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Abstract. The 2-to-2 Games Theorem (Khot et al., STOC’17, Dinur et al., STOC’18

[2 papers], Khot et al., FOCS’18) shows that for all constants ε > 0, it is NP-hard to

distinguish between Unique Games instances with some assignment satisfying at

least a (1
2 − ε) fraction of the constraints vs. no assignment satisfying more than an

ε fraction of the constraints. We show that the reduction can be transformed in a

non-trivial way to give stronger completeness: For at least a (1
2 − ε) fraction of the

vertices on one side, all the constraints associated with them in the Unique Games

instance can be satisfied.

We use this guarantee to convert known UG-hardness results to NP-hardness.
We show:

1. Tight inapproximability of the maximum size of independent sets in degree-d

graphs within a factor of Ω

(
d

log2 d

)
, for all sufficiently large constants d.

A preliminary version of this paper appeared in the Proceedings of the 34th Computational Complexity

Conference (CCC’19) [12].
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2. For all constants ε > 0, NP-hardness of approximating the size of the Maximum

Acyclic Subgraph within a factor of
2
3 +ε , improving the previous ratio of

14
15 +ε

by (Austrin et al., Theory of Computing, 2015).

3. For all constants ε > 0 and for any predicate P−1(1)⊆ [q]k supporting a balanced

pairwise independent distribution, given a P-CSP instance with value at least

1
2 − ε , it is NP-hard to satisfy more than a

|P−1(1)|
qk + ε fraction of constraints.

1 Introduction

The Unique Games Conjecture is a central open problem in the theory of computing. It states

that for a certain constraint satisfaction problem over a large alphabet, called Unique Games
(UG), it is NP-hard to decide whether a given instance has an assignment that satisfies a (1− ε)
fraction of the constraints or there is no assignment that satisfies even an ε fraction of the

constraints for an arbitrarily small constant ε > 0. Since the formulation of the conjecture, it has

found interesting connections to tight hardness-of-approximation results for many optimization

problems [18, 19, 23, 27, 17, 22, 24, 25]. One of the most notable implications is the result of

Raghavendra [27] which informally can be stated as follows: Assuming the NP-hardness of
approximating this single CSP (Unique Games) implies tight hardness for approximating every

other constraint satisfaction problem, stated in terms of the integrality gap of a certain canonical

SDP.

The Unique Games Conjecture was inspired by the NP-hardness of approximating a problem

called Label Cover [1]. A Label Cover instance G = (A,B,E,ΣA,ΣB,{πe}e∈E) consists oftwo sets

of variables, A and B, and a bipartite graph between them with the edge set E. The variables
from A take values from some alphabet ΣA and variables from B take values from ΣB. Every

edge e in E has a d-to-1 projection1 constraint πe : ΣA→ ΣB.

For an edge e(a,b), a label α to a and a label β to b satisfy the edge e iff πe(α) = β . In this

language, Unique Games is a Label Cover instance where all the constraints are 1-to-1. We

denote an instance of Unique Games by G = (A,B,E, [L],{πe}e∈E)where ΣA = ΣB = [L].
Given an instance of Unique Games, the goal is to find an assignment to the vertices

that satisfies a good fraction of the edges. An instance is called ε-satisfiable if there exists an

assignment σ : A∪B→ [L], that satisfies at least an ε fraction of the edges in the graph. The

Unique Games Conjecture [18] states that for every ε > 0, there exists L such that given a Unique

Games instance which is (1− ε)-satisfiable, it is NP-hard to find an ε-satisfying assignment.

Note that there is a polynomial-time algorithm that given a 1-satisfiable instance of Unique

Games, finds a 1-satisfying assignment. Recent work [20, 14, 15, 21] has shown that for every

constant ε > 0, it is NP-hard to find an ε-satisfying assignment for a given Label Cover instance

with 2-to-1 projection constraints, even if the instance is (1− ε)-satisfiable. This directly implies

the following inapproximability for Unique Games.

1A constraint πe : ΣA→ ΣB is called a d-to-1 projection constraint, if every β ∈ ΣB has exactly d preimages.
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Theorem 1.1 (UG-hardness with completeness 1/2 [20, 14, 15, 21]). For every constant ε > 0, there
exists Σ such that for Unique Games instance over Σ, it is NP-hard to distinguish between the following
two cases:

• YES case: The instance is (1
2 − ε)-satisfiable.

• NO case: No assignment satisfies an ε fraction of the constraints.

Although we do not improve upon this theorem in terms of the inapproximability gap, we

show a stronger guarantee in the YES case. Specifically, we show that in the YES case, there is at

least a
1
2 − ε fraction of the vertices on, say, the left side such that all the edges incident on them

are satisfied by some assignment and also the instance is left-regular. This clearly implies the

above theorem. Formally, the main theorem that we prove is as follows. (See Definition 2.1 for a

formal definition of Unique Games.)

Theorem 1.2 (Main). For every constant δ > 0, there exists L ∈ N such that the following holds. Given
an instance G = (A,B,E, [L],{πe}e∈E) of Unique Games, which is regular on the A side, it is NP-hard to
distinguish between the following two cases:

• YES case: There exists a set A′ ⊆ A of size (1
2 −δ )|A|, and an assignment that satisfies all the edges

incident on A′.

• NO case: Every assignment satisfies at most a δ fraction of the edges.

We will denote by val(G) the maximum fraction, over all assignments, of the edges satisfied

and sval(G) to be the maximum fraction, over all assignments, of the vertices in A such that all

the edges incident on them are satisfied. Thus, the above theorem says that for every δ > 0 there

exists a label set [L] such that it is NP-hard to distinguish between the cases sval(G)> 1
2 −δ and

val(G)6 δ .

1.1 (1
2 − ε)-satisfiable UG vs. (1− ε)-satisfiable UG

Let ε > 0 be a very small constant. In the (1− ε)-satisfiable Unique Games instance, by simple

averaging argument it follows that for any satisfying assignment σ : A∪B→ [L], there exists

A′ ⊆ A, |A′|> (1−
√

ε)|A| such that for all v ∈ A′, at least a (1−
√

ε) fraction of the edges incident

on v are satisfied. Having such a large A′ is crucial in many UG-reductions. For example, a

typical k-query PCP, used in proving UG-hardness of approximation for k-ary CSPs, samples

v ∈ A uniformly at random and k neighbors of u1,u2, . . . ,uk of v uniformly at random. Thus, with

probability at least (1−
√

ε)(1−k
√

ε)≈ 1 all the edges (u,vi) are satisfiedby any (1−ε)-satisfying
assignment σ .

In contrast to this, if we take a (1/2)-satisfiable UG instance then the probability that all the

edges (v,ui) are satisfied is at most 1/2k
in the worst case. Therefore, in converting a known

UG-hardness result to an NP-hardness result using the NP-hardness of Unique Games with gap

(1
2 − ε,ε), it is not always the case that we lose ‘only half ’ in completeness.
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Another important property of the Unique Games instance which was used in many

reductions is that it has stronger completeness; there is a (1− δ ) fraction of the vertices on

one side such that all the edges incident on them are satisfied, i. e., sval(G) > 1− δ instead

of val(G) > 1− δ . For example, this property was crucial in the hardness of approximating

the maximum size of independent sets in bounded-degree graphs [4] and in many other

reductions [8, 11].

As shown in [23], having completeness val(G) > 1− δ for all sufficiently small δ > 0 is

equivalent to having completeness sval(G)> 1−δ ′ for all sufficiently small δ ′ > 0. It was crucial

in the reduction that the val(G) is arbitrarily close to 1 for the equivalence to hold. We do not

know a black-box way of showing the equivalence of val(G) = c and sval(G) = c for any c < 1.
Thus, in order to prove Theorem 1.2 with a stronger completeness guarantee, we crucially exploit

the structure of the game given by the known proofs of the 2-to-1 theorems [20, 14, 15, 21]

mentioned in the introduction.

1.2 Implications

Using Theorem 1.2, we show the following hardness results by going over the known reductions

based on the Unique Games Conjecture.

Independent sets in degree-d graphs The first application is approximating the maximum

sized independent set in a degree-d graph, where d is a large constant.

Theorem 1.3. It is NP-hard (under randomized reductions) to approximate independent sets in a degree-d
graph within a factor of O

(
d

log2 d

)
, where d is a constant independent of the number of vertices in the

graph.

