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This dissertation presents techniques to improve the performance of both

coherent as well as non-coherent wireless communication systems via optimizing

symbol timing, frequency spacing and by making efficient SNR estimations. We

show that some of the design choices made in traditional systems are not optimal

and demonstrate the gains that may be achieved by making unconventional, but

judicious, choices for these parameters.

We start in the area of coherent multi-antenna communications where we

introduce an offset between the symbol boundaries of the transmitted waveforms

from the different antennas and show that this improves performance in comparison
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to the traditional symbol aligned transmission. For this modified system, we derive

various optimal receivers such as maximum likelihood (ML), best linear unbiased

estimator (BLUE), minimum mean squared error (MMSE), and zero forcing (ZF)

receivers and show that they outperform the equivalent receiver for the system

with aligned symbol boundaries. In some system configurations, the performance

gain is close to 2dB. The design methodology for a new symbol pulse shape that

increases the performance even more is also presented.

Next, we extend the study of SNR estimation from the previously published

results of a data aided (DA) single antenna system to the non-data aided (NDA)

model and also to systems with multiple antennas (MIMO). In both these cases,

we have derived the Cramér-Rao lower bound (CRLB) as well as ML estimators

that achieve or perform very close to the CRLB. For MIMO systems we define the

SNR and then derive the CRLB and the ML estimators for both the DA as well as

the NDA data model. We show that previously published results for single antenna

systems are a special case of our general solution. The proposed SNR estimation

techniques are demonstrated in a patented algorithm to detect the onset of non-

linearity in a remote transmitter by dithering the power of transmitted bursts and

estimating the difference in the received SNR.

For non-coherent systems we show that the performance of multi-tone M-

ary frequency shift keying (MT-MFSK) modulation may be significantly improved

if, instead of the usual choice of mutually orthogonal tones, non-orthogonal tones

are used. In some system configurations, the proposed system can lead to a 4-fold

increase in system capacity. The channel capacity, as well as the performance

gains of systems using practical receivers such as ML, least squared (LS) error, and

compressed sensing (CS) are demonstrated for both flat and frequency selective

channels. Many more choices of spectral efficiency are achievable by the non-

orthogonal system, thus enabling the system to adapt to changing link SNR and

send data at the optimum spectral efficiency. In order to make this practical,

we derive the CRLB and ML estimators for SNR estimation for non-orthogonal

MT-MFSK in both the DA as well as the NDA data model.
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Chapter 1

Introduction

The digital lifestyle of the 21st century, with ubiquitous computing, has

fundamentally changed the way people think about Internet connectivity. People

expect to be able to connect to cheap, reliable, high speed broadband networks

not only from the comfort of their homes, but also from fast moving planes, trains,

boats etc. This expectation of constant connectivity is no longer confined to tra-

ditional computers and laptops, but has also extended to include mobile phones,

televisions, tablets, and other everyday home appliances. This “always on” lifestyle

has brought about an explosion of data that is transmitted through our commu-

nications networks. Cisco, a major network equipment company, estimates that

“globally, mobile data traffic will grow 13-fold from 2012 to 2017, a compound an-

nual growth rate of 66%,” and that “annual global IP traffic will pass the zettabyte

threshold by the end of 2016.”1

With the growing scarcity and increasing expense of available spectrum, the

challenge for the engineering community is to develop systems that will allow this

hunger for data to grow unabated in the years ahead. At the physical layer, some

key innovations that address this challenge include modulation and coding that

operate close to the theoretical Shannon limits, higher dimension signals using

multiple antennas, and high capacity satellite systems that solve the last-mile

problem. This dissertation attempts to take another step towards this never ending

1Cisco Systems: Zettabyte = 1021 bytes. http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns827/VNI Hyperconnectivity WP.pdf

1
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goal of increasing the efficiency and performance of our communication systems.

We propose techniques that will significantly improve the performance of

both coherent as well as non-coherent systems by judicious, but unconventional, use

of symbol timing and frequency spacing. We also demonstrate theoretical lower

limits for SNR estimation and derive efficient practical estimators that achieve

these limits. The proposed SNR estimation techniques are demonstrated in an

innovative application to detect the onset of compression in a transmitter.

1.1 Coherent versus Non-Coherent Systems

Communication systems may be classified into two broad groups based on

the amount of information that the system uses about the channel through which

the signal propagates. The wireless communication channel can impose gain and

phase uncertainty to the transmitted signal amongst other possible distortions

in the time and frequency domains [89], [74], [85]. At one end of the spectrum,

receivers are assumed to know the channel perfectly. This is known as coherent

communications with full channel knowledge as discussed in Chapter 3 of [89].

At the other end of the spectrum, receivers are assumed to operate blindly and

make no attempt to learn about the channel. This is known as non-coherent

communications. Within the class of non-coherent communications, often, it is

easier to estimate the channel gain than the channel phase and so one sub-class

of non-coherent communications assumes the knowledge of channel gain, but not

that of phase as discussed in Chapter 5 of [85]. This is a reasonable assumption

since channel phase can change quickly due to numerous reasons and hence, may

be hard to estimate. First, the oscillators in the communication chain could have

excessive phase noise – common especially in systems where it is required to use

cheap oscillators. Second, as mobile terminals move, the propagation distance of

the signals change and even very small changes in propagation distance or time,

can lead to big changes in the phase of the signal. Consequently maintaining

phase synchronization in high data rate systems with high mobility is a significant

challenge and often some receivers choose to operate without trying to achieve
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phase synchronization.

In the following chapters we shall be discussing both classes of communica-

tion systems. We start by discussing coherent communications in Chapter 2, and

we end with non-coherent communcations in Chapter 5. In between, in Chapters

3 and 4 we deal with systems where the receivers attempt to estimate the channel

(with and without phase and gain uncertainty) in order to estimate the SNR of

the link.

1.2 MIMO Systems with Offset Symbol Bound-

aries

One of the most promising innovations at the physical layer of communi-

cation systems has been the use of multiple antennas at both the transmitter as

well as at the receiver. Popularly referred to as multiple input, multiple output

(MIMO) systems, under certain conditions, such systems are able to significantly

increase the capacity of the channel [89], [71]. Even though, theoretically speak-

ing, this allows for an infinite expansion of channel capacity, practical restrictions

imposed by the operating environment and device size limitations ensure that the

gains, though significant, are limited. MIMO systems are now a part of many

wireless standards such as LTE.

In these MIMO systems, especially when a single carrier system is used, the

usual design choice is to align the transmit symbol boundaries of the signals from

the various transmit antennas. In order to limit the transmit signal energy to the

bandwidth of interest while reducing inter symbol interference (ISI), typically the

transmit waveform is pulse shaped with square root raised cosine (SRRC) filters

with non-zero excess bandwidth. The frequency response of some raised cosine

filters with excess bandwidth is shown in Fig. 1.1. The minimum bandwidth

required to transmit signals while meeting the Nyquist criterion is from − 1
2Ts

to

1
2Ts

, where Ts is the symbol duration, however, practical systems use some “excess

bandwidth”.

Excess bandwidth is defined to be the additional bandwidth in excess of



4

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.11.1

Frequency (1/Ts)

M
a
g
n
it
u
d
e
o
f
S
p
ec
tr
u
m

 

 

Excess Bandwidth, β = 0

Excess Bandwidth, β = 15%

Excess Bandwidth, β = 25%

Excess Bandwidth, β = 35%

Figure 1.1: Raised cosine pulse shapes with excess bandwidth, β.

the theoretical minimum (the Nyquist bandwidth) that is required to transmit

the waveform and is usually expressed as a fraction. This excess bandwidth leads

to some exploitable inefficiencies. In Chapter 2 we show that by intentionally

introducing a known non-zero relative offset between the transmit waveforms, per-

formance gains may be obtained.

The signal at any receive antenna in a MIMO system is a linear combi-

nation of the transmit signals from all the antennas, each one weighted by its

corresponding channel gain. Consequently, assuming equal average channel gains

for the various paths, the receiver receives the various transmit signals, on average,

at equal power. With aligned symbol boundaries, the optimal sampling time (at

the receiver) for all the transmit signals is the same, thus the average received

power of the signals from all the transmit antennas is the same. We refer to this

interference power of the various transmit signals interfering with each other at the

receiver as the inter antenna interference (IAI) power. Another source of degra-

dation is inter symbol interference (ISI) where, due to imperfect timing recovery
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or perhaps due to the presence of multiple propagation paths, the symbol energy

is spread over multiple symbol intervals. Due to the use of Nyquist pulse shaping

and symbol timing recovery loops that typically are close to perfect, ISI power is

typically quite low.

By offsetting the transmit symbols relative to one another, we can reduce

the IAI while increasing the ISI since the optimal sampling points of the various

transmit symbols are no longer synchronized. This is shown in Fig. 2.1 in Chapter

2. We show that an advanced receiver can utilize this information to extract

significant performance gains. The ISI converts a memoryless modulation like M -

ary phase shift keying (MPSK) to one with memory. Thus, not only are single

shot receivers (receivers which decide on a transmit symbol by only observing

the corresponding received symbol) useful, but also sequence detection receivers

(receivers which decide on a transmit symbol, by observing a sequence of received

symbols) are also useful. We demonstrate the performance with different kinds of

receivers including zero forcing (ZF), minimum mean squared error (MMSE), and

sequence detection based maximum likelihood (ML) receivers.

The design of Nyquist pulse shapes has been studied for a long time but the

focus has usually not been on reducing the interference power at specific symbol

offsets. This is only to be expected since these pulse shapes are used either in point

to point systems or in symbol aligned MIMO systems and these systems do not

gain by reducing the signal power at specific offsets. However, in our case, if we

include this additional constraint of reducing the signal power at specific symbol

offsets we can improve the performance even further. In Chapter 2 we outline

and demonstrate a methodology to design such pulse shapes and show additional

improvements.

1.3 NDA SNR Estimation for SISO Systems

In most communication systems, certain parameters have to be periodically

estimated in order to optimize or adapt the performance of the system. One of

the key parameters of interest is the signal to noise ratio (SNR). For most point to
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point systems, SNR is defined as the ratio of the received signal power to the noise

power measured in the same bandwidth. For signal constellations normalized to

unit transmit power, this is equivalent to the ratio of the channel gain to the noise

power. One of the most common applications of SNR estimation is in adaptive

coding and modulation. In this technique, the link’s SNR is used to vary the

coding and modulation of the signaling between the transmitter and the receiver.

There are numerous other applications of SNR estimation such as turbo decoding,

network monitoring and control etc.

The field of SNR estimation can be broadly split into two distinct areas –

data aided (DA) and non-data aided (NDA) SNR estimation. In the DA system

model, the transmitted symbols are assumed to be perfectly known while in the

NDA model, only the symbol constellation is assumed to be known, but not the

transmitted symbols. DA SNR estimation for single input single output (SISO)

systems have been studied for a long time and both the theoretical lower bounds

as well as estimators that achieve (or come very close to) the theoretical lower

bounds are well established. In this regard, the Cramér-Rao lower bound (CRLB),

which is the lowest variance that any unbiased estimator may achieve (subject to

some regularity conditions) is a common metric of comparison.

Although DA SNR estimation has been well studied, NDA SNR estimation

had not been studied in depth until recently. Although a few specific cases (e.g.,

BPSK and QPSK modulation) had been studied, until recently the general solution

for different modulations was unknown. In chapter 3 we present the CRLB for NDA

SNR estimation for single antenna SISO systems for various modulation schemes.

The technique presented is very general and can be easily adapted to any digital

modulation. We also develop an iterative ML estimator using the expectation-

maximization (EM) algorithm that performs very close to the CRLB.

1.3.1 NDA SNR Estimation for Remote Non-Linearity De-

tection

The techniques developed for NDA SNR estimation are also applied to the

problem of detecting the onset of non-linearity in a transmitter. Most communica-
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tion schemes using a non-constant envelope modulation scheme need to operate in

the linear region of their transmit power amplifiers in order to prevent distortion

as well as to lower adjacent channel interference from spectral regrowth. Thus, a

key task of many power control schemes is to determine when a terminal’s power

amplifier is entering or operating in the non-linear region.

In Chapter 3 we present an innovative patented scheme that dithers the

transmit power of its transmitted bursts on a symbol by symbol basis. Thus e.g.,

the even numbered symbols could be transmitted at a higher power than the odd

numbered symbols for a particular burst. An alternate dithering pattern could

transmit the first half of the burst at a higher power than the second half. The key

point is that a differential power profile is introduced in the digital constellation

(before the power amplifier), while keeping the total transmit power of the burst

the same. In a perfectly linear system, the received SNR difference between the

high power region and the low power region would be identical to that of the

transmitted power difference. However, as the system enters compression, the

difference between the received SNR for the two different power regions is reduced.

This can be used as a metric to predict whether the power amplifier is entering its

non-linear region and is discussed in more depth in Chapter 3.

In order to ensure accurate estimation, iterative ML estimators that ap-

proach the CRLB bound are employed. We not only present the implementation

of the iterative algorithm but we also present simpler to implement algorithms that

can be efficiently implemented on digital hardware such as field programmable gate

arrays (FPGA). The techniques described in Chapter 3 have been implemented and

have been deployed on a real network with close to 1 million users.

1.4 SNR Estimation for MIMO Systems

After presenting the results for NDA SNR estimation for SISO systems and

applying it to the problem of detecting transmitter non-linearity in Chapter 3,

we generalize the solution to multiple input, multiple output (MIMO) systems in

Chapter 4. The generalization is not only in expanding the number of antennas
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in the transmitter and receiver, but in considering a complex valued channel and

presenting an extension that may be applied to frequency selective channels.

For MIMO systems, SNR estimation is more complicated since there is no

unique definition of SNR. The received signal at the receiver of any MIMO system

is expected to contain the linear mixture of the multiple transmitted signals. Thus,

there is no unique definition of signal power. One may define an SNR for each pair

of transmit-receive antenna where the signal power is regarded as the received

power of the signal transmitted only from the transmit antenna in consideration.

This leads to as many SNR parameters as there are combinations of transmit and

receive antennas (i.e., the product of the number of received antennas and the

number of transmit antennas). Another definition could define signal power as the

total power of all the signals received at a receive antenna. There can be other

definitions of signal power as well.

In Chapter 4, we chose to define the SNR for MIMO systems as the ratio

of the Frobenius norm of the channel to the noise power. One of the primary

motivations for this definition is in its simplicity and aesthetic appeal since this

general form resolves to the usual definition of SNR for single antenna systems

if the number of antennas is set to one in the formulations. Thus, the formal

expressions derived in Chapter 4 are generalized versions of the single antenna

results and we show that the previously published results are special cases of our

general formulation. The second motivation for this definition is that this form

shows up in well known equations for calculating the MIMO capacity, analogous

to the role of the single antenna SNR in the well known equation for Shannon’s

channel capacity formula.

Using this general definition, in Chapter 4, we derive the CRLB and ML

estimators for both NDA and DA SNR estimation for MIMO systems. We derive

closed form expressions in the DA model, closed form expressions that are valid

over specific ranges of SNR in the NDA model, and also numerical results for the

NDA model that are valid for all SNRs. Our derivations assume a channel with

complex gain which is a distinction from previous works some of which worked in

the less general domain of a real valued channel gain. The ML estimators derived
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are shown to operate very close to the CRLB for all SNRs of practical interest.

1.5 Rate Adaptive Non-Orthogonal MT-MFSK

The improvements discussed thus far pertain to the arena of coherent com-

munications. In coherent communications, the channel is either estimated or as-

sumed to be known at the receiver. In many practical instances, however, channel

estimation is futile. As discussed in Sec. 1.1, even if the channel gain changes

slowly and can be estimated, maintaining phase coherence may not be possible.

Such communication systems typically use non-coherent communication techniques

where it is assumed that the channel phase and sometimes the entire channel is

unknown at the receiver.

For non-coherent communications, orthogonal signaling, e.g., M -ary fre-

quency shift keying (MFSK) has been the de facto standard for about 50 years.

Apart from the simplicity of the form of the optimal receiver in non-coherent sys-

tems, MFSK has an additional advantage of having a constant envelope transmit

signal. This leads to cheaper implementation costs. Although MFSK using or-

thogonal tones is very useful in non-coherent channels, its major disadvantage is

its low spectral efficiency. To maintain orthogonality, the minimum separation of

the tones is required to be equal to the symbol rate of the system. This leads

to a maximum spectral efficiency of single tone MFSK of just over 0.5 bits/s/Hz.

Modern communication systems typically have spectral efficiencies that are signifi-

cantly higher. To overcome this deficiency, multi-tone (MT-MFSK) systems where

each symbol consists of multiple simultaneous orthogonal tones have been recently

proposed.

In Chapter 5 we show that if non-orthogonal tones are used instead of or-

thogonal tones in MT-MFSK systems, and if the mapping of tones to symbols

is intelligently carried out, then non-orthogonal MT-MFSK outperforms orthogo-

nal tone MT-MFSK. We demonstrate this performance gain for various practical

configurations in both flat fading as well as frequency selective fading channels.

By calculating the channel capacity we demonstrate that the improvement is
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a fundamental characteristic of the non-orthogonal transmission scheme proposed

and at specific operating points the spectral efficiency can improve well over 3dB.

This is usually well worth the incremental increase in implementation complexity

and cost due to the use of a multi-tone waveform.

For practical configurations, we derive optimal maximum likelihood (ML),

least squared error (LS), and compressed sensing (CS) receivers. For flat fading

non-coherent channels with only an unknown phase, we show that the form of

the ML receiver is very similar to that of the equivalent receiver for orthogonal

MT-MFSK. These ML receivers perform poorly when the channel is frequency se-

lective and so we develop the LS receiver which is more appropriate when each of

the transmitted tones have a different phase uncertainty. Compressed sensing is

becoming popular as a way to solve underdetermined systems that have a sparse

solution with less complexity than the ML receiver. Since our system has nu-

merous possible transmit tones, of which only a small minority are transmitted

simultaneously, the solution we seek is sparse, thus falling directly into the ambit

of compressed sensing.

In addition to outperforming the equivalent orthogonal tone MT-MFSK, the

proposed non-orthogonal system offers the designer considerable more flexibility,

thus allowing modulations of different spectral efficiencies to have the same symbol

rate. For a system with fixed bandwidth and symbol rate, orthogonal tone MT-

MFSK functions within the constraints of limited combinatorial choices which

sometimes results in very few design choices. As an example, with 2 orthogonal

tones, the designer has no flexibility to increase the spectral efficiency since there

can at most be 2 symbols. Adding more orthogonal tones would either increase the

bandwidth (with constant symbol rate) or decrease the symbol rate (with constant

bandwidth). The same bandwidth could, however, be occupied by any arbitrary

number of non-orthogonal tones (while keeping the symbol rate unchanged), and an

appropriate subset of symbols chosen depending on the desired spectral efficiency.

With 4 orthogonal tones, the designer has only 2 choices – to send 1 tone per

symbol (which results in 4 symbols) or to send 2 tones per symbol (which results in

6 symbols). In contrast a non-orthogonal system operating in the same bandwidth,
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could use a constellation with any desired number of symbols at the same symbol

rate.

This flexibility allows us to introduce the concept of adaptive coding and

modulation to the world of non-coherent MFSK modulation. Using this scheme,

e.g., a MFSK modulated waveform shared between various users each with a dif-

ferent link SNR could have significantly higher overall spectral efficiency since the

data for each user could be modulated at the spectral efficiency that is appropriate

for each user. In order to make this achievable, we have also derived SNR estima-

tion techniques for non-orthogonal MT-MFSK. We derive both the CRLB as well

as ML estimators for both NDA and DA SNR estimation for MT-MFSK.

1.6 Contribution Summary

The contributions in this dissertation have been summarized in Table 1.1:

Table 1.1: Summary of contributions

Chapter Contributions

Chapter 2 Proposed a MIMO system with offset symbol boundaries.

Derived optimal receivers for offset MIMO system.

Proposed new pulse shape design technique that is appropriate

for an offset MIMO system.

Chapter 3 Derived CRLB for NDA SNR estimation for SISO systems.

Derived iterative ML estimator based on the EM algorithm that

achieves the CRLB for all practical SNRs.

Proposed technique to detect non-linearity at a remote trans-

mitter.

Proposed computationally simple algorithm that may be easily

implemented on an FPGA.

Chapter 4 Proposed a new definition of SNR for MIMO systems.

Continued on next page
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Table 1.1 – continued from previous page

Chapter Contributions

Derived NDA and DA CRLB for MIMO SNR estimation.

Derived closed form ML estimators for DA MIMO SNR estima-

tion.

Derived CRLB and estimators for noise variance of MIMO sys-

tems.

Derived NDA ML estimators for MIMO SNR estimation based

on EM algorithm.

Chapter 5 Proposed a new MT-MFSK scheme that utilizes non-uniformly

spaced non-orthogonal tones.

Derived optimal receivers for proposed MT-MFSK scheme for

frequency selective and frequency flat fading channels.

Derived channel capacity for proposed scheme for coherent and

non-coherent channels.

Derived expression for symbol error rate for proposed scheme

for non-coherent channels.

Proposed techniques for computationally tractable receivers us-

ing CS techniques.

Derived CRLB for DA and NDA SNR estimation for non-

coherent MT-MFSK.

Derived ML estimators for SNR estimation for DA and NDA

system models.



Chapter 2

MIMO Systems with Offset

Symbol Boundaries

2.1 Introduction

Ever since some of the pioneering research done at Bell Labs in the last

decade of the 20th century, multi antenna systems have been one of the most

exciting new frontiers of research at the physical layer of communication sys-

tems [71], [89]. The use of multiple antennas at the transmitter and/or receiver

opened up the prospect of leveraging the additional dimension of space to in-

crease the performance substantially in very fundamental ways. Most modern

wireless communication standards such as 3GPP LTE, IEEE 802.16 (WiMax),

IEEE 802.11n and others incorporate multi antenna communications. These mul-

tiple antenna systems are also known as space-time communication systems or

multiple input, multiple output systems.

In multiple input multiple output (MIMO) communication systems, typi-

cally the transmitters are all collocated and the system is designed such that the

symbol boundaries are aligned at the transmitters and, if the path between the

transmitters and the receivers have the same path delay, also aligned at the re-

ceivers. It has been shown in [100] that, under the assumption of a richly scattered

environment, such a system can lead to very high spectral efficiencies.

13
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Practical communication systems typically use pulse shaping such as the

square root raised cosine (SRRC) to limit the bandwidth occupied by the signal

[74], [43], [55]. These pulses typically have an “excess bandwidth” which is usually

denoted by a factor 0 ≤ β ≤ 1. The presence of excess bandwidth was used

to improve performance in a fractionally sampled orthogonal frequency division

multiplexing (OFDM) system in [88] where the cause of gain is similar to that

discussed here, even though the system under consideration is very different.

2.1.1 Overview of Prior Work

We showed some preliminary results and demonstrated that significant gains

could be obtained via a system with intentionally offset transmissions in [77].

Independently, and at about the same time, Shao et al. also presented a similar

MIMO scheme with sub-symbol timing offsets between the transmitted signals

[84], [83] and Wang et al. presented a frequency domain equalization scheme for

MIMO OFDM with intentional timing offsets in [94]. The contents of this chapter

is a modified version of our works, [34], [33], where we showed that contrary to

previously published results by Shao et al., the offset scheme is superior for all

block sizes. More recently, the capacity of MIMO systems with asynchronous

pulse amplitude modulation (PAM) was studied in [6] where the authors show

that offset transmission schemes increase the capacity of MIMO systems.

Delay diversity schemes for transmission, proposed previously (see e.g., [99]

and [87]), might appear to be similar to the proposed scheme since those schemes

also involve offset transmission. However, there are a couple of significant differ-

ences. First, delay diversity transmit schemes aim to increase the spatial diver-

sity by transmitting the same, or precoded data stream, whereas in our proposed

scheme, independent streams are transmitted from the different antennas preserv-

ing maximum spatial multiplexing gain. Second, in delay diversity schemes, the

delays introduced are typically of a symbol duration or longer, whereas, the inter

transmitter timing offset here is of a sub-symbol duration. Recent standards such

as the IEEE 802.11n as well as 3GPP LTE have included cyclic delay diversity

(CDD), as a modification of delay diversity techniques proposed by [99]. These
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are typically applied in conjunction with an OFDM scheme and so even though

the delays could be a fraction of an OFDM symbol, these techniques are generally

presented as a precoding scheme designed to increase the inherent diversity of the

channel [25]. In our case, the intent of introducing the offset between the different

transmit antennas in a single carrier system is to reduce the inter antenna interfer-

ence (IAI) and introduce inter symbol interference (ISI) in the modulation while

maintaining maximum spatial multiplexing gain.

In MIMO systems with multiple transmit antennas the signals transmitted

from the different transmitters interfere with each other at each receive antenna

resulting in IAI. In the absence of perfect Nyquist pulse shaping (or due to timing

offset), ISI is introduced. Thus, there are two sources of impairment, ISI and IAI,

that are distinct and each one leads to a degradation in performance. In traditional

aligned systems with Nyquist pulse shaping, there is little to no ISI, but on average,

the IAI power is the same as that of the desired signal. In this chapter we show

that by offsetting the transmit symbols relative to each other the IAI power can

be reduced. In addition, we show that by using a different pulse shape that trades

off ISI with the IAI, gains may be achieved practically for free. Although there is a

large volume of prior research in the design of quasi zero ISI practical pulse shapes

that conform to various criterion such as spectral mask requirements, robustness

to timing jitter, peak to average power ratio etc. (e.g., [9, 44, 51, 64, 70, 74] and

references therein), to our knowledge, this is the first time that pulses have been

designed with this criterion of lowering the IAI.

2.1.2 Our Contribution

To summarize, the contributions in this chapter are the following: We

demonstrate the practical gains that may be achieved in a single carrier MIMO

system by intentionally introducing a sub-symbol delay offset between the trans-

mitted waveforms. We show the performance of zero forcing (ZF), minimum mean

squared error (MMSE) and sequence detection based receivers with SRRC pulse

shapes and show that the performance is always better than that of the corre-

sponding traditional MIMO system with timing aligned transmission, contrary to
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previously published research (for more details, see Section 2.5.1). We also intro-

duce a novel new pulse shape that lowers the energy at half symbol offsets, thus

reducing the IAI and improving performance.

This chapter is organized in the following sections. In Sec. 2.3 we present an

intuitive rational behind the superior performance of MIMO systems with timing

offsets. Then, in Sec. 2.4, we present the analytical system model. In Sec. 2.5

different receiver structures are discussed. A novel pulse shape design criterion is

given in Sec. 2.7 following which simulation results are presented in Sec. 2.8 before

concluding.

2.2 Notation

The notation adopted is as follows: Lower case boldface indicates a vector

quantity, as in a. A matrix quantity is indicated by upper-case boldface as in A.

Some of the most widely used symbols used throughout this chapter are tabulated

below. The rest of the variables will be defined as and when they appear.

Table 2.1: Common symbols used

Symbol Definition Comments

β Excess bandwidth of Nyquist

pulses

Real scalar, 0 ≤ β ≤ 1

Ts Symbol duration Real scalar

tx Transmitter

rx Receiver

i Time index Discrete, positive integer

τk Offset of symbol boundaries of

tx k relative to tx 0

Real scalar, 0 ≤ τk < Ts

MT Number of transmitters Real scalar

MR Number of receivers Real scalar

Continued on next page



17

Table 2.1 – continued from previous page

Symbol Definition Comments

hkj Complex channel gain between

j-th tx and k-th rx

Complex scalar

Hk hkj for entry in j-th row, j-th

column. 0 otherwise

Complex diagonal MT × MT

matrix

yk[i] i-th group ofMT outputs at the

k-th receiver

Complex, MT × 1 vector

bk[i] i-th transmitted symbol from

k-th tx

Complex, scalar

nk[i] i-th noise vector at k-th rx Complex, MT × 1 vector

Rxy E[xyH ], E[x] = E[y] = 0 Covariance matrix of x and y

E() Expectation operator n/a

()H Hermitian operator n/a

()T Transpose operator n/a

Ik Identity matrix of size k × k n/a

† Pseudoinverse operator n/a

Quant() Quantization operator Thresholds soft decisions to

nearest constellation point

2.3 Motivation behind Timing Offset

In traditional single carrier MIMO systems, each receive chain downcon-

verts the received signal to baseband, carries out analog to digital conversion and

then employs matched filtering before down sampling the received signal to the

system symbol rate. Assuming equal channel gain, the signals from the symbol

aligned transmitters contribute equal power to the received signal at the output

of the downsampled received matched filter. It may be shown that in a rich scat-

tering environment, the channel gains are statistically independent and thus the
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receiver can demodulate the independent streams in either successive interference

cancellation mode or in joint detection mode.

In the offset scheme proposed, the symbol boundaries of the different trans-

mitters are offset in time. Thus, when matched filtering is employed at the receiver,

under equal gain channel conditions the signals from the two transmitters are not

of the same power. This is shown in Fig. 2.1 for rectangular pulse shaping. Indeed

the received signal power from the transmitter with the offset symbol is lower than

that from the transmitter which has its symbol boundaries aligned to that used

by the received matched filter. Thus, for the same channel, the offset scheme has

lower IAI power in comparison to that in the aligned case.

Matched 

filter output 

for Tx2

Ts

Tx1

Tx2

Matched 

filter output 

for Tx1

ALIGNED MIMO OFFSET MIMO

Ts

Matched filter 

output of 

offset 

transmitter is 

lower

Figure 2.1: Reduction of interference power in offset MIMO

The amount of reduction in interference power depends on the pulse shape.

