-fidelity genes for each dataset by recalculating expression fidelity 

for each cell class using the remaining 46 datasets (as in Fig. 1C-G). More aggressive 

exclusion criteria (e.g. excluding 90% of datasets before redefining high-fidelity genes) 

produced nearly identical results (Fig. S7). Before modeling, each dataset was downsampled 

(n=40) to facilitate comparisons of results; this process was performed iteratively to ensure 

robustness (Fig. 5A).

Implementing this strategy, we obtained several important results (Fig. 5B). First, using only 

one gene (with the highest fidelity) as a surrogate for each cell class, our models explained 

32.2% of total transcriptional variation averaged over all datasets and up to ~50% in some 

datasets (vs. ~0.1% for permuted data). Second, increasing the number of gene surrogates/

cell class (e.g. using the top 10 or top 50 high-fidelity genes) provided only modest 

performance improvements (unless otherwise stated, subsequent models used the top 10 

high-fidelity genes). Third, prediction accuracy depended strongly on technology platform 

(p<10−7, ANOVA) but not CNS region (p=0.92, ANOVA). Among microarrays, older 

platforms fared substantially worse than newer platforms, while RNA-seq generally 

outperformed all microarrays.

Despite their simplicity, our models explained >50% of expression variation, averaged over 

all datasets, for ~2000 genes (Fig. 5C). Over all genes, the average amount of expression 

variation explained by our models followed a sigmoid function (Fig. 5C). We benchmarked 

model performance against the maximal explanatory power of any four predictors by using 

PC1–4 from each dataset as covariates for multiple regression. On average, PC1–4 explained 

49.6% of total gene expression variation over all datasets (Fig. 5B). Thus, modeling gene 
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expression in the human CNS as a function of neuron, astrocyte, oligodendrocyte, and 

microglia abundance achieved, on average, 72.0% of the maximal explanatory power for all 

datasets and 80.1% for RNA-seq datasets (Fig. 5B).

We reasoned that model performance for RNA-seq might exceed that for microarrays since 

the latter have many probes for transcripts unlikely to be expressed in the CNS. We therefore 

stratified genes by expression levels and examined model performance. As expected, 

predictive power decreased at lower expression levels, with the sharpest decline between the 

3rd and 4th quartiles (Fig. 5D).

We next explored how transcriptional variation related to variation in the abundance of 

individual cell classes, sex, and age. Neuronal abundance explained more transcriptional 

variation than glial abundance (Fig. 5E). After controlling for variation in the abundance of 

major cell classes, model performance did not substantially improve by including sex or age 

as covariates (Fig. 5E). We further explored this topic by correlating estimated cellular 

abundance with age in 32 CNS datasets. Neuronal and oligodendroglial abundance were 

negatively correlated with age, while astrocytic and microglial abundance were positively 

correlated (Fig. 5F). These results suggest that age-related changes in gene expression in 

bulk CNS transcriptomes are primarily driven by age-related changes in cellular 

composition.

Gene expression modeling applications

The ability to predict gene expression in transcriptomes from intact CNS samples has 

important implications. We illustrate the versatility of this approach through comparative 

analysis of gene expression models in disease, among CNS regions, and between species.

Application #1: Contextualizing disease genes and modeling gene expression in 
pathological samples

We asked whether genes associated with CNS diseases39 are enriched among genes 

primarily expressed by astrocytes, oligodendrocytes, microglia, or neurons (Fig. 6A-B). 

Clustering select CNS diseases by enrichment p-values revealed several interesting findings. 

First, except for ALS, genes associated with neurodegenerative disorders were most 

enriched among genes expressed by microglia and astrocytes. Second, genes associated with 

neurodevelopmental disorders, epilepsy, and psychiatric disorders were most enriched 

among genes expressed by astrocytes and neurons. Third, genes expressed by astrocytes 

consistently showed the greatest enrichment with candidate CNS disease genes.

Beyond broad associations between diseases and cell classes, gene expression modeling can 

also reveal which cell classes are most likely to express candidate disease genes. For 

example, we modeled gene expression for Alzheimer’s diseases (AD) risk genes as a 

function of neuronal, oligodendroglial, astrocytic, and microglial abundance in 

transcriptomes from intact neurotypical adult human temporal cortex (Fig. 6C). Expression 

levels of early-onset AD risk genes APP and PSEN1 were mostly explained by variation in 

neuronal and oligodendroglial abundance, respectively. In contrast, expression levels of late-

onset AD risk genes APOE and TREM2 were mostly explained by variation in astrocytic 
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and microglial abundance, respectively. These results were consistent across 47 CNS 

datasets (Fig. 6D).

Compared to control (CTRL) human brain samples, AD samples should contain fewer 

neurons and proportionately more glia. We tested this hypothesis by using expression 

patterns of high-fidelity genes to infer the relative abundance of neurons, astrocytes, 

microglia, and oligodendrocytes in three gene expression datasets from intact postmortem 

brain samples of CTRL and AD subjects40–42. We observed a highly significant decrease in 

neuronal abundance in AD in all datasets (Figs. 6E, S8A-B). In two out of three datasets, 

there were significant increases in the relative abundance of astrocytes and microglia in AD, 

with similar trends in the third (Figs. 6E, S8A-B). Interestingly, there were no significant 

differences in oligodendrocyte abundance between CTRL and AD in any dataset (Figs. 6E, 

S8A-B). Importantly, simulations revealed that estimates of cellular abundance were robust 

to a wide range of transcriptional dysregulation among genes used to derive these estimates 

(Fig. S9). This strategy can help determine whether variable cellular composition is 

associated with diverse CNS disorders.

Because AD brain samples have fewer neurons and proportionately more astrocytes/

microglia than CTRL, differential expression analysis of intact tissue samples will reveal 

down-regulation of neuronal transcripts and up-regulation of astrocytic/microglial 

transcripts. However, predictive modeling can identify cell-intrinsic transcriptional 

differences between CTRL and AD that are independent of changes in cellular composition. 

This strategy is analogous to that of Kuhn et al.11, except we use expression patterns of high-

fidelity genes to estimate cellular abundance. Surprisingly, after controlling for differences 

in cellular composition between CTRL and AD, we identified many genes that were 

consistently up-regulated in AD neurons (Fig. 6F, Table S5). These genes did not include 

canonical AD risk genes (Fig. S8C), but rather genes involved in protein ubiquitination, 

catabolism, proteasome degradation, and mitochondrial function (Fig. S8D). Examples are 

shown in Figs. 6G, S8.

Application #2: Identifying transcriptional differences in major cell classes among CNS 
regions

We recalculated expression fidelity for each CNS region with ≥3 datasets and clustered each 

cell class (Fig. 7A-D). Regional differences in expression fidelity were greatest for neurons, 

with bifurcation between cortical/subcortical structures (Fig. 7D-E). In contrast, 

oligodendrocyte expression fidelity was very similar among brain regions (Fig. 7B,E). 

Comparatively, microglia and astrocytes exhibited more regional variation in expression 

fidelity than oligodendrocytes, but less than neurons (Fig. 7A,C,E).

We developed a conservative strategy to identify binary expression differences in major cell 

classes among human brain regions (Fig. 7F-G, Table S6). Many genes were predicted to 

distinguish regional subpopulations of neurons, but we found no evidence for binary 

expression differences among regional subpopulations of microglia or oligodendrocytes 

(Figs. 7H, S10). However, we did predict binary expression differences among regional 

subpopulations of human astrocytes (Fig. 7H-I). For example, CHRDL1 was predicted to be 

expressed by astrocytes in frontal cortex and striatum, but not diencephalon or midbrain 
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(Fig. 7I-K). To validate this prediction, we performed single-molecule fluorescent in situ 
hybridization (FISH) for Chrdl1 and Aldh1l1 in mouse cortex and thalamus. Aldh1l1 is 

expressed ubiquitously by astrocytes22 and was detected in both regions (Fig. 7J-L). 

Expression of Chrdl1 colocalized with Aldh1l1 in mouse cortex but not thalamus (Fig. 7L), 

as predicted.

Application #3: Identifying transcriptional differences in major CNS cell classes between 
species

We analyzed 1346 mouse brain transcriptomes to determine genome-wide expression 

fidelity for astrocytes, oligodendrocytes, microglia, and neurons (Tables S1, S7; Fig. S11). 

Expression fidelity was significantly correlated between mice and humans for each cell 

class, with the greatest similarity for neurons (Fig. 8A). We note that evolutionary 

conservation of neuronal expression fidelity relative to glia is mirrored at the protein level 

(Fig. 3A-D, black tracks). These findings may indicate that neurons are under greater 

evolutionary constraint than glia.

We applied stringent criteria and identified 50 genes predicted to be ‘on’ in human CNS cell 

classes and ‘off’ in the corresponding mouse CNS cell classes, as well as six genes with the 

opposite pattern (Fig. 8B, Table S8). ~85% of these differences were predicted to occur in 

glia (Fig. 8B). We also analyzed 476 outgroup samples from chimpanzee and macaque 

brains (Table S1). Of the 50 genes predicted to be expressed in human but not mouse cell 

classes, 29 were significantly associated with the same cell class in at least one primate 

dataset; conversely, of the six genes with the opposite pattern, none was significantly 

associated with the same cell class in any primate dataset (Table S8). For example, 

expression variation of MRVI1 was largely explained by astrocyte abundance in primates, 

but not mice (Figs. 8B, S12A-B). Conversely, expression variation of PLA2G7 was largely 

explained by astrocyte abundance in mice, but not primates (Figs. 8B, S12A-B). Single-

molecule FISH confirmed that expression of MRVI1 and PLA2G7 is specific to human and 

mouse astrocytes, respectively (Fig. S12C-D).

To demonstrate the ability of our analyses to deliver functional insights into the unique 

biology of human brains, we focused on the unexplained fact that human astrocytes are 

much larger than mouse astrocytes (and non-human primate astrocytes)43. This phenotype 

has important implications for neuronal function, since one human astrocyte can encompass 

~2MM synapses vs. ~100K synapses for one mouse astrocyte43. We reasoned that genes 

expressed by human but not mouse astrocytes might contribute to this phenotype. We were 

particularly intrigued by peripheral myelin protein 2 (PMP2; Fig. 8B), which encodes a 

fatty-acid binding protein that maintains membrane lipid composition in Schwann cells44. In 

the human CNS, PMP2 expression was extremely high (mean percentile: 96.2) and largely 

explained by astrocyte abundance, while in the mouse CNS Pmp2 expression was effectively 

absent (mean percentile: 11.2) and unrelated to astrocyte abundance (Fig. 8B-D). 