This improves the NP-hardness of approximation within a factor O
(

d
log4 d

)
, as shown in

Chan [13] as well as shows the tightness of the randomized polynomial-time approximation

algorithm given by Bansal et al. [7].

Max-Acyclic Subgraph Given a directed graph G(V,E), the Max-Acyclic Subgraph problem is

to determine the maximum fraction of edges E ′ ⊆ E such that removal of E \E ′ makes the graph

acyclic (removes all the cycles). We can always make a graph acyclic by removing at most half

the edges; take any arbitrary ordering of the vertices and remove either all the forward edges

or all the backward edges whichever is minimum. This gives a trivial (1/2)-approximation

algorithm. Guruswami et al. [17] showed this is tight by showing that assuming the Unique

Games Conjecture, it is NP-hard to approximate Max-Acyclic Subgraph within a factor of
1
2 + ε

for all ε > 0. In terms of NP-hardness, Austrin et al. [5] showed NP-hardness of approximating

Max-Acyclic Subgraph within a ratio of
14
15 + ε , improving upon the previous bound of

65
66 + ε by

Newman [26]. Our next theorem shows an improved inapproximability of
2
3 +ε . One interesting

feature of our reduction is that it shows that in the worst case, it is NP-hard to perform better

than the trivial algorithm described above on instances with value at least 3/4.
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Theorem 1.4. For every constant ε > 0, it is NP-hard to approximate the Max-Acyclic Subgraph problem
within a factor of 2

3 + ε .

We note that Theorem 1.1 along with the reduction from [17] implies NP-hardness of

approximation of the Max-Acyclic Subgraph problem within a factor of
4
5 + ε . (See Remark 5.5

for a proof sketch.) Therefore, Theorem 1.4 improves upon this bound too.

Predicates supporting balanced pairwise independent distributions The next result is

approximating Max-k-CSP(P) for a predicate P : [q]k→{0,1} where P−1(1) supports a balanced

pairwise independent distribution, i. e., there exists a distribution on P−1(1) such that 1)

the marginal distribution on each coordinate is uniform and 2) the distribution is pairwise

independent. Given an instance ofMax-k-CSP(P), a random assignment satisfies a
|P−1(1)|

qk fraction

of the constraints in expectation. Austrin–Mossel [6] showed that given a (1− ε)-satisfiable

instance ofMax-k-CSP(P), it is UG-hard to find an assignment that satisfiesmore than a
|P−1(1)|

qk +ε

fraction of the constraints for any constant ε > 0. This notion is called approximation resistance of
a predicate P where the best efficient algorithm cannot perform any better than just choosing a

random assignment, even if the instance is almost satisfiable. Showing approximation resistance

of such predicates unconditionally (i. e., assuming only P 6= NP) has received significant attention.

For instance, Chan [13] showed that a predicate P is approximation resistant if P−1(1) contains a
subgroup that supports a balanced pairwise independent distribution. Also, Barak et al. [9]

showed that certain class of algorithms, namely sum-of-squares, cannot be used to perform

better than the random assignment on almost satisfiable instances of Max-k-CSP(P) where P
supports a balanced pairwise independent distribution.

Our main theorem shows approximation resistance of such predicates but on instances

which are (1/2)-satisfiable. If we use Theorem 1.2 as a starting point of the reduction in [6], we

get the following NP-hardness result.

Theorem 1.5. If a predicate P : [q]k→ {0,1} supports a balanced pairwise independent distribution,
then for every constant ε > 0, it is NP-hard to find a solution with value |P

−1(1)|
qk + ε if a given P-CSP

instance is (1
2 − ε)-satisfiable.

Other Results Theorem 1.2 implies many more NP-hardness results in a straightforward way

by going over the known UG-reductions but we shall restrict ourselves to proving only the

above three theorems. We only state the following important implication which follows from

the result of Raghavendra [27] and our main theorem. We refer to [27] for the definition of (c,s)
SDP integrality gap of a P-CSP instance.

Theorem 1.6. (Informal) For every constant ε > 0, if a P-CSP has a (c,s) SDP integrality gap instance,
then it is NP-hard to distinguish between ( c

2 − ε)-satisfiable instances from at most (s+ ε)-satisfiable
instances.

The reduction actually gives a stronger result; instead of completeness ( c
2 − ε) one can get

( c
2 +

r
2 − ε)where r = |P−1(1)|

qk for a predicate P : [q]k→{0,1}.
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1.3 Overview of the proof

In this section, we give an overview of the proof of Theorem 1.2. The main idea that goes into

proving Theorem 1.2 is very simple and we elaborate it next.

LetV = Fn
2 and let Gr(V, `) denote the set of all `-dimensional linear subspaces ofV . Consider

the tables F : Gr(V, `)→ F`
2 and H : Gr(V, `−1)→ F`−1

2 , where for a subspace L (L′), F [L] (H[L′])
represents a linear function F [L] : L→ F2 (H[L′] : L′→ F2) on the subspace, by fixing an arbitrarily

chosen basis of L (L′).2 The intention is that there should be some global linear function g : V → F2,

such that for every L, F [L] = g|L, and for every L′, H[L′] = g|L′ . We consider the Grassmann 2-to-1
test T1 from Figure 1.3 as a means to verify that the tables, F and H, are indeed obtained by

restricting some global linear function.

Given tables F and H, where F assigns to each `-dimensional subspace L∈Gr(V, `) a linear
function F [L] : L→ F2, and H assigns to each (`−1)-dimensional subspace L′ ∈Gr(V, `−1)
a linear function H[L′] : L′→ F2.

• Select an (`−1)-dimensional subspace L′ ⊆V uniformly at random.

• Select an `-dimensional subspace L containing L′ uniformly at random.

• Check if F [L]|L′ = H[L′].

Figure 1: 2-to-1 Test T1

We have the following two easy observations about the test.

• The test is 2-to-1 in the following sense. Fix any assignment for L′, which is a linear

function β : L′→ F2. Consider any linear function α : L→ F2 such that α|L′ = β . Since

L′ ⊆ L and the co-dimension of L′ in L is exactly 1, there are exactly two possible choices

for α such that α|L′ = β . Therefore, for every fixing of H[L′], there are exactly two settings

of F [L] such that the test accepts the pair (F [L],H[L′]).

• The test has perfect completeness, i. e., if F and H are indeed the restrictions of a global linear

function g : V → F2, then the test passes with probability 1.

The soundness of this test is analyzed in [21] with additional contributions from [14, 10].

They show that if the test passes with probability at least δ > 0, then the tables must be

non-trivially consistent with some global linear function g : V → F2, where δ > 0 is an arbitrarily

small constant independent of ` and n.
In this paper, we focus on converting the test to a unique test, i. e., a 1-to-1 test, with some

additional structure. One way to convert a 2-to-1 test to a unique test is by choosing a random

2Any linear function f : L→F2 on an `-dimensional space L can be specified by specifying ( f (b1), f (b2), . . . , f (b`))∈
F`

2 where b1,b2, . . . ,b` ∈ L form a basis of L.
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i ∈ {1,2} for every pair (L,L′) such that L′ ⊆ L and for every linear function β on L′, and adding

just one accepting pair (αi,β ) where {(α1,β ),(α2,β )} are the original accepting assignments

from the 2-to-1 test T1. This does give a unique test and if F and H are restrictions of a global

linear function to the subspaces, then the test passes with probability 1/2. One drawback of this

test is as follows. Consider a bipartite graph on Gr(V, `)×Gr(V, `−1) where two subspaces L,L′

are adjacent iff L′ ⊆ L. Note that the uniform distribution on the edges of this bipartite graph is

the same as the test distribution T1. We say that an edge (L′,L) is satisfied by the tables F and

H, if F [L]|L′ = H[L′]. For any global linear function g : V → F2, if F and H are the restrictions

of g, then we can only argue that half the edges are satisfied in the sense of the unique test.

Hence, the similar guarantee of satisfying around half the edges stays in the final Unique Games

instance created from the articles [20, 14, 15, 21] and thus falls short of proving Theorem 1.2.

Now we convert it into a Unique Test T2 (Figure 1.3) with a guarantee that for around half of

the vertices on one side of the bipartite test graph, all the edges incident on them are satisfied if

the tables F and H are the restrictions of some global linear function.