While rectangular pulse shaping with half a symbol offset leads to a 3dB reduc-

tion in interference power, most practical systems use bandlimited pulse shaping

schemes using Nyquist pulse shapes such as the SRRC pulse shape. The interfer-

ence reduction for various pulse shapes is obtained by sampling the convolution

of the two pulses shapes (one at the transmitter and one at the receiver) at the
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various offsets. Since it is known that the convolution of two SRRC filters is the

raised cosine filter, the IAI power at an offset τ1 for a SRRC transmit pulse shape

with excess bandwidth β and symbol duration Ts, is given by

IAI(τ1) =
k=∞∑
k=−∞

(
sin(π(kTs + τ1)/Ts)

π(kTs + τ1)/Ts

cos(πβ(kTs + τ1)/Ts)

(1− (2β(kTs + τ1)/Ts)2

)2

(2.1)

and is shown for various offsets and β in Fig. 2.2 below. The above formula

samples the raised cosine pulse (Eqn 3 of [8]), at symbol intervals as a function

of the offset from the symbol boundary, τ1, and determines the power thus ob-

tained. It may be seen that for a pulse with no excess bandwidth (β = 0), there

is no reduction in interference power, and thus no gains. However as the excess

bandwidth increases, the interference power reduces and thus gains increase.
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Rectangular pulse
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Figure 2.2: Interference power for various excess bandwidths and offsets. 0

excess BW leads to no gain

In addition to the lowering of interference power, the system performs bet-

ter for one more reason. Offsetting the two transmit waveforms relative to each
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other introduces ISI thus effectively converting memoryless modulation schemes

into those with memory. Consequently, an intelligent receiver can use the ISI to

predictively cancel the interference in subsequent symbols thus leading to an even

greater suppression of interference.

These two effects combine to provide significant system gains to a MIMO

system with intentional timing offset in comparison to an equivalent symbol syn-

chronous MIMO system.

2.4 The Timing Offset MIMO System

Fig. 2.3 shows an offset of τ1 in a particular embodiment of the proposed

system with 2 transmit antennas. The symbol duration is denoted by Ts with

0 ≤ τ1 < Ts. Other embodiments of the proposed system using MT antennas

would have different τks offsetting the signals from the different transmitters. For

simplicity of illustration the transmit signals are depicted with a rectangular pulse

shape in Fig. 2.3.

b1[i-1] b1[i]

b2[i-2] b2[i-1]

b1[i+1]

b2[i]

Ts

Tx1

Tx2

h11

h12

MF

Sampled kTs

Sampled 

MF

Sampled kTs

Sampled 

h22

h21

Rx1

Rx2

1s τkT

1s τkT

1τ

Figure 2.3: Sub symbol timing offset: 2 Tx antennas

2.4.1 2× 2 MIMO System with Timing Offset

For simplicity of presentation, a system with 2 antennas at either end, i.e.,

with (MT ,MR) = (2, 2), with a rectangular pulse shaping is considered first. The
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signals transmitted from the 2nd transmitter is intentionally offset with respect to

the first by τ1. In traditional symbol aligned MIMO the output of the matched

filter downsampled to the symbol rate (at the optimal sampling points) are the

sufficient statistics for estimating the transmitted symbols. However, in timing

offset MIMO, the matched filter output of each receiver is sampled every Ts as well

as every Ts+τ1 thus collecting the output sampled optimally for both transmitters.

Let hkj be the complex path gain from the j-th transmitter to the k-th

receiver. Then stacking the i-th output (in time) of the two matched filters, the

received vector for each of the receive antennas is given by

y1[i] =

[
0 0

h11ρ21 0

][
b1[i+ 1]

b2[i+ 1]

]
+

[
h11 h12ρ12

h11ρ12 h12

]
×

[
b1[i]

b2[i]

]
+

[
0 h12ρ21

0 0

][
b1[i− 1]

b2[i− 1]

]
+ n1[i] (2.2a)

y2[i] =

[
0 0

h21ρ21 0

][
b1[i+ 1]

b2[i+ 1]

]
+

[
h21 h22ρ12

h21ρ12 h22

]
×

[
b1[i]

b2[i]

]
+

[
0 h22ρ21

0 0

][
b1[i− 1]

b2[i− 1]

]
+ n2[i] (2.2b)

where yk[i] is the i-th pair of outputs of the matched filter in the k-th

receiver, bk[i] is the i-th transmitted symbol from the k-th transmitter and nk[i]

is the additive white Gaussian noise (AWGN) noise vector at the k-th receiver.

The first row of Eqn. 2.2 is the output of the matched filter sampled at the

optimal sampling time for the first transmitter and the second row is the output

of the matched filter sampled at the optimal sampling time for the symbols from

the second transmitter. The crosscorrelations ρ12 and ρ21 are a function of the

pulse shape and timing offset, with the detailed form given by Eqn. 2.7. For a

rectangular pulse, ρ12 and ρ21 are shown in Fig. 2.4.

It is seen that when the received matched filter is aligned to the first trans-

mitter, the i-th symbol of the first transmitter not only interferes with the i-th

symbol of the second transmitter (as would be the case in standard aligned MIMO
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Figure 2.4: Cross correlations, ρ12 and ρ21

architectures), but also interferes with the (i − 1)-th symbol of the second trans-

mitter. However, the interference power is reduced due to the offset of the transmit

pulses from the two transmitters.

Some simple algebraic manipulations of Eqn. 2.2 allow us to write the

received samples of receiver k as:

yk[i] =

[
0 ρ21

0 0

]T [
hk1 0

0 hk2

][
b1[i+ 1]

b2[i+ 1]

]
+ nk[i]+[

1 ρ12

ρ21 1

][
hk1 0

0 hk2

][
b1[i]

b2[i]

]
+

[
0 ρ21

0 0

][
hk1 0

0 hk2

][
b1[i− 1]

b2[i− 1]

]
(2.3)

It will be seen later that Eqn. 2.3 is a special case of the more general

formula derived for any arbitrary number of transmitters in Eqn. 2.6. The above

equations for y1[i] and y2[i] may be combined and written more compactly in the

following matrix format:

r[i] =

[
y1[i]

y2[i]

]
= P1b[i+ 1] +P0b[i] +P−1b[i− 1] + n[i] (2.4)
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To elucidate further, P1, P0, and P−1 are all 4× 2 matrices, b[i] is a 2× 1 vector

and n[i] and r[i] are both 4× 1 vectors.

When practical pulse shapes of longer duration such as the SRRC pulse

shaping is used, then the interference from the offset is not limited to the adjacent

symbols but depends on the length of the filter used. Although the ideal SRRC

pulse is infinite in duration, all practical schemes use finite length pulse shapes.

This may be seen in Fig. 2.5 where a 11 symbol long raised cosine pulse shape is

shown which is non-zero from −5Ts to 5Ts. In this case, in an offset transmission

scheme, the interference arises from 10 symbols as shown in Fig. 2.5.
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Figure 2.5: Raised cosine pulse: Impact of sampling on ISI

In this case, the expressions equivalent to Eqn. 2.3 get more complex. Let

d(t) denote the continuous time convolution of the pulse shapes at the receiver and

at the transmitter. d(t) is assumed to be 2L symbols in duration and thus is equal

to zero for time, t, outside the interval [−LTs, LTs].

As is the case for most practical pulse shapes, it is assumed that d(t) is

symmetric such that d(−t) = d(t). Analogous to Eqn. 2.3, the received samples
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at the k-th receiver matched to both the first and the second transmitter may be

expressed as:

yk[i] =
L∑
l=0

[
d(lTs) d(lTs − τ1)

d(lTs + τ1) d(lTs)

]T [
hk1 0

0 hk2

][
b1[i+ l]

b2[i+ l]

]

+
L∑
l=1

[
d(lTs) d(lTs − τ1)

d(lTs + τ1) d(lTs)

][
hk1 0

0 hk2

][
b1[i− l]

b2[i− l]

]
+ nk[i]

(2.5)

2.4.2 MT ×MR MIMO System with Timing Offset

The more general case with MT transmitters and MR receivers is now con-

sidered. In this setup, the relative timing offset between the first transmitter

and k-th transmitter is τk. Without loss of any generality, it is assumed that

0 = τ0 ≤ τ1 ≤ τ2... ≤ τMT−1 < Ts where Ts is the symbol duration. Each receiver

conceptually has MT matched filters, each one matched to the optimal sampling

times of one of the transmitters (but in reality, would be implemented as a single

matched filter sampledMT times a symbol). It should be mentioned that for excess

bandwidth 0 ≤ β ≤ 1, sampling each matched filter at 2 samples per symbol meets

the Nyquist sampling criterion and thus an intelligent receiver should be able to

operate with the 2samples/symbol out of the matched filter. In this analysis, we

sample the output of the matched filer at MT samples per symbol only to keep the

receiver structure conceptually simple.

For systems using pulse shapes sl(t) at the l-th transmitter such as the

rectangular pulse that is zero outside t ∈ [0, Ts] it may be shown that the samples

received at the k-th receiver is a MT × 1 vector, yk[i], that may be expressed as:

yk[i] = (R1)
THkb[i+ 1] +R0Hkb[i] +R1Hkb[i− 1] + nk[i] (2.6)

where the MT ×MT matrix Hk = diag(hk1, hk2, hk3....hkMT
) and the corre-

lations ρkl and ρlk are given by:
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ρkl =

∫ Ts

τ

sk(t)sl(t− τ)dt (2.7a)

ρlk =

∫ τ

0

sk(t)sl(t+ Ts − τ)dt (2.7b)

The entries in the j-th row, k-th column of the MT ×MT matrices, R0 and

R1 are respectively given by

R0[j, k] =

⎧⎪⎪⎨⎪⎪⎩
1, if j = k

ρjk, if j < k

ρkj, if j > k

(2.8a)

R1[j, k] =

{
0, if j ≥ k

ρkj, if j < k
(2.8b)

It can be seen that Eqn. 2.3 is a special case of Eqn. 2.6 for MT = 2. The

zero-mean Gaussian noise process nk[i] has the following autocorrelation matrix

where σ2 denotes the noise variance:

E[nk[i]nl
H [j]] = σ2(R1)

T , if j = i+ 1, k = l (2.9a)

= σ2(R0)
T , if j = i, k = l (2.9b)

= σ2R1, if j = i− 1, k = l (2.9c)

= 0, otherwise (2.9d)

It is noted that the expressions above are very similar to those in the deriva-

tion of the multiuser discrete time asynchronous model developed in Section 2.10

of [91]. Although the notation has been chosen to be consistent with [91], the

application space is quite different. We also note that comparing Eqn. 2.6 with

Eqn. 14 of [83], it may be concluded that the received samples are identical in

both our model, and in the case of offset MIMO presented by Shao et al. This has

been shown by us in more details in [33].

The derivations above can be extended for use with practical pulse shapes

that extend beyond t ∈ [0, Ts]. Analogous to the derivation of Eqn. 2.5, Eqn. 2.6
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can also be extended to the case where the convolution of the pulse shape at the

transmit and the receive side (d(t)) is non zero for t ∈ [−LTs, LTs] and is assumed

to be zero for t outside this interval. In that case, the received samples at the k-th

receiver can be written as:

yk[i] =
L∑
l=0

(Rl)
THkb[i+ l] +

L∑
l=1

RlHkb[i− l] + nk[i] (2.10)

where, like before, Hk is a MT × MT diagonal matrix given by Hk =

diag(hk1, hk2, hk3....hkMT
) and the i-th row, j-th column entry of the MT × MT

matrix, Rl is given by

Rl(i, j) =

⎧⎨⎩d(lTs − (τi − τj)), if i < j where i, j = [0, 1, ...(MT − 1)]

d(lTs − (τi − τj)), if i ≥ j where i, j = [0, 1, ...(MT − 1)]
(2.11)

2.5 Receiver Design

In this section, we develop 3 different forms of receivers for the proposed

system: i) Zero forcing (ZF) receivers, ii) minimum mean squared error (MMSE)

receivers and iii) Viterbi algorithm based sequence detection receivers.

All the receivers assume memoryless linear modulations such as M-ary phase

shift keying (M-PSK) or M-ary quadrature amplitude modulation (M-QAM) with

a block transmission scheme as shown in Fig. 2.6. It is assumed that there is

no inter block interference (IBI). This condition can be satisfied by inserting an

appropriate amount of idle time between the transmission of two blocks as shown

in Fig. 2.6. Each block is assumed to contain S symbols long. As S increases,

the overhead due to the inter block gap decreases. The transmitted symbols are

assumed to be zero mean, unit energy and uncorrelated in time and space. It is

assumed that the channel is flat fading and unchanged over the duration of the

entire block and independent from block to block and that the channel is known

perfectly at the receiver. The noise is assumed to be Gaussian and independent of

the data symbols. Two different noise models are used below – the first where the
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noise is spatially uncorrelated and the second where the noise has mutual coupling

between the receivers.

BLOCK 1 BLOCK 2

Tx 1

Tx 2

Inter block gap leads to 

loss in spectral efficiency
S Symbols per block

Figure 2.6: Block transmission scheme

2.5.1 ZF Receivers

In [83], the authors present a zero forcing (ZF) receiver whose performance

is strongly dependent on the blocksize, S. They conclude that for large block

sizes the performance of the offset transmission scheme is worse than that of the

traditional MIMO schemes and thus, the offset scheme should be used only for very

short block sizes. In their work the block sizes are typically 2, 4 or 10 symbols.

This is a very severe restriction as such short block sizes lead to significant spectral

efficiency reductions. With a block size of 2 symbols with 2 transmit antennas and

offset τ1 = 0.6Ts, the system has a spectral efficiency that is 23% less than that of

synchronized systems and with a block size of 10 symbols, the spectral efficiency

is reduced by 5.7%. This reduction in spectral efficiency makes the offset MIMO

scheme, proposed in [83], of limited use in practical systems.

A closer examination of the ZF receiver proposed by Shao et al. showed

that it was not the optimal ZF receiver. This was first shown by us in [33]. The

authors of [83] had mistakenly chosen a formulation that suffered a lot of noise

enhancement as the block size, S, grew larger. The ZF receiver from [83] is given
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by

b̂ =

(
MR∑
k=1

HH
k Hk

)−1 MR∑
k=1

HH
k R

−1yk (2.12)

where yk and Hk are given by Eqn. 2.10 and R is a SMT × SMT matrix given by

Eqn. 2.15. Utilizing this receiver, the authors show a degradation of about 5dB

when the block size is increased from 2 to 10 (Fig. 6 of [83]). The offset VBLAST

receiver outperforms the traditional scheme only for very small block sizes.

A problem with the above zero forcing receiver is that as the block size, S,

increases the SMT ×SMT sized correlation matrix, R, gets progressively closer to

being singular. This may be seen by observing from Eqn. 2.15 that if the block

size increases from S to S + 1, the correlation matrices for the two cases, RS and

RS+1, respectively, are related to each other by the following equation where R1

and R1 are given by Eqn. 2.8:

RS+1 =

⎡⎢⎢⎢⎢⎢⎣
0

RS 0

RT
1

0 R1 R1

⎤⎥⎥⎥⎥⎥⎦ (2.13)

Thus, as the block size increases, the correlation matrix R also increases

in size by adding MT columns and MT rows to the correlation matrix for the

smaller block size. It was shown in [11] that the condition number of correlation

matrices with such an embedding property keeps growing with matrix size. Fig.

2.7 shows the rapid increase in condition number for the correlation matrix with

2 transmit antennas as the block size increases. This ill-conditioning of R has a

severe negative effect on the performance of ZF receivers proposed in [83] by Shao

et al. Consequently, the performance of the ZF receiver proposed degrades when

used with long block sizes. In contrast, Fig. 2.7 shows that the condition number

of HH
totRtotHtot does not keep increasing with block size. We define these variables

below where we show that the numerical stability of matrix HH
totRtotHtot shall be

crucial to determining the optimal ZF receiver since the optimal ZF receiver takes

an inverse of this quantity.
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Figure 2.7: Condition number changes with block size

Optimal ZF receiver

The optimal ZF receiver shall use all the received samples for the entire

block of data simultaneously to make its decision. To obtain the optimal ZF

receiver, we first stack all the outputs of each block for the k-th receiver from Eqn.

2.6 to obtain

zk = RH̃kbblock + nk (2.14)

where zk = [yT
k (0),y

T
k (1),y

T
k (2)...y

T
k (S − 1)]T , the transmitted symbols, bblock =

[bT (0),bT (1), ...bT (S − 1)]T and H̃k = diag(Hk,Hk,Hk...). yk(i) and b(i), both

MT × 1 vectors, represent the received samples matched to each transmitter re-

ceived at receiver k at time i and the transmitted symbols from all transmitters at

time i respectively. Hk is a diagonal matrix of channel gains of sizeMT×MT . Thus

in Eqn. 2.14, zk is a SMT × 1 vector of all received samples in a block of S trans-

mitted symbols per transmit antenna at receiver k. bblock is the SMT × 1 vector

of all transmitted symbols in that block, H̃k is a diagonal matrix of SMT × SMT

elements of channel gains from the transmitters to the k-th receiver (assumed con-
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stant over the block). R is a SMT ×SMT real symmetric correlation matrix given

by Eqn. 2.15 where R0 and R1 are given by Eqn. 2.8

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R0 R1
T 0 ... ... 0

R1 R0 R1
T 0 ... 0

0 R1 R0 R1
T 0 ...

... ... ... ... ... ...

0 ... 0 R1 R0 R1
T

0 ... ... 0 R1 R0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.15)

Then all the zk outputs of each receiver is stacked in the following manner:

⎡⎢⎢⎢⎢⎢⎣
z1

z2

..

zMR

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
R 0 .. 0

0 R 0 ..

.. .. .. ..

0 .. 0 R

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
H̃1

H̃2

..

H̃MR

⎤⎥⎥⎥⎥⎥⎦bblock +

⎡⎢⎢⎢⎢⎢⎣
n1

n2

..

nMR

⎤⎥⎥⎥⎥⎥⎦ (2.16a)

ztot = RtotHtotbblock + ntot (2.16b)

and the optimum ZF receiver is given by

b̂ZFopt = (HH
totRtotHtot)

−1HH
totztot (2.17)

The above optimal ZF receiver not only cancels all the interference, but it min-

imizes the output noise variance. It can be readily derived by noting that the

optimal ZF receiver is the well known best linear unbiased estimator (BLUE) (Ch.

6, [59]). This can be seen by noting that in the BLUE estimation, we seek an

unbiased estimator which minimizes the estimator variances. The unbiased crite-

rion ensures cancellation of interference while minimizing variance corresponds to

maximizing signal to noise ratio.

It should be pointed out that the optimal ZF receiver is a batch receiver,

i.e. it works on the received samples from the entire block at the same time.

This increases complexity and introduces latency in the system (since the first

transmitted symbols can only be decoded after the samples corresponding to the

last transmitted symbol in the block have been received). The above receiver also
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needs to calculate the pseudoinverse of a SMT × SMT matrix. The block sizes

of practical systems often consists of hundreds (sometimes thousands) of symbols

and thus the complexity of this step is non trivial and indeed could be impractical

with current hardware.

In Sec. 2.8.5 we plot the performance of the optimal ZF receiver developed

here and compare the performance to that in [83]. Fig. 2.17 demonstrates that

the optimal ZF receiver does not suffer any significant performance degradation

when the block size is increased.

2.5.2 MMSE Receivers

The linear MMSE (LMMSE) receiver is known [74] to outperform the ZF

receiver and is considered in this section. The LMMSE estimate of b[i], given ob-

servation r[i], is given byRb[i]r[i]R
†
r[i]r[i]r[i] where † indicates the pseudoinverse, and

Rb[i]r[i] = E[b[i]r[i]H ] and Rr[i]r[i] = E[r[i]r[i]H ] [59]. It is known that for Gaussian

noise, the MMSE solution and the LMMSE solution are the same and so the terms

are used interchangeably here. For notational convenience, the dependence on the

time index, i, shall also be dropped for clarity.

Two classes of MMSE receivers are analyzed. The first class carries out

joint detection of the symbols while the second carries out layered interference

cancellation. For both these receiver types, one-shot receivers (i.e. those that

estimate b[i], given r[i]) and windowed receivers (i.e. those that estimate b[i] given

r[i−W ], ..r[i], ..r[i+W ], thus implying a window length of 2W + 1 observations)

are developed. We shall also develop a MMSE joint batch receiver, i.e. one that

estimates all the transmitted symbols of the block, using all the received samples

in that block.

One Shot LMMSE Receiver, (W = 0)

In this scenario, the observations, r[i], are given by Eqn. 2.4 and only one

measurement vector is used to estimate the corresponding information carrying

symbols. It is assumed that: a) b[i]s are zero mean, unit energy and uncorrelated

in time, b) hkjs, the channel gains, are perfectly known at receiver and do not
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change over the duration of a block of data, and c) the additive Gaussian noise is

spatially uncorrelated and also uncorrelated with the information carrying signal.

Under these assumptions, from Eqn. 2.4 we have

Rrr =
1∑

i=−1

PiP
H
i +Rnn (2.18a)

Rbr = QH (2.18b)

In the symbol aligned 2× 2 model (traditional MIMO), Rnn, the noise covariance

matrix, is often modeled as 2 × 2 identity matrix scaled with the noise variance

σ2. This simple model assumes that the noise variance, σ2 is the same for both

the receive antennas and that there is no noise coupling between the antennas. In

offset MIMO we have 2 sets of matched filters per receiver and so Rnn is a 4 × 4

matrix. By observing that the continuous time AWGN noise is zero mean and

independent between the two receivers and by noting that part of the integration

period for each symbol is the same between the two matched filters in the same

receiver, it may be shown that Rnn for this noise model is no longer a scaled

identity matrix, but is given by Eqn. 2.19 where σ2 is the noise variance and ρ12

is given by Eqn. 2.8.

Rnn =

⎡⎢⎢⎢⎢⎢⎣
σ2 ρ12σ

2 0 0

ρ12σ
2 σ2 0 0

0 0 σ2 ρ12σ
2

0 0 ρ12σ
2 σ2

⎤⎥⎥⎥⎥⎥⎦ (2.19)

In the more general case where the noise is not assumed to be independent

between the two antenna, the noise covariance matrix in the traditional symbol

aligned 2× 2 system is given by:

Rnn-aligned =

[
σ2
11 σ2

12

σ2
21 σ2

22

]
(2.20)

where σ2
11 and σ2

22 are, respectively, the noise variances of the 1st receive

antenna and the 2nd receive antenna. σ2
12 and σ2

21 are, respectively, the covariance
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of the noise on the first receive antenna with that of the 2nd receive antenna and

vice-versa. In all these cases, the noise is assumed to be zero mean.

In this model for the noise, Eqn. 2.19 can also be more generalized and is

determined to be:

Rnn =

⎡⎢⎢⎢⎢⎢⎣
σ2
11 ρ12σ

2
11 σ2

12 ρ12σ
2
12

ρ12σ
2
11 σ2

11 ρ12σ
2
12 σ2

12

σ2
21 ρ12σ

2
21 σ2

22 ρ12σ
2
22

ρ12σ
2
21 σ2

21 ρ12σ
2
22 σ2

22

⎤⎥⎥⎥⎥⎥⎦ (2.21)

Using Eqns. 2.18 and 2.19 or 2.21, the transmitted symbols are thus esti-

mated at the receiver to be

b̂[i] = Quant
(
Rb[i]rRrr

†r[i]
)

(2.22)

where r[i] is a vector of all observations being used for the estimate of b[i] and the

Quant() function is used to make hard decisions on the processed samples i.e., it

maps Rb[i]rR
†
rr(r[i] to the nearest transmit constellation point.

Adjacent symbol LMMSE Receiver, (W = 1)

From the observation model, it is clear that because of correlation between

adjacent measurements, a LMMSE receiver that estimates the information sym-

bols using measurements that span more than one symbol duration can lead to

improvements. In this section the adjacent symbol LMMSE receiver that utilizes

three received vectors to decide b[i] will be considered. Using Eqn. 2.4, the re-

ceived vectors used to determine b[i] are:

r[i− 1] = P1b[i] +P0b[i− 1] +P−1b[i− 2] + n[i− 1] (2.23a)

r[i] = P1b[i+ 1] +P0b[i] +P−1b[i− 1] + n[i] (2.23b)

r[i+ 1] = P1b[i+ 2] +P0b[i+ 1] +P−1b[i] + n[i+ 1] (2.23c)

These three equations may be stacked and expressed more compactly as
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y[i] =

⎡⎢⎢⎣
P−1

0

0

⎤⎥⎥⎦b[i− 2] +

⎡⎢⎢⎣
P0

P−1

0

⎤⎥⎥⎦b[i− 1] +

⎡⎢⎢⎣
P1

P0

P−1

⎤⎥⎥⎦b[i]

+

⎡⎢⎢⎣
0

P1

P0

⎤⎥⎥⎦b[i+ 1] +

⎡⎢⎢⎣
0

0

P1

⎤⎥⎥⎦b[i+ 2] + ñ[i] (2.24a)

= M−2b[i− 2] +M−1b[i− 1] +M0b[i] +M1b[i+ 1]

+M2b[i+ 2] + ñ[i] (2.24b)

Note that y[i] and ñ[i] are 12×1 vectors, each M−2, M−1, ..., M2 are 12×2

matrices that are used for notational convenience, and b[i] is a 2× 1 vector. Thus

the LMMSE receiver is given by

b̂[i] = Quant
(
Rb[i]yR

†
yyy[i]

)
(2.25a)

= Quant

(
MH

0 (
2∑

k=−2

MkM
H
k +Rññ)

†y[i]

)
(2.25b)

In this context, the covariance matrix of the noise vector ñ[i] given by Rññ is a

matrix with similar structure as in Eqn. 2.19 or Eqn. 2.21 except that it is a

12× 12 matrix. This approach can be extended to more general receivers using a

wider window of received samples to estimate the i-th transmitted symbol.

MMSE Joint Batch Receivers

The above two MMSE receivers estimated the transmitted symbol vectors

one at a time, i.e., b[0] is estimated, then b[1] is estimated and so on until all the

transmitted symbols of the block are estimated. In this section, we present the

joint batch MMSE receiver. This receiver estimates all the transmitted symbols of

the block bblock based on all the received samples from that block, ztot, as shown

in Eqn. 2.16.

Similar to the subsections above, the optimal estimate is derived below as:
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b̂MMSE−block = Quant
[
E
[
bblockztot

H
] (

E
[
ztotztot

H
])†

ztot

]
(2.26a)

= Quant
[
HH

totR
H
tot

(
HtotRtotH

H
totR

H
tot +Rntotntot

)†
ztot

]
(2.26b)

As discussed in Sec. 2.5.1, these batch receivers are significantly more

complicated to implement and require taking the inverse of matrices of size SMT ×
SMT . They also add latency to the system and are included here for the sake of

completion.

MMSE Receivers with Layered Detection and Interference Cancellation

The receivers discussed above carry out joint decoding of symbols trans-

mitted from the two transmitters. However, receivers using the vertical Bell labs

layered space time (VBLAST) technique [100] where one transmitter is decoded

(using a LMMSE receiver) and then the decoded symbols are used to carry out in-

terference cancellation were also designed. As shown in [71] and [100], the layered

approach achieves superior performance in the traditional symbol-aligned case and

here it is expected that the layered detection will also improve performance in the

proposed offset scheme.

It is well known (see e.g., [100], [14], [71]) that optimal ordering of the

decoding layers leads to performance improvements. As [100] has shown, decoding

the layer with the highest SINR (or the lowest error variance) yields the optimal

ordering.

Using Eqn. 2.18, in the case of the one shot (W = 0) offset MIMO system,

the error covariance matrix may be expressed as:

E[(b− b̂)(b− b̂)H ] = Rbb −RbrR
†
rrRrb (2.27a)

= I2 −PH
0

(
1∑

i=−1

PiP
H
i +Rnn

)†

P0 (2.27b)

Thus the error variance of decoding the symbol from the first transmitter is

given by the magnitude of the (1,1) element and the error variance of decoding the

symbol from the second transmitter is given by the magnitude of the (2,2) element
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of the 2 × 2 error covariance matrix. The layer that has the lower error variance

(and hence higher SINR) is decoded first.

2.5.3 Viterbi Algorithm based Receivers

Since ISI is inherently present in the proposed offset system, the optimal

receiver is the maximum likelihood sequence detector (MLSD). The Viterbi al-

gorithm [46] is a very well known algorithm for implementing the MLSD in a

computationally tractable manner. As shown in [58] and implied by Section II

of [46], the usual implementation of the Viterbi algorithm yields the MLSD only

if the noise is memoryless and is independent from sample to sample. In our case,

however, this is not true as the noise has temporal correlation as indicated by Eqn.

2.9.

In order to reduce the impact of the temporal noise correlation, we carried

out noise whitening over different observation windows. Thus the Viterbi algorithm

was run not on the received samples, but on Rnn−1/2y[i] where Rnn denotes the

covariance of the noise vector and y[i] denotes the received vector as given by

Eqn. 2.4 for the one shot case and by Eqn. 2.24 for the windowed case. Although

this method whitens the noise locally, it does not whiten the noise over the entire

received burst and thus is an approximation to the ML solution.

Rectangular Pulse

A cursory examination of Eqn. 2.4 reveals a channel memory of 3 symbols

and with BPSK signaling with 2 transmit antenna this leads to a total of (22)3 = 64

states in the trellis. However, a more careful inspection using the structure of

matrices P1 and P−1 from Eqn. 2.4, indicates that the channel memory can be

reduced to 4 bits and this results in 16 states as shown in Fig. 2.8.

Raised Cosine Pulse

When the SRRC pulse shape is employed the channel memory depends on

the length of the filters employed. Our simulations employed a SRRC filter of
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length 21 symbols with 25% excess bandwidth and thus the ISI extends over 20

symbol durations. This causes the trellis to grow unacceptably large for imple-

mentation purposes. The optimal trellis for a pulse with L symbol ISI and for a

system using MT transmitters and an M -ary constellation is (MMT )L long. This

is usually impractical to implement and so sub-optimal trellis decoders are often

employed. In our simulations, we have opted for a sub-optimal solution that uses

a very similar 16 state trellis as is used for the rectangular pulse and pretends that

the ISI is only from the adjacent symbols and ignores the ISI from the other inter-

fering symbols. This is clearly sub-optimal. However, since most of the interference

power comes from the adjacent symbols, this sub-optimal receiver captures most

of the performance gain and the improvements by going to more complex receivers

are likely to be marginal. In passing we note that the conventional scheme does

not have ISI and so sequence detection does not improve its performance.

The 16 state Viterbi Trellis used for the sequence detection receivers is

shown in Fig. 2.8.

2.6 Optimizing the timing offset, τ1

Thus far, we have presented the MAESTRO scheme for a (MT ,MR) = (2, 2)

with an arbitrary offset of τ1 between the first and second transmitters. In this

section, we shall present a scheme to optimize the value of τ1 for best error rate

performance.

The error covariance matrix of MMSE receivers is well known (see [59]) and

is given by Eqn. 2.27. This error covariance can be easily simulated as a function

of the timing offset τ1 to determine the optimal τ1 at which the error variance

is minimized. Below we present an analytical derivation of the optimal τ1 for a

(MT ,MR) = (2, 1) system.