Furthermore, independent RNA-seq data from human, chimpanzee, macaque, and mouse 

neocortex45 revealed a monotonic increase in PMP2 expression from mouse to human (Fig. 

8E).
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Immunostaining revealed widespread PMP2 in human neocortical astrocytes but no PMP2 in 

mouse neocortex (Fig. 8F), despite robust expression by Schwann cells (Fig. S12E). To test 

whether PMP2 could increase mouse astrocyte size in vivo, we delivered a viral construct 

expressing PMP2 under an astrocyte-specific promoter to neonatal mouse brains and 

analyzed the morphology of transduced astrocytes after 42d (Fig. 8G). Forced expression of 

PMP2 in mouse astrocytes significantly increased their maximum diameter and number of 

primary processes (Fig. 8H-I). The increase in maximum diameter corresponded to an 

increase in mouse astrocyte volume of ~50% (assuming sphericity). We repeated this 

experiment with a different viral construct and obtained nearly identical results (Fig. S12F). 

To our knowledge, these data provide the first molecular explanation for morphological 

differences between human and mouse astrocytes. More generally, our findings illustrate 

how variation among intact tissue samples can predict cell-class-specific transcriptional 

features with important functional implications for human neurobiology.

DISCUSSION

We have described an approach to reveal the core transcriptional features of cellular identity 

via integrative gene coexpression analysis of intact tissue samples. Compared to ‘bottom-up’ 

methods such as FACS, IP, and SC/SN, the main advantages of our ‘top-down’ approach 

include: i) elimination of the need for fresh tissue; ii) applicability to huge amounts of 

existing data; iii) elimination of technical variability caused by tissue dissociation/cDNA 

preamplification; iv) elimination of sampling bias associated with cell/nucleus capture; v) 

ability to estimate the relative abundance of cell classes among intact tissue samples; and vi) 

ability to derive highly robust inferences about the core transcriptional features of cellular 

identity based on aggregate analysis of billions of cells.

Our approach also has important limitations. False-positive associations can result from 

technical factors (e.g. batch effects) or biological factors such as cellular collinearity. For 

example, we consistently observed that genes with high expression fidelity for 

oligodendrocytes had higher expression fidelity for microglia (and vice versa) than they did 

for astrocytes or neurons. Because oligodendrocytes and microglia are more abundant in 

white matter than gray matter46, variation in the ratio of white matter to gray matter in CNS 

samples drives covariation in the abundance of these cell classes and the genes they express. 

False-negative associations can result from technical factors such as limitations in dynamic 

range/transcriptome coverage or probe failures, as well as biological factors like alternative 

splicing. Notwithstanding these limitations, the genes with the highest expression fidelity for 

major CNS cell classes are already remarkably stable.

It is interesting to consider the ability of our approach to detect transcriptional signatures of 

less abundant cell classes (e.g. Figs. 4, S6). The ability to discern the transcriptional 

signature of a cell class in intact tissue samples depends on many factors, including its 

representation, the uniqueness and abundance of its transcripts, its stoichiometry with other 

cell classes, the technology platform, the algorithmic approach, and the sampling strategy8. 

Some of these factors can be optimized to improve sensitivity. Ultimately, we envision 

combining top-down and bottom-up strategies to fully deconstruct the transcriptional 

architecture of biological systems.
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Gene expression fidelity estimates were highly robust to the choice of gene set used for 

enrichment analysis, but more so for glia than neurons. This result indicates that neuronal 

diversity may require additional strategies to optimize estimates of neuronal expression 

fidelity, particularly on a regional basis. For example, the neuronal gene sets we used do not 

capture the transcriptional profile of cerebellar granule neurons, which is highly 

distinct21, 29, 33. To better account for neuronal diversity, future studies may combine neuron 

subtype-specific gene sets for enrichment analyses.

Our results suggest that the functional identity of a cell class can be conceived as a vector of 

genes ranked by the fidelity with which they are expressed in that cell class relative to all 

other cells in the biological system of interest. An advantage of this framing is that it is 

inherently context-dependent. Beyond revealing novel biomarkers and cellular phenotypes, 

such definitions can provide ‘molecular rulers’ for measuring the validity of human cells 

derived in vitro for disease modeling/cell-replacement therapies. Furthermore, these 

definitions can be tested in de novo CNS transcriptomes for their ability to predict gene 

expression through mathematical modeling.

Multivariate analyses of CNS transcriptomes often use module detection/clustering methods 

or projection methods such as principal component analysis. Although these methods have 

produced many important insights, they are inherently descriptive and do not facilitate 

comparisons among independent datasets. Because the building block of any biological 

system is the cell, and cells are distinguished by the genes they express, an alternative 

approach is to model gene expression as a function of cellular composition. We have shown 

how expression patterns of high-fidelity genes can be used for this purpose. The resulting 

models are highly robust, grounded in biology, easily compared among independent 

datasets, and capable of extracting cell-class-specific insights from intact tissue samples. 

Using this approach, we explored how predictive models of gene expression in 

transcriptomes from intact CNS samples can inform studies of aging, disease genes, 

pathological samples, regional heterogeneity, and species differences (Supplementary Note).

Our study is based on a simple idea: variation in cellular composition among intact tissue 

samples will drive covariation of transcripts that are uniquely or predominantly expressed in 

specific kinds of cells. Although we have focused here on gene expression, our approach can 

also be applied to other types of molecular data, thereby offering a generalizable strategy for 

determining the core molecular features of cellular identity in intact biological systems.

ONLINE METHODS

1. Integrative analysis of human CNS transcriptomes

We obtained publicly available gene expression data from eight studies21, 27–33 and one 

resource (http://www.brainspan.org/) that profiled large numbers of postmortem CNS bulk 

tissue samples from neurotypical humans. Expression profiling was performed on six 

technology platforms, including RNA-seq and various commercial microarrays. Samples 

from each of the nine sources were separated into 62 datasets representing 19 major 

neuroanatomical regions. Each regional dataset consisted of at least 25 samples, all of which 
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came from adults (≥ 18 years). After removing outliers (see below), we analyzed a total of 

7221 transcriptomes (Table S1).

1.1 Data preprocessing and quality control—Preprocessing was performed from 

raw data when possible. Affymetrix microarray raw data (.CEL files) were downloaded from 

Gene Expression Omnibus (GEO: http://www.ncbi.nlm.nih.gov/geo/) using the following 

accession IDs: GSE1188228, GSE2521929, GSE379027, GSE4564231, and GSE4670632. 

Probe-level data from Affymetrix Exon 1.0 microarrays (GSE25219 and GSE46706) were 

summarized using the Robust Multi-Array (RMA) algorithm50 at the gene level with 

Affymetrix Power Tools software (APT 1.15.2) and reverse log-transformed for further 

processing.

Affymetrix U133A and U133Plus2 microarray probes from GSE3790, GSE45642, and 

GSE11882 were pruned to eliminate non-specific and mis-targeted probes using the 

ProbeFilter R package (Dai et al. 2005) with mask files obtained from http://

masker.nci.nih.gov/ev/51. After applying the mask files, only probe sets with at least seven 

remaining probes were retained for further analysis. Expression values were generated in R 

using the expresso function of the affy R package52 with “mas” settings and no 

normalization, followed by scaling of arrays to the same average intensity (200). For 

GSE45642, gene expression was not scaled and technical replicates were removed (AMY 

samples restricted to site I; DLPFC samples restricted to site D; HIP and NUAC samples 

restricted to site M). Non-normalized Illumina microarray data were obtained from GEO for 

GSE3619230. Normalized expression data from GTEx, BrainSpan, and the Allen Brain 

Institute (ABI) were downloaded from their respective websites (http://www.gtexportal.org/, 

V6 data release; http://www.brainspan.org/, Oct2013 data release; and http://human.brain-

map.org/, March2013 data release). For the RNA-seq datasets (GTEx and BrainSpan), 

RPKM gene expression values were used.

Sample information for datasets with GEO accession IDs was obtained using the GEOquery 

R package53 with the exception of hybridization batch information, which was extracted 

from the header information of Affymetrix .CEL files when available. Each of the 62 

regional datasets was individually processed using the SampleNetwork R function54, which 

is designed to identify and remove sample outliers, perform data normalization, and adjust 

for batch effects55. We defined sample outliers as those that were more than four standard 

deviations below the mean connectivity of all samples measured over all features (Z.K < 

−4). Iterative pruning was applied for each regional dataset to remove all samples with Z.K 
< −4 (Table S1). For non-normalized data (GSE11882, GSE3790, GSE4542, and 

GSE36192), quantile normalization56 was then performed. If a batch effect was present 

(defined as a significant association between the 1st principal component of the expression 

data and a technical batch covariate), batch correction was performed using the ComBat R 

function55, which is implemented in SampleNetwork. For GTEx data, we detected a large 

batch effect due to center site. We therefore restricted our analysis to samples acquired by 

centers ‘B1, A1’ or ‘C1, A1’. Lastly, prior to coexpression analysis, probes / genes that had 

zero variance across all samples were removed. For GTEx, we further restricted our analysis 

to 27,540 transcripts that were detected (≥ 0.1 RPKM) in at least 200 CNS samples. Table 

S1 provides additional details on data preprocessing and quality control.
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1.2 Unsupervised gene coexpression module detection—Gene expression 

datasets can exhibit different correlation structures due to biological and technical factors 

such as cellular heterogeneity and sample size. This variability makes it difficult to apply a 

single set of parameters for coexpression analysis across many independent datasets. To 

address this challenge, we analyzed gene coexpression relationships in each regional dataset 

in the R statistical computing environment (http://cran.us.r-project.org) using a four-step 

approach57, 58. First, pairwise biweight midcorrelations (bicor) were calculated for all 

possible pairs of probes / genes over all samples in each dataset using the bicor function in 

the WGCNA R package25. Bicor is a robust correlation metric that is less sensitive to 

outliers than Pearson correlation but often more powerful than Spearman correlation59, 60. 