Given tables F and H, where F : Gr(V, `)× (2[`] \{ /0})×{0,1}→ F`−1
2 and H : Gr(V, `−1)→

F`−1
2 ,

• Select an (`−1)-dimensional subspace L′ uniformly at random.

• Select an `-dimensional subspace L containing L′, x ∈ L\L′ and b ∈ {0,1} uniformly

at random.

• Check if F [L,x,b]|L′ = H[L′].

Here, F [L,x,b] is thought of as a linear function f : L→ F2 such that f (x) = b, and H[L′] is
thought of as a linear function L′→ F2, by choosing arbitrary bases of the linear spaces

Lx = {y ∈ L | y⊥ x} and L′, respectively.

Figure 2: Unique Test T2

Towards this goal, we modify the domain of F . We consider two tables, F : Gr(V, `)× (2[`] \
{ /0})×{0,1}→ F`−1

2 and H : Gr(V, `−1)→ F`−1
2 . We fix an arbitrary one-to-one correspondence

between the non-zero elements of the `-dimensional subspace L and 2[`] \{ /0} for every L. Thus,
we can now interpret F as defined on a tuple (L,x,b)where x∈ L\{0} and b∈ {0,1}. We consider

the entries F [L,x,b] and H[L′] as linear functions on the spaces L and L′, respectively, as follows.

As before, we select an arbitrary basis for every (`−1)-dimensional subspaces Gr(V, `−1). Now

F [L,x,b] ∈ F`−1
2 is thought of as a linear function L→ F2 such that

1. at point x it evaluates to b, and

2. the evaluations of the linear function on the subspace Lx = {y ∈ L | y ⊥ x}, which is an

(`−1)-dimensional subspace, is given by F [L,x,b] in terms of the already chosen basis of
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Lx).

As before, H[L′] is thought of as a linear function L′→ F2 in terms of the chosen basis for L′.
Consider the following bipartite graph

(
Gr(V, `)× (2[`] \{ /0})×{0,1},Gr(V, `−1),E

)
where

(L,x,b) is connected to L′ iff x /∈ L′ and L′ ⊆ L. The test distribution from the Unique Test T2 is

uniform on the edges of this graph.

We now put permutation constraints on the edges of the graph. For an edge e ∈ E between

(L,x,b) and L′, we set the following permutation constraint. Extend the linear function given by

H[L′] to a linear function H̃L′,x,b[L] on L = span{L′,x} by setting H̃L′,x,b[L](x) = b. The accepting
labels for an edge e are F [L,x,b] and H[L′] such that H̃L′,x,b[L] and F [L] are identical when thought

of as linear functions on L. Note that the constraint is one-to-one.

Fix any global linear function g : V → F2. From this, we define H[L′] as the restriction of g
on L′. We define the table F partially by setting F [L,x,g(x)] as the restriction of g on L. Thus
for every (L,x,g(x)), it is clear that all the edges attached to it are satisfied by the tables H and F .

The set {(L,x,g(x))} also constitutes half of one side of the bipartite test graph. This particular

structure on the set of satisfying edges from this bipartite graph goes into the final Unique

Games instance that we construct. Therefore, in the YES case of the final reduction, we have that

there is an assignment such that for at least half the vertices on one side, all the edges attached to

them are satisfied. This establishes the completeness of our reduction from the main theorem.

Finally, the soundness of the Unique Test T2 follows directly from the soundness of the 2-to-1
Test T1 and we use this to prove the soundness of our reduction.

2 Preliminaries

We start by defining the Unique Games.

Definition 2.1 (Unique Games). An instance G = (A,B,E, [L],{πe}e∈E) of the Unique Games

constraint satisfaction problem consists of a bipartite graph (A,B,E), an alphabet [L] and a

permutation map πe : [L]→ [L] for every edge e ∈ E. Given a labeling σ : A∪B→ [L] , an edge

e = (u,v) is said to be satisfied by σ if πe(σ(v)) = σ(u).
G is said to be at most δ -satisfiable if every labeling satisfies at most a δ fraction of the edges.

We will define the following two quantities related to the satisfiability of the Unique Games

instance.

val(G) := max
σ :A∪B→[L]

{fraction of edges in G satisfied by σ} .

sval(G) := max
σ :A∪B→[L]

{
|A′|
|A|

∣∣∣∣∀e(u,v) s.t. u ∈ A′,e is satisfied by σ

}
.

The following is a conjecture by Khot [18] which has been used to prove many tight
inapproximability results.

Conjecture 2.2 (Unique Games Conjecture[18]). For every sufficiently small δ > 0 there exists L ∈N
such that given an instance G= (A,B,E,{πe}e∈E , [L]) of Unique Games it is NP-hard to distinguish
between the following two cases:
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• YES case: val(G)> 1−δ .

• NO case: val(G)6 δ .

For a subsetU of a vector spaceV , span(U) denotes its span. The notation span(U1,U2) stands
for span(U1∪U2) and for x ∈V , span(x,U) stands for span({x},U). Note that for subspaces L1,L2
we have span(L1,L2) = L1 +L2 := {x1 + x2 | xi ∈ Li} (the sumset). If L1∩L2 = {0} then L1 +L2 is

the direct sum, also denoted L1⊕L2.

For 0 < ` < n, let Gr(Fn
2, `) be the set of all `-dimensional subspaces of Fn

2. Similarly, for a

subspace L of Fn
2 such that dim(L)> `, let Gr(L, `) be the set of all `-dimensional subspaces of Fn

2
contained in L.

3 The Reduction

In this section, we go over the reduction in [15] from a gap 3LIN instance to a 2-to-1 Label Cover

instance and then show how to reduce it to a Unique Games instance in Section 3.4. We retain

most of the notations from [15].

3.1 Outer Game

The starting point of the reduction is the following problem:

Definition 3.1 (Reg-3Lin ). The instance (X ,Eq) of Reg-3Lin consists of a set X of n variables,

X = {x1,x2, . . . ,xn}, taking values in F2, and a collection Eq of m F2-linear constraints where each

constraint in Eq is a linear constraint on 3 variables. The instance is regular in the following

ways: every equation consists of 3 distinct variables, every variable xi appears in exactly 5
constraints, and every two distinct constraints share at most one variable.

An instance (X ,Eq) is said to be t-satisfiable if there exists an assignment to X which satisfies

at least a t fraction of the constraints. We have the following theorem implied by the PCP

theorem of [2, 3, 16].

Theorem 3.2. There exists an absolute constant s < 1 such that for every constant ε > 0 it is NP-hard to
distinguish between the cases when a given Reg-3Lin instance is at least (1− ε)-satisfiable vs. at most
s-satisfiable.

We now define an outer 2-prover 1-round game, parameterized by k,q ∈ Z+
and β ∈ (0,1),

which will be the starting point of our reduction. The verifier selects k constraints e1,e2, . . . ,ek
from the instance (X ,Eq) uniformly at random with repetition. If ei and e j share a variable

for some i 6= j then accept. Otherwise, let xi,1,xi,2,xi,3 be the variables in constraint ei. Let

X1 =
⋃k

i=1{xi,1,xi,2,xi,3}. The verifier then selects a subset X2 of X1 as follows: for each i ∈ [k],
with probability (1−β ) add xi,1,xi,2,xi,3 to X2 and with probability β , select a variable from

{xi,1,xi,2,xi,3} uniformly at random and add it to X2.

On top of this, the verifier selects q pairs of advice strings (s j,s∗j) where s j ∈ {0,1}X2 , and

s∗j ∈ {0,1}X1
for 1≤ j ≤ q as follows : For each j ∈ [q], select s j ∈ {0,1}X2

uniformly at random.
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The string s j can be thought of as assigning F2 values to each of the variables from X2. The

string s∗j ∈ {0,1}3k
is deterministically selected such that its projection on X2 is the same as s j

and the rest of the coordinates are assigned 0.
The verifier sends (X1,s∗1,s

∗
2, . . . ,s

∗
q) to Prover 1 and (X2,s1,s2, . . . ,sq) to Prover 2. The verifier

expects an assignment to variables in Xi from Prover i. Finally, the verifier accepts if and only if

the assignment to X1 given by Prover 1 satisfies all the equations e1,e2, . . . ,ek and the assignment

X2 given by Prover 2 is consistent with the answer of Prover 1.