2.6.1 Optimal τ1 for 2× 1 system

For a (MT ,MR) = (2, 1), the received vector r[i] is given by the first two

rows of Eqn. 2.4. Then, it may be shown that, given the channel coefficients, and
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[B2[i-1] B1[i] B2[i] B1[i+1]]

[0 0 0 0]

[0 0 0 1]

[0 0 1 0]

[1 1 1 1]

[1 1 1 0]

[0 0 1 1]

[0 1 0 0]

[0 1 0 1]

[B2[i-1] B1[i] B2[i] B1[i+1]]

[0 0 0 0]

[0 0 0 1]

[0 0 1 0]

[1 1 1 1]

[1 1 1 0]

[0 0 1 1]

[0 1 0 0]

[0 1 0 1]

Figure 2.8: Trellis connectivity

substituting ρ for ρ12, (1− ρ) for ρ21, and α for ρ2 + (1− ρ)2 the (1,1)th entry of

the error covariance matrix, E, is given by

E11(ρ) = 1− |h11|2
K

[|h11|2(1− ρ)2+ (2.28a)

|h12|2(1 + ρ2α) + σ2(1− ρ2)]

where

K = (|h11|2 + α|h12|2 + σ2)(α|h11|2 + |h12|2 + σ2) (2.28b)

− ρ2(|h11|2 + |h12|2 + σ2)2
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For notational convenience the following substitutions are made, a = |h11|2
and b = |h12|2. It can be shown that in order to minimize the error variance, ρ

must satisfy the following quartic equation:

Aρ4 +Bρ3 + Cρ2 +Dρ+ E = 0 where (2.29a)

A = −4ab (2.29b)

B = −2σ4 + 4aσ2 + 2b2 − 2a2 + 8ab (2.29c)

C = −3σ4 − (2a+ 6b)σ2 + 5a2 − 2ab− 3b2 (2.29d)

D = −4aσ2 − 4a2 − 4ab (2.29e)

E = σ4 + (2a+ 2b)σ2 + (a+ b)2 (2.29f)

At very low SNRs, when σ4 � σ2, a, b, we can make the following approxi-

mation to Eqn. 2.29.

−2σ4ρ3 − 3σ4ρ2 + σ4 = 0 (2.30a)

⇒ (ρ+ 1)2(2ρ− 1) = 0 (2.30b)

This yields ρ = 0.5 (the only solution between 0 and 1) as the optimal

solution at very low SNRs. This corresponds to a timing offset of half a symbol

between the first and second transmitters. For other values of SNR, there is no

simple closed form expression for the optimal ρ or τ1. The error variance aver-

aged over many channel instances, can be easily plotted as a function of offset

τ1, by using Eqn. 2.28 or Eqn. 2.27. The error variance of the first stream for

a (MT ,MR) = (2, 2) system is shown in Fig.2.14. Although not shown, the error

variance of a (MT ,MR) = (2, 1) is qualitatively very similar.

As expected from Eqn. 2.30, τ1 gets progressively closer to Ts/2 as the

SNR gets lower. At high SNRs the offset tends to 0. This has an interesting

interpretation. Note that the interference levels are lowest when τ1 = Ts/2. Yet,

the optimal offset at high SNRs is not Ts/2, but tends to 0 as SNRs increase.

This seems to indicate that the receiver yields a better BER performance in a

higher interference environment. This seemingly counter intuitive result may be
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explained by observing that higher the SNR, the easier it is for the MMSE receiver

to predictively cancel the interference. Thus, the higher interference levels do not

adversely affect the receiver since the interference gets canceled.

2.7 Pulse Shape Design for MIMO with Timing

Offset

In this section, we propose robustness to IAI (defined in Eqn. 2.1) as a

new criterion for pulse shape design. The key idea is the following: Once the

transmitters are offset from each other, the IAI is controlled by the correlation of

the transmit pulse shape with the received pulse shape at an offset equal to the

offset of the symbol boundaries. Without an offset, this criterion is no longer valid

since the IAI is given by the correlation of the two pulses at zero offset (which is

unity for all normalized pulse shapes).

Similar to the formulation of Eqn. 3 in [44] we minimize the cost function

ξ = ξs +
∑

n∈SISI

γ(g[n]− d[n])2 +
∑

n∈SIAI

ηg2[n] (2.31)

where ξs is the stop band energy of the square root Nyquist (M) discrete-time filter

given by h[n] which runs at M samples/symbol where n is the discrete time index

for the samples of the waveform. d[n] is the response of the convolution of the

two square root Nyquist filters being designed with the target response given by

g[n]. SISI and SIAI respectively identify different subsets of samples of n as shown

below. γ and η are weighting functions that allow us to tradeoff one constraint

with another. In an ideal square root Nyquist filter, g[n] = h[n] ∗ h[−n] where ∗
denotes convolution and g[n] satisfies the no-ISI Nyquist criterion given by

g[n] =

⎧⎪⎪⎨⎪⎪⎩
1, if n = 0

0, if n = mM,m 	= 0

arbitrary, if n 	= mM

(2.32a)

Thus SISI = {0,±M,±2M...} is the subset of n where constraints are placed to

minimize the ISI.
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In order to reduce the IAI, we need to lower the energy of g[n] at the offset

points. Thus, e.g., for an offset of Ts/2, the sum of the squares of the samples

of g[n] at ±M/2, ±M(1 + 1/2), ±M(2 + 1/2) and so on need to be lowered. By

choosing SIAI to be the set {±M/2,±M(1+1/2),±M(2+1/2)...} and by choosing

appropriate weights, γ and η, we can perform a tradeoff between the reduction of

ISI and IAI. In [44], an iterative method for designing a filter confirming to such

a cost function is described in detail and is used by us.

Using this method of pulse shape generation we can create a family of pulses

that have various tradeoffs of ISI, IAI and stop-band attenuation. Here we show

an example of such a pulse, by choosing an excess bandwidth of 25% and γ = 1

and η = 0.6. The key properties of this pulse in comparison to the square root

raised cosine pulse shape is summarized in Table 2.2 below.

Table 2.2: Square root raised cosine (SRRC) compared to new pulse

SRRC ∗ SRRC New Pulse ∗ New Pulse

Residual ISI (dB) -74 -19

Ts/2 IAI (dB) -0.58 -1.02

The residual ISI goes up from -74dB (practically zero) in the case of two

SRRC pulses convolved with each other to -19dB (still pretty low) in the case of

the two proposed pulses convolved with each other. The IAI power caused by an

offset of half a symbol time, Ts/2, however has been improved from about -0.58dB

to about -1.02dB.

The frequency response of 3 different filters are plotted in Fig. 2.9 below.

It may be seen that compared to the frequency response of a SRRC filter of same

length, the proposed pulse has worse stop band attenuation. The peak sidelobe

level is still close to -30dB below the main lobe and is thus considered acceptable.

The time domain response is shown in Fig. 2.10 where it may be seen that the

two pulse shapes are similar, though ISI has increased for the proposed pulse at

the benefit of a lower IAI at Ts/2 offset.

Although we are showing only a single pulse shape here, different designers
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Figure 2.9: Frequency response of proposed new pulse compared with SRRC

filter

could come up with a different pulse shape depending on different weights imposed

in Eqn. 2.31 depending on the designers preference for various system parameters.

Our emphasis here is on the importance of minimization of IAI as a filter de-

sign parameter for offset MIMO systems not so much on the exact choice of the

parameters which might vary from system to system.

2.8 Simulation Results

The simulations have been done as a set of experiments where, in each case,

comparisons have been made to similar aligned systems. In all cases, the channel

is assumed to be known perfectly at the receiver. Each simulation also assumes a

block fading model where the channel is independent from block to block and is

assumed to be constant over the duration of each block. The channel coefficients

have been generated as samples from a mean zero, unit variance complex Gaussian

random variable. To obtain statistically reliable results, each datapoint is obtained
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Figure 2.10: Impulse response of proposed new pulse compared with SRRC

filter

by simulating at least 10000 blocks. The total transmit power is held constant

irrespective of the number of transmitters by normalizing the output power from

each transmitter by the number of transmitters, MT . The performance metric of

choice is symbol error rate (SER) or bit error rate (BER) which is plotted in the

following graphs as a function of Es/N0, the ratio of the symbol energy (Es) to the

noise power spectral density (N0). The performance is compared at a SER equal

to 10−2.

2.8.1 Comparison with OSIC VBLAST

In Fig. 2.11 and 2.12, the performance of the proposed system with MMSE

receivers is compared to that of a traditional aligned VBLAST with ordered suc-

cessive interference cancellation (OSIC). A (MT ,MR) = (2, 2) system with quadra-

ture phase shift keying (QPSK) modulation is simulated with blocks containing

128 symbols. The performance of systems with rectangular pulse shaping is shown
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in Fig. 2.11 and that of systems with raised cosine pulse shaping with 25% excess

bandwidth is shown in Fig. 2.12. The square root raised cosine (SRRC) filters on

the transmitter and receiver sides have both been truncated to 13 symbols.
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Figure 2.11: Offset MIMO with MMSE Rx compared OSIC VBLAST.

(MT ,MR) = (2, 2). Modulation: QPSK. Rectangular pulse shaping.

In either case, the comparison has been made to the “best” aligned scheme

which is when the VBLAST receivers employ OSIC [71]. It may be seen that the

proposed system outperforms the VBLAST scheme both when rectangular pulse

shaping is employed as well as when the raised cosine pulse shape is employed. In

the latter, more practical case, the gain is about 1.8dB (at a SER of 10−2) when

OSIC is employed on both the proposed system as well as on aligned traditional

VBLAST.
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Figure 2.12: Offset MIMO with SRRC pulse shaping vs OSIC VBLAST.

(MT ,MR) = (2, 2). Modulation: QPSK. Raised cosine pulse shaping.

2.8.2 Performance for Various Offsets

Fig. 2.13 shows the performance of a (MT ,MR) = (2, 2) system with BPSK

modulation for various offsets between the first and second transmitters. A rect-

angular pulse shape is used. The performance of both an one-shot as well as a

windowed receiver are shown. It may be seen that the MMSE windowed receiver

achieves a lower BER with offset of 0.5Ts, whereas when the one-shot receiver is

employed, an offset of 0.2Ts is better at higher SNRs. More details on the per-

formance at various offsets as well as an analytical derivation of an optimal offset

for a (MT ,MR) = (2, 1) may be found in our prior work [33] and is also given in

Section 2.6.

Fig. 2.14 also shows the error covariance of the first stream of a joint

windowed MMSE receiver. The optimal offset for this receiver is Ts/2 regardless

of SNR.
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Figure 2.13: BER performance with various offsets, (MT ,MR) = (2, 2).

Modulation: BPSK

2.8.3 Performance of Sequence Detection based Receivers

In Fig. 2.15, the performance of Viterbi algorithm based receivers is shown

in comparison to that for a traditional MIMO system employing symbol by symbol

ML detection. BPSK modulation with rectangular pulse shaping was used in a

(MT ,MR) = (2, 2) system. Three curves are shown for offset MIMO: i) without

employing noise whitening, ii) using one shot noise whitening (W = 0), iii) using

extended window noise whitening (W = 2).

It may be seen that without noise whitening, the performance of the Viterbi

algorithm based receiver is approximately equal to that of the traditional symbol

aligned system with ML detection. However, when noise whitening is employed

we pick up a gain of about 0.5dB at a BER of 10−2. While the gains in this case

are admittedly smaller, in some systems even a 0.5dB gain in performance might

be worth the additional complexity.
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Figure 2.14: Error covariance for one shot and windowed MMSE Rx as a

function of offset. (MT ,MR) = (2, 2)

2.8.4 Performance of a 3× 3 system

In Fig. 2.16, we present the results of a 3 × 3 MIMO system with offset

transmission with MMSE joint detection receivers. In this case, there are two

offsets and they have been set to Ts/3 and 2Ts/3. It may be seen that the perfor-

mance gains are over 6dB (at SER = 10−2) when used with a rectangular pulse

shape.
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Figure 2.15: Impact of noise whitening on trellis based receivers.

(MT ,MR) = (2, 2). Offset = 0.5Ts. Modulation: BPSK

2.8.5 ZF Receivers

The performance of the optimal ZF receiver is plotted against the perfor-

mance of the ZF receiver presented by Shao et al. in Fig. 2.17. It may be seen

that while the Shao et al. receiver degrades significantly with increasing block size

S, the optimal ZF receiver has a very weak dependence on block size. In Fig.

2.17, the x-axis has been plotted in terms of Et/N0 =
STs+τ1
STs

Es/N0, where S is the

block size, Ts the symbol duration and τ1 the offset. As shown in [83], this ensures

that the data rate across all the systems is the same. We emphasize, however,

that normalizing the data rate does not imply that all the block sizes are equally

efficient. Very short block sizes, lead to considerably less spectral efficiency due to

the inter gap idle time representing a higher overhead.
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Figure 2.16: Performance of a 3x3 system. (MT ,MR) = (3, 3).

Modulation:BPSK

2.8.6 Performance of New Pulse Shaping

To show the benefits of the proposed pulse shaping, the performance of a

system using a member of the new proposed pulse family is compared in Fig. 2.18

to the performance of a system using a SRRC pulse. Both systems were simulated

using a MMSE joint detection receiver. The additional performance improvement

of approximately 0.25dB comes with no additional system complexity and can thus

be regarded of as “free”. Although not shown, the new pulse could be used with

the trellis based receivers or zero forcing receivers as well.

2.9 Conclusions

A novel MIMO transmission scheme using transmitters that are intention-

ally offset in time from each other, has been presented in this chapter. A non-zero

(but known) symbol timing offset is introduced between the signals transmitted
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Figure 2.17: Optimal ZF receiver outperforms ZF receiver from [83]

from the different transmitters to take advantage of the inefficiencies in practical

signalling systems. It is shown that a suitably designed receiver can utilize this

information to extract significant performance gains. This transmission scheme

is studied in conjunction with different kinds of receivers: ZF, MMSE receivers,

as well as MIMO MMSE receivers with OSIC and trellis based sequence detection

based receivers. A new pulse shape design that lowers IAI has also been introduced

and is shown to increase the gains of such offset transmission schemes.

A summary of highlights of the comparison between an aligned scheme like

VBLAST with the proposed scheme is shown in Table 2.3. The main source of

complexity increase is shown along with the performance gain. The performance

gain is shown for a (MT ,MR) = (2, 2) system with an offset of Ts/2 using BPSK

at a BER of 2× 10−3 in comparison to an aligned system.
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Figure 2.18: Performance of new pulse shaping, (MT ,MR) = (2, 2). β = 0.25

Table 2.3: Timing aligned MIMO compared to timing offset MIMO

Offset MIMO Aligned MIMO

Matched filter

rate

MT samp/symb 1 samp/symb

ZF Rx Needs inverse(or pseudoinverse) of

SMT ×SMT matrix. Performance

gain ∼ 5dB

Needs inverse (or pseudoin-

verse) of MR ×MT matrix

One-Shot

MMSE Rx

Needs inverse (or pseudoinverse)

of MTMR × MTMR matrix. Per-

formance gain ∼ 1.5dB

Needs inverse (or pseudoin-

verse) of MR ×MT matrix

Continued on next page
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Table 2.3 – continued from previous page

Offset MIMO Aligned MIMO

Windowed

MMSE Rx

More gains from more complex-

ity. Complexity grows with win-

dow size. Performance gain∼ 6dB

No gains over MMSE

Trellis based

Rx

Trellis size (and thus complexity)

can be traded for performance.

Performance gain ∼ 0.5dB

Symbol by symbol ML re-

ceivers are optimal

IAI lowering

pulse shapes

Performance gain ∼ 0.5dB No gains from new pulse

shapes

The contents of this chapter have been adapted from “MIMO Systems with

Intentional Timing Offset,” Eurasip Journal on Advances in Signal Processing,

2011, and “Impact of Receiver Structure and Timing Offset on MIMO Spatial

Multiplexing,” in IEEE 9th Workshop on Signal Processing Advances in Wireless

Communications, SPAWC 2008., both papers by A. Das and B.D. Rao.



Chapter 3

NDA SNR Estimation for SISO

Systems

3.1 Introduction

Many communication systems (see e.g. [31, 75]) require the accurate esti-

mation of signal to noise ratio (SNR) in the absence of any known data or pilot

symbols in a non data aided (NDA) manner. SNR estimation in additive white

Gaussian noise (AWGN) channels may be divided into 2 categories depending on

whether the receiver carries out coherent demodulation or whether the channel has

an unknown phase offset (non-coherent). In this chapter, we consider the case of

NDA SNR estimation with coherent demodulation in AWGN. This implies that

the channel gain considered in this chapter is a positive scalar quantity. In Chap-

ter 4, we generalize this result to that of non-coherent demodulation and in that

chapter we consider the channel gain to be a complex number.

The Cramér-Rao lower bound (CRLB) gives the minimum variance of un-

biased estimators subject to some regularity conditions (See Chapter 3 of [59]),

and is a very useful tool for evaluating the performance of an estimator. In [3],

the CRLBs for NDA SNR estimation with quadrature/binary phase shift keying

(QPSK/BPSK) modulation schemes have been presented for coherent demodula-

tion. However, with the advent of high data rate communication systems, many

53
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systems are using higher order modulation schemes such as 8-ary phase shift keying

(8PSK), 16-ary or 32-ary quadrature amplitude modulation (16QAM or 32QAM)

schemes. The satellite standard DVB-S2 [43] uses 16-ary and 32-ary amplitude

and phase shift keying (16APSK and 32APSK respectively). The results in [3] are

not extendable to other constellations. Thus, there is a need to evaluate the NDA

SNR estimation CRLBs for these constellations and that is one of the objectives of

this chapter. We present a methodology to compute the CRLB for any symmetric

constellation and we evaluate and present the CRLBs for QPSK, 8PSK, 16QAM,

32QAM, 16APSK and 32APSK modulation schemes.

3.1.1 Overview of Prior Work

Gao and Tepedelenlioğlu presented the CRLB for SNR estimators for non-

constant envelope modulation in [47]. The primary difference between their work

and ours, is that in [47], the authors work with envelope based NDA SNR esti-

mators and they determine the CRLB for these envelope based estimators. This

chapter deals with the baseband, symbol-rate sampled, I and Q samples of the

data. As the authors note in Sec III of [47], since the I/Q samples have more in-

formation than the envelope, CRLBs of the envelope based detectors have a worse

performance than those evaluated in this chapter.

This chapter is adapted from our works [31] and [28]. Contemporaneous to

our publication [28], Gappmair, in [48], also independently presented the CRLB for

M-PSK and 16QAM. The difference between our work and [48] is that the CRLB

for SNR estimation for more constellation schemes such as 16APSK, 32APSK and

32QAM was presented by us in [28] for the first time. Secondly, we evaluate the

CRLB in units of dBs, instead of in normalized units. Since a systems engineer

usually measures SNR in units of dBs, the evaluation of the CRLB in more natural

units of dBs is generally more useful. Third, the estimators presented by [48] all

significantly deviate from the CRLB at low SNRs whereas the estimator presented

here will perform very close to the CRLB. Moreover, in Chapter 4, we generalize

the findings of this chapter to a system model using a complex channel gain.

There has been considerable interest in estimators for SNR estimation. The
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vast majority of prior work is applicable only to MPSK modulations [10, 26, 61,

62, 72, 97]. Some of the estimators developed for higher order modulations such

as QAM, perform significantly above the CRLB even at high SNRs [102], [101]

or are based on envelope based SNR estimators [47], [66]. NDA SNR estimators

for 16APSK were recently proposed in [65] but the estimator deviates from the

CRLB at higher SNRs. To our knowledge, our earlier conference work in [31] was

the first where an expectation-maximization (EM) algorithm based NDA SNR

estimation algorithm was presented in a framework that is easily generalizable to

any arbitrary constellation. Using the 2 exemplary constellations of QPSK and

16APSK, experiments show that this estimator performs very close to the CRLB

for all SNRs of practical interest even for burst sizes as small as 100 symbols.

An EM Algorithm based NDA SNR estimator was first presented for BPSK

by Wiesel in [97]. Recently more general forms applicable to other constellations

were presented, almost simultaneously, in [66] and by us in [31]. In [66], the au-

thors consider an envelope based SNR estimator in a non-coherent (flat fading)

environment while this current work considers a baseband I/Q sample based SNR

estimator with coherent reception. Unlike the estimator presented here, the esti-

mator in [66] is not applicable to all constellations (notably 32APSK with code

rate 3/4 from [43]) and has a non-zero probability of failing completely. This latter

issue is addressed by the authors in Sec. 4 of [66]. For very similar reasons, the

envelope based estimator presented in [47] also has a non-zero probability of failing

completely due to the argument of the square-root in Eqn. 7 of [47] evaluating to

a negative number.

3.1.2 Application for Detection of Non-Linearity

Most wireless communications systems have a radio frequency (RF) power

amplifier (PA) at the end of their transmit chain. These PAs are typically ap-

proximately linear only over a certain range of input power beyond which they

eventually saturate [78]. Communications systems that use non-constant envelope

modulation schemes such as square root raised cosine (SRRC) pulse shaped M-PSK

or M-QAM, need to operate in the linear region of the PA in order to minimize
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signal distortion as well as to reduce spectral emissions in adjacent bands [2].

Such systems rely on various methods for estimating the onset of non-

linearity. Typical methods include current sensing techniques [19] or correlation

methods [63], or subsampling techniques [54], all of which require specialized hard-

ware at the amplifier. Once the onset of saturation is detected, the system usually

takes remedial measures (e.g., reducing the symbol rate or changing to a more

robust coding and/or modulation scheme) that allow it to reduce the required

transmit power and thus stay in the linear range of the amplifier. In commercial

satellite communications, the power amplifier is typically on the roof or outside the

user’s home and the satellite modem (SM) is located inside. Thus non-linearity

estimation at the output of the power amplifier and sending the information back

to the SM adds to the cost of each unit and this is undesirable.

The method proposed in this chapter estimates the onset of saturation

without the addition of any hardware cost at the terminal by taking advantage of

the ranging messages that each registered SM periodically transmits to the gateway.

The input power of these bursts to the PA is dithered by a known amount and

the received dither amount is estimated at the gateway and is used as a metric to

determine whether the PA is operating in the linear region.

Since the ranging bursts (see Section 3.2) are relatively short bursts, this

algorithm hinges on the ability to accurately estimate the received SNR. The pro-

posed algorithm estimates the received dither amount by estimating the SNR using

the EM algorithm. Although Wiesel et al., have demonstrated in [97] the use of

the EM algorithm for SNR estimation for BPSK, the algorithm proposed in this

chapter, unlike the one in [97], does not assume that all points from constellation

are equally likely. Moreover, our algorithm is suitable for use with any digital

constellation.

3.1.3 Our Contribution

Thus, the contribution of this chapter can be summarized to be the follow-

ing: a) The presentation of the CRLBs for SNR estimation using baseband I-Q

samples for any symmetric constellation and b) the presentation of an EM based
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estimator that may be used with any arbitrary constellation for NDA SNR estima-

tion with coherent reception in AWGN. The EM based SNR estimator is seen to

perform very close to the CRLB at all SNRs of interest and c) the application of

the NDA SNR estimation techniques presented to detect the onset of non-linearity

at an amplifier.

The structure of the rest of this chapter is as follows. First, in Section 3.2

we describe the satellite system in which we shall apply the NDA SNR estimation

techniques and outline the key principles behind the non-linearity estimation tech-

nique. In Section 3.3 we present the system model under consideration and pose

the estimation problem. In Section 3.4 the CRLB is derived. The EM based SNR

estimator is developed in Section 3.5 and the results are presented in Section 3.7

before concluding.

3.2 Surfbeam System Description

SurfBeam R© is a broadband satellite system developed by ViaSat Inc., based

on the data over cable service interface specification (DOCSIS R©)1. SurfBeam is

designed for use with geostationary spot-beam based satellites in the Ka (20/30

GHz) or Ku (12/14 GHz) band and provides the user with a broadband experience

comparable to that currently provided by cable modems at similar costs. The

network is currently in operation internationally supporting hundreds of thousands

of users.

Although the upper layer protocols are all based on DOCSIS, the physi-

cal layer (PHY) has been modified to accommodate the unique challenges of the

satellite-land channel. The modulation scheme used by the Surfbeam user SM ter-

minals on the return link back to the satellite is QPSK with a forward error correc-

tion (FEC) rate of 1/2 or 3/4. The system utilizes various return link symbol rates

including 2560ksps, 1280ksps, 640ksps etc. The return link is a multi-frequency

time division multiple access (MF-TDMA) system.

1For more information, please visit www.viasat.com
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3.2.1 Ranging Bursts

The DOCSIS standard requires each registered SM to periodically transmit

a short RNG-REQ burst (also known as ranging burst) regardless of whether the

SM is sending user data or not [55]. The ranging bursts of the Surfbeam system

consist of 36-bytes of data and a 110-symbol preamble. The periodicity of trans-

mission of a ranging burst is programmable, but is typically on the order of a

second. While the preamble is uncoded, the data portion is coded by the FEC of

the channel. Thus at QPSK r-1/2, the ranging burst consists of the 110-symbol

preamble and 288 symbols while at QPSK r-3/4 the ranging bursts consists of 110-

symbol preamble and 192symbols of data. The preamble overhead is large because

the system has been optimized for data-bursts that are typically much larger than

the 36-byte RNG-REQ bursts (See Section 8.3.5 of [55]).

Although we are presenting this algorithm in the context of a DOCSIS

based satellite communication system, it is a very general algorithm and works

for any system where there is a periodic burst (say N byte messages) every T

seconds. These type of ranging bursts are typically used for synchronization, power

control, link maintenance and channel estimation purposes and are fairly common

in communication systems.

3.2.2 Power Control

For the exemplary satellite system described, the return link, or upstream,

is the path from the user terminal back to the gateway. In order to ensure reliable

communication, typically power control algorithms are employed at the gateway.

Upstream power control is maintained by a power control loop operating at the

gateway that utilizes these ranging bursts to estimate the received SNR. This loop

then appropriately instructs the SM to increase or decrease its signal power in an

attempt to always maintain a desired SNR based on the link budget and quality

of service (QoS) requirements.

When the signal strength is attenuated (e.g., during a rain event), the

upstream power control loop instructs the SM to increase its signal power until

the upstream SNR target is achieved. It should be mentioned that the SM can
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only increase or decrease the power at intermediate frequencies (IF), as shown

in Fig. 3.2. The SM has no knowledge of the actual increase or decrease in

signal power at RF. Typically the SM (inside the user’s house) and the RF PA

(typically on the roof), are connected with a coaxial cable whose length varies

from house to house depending on the separation between the SM and the RF PA.

Consequently, the same output power from two different SMs, could result in two

different input powers at the RF PA since the attenuation through the cable could

be quite different.
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Figure 3.1: A typical power amplifier curve of output power as a function of

input power

The relative increase of signal power at RF depends on the operating point

of the PA. A typical power profile of a PA is shown in Fig. 3.1. There is a

linear region and then a non-linear region where the amplifier eventually satures.

Thus during a fade event, as a terminal gradually increases its transmit power, the

operating point of a particular SM could gradually move from the linear region

to the non-linear region of the power amplifier and it is this transition that the
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proposed algorithm is designed to detect. Once this is detected, the algorithm

switches the SM from a high symbol rate channel to a lower symbol rate channel

(e.g., from 2560ksps to 1280ksps), thus enabling the SM to achieve the same error

rate for 3dB less power (albiet at the cost of a lower symbol rate).

SM processing
and

modulation

Digital 
gain

setting

Power ctrl loop settingSM

PARF 
upconvert

Outdoor unit

Figure 3.2: Remote terminal signal gain setting

3.2.3 Dithering Ranging Bursts

The proposed algorithm dithers the IF transmit power of the ranging bursts

by a known amount, ΔdB. There are different ways in which this dither amount

may be applied. In one embodiment, alternate RNG-REQ bursts are transmitted

at P and P +Δ, respectively, where P is the power set by the power control loop.

In this method, all the N symbols of a particular burst are transmitted at the

same power. One of the drawbacks with this approach is that in the presence of

an unknown amount of fade (perhaps due to rain) the RNG-REQ burst arriving

later will be attenuated (relative to the one arriving first). Thus, even with perfect

estimation, the dither amount estimated at the receiver (which equals to the dif-

ference in received SNR between the two bursts) will be less than Δ even when the

PA is operating in the linear region. A second limitation of this approach is that

half the bursts are transmitted ΔdB higher than what is required by the power

control loop and, depending on the system, this could violate the off-axis emissions

limit imposed by regulatory bodies like the FCC.
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In order to overcome these drawbacks, it is proposed that symbols within

each RNG-REQ burst be dithered. Thus, for example, the even symbols could be

transmitted at P +Δ1 and the odd symbols could be transmitted at P −Δ2 such

that Δ = Δ1+Δ2. Since the symbols at the higher and lower power are now tem-

porally contiguous, this approach is unaffected by practical rain fades. Moreover,

Δ1 and Δ2 may be chosen such that the average burst power is unchanged from

P thus ensuring that the off-axis emissions limit is not violated. If Δ is expressed

in dBs, then in order to ensure that the average power of the burst is unchanged,

Δ1 and Δ2 (also in dBs) are given by Eqn. 3.1.

Δ1 = 10 log 10

(
2

10Δ/10

10Δ/10 + 1

)
(3.1a)

Δ2 = 10 log 10

(
2

10Δ/10 + 1

)
(3.1b)

If a 3dB dither is desired, then Δ = 3dB and using Eqn. 3.1, Δ1 = 1.25dB

and Δ2 = −1.75dB. So half the burst will be transmitted at 1.25dB higher than

the power setting of the control loop and the other half will be transmitted at

1.75dB lower power.

Other dither patterns, e.g., where the first half the burst is sent at the

higher power and the second half is sent at the lower power are also potential

candidates. The different dither schemes are shown in Fig. 3.3

With this approach to dithering, half the symbols of all ranging bursts are

transmitted at a power that is less than that set by the power control loop for the

desired system performance and the other half of the symbols are transmitted at

a power higher than that required. Since the symbols are encoded with a strong

turbo code, simulations show that the performance degradation is less than 0.5dB

(Δ = 2dB, FEC: r = 3/4, Burst Error Rate = 10−4). Secondly, when the SM is

not idle the vast majority of the return link traffic is data packets (which are not

dithered). Thus, return link performance averaged over all the bursts from the SM

suffers no measurable degradation.