Second, probes / genes were clustered using the flashClust25 implementation of a 

hierarchical clustering procedure with complete linkage and 1 - bicor as a distance measure. 

Third, the resulting dendrogram was cut at a series of heights corresponding to the top 

0.01%, 0.1%, 1%, 2%, 3%, 4%, or 5% of pairwise correlations for the entire dataset. 

Moreover, for each of these thresholds, we modified the minimum module size to require 8, 

10, 12, 15, or 20 members. This approach yielded 7 × 5 = 35 different gene coexpression 

networks for each regional dataset. Third, initial modules in each network were summarized 

by their module eigengenes, which is defined as the first principal component obtained by 

singular value decomposition of the coexpression module24. Fourth, highly similar modules 

were merged if the correlations of their module eigengenes exceeded an arbitrary threshold 

(0.85). This procedure was performed iteratively for each network such that the pair of 

modules with the highest correlation (> 0.85) was merged first, followed by recalculation of 

module eigengenes, followed by recalculation of all correlations, until no pairs of modules 

exceeded the threshold. The WGCNA measure of intramodular connectivity (kME) was then 

calculated for each probe / gene with respect to all modules by correlating its expression 

pattern across all samples with each module eigengene16, 24.

1.3 Module enrichment analysis with cell-class-specific gene sets—To identify 

cell-class-specific gene coexpression modules in each regional dataset, we cross-referenced 

module composition with gene sets consisting of published markers of major cell classes. 

For astrocytes, oligodendrocytes, and neurons, we used sets of genes that were expressed 

>10x higher in each cell class (purified from mouse forebrain) vs. the other two (Tables S4–

6 from Cahoy et al.22; n=184 astrocyte genes, 130 oligodendrocyte genes, 319 neuron 

genes). For microglia, we used a set of genes expressed significantly higher in purified 

mouse microglia vs. whole brain (Table S2 from Hickman et al.23; n=99 genes). For mural 

and ependymal cells, we used gene sets from adult mouse forebrain single-cell RNA-seq 

data (Table S1 from Zeisel et al.61; n=155 mural genes, 484 ependymal genes). For 

endothelial cells, we used a set of genes that was significantly associated with known 

endothelial markers across 32 human organs (Table S3, tab 1, from Butler et al.62; n=237 

genes). For OPCs, we used a set of genes identified in developing human midbrain single-

cell RNA-seq data (Table S1 from La Manno et al.63; n=48 genes). For choroid plexus cells, 

we used a set of genes from the Allen Mouse Brain Atlas (Table S1 from Lein et al.38; 

n=101 genes). For Purkinje neurons, we used a set of genes identified from human cerebellar 

samples (Table S6 from Kuhn et al.64; n=80 genes). For dopaminergic and cholinergic 

neurons, we created sets of genes based on the top 50 genes ranked by correlation to TH and 
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CHAT in our human midbrain and striatum expression datasets, respectively. Modules were 

defined as all unique genes with positive kME values that were significant after applying a 

Bonferroni correction for multiple comparisons (p < 0.05 / (# probes or genes in the regional 

dataset × # of modules in the network)). If a probe / gene was significantly correlated with 

more than one module it was assigned to the module for which it had the highest kME value. 

For each regional dataset, enrichment analysis was performed for all modules in all (n = 35) 

networks using a one-sided Fisher’s exact test as implemented by the fisher.test R function. 

The module with the most significant enrichment for each cell-class gene set was identified 

in each regional dataset.

1.4 Data integration and calculation of gene expression fidelity—Operationally, 

we define the transcriptional ‘profile’ of a cell class in a given dataset as a list of probes / 

genes ranked by descending kME values for the most significant cell-class module. To create 

‘consensus’ transcriptional profiles for each cell class, transcriptional profiles from 

individual datasets were combined using the following approach. First, datasets that did not 

contain a module that was significantly enriched with markers of a given cell class after 

applying a Bonferroni correction for multiple comparisons (p < 0.05 / # modules) were 

excluded (Table S2). To reduce collinearity among endothelial, mural, choroid plexus, and 

ependymal cell-class signatures, we further pruned regional datasets in which a given cell-

class module also showed significant enrichment for any other cell-class module. For 

dopaminergic neurons, fidelity calculations were restricted to midbrain datasets. Second, 

probe / gene identifiers from all datasets were mapped to a common identifier (HomoloGene 

ID data build 68). Third, kME vectors for each cell-class module in microarray datasets (in 

which individual transcripts are often targeted by multiple probes) were collapsed to unique 

identifiers by retaining for each HomoloGene ID the probe with the highest kME value. 

Because kME values are correlation coefficients, they cannot be averaged directly over 

independent datasets of different sample sizes. Therefore, to aggregate cell-class-specific 

kME values for a given HomoloGene ID across regional datasets, we used Fisher’s method 

for combining correlation coefficients from independent datasets65. We implemented this 

method by initially transforming kME values using the Fisher transformation:

Zgdc = 1
2 ln

1 + kME . gdc
1 − kME . gdc

(1)

where g indexes the gene, d indexes the regional dataset, and c indexes the cell class. An 

average of the resulting z-scores (weighted by sample size) was then determined with the 

following equation:

Zgc =
∑d = 1

D zgdc nd − 3

∑d = 1
D nd − 3

(2)
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where n denotes the number of samples in dataset d. The sampling standard deviation of z−gc

is:

SD Zgc = 1
∑d = 1

D nd − 3
. (3)

Dividing the ‘average’ z-scores by the sampling standard deviation yields the genome-wide 

statistics displayed in Fig. 2, Fig. 4, Fig. S6 and Fig. S11A-D, or gene expression fidelity:

f idelity = Zgc =
zgc

SD zgc
. (4)

For interpretability, we also convert z−gc into an ‘average’ correlation coefficient by 

performing the reverse Fisher transformation:

rgc =
exp 2zgc − 1
exp 2zgc − 1

, (5)

which is reported as ‘Mean.r’ along with expression fidelity for all genes with respect to all 

cell classes for humans (Table S3) and mice (Table S7). It is important to note that gene 

expression fidelity, as defined here, is robust to the choice of gene set used for enrichment 

analysis, as illustrated in Fig. S2.

1.5 Calculation of gene expression fidelity in distinct CNS regions—We 

calculated gene expression fidelity in individual CNS regions represented by at least three 

independent datasets (FCX, STR, HIP, DI, and MID), as described above. We only included 

regional datasets that contained a significant cell-class module, as defined above.

1.6 Enrichment analysis of high-fidelity genes—The following gene sets were 

used to demonstrate that high-fidelity genes were significantly and specifically enriched 

(one-sided Fisher’s exact test) with expected cell-class markers from multiple independent 

studies: Fig. 4 (A1, O1, M1, N1 [n=100 genes]: Zhang et al.47; A2, O2, N2 [n=184, 130, and 

319 genes]: Cahoy et al.22; M2 [n=99 genes]: Hickman et al.23; C1 [n=126 genes]: Doyle et 

al.66; C2 [n=92 genes]: Mancarci et al.67; D1, D2 [n=69 and 71 genes]: La Manno et al.63; 

E1 [n=100 genes]: Zhang et al.47; E2 [n=237 genes]: Butler et al.62; Ep1 [n=484 genes]: 

Zeisel et al.61; Ep2 [n=50 genes]: Gokce et al.68); Fig. S6 (Cp1 [n=101 genes]: Lein et al.38; 

Cp2 [n=50 genes]: Gokce et al.68; Mu1 [n=155 genes]: Zeisel et al.61; Mu2 [n=260 genes]: 

He et al.69; Op1 [n=48 genes]: La Manno et al.63; Op2 [n=100 genes]: Zhang et al.47; P1 

[n=80 genes]: Kuhn et al.64; P2 [n=43 genes]: Mancarci et al.67); Fig. 2 (A1, O1, M1, N1 

[n=100 genes]: Zhang et al.47; A2, O2, N2 [n=184, 130, 319 genes]: Cahoy et al.22; M2 
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[n=99 genes]: Hickman et al.23; A3, O3, N3 [n=38, 73, 67 genes]: Lein et al.38; M3 [n=152 

genes]: Butovsky et al.48).

1.7 Visualization of core cell-class genes and their characteristics—The top 

50 genes ranked by expression fidelity for each cell class were visualized with custom 

software using the ggplot2 package70 in R (Fig. 3A-D, Fig. S11E-H). Mean gene expression 

levels were calculated for all samples in each regional dataset, converted to percentile ranks, 

and averaged across datasets (‘CNS expression’). Regional percentile ranks (used in the 

analysis presented in Fig. 7) were similarly calculated for all samples from a given CNS 

region using ABI, GSE46706, and GTEx datasets. PubMed citations were extracted for each 

gene symbol using the RISmed package in R on 10/27/2016. To obtain total citations with 

potential relevance to specific cell classes we queried ‘[gene symbol]’ and ‘cell class’ (e.g. 

‘neuron’). Cellular localization data were extracted from the COMPARTMENTS resource36. 

Human protein-protein interaction (PPI) data were downloaded from the STRING database 

(file: 9606.protein.links.detailed.v10.txt)37. PPI links in Fig. 3 represent STRING combined 

score values > 350, which correspond to medium-confidence PPI predictions. Empirical p-

values for over-representation of putative protein interactions (PPI score > 350) among the 

top 50 cell-class genes were calculated from n = 100,000 permutations of 50 randomly 

sampled genes from a background of 18,451 HomoloGene identifiers (IDs present in at least 

one regional dataset). Visualizations were similarly made for the top 50 mouse cell-class 

genes ranked by expression fidelity (Fig. S11) except PubMed citations were extracted on 

12/28/2016 and the following STRING database file was used: 

10090.protein.links.detailed.v10.txt.

1.8 Figure schematic licensing information—Human brain (Figs. 1A,C and 7G) 

and cell-class schematics (Figs. 1A,G, and 8B) were obtained from Servier Medical Art 

under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/

licenses/by/3.0/legalcode). Color and dimensions were modified.