Completeness: It is easy to see the completeness. If the instance (X ,Eq) is (1− ε)-satisfiable
then there is a provers’ strategy which makes the verifier accept with probability at least

(1− kε). The strategy is to use a fixed (1− ε)-satisfying assignment and answer according

to it. In this case, with probability at least (1− kε), the verifier chooses k constraints which

are all satisfied by the fixed assignment and hence the verifier will accept provers’ answers.

Soundness: Consider the case when the instance (X ,Eq) is at most s-satisfiable for s < 1 from

Theorem 3.2. If the provers were given only X1 and X2 without the advice strings, then

the Parallel Repetition Theorem of Raz [28] directly implies that for any provers’ strategy,

they can make the verifier accept with probability at most 2−Ω(βk)
. This follows because in

expectation, there are βk constraints out of k where Prover 2 receives one variable from

the constraint. It turns out that a few advice strings will not give provers any significant

advantage.

To see this, for each of these βk constraints, with probability 2−q
, all the advice strings

get assigned value 000 to the variables in the constraints and therefore does not leak
any information, about which variable from the constraint was being sent to Prover 2,
to Prover 1. Thus in expectation, there are

βk
2q constraints vs. variable questions where

Prover 1 knows nothing about which variable was being sent to Prover 2. One can then

argue, by using Raz’s Parallel Repetition Theorem, that any provers’ strategy can make

the verifier accept with probability at most 2−Ω(βk/2q)
.

The soundness is formally proved in [20].

Theorem 3.3 (Section 3 in [20]). If the Reg-3Lin instance (X ,Eq) is at most s-satisfiable (s < 1 from
Theorem 3.2) then there is no strategy with which the provers can make the verifier accept with probability
greater than 2−Ω(βk/2q).

Remark 3.4. The importance of the advice strings will come later in the proof of soundness.

Specifically, the proof of Theorem 3.14 (from [15] which we use as a black-box) crucially uses the

advice strings given to the provers.

To prove our main theorem, the reduction is carried out in three steps:
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Outer Game

↓ [15]

Gunfolded(A,B,E,Π,ΣA,ΣB) (unfolded 2-to-1 Game)

↓ [15]

Gfolded(Ã,B, Ẽ,Π̃,ΣA,ΣB) (folded 2-to-1 Game)

↓ (This work)

UGfolded(Â,B, Ê,Π̂,Σ) (Unique Game)

The first two steps are explained in the next two subsections. These follow from [15]. The main

contribution of our work is the last step which is given in Section 3.4.

3.2 Unfolded 2-to-1 Game

In this section we reduce a Reg-3Lin instance (X ,Eq) to an instance of 2-to-1 Label Cover

Gunfolded = (A,B,E,Π,ΣA,ΣB).

For an equation e ∈ Eq, let supp(e) = {i1, i2, i3} if e is a linear constraint on xi1 ,xi2 ,xi3 . A set of

k equations (e1,e2, . . . ,ek) is legitimate if the supports of the equations are pairwise disjoint and

for every two different equations ei and e j and for any x ∈ ei and y ∈ e j, the pair {x,y} does not
appear in any equation in Eq. Define U to be the following set family.

U=

{
S ∈

(
[n]
3k

)∣∣∣∣∣S =
k⋃

i=1

supp(ei) and (e1,e2, . . . ,ek) is legitimate

}
.

Note that by definition, there is a one-to-one correspondence between the set of legitimate k
tuples of equations and U. For U ∈ U, let XU ⊆ Fn

2 be the linear subspace whose elements have

support inU . For an equation e∈ Eq on xi1 ,xi2 ,xi3 , let xe be the vector in XU where xi1 = xi2 = xi3 = 1
and rest of the coordinates are 0. Denote by be ∈ F2 the RHS of the equation e. Let HU be the

span of {xe | xe ∈ XU}. Finally, let V be the collection of all sets of variables up to size 3k (thought

of as subsets of [n]). Similar to XU , for V ∈ V, let XV ⊆ Fn
2 be the linear subspace whose elements

have support in V .

Vertices (A,B): Let `� k which we will set later. The vertex set of the game Gunfolded is defined

as follows:

A = {(U,L) |U ∈ U,L ∈ Gr(XU , `),L∩HU = {0}}.

B = {(V,L′) |V ∈ V,L′ ∈ Gr(XV , `−1)}.
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Edges E: The distribution on the edges in Gunfolded is defined by the following process: Choose

X1 and X2 as per the distribution given in the outer verifier conditioned on U ∈ U, where

U =
⋃

xi∈X1
{i}. Let V =

⋃
xi∈X2
{i}. Choose a random subspace L′ ∈ Gr(XV , `−1) and a random

L ∈ Gr(XU , `) such that L′ ⊆ L. Output ((U,L),(V,L′)) ∈ (A,B).

Labels (ΣA,ΣB): The label set ΣA = F`
2 and the label set ΣB = F`−1

2 . A label σ ∈ ΣA to (U,L) can
be thought of as a linear function σ : L→ F2. Similarly the label σ ′ ∈ ΣB to a vertex (V,L′) is
though of as a linear function σ ′ : L′→ F2. This can be done by fixing arbitrary basis of the

respective spaces.

3.3 Folded 2-to-1 Game

For every assignment to the 3LIN instance, there are many vertices in the graph Gunfolded which

get the same label in accordance with the strategy of labeling the vertices in Gunfolded with

respect to a fixed assignment to X . So we might as well enforce this constraint on the variables

in Gunfolded. This is achieved by folding. In this section, we convert Gunfolded to the following

Game Gfolded = (Ã,B, Ẽ,Π̃,ΣA,ΣB).

Vertices (Ã,B): Consider the following relation on the vertices in A:

(U1,L1)∼R (U2,L2) iff L1 +HU1 +HU2 = L2 +HU1 +HU2 .

The following Lemma 3.5 says that∼R is indeed an equivalence relation, i. e., A = C1tC2t . . .,
where each Ci is one of the equivalence classes. In other words, if (U0,L0) ∈ Ci, then

Ci = {(U,L) ∈ A | L+HU +HU0 = L0 +HU +HU0}.

The proof of the lemma crucially uses the facts that U corresponds to a legitimate set of
equations and that the Reg-3Lin instance is regular, namely, every equation consists of three

distinct variables and every two distinct constraints share at most one variable.

Lemma 3.5 (Lemma 3.2 in [15]). The relation ∼R defined above is an equivalence relation: for every i,
there exists an `-dimensional subspace RCi such that for all (U,L) ∈ Ci,

HU +L = RCi +HU .

We define the vertex set Ã as follows:

Ã = {C(U,L) | (U,L) ∈ A},

where C(U,L) is the equivalence class of (U,L). In other words, in Ã, there is a vertex for every

equivalence class.

Edges Ẽ: The distribution on the edges in Gfolded is defined by the following process: sample

((U,L),(V,L′))with respect to E and output (C(U,L),(V,L′)).
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Labels (ΣA,ΣB): The label set ΣA = F`
2, a label σ to C ∈ Ã can be thought of as a linear function

σ : RC→ F2. As before, the label σ ′ ∈ ΣB to a vertex (V,L′) is though of as a linear function

σ ′ : L′→ F2.

In order to define the constraints on the edges, we need the following definitions:

Definition 3.6. For a space HU +L such that L∩HU = {0} and a linear function σ : L→ F2, the

extension of σ , respecting the side conditions, to the whole space HU +L is a linear function

β : HU +L→ F2 such that for all xe ∈ XU , β (xe) = be and β |L = σ .

Note that there is a one-to-one mapping between linear functions on L and their extensions

as all the equations in U are disjoint and hence {xe | xe ∈ XU} form a basis for the space HU .

Definition 3.7. Consider a label σ to a vertex C which is a linear function on RC. The unfolding

of it to the elements of the C is given as follows: For (U,L) ∈ C, define a linear function

σ̃U : HU + L→ F2 such that it is equal to the extension of σ to HU +RC respecting the side

conditions.

The spaces HU +L and HU +RC are the same and hence the above definition makes sense.

We are now ready to define the constraints.

Constraints Π̃: Consider linear functions σ : RC→ F2 and σ ′ : L′→ F2. A pair (σ ,σ ′) satisfies
the edge (C,(V,L′)) ∈ Ẽ, if for every (U,L) ∈ C such that ((U,L),(V,L′)) ∈ E, the unfolding σ̃U

when restricted to the subspace L′ is σ ′, i. e., σ̃U |L′ = σ ′.