At the gateway, the difference in received SNR is estimated and is compared

to a threshold. Based on this metric, a determination is made as to whether the
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Figure 3.3: Power settings with and without dither

PA is operating in the linear region or in the compression region. The difference

in received power could be averaged over a few pairs of bursts in order to have a

more accurate estimate if so desired. There is the usual tradeoff, common in most

detection problems, between probability of false alarm and probability of miss in

setting the threshold.

At the gateway, the ranging bursts from each SM are received in preassigned

timeslots. After processing through the receiver front end, the signal is matched

filtered and downsampled to symbol rate. These soft decision I, Q samples are

then made available for SNR estimation. This occurs before the turbo-decoding

has taken place and thus the algorithm cannot take advantage of known data to aid

the SNR estimation process. Although the preamble of the RNG-REQ bursts is

known, for the purposes of this section, it is assumed that none of the symbols are

known. In Sec. 3.6, we use the known preamble symbols to simplify the algorithm.

This algorithm, thus falls in the realm of non-data aided (NDA) SNR esti-

mation. In the following we shall derive the appropriate system model and then

solve the estimation problem.



63

3.3 System Model

In the absence of frequency, phase or timing estimation errors, the output

of a matched filter at symbol rate (assuming the use of Nyquist pulse shaping at

both transmitter and receiver), may be expressed as

yi = hxi + ni i = 0...N (3.2)

where h is a positive scalar channel gain (assumed constant over the es-

timation block of N symbols), ni are samples of an independent and identically

distributed (i.i.d) complex Gaussian noise process with the variance of its real part

and complex part each equaling σ2/2. Thus the pdf of ni is given by N (0, σ2).

The assumption of a positive scalar channel gain assumes a coherent receiver. In

Eqn. 3.2, i is the time index and we assume a block fading channel where the

channel gain, h, and the noise variance, σ2, is constant for the whole block of

N symbols over which the estimation will be carried out. For a non-coherent re-

ceiver, the channel gain should be a complex quantity and this is addressed in

Chapter 4. The transmitted symbols, xi, are picked randomly from a normal-

ized unit energy constellation with M constellation points. Thus, e.g., for QPSK,

xi ∈ {±1/
√
2 ± j/

√
2} and M = 4. We show the values of xi for the other

constellations studied in Appendix 3.A.

Using this formulation, the SNR, ρ, assumed to be constant over the block

of N symbols over which the estimation is to be carried out, is given by:

ρ(Θ) =
h2

σ2
(3.3)

or in dB scale by:

ρ̃(Θ) = 10 log10(ρ) = 10 log10

(
h2

σ2

)
(3.4)

where the parameter vector to be estimated is given by:

Θ =
[
h σ2

]T
(3.5)

For symmetric constellations, assuming i.i.d. received samples, and equiprob-

able transmit symbols, the pdf of the received vector y = [y0, y1, .., yi, ...yN ]
T is

given by Eqn. 3.6.
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p(y;Θ) =
N∏
i=1

p(yi | Θ) (3.6a)

=
N∏
i=1

M∑
l=1

p(yi|xl;Θ)p(xl) (3.6b)

=
1

M

N∏
i=1

M∑
l=1

1

πσ2
exp

(−(yi − hxl)
∗(yi − hxl)

σ2

)
(3.6c)

The log likelihood function, g is easily derived from Eqn. 3.6 to be

g = ln(p(y; σ2)) = −N ln(Mπ)−N ln(σ2)−
N∑
i=1

[
ln[

M∑
l=1

exp(
φi,l

σ2
)]

]
(3.7)

where

φi,l = (yi − hxl)
∗(yi − hxl) (3.8)

3.4 CRLB Evaluation

As shown in [59] and using Eqn. 3.3, the CRLB is given by

CRLB =
∂ρ(Θ)

∂ΘT
FΘ

−1

(
∂ρ(Θ)

∂ΘT

)T

(3.9)

where FΘ is the 4× 4 Fisher Information Matrix (FIM), given by:

FΘ = E

[(
∂g

∂Θ

)(
∂g

∂Θ

)T
]

(3.10)

g is the log likelihood function of Eqn. 3.7, E() is the expectation operator

and the expectation is taken with respect to the distribution of y. If it is desired

to calculate CRLB in units of (dB)2, then instead of ρ in Eqn. 3.9, we shall use ρ̃

from Eqn. 3.4.

From Eqn. 3.3 and Eqn. 3.4 we can derive the following two equations:

∂ρ(Θ)

∂ΘT
=
[
2h/σ2 −h2/σ4

]
=
[
2ρ/h −ρ/σ2

]
(3.11a)

∂ρ̃(Θ)

∂ΘT
=
[

20
ln(10)h

−10
ln(10)σ2

]
(3.11b)
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Thus, in order to evaluate the CRLB of Eqn. 3.9, only FΘ remains to be

evaluated.

From Eqn. 3.7, the partial derivatives of the log likelihood function, g, with

respect to the two parameters, h and σ2, are given by:

∂g

∂σ2
=

−N

σ2
+

1

σ4

N∑
i=1

∑M
l=1

(
φi,l exp(

−φi,l

σ2 )
)

∑M
l=1 exp(

−φi,l

σ2 )
(3.12a)

∂g

∂h
=

−2

σ2

N∑
i=1

∑M
l=1

(
exp(

−φi,l

σ2 ) (−h|xl|2 +Re(y∗i xl))
)

∑M
l=1 exp(

−φi,l

σ2 )
(3.12b)

In order to determine the 4 terms of the FIM of Eqn. 3.10, we have to

determine the following three terms: E( ∂g
∂σ2

∂g
∂h
), E( ∂g

∂h
∂g
∂h
), and E( ∂g

∂σ2
∂g
∂σ2 ). The

expectations of these three terms cannot be determine analytically.

We evaluated the terms numerically using Monte Carlo simulations. In

Chapter 4, an alternate method of numerical evaluation, using the Gauss Hermite

quadrature has been presented. Both the methods were verified to yield the same

result.

It may be shown [59], [90], that an alternate equivalent expression of the

FIM is given by

FΘ =

[
−E(∂

2 ln p(y|θ)
∂h2 ) −E(∂

2 ln p(y|θ)
∂h∂σ2 )

−E(∂
2 ln p(y|θ)
∂σ2∂h

) −E(∂
2 ln p(y|θ)
∂(σ2)2

)

]
(3.13)

A slightly different, but equivalent, approach which involves finding the sec-

ond derivatives directly and then doing a numerical evaluation of the expectation

was shown by us in [28].

3.5 EM algorithm based Iterative SNR Estima-

tion

The EM algorithm is known (for regular exponential family distributions)

to iteratively attain the maximum likelihood(ML) estimate [35]. We use this algo-

rithm is used to estimate ML estimates of h and σ2 and then the ML estimate of
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the SNR is found using the invariance property of the ML estimate [59]. Thus, if

ĥ is the ML estimate of h and σ̂2 is the ML estimate of σ2, then the ML estimate

of the SNR, ρ, is given by ρ̂ = ĥ2

σ̂2

As stated in [35], the EM algorithm works on a set of incomplete data. In

this case, the incomplete data is the sequence of unknown transmitted symbols,

xi. Thus the complete data set at time i is zi = [yi; xi]. If M is the constellation

order, xi can take one of M different values. Consequently, in the presence of

Gaussian noise, the probability density function of the observed samples yi is a

mixture density of M Gaussian mixtures. We denote the M values of the symbols

of the transmit constellation c1, c2, ...cM .

Thus, the probability density function (pdf) of yi may be written as

fY (yi|Θ) =
M∑
l=1

αlp(yi|xi = cl,Θ) =
M∑
l=1

αl
1

πσ2
exp

(−‖yk − hcl‖)2
σ2

)
(3.14a)

where αl is the proportion of the l-th mixture in the overall distribution

and if all symbols are equally likely is equal to 1/M . For the derivation of the

SNR estimator, we shall maintain the possibility that the symbols may not be

equiprobable. The deterministic, but unknown parameter vector to be estimated

is given by Θ as shown in Eqn. 3.5.

As is outlined in Equation 2.17 of [35], using the log likelihood function

of the parameter conditioned on the complete data, L(Θ|Z), the k-th step of the

iterative EM algorithm carries out the following two steps. Here the observation

vector is y and the estimate of the parameter vector from the previous iteration is

Θk−1:

E-Step Q(Θ;Θk−1) = E[L(Θ|Z)|y,Θk−1] (3.15a)

M-Step Θk = argmaxQ(Θ;Θk−1) (3.15b)

Assuming independent data, the likelihood function may be computed as:

L(Θ|z) =
N∏
i=1

M∏
l=1

p(xi = cl)
γi,lp(yi|xi = cl,Θ)γi,l (3.16)

where γi,l is the indicator function that equals 1 if xi = cl and is 0 otherwise.
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Since p(xi = cl) = αl, the log likelihood function can then be written as

log[L(Θ|z)] =
N∑
i=1

M∑
l=1

γi,l(log(αl) + log(p(yi|xi = cl,Θ))) (3.17a)

L(Θ|z) =
N∑
i=1

γT
k [V(α) +Ui(Θ)] (3.17b)

where γi is a M × 1 vector of γi,l, V(α) and Ui(Θ) are M × 1 vectors of

log(αl) and log(p(yi|xi = cl,Θ)) respectively. As an example, for QPSK, with

knowledge of the complete data, γi is one of the following 4 vectors: [1, 0, 0, 0]T ,

[0, 1, 0, 0]T , [0, 0, 1, 0]T , [0, 0, 0, 1]T . In the absence of perfect knowledge of what

was transmitted, γi, is a M × 1 vector of soft decisions, e.g., [0.7, 0.1, 0.1, 0.1]T

with each entry giving the probabilities of each of the transmitted symbols based

on the observation. Thus, in this example, γi would indicate that based on the

received symbol, the probability that the first symbol was transmitted was 0.7,

while the probabilities that the other 3 symbols were transmitted were each 0.1.

In performing the E-step, conditioned on the observation vector, y, and

estimates from the previous iteration, Θk−1, the only random part of the log like-

lihood function is xT
i . Thus the E-step updates xT

i using Eqn. 3.18. After the

E-step xT
i are soft decision vectors and not the hard decision vectors as discussed

above.

γi,l
+ = E[xi,l|y,Θk−1] (3.18a)

=
exp

(−‖yi − hk−1cl‖2/σ2
k−1

)∑M
l=1 exp

(−‖yk − hk−1cl‖2/σ2
k−1

) (3.18b)

The M-step is used to update the estimates. Since the two parameters, h

and σ2 are independent, the following optimization equations follow:

∂Q

∂h
=

∂

∂h

N∑
i=1

M∑
l=1

γ+
i,l(log σ

2 +
‖ yi − hcl ‖2

σ2
) = 0 (3.19a)

=⇒
N∑
i=1

M∑
l=1

γ+
i,l(2h‖cl‖2 − (ykc

∗
l + cly

∗
k) = 0 (3.19b)

∂Q

∂σ2
=

N∑
i=1

M∑
l=1

x+
k,l(

1

σ2
− ‖ yi − hcl ‖2)

σ4
) = 0 (3.19c)
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These yield the following solutions where the + sign indicates the updated

parameters of the i-th iteration, * indicates conjugation and Re indicates the real

part of a complex number.

h+ =

∑N
i=1(γ

T
i )

+Re(yic
∗)∑N

i=1(γ
T
i )

+‖c‖2 (3.20a)

σ2+ =
1

2N

N∑
i=1

(γT
i )

+ ‖ yi − h+c ‖2 (3.20b)

ρ̂+ =
(S+)2

σ2+
(3.20c)

3.6 Implementation Issues

The SNR estimator using the EM algorithm has been targeted for design

on field programmable gate arrays (FPGA). The equations that need to be imple-

mented in hardware are Eqns. 3.18 and 3.20. Of these equations, Eqn. 3.18 is

much more challenging to implement in digital hardware due to two reasons. First,

there is the need to carry out N divisions for the normalization of each γi and a

division by σ2, thus requiring (N + 1) divisions for each iteration. It is assumed

that since FPGAs typically have a fairly large number of dedicated multipliers,

first the quantity 1/σ2 will be calculated (1 division) and then multipliers will be

used to carry out the rest of eqn. 3.18. Secondly, there is the need to update

all 4N entries of γi,l every iteration. For efficient implementation, the exponential

functions could be implemented as look up tables in FPGA block memory. Eqn.

3.20 is far simpler to implement assuming dedicated multipliers and adders are

available in the FPGA. Even with modern FPGAs, an iterative algorithm like the

one outlined in this chapter is challenging to implement considering that the design

is required to support hundreds of SMs on a particular channel. A simpler soft

decision based SNR estimation algorithm is outlined below.



69

3.6.1 Simpler SNR estimation algorithm

Using known preamble

This algorithm takes advantage of the presence of some known data symbols

in the bursts being used for SNR estimation. Recall (from Sec. 3.2.1) that in the

system of interest, 110 symbols of each burst is a known preamble. In general,

the target system is assumed to know Np of the N symbols in the burst. This

is a reasonable assumption as the vast majority of burst-based systems will have

a preamble in the burst for acquisition purposes. Thus in generating the N × 4

entries of Eqn. 3.18, the first M rows are hard decision values and do not require

any iteration.

Quantizing probability

Further simplifications may be made by quantizing the probability of a

particular observation coming from one of the transmitted symbols into one of P

levels. A particularly efficient scheme uses only four levels and thus the xk,l
+s of

eqn. 3.18 are quantized to one of four values: 0, 1
4
, 1

2
and 1. The case where the

probabilities are quantized to only two levels (0 and 1) is the degenerate case of

using only hard decisions instead of using soft-decisions.

Quantizing the probabilities divides up the received I-Q space into what we

call zones of uncertainties. This is shown in Fig. 3.4. Thus for instance, if the

received symbol is detected in the top right hand corner of the I-Q map near c1,

γi for that symbol is quantized to [1, 0, 0, 0]T .

This greatly simplifies the algorithm since it obviates the need for lookup

tables and divisions in the implementation of Eqn. 3.18. Moreover, calculating γi

does not depend on the current estimate of the parameter set to be estimated, Θ.

Thus the algorithm is no longer an iterative one. This simplification comes at the

cost of some degradation in performance in comparison to the full soft-decision

iterative EM algorithm. The actual performance degradation is however small (in

the SNR ranges of interest) and is discussed in Sec. 3.7.
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Figure 3.4: Quantized soft decisions: Zones of uncertainties. I/Q axis shown in

red.

3.7 Simulation Results

3.7.1 Evaluation of CRLB for SNR Estimation

The CRLB was computed for various constellations. As mentioned above,

Monte Carlo simulations were carried out by generating samples of yk in computer

simulations. In each simulation, one million samples of yk were generated for

determining the elements of the FIM from Eqn. 3.12. Each constellation point

was assumed to be equally likely. The estimation was carried out with blocks of

length N = 100 symbols. The CRLB is inversely proportional to N and thus the

CRLB for other block sizes can be easily found.
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As a comparison, the CRLB for QPSK modulated signals presented by

Alagha in [3] have also been calculated. They are seen to be the same as the

values calculated using our method.
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Figure 3.5: CRLB for NDA SNR estimation. N = 100

The results are shown in Fig. 3.5 and also presented in tabular form for

ease of readability in Table 3.2 in Appendix 3.B.

3.7.2 EM based estimator

The EM based estimator was evaluated for two exemplary constellations:

QPSK and 16APSK. The mean squared error (MSE) was calculated by running

10,000 bursts (each with N = 100 symbols) through a Monte Carlo simulation.

The initial condition of the channel gain, h, and the noise variance σ2 were both

set to 1. We have found that, although the choice of the initial condition affects

the convergence time, it does not affect estimator accuracy since the likelihood

function has one maximum as discussed later.
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Fig. 3.6 shows the MSE of the EM algorithm based NDA SNR estimator.

As can be seen, the estimator performance is very close to the CRLB at all SNRs

of interest. It should be pointed out that at SNRs of 2dB or less, the ML solution

(that the EM algorithm converges to) is sometimes an outlier. In other words,

the ML solution yields an SNR that is far lower than the true SNR. In order

to prevent this, the estimator has been clamped to a lower limit of −5dB. This is

unlikely to have much practical significance since 16APSK and QPSK modulations

are typically not used at such low SNRs.

For comparison purposes, in Fig. 3.6, we have also shown the performance of

four NDA SNR estimators available in the literature: a) for QPSK: i) M2M4 NDA

SNR estimator (Eqn. 7 of [47] or Eqn. 39 of [72]) ii) ρ12 estimator from [47] and iii)

the iterative estimator from [5] and b) for 16APSK: 6th order estimator from [65].

As can be seen the iterative EM based estimator performs significantly better

than all these estimators. In addition, some of these other estimators work only

for MPSK modulation schemes. This performance gain does not, of course, come

for free. The proposed EM based estimator is more computationally intensive.

Whether the additional complexity is worth the performance gains will depend on

the application at hand.

Dependence on Initial Condition

One of the known drawbacks of the EM algorithm is that it converges to

the local maxima in the neighborhood of the initial condition. Thus, if the log

likelihood function has multiple peaks, the EM algorithm is not guaranteed to

converge to the maximum likelihood (ML) solution.

Fig. 3.7 shows the contour plot of the log likelihood function for 16APSK

at SNR = 2dB together with a trajectory of estimates of h and σ2. It can be seen

that there is only one maximum which ensures that the EM algorithm converges to

the ML solution. This is also true for QPSK. Our results show that the terrain of

the contour plot is flatter for 16APSK in comparison to QPSK. This explains why

16APSK is slower to converge than QPSK as shown in Fig. 3.8. The log likelihood

is also seen to have rather high values in the region of low h and high σ2, which
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Figure 3.6: MSE performance of EM based NDA SNR estimator compared to

previously published results

corresponds to low SNRs. This explains why at low SNRs (2dB or less), the ML

estimate is occasionally an outlier (an estimate that is significantly less than the

actual SNR), as discussed above.

Convergence Speed

Fig. 3.8 shows the mean squared error of the EM based SNR estimator

as a function of iteration number for both QPSK and 16APSK at SNRs of 2dB

and 20dB. It can be observed that the convergence rate of 16APSK is slower than

that of QPSK. At high SNRs, the algorithm converges faster than at low SNRs.

Variants of the EM algorithm and better initialization might be used to speed up
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Figure 3.7: Contours of log likelihood function with estimator trajectory.

Modulation: 16APSK. SNR = 2dB. h = 1. σ2 = 0.63.

the convergence rates, but this is outside the scope of this chapter.

3.7.3 Performance of Non-Linearity Estimation Techniques

Fig. 3.9 shows the root mean square error (rmse) of different SNR estima-

tors (for N = 398 symbols) compared to the CRLB (evaluated in [3]) for the two

cases: i) where all the transmit data symbols are known by the SNR estimator (the

data aided (DA) model) as well as ii) the NDA model where the SNR estimator

does not know the transmitted data symbols. The initial condition for Θ in the

EM algorithm is set to h = 0.5, αl = 0.25, σ2 = 0.5. It is seen that the EM

algorithm achieves the CRLB for the NDA model. Fig. 3.9 shows the results after

10 iterations, however, 4 or 5 iterations are sufficient to achieve good results (for

Es/N0 > 5dB, just 2 iterations are sufficient).

The performance of three reduced complexity estimators are also plotted.

These estimators differ only in the way Eqn. 3.18 is updated. It is seen that
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an iterative EM algorithm that takes advantage of 110 known symbols (See Sec.

3.2.1) in the preamble performs better than the CRLB of the NDA model. This

is expected, since now some of the symbols are known. As expected, the 4-level

soft-quantized γi
+ based non-iterative algorithm performs better than the 2-level

soft-quantized algorithm (See Sec. 3.6.1). It is interesting to note that the 4-level

quantized soft decision based model actually beats the CRLB for the NDA model

for Es/N0 between 7 and 10dB. Again, this is due to the fact that the 110 of the

symbols are assumed to be known perfectly.

Fig. 3.10 shows the cumulative distribution function (CDF) of the detection

of the P1dB point relative to the actual P1dB point after adjusting for a bias in the

switchpoint. It may be seen that around 80% of the time, the algorithm detects

the onset of non-linearity within within ±1 dB of the actual P1dB point of the

PA.
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3.8 Conclusions

In this chapter we have evaluated the CRLB for NDA SNR estimation in an

AWGN channel for the following QPSK, 8PSK, 16QAM, 32QAM, 16APSK and

32APSK constellations for a block size of 100 symbols. The CRLB is inversely

proportional to the number of symbols, thus enabling the CRLB to be easily de-

termined for any other block size from our results. We have also presented an

estimator based on the EM algorithm that may be used for any arbitrary con-

stellation for NDA SNR estimation. Using QPSK and 16APSK as two exemplary

constellations, the proposed estimator is shown to perform very close to the CRLB

for all SNRs of practical interest.

We also presented a novel scheme for the detection of PA non-linearity and

have demonstrated that this scheme can be used to detect the P1dB of an amplifier

within 1dB of the actual P1dB in the presence of realistic fade rates. An iterative

EM based algorithm (as well as low-complexity non-iterative variants) to estimate
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the SNR of QPSK modulated data has also been developed and is shown to attain

the CRLB.

The algorithm has been applied in a DOCSIS based satellite broadband

system, but the algorithm presented is independent of DOCSIS and can be used to

detect the onset of non-linearity due to any reason at a remote terminal without

adding to the hardware cost per terminal of the system.

Although this chapter dealt with the common case of single antenna systems

with coherent reception, modern communication techniques commonly use multiple

antennas both at the transmitter as well as at the receiver and the channel gain

is often complex. The results of this chapter are more generalized to the multi

antenna systems with complex channel gain in Chapter 4.

The contents of this chapter have been adapted from A. Das and M. Miller,

“Remote non-linearity detection via burst power dithering and EM based SNR Es-
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timation,” Satellite and Space Communications, 2007. IWSSC 2007. International

Workshop on, Sept. 2007 and from the work which lead to US Patent 7,894,510,

issued July 05, 2011. Sections of this chapter have also been adapted from A.

Das, “NDA SNR estimation: CRLBs and EM based estimators,” IEEE Region 10

Conference, TENCON 2008.

3.A Appendix: Constellation Points

The constellation points used for various constellations are shown in Table

3.1. All the constellations are normalized to have unit energy.

Table 3.1: Constellation points

Constellation Symbol Values

QPSK exp(jπm/4) where m = 1,3,5,7

8PSK exp(jπm/8) where m = 1,3,5...15

16QAM 1√
10
{±1± j,±3± 3j,±1± 3j,±3± j}

32QAM 1√
20
[±1± j,±3± 3j,±1± 3j,±3± j],

1√
20
[±5± 3j,±5± j,±3± 3j,±1± 5j]

16APSK {R1 exp(jπm/4), R2 exp(jπn/12)} m = 1,3,5,7. n = 1,3,...23
R1 = 0.4109, R2 = 1.1301

32APSK
{R1 exp(jπp/4), R2 exp(jπq/12), R3 exp(jπr/8)}
p = 1,3,5,7. q = 1,3,..23, r = 1,2,3..16, γ1 = 2.64, γ2 = 4.64, R2 =
γ1R1, R3 = γ2R1, R1 =

√
( 8
1+3γ2

1+4γ2
2
)

The 16-APSK and 32-APSK constellations have been used as defined by

the DVB-S2 standard [43].

3.B Appendix: CRLB for Various Constellations

Table 3.2 shows the CRLB for various constellations for SNR estimation

with an NDA model for a block size of 100 symbols. Some researchers have pub-

lished the normalized CRLB (NCRLB) where NCRLB = CRLB
SNR2 where the CRLB



79

Table 3.2: CRLB (dB2) for N=100

SNR
(dB)

QPSK 8PSK 16QAM 32QAM 16-
APSK

32-
APSK

0 2.56 4.07 8.73 12.02 9.29 16.37
2 1.07 1.82 4.61 6.58 5.04 9.06
4 0.55 1.02 3.12 4.61 3.19 6.16
6 0.35 0.66 2.38 3.77 2.11 4.75
8 0.26 0.45 1.55 3.20 1.27 3.62
10 0.23 0.32 0.71 2.48 0.65 2.11
12 0.21 0.24 0.36 1.21 0.36 0.94
14 0.20 0.21 0.25 0.50 0.25 0.45
16 0.20 0.20 0.21 0.28 0.21 0.28
18 0.19 0.19 0.20 0.21 0.20 0.22
20 0.19 0.19 0.19 0.20 0.19 0.20

and SNR are both expressed in a linear scale. For convenience, we also present a

table of NCRLBs in Table 3.3. The CRLBs are inversely proportional to the block

size and thus the CRLBs for any other block size can be easily determined.

Table 3.3: NCRLB = CRLB
SNR2 for N=100

SNR
(dB)

QPSK 8PSK 16QAM 32QAM 16-
APSK

32-
APSK

0 0.135 0.214 0.460 0.638 0.494 0.862
2 0.057 0.096 0.246 0.348 0.263 0.483
4 0.029 0.054 0.164 0.245 0.168 0.326
6 0.018 0.035 0.127 0.199 0.111 0.251
8 0.014 0.024 0.082 0.171 0.068 0.190
10 0.012 0.017 0.038 0.130 0.035 0.113
12 0.011 0.013 0.019 0.064 0.019 0.050
14 0.011 0.011 0.013 0.026 0.013 0.024
16 0.011 0.011 0.011 0.015 0.011 0.015
18 0.010 0.010 0.010 0.011 0.010 0.011
20 0.010 0.010 0.010 0.010 0.010 0.010



Chapter 4

SNR Estimation for MIMO

Systems

4.1 Introduction

As described in Chapter 3, many modern communication systems often

need accurate estimates of signal to noise ratios (SNR) to carry out important

functions such as adaptive coding and modulation [22], [30]. In Chapter 3 we

analyzed single antenna systems with coherent reception. However, as multiple

input, multiple output (MIMO) systems gain popularity, adaptive MIMO modula-

tions are becoming more popular [38] and these systems also require accurate SNR

feedback. In this chapter, we shall generalize the results of Chapter 3 to multiple

antenna systems and to systems where the channel gain is a complex quantity.

MIMO systems are often used in conjunction with orthogonal space time

block codes (OSTBC) and in [60] the authors show how the appropriate constella-

tion for transmission is chosen based on estimating the ratio of the Frobenius norm

of the channel to the noise variance. This ratio, which is directly analogous to the

SNR in single antenna systems, plays a direct role in determining the maximum

rate that may be transmitted over the channel since it plays a role in the formula

for the capacity of the channel [81]. This definition of the received SNR for MIMO

systems is also used by [21] and by [104] and thus must be estimated in practical

80
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systems.

Typically, the MIMO SNR has to be determined at the receiver by esti-

mating both the channel and the noise variance. However, sometimes the receiver

needs to estimate only the noise variance since the channel estimates are made

by the transmitter as in MIMO time division duplexing (TDD) systems. In these

TDD systems with channel reciprocity, feedback from the transmitter is used to

send the receiver estimates of the channel. Initially it was thought that the dif-

ference in the transmit and receive chains was enough to ensure that the overall

measured channel was not reciprocal, but recent experimental results have showed

that this difference may be accounted for by doing relative calibration [57], [50].

Even when the channel estimates are fed back from the transmitter (and thus

may be assumed to be known at the receiver), the receiver needs to estimate the

received noise variance accurately.

Traditionally, both the noise variance as well as the SNR are estimated by

using the pilot (or preamble) sequences typically embedded in the signal. This, of

course, leads to a loss of spectral efficiency and thus there is interest in estimates

obtained using the transmitted data in a non-data aided (NDA) manner. In our

work, we shall address both the the DA as well as the NDA approaches.

4.1.1 Overview of Prior Work

CRLBs of NDA SNR estimation and efficient estimators for various constel-

lations in single input, single output (SISO) systems have been evaluated in [28]

and discussed in detail in Chapter 3. These have been extended to single input

multiple output (SIMO) systems in [16] for both data aided (DA) as well as NDA

models. In [16], the authors assume that the non-random phase shifts are perfectly

known, thus assuming that the SIMO channels are all real valued. In this current

work, we present the CRLB for SNR estimation for MIMO systems for complex

valued channels. We shall show that the SISO and SIMO results previously pub-

lished are special cases of this more general result. Unlike [16], our determination

of the CRLB for SNR uses complex valued parameters (See Section 4.7.3 of [90]).

Prior to our work in [29] there had been relatively little published work
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in the area of NDA MIMO SNR estimation. This chapter is adapted from this

work [29]. Noise variance and SNR estimation algorithms using training sequences

for MIMO orthogonal frequency division multiplexing (OFDM) systems have been

published in [17] and [45] and references therein. These prior works are based on

known training symbols and are thus in a DA framework. Moreover, they present

algorithms for estimation without presenting the Cramér-Rao bound which is one

of the contributions of this current work.

The CRLB for channel estimation for MIMO systems has been presented

in [92] and [13]. The differences between these and similar works and ours are

the following: a) we assume that the noise variance is also unknown whereas [92]

assumes that the noise variance is known, b) we estimate the CRLB for the ratio

of the Frobenius norm of the channel to the noise variance (the MIMO SNR) while

the cited works evaluate the channel and c) we evaluate the NDA model where the

unknown transmitted symbols are assumed to be from a finite digital constellation

while the above works evaluate the CRLB in the DA model.

The estimation of noise variance has attracted some recent interest in the

literature. Jiang et al., develop a polynomial based noise variance estimator for

known pilots in [56]. Benjebbour and Yoshida develop accurate noise variance

estimators for ordered successive interference cancellation MIMO receivers in [12]

but this depends on training symbols as well. In [12] the authors first determine a

noise variance by using the training symbols in a DA model and then update that

estimate using the estimates of the data symbol obtained from the initial estimate

of the noise variance.

Blind noise estimation without using any preambles (NDA model) was pre-

sented in [86] for an OFDMA system utilizing the time frequency sparsity of the

OFDMA signal as well as the redundancy introduced by the cyclic prefix. In the

OFDM framework, considerable work has taken place in the area of training based

noise variance estimation, (see [18, 45, 103] and references therein). Unique word

(or preamble) based noise variance estimation for single carrier systems was also

presented by Coon and Beach in [23]. In the ultra wideband (UWB) channel

model, noise variance estimation has been studied recently in [93]. In these prior
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works, however, the CRLB bound for NDA MIMO noise variance estimation has

not been evaluated.