2. Single-cell (SC) / single-nucleus (SN) RNA-sequencing analysis

We obtained publicly available SC and SN RNA-seq data from four studies of adult human 

and mouse brains1, 4, 26, 34. Count data and sample information were downloaded from GEO 

using the accession IDs provided in Table S1. The SC dataset from Darmanis et al.1 

consisted of 332 cells isolated from temporal cortices of eight individuals undergoing 

surgery for epilepsy, while the SC dataset from Tasic et al.26 consisted of 1375 ‘core’ cells 

isolated from primary visual cortices of various transgenic mice (see Supplementary Data 

Table 3 from Tasic et al.26). The SN dataset from Lake et al. consisted of 35289 nuclei from 

postmortem samples of cortex and cerebellum from six individuals, while the SN dataset 

from Habib et al.4 (which was obtained from https://www.gtexportal.org/home/datasets) 

consisted of 14963 nuclei from postmortem samples of cortex and hippocampus from five 

individuals. In all cases, we used the authors’ original classifications to categorize cells.

2.1 Cell-class module eigengenes predict relative cellular abundance—To test 

the ability of cell-class module eigengenes to predict variation in cellular abundance, we 

analyzed gene coexpression relationships in synthetic mixtures of single-cell RNA-seq data 
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from human1 and mouse26 brain. For the human data, counts were normalized by dividing 

the total number of reads for each gene by the total number of reads for the sample. 

Normalized data were then multiplied by one million to yield counts per million (CPM), 

added by 1, and log10-transformed. For the mouse data, RPKM was used. We created 

synthetic mixtures by summing single-cell expression data over all genes from randomly 

sampled combinations of astrocytes, oligodendrocytes, microglia, and neurons. Each 

synthetic sample consisted of 16 or 22 total cells for the human and mouse data, 

respectively, which was based on the minimum number of unique cells that were available 

for any cell class (in both cases, microglia). We generated 100 synthetic samples and 

performed gene coexpression analysis and cell-class module detection as described above. 

We chose a sample size of n=100 for the synthetic tissue sample coexpression analysis to 

best match the sample sizes of our acquired human regional datasets. We repeated this 

process 10 times. For each iteration, estimates of relative cellular abundance were 

determined from cell-class module eigengenes (i.e. PC1 of the most significant cell-class 

modules).

In principle, the ability of cell-class module eigengenes to estimate relative cellular 

abundance across conditions (e.g. control samples versus Alzheimer’s disease samples) 

could be confounded by concordant changes in the expression levels of high-fidelity genes 

that are used to estimate cellular abundance. For example, given two conditions, if the 

expression levels of high-fidelity genes uniformly increase in one condition but not the other 

it could appear that the relative cellular abundance had changed when it had not. To estimate 

the fraction of high-fidelity genes that would need to concordantly change to confound 

estimates of cellular abundance, we performed a simulation study of synthetic samples. 

Specifically, we created a ‘control’ dataset and a ‘condition’ dataset, each consisting of 100 

synthetic samples, by aggregating single-cell RNA-seq data from human brain1 as described 

above. To construct module eigengenes, we identified the top 10 astrocyte, oligodendrocyte, 

microglia, and neuron genes via differential expression analysis (see below) that were also 

expressed in at least 50% of cells in their respective cell class. We systematically perturbed 

gene expression in the ‘condition’ dataset by increasing the expression of randomly selected 

sets of genes (i.e. by selecting 1 to 10 out of the top 10 genes to perturb) by 100-, 50-, 25-, 

10-, 5-, or 2-fold for each cell class of interest. We then combined the synthetic condition 

data with the synthetic control data and calculated module eigengenes. We repeated this 

analysis a total of 10 times. We then compared these perturbed module eigengenes to the 

actual cellular abundance. As shown in Fig. S9, these perturbations had little effect on cell-

class composition estimates across a wide range of expression level changes as long as at 

least half of the genes used to calculate the eigengenes remain unaltered.

2.2 Gene coexpression analysis predicts differential expression among CNS 
cell classes—To test the relationship between cell-class module membership (kME) and 

differential expression, we calculated differential expression statistics from SC RNA-seq 

data using Monocle v2.2.071. Restricting our analysis to exactly the same cells that were 

used to construct each synthetic dataset (described above), we calculated genome-wide 

differential expression statistics for each cell class compared to all other cell classes. 

Because the Monocle output statistics do not indicate directionality (i.e. up- or down-
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regulation), we ordered genes based on p-value and fold-change. Therefore, genes with the 

highest differential expression percentile are the most significantly up-regulated in a given 

cell class, and vice versa. Figs. 1, S1 compare kME values from synthetic cell-class modules 

with differential expression percentiles for the corresponding cell class (averages of 10 

iterations).

2.3 Comparing gene expression fidelity with adult human SN RNA-seq data
—To examine the relationship between estimates of gene expression fidelity from intact 

tissue samples and estimates of differential expression among single cells, we calculated 

differential expression statistics from SN RNA-seq data for astrocytes, oligodendrocyte, 

microglia, and neurons, using the cell assignments provided by the authors of the original 

studies4, 34. We used count data as input and calculated the significance of differential 

expression using Monocle v2.2.071, ordering genes based on p-value and fold-change, as 

described above. Datasets were merged using HGNC gene symbol identifiers. To compare 

discordant results between fidelity and SN RNA-seq with orthogonal data (Fig. 2N-Q), we 

analyzed RNA-seq data for cell classes that were purified by immunopanning from human 

temporal lobe surgical resections3 (FPKM data from GEO; see Table S1). For each cell class 

(astrocytes, microglia, neurons, and mature [i.e. not O4+] oligodendrocytes), we averaged 

the expression values across replicate samples. To calculate the ‘proportion of transcripts’ 

for a given gene and cell class (Fig. 2N-Q), we divided the average expression value for that 

gene in a particular cell class by the sum of its average expression values for all cell classes.

3. Modeling gene expression in the human CNS

3.1 Modeling gene expression in the neurotypical CNS—To determine how much 

of the variation in human CNS transcriptomes can be explained by variation in the 

abundance of major cell classes, we performed multiple linear regression of gene expression 

(γs) in each regional dataset composed of s samples using the lm function in R:

γs = βo + ∑c = 1
C βcacs + εs (6)

where acs represents the inferred abundance in sample s of cell class c (where c = astrocyte, 

oligodendrocyte, microglia, or neuron), βc is the regression coefficient for cell class c, β0 is 

a constant, and acs is the error term. acs was estimated for each cell class using high-fidelity 

genes. Specifically, we calculated the 1st principal component (PC1) of the expression 

matrix for the top x high-fidelity genes (where x = 10 unless otherwise stated) over all 

samples in each regional dataset. PC1 was obtained through singular value decomposition of 

the scaled expression data using the svd (nu=1, nv=1) function in R, which is identical to the 

module eigengene metric24. When obtained in this fashion, PC1 of high-fidelity genes is a 

good predictor that is robust even when x is small (Fig. 5B).

To standardize modeling across datasets, we restricted our analysis to regional human CNS 

datasets with at least 40 samples (n = 47, Table S1). We restricted modeling to datasets with 

40 samples, to provide ~85% power to identify large effect sizes (f2 > 0.4, P < .05) when 

testing the hypothesis that the proportion of gene expression variance explained by variation 
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in the abundance of four cell types is zero. We performed gene expression modeling for 

~9600 genes that mapped to HomoloGene IDs that were present in all 47 datasets. If 

multiple probes mapped to a given HomoloGene ID, we retained the probe with the highest 

mean expression in the subset expression data. For each dataset, we randomly selected 10 

sets of 40 samples for gene expression modeling and averaged the adjusted r2 values from 

the ~9600 gene expression models for the 10 random subsets. We report adjusted r2 values 

because they facilitate comparisons of models with different numbers of parameters72. To 

avoid circularity in gene expression modeling, we redefined consensus cell-class signatures 

using a leave-one-out approach. Specifically, we calculated gene expression fidelity for each 

cell class as described below using 46 datasets, then used the resulting high-fidelity genes to 

infer cellular abundance and model gene expression in the 47th dataset (as illustrated in Fig. 

5A–C). This procedure was performed iteratively for all 47 datasets. In all cases, genes that 

were used to infer cellular abundance were excluded from gene expression modeling. For 

example, if the top 10 high-fidelity genes were used to infer cellular abundance, those 10 

genes were excluded from modeling to avoid circularity. Therefore, the total number of 

modeled genes depends on the total number of genes used to infer cellular abundance (i.e. 1, 

10, or 50 genes, as illustrated in Fig. 5B).

To further demonstrate the robustness of gene expression modeling as a function of inferred 

cellular abundance, we replicated the results shown in Fig. 5B after redefining consensus 

cell-class signatures using a leave-X-out approach, where X corresponded to 10, 20, 40, 60, 

80, or 90 percent of datasets, which were sampled at random (n = 10 iterations per value of 

X). Subsequent analysis and modeling was performed as described above. As shown in Fig. 

S7, gene expression modeling results were nearly identical for all values of X. These 

findings highlight the robust nature of gene expression fidelity, the resulting estimates of 

variation in cellular abundance, and the ensuing predictions of gene expression levels as a 

function of cellular composition in intact tissue samples. Furthermore, we did not observe 

consistent collinearity of estimated cellular abundance across datasets with the exception of 

oligodendrocytes and microglia, which tended to exhibit moderate positive correlations 

(~0.4) due to the increased concentration of these cells in white matter versus gray matter46. 

However, this relationship did not preclude the identification of high-fidelity genes for each 

cell class.

3.2 Modeling gene expression in Alzheimer’s disease (AD) brain samples—
Publicly available gene expression data from AD and control (CTRL) samples from three 

additional datasets (GSE48350, GSE44770, and GSE36980)40–42 were downloaded from 

GEO and preprocessed using the SampleNetwork R function54 to identify sample outliers. 

We defined sample outliers as those that were more than three standard deviations below the 

mean connectivity of all samples measured over all features (Z.K < −3). Iterative pruning 

was applied until all samples with Z.K < −3 were removed.

For GSE44770 gene expression data, which was acquired with a Rosetta Human 44k 

microarray platform, we focused our analysis on the dorsolateral prefrontal cortex (PFC) 

samples, which were found in the original publication to have more transcriptional changes 

associated with AD compared to visual cortex and cerebellum41. Starting with the raw CY5 

probe intensity values, we performed imputation of missing values73, quantile 
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normalization56, and batch correction55. We removed 20 sample outliers out of 230 PFC 

samples. Batch correction was performed using batch information provided in the original 

study.