We have the following completeness and soundness guarantee of the reduction from [15].

Lemma 3.8 (Completeness). (Lemma 4.1 in [15]) For every constant ε > 0, if the Reg-3Lin instance
(X ,Eq) is (1−ε)-satisfiable then there exists Ã′ ⊆ Ã, |Ã′|> (1−kε)|Ã|, and a labeling to the 2-to-1 Label
Cover instance Gfolded such that all the edges incident on Ã′ are satisfied.

Lemma 3.9 (Soundness). (Lemma 4.2 in [15], and [21]) For all δ > 0, there exist q,k≥ 1 and β ∈ (0,1),
such that if the Reg-3Lin instance (X ,Eq) is at most s-satisfiable (where s is from Theorem 3.2) then
every labeling to Gfolded satisfies at most a δ fraction of the edges.

3.4 Reduction to Unique Games

In this section, we convert the Label Cover instance Gfolded to a Unique Games instance

with the stronger completeness guarantee that we are after. We will reduce an instance

Gfolded = (Ã,B, Ẽ,Π̃,ΣA,ΣB) to an instance of Unique Game UGfolded = (Â,B, Ê,Π̂,Σ).

Vertices (Â,B): Wewill split each vertex C∈ Ã into many copies. Fix an `-dimensional subspace

RC given by Lemma 3.5. For every x ∈ RC \{0} and b ∈ {0,1}we add a copy Cx,b to Â.

Â =
⋃
C∈Ã

{Cx,b | x ∈ RC \{0},b ∈ {0,1}} .
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Edges Ê: The distribution on the edge set Ê is as follows: We first pick ((U,L),(V,L′)) from
the distribution E. Let (U,L) ∈ C. We then select y ∈ (HU + L) \ (HU + L′) and b ∈ {0,1}
independently and uniformly at random. Note that dim(span{y,HU}∩RC) = 1 since y /∈ HU and

y ∈ HU +L = HU +RC. Let x ∈ span{y,HU}∩RC be the non-zero vector. Output (Cx,b,(V,L′)).

Claim 3.10. x is distributed uniformly in RC \ (HU +L′) conditioned on (U,V,L,L′).

Proof. We first claim that x ∈ RC \ (HU + L′) by showing x /∈ HU + L′. Suppose not, then we

can write x = h+ x′ where h ∈ HU and x′ ∈ L′. We also know that x ∈ span{y,HU}∩RC and

RC∩HU = {0}. Thus, x can be written as x = h̃+ y where h̃ ∈ HU . This implies that h+ x′ = h̃+ y.
In other words, y = h+ h̃+ x′ ∈ HU +L′, a contradiction.

Since each y∈ (HU +L)\(HU +L′) gives a unique non-zero x∈ span{y,HU}∩RC, we will show

that the number of y ∈ (HU +L)\ (HU +L′) that give a fixed x is same for all x ∈ RC \ (HU +L′)
and this will prove the claim.

Fix any x̃ ∈ RC \ (HU + L′), we now claim that the set of all y ∈ (HU + L) \ (HU + L′) that

give x̃ is span{x̃,HU} \HU . Clearly, for any y /∈ span{x̃,HU} \HU , x̃ /∈ span{y,HU} and also for

every y ∈ span{x̃,HU}\HU , x̃ ∈ span{y,HU}. Thus, it remains to show that span{x,HU}\HU ⊆
(HU +L)\ (HU +L′) for all x ∈ RC \ (HU +L′).

To prove the inclusion, suppose for contradiction (span{x,HU}\HU)∩ (HU +L′) 6= /0. This
means x+h= h̃+v′ for some h, h̃∈HU and v′ ∈ L′. This implies x= h+ h̃+v′ ∈HU +L′ contradicting
x ∈ RC \ (HU +L′).

Labels Σ: The label set is Σ = F`−1
2 . A label σ to Cx,b can be thought of as a linear function

σ : RC→ F2 such that σ(x) = b. This is done by fixing an arbitrary `−1 basis elements from the

subspace {y ∈ RC | y⊥ x}.
It is easy to see that there is a one-to-one correspondence between the labels Σ and the

linear functions σ on RC such that σ(x) = b. Similar to the previous case of Gfolded, a label from

Σ(= ΣB) to a vertex (V,L′) in B is interpreted as a linear function σ ′ : L′→ F2.

We define an analogous unfolding of the labels, to the vertices in Â, to the elements of the

corresponding equivalence class. Since the label set here is different from Gfolded, for a label

σ to Cx,b (thought of as a linear function on RC respecting σ(x) = b) we use the notation σ̂U to

denote its unfolding to (U,L) ∈ Cx,b .

1-to-1 Constraints Π̂: Finally the constraint πe : Σ→ Σ between the endpoints of an edge

e = (Cx,b,(V,L′)) is given as follows: Consider linear functions σ : RC→ F2 respecting σ(x) = b
and σ ′ : L′ → F2. A pair (σ ,σ ′) ∈ πe if for every (U,L) ∈ C such that ((U,L),(V,L′)) ∈ E and

span{x,HU}∩L′ = {0}, the unfolding σ̃U satisfies σ̃U |L′ = σ ′.

To see that every σ ′ has a unique preimage in πe, for any linear function σ ′ : L′→ F2, there is

a unique linear function σ : RC→ F2 such that σ(x) = b satisfying the above conditions. This is

because of the following claim.

Claim 3.11. Any basis for L′ along with x and {xe | xe ∈ XU} forms a basis for HU +RC for every
(U,L) ∈ C.

THEORY OF COMPUTING, Volume 18 (5), 2022, pp. 1–28 14

http://dx.doi.org/10.4086/toc


UG-HARDNESS TO NP-HARDNESS BY LOSING HALF

Proof. Let us unwrap the conditions for putting an edge between (V,L′) and Cx,b. One necessary

condition is that (C,(V,L′)) should be an edge in Ẽ. By the definition of Ẽ, there exists

(U,L) ∈ C such that L′ ⊆ L. Recall, x is such that there exists a y ∈ (HU +L) \ (HU +L′) such
that dim(span{y,HU}∩RC) = 1 and x ∈ span(y,HU)∩RC. Therefore x ∈ (HU +L)\ (HU +L′) and
hence dim(span{x,HU +L′}) = k+ ` (as HU ∩L′ = {0}). This implies that any basis of L′, the basis
{xe | xe ∈ XU} of HU , and x span HU +L. Since by Lemma 3.5 the subspace HU +L is same as the

subspace HU +RC, the claim follows.

We now show the completeness and the soundness of the overall reduction to the Unique

Games instance.

3.4.1 Completeness

Lemma 3.12 (Completeness). For every constant ε > 0, if there exists Ã′ ⊆ Ã, |Ã′|> (1−kε)|Ã|, and a
labeling to the 2-to-1 Label Cover instance Gfolded such that all the edges incident on Ã′ are satisfied,
then there exists Â′ ⊆ Â, |Â′|> (1−kε

2 )|Â|, and a labeling to Unique Games instance UGfolded such that
all the edges incident on Â′ are satisfied.

Proof. Fix a labeling ( ˜A ,B̃) to Gfolded where
˜A : Ã→ ΣA and B̃ : B→ ΣB that satisfies all the

edges incident on a (1− kε) fraction of the vertices in Ã. We will construct a labeling (Â ,B̂) to

the instance UGfolded, where Â : Â→ Σ and B̂ : B→ Σ that will satisfy all the edges adjacent to

at least a
(1−kε)

2 fraction of vertices Â in UGfolded.

We will set B̂ = B̃. Now to assign a label to Cx,b ∈ Â, we look at the label σ := ˜A (C) ∈ F`
2 as a

linear function σ : RC→ F2. If σ(x) = b, we set Â (Cx,b) to be the same linear function σ : RC→ F2

respecting σ(x) = b. Otherwise, we set Â (Cx,b) =⊥. It is obvious that exactly half the vertices in

Â got assigned a label in Σ.

Claim 3.13. If the label ˜A (C) to C satisfies all the edges incident on it, then for all x ∈ RC \{0}, there
exists a unique b ∈ {0,1} such that the label Â (Cx,b) satisfies all the edges incident on Cx,b, unless
Â (Cx,b) =⊥.