In Chapter 3, we discussed the expectation maximization (EM) algorithm,

which is known (for regular exponential family distributions) to iteratively attain

the maximum likelihood (ML) estimate [35]. The EM algorithm has been used in

similar NDA parameter estimation problem for SNR estimation in SISO and SIMO

systems in [15, 28, 32]. In this chapter, we apply the EM algorithm to a similar,

but different problem of estimating the MIMO SNR and the noise variance at

each received antenna. We show that the obtained estimator achieves the CRLB

for BPSK, QPSK, 8PSK and 16QAM modulation schemes over a wide range of

Es/N0.

The work that comes closest to ours is [95], where the authors present EM

based estimators for the NDA model for joint channel and noise variance estimation

for MIMO systems. However, the authors do not present the CRLB, nor do they

present closed form approximations for the ML estimator in the NDA case. To

the best of our knowledge, our work, [29], was the first that presented bounds and

estimators for NDA SNR estimation for a MIMO single carrier system with block

fading employing M-ary modulation scheme.

4.1.2 Our Contribution

Our contribution can thus be summarized to be the following. We present

CRLBs for both MIMO SNR estimation as well as MIMO noise variance esti-

mation for both DA and NDA system models. We also present the CRLB for

SNR estimation for the special case of when the transmitters use the widely used

Alamouti code. These bounds are derived for a couple of different noise models

– one that assumes that the noise variance is the same across all received an-

tennas and the other assumes that the noise variance of each received antenna is

different. We show ML estimators for estimating both the MIMO SNR as well

as the noise variance. We show closed form answers for the DA case and closed

form approximations for the NDA case. The derivations are generalized for any

M-ary constellation in a frequency flat block fading environment and simulations



84

are shown for BPSK, QPSK, 8-PSK and 16QAM modulation schemes. Although

the focus of our work is on flat fading channels, we discuss how the results can be

extended to frequency selective channels.

This chapter is organized in the following sections. In Section 4.2 we in-

troduce the notation used in this chapter before developing the system model in

Section 4.3. The CRLB for SNR estimation for both the DA and the NDA models

are developed in Section 4.4 and the corresponding CRLBs for noise variance esti-

mation are in Section 4.5. The estimators are presented in Section 4.7. Simulation

results are presented in Section 4.8 before concluding.

4.2 Notation

Some of the common notation used throughout this chapter are introduced

in this section. Vectors and matrices are represented respectively in lower case

bold font and upper case bold font such as h and H. xi,l is the l-th entry of the

vector xi where i indicates the time index. 0x,y is an all-zeros matrix of size x× y.

0x is an all-zeros matrix of size x × x. Ix represents an identity matrix of size

x × x. vec(H) represents all the elements of a matrix H rearranged in a column

vector. ()∗, ()T and ()H denote the conjugate, transpose and Hermitian operators

respectively. N (μ,Rnn) denotes the pdf of a circular Gaussian random variable of

mean μ and covariance Rnn. ‖H‖2F denotes the Frobenius norm of matrix H. The

notation diag(x) is used to represent a N × N diagonal matrix whose entries are

the N elements of the vector x. diag([A1,A2, ...AN]) is a block diagonal matrix

whose component matrices, A1,A2, ...,AN, form the successive diagonal elements.

4.3 System Model

For ease of exposition, the system model used is the block flat fading model

where the channel, H, is constant over a block of symbols of length N. The received

vector, at time i, yi is a MR × 1 vector, where MR is the number of received

antennas. The transmit symbols at time i are represented by a MT × 1 vector
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xi where MT is the number of transmit antennas. Each element of xi, i.e. each

transmitted symbol is assumed to come from a digital constellation such as M-PSK

or M-QAM. H is the MR ×MT channel matrix where each element is assumed to

be independent and is drawn from a zero mean, unit variance complex Gaussian

distribution. ni is the MR × 1 noise vector, also assumed to be complex Gaussian

and spatially and temporally uncorrelated. Assuming perfect synchronization and

no differential path delays between the various antennas, the received samples after

matched filtering and downsampling are given by Eqn. 4.1.

yi = Hxi + ni i = 1...N (4.1)

The N transmitted symbol vectors of the block, may be collected together

for notational convenience in a matrix as shown in Eqn. 4.2.

X = [x1,x2, ...,xN] (4.2)

Two models for the noise vector will be analyzed. In the first model, the

noise variance σ2 is the same across all received antennas and thus the noise prob-

ability density function (pdf) is given by N (0MR,1, σ
2IMR

). In the second model,

each received antenna has a different noise variance, but the noise is assumed to be

spatially and temporally uncorrelated thus resulting in the pdf N (0MR,1, diag(σ̃
2))

where σ̃2 = [σ2
1, σ

2
2, ..., σ

2
MR

]T .

4.3.1 Definition of SNR

SNR is nominally defined as the ratio of the signal power to the noise power

(measured in the same bandwidth). In SISO and SIMO systems the definition is

straightforward, since at each receiver there is only one desired signal. For MIMO

systems, however, the various transmit signals linearly add at each receiver, and

thus there are multiple desired signals at each receive antenna. Thus, we can define

a pairwise SNR between transmitter y and receiver x as ρxy = ‖hxy‖2
σ2 where hxy

is the complex path gain between the x-th receiver and the y-th transmitter. We

can also define a SNR based on the Frobenius norm of the channel as ρ =
‖H‖2F
σ2 .

The Frobenius norm of the MR ×MT channel matrix is defined in Eqn. 4.3.
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‖H‖2F =

MR∑
p=1

MT∑
q=1

‖hpq‖2 = trace(HHH) (4.3)

In this work we shall evaluate the CRLB for both these definitions of SNR

though our emphasis will be on the latter definition. It should be noted that

the second definition of SNR is compatible only with the first model of the noise

distribution as described above. For the pairwise definition of SNR, if the second

noise model is used, then σ2 is replaced with σ2
x which is the noise variance seen

on receiver x.

Identifiability of SNR in NDA Estimation

Certain constellations, e.g., 16-QAM or 32-QAM, contain constellation points

that are scalar multiples of each other. In 16-QAM for example, the 4 inner con-

stellation points are a scalar multiple of the 4 outer corner points. In a NDA es-

timation framework, where none of the transmitted symbols are assumed known,

there exists a possible ambiguity in determining the channel gain since it can-

not be determined whether the transmitted symbol was x or kx (where k is the

multiplicative scale factor between two constellation points that share this multi-

plicative relationship), and thus, the SNR cannot be uniquely identified. In [80],

the authors refer to this as the divisor ambiguity. The authors show that when all

the symbols of the constellation are equally likely, the probability of error due to

this divisor ambiguity drops very quickly with increasing block size and even for

blocks with only 10 symbols, the probability of error for 16-QAM is less than 10−5

(Fig 4 of [80]). Thus the practical limitation of this phenomenon in blind SNR

estimation where block sizes are typically at least a few bytes long is expected to

be negligible.
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4.4 CRLB for SNR Estimation

4.4.1 Data Aided Model

In the DA model, we assume that the N transmitted symbols, xi, i =

[1, 2, ..., N ] come from a normalized constellation of unit power, are all known by

the receiver and independent of the noise samples and the channel coefficients. The

channel coefficients are assumed to be unknown, but complex valued deterministic

constants. The parameter vector of interest in the estimation problem is then the

2MRMT + 1 element vector:

Θ =
[
(vec(H))T (vec(H∗))T σ2

]T
(4.4)

From Eqn. 4.1, the logarithm of the likelihood function may be expressed

as:

g = ln[p(Y ;Θ)] = −NMR ln(π)−NMR ln(σ2)− 1

σ2

N∑
i=1

φi (4.5)

where φi = (yi − Hxi)
H(yi − Hxi). In order to determine the CRLB, we

shall determine the individual elements of the Fisher information matrix (FIM)

which is given by FΘ = E
[(

∂g
∂Θ∗

) (
∂g
∂Θ∗

)H]
[90]:

E

[(
∂g

∂σ2

)(
∂g

∂σ2

)]
=

NMR

σ4
(4.6a)

E

[(
∂g

∂σ2

)(
∂g

∂hxy

)]
= E

[(
∂g

∂σ2

)(
∂g

∂h∗
xy

)]
= E

[(
∂g

∂hxy

)(
∂g

∂hpq

)]
= 0

(4.6b)

E

[(
∂g

∂hxy

)(
∂g

∂h∗
pq

)]
=

⎧⎨⎩
1
σ2

∑N
i=1 xi,yx

∗
i,q if x = p

0 if x 	= p.
(4.6c)

Using Eqn. 4.2, and defining the MT × MT sized matrix, A = XXH , we

can write the resulting (2MTMR + 1)× (2MTMR + 1) sized block diagonal FIM:
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FΘ = E

[(
∂g

∂Θ∗

)(
∂g

∂Θ∗

)H
]
=

1

σ2

⎡⎣ diag([A∗,A∗, ...,A,A, ...]) 02MTMR,1

01,2MTMR

NMR

σ2

⎤⎦
(4.7)

In order for the CRLB to exist, A has to be invertible. For xi,ks selected

from a zero mean, unit energy constellation with equiprobable points, and inde-

pendently chosen at each time instant, i, for large block size, N , we can show that∑N
i=1 xi,kx

∗
i,k ≈ N and

∑N
i=1 xi,jx

∗
i,k ≈ 0 for j 	= k. Thus, under these conditions,

A ≈ NIMT
where IMT

is the identity matrix of size MT ×MT .

Since the CRLB is given by
(

∂ρ
∂ΘT

)
F−1

Θ

(
∂ρ

∂ΘT

)H
(see Section 4.7.3 of [90])

where ρ is the function of the various parameters being estimated, if α is the y-yth

entry of the inverse of A, then the CRLB for the pairwise SNR ρxy is given by:

CRLB of ρxy = 2αρxy +
ρ2xy

NMR

(4.8)

DA CRLB for Pairwise SNR with different Noise Variance on each Re-

ceived Antenna

In this case, the parameter vector to be estimated is the (2MT + 1)MR

element vector:

Θ =
[
(vec(H))T (vec(H∗))T σ2

1 σ2
2 ... σ2

MR

]T
(4.9)

Using Eqn. 4.29 and 4.30, it may be shown that the FIM of Eqn. 4.7

becomes the (2MT + 1)MR × (2MT + 1)MR matrix

FΘ =

⎡⎣ diag([ 1
σ2
1
A∗, 1

σ2
2
A∗, ..., 1

σ2
MR−1

A, 1
σ2
MR

A]) 02MTMR,MR

0MR,2MTMR
diag([ N

σ2
1
, N
σ2
2
, ..., N

σ2
MR−1

, N
σ2
MR

])

⎤⎦
(4.10)

Thus the pairwise CRLB is given by:

CRLB of ρxy = 2αρxy +
ρ2xy
N

(4.11)
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If the parameter of interest is ρ =
‖H‖2F
σ2 , the CRLB is obtained in a straight-

forward manner, but the final form is dependent on the individual channel coeffi-

cients. For a (MT ,MR) = (1, 2) system, the parameter vector Θ has 5 elements: 4

for the two channel coefficients and their complex conjugates and 1 for the noise

variance. Then

∂ρ

∂ΘT
=

1

σ2

[
h∗
11 h∗

21 h11 h21 −‖H‖2F
σ2

]
(4.12)

The matrix A = XXH becomes the real scalar,
∑N

i=1 xi,1x
∗
i,1 = α. Then it

may be shown that the CRLB is given by:

(
∂ρ

∂ΘT

)
F−1

Θ

(
∂ρ

∂ΘT

)H

= (4.13a)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h∗
11

h∗
21

h11

h21

−‖H‖2F
σ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/α 0 0 0 0

0 1/α 0 0 0

0 0 1/α 0 0

0 0 0 1/α 0

0 0 0 0 σ2/2N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11/σ
2

h21/σ
2

h∗
11/σ

2

h∗
21/σ

2

−‖H‖2F
σ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

ρ2

2N
+

2ρ

α
(4.13b)

For a (MT ,MR) = (2, 2), A = XXH is a 2 × 2 matrix and if A−1 =[
α β

β∗ α

]
, then the CRLB can be shown to be equal to 2αρ+ ρ2

2N
+4Reβ∗[h∗

11h12+

h21h
∗
22]. As discussed above, for large N, A ≈ NIMT

and thus, under those condi-

tions, the CRLB is given by Eqn. 4.14.

CRLB of DA = 2ρ/N +
ρ2

2N
(4.14)

From the above equation and from Eqn. 4.8, it may be seen that at high

SNRs, the normalized CRLB (= CRLB
ρ2

) approaches 1
NMR

.
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4.4.2 Non Data Aided Model

In the NDA model, the transmitted symbols, xi are unknown. Assuming xi

comes from a constellation of M distinct equally likely symbols, then the pdf of the

observed sample yi is given by Eqn. 4.15. Note that since xi is a MT ×1 vector, if a

QPSK constellation (4 possible symbols) is used with 2 transmit antenna, M = 16.

In general, for a constellation with P discrete points, M = PMT .

p(yi;Θ) =
M∑
l=1

p(yi|xl;Θ)p(xl) (4.15a)

=
1

M

M∑
l=1

1

πMRσ2MR
exp

−(yi −Hxl)
H(yi −Hxl)

σ2
(4.15b)

Thus, assuming the yi are all independent and identically distributed, the

logarithm of the likelihood function is given by

g = ln(p(Y; σ2)) = −N ln(MπMR)−NMR ln(σ2)−
N∑
i=1

[
ln[

M∑
l=1

exp(
φi,l

σ2
)]

]
(4.16)

where

φi,l = (yi −Hxl)
H(yi −Hxl) (4.17)

From Eqn. 4.16, the following partial derivatives may be evaluated:

∂g

∂σ2
=

−NMR

σ2
+

1

σ4

N∑
i=1

∑M
l=1

(
φi,l exp(

−φi,l

σ2 )
)

∑M
l=1 exp(

−φi,l

σ2 )
(4.18a)

∂g

∂hxy

=
1

σ2

N∑
i=1

∑M
l=1

(
xl,y(yi,x − (Hxl)x)

∗ exp(−φi,l

σ2 )
)

∑M
l=1 exp(

−φi,l

σ2 )
(4.18b)

∂g

∂h∗
xy

=
1

σ2

N∑
i=1

∑M
l=1

(
x∗
l,y(yi,x − (Hxl)x) exp(

−φi,l

σ2 )
)

∑M
l=1 exp(

−φi,l

σ2 )
(4.18c)

In order to determine the CRLB, we need to evaluate the FIM given by

E
[(

∂g
∂Θ∗

) (
∂g
∂Θ∗

)H]
where E() is the expectation operator that averages over the

noise vector and transmitted symbols. Unfortunately from Eqn. 4.18, there is no
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easy way to evaluate analytically the terms of the FIM, however, this expectation

may be written in the following form assuming that the transmitted symbols are

all equally likely:

E[f(xi,ni, σ
2)] =

1

M

∑
xl∈C

∫ ∞

−∞
f(xl,ni, σ

2)p(ni)dni (4.19)

where C is the set of all possible transmitted symbol vectors of cardinality

M. p(ni) is the probability density function of the MR×1 noise vector (assumed to

be complex Gaussian). Since the noise vector is assumed to be complex Gaussian,

this integral can be decomposed into 2MR multiple integrals each one integrating

over the real or imaginary component of the noise vectors of each of theMR received

antennas.

Integrals of the form
∫∞
−∞ f(x) exp(−x2)dx are well known to be numerically

evaluated using the Gauss-Hermite quadrature. (See Section 25.4.46 of [1]). They

are approximated as
∑N

i=1 wif(xi) where N is the order of the approximation and

xi are i-th root of the Hermite polynomial of n-th order and wi are the appropriate

weights. Using this approximation, the above integral in Eqn. 4.19 has been

approximated as 2MR finite summations. These integrals may also be evaluated

using Monte Carlo methods. Both methods have been used and simulated and the

results are shown in Sec. 4.8.

High SNR Approximation

Although there is no closed form solution for the SNR estimation for MIMO

NDA, it may be seen that at high SNRs, the NDA solution becomes equal to the

DA solution derived above in Sec. 4.4.1. For high SNRs, p(yi;Θ|xk) 	= 0 implies

that p(yi;Θ|xj) ≈ 0 for k 	= j since, for high SNRs, the received samples can be

modeled to lie in non-overlapping noise spheres around each of the transmitted

symbols. This approximation, also used in [82] for a similar approximation, albeit

in a different context, is the same as assuming that the data symbols are known

exactly – which is the DA system model.
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4.4.3 Comparison to SISO and SIMO Results

Eqn. 4.8 can be compared to Eqn. 27 of [16] (CRLBDA(ρ) = ρ2+2Naρi
NaN

)

where the authors evaluate the CRLB for DA SNR estimation for SIMO systems.

In [16], the authors use Na to represent the number of receive antennas (which

we call MR). The authors also assume
∑N

i=1 |xi|2 = N , thus implicitly assuming

an unit norm constellation with large N where all symbols are equally likely and

symbols are chosen independently. It may be seen that for SIMO systems A, the

MT ×MT matrix is a 1×1 scalar
∑N

i=1 xi,1x
∗
i,1. Thus, the SIMO CRLB for DA SNR

estimation in [16] is a special case of the MIMO CRLB for DA SNR estimation

as evaluated in Eqn. 4.8. Comparisons can also be made to the SISO DA SNR

CRLB evaluated in Section III A of [48] and it can easily be seen that the SISO

case is also a special case of the MIMO results derived above.

For the NDA case, since there is no closed form solution, no direct compar-

ison can be made. However, by comparing the results in Table III of [28] to the

results in the simulation section it may be seen that the results are identical. In

Fig. 4.6, exemplary results from [28] are plotted alongside the MIMO results to

show their similarity.

4.4.4 CRLB for SNR Estimation with Alamouti Coding

Probably the most common use of OSTBC is the use of the famous Alamouti

code in a (MT ,MR) = (2, 2) system [89]. In this section we derive the CRLB for

SNR estimation for such a system. The received samples in two consecutive time-

slots, j and j + 1 may be combined together and put in the following form

⎡⎢⎢⎢⎢⎢⎣
y1[j]

y2[j]

y1[j + 1]

y2[j + 1]

⎤⎥⎥⎥⎥⎥⎦ =

[
H 02

02 H

]⎡⎢⎢⎢⎢⎢⎣
x1[j]

x2[j]

−x∗
2[j]

x∗
1[j]

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
n1[j]

n2[j]

n1[j + 1]

n2[j + 1]

⎤⎥⎥⎥⎥⎥⎦ (4.20a)

ỹi = H̃x̃i + ñi (4.20b)

The received symbols from each group of two consecutive time slots, j and
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j + 1, are collected into ỹi, where i represents an index for each group of 2 time

slots. Although similar in form to Eqn. 4.1, the number of parameters here is

fewer. The unknown parameter vector has 9 unknowns:

Θ =
[
h11 h12 h21 h22 h∗

11 h∗
12 h∗

21 h∗
22 σ2

]T
(4.21)

Using Eqn. 4.20 and Eqn. 4.5 with MR = 4 since yi in Eqn. 4.20 is a 4× 1

vector (even though the true number of received antenna is 2) we can write the

following partial derivatives of the log likelihood function, g:

∂g

∂σ2
=

−4N

σ2
+

1

σ4

N∑
i=1

φi (4.22a)

∂g

∂h11

=
1

σ2

N∑
i=1

[
n∗
i,1xi,1 − n∗

i,3x
∗
i,2

] ∂g

∂h12

=
1

σ2

N∑
i=1

[
n∗
i,1x

∗
i,2 + n∗

i,3x
∗
i,1

]
(4.22b)

∂g

∂h21

=
1

σ2

N∑
i=1

[
n∗
i,2xi,1 − n∗

i,4x
∗
i,2

] ∂g

∂h22

=
1

σ2

N∑
i=1

[
n∗
i,2xi,2 + n∗

i,4x
∗
i,1

]
(4.22c)

Assuming that the noise is zero mean and independent from sample to

sample in both space and time, the following may be shown

E

[(
∂g

∂σ2

)(
∂g

∂σ2

)]
=

NMR

σ4
(4.23a)

E

[(
∂g

∂σ2

)(
∂g

∂hxy

)]
= E

[(
∂g

∂σ2

)(
∂g

∂h∗
xy

)]
= E

[(
∂g

∂hxy

)(
∂g

∂hpq

)]
= 0

(4.23b)

E

[(
∂g

∂hxy

)(
∂g

∂h∗
pq

)]
=

⎧⎨⎩
1
σ2

∑N
i=1 [|xi,1|2 + |xi,2|2] if (x, y) = (p, q)

0 if (x, y) 	= (p, q).
(4.23c)

For the DA case, where the transmitted symbols are assumed to be known,

it can be seen from Eqn. 4.23 that the FIM is a diagonal 9 × 9 matrix with

zeros for all the terms except the main diagonal where the first eight terms are

α = 1
σ2

∑N
i=1 (|xi1|2 + |xi2|2) and the last term is 4N

σ4 since MR = 4.

If ρ =
‖H‖2F
σ2 , then it may be shown that:
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CRLB of ρ =
‖H‖2F
σ2

=

(
∂ρ

∂ΘT

)
F−1

Θ

(
∂ρ

∂ΘT

)H

=
ρ

α
+

ρ2

4N
(4.24)

4.5 CRLB for Noise Variance Estimation

In most of the following sections, it is assumed that the channel matrix, H,

is constant and known perfectly at the receiver. In Section 4.5.6, we deal with the

case where the channel is random (but still known at the receiver).

4.5.1 DA Model with One Parameter

In the noise model with one parameter, σ2, the CRLB for the estimation

of σ2 is shown in Eqn. 4.28. This is determined in a straightforward manner by

taking the derivative of the log likelhood function as shown below

ln(p(Y; σ2)) =
N∑
i=1

ln(p(yi; σ
2)) (4.25a)

= −N ln(πMR)−N ln σ2MR − 1

σ2

N∑
i=1

(yi −Hxi)
H(yi −Hxi)︸ ︷︷ ︸
φ

(4.25b)

= −N ln(πMR)−N ln σ2MR − 1

σ2
φ (4.25c)

∂2 ln p(Y; σ2)

∂(σ2)2
=

NMR

σ4
− 2φ

σ6
(4.26)

Using

CRLB =
1

−E[∂
2 ln p(Y;σ2)
∂(σ2)2

]
(4.27)

and the fact that E[φ] = σ2 we get

CRLBDA[σ
2] =

σ4

NMR

(4.28)
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4.5.2 DA Model with MR Parameters

When using the noise model where the noise variance on each receive an-

tenna is different, there areMR parameters to be estimated: Θ = [σ2
1, σ

2
2, ..., σ

2
MR

]T .

In this case, it may be shown that the log-likelihood function is given by

ln(p(yi; σ
2)) = − ln(πMR)−

MR∑
i=1

ln σ2
i − (yi −Hxi)

HRnn
−1(yi −Hxi) (4.29)

where Rnn is given by N (0, diag(σ̃2)) as defined in Section 4.3. The CRLB is

given by the inverse of the Fisher Information Matrix (FIM), whose j-kth entry is

given by −E[∂
2 ln p(yi;σ

2)

∂σ2
j ∂σ

2
k

]. This may be evaluated using the following:

− E[
∂2 ln p(yi; σ

2)

∂(σ2
k)

2
] = −E[

1

σ4
k

− 2(yi,k − (Hxi)k)
H(yi,k − (Hxi)k)

σ6
k

] =
1

σ4
k

(4.30)

In this notation, yi,k is the scalar quantity that is the k-th entry of the vector

yi and (Hxi)k is similarly the k-th entry of Hxi. Also, noting that ∂2 ln p(Y;σ2)

∂σ2
k∂σ

2
j

= 0

for j 	= k, we get the FIM as shown in Eqn. 4.31.

IDA = diag([N/σ4
1, N/σ4

2, ...N/σ4
MR

]T ) (4.31)

and thus the CRLB for the variance of the estimate of the k-th parameter,

given by kk-th entry of the inverse of the Fisher Information Matrix is given by

CRLBDAMRParms
[σ2

k] =
σ4
k

N
(4.32)

4.5.3 NDA Model with One Parameter

In the following, we derive the CRLB for the non-data aided model where

one parameter, σ2, is to be estimated. Defining the scalar δi,l = 2R(yiHxl) −
(Hxl)

H(Hxl) (where R(x) is the real part of x) and taking the derivative of the

log-likelihood function, we get

∂ ln p(yi; σ
2)

∂(σ2)
= −MR

σ2
− yH

i yi

σ4
−
∑M

l=1
δi,l
σ4 exp(

δi,l
σ2 )∑M

l=1 exp(
δi,l
σ2 )

= f(xi,ni, σ
2) (4.33)
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The CRLB is given by the following equation,

CRLBNDA =
1

E[(∂ ln p(yi;σ2)
∂(σ2)

)2]
(4.34)

where the expectation in Eqn. 4.34 may also be evaluated using the Gauss

Hermite Quadrature or by Monte Carlo techniques in computer simulation.

4.5.4 NDA Model with MR Parameters

Similar to the data-aided case, in this model we have the MR parameter

vector Θ. To obtain the CRLB, we have to determine the Fisher information

matrix, whose j-k-th entry is given by:

I[Θ]j,k = −E[
∂2 ln p(yi; σ

2)

∂σ2
j∂σ

2
k

] = E[
∂ ln p(yi; σ

2)

∂σ2
j

∂ ln p(yi; σ
2)

∂σ2
k

] (4.35)

It may be shown that the log-likelihood function of the i-th received sample

is given by

ln(p(yi; σ
2)) = − ln(MπMR)−

MR∑
k=1

ln(σ2
k) + ln[

M∑
l=1

exp(

MR∑
k=1

δi,l,k
σ2
k

)] (4.36)

where

δi,l,k = (yi,k − (Hxl)k)
∗(yi,k − (Hxl)k) (4.37)

In this notation, yi,k is the scalar quantity that is the k-th entry of the

vector yi and (Hxl)k is similarly the k-th entry of Hxl.

The derivative of Eqn. 4.36 with respect to σ2
k is given by

∂ ln p(yi; σ
2)

∂σ2
k

=
−1

σ2
k

+

∑M
l=1

[
exp(

∑MR

k=1
δi,l,k
σ2
k
)(− δi,l,k

σ4
k
)
]

∑M
l=1 exp(

∑MR

k=1
δi,l,k
σ2
k
)

(4.38)

The expectations may be carried out either using Monte Carlo simulations

or using Gauss-Hermite approximations as discussed in the preceding section.
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4.5.5 Mixed DA and NDA Model

In most practical systems, in every block of N symbols, there are Np known

pilot or preamble symbols and Nd unknown data symbols such that N = Np+Nd.

For this model, the log-likelihood function may be expressed as:

ln(p(Y; σ2)) =

Np∑
i=1

ln(p(yi; σ
2)) +

Nd∑
i=1

ln(p(yi; σ
2)) (4.39)

Since derivatives and expectations are linear operations, we can obtain fol-

lowing from which Eqn. 4.41 is derived.

−E

[
∂2 ln(p(Y; σ2))

∂(σ2)2

]
= NpE[−∂2 ln(p(yi; σ

2))

∂(σ2)2
]+NdE[−∂2 ln(p(yi; σ

2))

∂(σ2)2
] (4.40)

1

CRLB[N ]DA NDA

=
1

CRLB[Np]DA

+
1

CRLB[Nd]NDA

(4.41)

4.5.6 With Random Channel

In this section we address the case where the channel matrix is independent

from block to block (but known at the receiver). The determination of the CRLB

would require the determination of

p(Y; σ2) =

∫
p(Y|H; σ2)p(H)dH (4.42)

Since this is difficult to evaluate in closed form, we resort to the modified

Cramér-Rao lower bound (MCRLB). The MCRLB was introduced [27], [49] as a

lower bound to the variance of an unbiased estimator provided the usual regularity

conditions are satisfied. In general the MCRLB is lower than the CRLB and thus

is a looser bound, but the authors show that it is tight enough to be useful in most

situations.

As shown in Eqn. 5 of [27], the MCRLB is given by:

MCRLB(σ2) =

[
EH

(
EY|H

[
∂ ln p(Y; σ2)

∂σ2

]2)]−1

(4.43)
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For the DA model, since Eqn. 4.28 and Eqn. 4.32 do not depend on the

channel matrix, H, the MCRLB for the case of the random channel is identical

to the CRLB when the channel is constant. For the NDA model, the MCRLB is

determined by averaging the CRLB over many channel instantiations.

4.6 Extension to Frequency Selective Channels

Although the above derivations have all been carried out using flat fading

channels, the extension to frequency selective channels in the orthogonal frequency

division multiplexing (OFDM) framework is straight forward. It is well known that

after the removal of the cyclic prefix (and assuming that the delay spread is shorter

than the length of the cyclic prefix) each subcarrier faces flat fading and thus the

received samples at time i, from each subcarrier k, y
(k)
i may be stacked in the

following manner:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
(1)
i

y
(2)
i

...

...

y
(Ns)
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(1) 0 ... ... 0

0 H(2) ... ... 0

0 0 H(3) ... 0

... ... ... ... ...

0 0 0 0 H(Ns)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(1)
i

x
(2)
i

...

...

x
(Ns)
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
(1)
i

n
(2)
i

...

...

n
(3)
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.44)

In the above equation, Ns is the total number of subcarriers, x
(k)
i is the

MT × 1 vector representing the transmit symbols on subcarrier k at time i, n
(k)
i

and y
(k)
i represent the MR × 1 vectors representing respectively, the AWGN noise

samples and the received samples on subcarrier k at time i. H(k) represents the

MR × MT channel matrix experienced by the k-th subcarrier. This channel is

assumed to be constant for a particular block of data. Each subcarrier is assumed

to undergo flat fading. The above equation may be seen to be in the similar

form as Eqn. 4.1 and thus all the tools developed thus far may be used for the

frequency selective channel case. The problem, however, could be significantly

more computationally intensive due to the presence of a large number of potential

subcarriers. Even in a non OFDM environment, a similar matrix equation may
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be written. This has been shown in the system model of [95] and is not repeated

here.