For GSE48350 gene expression data, which was acquired with an Affymetrix U133 plus 2.0 

microarray platform, normalization was performed using the RMA algorithm50 with the 

justRMA function of the affy R package and reverse log-transformed for further processing. 

We removed 4 sample outliers out of 253 samples. Batch correction was performed55 using 

the hybridization batch date extracted from the .CEL file header information.

For GSE36980 gene expression data, which was acquired with an Affymetrix Gene 1.0 ST 

microarray platform, normalization was performed using the RMA algorithm50 with the 

justRMA function of the affy R package52 and reverse log-transformed for further 

processing. Due to small sample size (n = 79 samples), we did not remove any sample 

outliers.

To estimate relative cellular abundance in CTRL and AD samples (Fig. 6E, Fig. S8A,B) we 

calculated module eigengenes (PC1 obtained by singular value decomposition) using 

microarray probes that matched our consensus top 10 high-fidelity genes for each cell class. 

When multiple probes matched a high-fidelity gene, we retained the probe with the highest 

correlation to other high-fidelity genes. Module eigengenes were calculated from the 

combined expression data of CTRL and AD samples, which were jointly normalized as 

described above.

We performed gene expression modeling in these datasets for every probe using the top 10 

high-fidelity genes for each cell class as described above. For transcripts of high-fidelity 

genes that were targeted by multiple microarray probes, we retained the probe with the 

highest adjusted r2 value when modeled as a function of the inferred relative abundance of 

astrocytes, oligodendrocytes, microglia, and neurons.

Gene expression modeling was performed separately for CTRL and AD samples. We 

ensured that the number of samples and regions sampled were matched between AD and 

CTRL samples. For GSE44770, which contained more AD samples than CTRL samples, we 

took a random subset of AD samples to match the number of CTRL samples (95 out of 112). 

For GSE48350, we first subset the CTRL samples to donors ≥ 70 years old in order to match 

the ages of the AD and CTRL samples, which gave 71 CTRL and 79 AD samples. We 

subsequently took a random subset of the AD samples, attempting to match the region of the 

samples (16 out of 24 postcentral gyrus samples) which gave 14 CTRL and 15 AD 

entorhinal cortex samples, 20 CTRL and 19 AD hippocampus samples, 17 CTRL and 16 

AD postcentral gyrus samples, and 20 CTRL and 21 AD superior frontal gyrus samples. For 

GSE36980, we first subset the CTRL samples to donors ≥ 75 years old in order to match the 

ages of the AD and CTRL samples, which gave 35 CTRL and 32 AD samples. We 

subsequently took a random subset of the CTRL samples, attempting to match the regions of 

the samples (10 out of 12 temporal cortex samples) which gave 15 CTRL and 15 AD frontal 

cortex samples, 7 CTRL and 7 AD hippocampus samples, and 10 CTRL and 10 AD 

temporal cortex samples.
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To identify genes that were differentially expressed between CTRL and AD after controlling 

for variation in cellular abundance, we calculated the differences in t-statistics for cell-class 

model coefficients in CTRL and AD datasets. We then randomly split each dataset (using the 

sample subsets above) into two equal-sized groups of samples (where each half included 

CTRL and AD samples) and performed gene expression modeling for each half (n = 1000 

permutations). For each permutation, we calculated the differences in t-statistics for cell-

class model coefficients of the two randomly separated groups, which produced a null 

distribution of t-statistic differences for each cell-class parameter and each gene. Using the 

null distributions for each gene, we calculated empirical p-values for the measured t-statistic 

differences between CTRL and AD gene models. Genes were considered differentially 

expressed in a given cell class between CTRL and AD if the resulting p-values were < 0.05 

in each of the three independent datasets.

We note that in principle, the interpretation of modeling results can be confounded by 

concordant changes in cellular abundance and the expression levels of high-fidelity genes 

that are used to estimate cellular abundance. Simulation studies suggest that such a scenario 

is unlikely to occur unless more than half of the genes used to calculate an eigengene are 

transcriptionally dysregulated (Fig. S9). In practice, this possibility can be mitigated by 

comparing estimates of cellular abundance derived from different groups of high-fidelity 

genes, or by including a sufficiently large number of high-fidelity genes (e.g. 50) such that 

up- or down-regulation of any individual gene (or several genes) is unlikely to have an effect 

on estimates of cellular abundance.

Below we present example R code for resolving changes in cellular composition from 

changes in cell-class-specific transcriptional identity:

#Example illustrating how to identify cell-class-specific expression changes 

in intact tissue

#samples while controlling for differences in cellular composition:

#Load expression data. In this example rows are genes and columns are 

samples. Control samples are

#the first 100 columns (1:100) and condition samples are the second 100 

columns (101:200):

datExpr=read.table(“data.csv”)

#Create cell-class module eigengenes (i.e. relative cellular abundance 

estimates).

#Subset to cell-class genes of interest with a subset vector:

cell.expr=datExpr[subset,]

#Standardize expression values for each gene:
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cell.expr=t(scale(t(cell.expr)))

#Calculate module eigengene (ME, aka relative cellular abundance) using 

singular value

#decomposition:

ME=svd(cell.expr,nu=1,nv=1)$v[,1]

#To ensure positive module eigengene values correspond to higher expression 

levels,

#we assess the correlation with ME and gene expression of a cell-class gene:

if (cor(NME,as.numeric(datExpr[is.element(rownames(datExpr),subset[1]),]))<0)

{ME=−1*ME}

#To determine if relative cellular abundance is significantly altered 

between the conditions:

Condition=c(rep(“ctrl”,100),rep(“cond”,100))

wilcox.test(ME~Condition,data=tmp)$p.value

#To determine if a gene is differentially expressed between sample cohorts 

after controlling for

#differences in relative cellular abundance, we perform linear modeling in 

each condition with ME

#as the predictor:

#Recalculate MEs separately for each condition:

ME.ctrl=svd(t(scale(t(datExpr[is.element(rownames(datExpr),subset),1:100]))))

$v[,1]

ME.cond=svd(t(scale(t(datExpr[is.element(rownames(datExpr),subset),

101:200]))))$v[,1]

#Subset to gene of interest for each condition:

ctrl=datExpr[gene.subset,1:100]

cond=datExpr[gene.subset,101:200]

#Calculate modeling t-value for each condition:
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ctrl.tvalue=summary(lm(as.numeric(ctrl)~ME.ctrl))$coef[2,3]

cond.tvalue=summary(lm(as.numeric(cond)~ME.cond))$coef[2,3]

#To determine the significance of the t-value difference between condition 

and control,

#one can perform a permutation analysis of randomly sampled ‘control’ and 

‘condition’ datasets,

#using example code above, to calculate an empirical p-value.

3.3 Modeling gene expression to identify regional differences in 
transcriptional identities of major cell classes—To explore the regional 

heterogeneity of gene expression in major CNS cell classes, we adopted a conservative 

strategy to identify genes with binary expression patterns (i.e. ON in a given cell class in one 

region but OFF in the same cell class in another region). To reduce technical confounds, we 

restricted our analysis to pairwise comparisons of five brain regions (DI, FCX, HIP, MID, 

and STR) that were transcriptionally profiled in three independent studies (GTEx, 

GSE46707, and ABI). For each of these regional datasets (n = 15), we performed gene 

expression modeling as described above for all genes and samples using the top 10 high-

fidelity genes to infer the relative abundance of each cell class. A gene was considered to be 

‘regionally expressed’ in a specific cell class if it met the following criteria: i) it was 

significantly associated with the cell class in region 1 (p < 2.67×10−8, corresponding to a 

Bonferroni corrected p-value for the cell-class model coefficient based on the total number 

of gene models: 0.05/([4 cell classes]×[5 regions] × [48,170 ABI probes + 17,868 

GSE46706 genes + 27,526 GTEx genes])); ii) it was not significantly associated with the 

same cell class in region 2; iii) it was differentially expressed between region 1 and region 2 

(i.e. the mean expression percentile rank was >20 percentile ranks higher in region 1 vs. 

region 2; and iv) the preceding criteria were replicated in all three studies.

4. Analysis of CNS transcriptomes from non-human species

We obtained publicly available gene expression data from intact tissue samples of mouse, 

rhesus macaque, and chimpanzee brains (Table S1). Data preprocessing is described below.

4.1 Mouse brain expression data preprocessing, integration, and modeling—
Mouse gene expression data were obtained from 22 studies17, 22, 47, 66, 74–91 and one 

resource (http://www.genenetwork.org). Preprocessing was performed from raw data when 

possible. Affymetrix microarray raw data (.CEL files) were downloaded from GEO using 

the accession IDs provided in Table S1. We only processed wild-type samples from studies 

with multiple conditions. Expression values for Affymetrix 430A, 430 2.0, and 430A 2.0 

microarray probes were generated in R using the expresso function of the affy R package52 

with “mas” settings and no normalization. Probe-level data from Affymetrix Exon 1.0 and 

Gene 1.1 microarrays were summarized using the Robust Multi-Array (RMA) algorithm50 at 

the gene level with Affymetrix Power Tools software (APT 1.15.2) and reverse log-

transformed for further processing. Non-normalized Illumina microarray data were obtained 
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from GEO. For RNA-seq datasets, FPKM gene expression values (Ms.Barres, 

Ms.Fertuzinhos, Ms.GSE63078) or count data (Ms.GSE60312, Ms.GSE62669) were 

downloaded from GEO or the study’s website (Table S1). We normalized raw count data 

from Ms.GSE60312 by dividing the total number of counts for each gene by the total 

number of counts for the sample.

Sample information for datasets with GEO accession IDs was obtained using the R package 

GEOquery53 with the exception of hybridization batch information, which was extracted 

from the header information of Affymetrix .CEL files when available. Each of the mouse 

datasets was individually processed using the SampleNetwork R function54, which is 

designed to identify and remove sample outliers, perform data normalization, and adjust for 

batch effects55. We defined sample outliers as those that were more than four standard 

deviations below the mean connectivity of all samples measured over all features (Z.K < 

−4). Iterative pruning was applied to remove all samples with Z.K < −4. For non-normalized 

Affymetrix 430A, 430 2.0, 430A 2.0, and Illumina microarray data, quantile normalization56 

was then performed. If a batch effect was present (defined as a significant association 

between the 1st principal component of the expression data and a technical batch covariate), 

batch correction was performed using the ComBat R function55, which is implemented in 

SampleNetwork. See Table S1 for the number of sample outliers removed and datasets that 

were batch corrected.