Proof. For convenience let σ = ˜A (C). If we let Γ(C) ⊆ B to be the neighbors of C in Gfolded,

then the set of neighbors of Cx,b is a subset of Γ(C). Furthermore if (V,L′) is connected to

Cx,b in UGfolded then x /∈ L′ and x ∈ RC. The condition that the edge (C,(V,L′)) is satisfied by

˜A means that for all (U,L) ∈ C such that L′ ⊆ L, the unfolding of σ satisfies σ̃U |L′ = B̃((V,L′)).
Since the unfolding of the label Â (Cx,b) to Cx,b gives the same linear function σ̃ , it follows that

σ̃U |L′ = B̂((V,L′)) for every (U,L) ∈ C and every (V,L′) ∈ Γ(C) such that L′ ⊆ L. Therefore Â

satisfies all the edges incident on Cx,b if Â (Cx,b) 6=⊥.

Let Ã′ ⊆ Ã be the set of vertices such that all the edges incident on them are satisfied by the

labeling ( ˜A ,B̃). By assumption |Ã′|> (1− kε)|Ã|. Consider the subset Â′ ⊆ Â

Â′ = {Cx,b | Â (Cx,b) 6=⊥,C ∈ Ã′}.
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Now, |Â′|> 1−kε

2 |Â| and from the above claim, all the edges incident on Â′ are satisfied by the

labeling (Â ,B̂).

3.4.2 Soundness

Let FU : {L+HU | L ∈ Gr(XU , `),L∩HU = {0}} → F`
2. FU [L+HU ] can be thought of as a linear

function L+HU → F2 respecting the side conditions. This is again by fixing an arbitrary basis of

L. Define agreement(FU) as the probability of the following event:

• Select an (`−1)-dimensional subspace L′ ∈ XU such that L′∩HU = {0} uniformly at random.

– Select `-dimensional subspaces L1 and L2 containing L′ such that L1∩HU = L2∩HU =
{0} uniformly at random.

– Check if FU [L1 +HU ]|L′ = FU [L1 +HU ]|L′ .

The main technical theorem which was conjectured in [15] and proved in [21] is that if

agreement(FU) is a positive constant, then there is a global linear function g : XU → F2 respecting

the side conditions and a special (not too small) subset S of {L+HU | L ∈Gr(XU , `),L∩HU = {0}}
such that for a constant fraction of elements in S, FU agrees with g. We will not need the details

of this theorem. Instead, we state the main soundness lemma from [15] which crucially used

the aforementioned structural theorem and also the advice strings as mentioned in Remark 3.4.

Theorem 3.14 (Implied by Lemma 4.1 in [15]). For every constant δ > 0, there exist large enough
`� k, q ∈ Z+ and β ∈ (0,1) such that if there is an unfolded assignment A : A→ ΣA to Gunfolded such
that for at least δ fraction of U , agreement(FU) > δ , FU [L+HU ] = A (U,L) for every L ∈ Gr(XU , `),
then there exists a provers’ strategy which makes the outer verifier accept with probability at least pδ ,
where pδ is independent of k.

Armed with this theorem, we are ready to prove the soundness of the reduction to the

Unique Games instance UGfolded.

Lemma 3.15 (Soundness). Let δ > 0 and fix q ∈ Z+, β ∈ (0,1) and `� k as in Theorem 3.14. If
UGfolded is δ -satisfiable then there exists a provers’ strategy which makes the outer verifier accept with
probability at least p δ4

216
.

Proof. Fix any δ -satisfying assignment (Â ,B̂), Â : Â→ Σ, B̂ : B̂→ Σ to the Unique Games

instance UGfolded. We first get a randomized labeling ( ˜A ,B̃) to Gfolded where
˜A : Ã→ ΣA

and B̃ : B→ ΣB as follows: We will keep B̃ = B̂. For every C ∈ Ã, we pick a random x ∈ RC

and b ∈ {0,1} and set
˜A (C) = Â (Cx,b). We now unfold the assignment

˜A to A . Define

FU [L+HU ] = A (U,L) for every L ∈ Gr(XU , `). Note that FU is a random assignment.

Let p(U) denote the probability that an edge in UGfolded is satisfied conditioned on U .

Consider U such that p(U)> δ

2 . By an averaging argument, there are at least a δ/2 fraction of U
such that p(U)> δ

2 .

Claim 3.16. EFU [agreement(FU)]>
p(U)4

211 −ok(1).
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Proof. Fix a particular U . Define a randomized assignment F ′U [L
′] as follows: Select a random

V ⊆U conditioned on the event that L′ ⊆ XV . Set F ′U [L
′] = B̂(V,L′). Consider the following two

distributions:

Distribution DU :

• Select V uniformly at random from {V | ((U,L),(V,L′)) ∈ E for some L,L′}

• Select L′ uniformly at random from Gr(XV , `−1)

• Select L uniformly at random from {L | L ∈ Gr(XU , `) and L′ ⊆ L}

• Let C be the equivalence class such that (U,L) ∈ C, select x∼ RC as in the edge distribution

Ê.

• Select b ∈ {0,1} uniformly at random.

Distribution D′U :

• Select L′ uniformly at random from Gr(XU , `−1)

• Select V uniformly at random from {V | ((U,L),(V,L′)) ∈ E,L′ ∈ Gr(XV , `− 1) and L ∈
Gr(XU , `)}

• Select L uniformly at random from {L | L ∈ Gr(XU , `) and L′ ⊆ L}

• Let C be the equivalence class such that (U,L) ∈ C, select x∼ RC as in the edge distribution

Ê.

• Select b ∈ {0,1} uniformly at random.

We have the following lemma from [15].

Lemma 3.17 (Lemma 3.6 in [15]). Consider the two marginal distributions on the pair (V,L′), one with
respect to DU and another with respect to D′U . If 2`β ≤ 1

8 , then the statistical distance between the two
distributions is at most β

√
k ·2`+4.

In the distribution DU , there is always a constraint between Cx,b and (V,L′) in UGfolded.

Moreover, the distribution of (Cx,b,(V,L′)) is same as the edge distribution Ê. Therefore

p(U) = Pr
DU

[
(Â (Cx,b),B̂(V,L′)) satisfy the edge (Cx,b,(V,L′))

]
.

Rewriting the above equality,

p(U) = Pr
DU

[
σ̂U |L′ = B̂(V,L′) | σ = Â (Cx,b)

]
.

Using Claim 3.10, the distribution of FU [L+HU ], conditioned on x ∈ RC \ (HU +L′), is same

as the distribution Â (Cx,b) (with appropriate unfolding of it) chosen with respect to DU . As
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|RC\(HU +L′)|= |RC|/2, for a random x∈RC, the event x∈RC\(HU +L′) happenswith probability

1
2 . Since we pick an uniformly random x ∈ RC while defining

˜A (C), which in turn defines

FU [L+HU ], we have

p(U)

2
6 E

FU

Pr
DU

[
FU [L+HU ]|L′ = B̂(V,L′)

]
,

Now,

Pr
DU

[
FU [L+HU ]|L′ = B̂(V,L′)

]
≈ Pr

D′U

[
FU [L+HU ]|L′ = B̂(V,L′)

]
.

follows from the closeness of distributionsDU andD′U on (V,L′) given by Lemma 3.17 by setting

β � 1√
k
(this setting of β is consistent with the setting of β in Theorem 3.14). Conditioned on L′,

the distribution of (V,L′) inD′U is same as the distribution we used to assign F ′U [L
′] and therefore

we get

p(U)

2
−ok(1)6 E

FU

Pr
L′⊆L

[
FU [L+HU ]|L′ = F ′U [L

′]
]
.

Let E1 be the event that
p(U)

4 −ok(1)6 PrL′⊆L [FU [L+HU ]|L′ = F ′U [L
′]]. By an averaging argument,

Pr[E1]>
P(U)

4 −ok(1). We now fix an FU for which E1 occurs. By another averaging argument,

there is at least a p(U)/8 fraction of L′ ∈ Gr(XU , `−1) such that PrL⊇L′ [FU [L+HU ]|L′ = F ′U [L
′]]>

p(U)
8 −ok(1). For each of such L′ we have,

Pr
L1,L2⊇L′

[FU [L1 +HU ] = FU [L2 +HU ]] = Pr
L1,L2⊇L′

[
FU [L1 +HU ]|L′ = FU [L2 +HU ]|L′ = F ′U [L

′]
]

>
p(U)2

26 −ok(1).