4.7 Estimators for SNR

In this section we derive maximum likelihood (ML) estimators for MIMO

SNR. Since it is known from the invariance property of ML estimators that the

ML estimate of the function of a set of parameters is the same function of the ML

estimates of each of the parameters (Chapter 7, [59]), we shall evaluate the ML

estimates of the noise variance and the channel coefficients and use those to find

the ML estimates of the SNR.

We shall summarize some of the results already developed by Wautelet

et al. in [95] where the authors develop ML estimators for both the channel

coefficients and noise variance for both the DA and NDA models. We use these

estimators to estimate the MIMO SNR and show that they achieve the CRLB

calculated in preceding sections. We shall also present new results for closed form

approximations of the ML estimator for the noise variance with the NDA model.

4.7.1 DA SNR Estimation

The ML estimator for the MIMO SNR is given by
‖ ̂H‖2F
̂σ2

where σ̂2 and ‖Ĥ‖2F
are respectively the ML estimate of the noise variance and the ML estimate of the

Frobenius norm of the channel.

ML Estimator for Noise Variance with DA model

The maximum likelihood (ML) estimator for the DA model with one pa-

rameter is determined easily by taking the derivative of the log-likelihood function

and setting it equal to zero and is given by Eqn. 4.45.

σ̂2
DA ML =

1

NMR

N∑
i=1

(yi −Hxi)
H(yi −Hxi) (4.45)
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When jointly estimating the channel, H, and the noise variance, σ2, the H

in the above equation is replaced with the ML estimates of the channel, Ĥ. Luckily

(see below), the ML estimate of H does not depend on the variance and thus, the

ML estimator of the SNR may be easily determined. It was shown by Wautelet

et al. [95] that this estimator of the noise variance is biased and that an unbiased

estimator is given by σ̂2
DA ML unbiased =

N
N−MT

σ̂2
DA ML.

ML Estimator for Channel Coefficients with DA Model

The ML estimate in this case is identical to the least squared error (LS)

solution, since the ML estimate maximizes −∑N
i=1 ‖yi −Hxi‖2 which is the same

as minimizing the least squares error. This has also been shown before in [95].

An alternate derivation including simplified expression under certain con-

ditions are presented in Appendix 4.A.

4.7.2 NDA SNR Estimation

ML Estimator for Noise Variance with NDA model

Unfortunately in the NDA case, there is no nice closed form solution for the

ML estimator like in the DA case. Using Eqn. 4.33, the log likelihood function is

given by

∂ ln p(Y; σ2)

∂(σ2)
=

NMR

σ2
−
∑N

i=1 y
H
i yi

σ4
− 1

σ4

N∑
i=1

∑M
l=1 δi,l exp(

δi,l
σ2 )∑M

l=1 exp(
δi,l
σ2 )

(4.46)

where the scalar δi,l = 2R(yiHxl) − (Hxl)
HHxl and R(x) is the real part

of x. By setting the derivative equal to 0, we recognize that the ML estimate is

the solution to the following equation which does not have a closed form solution

σ2NMR =
N∑
i=1

yH
i yi −

N∑
i=1

∑M
l=1 δi,l exp(

δi,l
σ2 )∑M

l=1 exp(
δi,l
σ2 )

(4.47)

However, we can make approximations in the low SNR and high SNR re-

gions that do yield closed form solutions. In the low SNR regime, σ2 � δi,l and
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thus exp(
δi,l
σ2 ) 
 1. In this case, the ML estimate of the noise variance may be

approximated by:

σ2
ML NDA lowSNR 
 1

NMR

N∑
i=1

yH
i yi − 1

NMMR

N∑
i=1

M∑
l=1

δi,l (4.48)

Other approximations may also be made using exp(
δi,l
σ2 ) 
 1 +

δi,l
σ2 or using

exp(
δi,l
σ2 ) 
 1+

δi,l
σ2 +

δ2i,l
2(σ2)2

which lead to closed form expressions for the estimate of

σ2 as the solutions of quadratic or cubic equations. These formulations are shown

below.

Derivation of Higher Order Approximations of NDA ML Estimator for

Noise Variance

Using the first three terms of the Taylor series expansion, we approximate

exp(
δi,l
σ2 ) 
 1 +

δi,l
σ2 +

δ2i,l
2(σ2)2

. For low SNRs, σ2 is large, thus allowing this approxi-

mation.

∑M
l=1 δi,l exp(

δi,l
σ2 )∑M

l=1 exp(
δi,l
σ2 )



∑M

l=1 δi,l +
1
σ2

∑M
l=1 δ

2
i,l +

1
2(σ2)2

∑M
l=1 δ

3
i,l

M + 1
σ2

∑M
l=1 δi,l

(4.49a)


 1

M

⎡⎢⎢⎢⎢⎣
M∑
l=1

δi,l︸ ︷︷ ︸
αi

+
1

σ2

M∑
l=1

δ2i,l︸ ︷︷ ︸
βi

+
1

2(σ2)2

M∑
l=1

δ3i,l︸ ︷︷ ︸
γi

⎤⎥⎥⎥⎥⎦ (4.49b)

=
1

M

[
αi +

1

σ2
βi +

1

2(σ2)2
γi

]
(4.49c)

In Eqn. 4.49, the second approximation is done using the fact that for

low SNR, M � 1
σ2

∑M
l=1 δi,l and αi, βi and γi are used for notational convenience.

Thus, Eqn. 4.47, may be put in the following form:

(σ2)3NMR − (σ2)2
N∑
i=1

[
yH
i yi − αi

M

]
+ σ2

N∑
i=1

βi

M
+

N∑
i=1

γi
2M

= 0 (4.50)

This is a cubic equation in σ2 and may be solved in closed form. An easier

approximation is to ignore the 2nd order term in the Taylor series expansion of
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the exponential, thus setting γi = 0 and converting Eqn. 4.50 into a quadratic

equation that has a more compact closed form solution.

At the other end of the spectrum, in the high SNR regime, σ2 � δi,l and

the M values of exp(
δi,l
σ2 ) (for any particular i) are dominated by the maximum

term. Ignoring all but the maximum term, the ML estimate of the noise variance

may be approximated by

σ2
ML NDA highSNR 
 1

NMR

N∑
i=1

yH
i yi − 1

NMR

N∑
i=1

max(δi,l) (4.51)

Although no closed form solution exists for the general case, the EM algo-

rithm is known (for regular exponential family distributions) to iteratively attain

the ML estimate [35] and is thus proposed here for determining the ML estimate

(See [95] fore more details). In this case, the estimate of the noise variance at the

i-th iteration is

σ̂2
i =

1

NMR

M∑
l=1

[
p(xl|σ̂2

i−1,Y)
N∑
i=1

(yi −Hxl)
H(yi −Hxl)

]
(4.52)

Note that formally this estimator is very similar to the ML estimator, except

that here theM estimates (one for each of theM constellation points) are weighted

by p(xl|σ̂2
i−1,Y) which is the posterior probability of each of the constellation points

given the observations and the current estimate of the noise variance.

Initialization is always a key issue with the EM algorithm. If there are some

known pilots, then they should be used to form a ML DA estimate and that is

used as the starting point of the EM algorithm. If, there are no known pilots, then

the EM algorithm is initialized to the variance corresponding to a low SNR.

ML Estimator for Channel Coefficients with NDA model

The EM algorithm for estimating the channel coefficients have been devel-

oped in [95] and are not repeated here. This algorithm is used in our simulations

in Sec. 4.8.
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4.8 Simulation Results

The following simulation results will show that the estimators described

above perform very close to the CRLB. The metric used in all cases is the normal-

ized mean squared error (NMSE = MSE
ρ2

= E[(ρ−ρ̂)2]
ρ2

), where ρ is the true SNR and

ρ̂ is the estimate of the SNR. The simulations are carried out for BPSK, QPSK,

8PSK and 16QAM modulations but could be easily generalized for any M-ary dig-

ital modulation. Each point on the curves is generated by running at least 10,000

independent bursts each of size N symbols (N will be specified from experiment to

experiment). The data symbols are assumed to be chosen from constellation points

that are equiprobable and independent from the channel and noise samples. The

Gaussian noise samples are generated to be spatially and temporally independent.

Some of the experiments below were conducted with the same value for the channel

from burst to burst. For a (MT ,MR) = (2, 2) system, the channel was a constant

channel set to

H =

[
−0.3059− 0.8107i 0.0886 + 0.8409i

−1.1777 + 0.8421i 0.2034− 0.0266i

]
. This channel is a particular in-

stantiation of the random channel that is generated by Matlab when the seed for

the randn function is set to 0. For other system configurations, the channel used

was that generated by Matlab, using the command H = 1√
2
(randn(Mr,Mt)+

√−1× randn(Mr,Mt)) after setting the seed for the randn function to 0.

4.8.1 Estimating MIMO SNR

CRLB and NMSE for NDA and DA SNR Estimation

Fig. 4.1 compares the normalized CRLB (= CRLB
ρ2

where ρ =
‖H‖2F
σ2 is the

true SNR) to the NMSE for various constellations for NDAMIMO SNR estimation.

It also compares the DA normalized CRLB to the DAML estimator and shows that

both the NDA and DA estimators perform very close to their respective CRLBs.

Note that the DA result is independent of the constellation (Sec. 4.4.1) for large

values of N, the number of symbols in the block. In Fig. 4.1, the number of

symbols in the block, N, was chosen to be 1000. The system under consideration
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was a (MT ,MR) = (2, 2) system. Since the CRLB is proportional to 1/N , the

CRLB for other values of N may be easily determined from this figure. For the

NDA CRLBs, Gauss Hermite Quadratures of order 6 was used to evaluate the

FIM. It may be seen from Fig. 4.7 that approximations of this order are very

close to the values obtained from Monte Carlo simulations. The NDA estimator

used is the iterative EM algorithm based estimator. The EM algorithm has been

initialized by assuming that the 1000 symbol unknown data block is preceded by

a 20 symbol preamble. These known preamble symbols are used in a DA manner

to initialize the channel in the EM algorithm. The noise variance was initialized

to 10 corresponding to a low SNR. The stopping criterion used was ρ̂i−ρ̂i−1

ρ̂i−1
≤ 0.1%

where ρ̂i is the estimate of the SNR from the i-th iteration.
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Figure 4.1: NCRLB and NMSE for MIMO SNR: NDA and DA.

(MT ,MR) = (2, 2). N = 100.

Fig. 4.2 shows the cumulative distribution function (CDF) of convergence

times for the various blocks simulated for a (MT ,MR) = (2, 2) system with QPSK

modulation at a true SNR of 0dB. At such a low SNR, it can be seen that the EM
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algorithm takes a large number of iterations to converge. In this simulation, the

convergence criterion is ρ̂i−ρ̂i−1

ρ̂i−1
≤ 0.05%. It may be seen that better initializations

can significantly speed up the EM convergence speeds. At one extreme, the channel

matrix H, has been initialized with a random matrix (normalized to have the same

power as the channel matrix), while at the other extreme, the channel matrix has

been initialized to the true value. It can be seen that the median convergence speed

drops by more than 100 iterations from more than 340 to about 240. If some of

the transmitted symbols are known, they may be used in a data aided manner for

initialization and that helps speed the convergence up as well.
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Figure 4.2: Better initializations speed up EM convergence. Modulation:

QPSK. SNR =
‖H‖2F
σ2 = 0dB. (MT ,MR) = (2, 2). N = 1000. Stopping criterion =

ρ̂i−ρ̂i−1

ρ̂i−1
≤ 0.05%

Impact of Varying Number of Antennas

Figs. 4.3-4.5 shows the impact to the normalized CRLB when the number

of antennas are varied. It can be seen (Fig. 4.3) that increasing the number of
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received antennas decreases the normalized CRLB and, as shown in Sec.4.7.1, at

high SNRs, the normalized CRLB can be seen to tend to 1/(NMR). Fig. 4.4 and

4.5 show the CRLB for BPSK and QPSK modulation schemes respectively for 2,

3, 4 and 5 transmit antennas while keeping the number of receive antennas to be

constant at 2. Once again, it can be seen that at high SNRs the the normalized

CRLB can be seen to tend to 1/(NMR). In these simulations, the total transmit

power of the signal waveform is constant regardless of the number of transmit

antennas.
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Figure 4.3: Increasing MR reduces NCRLB. Modulation: BPSK. N = 1000.

NDA SNR CRLB.

In Fig. 4.6, the CRLB for SNR estimation is shown for square systems (i.e.,

MT = MR) with 1, 2 or 3 antennas on either end. Fig. 4.6 also shows previously

published SISO results from [28] and it can be seen that the SISO results are the

same as those obtained in our current work here for MT = MR = 1. In order to

compare with the previously published results, the number of symbols, N , was set

to 100.
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4.8.2 Estimating MIMO Noise Variance

In this section we present the simulation results for estimating only the

noise variance (assuming the channel is known perfectly). In these experiments, a

block size of 100 symbols was simulated.

NDA Estimation

CRLB and EM based NDA Estimators Fig. 4.8 shows that the EM based

estimators perform very close to the CRLB for the 4 modulations simulated (BPSK,

QPSK, 8PSK and 16QAM). 10 iterations of the EM algorithm were seen to be

sufficient. The initial value of the variance was initialized to 5. It is seen from Fig.

4.8 that the EM algorithm achieves the CRLB over a wide range of Es/No.

Approximations to NDA ML Estimation Fig. 4.9 shows the performance of

the closed form approximations to the ML solution for the NDA model. As can be
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Figure 4.5: NDA CRLB with varying MT . Modulation: QPSK. N = 1000.

seen, the high SNR approximation achieves the CRLB at SNRs greater than 5dB.

3 different approximations to the ML solution are shown for the low SNR case.

Each one is progressively better (and more complex to implement). In Fig. 4.9,

the 0-th order approximation refers to the one given by Eqn. 4.48, the 1-st order

approximation is given by setting γi = 0 in Eqn. 4.50 and thus solving a closed form

quadratic equation and the 2nd-order approximation is given by solving the cubic

equation given by Eqn. 4.50. While the cubic equation is guaranteed to provide

at least one real root (since the coefficients are real), the estimator based on the

quadratic equation has the unfortunate characteristic that as the SNR increases,

occasionally the estimator fails completely and provides complex answers. This

indicates that the approximation made is no longer valid at that particular SNR.

Interestingly it can be seen that the high SNR approximation comes close to the

CRLB for very low SNRs as well. This is due to the fact that at very low SNRs, the

first term in Eqn. 4.51 and Eqn. 4.48, 1
NMR

∑N
i=1 y

H
i yi, dominates the equation.
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Figure 4.6: Previously published SISO results are a special case of MIMO

results, N = 100

DA Estimation

The DA MCRLB was plotted along with the variance of the ML estimator.

BPSK modulation was used (though in the DA case, the results are independent of

which modulation scheme is used). For comparison, the NDA CRLB is also plotted.

It may be seen from Fig. 4.10 that the ML estimator achieves the MCRLB over

the entire range of Es/No plotted.

The EM algorithm is not guaranteed to converge to the global maxima of

the log likelihood function – it could converge to a local maxima. Luckily, the

log likelihood function in our case is well behaved and has one unique maxima as

shown in Fig. 4.11. This ensures that the EM algorithm converges to the global

maxima.
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Modulation: BPSK. NDA CRLB. N = 1000. (MT ,MR) = (2, 2).

4.8.3 DA + NDA Mixed Estimation

The advantage to using all the available symbols in a block and not just the

Np known pilot/training symbols may be seen in Fig. 4.12 which shows how much

improvement may be attained by using all the N symbols in the block, rather than

just the known pilot/training symbols. The advantage is quite significant in those

communication systems that operate with less than 10% overhead but there are

reasonable gains to be made even when 20%− 30% of the data consists of known

pilot symbols. Fig. 4.12 was calculated for a 100 symbol block in a 2 × 2 system

with BPSK modulation scheme at an Es/N0 = 0dB.

4.9 Conclusion

In this chapter, we have presented the CRLB for SNR estimation and noise

variance estimation for MIMO systems in a data aided (DA), a non-data aided
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Figure 4.8: Noise variance estimation: CRLB and EM based estimators.

(MT ,MR) = (2, 2).

(NDA) and a mixed DA-NDA system. We have also presented closed form expres-

sions for the ML estimator for the DA case, closed form approximations to the ML

estimator for the NDA case as well as iterative EM based estimators for the NDA

case. Although most of the results have been presented for a frequency flat block

fading model, we have discussed extensions to the frequency selective case using

the OFDM framework. Since SNR and noise variance estimation are needed by

most receivers, we believe this chapter presents results that computes the limits of

this important problem and demonstrates practical estimators that achieve these

limits.

The contents of this chapter have been adapted from A. Das and B. D. Rao,

“SNR and Noise Variance Estimation for MIMO Systems,” IEEE Transactions on

Signal Processing, August 2012 and from A. Das, “NDA SNR estimation: CRLBs

and EM based estimators,” IEEE Region 10 Conference, TENCON 2008.
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4.A Appendix: Alternate Derivation of ML DA

Channel Estimation

The derivative of the log-likelihood function, g, with respect to the channel

gain between the x-th receiver and the y-th transmitter, hxy is given by

∂g

∂hxy

=
1

σ2

N∑
i=1

[(yi,x − (Hxi)x)
∗xi,y] (4.53)

Setting this equal to zero, the MTMR equations for the ML estimates of hxy are:

N∑
i=1

y∗i,xxi,y =

MT∑
j=1

[
h∗
xj

(
N∑
i=1

x∗
i,jxi,y

)]
(4.54)
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Figure 4.10: DA noise variance estimation: ML estimators achieve MCRLB for

DA model with random channel. Modulation: BPSK. N = 100.

which in matrix form is given by Eqn. 4.55, where A is given by 4.7.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑N
i=1 y

∗
i,1xi,1∑N

i=1 y
∗
i,1xi,2

...∑N
i=1 y

∗
i,1xi,MT∑N

i=1 y
∗
i,2xi,1∑N

i=1 y
∗
i,2xi,2

...∑N
i=1 y

∗
i,MR

xi,MT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
A∗ 0MT

... ... ... 0MT

0MT
A∗ ... ... ... 0MT

... ... ... ... ...

0MT
0MT

... ... 0MT
A∗

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h∗
11

h∗
12

...

h∗
1MT

h∗
21

h∗
22

...

h∗
MRMT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.55)

Writing the above equation as G = BH∗ for notational convenience, if A is non-

singular, the ML estimates of the channel coefficients are given by H = (B−1G)
∗
.

As discussed in Section 4.4.1, under certain assumptions, A ≈ NIMT
and in that

case, the ML estimate of hxy is given by ĥxy =
1
N

∑N
i=1 yi,xx

∗
i,y
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Chapter 5

Rate Adaptive Non-Orthogonal

MT-MFSK

5.1 Introduction

Thus far, in this dissertation, in Chapters 2 and Chapters 3 we have dis-

cussed system improvements for coherent systems with no phase uncertainty. In

Chapter 4 we analyzed NDA SNR estimation for complex valued channels with an

implicit phase uncertainty and thus started investigating non-coherent systems.

Although much of modern wireless communication takes place with coherent re-

ceivers, in some cases, non-coherent receivers may be more appropriate. Although

in Chapter 4, we try to estimate the channel, some non-coherent receivers don’t

estimate the channel since the operating conditions may make it futile. In some

systems even if the channel gain can be estimated accurately, it may not be pos-

sible to maintain phase coherence. This is often the case for systems with very

high dynamics where channel estimation is futile as shown in [96], [73]. In these

two works, the authors propose a non-coherent system for communications over

channels associated with high speed trains. Power limited systems with low duty

cycle is another example where non-coherent systems may be more appropriate.

In this chapter, we discuss techniques for improving non-coherent communication

which need to be able to operate without channel estimation.
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M-ary frequency shift keying (MFSK) has been the de facto standard for

non-coherent communications for about 50 years. One of the first systems to

use a 32-ary orthogonal tone MFSK was the Piccolo system, [7, 79], developed

for diplomatic communication by the British Foreign & Commonwealth Office in

1962. A key advantage of MFSK is the ability to carry out non-coherent reception

as shown in [4, 74, 85] (and references therein), thus obviating the need for any

overhead for channel estimation.

An MFSK system has M distinct symbols. In traditional MFSK systems,

each “symbol” consists of a single frequency tone orthogonal to all the other tones

representing the other symbols and thus the system has a total of N orthogonal

tones where N = M . Thus each symbol can transmit log2(M) channel bits. The

Piccolo system [7], had 32 orthogonal tones and so each symbol could send 5 bits of

information. A second key advantage of single tone MFSK is its constant envelope

transmit signal. This eliminates the need for linear amplifiers in the transmit chain

and generally results in cheaper systems. This may be contrasted to the high peak

to average power ratio (PAPR) of multi-tone systems such as orthogonal frequency

division multiplexing (OFDM) [37].

In spite of these advantages, the principal disadvantage of single tone or-

thogonal MFSK is low spectral efficiency. In a non-coherent orthogonal MFSK

system, the tones need to be separated in frequency by the symbol rate, Rs, and

thus the total bandwidth W = NRs (see [85], Chapter 5). Hence, the spectral

efficiency, n, which is the ratio of the bit rate, Rb, to the total bandwidth, W , is

given by Eqn. 5.1.

n =
Rb

W
=

log2(M)Rs

W
=

log2(M)

N
bits/s/Hz (5.1)

For integer N , and for M = N (i.e., single tone MFSK), this equation has a

maximum at N = 3 with n = 0.528bits/s/Hz. This is the maximum spectral

efficiency for single tone MFSK. For modern communication schemes, a higher

spectral efficiency is desirable.

Most practical systems work under the constraint of a fixed bandwidth.

Many systems also need to work with the constraint of a fixed symbol rate. This is



117

User N 

SNR NUser 1 

SNR 1

User 2 

SNR 2

Pkt N, 

User 2, 

ModCP 2

Pkt N+1, 

User 1, 

ModCP 1

Pkt N+2, 

User 4, 

ModCP 4

Pkt N+3, 

User 3, 

ModCP 3

User 3 

SNR 3

Transmit 

Antenna

Receivers users have different SNRs 

Coding and modulation adapted based on each 

user’s SNR

All users receive FL at same symbol rate

Figure 5.1: Adaptive coding and modulation (ACM) on shared forward link

with constant symbol rate

typically the case, as shown in Fig. 5.1, where many users share the same channel

with the same symbol rate, but the modulation varies based on the link quality

of the different users [43], [30]. For fixed bandwidth and symbol rate, it is not

possible to increase the bits per symbol in a single tone orthogonal MFSK system

as the number of orthogonal tones (the symbols), are fixed. This is in contrast to

M-ary phase shift keying (MPSK) and M-ary quadrature amplitude modulation

(MQAM) systems where the number of possible symbols (and hence the number

of bits per symbol), can be adapted keeping the bandwidth and symbol rate the

same. In orthogonal MFSK systems, increasing the number of symbols, M , leads

to either an increase in bandwidth or a reduction in symbol rate.

The only choice for increasing system spectral efficiency for an orthogonal

MFSK system is to move from a single tone system to a multi-tone MFSK sys-

tem (MT-MFSK) where each symbol consists of multiple simultaneous orthogonal

tones. The price to pay for the increased spectral efficiency is that the same bit

error rate can be achieved at a higher signal to noise ratio. Moreover, like all multi-

carrier waveforms, MT-MFSK does not have a constant transmit signal envelope

and thus requires linear (and more expensive) amplifiers. Multi-tone orthogonal

MFSK, was shown in [67], [68] to achieve capacity in the wideband regime.

We show in this chapter, that the traditional orthogonal tone based MT-
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MFSK system is not optimal and we propose an alternate MT-MFSK system using

non-orthogonal signaling tones that outperforms an equivalent orthogonal MFSK

system even in the finite bandwidth regime. We show that, in certain operating

points, the proposed system has four times the capacity of an orthogonal tone

based MT-MFSK system.

In addition to outperforming the equivalent orthogonal tone based MT-

MFSK system, the proposed non-orthogonal MT-MFSK system has the additional

benefit of providing the system designer with an infinite number of choices for sys-

tem spectral efficiency – something that is lacking to systems using orthogonal

MT-MFSK. An orthogonal MT-MFSK system can only increase the spectral ef-

ficiency within some combinatorial limits since the maximum number of symbols

possible is limited by
(

N
N/2

)
. For small N , this choice may be fairly limiting. In a

binary FSK system MT-MFSK is not possible and so there is no way to increase

the spectral efficiency beyond 0.5 bits/s/Hz. In a system with 4 orthogonal tones,

a MT-MFSK can at most send
(
4
2

)
= 6 symbols and in a system with 8 orthogonal

tones one can send at most
(
8
4

)
= 70 symbols. A non-orthogonal system, however,

can fill up the same bandwidth with a larger number of tones and send as many

symbols as is desired thus providing flexibility to the systems designer.

The ability to have different spectral efficiencies in the same bandwidth

and symbol rate opens up the prospect of employing adaptive coding and modula-

tion(ACM) techniques where the signaling is adapted based on a particular user’s

link quality (SNR). Such schemes are common in coherent modulation schemes

such as M-PSK and M-QAM [43], [30] and with our proposed system the same ad-

vantages can be enjoyed by systems using non-coherent receivers and MT-MFSK.

Such adaptive MT-MFSK system requires estimation of SNR so that the sys-

tem can adapt appropriately and another aspect of our work is in determining

estimators and the Cramér-Rao lower bound (CRLB) for SNR estimation of non-

orthogonal MT-MFSK.
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5.1.1 Overview of Prior Work

The use of orthogonal multi-tone MFSK in systems with high dynamics

has been proposed by Wetz et al. in [96], and in [73]. In their proposed system,

orthogonal MFSK is used in conjunction with OFDM. Blocks of OFDM subcarriers

are grouped together and MFSK modulation is carried out on each group of OFDM

carrier and the authors show that this is very useful for channels such as those

offered by high velocity trains.

Even though there is a large body of literature in the area of orthogonal

FSK, to our knowledge, there exists relatively little prior work done in the area of

non-orthogonal MT-MFSK. One of the earliest works in the area of non-orthogonal

non-coherent multitone FSK was the work by Wittke, Lam and Schefter in 1995

[98]. In their work, the authors look at the performance of trellis coded modulation

in non-orthogonal FSK. In their work, the non-orthogonal FSK tones are spaced

(uniformly in frequency domain) at spacings of Rs (orthogonal) to Rs/3 (non-

orthogonal), where Rs is the symbol rate. In contrast, our work will position the

frequency tones over the same bandwidth in a non-uniform and non-orthogonal

manner and a key component of our work is in selection of the tone positions.

Subsequently, around 2000, Durand, Bejjani and Boutros in [39–42] also

contributed in this area of non-orthogonal MFSK. In their work, the authors de-

fined a uniform grid of non-orthogonal tones over the bandwidth of interest. In

order to overcome the performance degradation that occurs due to the correla-

tion of these tones, the authors propose the use of multidimensional signals, i.e.,

signals that exist over multiple time periods. In essence the authors propose a

code that helps to overcome the inherent drawback of starting with a highly cor-

related signal set. In [40], the authors analyzed these multidimensional symbols

using non-orthogonal MFSK from an information theoretic point of view and con-

cluded that non-orthogonal signal sets outperform orthogonal signal sets. In [42]

and [39], the authors propose specific multidimensional non-orthogonal signal sets

that outperform equivalent orthogonal ones.

The key differences from these prior works and ours are that in our system

the tones are not uniformly spaced in frequency and that we transmit a symbol in
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a single timeslot. However, since our work uses multi-tone signals, our transmit

signals do not have a constant envelope.

MT-MFSK (called “Q-tone FSK” by the authors) was also presented in [67]

and [68], however, in these works the authors focussed on proving that such schemes

achieve the capacity of fading channels at the wideband limit and did not focus on

finding optimal receivers and transmission schemes which is our goal. Hosman et al.

have implemented a multi-tone non-orthogonal FSK with non-uniform tone spacing

in [53]. However, in their work the tone positions were experimentally chosen based

on their particular channel of interest (closed shipping containers). The receiver

used in [53] was suboptimal and was a proof of concept of the feasibility of a

non-uniform spaced non-orthogonal multi-tone FSK system.

SNR estimation has been studied by various authors. We presented the

CRLBs and estimators for data aided (DA) and non-data aided (NDA) SNR es-

timation for M-ary constellations such as M-PSK and M-QAM in a very general

multi-antenna framework in Chapter 4 [28,29]. Our present work leverages some of

the results in [29] and generalizes the work of Hassan and Ingram in [52] where the

authors have presented the results for SNR estimation for orthogonal non-coherent

single tone MFSK. We present both CRLBs and estimators for the more general

case of non-orthogonal MT-FSK. Moreover, we show that better results are ob-

tained when working with the output of the received matched filters, rather than

(as in [52]), the amplitude of the output of the received matched filters. We shall

elaborate on this in Section 5.5.

Adaptive variable-rate non-coherent M-FSK modulation was studied in [36].

In this work, the authors have analyzed the gains from switching between different

modulation levels at different SNR thresholds. Since they work with orthogonal

single tone MT-MFSK, the system discussed is limited to, from Eqn. 5.1, a max-

imum spectral efficiency of about 0.528 bits/s/Hz. In our work, the maximum

spectral efficiency can get significantly higher and we present results for systems

with spectral efficiencies up to 1.5bits/s/Hz (although the proposed system is not

limited to this).
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5.1.2 Our Contribution

Our contribution may be summarized as: We present a non-orthogonal

multi-tone MFSK communication technique that outperforms the equivalent or-

thogonal tone MT-MFSK with the same spectral efficiency. The proposed system

also offers the systems engineer unlimited choices of spectral efficiency. We show

that these systems can adapt its spectral efficiency to the prevailing SNR.

First, we define the proposed system in Section 5.3 and then we evaluate the

theoretical maximum performance gain by comparing the capacity of the proposed

scheme with that of orthogonal MT-MFSK. Then we present the performance of

practical systems using maximum likelihood (ML) receivers, least squared (LS)

error receivers as well as compressed sensing (CS) based receivers. Closed form

expressions for ML and LS receivers and expressions for the symbol error rate

for ML receivers in non-coherent channels are also presented. We evaluate the

performance with and without coding, in frequency flat and frequency selective

channels.

We also present closed form results for the CRLB and ML estimators for

data aided (DA) SNR estimation for non-orthogonal, MT-MFSK as well as closed

form approximations for the non-data aided (NDA) model.