Mouse coexpression analysis, enrichment analysis to identify cell-class modules, and data 

integration to determine consensus gene expression fidelity for major cell classes was 

performed as described for human data, with one exception. Due to heterogeneity introduced 

by variable sample preparation methods for mouse datasets (Table S1), we iteratively pruned 

outlier datasets before consensus fidelity calculations. Specifically, for each cell class we 

performed hierarchical clustering of genome-wide kME values for all datasets using 1 – 

Pearson correlation as the distance measure with average linkage. Datasets with distance > 

0.9 were iteratively pruned. Datasets included in the consensus fidelity calculation are 

indicated in Table S1. Gene expression modeling was performed as described above using 

the top 10 genes from each mouse consensus expression fidelity cell-class list.

4.2 Human vs. mouse comparison—We implemented a conservative strategy to 

identify cell-class-specific gene expression differences between humans and mice (i.e. ON in 

a given cell class in humans but OFF in the same cell class in mice, or vice versa). To 

identify genes expressed in human but not mouse cell classes, we started with the sets of 

genes represented by the Venn diagram in Fig. 6A (i.e. genes that were significantly 

associated with the same cell class in a majority of human regional datasets using a genome-

wide, Bonferroni-corrected p-value). We imposed three criteria to predict species 

differences: i) the gene was consistently well modeled with respect to the same cell class in 

humans (human median adjusted r2 values ≥ 0.4); ii) the gene was not well modeled with 

respect to the same cell class in mice (mouse median adjusted r2 values ≤ 0.05); iii) the gene 

was expressed substantially higher in humans vs. mice (mean expression percentile 

difference > 30).
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To identify genes expressed in mouse but not human cell classes, we started with mouse 

genes that were significantly associated with the same cell class in at least three independent 

datasets (using the same definition of ‘significant association’ that was used for humans). 

We imposed three criteria to predict species differences: i) the gene was well modeled with 

respect to the same cell class in mice (mouse median adjusted r2 values ≥ 0.4); ii) the gene 

was not well modeled with respect to the same cell class in humans (human median adjusted 

r2 values ≤ 0.05); iii) the gene was expressed substantially higher in mice vs. humans (mean 

expression percentile difference > 30).

4.3 Primate brain expression data preprocessing and modeling—Affymetrix 

gene expression data from chimpanzee cerebral cortex were obtained from eight studies. 

Four studies analyzed samples using Affymetrix U95A/v2 microarrays92–95 and four studies 

analyzed samples using Affymetrix U133Plus2 microarrays96–99. Because probes on these 

arrays were designed from human sequences, we created a custom mask file to exclude 

probes that did not have perfect alignment to the chimpanzee genome (panTro3: http://

hgdownload.cse.ucsc.edu/goldenPath/panTro3/bigZips/panTro3.fa.gz) and chimpanzee 

RefSeq mRNAs (http://hgdownload.cse.ucsc.edu/goldenPath/panTro3/bigZips/

refMrna.fa.gz). After excluding all unknown, random, haplotype, and mitochondrial 

sequences, the chimpanzee genome was concatenated into a single file. This file, along with 

the RefSeq mRNA file, was formatted for BLAST from the command line using the 

formatdb function from the ncbi_tools package (installed via MacPorts). Using a local 

BLAST installation, we retained a probe if it aligned perfectly to both the chimpanzee 

genome (e-value = 2.0e-05) and chimpanzee RefSeq mRNAs (e-value = 2.0e-08). We also 

excluded probes that were identified as mis-targeted or non-specific with respect to human 

sequences (http://masker.nci.nih.gov/ev) based on a previous re-annotation study51. The 

resulting mask files (one for each microarray platform) were used with the ProbeFilter R 

package100 to exclude probes without perfect and specific alignment to chimpanzee 

sequences.

Expression data were generated from masked .CEL files using the expresso function from 

the affy package with ‘mas’ settings and no normalization, followed by scaling each sample 

to the same mean intensity (200). Only probe sets with at least half of their probes remaining 

after mask application were retained for further analysis (n = 9,178 [U95A/v2]; n = 35,754 

[U133Plus2]). Further quality control and preprocessing was performed with the 

SampleNetwork R function54. Samples from each study were examined separately and no 

outliers were evident. After combining all samples for a given platform, data were quantile 

normalized56 and batch-corrected for hybridization date using the ComBat R function55. The 

final, processed datasets consisted of 30 samples (U95A/v2) and 26 samples (U133Plus2) 

from chimpanzee cerebral cortex. RNA-seq RPKM gene expression data45 from chimpanzee 

brain were downloaded from GEO (GSE49379). Further quality control and preprocessing 

was performed with the SampleNetwork R function54. No outliers were evident.

Affymetrix Macaque genome array normalized expression data 20, 101 from ABI were 

downloaded from http://www.blueprintnhpatlas.org (2014-03-06 data release). Further 

quality control and preprocessing was performed with the SampleNetwork R function54. We 

defined sample outliers as those that were more than four standard deviations below the 
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mean connectivity of all samples (Z.K < −4) measured over all features. Iterative pruning 

was applied to remove all samples with Z.K < −4. See Table S1 for the number of sample 

outliers removed.

Due to the limited availability of gene expression data from non-human primate (NHP) 

brains, we did not attempt to calculate consensus gene expression fidelity statistics. Instead, 

we used a semi-supervised approach to identify top cell-class biomarkers for gene 

expression modeling in NHP brain samples. Parsimony and similarities between human and 

mouse gene expression fidelity suggest that there is likely to be strong conservation of high-

fidelity genes between human and NHP CNS cell classes. To determine the microarray 

probes that best matched our high-fidelity human genes in NHP expression data, we took a 

three-step approach: i) we identified NHP probes that targeted the top 50 high-fidelity genes 

for each human cell class; ii) we calculated the Pearson correlations among these probes 

over all NHP samples for each dataset; iii) we identified the top 10 probes with the highest 

average correlations to the others that mapped to unique gene symbols. These top 10 probes 

(genes) were summarized by PC1 through singular value decomposition of the scaled 

expression data using the svd (nu=1, nv=1) function in R and used for estimating the relative 

abundance of each NHP cell class in gene expression modeling.

5. Gene Ontology and pathway enrichment analysis

The ToppGene (https://toppgene.cchmc.org/) suite102 contains an extensive list of databases 

and was used to calculate enrichment p-values from hypergeometric tests corrected for 

multiple comparisons. Specifically, we used the ToppFun application with default 

parameters and report Benjamini-Hochberg adjusted p-values. We present data from Gene 

Ontology (GO) annotations (biological process, cellular component and molecular function) 

and pathway annotations (Biosystems, BIOCYC, KEGG, and REACTOME).

For disease annotations (Fig. 6B), we used the Phenopedia database39, which is a curated 

collection of records retrieved weekly from an automatic literature screening program103 of 

PubMed abstracts for gene-disease associations. Staff at NCBI manually select abstracts that 

meet inclusion criteria. We analyzed enrichment of our human cell-class genes (Fig. 6A) 

with disease annotations consisting of ≥ 10 genes using a one-sided Fisher’s exact test as 

implemented in the fisher.test R function. These p-values were corrected for multiple 

comparisons by controlling for the false-discovery rate, as implemented by the R package 

qvalue49. Hierarchical clustering of the log-transformed p-values was performed using 

Pearson’s correlation as the similarity metric and average linkage. Phenopedia data were 

accessed on 12.14.15.

6. Immunohistochemistry

Human brain tissue was collected during autopsy with postmortem interval < 48 hours. 

Tissue was collected with previous patient consent in strict observance of legal and 

institutional ethical regulations in accordance with the University of California San 

Francisco Committee on Human Research. Brains were cut into ~1.5 cm coronal or sagittal 

blocks, fixed in 4% paraformaldehyde for 2 days, cryoprotected in a 30% sucrose solution, 

and embedded in optimal cutting temperature (OCT) compound (Tissue-Tek). Samples 

Kelley et al. Page 26

Nat Neurosci. Author manuscript; available in PMC 2019 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://toppgene.cchmc.org/


contained no evidence of brain disease as assessed by a neuropathologist (Eric J. Huang). 

14μm cryosections were collected on superfrost slides (VWR) using a Leica CM3050S 

cryostat. Cryosections were subjected to heat-induced antigen retrieval in 10mM sodium 

citrate (pH = 6) for 10  min and permeabilized and blocked for 1 hour at room temperature in 

PBS supplemented with 0.2% Triton X-100 and 10% goat serum. Primary incubations were 

overnight at 4  °C. Washes (3 × 10min) and secondary incubations (1 hour) were performed 

at room temperature.

We searched for high-fidelity genes in the Human Protein Atlas104 and identified validated 

antibodies for PON2 (astrocytes), DBNDD2 (oligodendrocytes), APBB1IP (microglia), and 

CELF2 (neurons) (Fig. 3A-D). Antibodies used included goat PON2 (R&D systems: 

AF4344, 1:200), mouse ALDH1L1 (Neuromab: 73-140, 1:200), rabbit DBNDD2 (Sigma: 

HPA043991, 1:200), rabbit APBB1IP (Sigma: HPA017009, 1:100), rabbit CELF2 (Sigma: 

HPA035813, 1:200), rat GFAP (Fisher: 13-0300, 1:500), mouse NogoA (11c7, gift from M. 

Schwab, Zurich, Switzerland, 1:5000), goat AIF1 (Abcam: ab5076, 1:500), chicken NeuN 

(Millipore: ABN91, 1:500), rabbit PMP2 (Proteintech: 12717-1-AP, 1:100), chicken V5 

(Abcam: AB9113, 1:500), chicken RFP (Rockland: 600-901-379S, 1:1000), rabbit DsRed 

(Clontech: 632496, 1:500), and chicken GFP (Aves: GFP-1020, 1:500).