Thus overall, we get

Pr
L1,L2⊇L′

[FU [L1 +HU ] = FU [L2 +HU ] | E1]>
p(U)3

29 −ok(1).

Hence,

E
FU

[agreement(FU)]> Pr[E1] · Pr
L1,L2⊇L′

[FU [L1 +HU ] = FU [L2 +HU ] | E1]>
p(U)4

211 −ok(1).

There is at least a δ/2 fraction ofU such that p(U)> δ/2. This means for at least a δ/2 fraction

of U , E[agreement(FU)] > δ 4

215 − ok(1) using the previous claim. Thus, again by an averaging

argument, there exists a fixed {FU |U ∈ U}, coming from unfolding of some assignment
˜A ,

such that for at least a δ 42−16
fraction of U , we have agreement(FU)> δ 42−16

. The lemma now

follows from Theorem 3.14.

We now prove the main theorem.
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Proof of Theorem 1.2 Fix δ > 0. We let q, β and `� k be as given in the setting of Theorem 3.14.

Firstly, if we look at the marginal of the edge distribution on Â then it is uniform and hence

the instance is left-regular.3 Now, starting with an instance (X ,Eq), we have the following two

guarantees of the reduction.

1. If the instance (X ,Eq) is (1− 2δ

k )-satisfiable then by Lemma 3.8 and Lemma 3.12, the

Unique Games instance UGfolded has a property that for at least a (1/2)−δ fraction of the

vertices in Â, all the edges incident on them are satisfied.

2. Consider the other case in which the instance (X ,Eq) is at most s-satisfiable where s < 1.
If the Unique Games instance UGfolded has a δ -satisfying assignment, then by Lemma 3.15

there is a provers’ strategy which can make the outer verifier accept with probability at

least p δ4

216
� 2−Ω(βk/2q)

for large enough k. This contradicts Theorem 3.3 and hence in this

case, UGfolded has no assignment that satisfies a δ fraction of the edges.

Since by Theorem 3.2, distinguishing between a given instance (X ,Eq) being at least (1− 2δ

k )-
satisfiable or at most s-satisfiable is NP-hard, this proves our main theorem.

4 Independent set in degree-d graphs

We consider a weighted graph H = (V,E)where the sum of the weights of all the vertices is 1
and also sum of the weights of all the edges is also 1. For S⊆V , we will denote the total weight

of the vertices in S by w(S).

Definition 4.1. A graph H is (δ ,ε)-dense if for every S⊆V (H)with w(S)> δ , the total weight

of the edges inside S is at least ε .

For ρ ∈ [−1,1] and β ∈ [0,1], the quantity Γρ(β ) is defined as:

Γρ(β ) := Pr[X ≤ φ
−1(β )∧Y ≤ φ

−1(β )],

where X and Y are jointly distributed normal Gaussian random variables with co-variance ρ

and φ is the cumulative density function of a normal Gaussian random variable.

We will prove the following theorem.

Theorem 4.2. Fix ε > 0, p ∈
(
0, 1

2

]
, then for all sufficiently small δ > 0, there exists a polynomial-time

reduction from an instance of left-regular Unique Games, G(A,B,E, [L],{πe}e∈E), to a graph H such that
1. If sval(G)> c, then there is an independent set of weight c · p in H.

2. If val(G)6 δ , then H is (β ,Γρ(β )− ε) dense for every β ∈ [0,1] and ρ =− p
p−1 .

The reduction is exactly the same as the one in [4]. We will only show the completeness (1)

from Theorem 4.2 here. The soundness of this theorem is proved in [4]. This theorem will imply

Theorem 1.3 using a randomized sparsification technique of [4] to convert the weighted graph

into a bounded-degree unweighted graph.

3The edges have weights, but it can be made an unweighted left-regular instance by adding multiple edges

proportional to its weight with the same constraint.
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Let G(A,B,E, [L],{πe}e∈E) be an instance of Unique Games. The distribution of edges in

H is as follows:

• Select u ∈ B uniformly at random.

• Select two neighbors v1 and v2 of u independently and uniformly at random. Let π1
and π2 be the constraints between (u,v1) and (u,v2) respectively.

• Select x,y∈ {0,1}L
, such that for each i∈ [L], the pair (xi,yi) is sampled independently

from the distribution D.

• Output the edge (v1,x◦π1),(v2,y◦π2).

Figure 3: Reduction from UG to Independent Set from [4].

4.1 The AKS reduction

Consider the distributionD on (a,b) ∈ {0,1}2
such that Pr[a = b = 1] = 0 and each bit is p-biased,

i. e., Pr[b = 1] = Pr[b = 1] = p. For a string x ∈ {0,1}L
and a permutation π : [L]→ [L], define

x◦π ∈ {0,1}L
as (x◦π)i = xπ(i) for all i ∈ [L].

Let G(A,B,E, [L],{πe}e∈E) be an instance of Unique Games which is regular on the A side.

We convert it into a weighted graph H. The vertex set of H will be A×{0,1}L
. Weight of a vertex

(v,x) where v ∈ A and x ∈ {0,1}L
is

µp(x)
|A| , where µp(x) := p|x|(1− p)L−|x|

. The edge distribution is

given in Figure 3.

Lemma 4.3 (Completeness). If sval(G)> c, then there is an independent set in H of weight c · p.

Proof. Fix an assignment ` : A∪B→ Σ that gives sval(G) > c. Let A′ ⊆ A be the set of vertices

such all the edges incident on A′ are satisfied by `. We know that |A′| > c · |A|. Consider the
following subset of vertices in H.

I = {(v,x) | v ∈ A′,x`(v) = 1}.

Firstly, the total weight of set I is c · p. We show that I is in fact an independent set in H.

Suppose for contradiction, there exists an edge (v1,x),(v2,y) in H with both endpoints are in

I. Let u be the common neighbor of v1,v2 (one such u must exist). If we let π1 and π2 be the

permutation constraints between (u,v1) and (u,v2), then the conditions for being an edge implies

that (xπ1(`(u)),yπ2(`(u))) should have a support inD. Since all the edges incident on A′ are satisfied,
πi(`(u)) = `(vi) for i ∈ {1,2}. Therefore, (x`(v1),y`(v2)) is also supported in D and hence both

cannot be 1 which implies that both cannot belong to I.

Lemma 4.4 (Soundness [4]). For every constant ε > 0, if H is not (β ,Γρ(β )− ε)-dense for some
β ∈ [0,1] and ρ =− p

p−1 , then G is δ -satisfiable for δ := δ (ε, p)> 0.

Lemma 4.3 and Lemma 4.4 prove Theorem 4.2.

THEORY OF COMPUTING, Volume 18 (5), 2022, pp. 1–28 20

http://dx.doi.org/10.4086/toc


UG-HARDNESS TO NP-HARDNESS BY LOSING HALF

5 Maximum Acyclic Subgraph

In this section we state the reduction from [17] and analyze the completeness of the reduction.

Given a directed graph H = (V,E), we will denote by Val(H) the fraction of edges in the

maximum sized acyclic subgraph of H. We need the following definition.

Definition 5.1. A t-ordering of a directed graph H = (V,E) consists of a map O : V → [t]. The
value of a t-ordering O is given by

Valt(O) = Pr
(a,b)∈E

[O(a)< O(b)]+
1
2
· Pr
(a,b)∈E

[O(a) = O(b)].

Define Valt(H) as:

Valt(H) = max
O

Valt(O).

The following lemma [17] will be crucial in the reduction from Unique Games to the

Maximum Acyclic Subgraph problem.

Lemma 5.2 ([17]). Given η > 0 and a positive integer t, for every sufficiently large m, there exists a
weighted directed acyclic graph H(V,E) on m vertices along with a distribution D on the orderings
{O : V → [m]} such that:

1. For every u ∈V and i ∈ [m], PrO∼D[O(u) = i] = 1
m .

2. For every directed edge (a→ b), PrO∼D[O(a)< O(b)]> 1−η .

3. Valt(H)6 1
2 +η .

The reduction is given in Figure 4. For a string x ∈ [q]L and a permutation π : [L]→ [L], define
x◦π ∈ [q]L by (x◦π)i = xπ(i) for all i ∈ [L].