5.2 Notation

Some of the common notation used throughout this chapter is introduced

in this section. Vectors and matrices are represented respectively in lower case

bold font and upper case bold font such as x and X. xi,l is the l-th entry of the

vector xi. 0x,y is an all-zeros matrix of size x× y. 0x is an all-zeros matrix of size

x × x. Ix represents an identity matrix of size x × x. vec(H) represents all the

elements of a matrix H rearranged in a column vector. ()∗, ()T and ()H denote the

conjugate, transpose and Hermitian operators respectively. N (μ,Rnn) denotes the

pdf of a circular complex Gaussian random variable of mean μ and covariance Rnn.

P (X|Y ) is the conditional probability density function for the random variable X

given random variable Y . PX(x) is the probability density function of random
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variable X.

Table 5.1 gives a list of some of the common symbols used throughout this chapter.

Table 5.1: Common symbols used

Symbol Definition

Rs Symbol rate in Hz.

Ts Symbol duration in seconds. Equals 1
Rs
s.

W Total bandwidth of system in Hz. Equals NRsHz

N Number of orthogonal tones that span bandwidth W . Equals

W
Rs
.

K Tone packing factor.

NK Total number of tones available for use.

M Number of symbols.

Q Number of tones transmitted per symbol.(
NK
Q

)
Maximum number of symbols possible.

ν Signal to noise ratio (SNR).

s
(m)
i Transmit symbol vector at time i of size N × 1. m-th symbol

from a set of M symbols.

v(m) Binary vector of size NK × 1 corresponding to s
(m)
i . 1 in posi-

tions corresponding to transmit tones of symbol m. 0 elsewhere.

ri Output of received matched filters at time i. Size N × 1.

ni Noise output of received matched filters at time i. Size N × 1.

ρi Correlation between i-th tx symbol and orthonormal receive ba-

sis set. Size N × 1.
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5.3 System Model

The overall system block diagram is shown in Fig.5.2. As is common to

most systems, information bits first undergo forward error correction (FEC) en-

coding after which they are mapped to symbols. Since an adaptive system is

proposed, the constellation is chosen by a block that uses the link quality (in the

form of SNR information sent by the receiver) as a metric to choose the appro-

priate constellation which would maximize the spectral efficiency while achieving

the bit error rate desired. The transmitter maps symbols to transmit samples that

are then transmitted at the sampling rate over the channel to the receiver. On

the receiver, the reverse process takes place. The received signal is first projected

into an orthonormal basis that spans the transmit symbol set and then the re-

ceiver and FEC decoder is jointly carried out. SNR estimation is also conducted

and the signal quality is sent back to the transmitter over the reverse link. Fig.

5.2 shows a functional block diagram and leaves out the analog-to-digital (A/D)

and digital-to-analog (D/A) converters and the RF blocks that are needed by all

wireless systems.

5.3.1 Transmitter

The system model uses a point to point transmitter-receiver pair. The

system transmits symbols at a symbol rate of Rs Hz. Each symbol has Q tones

simultaneously transmitted in the same symbol period, Ts where Ts = 1/Rs. These

tones come from a set of NK non-orthogonal uniformly spaced tones, each sepa-

rated in frequency by Rs/K Hz. The total system bandwidth is thus [0, NRs] Hz

which is the same as would be required by an orthogonal system with N tones and

a symbol rate of Rs. Not all these NK tones may be used by all the symbols in the

constellation. K is the tone packing factor (also known as the non-orthogonality

factor). For an orthogonal system with N orthogonal tones, K = 1. For a system

with tones packed twice as dense as in an orthogonal system, K = 2. All the

systems described assume a total available bandwidth of unity (or 1 Hz) and for

fair comparison, each symbol is normalized to have the same power and all the
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Figure 5.2: System block diagram for rate adaptive MT-MFSK

constellations compared here are normalized to have unit power.

The system has M symbols, s(0), s(1), ..., s(M−1) and for each symbol, s(m),

we associate an unique transmit binary vector of size NK × 1, v(m). This vector

contains 1s in those positions corresponding to the tones that need to be trans-

mitted for that particular symbol, s(m) and 0s elsewhere. For a system with NK

tones, and Q tones per symbol, there are
(
NK
Q

)
possible symbols. However, in

systems we shall consider, only a subset of these possible symbols are used.

In discrete time the Nyquist sampling rate is N samples per symbol and

thus, the n-th element of the N × 1 vector s(m) is given by:

s(m)
n =

1

Em

NK−1∑
p=0

v(m)
p exp

(
j2πpn

NK

)
(5.2)

where Em is a normalizing term which ensures that each of the transmit symbols
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has unit power, i.e. s(m)Hs(m) = 1 for all m = [0, 1, ...,M − 1].

In vector notation the N × 1 elements of the m-th transmitted symbol can

be written as

s(m) =
1

Em

Φv(m) (5.3)

where Φ is a N × NK matrix whose m-th row, n-th column entry is

exp
(
j2πmn
NK

)
.

Symbol Set Design

A key design problem for MT-MFSK is to determine the set of symbols and

the assignment of tones to symbols. Each symbol is transmitted at unit power,

so there are no unfair advantages stemming from coherent addition of correlated

transmitted tones. The key to minimizing probability of error is to minimize

the worst case correlation between any two symbols of the constellation. In the

orthogonal framework when multiple (orthogonal) tones are sent per symbol, the

symbols themselves are not orthogonal. As an example, if an N -tone orthogonal

MT-MFSK system uses all combinations of Q = 2 tones per symbol to create
(
N
2

)
symbols, then even though the tones are orthogonal, the worst case correlation

between the symbols is 0.5 (since 2 symbols may have a common tone). If a

symbol consists of 3 orthogonal tones simultaneously transmitted, then the worst

case correlation is 0.667 (since multiple symbols may have 2 common tones).

Thus, in order to have a better symbol error probability than the equivalent

orthogonal 2-tone per symbol system, the non-orthogonal system with the same

(or better) spectral efficiency needs to have a worst case correlation lower than

0.5. To outperform an equivalent orthogonal 3-tone per symbol system, the non-

orthogonal system needs to have a worst case correlation lower than 0.667 and so

on.

Our signal set design algorithm sets various values of K and then searches

for a symbol set of a specified size (M) with a specified number of tones per symbol

to have a worst case correlation lower than some threshold. To give a specific design

example, we designed a system to outperform a N = 6, K = 1, Q = 2 orthogonal
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system which has M =
(
6
2

)
= 15 symbols. In our non-orthogonal design we chose

K = 20, thus allowing for a total of NK = 120 tones in the system. Each symbol

still used Q = 2 tones/symbol, thus there are a total of
(
120
2

)
= 7140 possible

symbols. The design problem, is thus to choose a set of 15 of these 7140 possible

symbols such that the worst case correlation will be less than 0.5. To do this

exhaustively would require a search over
(
7140
15

)
= 4.8× 1045 possible sets which is

clearly prohibitive even for this relatively small system design so we employ smart

search techniques that intelligently prune the set of possible sets to search over.

The search is, however, sub-optimal and is not guaranteed to find the best set.

Fig. 5.3 shows a solution set of 15 symbols with a worst case correlation

of 0.48. The red squares in the figure show the two tones that are activated for

each symbol. Symbol number 1, e.g., uses tone numbers 19 and 75, while symbol

number 2 uses tone numbers 1 and 41. The right hand subplot of Fig. 5.3 shows

all the tones activated in this system. It can be seen that not all the 120 tones are

used and that the set of tones used in the system are not uniformly spaced. Unlike

in orthogonal MT-MFSK, no two symbols have a common tone. In Section 5.6 we

shall discuss the performance gains stemming from this reduced correlation.

5.3.2 Channel Model

For most of the simulations, a non-coherent flat fading channel is assumed.

i.e. the received signal has an unknown phase that is constant across the symbol

and is independent from symbol to symbol. In some of the simulations, a frequency

selective channel, where the channel is independent at each of the transmitted tones

is also considered. Flat and frequency selective Rayleigh fading channels – where

both the phase and gain of the received signal are distorted by the channel are also

used. The output of the channel if the m-th symbol from the constellation was

transmitted is given by Eqn. 5.4 where cp is a complex valued channel gain affecting

tone p, θp is the channel phase assumed to be uniformly distributed between 0 and

2π radians and n is the additive white Gaussian noise.
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Figure 5.3: Assignment of 2 tones per symbol in an exemplary non-orthogonal

system [red squares indicate tones that are used]. N = 6, Q = 2, K = 20, M = 15

y(m)
n =

1

Em

NK−1∑
p=0

v(m)
p cp exp

(
j2πpn

NK
+ θp

)
+ n (5.4)

For the flat fading model, cp and θp are the same for all p and so the de-

pendence on p in the notation will be omitted. For the frequency selective channel

model, it is assumed that cp and θp are independent and identically distributed

(i.i.d.) for all p. If only phase is unknown at the receiver, then cp = 1 for all p.

If the m-th symbol was transmitted, the output of the channel can be

expressed in vector notation as:

y(m) =
1

Em

ΦGv(m) + n = Φṽ(m) + n (5.5)

where G is a NK ×NK diagonal matrix with the complex channel coeffi-

cients along its diagonal and ṽ(m) = 1
Em

Gv(m).

Although ṽ(m) is a vector of size NK × 1, only Q elements are non-zero.

Typically NK will be much larger than Q and thus, the vector ṽ(m) is sparse.

Moreover the system as described in Eqn. 5.5 is an underdetermined linear system.
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This fact will be utilized later in the development of the compressed sensing (CS)

based receiver described in Section 5.3.3.

5.3.3 Receivers

Three general classes of receivers will be analyzed in this section. We shall

first present the formulation of the maximum likelihood (ML) receiver and then

present a minimum least squared error (LS) receiver [59]. Finally we shall present

a compressed sensing (CS) based receiver.

Projection on Orthonormal Basis

The received signal is first received by a bank of filters which form an

orthonormal basis for the signal space. Since the N orthogonal tones that span

this space form a basis, the received signal is projected on this N dimensional

basis set by passing it through a filter bank (which may be efficiently implemented

via a fast Fourier transform (FFT)) and then downsampling to the symbol rate.

This N × 1 vector, ri = [r0,i, r1,i, ..., rN−1,i]
T is the input to the detector at time

i as shown in Fig. 5.4. Since the channel is assumed to be flat fading and the

modulation doesn’t have memory, symbol by symbol detection is optimal. When

coding is used (See Section 5.3.4), the entire block of received vectors for the entire

code block is passed to the decoder simultaneously.

Maximum Likelihood(ML) Receivers

In the non-coherent channel with unknown phase, the ML receiver deter-

mines the likelihood of each of the transmitted symbols averaged over all possibil-

ities of the unknown phase. The ML detector at the i-th time slot will calculate

each of p(ri|s(0)), p(ri|s(1)), ..., p(ri|s(M−1)) and choose the symbol corresponding

to the maximum of these M values. Thus, the ML estimate is given by:

ŝML = arg max
m=0..M−1

p(ri|s(m)) (5.6)

Note that even though the symbols themselves are not orthogonal, since ri

is the output of an orthonormal basis, the noise components in ri are orthogonal
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and thus the noise covariance matrix, Rnn is diagonal and invertible. The expected

value of the received vector, ri for a particular transmitted symbol, s(m), and an

unknown phase shift imposed by the channel, φ, is given by

E
[
ri|s(m)

]
=

⎡⎢⎢⎢⎢⎢⎣
ρm0

ρm1

...

ρm(N−1)

⎤⎥⎥⎥⎥⎥⎦ ejφ (5.7)

where the N × 1 vector [ρm0, ρm1, ...ρm(N−1)]
T is the decomposition of the

transmitted symbol s(m) in the orthonormal basis set spanning the space. Note

that for usual orthogonal FSK, only one of [ρm0, ρm1, ...ρm(N−1)]
T is non-zero while

for our system design with non-orthogonal tones, all the elements are likely to be

non-zero. Since one of the key advantages of using MFSK is in the domain of

non-coherent receivers, none of the receivers presented will rely on the knowledge



130

of the unknown phase offset φ. It is assumed that no training symbols are used

and while a fast automatic gain correction (AGC) keeps the gain of the system

constant, there is no compensation for the unknown phase.

The likelihood function for a non-coherent channel with an unknown phase

offset, φ, can be calculated using the following approach where μm = ρm expjφ:

p(r|s(m)) (5.8a)

=
1

2π

∫ 2π

0

p(r|s(m), φ)dφ (5.8b)

=
1

2πm+1|Rnn|︸ ︷︷ ︸
α

∫ 2π

0

exp
(− (

rHR−1
nnr+ μm

HR−1
nnμm − μm

HR−1
nnr− rHR−1

nnμm

))
dφ

(5.8c)

=
1

α
exp

⎛⎝−rHR−1
nnr− ρHmR−1

nnρm︸ ︷︷ ︸
β

⎞⎠∫ 2π

0

exp

⎛⎝e−jφ ρHmR−1
nnr︸ ︷︷ ︸

λm=λc+jλs

+rHR−1
nnρmejφ

⎞⎠ dφ

(5.8d)

=
2π

α
exp(β)I0(2|λm|2) (5.8e)

Since I0, the modified Bessel function of the first kind, is a monotonically

increasing function, in order to determine argmaxm=0..M−1 p(ri|s(m)), it is sufficient

to determine argmax(|λm|2). Thus the ML receiver calculates each of theM -values

of |λm|2, one for each symbol and then chooses the symbol corresponding to the

maximum value of |λm|2. This is a more general version of the well known envelope

detector (see [74]) which is the optimal receiver for the single tone orthogonal

MFSK. The expression derived above is exactly identical to the envelope detector

when ρm has a 1 only in the m-th position and 0s everywhere else, as would be

the case for orthogonal single tone MFSK.

Although there is no closed form expression for the symbol error rate

(SER) for the ML receiver can derive the SER in the following manner. First

we note that for equiprobable symbols the probability of a correct decision P (C) =
M−1∑
m=0

P (C|s(m))P (s(m)) = 1
M

M−1∑
m=0

P (C|s(m)). In turn P (C|s(m)) =
∞∫

−∞
P (C|s(m), λm =

γ)Pλm(γ)dγ where P (C|s(m), λm = γ) is the probability of a correct decision given
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a particular value of λm = γ. This implies that for all k 	= m, |λk|2 < |γ|2. Thus

SER may be expressed as:

SER = 1− P (C) = 1− 1

M

M−1∑
m=0

P (C|s(m)) (5.9a)

= 1−
∞∫

−∞

∫
R0

∫
R1

∫
Rm−1

∫
Rm+1

...

∫
RM−1

Pλm(γ)dλ0...dλM−1dγ (5.9b)

λk is a scalar complex Gaussian random variable whose distribution is given

by N (μ, σ2) where the mean, μ = ρk
Hρm and σ2 is the noise variance at the output

of the matched filters. Each of the regions of integration Rk is given by the region

where |λk|2 < |γ|2. Although the above expression cannot be evaluated in closed

form, numerical evaluations or Monte Carlo evaluation may be carried out.

LS Receivers

The above expressions have been carried out for a non-coherent flat fading

channel. In these channels, there is a constant and unknown phase offset, φ, that is

constant across all the tones. For frequency selective channels with unknown phase,

the phase offset, is not constant across the signal bandwidth and in the extreme

case is independent from tone to tone. There is no closed form expression for the

ML receiver for this channel model and indeed if the above receiver is applied to

a signal that goes through a frequency selective channel, then the performance is

poor. However, the LS receivers described next are more useful in those channels

and we derive those next.

The objective of the LS receiver is to select the symbol that minimizes the

least squared error. Thus, if em is the LS error for transmitted symbol s(m) then

LS solution is given by:

ŝLS = arg min
m=0..M−1

em (5.10)

If the indices of the Q transmit tones of the i-th symbol are j1, j2, ..., jQ

then after being subjected to a frequency selective channel the N × 1 input to the

LS detector at time i, ri may be expressed as
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ri =
1

EN
H

⎡⎢⎢⎢⎢⎢⎣
α1

α2

...

αQ

⎤⎥⎥⎥⎥⎥⎦+ ni (5.11)

where E is a normalizing constant and H is given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N−1∑
n=0

ej2π(
j1
K

−0) n
N

N−1∑
n=0

ej2π(
j2
K

−0) n
N ...

N−1∑
n=0

ej2π(
jQ
K

−0) n
N

N−1∑
n=0

ej2π(
j1
K

−1) n
N

N−1∑
n=0

ej2π(
j2
K

−1) n
N ...

N−1∑
n=0

ej2π(
jQ
K

−1) n
N

... ... ... ...
N−1∑
n=0

ej2π(
j1
K

−Ñ) n
N

N−1∑
n=0

ej2π(
j2
K

−Ñ) n
N ...

N−1∑
n=0

ej2π(
jQ
K

−Ñ) n
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.12)

and Ñ = N−1 and each of α1, α2, ... αQ are the Q channel coefficients correspond-

ing to each of the transmitted tones. If phase is the only part of the channel that is

unknown, then the channel coefficients have a known constant gain but unknown

phase. If the channel is assumed to be flat in frequency, then the Q coefficients

are identical to each other.

It may be observed that the N ×Q matrix H is constant for each transmit

symbol. In fact, one can compute a different Hm corresponding to each of the M

transmitted symbols in the constellation. Assuming symbol m was transmitted,

the scalar least squared error em is given by [59]:

em = ri
H
(
IN −Hm(Hm

HHm)−1Hm
H
)
ri (5.13)

The LS receiver chooses the transmit symbol that minimizes em over all m.

In the above equation,
(
IN −Hm(Hm

HHm)−1Hm
H
)
is a N ×N matrix that can

be precomputed for each m = [0, 1, ..., (M−1)] and thus the computational burden

on the LS receiver during operation is much less than what would be implied by

the full evaluation of Eqn. 5.13.

For the flat-fading channel with unknown phase, the LS receiver and the

ML receiver yield the same result. However, the LS receiver is more appropriate

during a frequency selective channel, especially when both the gain and phase
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of each tone are unknown. Even though the LS receiver attempts to “fit” the

observation to the model of Eqn. 5.11, and thus indirectly estimates the channel

coefficients, no system resources are expended in this effort.

CS based receiver

One of the disadvantages of the ML and LS receivers is that their complexity

grows with the size of the constellation. Both the ML and LS receivers compute a

metric (respectively, the likelihood and the squared error) for each of the possible

M symbols and then determines the symbol that either maximizes the likelihood

or minimizes the squared error. As M increases, the computational complexity

of this approach also increases. Even though for practical SNRs, the number of

symbols in the constellation of choice is unlikely to get too big, we present in this

section receivers that have a reduced complexity of implementation.

The receiver presented here is a compressed sensing based receiver that is

motivated by the subset selection approach for compressed sensing discussed in [76].

In this work, as in our present problem, the authors work with an underdetermined

linear system as may be seen by inspecting Eqn 5.5. With the a priori knowledge

that only Q elements of the vector ṽ(m) are non-zero, we can apply many of the

techniques from the compressed sensing literature to the problem at hand.

CS techniques assume that the solution to the problem is sparse. In our

context, this would imply that Q � NK. Since most practical systems would

use a handful of tones per symbol and NK is likely to be hundred (or more), this

assumption is indeed reasonable in this context. As shown in [76], the CS receiver

determines argminv J(ṽ) where

J(ṽ) = ||Φṽ − yi||2 + γ
NK∑
i=1

|ṽ[i]|p (5.14)

where, Φ, ṽ are given by Eqn. 5.5, and γ is a weighting factor that controls

the tradeoff between the quality of the fit and the sparsity of the solution. For

p = 1, the solution approaches the l1 norm minimization problem. In general, the

CS approach is a suboptimal computationally simpler way of estimating the LS

solution without doing an exhaustive search.
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Of the many CS techniques available, we propose using the regularized ver-

sion of the FOCal underdetermined system solver (FOCUSS) algorithm presented

by Rao et al. in [76]. As will be discussed in Section 5.6.3, the CS receiver can

be further improved if a ML or LS search is done in the immediate neighborhood

of the solution of the CS receiver. The main advantage of the CS receiver is that

the computational complexity does not increase as the number of symbols grows.

As shown in [69], the complexity of various CS algorithms is considerably less

than O(
(
NK
Q

)
). For instance, two popular algorithms, l1 norm minimization has

a complexity of O(N2(NK)(3/2))), and orthogonal matching pursuit (OMP) has a

complexity of O(QKN2) As the problem scales to a large number of symbols, a

CS based receiver may provide options for a lower complexity receiver with rela-

tively little performance loss compared to a LS receiver. The performance of a CS

receiver will be discussed in Section 5.6.3.

5.3.4 FEC Coding

To demonstrate the performance of the proposed system with coding, we

have used the famous Cassini convolution code from NASA which is a rate 1
6
code

with a constraint length of 15. The octal representation of each of the 6 encoders

is {042631, 047245, 073363, 056507, 077267, 064537}. The code is decoded using a

soft decision Viterbi decoder [74] which is known to be the optimal receiver for

such systems.

5.4 System Capacity

In this section, we investigate the system capacity of the transmission

schemes proposed above. As is well known, the capacity of a channel is defined

as the maximum mutual information, I(X;Y), between the input, X, and out-

put, Y, of a channel maximized over all possible input distributions [24]. In cases

where the the input constellation is known, i.e., the input distribution is known,

the capacity is simply the mutual information I(X;Y).

Since, in all cases, the received signal shall initially be received by a bank
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of N matched filters (equivalent to projecting the received signal on a orthonormal

basis that spans the received signal space), we shall evaluate the mutual informa-

tion between the output of the matched filters, r, and the input waveform, s, which

is assumed to come from a M -ary constellation with equiprobable symbols.

For this model, the capacity is given by:

C = log2(M) + E

[
M−1∑
m=0

p(s(m)|r) log2 p(s(m)|r)
]

(5.15)

The expectation shown in Eqn. 5.15 can be evaluated using Monte Carlo

simulations [40]. In order to carry this out, it is simplest to apply Bayes rule and

express, p(s(m)|r) as:

p(s(m)|r) = p(r|s(m))/
M−1∑
j=0

p(r|s(j)) (5.16)

The capacity of various input constellations may be thus be easily compared

by calculating the capacity for each set of s(m).
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Figure 5.5: Non-orthogonal MT-MFSK increases system capacity in AWGN
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Fig. 5.5 shows the capacity in an AWGN channel for both traditional

multi-tone MFSK systems as well as the proposed non-orthogonal tone FSK sys-

tem. Fig. 5.5 compares an orthogonal system with 8 orthogonal carriers (sending

2, 3 or 4 tones at a time, resulting in systems with 28, 56 and 70 symbols respec-

tively), to three proposed systems with the same number of symbols, but using

non-orthogonal tones. Since the number of symbols in most practical systems is

typically a power of 2, two systems with 64 symbols are also compared. The 64-

symbol system is obtained by selectively not using 6 of the worst symbols from the

70-symbol system. The exact mapping of the non-orthogonal tones to symbols for

the proposed system is given in Appendix 5.A. As can be seen, the performance

gains are significant, with some non orthogonal configurations achieving the same

bit rate as the orthogonal systems with as much as 2.5dB less transmit power.

Looking in the other dimension, at an Eb/N0 = 2dB, the capacity with an orthog-

onal tone 64 symbol system is about 1.25bits/symbol whereas the capacity for a

64-symbol non-orthogonal system in the same bandwidth and symbol rate is just

under 5bits/symbol – a 4 fold increase in system capacity.

Although Fig. 5.5 shows the gains that arise in an AWGN channel, we

are typically more interested in the non-coherent case where there is an unknown

phase offset across the whole symbols. In that case, p(r|s(m)) needs to be obtained

by averaging over the distribution of the unknown phase. This was evaluated

in Eqn. 24 of [20] and was used by us for the simulations in Sec. 5.6.1 where

we show the increased capacity of non-orthogonal MT-MFSK in a non-coherent

system model. A similar approach was also taken by Céline Durand in [42] in

evaluating the capacity of non-orthogonal signaling that was spread over multiple

symbol durations.

5.5 SNR Estimation

In this section we shall derive the Cramér-Rao lower bound (CRLB) and

maximum likelihood (ML) estimators for general MFSK. The expressions derived

below are applicable to orthogonal and non-orthogonal FSK, to single tone and
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multitone FSK. As described in Chapter 3, the estimation of signal to noise ratios

(SNR), can be broadly divided into two different approaches – data aided (DA) and

non-data aided (NDA). The DA approach assumes that the transmitted symbols

are known perfectly while the NDA approach assumes that the transmitted symbols

are unknown, but that they belong to a known discrete constellation.

5.5.1 DA SNR Estimation

The DA SNR estimation model used assumes a flat block fading model

where a block of L known MT-MFSK symbols are assumed to have the identical

channel and noise characteristics. The noise and channel are independent of each

other and independent of the transmitted symbols. The noise and channel are also

assumed to be i.i.d from symbol to symbol. The received samples at the output of

the receiver may be written as

ri = αρi + ni (5.17)

where ri and ni are, respectively, the N × 1 received vector and noise vector at

time i, α is the scalar complex channel and ρi is the correlation of the transmit

symbol with the orthonormal receive basis as described in Sec. 5.3.3. Since the

transmitted symbols are of unit power, the SNR is then ν = |α|2
σ2 where σ2 is the

noise variance (which also needs to be estimated). Since α is a complex quantity,

the parameter vector of interest that needs to be evaluated is Θ = [α, α∗, σ2]
T
.

Taking an approach very similar to what we demonstrated in [28] and [29]

and presented in Chapter 4, we can show that the normalized Cramér-Rao lower

bound (NCRLB) for SNR estimation is given by

NCRLB =
CRLB

ν2
=

2

νL
+

1

NL
(5.18)

The maximum likelihood (ML) estimator for MFSK SNR estimation is also

straightforward. If all the received symbols in the block of length L are stacked in

a NL× 1 sized vector r̃ = αρ̃+ ñ where r̃, ρ̃ and ñ are respectively [r1, r2, ...rL]
T ,

[ρ1, ρ2, ...ρL]
T and [n1,n2, ...nL]

T , then the ML estimates of σ2, α and ν are given
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by:

α̂ML = (ρ̃H ρ̃)−1ρ̃H r̃ (5.19a)

σ̂2
ML =

1

NL

L∑
i=1

(ri − α̂MLρi)
H (ri − α̂MLρi) (5.19b)

ν̂ML =
α̂ML

σ̂2
ML

(5.19c)

In [52], the authors also determine the DA SNR for non-orthogonal MFSK.

However the authors work with the magnitude squared of the output of the received

filters, i.e., they work with r2i , while we work with ri and consequently we obtain

a better (lower) limit for the CRLB.

5.5.2 NDA SNR Estimation

In the non-data aided case, there is no closed form solution for the CRLB.

The received signal is represented by a Gaussian mixture density. The log-likelihood

function for each of the i.i.d. received samples is given by:

q = ln[p(ri; Θ)] = − ln(M) + ln

[
M−1∑
l=0

p(ri|ρl,Θ)

]
(5.20)

where p(ri|ρl,Θ) = 1
πNσ2N exp(−φi,l

σ2 ) and φi,l = (ri − αρl)
H (ri − αρl) Then

following the steps outlined in Chapters 3 and 4 and carrying out the final expec-

tation necessary to evaluate the Fisher information matrix using a Gauss-Hermite

quadrature, we evaluate the CRLB for NDA SNR estimation non-orthogonal MT-

MFSK. The results are shown in Fig. 5.22.

For low SNR and high SNR regions we derived closed form approximations

for the normalized CRLB as shown in Eqns. 5.21 and 5.22.

NCRLB Low SNR =
2N

νL
+

1

NL
(5.21)

NCRLB High SNR =
2

νL
+

1

NL
→ 1

NL
(5.22)
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5.6 Simulation Results

5.6.1 Capacity of non-orthogonal MT-MFSK systems

The capacity of the proposed MT-MFSK systems in a non-coherent envi-

ronment with an unknown phase (assumed to be constant over a whole symbol)

was evaluated using the method of Monte-Carlo simulations as described in Sec.

5.4. As two illustrative examples, we evaluate the capacity of two unit band-

width (1Hz) systems: a) with symbol rate Rs = 1/2 Hz, and b) with symbol rate

Rs = 1/8 Hz. In the first case, if only orthogonal tones were used, the bandwidth

would be occupied by N = 2 orthogonal tones while in the second, the bandwidth

would be occupied by N = 8 orthogonal tones.
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Q = 1, M = 2, K = 1, Orthogonal

Q = 1, M = 4, K = 4/2, Non−orthogonal

Q = 1, M = 8, K = 8/2, Non−orthogonal

Q = 2, M = 8, K = 100/2, Non−orthogonal

Figure 5.6: N = 2; Higher capacities for non-orthogonal MT-MFSK.

Non-coherent channel with unknown phase.

In both cases, we evaluate 3 metrics of comparison. First we present the

capacity in information bits per symbol as a function of Es/N0 in dB where Es

is the energy per symbol and N0 is the noise power spectral density. Second,
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we show the minimum Eb/N0 (in dB) required to obtain the capacity expressed

in information bits per symbol where Eb is the energy per information bit, and

finally, we present the minimum Eb/N0 required as a function of the capacity, this

time expressed in bits per second per Hz (bits/s/Hz). These three equivalent views

present slightly different interpretations that are useful in different contexts.
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Q = 1, M = 2, K = 1, Orthogonal

Q = 1, M = 4, K = 4/2, Non−orthogonal

Q = 1, M = 8, K = 8/2, Non−orthogonal

Q = 2, M = 8, K = 100/2, Non−orthogonal

Figure 5.7: N = 2; Non-orthogonal MT-MFSK achieves 1 bits/symbol with ≈
3.6dB less Eb/N0. Non-coherent channel with unknown phase.

Figs. 5.6, 5.7 and 5.8 show the capacity of a non-coherent system with

unit bandwidth (1Hz) and Rs = 1/2Hz. With that symbol rate and bandwidth,

the only orthogonal tone system possible uses N = 2 tones and sends Q = 1

tone per symbol for a total of M = 2 symbols. The orthogonal system has a

maximum capacity of 1 bits/symbol (Figs. 5.6 and 5.7) or 0.5 bits/s/Hz (Fig.

5.8) and it achieves this at Es/N0 = Eb/N0 ≈ 10dB. In contrast, non-orthogonal
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systems achieve this same capacity at Es/N0 = Eb/N0 ≈ 6.4dB – a significant

improvement.
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Q = 1, M = 2, K = 1, Orthogonal

Q = 1, M = 4, K = 4/2, Non−orthogonal

Q = 1, M = 8, K = 8/2, Non−orthogonal

Q = 2, M = 8, K = 100/2, Non−orthogonal

Figure 5.8: N = 2; Non-uniformly spaced MT-MFSK enables higher spectral

efficiencies. Non-coherent channel with unknown phase.