Images were acquired on a Leica TCS SPE laser confocal microscope with detection settings 

normalized to a secondary-only control. For IHC data (Fig. 3E-H; Fig. S5), a 20× objective 

was used (1024×1024 pixels).

7. Fluorescent in situ hybridization (FISH)

Human brain tissue was acquired as described above. All mouse strains were maintained in 

the University of California San Francisco specific pathogen–free animal facility, and all 

animal protocols were approved by and in accordance with the guidelines established by the 

Institutional Animal Care and Use Committee and Laboratory Animal Resource Center. 

Mouse brain tissue (postnatal day 30) was acquired from animals perfused with 4% PFA and 

post-fixed for 24 hours followed by cryoprotection in 30% sucrose and embedded in OCT. 

Cryosections were prepared in the same manner described above.

Due to variability in RNA quality from human brain cases, we screened a number of 

samples for robust positive RNA signal using the RNAscope 2.0 HD brown assay 

(Advanced Cell Diagnostics, Hayward, CA; catalog #: 310033) for PPIB, a positive control. 

A sample from occipital cortex of a 19 month-old case demonstrated positive signal and was 

subsequently used for RNAscope multiplex fluorescent imaging (catalog #: 320851) of 

candidate species differences in astrocyte expression (Fig. S12 C,D), according to 

manufacturer’s instructions. RNAscope probe information is provided below.

Images were acquired on a Leica TCS SPE laser confocal microscope with detection settings 

normalized to a negative control probe (DapB, catalog: 310043). A 40x objective was used 

(1024×1024 pixels). Images shown in Figs. 7, S12 were processed using the spots function 

(with default parameters) in the imaging software program Imaris (Bitplane).
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RNAscope single-molecule FISH probe information

Gene Species Product Catalog Entrez ID Accession No.

ALDH1L1 Human Probe- Hs-ALDH1L1-C2 438881-C2 10840 NM_001270364.1

Aldh1l1 Mouse Probe- Mm-Aldh1l1-C2 405891-C2 107747 NM_027406.1

Chrdl1 Mouse Probe- Mm-Chrdl1 442811 83453 NM_001114385.1

MRVI1 Human Probe- Hs-MRVI1 453841 10335 NM_001098579.2

Mrvi1 Mouse Probe- Mm-Mrvi1 453821 17540 NM_010826.5

PLA2G7 Human Probe- Hs-PLA2G7 453831 7941 NM_005084.3

Pla2g7 Mouse Probe- Mm-Pla2g7 453811 27226 NM_013737.5

PPIB Human Probe- Hs-PPIB 313901 5479 NM_000942.2

Ppib Mouse Probe- Ms-Ppib 313911 19035 NM_011149.2

8. PMP2 ectopic expression

All mice were maintained in the University of California San Francisco specific pathogen–

free animal facility, and all animal protocols were approved by and in accordance with the 

guidelines established by the Institutional Animal Care and Use Committee and Laboratory 

Animal Resource Center. Swiss Webster mice were used in all viral experiments (Simonsen 

Laboratories, Gilroy, CA). For AAV-PMP2 ectopic expression, two females and two males 

were used in each group. For lentiviral-PMP2 ectopic expression, three females and one 

male were used in each group. Otherwise, male mice were used. Animals were randomly 

allocated into experimental groups. No statistical methods were used to pre-determine 

sample sizes but our sample sizes are similar to those reported in previous publications. Data 

collection and analysis were not performed blind to the conditions of the experiments as co-

staining with PMP2 allowed the experimenter to deduce the experimental groups. To 

generate adeno-associated virus (AAV), we subcloned the human PMP2 transcript 

(NM_002677.4) into an AAV plasmid backbone containing a GFAP minimal promoter 

(gfaABC1D) and tdTomato reporter. The AAV backbone was obtained from Addgene 

(pZac2.1 gfaABC1D-tdTomato, catalog # 44332) and Cyagen performed the subcloning. 

PMP2 was subcloned upstream of tdTomato and separated by a t2A self-cleaving peptide 

allowing for bicistronic expression (Fig. 8G). Control (gfaABC1d-tdTomato) and PMP2 
(gfaABC1d-PMP2-t2A-tdTomato) AAV5 viruses were generated by the Penn Vector Core 

(1.03e14 and 2.096e13 genome copies per milliliter, respectively). To generate lentivirus, the 

human PMP2 transcript (NM_002677.4) was synthesized with a 3’ t2A self-cleaving peptide 

by GenScript. This transcript was subcloned into a 3rd generation lentivirus backbone that 

contained a GFAP minimal promoter (gfaABC1D), spaghetti monster (sm) V5-tag 

reporter105, and a Lck membrane-targeting domain. The plasmid was a generous gift from 

Amy Gleichman (Carmichael lab). PMP2 was subcloned upstream of smV5 and separated 

by a t2A self-cleaving peptide (Fig. S12F). High-concentration lentivirus was created by the 

UCSF viral core (~108 colony-forming units per milliliter) for control (gfaABC1D-Lck-

SmV5) and PMP2 (gfaABC1D-PMP2-t2A-Lck-SmV5) viruses.
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To infect mouse astrocytes in vivo, one μL of virus (for AAV experiments, the control vector 

was diluted 1:5 in PBS) was injected into the lateral ventricles of postnatal day 1 mice 

(coordinates from lambda: x = 0.8 mm lateral, y = 1.5 mm caudal, z = −1.6 mm from 

surface). Forty-two days after injection, mice were euthanized and perfused (as above) for 

histological analysis. Thick sections were created using a sliding microtome (Microm HM 

450; 140 μm and 50 μm for the AAV and lentivirus experiments, respectively). After staining 

for V5 or tdTomato (see antibodies above), astrocytes were imaged with a confocal 

microscope (CSU-W1 spinning disk or Leica TCS SPE for AAV and lentivirus experiments, 

respectively) at 40x and ~0.3 μm step size. The maximum astrocyte diameter was defined as 

the greatest linear distance between two points in a 2-dimensional slice that crossed through 

the nucleus. Primary branches were counted manually through the z-stacked images.

9. Website information

Genome-wide estimates of expression fidelity for CNS cell classes are provided in Table S3 

for humans and Table S7 for mice. To facilitate interactions with our findings, we have also 

created a website where users can search by CNS region, cell class, and gene to retrieve 

information about gene expression fidelity and associated measures (http://

oldhamlab.ctec.ucsf.edu/). Major CNS cell classes (astrocytes, oligodendrocytes, microglia, 

and neurons) are currently supported.

10. Statistics and data presentation

All statistical analyses were performed in the R statistical computing environment (http://

cran.us.r-project.org). Fisher’s exact test was used to assess the significance of gene set 

enrichment, and Wilcoxon signed-rank and rank-sum tests were used to assess the 

significance of median differences (for paired and unpaired data, respectively). For PMP2 

experiments, the normality of the data was verified using the Shapiro-Wilk test and unpaired 

one-sided Welch’s t-tests were used to assess the significance of mean differences between 

the two groups. Linear regression was used to assess the predictive significance of cellular 

abundance with respect to gene expression patterns. The following assumptions were made: 

linear relationship between dependent and independent variables, normality of the variables, 

little multicollinearity between the independent variables, statistical independence of the 

residuals, and homoscedasticity (i.e. constant variance of the residuals). These assumptions 

were not formally tested for all models (i.e. all genes). However, scatter plots of select 

models (e.g. Figs. 6C, 6G, 7J, 8C, S8, S10, S12, and others not shown) suggest that these 

assumptions are valid. Violin plots outline the Gaussian kernel probability density and are 

trimmed to the range of the data. Edges of boxplots denote interquartile range (25th-75th 

percentile) with whiskers denoting 1.5 times the interquartile range and black line denoting 

the median value; notches denote 1.58 times the interquartile range divided by the square 

root of the number of samples.

11. Reporting summary

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article.
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12. Data availability

All gene expression datasets analyzed in this study are publicly available (accession codes 

and URLs are provided in Table S1). Genome-wide estimates of expression fidelity for 

major human CNS cell classes are provided on our web site (http://

oldhamlab.ctec.ucsf.edu/). All other data that support the findings of this study are available 

from the corresponding author upon reasonable request.

13. Code availability

Example R code for resolving changes in cellular composition from changes in cell-class-

specific transcriptional identity is provided in Online Methods (Section 3.2). All other code 

that supports the findings of this study is available from the corresponding author upon 

reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Rationale and workflow.
A) Left: Single-cell RNA-seq data from adult human brain samples1 were randomly 

aggregated to create 100 synthetic tissue samples. Right (top): Unsupervised gene 

coexpression analysis of synthetic samples revealed CNS cell-class modules that were 

highly enriched with markers of major cell classes. Cell-class module membership strength 

(kME) was calculated for all genes. Right (bottom): Using the same cells that were selected 

to create synthetic samples, single-cell differential expression analysis was performed for all 

genes with respect to each cell class. B) kME values for synthetic cell-class modules 
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accurately predicted the results of differential expression analysis for each cell class (n=10 

synthetic datasets; ‘up’ / ‘down’ denote up- and down-regulated genes for each cell class). 