Lemma 5.3 (Completeness). For small enough ε,η > 0, if the Unique Games instanceG has sval(G)> c
then Val(G)> c · (1−2ε)(1−η)+(1− c) ·

(1
2 −

1
2m

)
Proof. Fix an assignment ` : A∪B→ Σ that gives sval(G) > c. Let A′ ⊆ A be the set of vertices

such that its edges are satisfied by `, we know that |A′| > c · |A|. Consider the following m
ordering O : B× [m]L → [m] of the vertices of G: O(v,x) = x`(v). We will show that Valm(O) >
c(1−2ε)(1−η)+(1− c) ·

(1
2 −

1
2m

)
. This will prove the lemma.

Val(G)> Valm(O)> Pr[O((v1, x̃◦π1)< O(v2, ỹ◦π2)]

= Pr[x̃π1(`(v1)) < ỹπ2(`(v2))]

> c ·Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u ∈ A′]

+ (1− c) ·Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u /∈ A′]. (5.1)
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Let G(A,B,E, [L],{πe}e∈E) be an instance of Unique Games. Fix a graph H([m],EH) from
Lemma 5.2 with parameters η > 0 and t ∈ Z+

, along with the distribution D. Construct a

weighted directed graph G on B× [m]L with the following distribution on the edges:

• Select u ∈ A uniformly at random.

• Select two neighbors v1 and v2 of u uniformly at random. Let π1 and π2 be the

constraints between (u,v1) and (u,v2) respectively.

• Pick an edge e = (a,b) ∈ EH at random from the graph H.

• Select x,y ∈ [m]L, such that for each i ∈ [L], the pair (xi,yi) is sampled independently

as follows:

– sample O∼D, set xi = O(a) and yi = O(b).

• Perturb x and y as follows: for each i ∈ [L], with probability (1− ε), set x̃i = xi, with

probability ε set x̃i to be uniformly at random from [m]. Do the same thing for y
independently to get ỹ.

• Output the directed edge (v1, x̃◦π1)→ (v2, ỹ◦π2).

Figure 4: Reduction from UG to Max-Acyclic Graph from [17].

Now, if u ∈ A′ then π1(`(v1)) = π2(`(v2)) = `(u) and hence,

Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u ∈ A′] = Pr[x̃`(u) < ỹ`(u)]

> (1−2ε) · E
(a,b)∈EH

Pr
O∼D

[O(a)< O(b)]

> (1−2ε)(1−η). (5.2)

Now, we can show that Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u /∈ A′] is at least (1− 2ε)(1−η) as above if

π1(`(v1)) = π2(`(v2)). If π1(`(v1)) 6= π2(`(v2)) then x̃π1(`(v1)) and ỹπ1(`(v1)) are uncorrelated and are

distributed uniformly in [m]. Therefore, Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u /∈ A′] = (m
2)

m2 = 1
2 −

1
2m . Thus, for

small enough ε and η , we have the following lower-bound.

Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u /∈ A′]> min
{
(1−2ε)(1−η),

1
2
− 1

2m

}
>

1
2
− 1

2m
. (5.3)

Plugging equation (5.2) and equation (5.3) into equation (5.1), we get

Val(G)> c · (1−2ε)(1−η)+(1− c) ·
(

1
2
− 1

2m

)
.
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The following soundness of the reduction is shown in [17].

Lemma 5.4 (Soundness [17]). If the Unique Games instance G has val(G) 6 δ then Val(G) 6
1
2 +η +ot(1)+δ ′, where δ ′→ 0 as δ → 0.

Proof of Theorem 1.4 For every ε ′ < 0, setting ε,η ,δ > 0 small enough constants and m large

enough, in the completeness of the reduction we have a maximum acyclic subgraph of size at

least
c
2 +

1
2 −ε ′, whereas in the soundness, it is at most

1
2 +ε ′. Since by Theorem 1.2, it is NP-hard

to distinguish between sval(G)> 1
2 −δ and val(G)6 δ , we get that it is NP-hard to approximate

the size of the Maximum Acyclic Subgraph within a factor of
1/2+ε ′

1/4+1/2−ε ′−δ/2 ≈
2
3 .

Remark 5.5. Instead of sval(G) = 1
2 , if we only have val(G) = 1

2 , then the same construction

and the labeling from Lemma 5.3 gives Val(G)> 5
8 . To see this, fix an assignment ` : A∪B→ Σ

which gives val(G)> 1
2 . Let αu denote the fraction of edges incident on u that are satisfied by `.

Therefore, we have val(G) = Eu∈A[αu] =
1
2 . Using a similar analysis as in the completeness of

the reduction, we have Val(G) > Eu∈A[α
2
u · (1− 2ε)]+Eu∈A[(1−α2

u ) · 1
2 ] > (1− 2ε)E[1

2 +
α2

u
2 ]. By

the Cauchy–Schwarz inequality E[α2
u ]> (E[αu])

2 = 1
4 and hence Val(G)> (1−2ε) · 5

8 . This along

with the soundness lemma gives the NP-hardness of 4
5 .

6 Predicates supporting Pairwise Independence

In this section, we prove Theorem 1.5.

6.1 The Austrin-Mossel reduction

Let D be a distribution on P−1(1) which is balanced and pairwise independent. For a string

x ∈ [q]L and a permutation π : [L]→ [L], define x◦π ∈ [q]L such that (x◦π)i = xπ(i) for all i ∈ [L].
Let G(A,B,E, [L],{πe}e∈E) be an instance of Unique Games. We convert it into a P-CSP

instance I as follows. The variable set of I is B× [q]L. The variables are folded in the sense that for

every assignment f : B× [q]L→ [q] to the variables, we enforce that for every v ∈ B, x ∈ [q]L and

α ∈ [q],
f (v,x+α

L) = f (v,x)+α,

where additions are (mod q).
The distribution on the constraints is given in Figure 5:

Lemma 6.1 (Completeness). If sval(G)> c, the I is (c− ε)-satisfiable.

Proof. Fix an assignment ` : A∪B→ Σ that gives sval(G) > c. Let A′ ⊆ A be the set of vertices

such that all the edges incident on A′ are satisfied by `, we know that |A′|> c · |A|. Thus, with

probability at least c, u ∈ A′ and all edges attached to it are satisfied by `. Consider the following

assignment f to the variables of I : For a variable (v,x), we assign f (v,x) = x`(v).
Conditioned on u∈ A′, we will show that ( f (v1,x1 ◦π1), f (v2,x2 ◦π2), . . . , f (vk,xk ◦πk))∈ P−1(1)

with probability (1− ε) and this will prove the lemma. Now, ( f (v2,x2 ◦π2), . . . , f (vk,xk ◦πk)))
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Let G(A,B,E, [L],{πe}e∈E) be an instance of Unique Games.

• Select u ∈ A uniformly at random.

• Select k neighbors {v1,v2, . . . ,vk} of u uniformly at random. Let π j be the constraint

between (u,v j) for all j ∈ [k].

• Select x1,x2, . . . ,xk ∈ [q]L, such that for each i∈ [L] sample (x1
i ,x

2
i , . . . ,x

k
i ) independently

as follows:

– with probability (1− ε), (x1
i ,x

2
i , . . . ,x

k
i ) is sampled from the distribution D.

– with probability ε , (x1
i ,x

2
i , . . . ,x

k
i ) is sampled from [q]k uniformly at random.

• Output the constraint ((v1,x1 ◦π1),(v2,x2 ◦π2), . . . ,(vk,xk ◦πk)).

Figure 5: Reduction from UG to a P-CSP instance I from [6].

is same as ((x1 ◦π1)`(v1),(x
2 ◦π2)`(v2), . . . ,(x

k ◦πk)`(vk)), which in turns equals (x1
π1(`(v1)

,x2
π2(`(v2)

, . . . ,

xk
πk(`(vk)

). Since ` satisfies all the edges (u,vi), we have that for all j ∈ [k], π j(`(v j)) = `(u) =: i for

some i ∈ [L]. Therefore we get ( f (v1,x1 ◦π1), f (v2,x2 ◦π2), . . . , f (vk,xk ◦πk)) = (x1
i ,x

2
i , . . . ,x

k
i ), and

according to the distribution, it belongs to P−1(1)with probability (1− ε).

We have the following soundness of the reduction.

Lemma 6.2 (Soundness [6]). If the instance I is
(

P−1(1)
qk +η

)
-satisfiable, then G is δ := δ (η ,ε,k,q)> 0

satisfiable, where η → 0 as δ → 0.

The completeness and soundness of the reduction, along with our main theorem, imply

Theorem 1.5.
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