Three different non-orthogonal systems are presented in Figs. 5.6, 5.7

and 5.8. The first two, are traditional non-orthogonal systems where the non-

orthogonal tones are spread uniformly throughout the bandwidth. We show sys-

tems with 4 and 8 tones spread in the bandwidth occupied by the 2 orthogonal

tones. For these two systems, the two values of K (see Table. 5.1) are respectively

given by 4/2 = 2 and 8/2 = 4 and they both transmit Q = 1 tone per symbol.

The third non-orthogonal system also has M = 8 symbols, but sends Q = 2 tones

per symbol and chooses these 8 symbols from a set of 100 non-orthogonal tones.

Thus, K = 100/2 = 50 for this system. It can be seen from Figs. 5.6, 5.7 and
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5.8 that the multi-tone non-orthogonal system out performs the orthogonal tone

system.

Using the non-orthogonal MT-MFSK is advantageous on two fronts. First,

the orthogonal system is incapable of achieving a capacity higher than 0.5 bits/s/Hz,

whereas the non-orthogonal system can achieve much higher capacities and sec-

ondly, there is a significant performance improvement.
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Q = 1, M = 2, K = 1, Orthogonal

Q = 1, K = 4, K = 2, Non−orthogonal

Q = 1, M = 8, K = 8/2, Non−orthogonal

Q = 2, M = 8, K = 100/2, Non−orthogonal

Figure 5.9: N = 2; Spectral efficiency in Rayleigh fading channel improves with

non-orthogonal MT-MFSK

In Fig. 5.9 we show the performance of the same systems in frequency

flat Rayleigh fading i.e., both the gain and the phase are assumed unknown (but

constant for a symbol). As usual, the phase is assumed to be distributed uniformly

from 0 to 2π radians and the gain is assumed to be distributed from a complex

circular Gaussian random variable with mean and variance both equal to unity. It

may be seen that at a spectral efficiency of 0.5 bits/s/Hz, the best non-orthogonal

system outperforms the 2-orthogonal tone system by a remarkable 10dB! At 0.4

bits/s/Hz, the performance advantage is about 4.5dB.
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Figs. 5.11, 5.10, 5.12 show the capacity of a unit bandwidth system with

Rs = 1/8Hz. At this symbol rate, if only orthogonal tones were used, this band-

width would have been occupied by N = 8 orthogonal tones.
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Q = 4, M = 70, K = 1, Orthogonal

Q = 2, M = 140, K = 129/8, Non−orthogonal

Q = 2, M = 280, K = 129/8, Non−orthogonal

Figure 5.10: N = 8; Increased capacity with non-orthogonal MT-MFSK

As may be seen from Figs. 5.10 and 5.11, such a system achieves its maxi-

mum spectral efficiency when Q = 4 tones per symbol, resulting in M =
(
8
4

)
= 70

symbols. In that case, the spectral efficiency is 6.13 bits/symbol or 0.77 bits/s/Hz

which may be achieved by the orthogonal system at Es/N0 ≈ 15dB or Eb/N0 ≈
8dB.

However, the best non-orthogonal system simulated can achieve the same

spectral efficiency at an Es/N0 ≈ 12dB a performance improvement of about 3dB.

In this case, the non-orthogonal system used had a total of M = 280 symbols with

each symbol consisting of Q = 2 tones chosen from a total of 129 tones spread in

the same bandwidth. An additional advantage of this system over the orthogonal

tone system is that in this case, the non-orthogonal MT-MFSK symbols use only

2 tones per symbol whereas the orthogonal system has 4 tones per symbol. This
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Q = 4, M = 70, Orthogonal

Q = 2, M = 140, K = 129/8, Non−orthogonal

Q = 2, M = 280, K = 129/8, Non−orthogonal

Figure 5.11: N = 8; Performance gain is ≈ 2dB at 6 bits/symbol

reduces the peak to average power ratio (PAPR) of the transmit waveform.

It is worth emphasizing that in both the systems simulated in this section,

the orthogonal tone system has an upper limit of spectral efficiency. For the two

tone example, it was 0.5 bits/s/Hz, and in the 8-tone example the maximum was

0.77 bits/s/Hz. However, there are no such limits when we use non-orthogonal

tones. Even though, in the example with 2 orthogonal tones, Figs. 5.11-5.12 show

non-orthogonal systems that go up to only 3 bits/symbol, there is nothing that

prevents the design of a non-orthogonal systems with higher spectral efficiencies.

5.6.2 Non-orthogonal MT-MFSK with Optimal Receivers

In the following we present the results of simulations of various system

configurations and compare it to the performance of traditional FSK. In all cases,

the systems simulated have been assumed to have unit bandwidth and the symbol

rate (Rs) is varied between the different experiments. For example, in Fig. 5.13,

Rs = 1/2 Hz and consequently the bandwidth is occupied by 2 orthogonal tones.
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Q = 4, M = 70, Orthogonal

Q = 2, M = 140, K = 129/8, Non−orthogonal

Q = 2, M = 280, K = 129/8, Non−orthogonal

Figure 5.12: N = 8; Spectral efficiency in non-coherent channel with unknown

phase

In Fig. 5.14, Rs = 1/4 Hz and so the bandwidth is occupied by 4 orthogonal

tones. Each data point is the result of a Monte Carlo simulation with at least

300 errors. Fig. 5.13, 5.14, 5.15, 5.16, 5.17 all show the symbol error rate (SER)

vs SNR curves of a non-coherent receiver where each symbol has a constant (and

unknown) phase and, respectively, represent systems with Rs =
1
2
, 1
4
, 1
8
, 1
16

and 1
16

Hz. In each case, the simulations are conducted by generating a symbol randomly

from the symbol set where each symbol is assumed to be equiprobable. Then the

channel output is obtained by adding a zero mean random additive white Gaussian

noise (AWGN) with variance commensurate to the SNR of interest and distorting

the signal with a random phase distributed uniformly between 0 and 2π radians.

For a fair comparison each symbol in all the simulations is normalized to unit

power. The symbol to tone mapping of each constellation is given in Appendix

5.A.

In Fig. 5.13 the performance of traditional MFSK system with N = 2
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SE = 0.5bits/s/Hz, Q = 1, M = 2

SE = 0.8bits/s/Hz, Q = 1, M = 3

SE = 1.0bits/s/Hz, Q = 1, M = 4

SE = 1.2bits/s/Hz, Q = 1, M = 5

SE = 1.2bits/s/Hz, Q = 2, M = 5

Figure 5.13: N = 2; Non-coherent channel with ML receiver. As SNR increases,

spectral efficiency can be increased.

orthogonal tones and a spectral efficiency of 0.5bits/s/Hz is shown (Q = 1, M =

2). In the traditional system, it is not possible to improve the spectral efficiency

above 0.5 and thus even if Es/N0 were to improve beyond that required by the

orthogonal system, no further improvements in spectral efficiency could be made.

Fig. 5.13 shows that the spectral efficiency could be increased to 1.2bits/s/Hz with

a commensurate increase in the required Es/N0. Like the traditional system, three

of the four non-orthogonal systems shown also sends a single tone per symbol, thus

retaining the constant envelope modulation that leads to cheaper amplifier design

with no linearity requirements. If, however, the cost of a linear amplifier can be

tolerated by the system, a further performance gain of about 1dB (at a SER of

10−3) can be obtained by using a system that transmits Q = 2 tones instead of

one.

Fig. 5.14 shows the performance for a system with Rs = 1/4. The tradi-

tional orthogonal MFSK could send either a single tone per symbol (Q = 1) (re-
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SE = 0.58b/s/Hz, Q = 1, M = 5

SE = 0.65b/s/Hz, Q = 1, M = 6

SE = 0.70b/s/Hz, Q = 1, M = 7

SE = 0.75b/s/Hz, Q = 1, M = 8

SE = 0.75b/s/Hz, Q = 2, M = 8

SE = 0.70b/s/Hz, Q = 2, M = 7

SE = 0.65b/s/Hz, Q = 2, M = 6, Orth

SE = 0.50b/s/Hz, Q = 1, M = 4, Orth

Figure 5.14: N = 4; Non-coherent channel with ML receiver. 2 solid lines

indicate orthogonal MT-MFSK. Non-orthogonal MT-MFSK offers more choices.

sulting in M = 4 symbol constellation with spectral efficiency of 0.50bits/s/Hz)

or Q = 2 orthogonal tones per symbol (resulting in a M =
(
4
2

)
= 6 symbol con-

stellation with spectral efficiency of 0.65bits/s/Hz). It may be seen that the

non-orthogonal system with a spectral efficiency of 0.7bits/s/Hz has approxi-

mately the same performance as the traditional system with a spectral efficiency

of 0.65bits/s/Hz. Moreover, the non-orthogonal system uses only a single tone

per symbol and thus has a constant envelope modulation whereas the orthogonal

MT-MFSK system uses 2 tones per symbol and thus has a higher PAPR. We show

the performance non-orthogonal systems with a single tone per symbol as well

as Q = 2 tones per symbol demonstrating that further gains can be made if the

additional expense of a linear amplifier can be tolerated.

Fig. 5.15 shows the similar performance gains for a system with Rs = 1
8
.

Orthogonal MT-MFSK can have systems with 1, 2, 3 or 4 tones per symbol,

resulting in systems with 8, 28, 56, and 70 symbols respectively. It can be seen
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SE = 0.375b/s/Hz, Q = 1, M = 8

SE = 0.601b/s/Hz, Q = 2, M = 28

SE = 0.726b/s/Hz, Q = 3, M = 56

SE = 0.766b/s/Hz, Q = 4, M = 70

SE = 0.601b/s/Hz, Q = 2, M = 28, NonOrth

SE = 0.726b/s/Hz, Q = 2, M = 56, NonOrth

SE = 0.766b/s/Hz, Q = 2, M = 70, NonOrth

Figure 5.15: N = 4; Non-coherent channel with ML receiver. Performance gap

between orthogonal and non-orthogonal MT-MFSK increases with M .

that each of the 28, 56 and 70 symbol orthogonal tone FSK systems is outperformed

by a corresponding non-orthogonal tone system. Moreover, the proposed system

sends at most 2 tones per symbol, whereas the orthogonal system would need to

send as many as 4. Thus, the proposed system has a lower PAPR in addition to

better performance. Fig. 5.16 and 5.17 show the corresponding result for Rs =
1
16
.

For ease of display not all possible orthogonal systems are shown. Nearly all the

orthogonal systems are outperformed by a corresponding non-orthogonal system.

A notable exception is the orthogonal system that sends Q = 4 of the 16 orthogonal

tones per symbol resulting in a system with M =
(
16
4

)
= 1820 symbols. In this

case, an equivalent non-orthogonal system with better performance could not be

found. However, this is likely to be of limited practical utility since most practical

systems do not use over 1000 symbols.

Fig. 5.18 revisits the system with Rs =
1
8
, but now subjects the system with

more harsh channels. We show the performance of systems where a) the phase is
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SE = 0.25b/s/Hz, Q = 1, M = 16

SE = 0.27b/s/Hz, Q = 1, M = 20

SE = 0.29b/s/Hz, Q = 1, M = 24

SE = 0.30b/s/Hz, Q = 1, M = 28

SE = 0.31b/s/Hz, Q = 1, M = 32

SE = 0.31b/s/Hz, Q = 2, M = 32

SE = 0.30b/s/Hz, Q = 2, M = 28

Figure 5.16: N = 16; Non-coherent channel with ML receiver. Shows increased

granularity of spectral efficiency with MT-MFSK and the performance gains from

using multitone symbols.

unknown but constant across the entire symbol b) where the phase is unknown and

is independent from tone to tone and c) Rayleigh fading with each tone undergoing

independent phase and gain distortion while going through the channel.

Fig. 5.19 shows the performance gains with the Cassini convolutional code

described in Section 5.3.4. It can be seen that the non-orthogonal system has

close to 2 dB of gain. The mapping of bits to symbols used is a simple binary

representation. It is possible that with a better bit mapping, a lower BER could

be obtained at the same Eb/N0.

5.6.3 Reduced complexity receivers

Fig. 5.20 shows the performance of two reduced complexity receivers in

two types of channels a) a flat fading channel with only an unknown phase offset

across the symbol and b) a frequency selective channel with both the gain and
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SE = 0.25b/s/Hz, Q = 1, M = 16, Orth

SE = 0.43b/s/Hz, Q = 2, M = 120, Orth

SE = 0.57b/s/Hz, Q = 3, M = 560, Orth

SE = 0.68b/s/Hz, Q = 4, M = 1820, Orth

SE = 0.57b/s/Hz, Q = 2,M = 560, NonOrth

SE = 0.43b/s/Hz, Q = 2, M = 120, NonOrth

SE = 0.57b/s/Hz, Q = 3, M = 560, Orth, L1 Rx

Figure 5.17: N = 16; Non-coherent channel with ML receiver and L1-norm

minimization receiver. Performance of multitone symbols. Non-orthogonal

systems outperform all except M = 1820 system.

phase being i.i.d. at each transmit tone. In both cases they are compared to

the optimal ML or LS receivers which give the best performance. The system

analyzed is a Rs = 1/8 system with the bandwidth occupied by N = 8 orthogonal

tones packed with NK = 100 non-orthogonal tones, and each of the M = 64

symbols consisting of two transmit tones. The simplest receiver merely carries out

a NK = 100 point FFT of the received signal, determines the two highest peaks

and then does a LS search in the immediate neighborhood of the peaks.

The next receiver employs CS based techniques and employs the FOCUSS

algorithm described in [76] and then does a LS search in the immediate neighbor-

hood of the two peaks determined by the FOCUSS algorithm.

It can be seen that the performance of the simplest receiver is only slightly

worse than that of the CS based receiver for the flat fading channel, however,

it fails for the frequency selective channel. This is expected since the channel
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SE = 0.375b/s/Hz, Q = 1, M = 8, Unknown Phase

SE = 0.601b/s/Hz, Q = 2,M = 28, NonOrth, Flat fading unknown phase, LS Rx

SE = 0.766b/s/Hz, Q = 2,M = 70, NonOrth, Flat fading unknown phase, LS Rx

SE = 0.601b/s/Hz, Q = 2, M = 28, NonOrth,Freq sel fading, unknown phase, LS Rx

SE = 0.766b/s/Hz, Q = 2, M = 70, NonOrth, Freq sel fading, unknown phase, LS Rx

SE = 0.766b/s/Hz,Q = 2, M = 70, NonOrth,  Freq sel Rayleigh fading, LS Rx

SE = 0.601b/s/Hz, Q = 2, M = 28, NonOrth, Freq sel Rayleigh fading, LS Rx

Figure 5.18: N = 8; Performance with 3 different channels.

gains of the two tones in the frequency selective fading can be quite different

and thus the approach of determining the peaks after only a FFT at the receiver

leads to erroneous results that cannot be corrected by looking in the immediate

neighborhood of the two peaks. The CS technique however, performs significantly

better and has a performance penalty of about 2dB at a BER of 10−2 for the

frequency selective channel. For the flat fading channel, the CS receiver penalty is

about 1dB.

For the 64 symbol system analyzed the computational complexity advantage

is not significant and the performance penalty incurred eliminates the need for a

CS based receiver, however, as the system scales up to potentially thousands of
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Figure 5.19: N = 8; Performance gain of ≈ 2dB with convolutional code and

soft decision Viterbi decoding

symbols these receivers become much more important. The high SNR required for

such large scale systems may make them unrealistic for practical systems, but we

present this receiver for the sake of completion and to indicate the application of

CS in a new arena.

5.6.4 SNR Estimation Results

Fig. 5.21 and 5.22 show the normalized CRLB and the normalized mean

squared error (NMSE) plotted versus Es/N0 for various system configurations.

Each simulation point was derived by keeping the channel gain fixed and gener-

ating random and i.i.d. samples of noise with the specified noise power. Each of

the curves show the analytical normalized CRLB together with the NMSE for the

ML estimator. The system simulated used a 100 symbol block fading model where

the channel is assumed to be constant across 100 symbols and then varying inde-

pendently from block to block. It can be seen that the ML estimator attains the
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Figure 5.20: N = 8; Receiver complexity vs performance tradeoff

CRLB over the entire range of SNRs simulated. It should be pointed out that the

CRLB is independent of the number of symbols in the system and only dependent

on the number of tones in the orthogonal basis for the received signal space. Thus,

e.g., a system with Rs = 1/2, which is spanned by N = 2 orthogonal carriers has

the same CRLB for SNR estimation regardless of whether we are considering a

system with 2 symbols or 5 symbols. This makes intuitive sense since the ability

to estimate SNR is dependent on the number of independent noise paths through

the system which is dependent on the number of elements in the orthonormal ba-

sis. In Fig. 5.21 we reproduce one of the curves from [52] where it may be seen

that the NMSE of the estimator used is higher that what we can achieve. Since

the estimator used in [52] uses the amplitude square of the receiver output while
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we work with the complex output of the receiver, the estimator of [52] does not

use all the information available and thus the performance is worse. We have also

corrected a small error in the simulations done in [52] and we acknowledge the

authors for their help in correcting this issue ( [52], Fig. 9 the x-axis should be

labeled “average” SNR. Carrying out the simulation with a constant SNR results

in slightly better results than what was published as shown in Fig. 5.21).
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Figure 5.21: Data aided SNR estimation. Estimators achieve CRLB.

Fig. 5.22 compares the NCRLB vs Es/N0 performance for NDA and DA

SNR estimation. It is interesting to note that at low SNRs the NCRLB for a system
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with N = 4 (i.e., Rs = 1
4
with 4 orthogonal carriers spanning the bandwidth) is

higher than that for a system whose bandwidth is spanned by 2 orthogonal carriers

(i.e., Rs =
1
2
) but at high SNRs their relative performance is swapped. Both the

exact values as well as the closed form low SNR approximations are shown.
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Figure 5.22: Non-data aided SNR estimation

5.7 Conclusion

In this chapter, we evaluate the advantages of a non-orthogonal multi-tone

MFSK communication scheme. We show that the fundamental limits of perfor-

mance of such schemes are better than that of orthogonal MT-MFSK by comparing

the capacity of the channel. We demonstrate the gains that can be realized in prac-

tical systems by showing about a 2dB performance gain in specific configurations.

We have presented the ML receiver for a flat fading channel with unknown phase.

For frequency selective channels, we have derived the LS and CS based receivers.

We also present the CRLB and ML estimators for the SNR estimation of DA non-
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orthogonal FSK and show that the ML estimators achieve the CRLB. For non-data

aided SNR estimation we present a method for calculating the exact CRLB and

present closed form expressions for approximations of the NDA SNR estimate. We

show that such a non-orthogonal MT-MFSK, coupled with accurate SNR estima-

tion, could be used in a rate adaptive manner and different users could share the

channel, but receive their data at a rate commensurate with their link conditions.

This significantly improves the overall system spectral efficiency.

The contents of this chapter has been submitted for consideration of pub-

lication to the IEEE Transactions of Signal Processing.

5.A Appendix: Configurations for

Non-orthogonal FSK

In this appendix we shall present the configurations for the various non-

orthogonal systems presented. For each setup we shall denote the quantity NK,

which represents the total number of tones in the grid to be considered and then

for each of the M symbols in the constellation we shall give the indices of the tones

in the grid. In this convention, the first tone is numbered 1. Thus, as an example,

if NK = 16, it implies that there are 16 equally spaced, but non-orthogonal tones

in the available grid and if the system uses 2 symbols with tones (1, 2, 3, 4) and

(13, 14, 15, 16) then it implies that the system sends 4 tones per symbol, that the

1st symbol sends tones numbered 1,2,3 and 4 from the grid, the second symbol

sends tone numbers 13-16 and that some tones are left unused. The tones in

the grid are uniformly placed across the unit bandwidth, but the tones actually

transmitted per symbol and thus the tones actually used in the constellation may

not be uniformly spaced.
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Table 5.2: Configurations for N = 2, N = 4

Rs NK M Tones/Symb Symbol to Tone Map

1
2

3 3 1 (1), (2), (3)

1
2

4 4 1 (1), (2), (3), (4)

1
2

5 5 1 (1), (2), (3), (4), (5)

1
2

140 5 2 (2,3), (1,71), (36,39), (71,74),(106,109)

1
4

5 5 1 (1), (2), (3), (4), (5)

1
4

6 6 1 (1), (2), (3), (4), (5), (6)

1
4

7 7 1 (1), (2), (3), (4), (5), (6), (7)

1
4

140 7 2 (1,38), (2,68), (10,105), (26,31), (45,112),
(75,113), (81,89)

1
4

140 7 2 (1,38), (2,68), (10,105), (26,31), (45,112),
(75,113), (81,89)

1
4

120 8 2 (1,94), (1,29), (2,62), (74,78), (16,22), (34,95),
(45,50), (64,98)

Table 5.3: Tone to symbol map for N = 16

Rs =
1
16
, NK = 140, # of Symb = 28, Tones/Symb = 2

(1,2) (4,135) (6,128) (7,121) (9,113) (10,106) (12,91) (13,84) (15,69) (16,62)
(19,90) (22,68) (23,61) (27,30) (20,83) (24,54) (33,137) (35,131) (36,124)
(38,109) (39,102) (41,87) (42,80) (43,73) (45,58) (46,51) (65,96) (76,116)

Rs =
1
16
, NK = 140, # of Symb = 32, Tones/Symb = 2

(1,2) (4,135) (5,128) (7,120) (8,113) (10,97) (11,90) (12,83) (14,67) (15,60)
(16,53) (17,46) (18,39) (19,32) (22,103) (25,88) (28,73) (36,78) (43,70) (56,124)
(22,110) (24,95) (26,81) (36,71) (43,77) (49,100) (49,107) (57,117) (63,123)
(64,116) (86,130) (92,136)
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Table 5.4: Tone to symbol map for N = 8

Rs =
1
8
, NK = 140, # of Symb = 28, Tones/Symb = 2

(1,32) (1,17) (3,124) (5,109) (8,95) (10,79) (11,62) (13,45) (16,30) (19,124)
(21,108) (23,91) (26,78) (27,61) (35,125) (38,90) (39,73) (42,57) (47,136)
(50,101) (50,118) (53,86) (64,134) (67,100) (67,117) (82,115) (97,131) (113,128)

Rs =
1
8
, NK = 100, # of Symb = 56, Tones/Symb = 2

(1,24) (1,9) (1,16) (1,36) (1,49) (1,56) (2,87) (3,75) (5,64) (7,93) (9,54) (9,81)
(10,41) (10,74) (11,29) (12,63) (12,89) (13,22) (13,49) (15,37) (17,81) (19,61)
(19,70) (20,93) (21,45) (21,53) (23,78) (24,34) (24,88) (25,68) (26,61) (28,52)
(30,75) (31,83) (33,43) (33,68) (33,91) (35,59) (38,83) (39,76) (40,97) (42,52)
(42,66) (42,91) (46,83) (49,65) (49,73) (51,94) (54,89) (56,66) (56,80) (61,96)
(64,86) (65,75) (70,94) (76,86)

Rs =
1
8
, NK = 100, # of Symb = 70, Tones/Symb = 2

(1,24) (1,9) (1,15) (1,34) (1,41) (1,49) (1,60) (1,68) (1,87) (2,76) (6,21) (7,67)
(7,92) (8,39) (9,52) (11,29) (8,59) (9,83) (10,75) (13,21) (13,47) (15,58) (15,69)
(16,36) (16,88) (18,77) (20,46) (20,65) (21,54) (21,85) (23,41) (23,73) (24,33)
(24,94) (25,62) (27,81) (28,48) (28,70) (29,56) (29,89) (31,78) (33,64) (34,44)
(35,53) (35,86) (36,72) (36,94) (38,61) (39,80) (41,69) (43,88) (44,54) (44,77)
(46,65) (48,85) (49,73) (49,94) (52,81) (53,63) (54,70) (55,92) (57,78) (61,72)
(62,86) (63,94) (68,79) (70,91) (75,86) (78,96) (84,94)



Chapter 6

Conclusions

In this dissertation, we have attempted to outline a few techniques that

we believe will further the cause of more efficient communications. As the data

exchanged daily through our communication networks continues to grow, every

attempt should be made to convey information more efficiently and our work is a

small step towards that goal.

Both in the arena of coherent communications as well as in the area of

non-coherent communications the techniques proposed in this dissertation help to

increase the spectral efficiency, or to have the same spectral efficiency at a lower

transmit power. We have achieved these gains by challenging conventional de-

sign choices and by showing that conventional design choices are not necessarily

optimal. Some of these choices have been made in the past due to simplicity of

implementation, but with the incredible advances of computing power and tech-

nology, the time is right to question some of these choices.

Symbols aligned in time from different transmitters have been the hallmark

of MIMO communication for quite sometime. However, in Chapter 2, we show

that transmitting from the different transmitters offset in time leads to better

performance. Similarly, orthogonal FSK has been the basis of non coherent com-

munications for over 50 years, but again we show in Chapter 5 that by judiciously

choosing to have non-orthogonal tones, not only is the performance improved but

also the designer is presented with many more choices in system design. In both

these areas, our unorthodox choices of symbol timing and frequency spacing leads

159
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to significant performance improvements. We do not claim, however, that the last

word has been said on these topics. There are quite a few areas open for additional

research and we hope future researchers shall explore these boundaries.

In the arena of SNR estimation, we have derived the fundamental lower

bounds that should form the basis of the evaluation of any practical estimator.

Even if the iterative ML estimator presented is deemed to be too computational

complex, other estimators should be compared against the fundamental lower

bounds to see if there is a reasonable tradeoff of simplicity of implementation

relative to performance degradation. The technique for detecting the onset of non-

linearity described in Chapter 3 has been implemented and is currently operational

in a network with about 1million customers.

6.1 Potential Future Research Areas

Some of the potential future areas of research are the following:

• Our work in the area of timing offset MIMO has been primarily limited to

single carrier MIMO. Most modern MIMO systems have been proposed in

the multi-carrier or OFDM framework and timing offset MIMO should be

extended to such systems. In the area of timing offset MIMO techniques,

although we have presented some techniques for a better pulse design that is

explicitly designed for such systems, we have not designed an optimal pulse

shape and this is one potential area of further research.

• In the area of non-orthogonal MFSK, research could go in quite a few dif-

ferent areas. First, a better search technique (or a constructive approach) to

symbol set design could be researched. The problem could be stated as the

following: Given a set of non-orthogonal tones, to determine the best symbol

set with a specified number of symbols. Secondly, in the area of the design of

compressed sensing based receivers, researchers could investigate the optimal

receiver taking advantage of the structure in the codebook. Thirdly, practi-

cal systems have to deal with timing and frequency uncertainty and thus the
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system gains of the proposed system in the presence of practical timing and

frequency uncertainty could be investigated.

In conclusion, we hope our work will prove helpful to other researchers who

share our passion of improving modern human communications. We believe that

there is much yet to be discovered even in these specific areas and our research is

merely “an arch wherethro’ gleams the untravell’d world, whose margin fades for

ever and for ever”1 as we move the boundaries of human knowledge.

1Tennyson, “Ulysses”, pub. 1842



Appendix A

Abbreviations

Abbreviation Full Form

16-QAM 16-ary Quadrature Amplitude Modulation

32-APSK 32-ary Amplitude and Phase Shift Keying

3GPP 3rd Generation Partnership Project

8PSK 8-ary Phase Shift Keying

AGC Automatic Gain Correction

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CDD Cyclic Delay Diversity

CDF Cumulative Distribution Function

CRLB Cramer-Rao Lower Bound

CS Compressed Sensing

DA Data Aided

DOCSIS Data over Cable Service Interface Specification

DVB-S2 Digital Video Broadcasting - Satellite (2nd Generation)

EM Expectation Maximization

FCC Federal Communications Commission

FEC Forward Error Correction

... Continued
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Abbreviation Full Form

FFT Fast Fourier Transform

FIM Fisher Information Matrix

FOCUSS FOCal Underdetermined System Solver

FPGA Field Programmable Gate Array

FSK Frequency Shift Keying

GEO Geosynchronous Satellite

GMM Gaussian Mixture Density

IAI Inter Antenna Interference

IBI Inter Block Interference

IF Intermedia Frequency

IID Independent and Identically Distributed

ISI Inter Symbol Interference

LLR Log Likelihood Ratio

LMMSE Linear Minimum Mean Squared Error

LS Least Squared

LTE Long Term Evolution

MAESTRO Multiple Antenna Enhancement via Symbol Timing Relative

Offset

MC-FSK Multi Carrier Frequency Shift Keying

MCRLB Modified Cramer Rao Lower Bound

MFSK M-ary Frequency Shift Keying

MF-TDMA Multi Frequency Time Division Multiple Access

MIMO Multiple Input, Multiple Output

MISO Multiple Input, Single Output

ML Maximum Likelihood

MLSD Maximum Likelihood Sequence Detector

MMSE Minimum Mean Squared Error

MPSK M-ary Phase Shift Keying

... Continued
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Abbreviation Full Form

MQAM M-ary Quadrature Amplitude Modulation

MT-MFSK Multi-Tone M-ary Frequency Shift Keying

NASA National Aeronautics and Space Administration

NCRLB Normalized Cramer Rao Lower Bound

NDA Non Data Aided

NMSE Normalized Mean Squared Error

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

OSIC Ordered Successive Interference Cancellation

OSTBC Orthogonal Space Time Block Codes

P1dB 1dB compression point

PA Power Amplifier

PAPR Peak to Average Power Ratio

PDF Probability Density Function

PER Packet Error Rate

PHY Physical Layer

QoS Quality of Service

QPSK Quadrature Phase Shift Keying

RF Radio Frequency

RNG-REQ Range Request

SER Symbol Error Rate

SIC Successive Interference Cancellation

SIMO Single Input, Multiple Output

SINR Signal to Interference plus Noise Ratio

SISO Single Input, Single Output

SM Satellite Modem

SNR Signal to Noise Ratio

SRRC Square Root Raised Cosine

... Continued
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Abbreviation Full Form

TDD Time Division Duplexing

TDMA Time Division Multiple Access

UWB Ultra Wide Band

VBLAST Vertical Bell Labs Layerd Space Time

ZF Zero Forcing
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