C) 62 gene expression datasets consisting of 7221 non-pathological samples from 19 adult 

human CNS regions were acquired and preprocessed (Table S1). D) Unsupervised gene 

coexpression analysis was performed for each dataset to identify modules of genes with 

similar expression patterns. Published markers of astrocytes (A), oligodendrocytes (O), 

microglia (M), and neurons (N) were cross-referenced with all modules (one-sided Fisher’s 

exact test; Table S2). E) For each dataset, the module that was most significantly enriched 

with markers of a given cell class was summarized by its 1st principal component (PC1, or 

module eigengene). F) Cell-class module eigengenes were used to calculate the similarity 

between cellular abundance and genome-wide expression patterns (kME) over all samples in 

each dataset. G) Genome-wide kME values for significant cell-class modules from all 

datasets were combined to yield a global measure of expression ‘fidelity’ for each gene with 

respect to each cell class. Schematic: A gene has high fidelity for a cell class if its expression 

is sensitive (it is consistently expressed by members of that cell class) and specific (it is not 

expressed by members of other cell classes).
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Fig. 2 |. Integrative gene coexpression analysis of intact CNS transcriptomes reveals consensus 
transcriptional profiles of human astrocytes, oligodendrocytes, microglia, and neurons.
A-D) Left: consensus gene expression fidelity distributions for human astrocytes (A), 

oligodendrocytes (O), microglia (M), and neurons (N). Canonical markers are labeled in red 

(A), blue (O), black (M), and green (N). Right: gene expression fidelity distributions for 

published cell-class markers (A1, O1, M1, N1: 47; A2, O2, N2: 22; M2: 23; A3, O3, N3: 38; 

M3: 48) were cross-referenced with high-fidelity genes (z-score >50). Gray shading: 

significant enrichment (one-sided Fisher’s exact test). Note that A2, O2, M2, and N2 were 
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the gene sets used for module enrichment analysis (Table S2). The number of independent 

samples used to calculate fidelity for each gene is provided in Table S3. E) Single-nucleus 

(SN) RNA-seq data from adult human brain4, 34 for the top 15 high-fidelity genes from each 

cell class. Standardized expression levels are shown, with red/blue = high/low expression. F-
I) Overlap among the top 1% of high-fidelity genes and the top 1% of differentially 

expressed genes for each cell class in SN RNA-seq data from adult human brain4, 34. The 

central colored sectors denote concordant genes, while the peripheral dark grey sectors 

denote discordant genes. J-M) Mean expression percentiles in intact human CNS samples 

(n=7221 biologically independent tissue samples, Fig. 1C and Table S3) for concordant and 

discordant genes (F-I). Statistical significance was assessed with a one-sided Wilcoxon 

rank-sum test. N-Q) Expression patterns of discordant genes (F-I) in cell classes that were 

purified by immunopanning from adult human temporal lobe surgical resections3 

(purifications from n=12 [astrocyte], three [oligodendrocyte], three [microglia], and one 

[neuron] biologically independent samples).
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Fig. 3 |. The core transcriptional identities of human astrocytes, oligodendrocytes, microglia, and 
neurons include known and novel biomarkers.
A-D) The top 50 genes ranked by consensus expression fidelity for astrocytes, 

oligodendrocytes, microglia, or neurons. Expression levels represent averages of mean 

percentile ranks for all regional datasets where gene data were present. Mutation intolerance 

data were obtained from ExAC35. PubMed citations were obtained by queries with gene 

symbol and cell type (e.g. gene symbol and ‘astrocyte’). Cellular localization data were 

extracted from COMPARTMENTS36. Predicted protein-protein interactions (PPI) were 
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obtained from STRING37. A link is shown if the combined score between two proteins was 

> 350. The probability of observing the number of depicted links by chance was determined 

by resampling (n = 100,0000 random samples of 50 genes). E-H) Novel markers of human 

astrocytes (PON2), oligodendrocytes (DBNDD2), microglia (APBB1IP), and neurons 

(CELF2) in adult human dorsolateral prefrontal cortex (DLPFC; E: L5/6; F,G: white matter; 

H: L2/3). Immunostaining was repeated at least twice on independent samples with similar 

results. Arrowhead: cell in inset. Scale bar: 50μm; inset scale bar: 10μm.
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Fig. 4 |. Variation among intact tissue samples reveals transcriptional signatures of human 
cholinergic neurons, midbrain dopaminergic neurons, endothelial cells, and ependymal cells.
A-D) Top: high-fidelity genes for each cell class (top 10 are shown) are consistently 

coexpressed in independent datasets (Table S1). Middle: consensus gene expression fidelity 

distributions for each cell class with canonical markers of major cell classes labeled in green 

(neurons), red (astrocytes), blue (oligodendrocytes), and black (microglia). Gene expression 

fidelity distributions for published sets of markers (Al, A2, O1, O2, M1, M2, N1, N2, C1, 

C2, D1, D2, E1, E2, Ep1, Ep2; Methods) were cross-referenced with high-fidelity genes (top 
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three percentiles). Gray shading: significant enrichment (one-sided Fisher’s exact test). Note 

that E2 and Ep1 were gene sets used for module enrichment analysis (Table S2). The 

number of independent samples used to calculate fidelity for each gene is provided in Table 

S3. Bottom: mouse in situ hybridization data from the Allen Mouse Brain Atlas38 for high-

fidelity genes in dorsal striatum (A), ventral midbrain (B), cortex (C), and lateral ventricle 

(D). Scale bar: 200μm; inset scale bar: 500μm.
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Fig. 5 |. Variation in cellular abundance predicts gene expression in transcriptomes from intact 
CNS samples
A) Strategy for modeling gene expression in intact human CNS samples as a function of 

inferred cellular abundance. B) Total % variance explained (mean adj. r2) for ~9600 genes 

whose expression levels were modeled as a function of inferred astrocyte, oligodendrocyte, 

microglia, and neuron abundance in each of 47 regional datasets (subset to 40 samples; 

values are mean +/− 2 s.e.m., 10 iterations). C) Mean adj. r2 values for individual genes 

from (B) over the 47 datasets. Grey envelope: loess smoothed C.I. (+/− 2 s.e.m., 10 
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iterations). D) Mean adj. r2 values for genes from (B) grouped by mean expression quartiles 

(each point is one dataset). E) Mean adj. r2 values for 7 different models (restricted to 

datasets w/ sex and age information: GSE46706, GTEx, GSE11882, GSE25219). F) Pearson 

correlation of inferred cellular abundance with donor sample age (one-sample Wilcoxon 

signed-rank test). Horizontal bars (D-F): median; points colored by technology platform.
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Fig. 6 |. Gene expression modeling offers new avenues for studying human CNS diseases.
A) Genes that were significantly associated with a cell class by linear regression modeling in 

a majority of human CNS datasets (p < 8.37×10−9, corresponding to a Bonferroni correction 

based on the total number of gene models). B) Enrichment analysis (one-sided Fisher’s 

exact test) of genes from (A) with human CNS disease genes from Phenopedia39. FDR-

adjusted p-values (q-values) are shown49. C) Linear regression modeling results in human 

temporal cortex (TCX ABI; i.e. one dataset consisting of 465 samples) for four Alzheimer’s 

disease (AD) risk genes. D) Modeling results for genes from (C) in 47 datasets (≥40 
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samples). E) Top 10 high-fidelity genes were used to estimate the relative abundance of 

neurons, astrocytes, microglia, and oligodendrocytes in DLPFC from control (CTRL) and 

AD41 (Fig. 5A; n=95 CTRL and 95 AD biologically independent tissue samples). P-values: 

two-sided Wilcoxon rank-sum test. F) Gene expression modeling in three datasets40–42 

reveals consistent cell-class-specific expression changes in AD after controlling for 

differences in cellular abundance (p<0.05 based on 1000 permutations of sample labels). 

Shown are the total number of genes that were significantly altered for each cell class in all 

three datasets. G) Examples of two genes that are up-regulated in AD neurons (top41; 

bottom42).
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Fig. 7 |. Regional expression fidelity and predictive modeling reveal astrocyte heterogeneity in the 
human brain
(A-D) Hierarchical clustering of human brain regions (excluding cerebellum) based on 

Pearson correlations among regional expression fidelity for each cell class (n=18451 genes, 

≥3 datasets/region; see Table S1 for the number of datasets and samples per region). E) 
Distributions of correlations in (A-D), n=10 regions. F) Workflow to predict regional 

expression differences in specific cell classes. Significance threshold: p<2.67×10−8 

(Bonferroni correction for total # of gene models). G) Schematic of analyzed brain regions: 
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frontal cortex (FCX), striatum (STR), hippocampus (HIP), diencephalon (DI), and midbrain 

(MID). H) Total # of region-specific genes conservatively predicted for each cell class. I) 
Genes predicted to be expressed by human astrocytes in restricted brain regions. J) 
Modeling of CHRDL1 (candidate from (I)) and ALDH1L1 (positive control) as a function 

of inferred astrocyte abundance in example datasets (FCX/DI from ABI; see Table S1 for 

sample sizes). K) Linear regression modeling results for same genes in three datasets (ABI, 

GTEx, and GSE46706; Table S1). Barplots: mean values; error bars: s.e.m. L) Single-

molecule FISH of Chrdl1 and Aldh1l1 in mature mouse brain (P30). Scale bar: 20μm. FISH 

was repeated at least twice on independent samples with similar results.
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Fig. 8 |. Gene expression modeling identifies cell-class-specific transcriptional differences 
between humans and mice.
A) Comparisons of gene expression fidelity for homologous genes from humans and mice 

for each cell class. Pearson correlations are shown. B) Predicted cell-class-specific 

transcriptional differences between humans and mice. Expression levels are from 

independent datasets3, 47 that were not used to predict species differences. PubMed citations 

were obtained by queries with gene symbol and cell type (e.g. gene symbol and ‘astrocyte’). 

C) Examples of linear regression modeling results in humans (Hs.PCX.ABI) and mice 
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(Ms.GSE64398) (Table S1). SLC1A3 is predicted to be expressed by astrocytes in both 

species and PMP2 is predicted to be expressed by astrocytes in humans but not mice. D) 
Astrocyte modeling results and mean expression percentiles for genes in (C) from all 

datasets (see Table S3 and Table S7 for the number of datasets and samples for each gene 

and species). Barplots: mean values; error bars: s.e.m. E) SLC1A3 and PMP2 expression in 

an independent gene expression dataset from human, chimpanzee, macaque, and mouse 

prefrontal and visual cortex45 (n=12 independent tissue samples for each species). F) 
Immunostaining for PMP2 in adult human DLPFC and P42 mouse neocortex. GFAP and 

Aldh1l1 label astrocytes. Arrowheads: cells in insets. Scale bar: 40μm; inset scale bar: 

10μm. Immunostaining was repeated at least twice on independent samples with similar 

results. G) Experimental strategy for studying PMP2 effects on mouse astrocytes. Scale bar: 

20μm. H) Representative examples of CTRL and PMP2-infected astrocytes in mouse 

neocortex. Dashed lines outline the cell and the maximum diameter through the nucleus. 

Scale bar: 20μm. I) Quantification of maximum diameter and the number of primary 

processes in CTRL and PMP2-infected astrocytes. n=4 animals per group, n=100 CTRL and 

110 PMP2-infected astrocytes, bars denote mean ± s.e.m., with significance determined by a 

one-sided Welch’s t-test on animal averages.
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