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1. Introduction

The rapid growth of India's urban population is one of the key
processes affecting economic and urban development in Asia (Kundu,
2011). Studies of India's urban transition often suggest that the present
pace of urbanization is unmatched by any other country (Kundu, 2011;
Swerts, Pumain, & Denis, 2014). Between 2015 and 2050, India's urban
population is projected to increase by 404 million, 30% more than
China's projected urban growth and nearly twice that of any other
country over the same period (UNDESA Population Division, 2014).
The World Bank has estimated India's current demographic shift as the
largest rural-urban migration of this century and the speed of urbani-
zation presents unprecedented managerial and policy challenges for
city planners (Christiaensen, De Weerdt, & Todo, 2013; Ghani,
Goswami, & Kerr, 2012). Although these reports convey the enormous
magnitude of India's urban growth, they have also contributed to an
inaccurate impression that India's urbanization process has come to an
apex. On the contrary, it is still a country that is dominated by villages
and towns. Currently India's level of urbanization is 31% (Census of
India, 2011) compared to China which is more than 50% urbanized
(Swerts et al., 2014). Consequently, it is imperative to understand what
factors influence the process of urbanization in India and where future
urbanization is going to take place.

The magnitude of urbanization in India has been well studied
(Denis, Mukhopadhyay, & Zérah, 2012; Pandey, Joshi, & Seto, 2013;
Swerts et al., 2014; Taubenböck, Wegmann, Roth, Mehl, & Dech, 2009;
Tian, Banger, Bo, & Dadhwal, 2014), but there is only limited in-
formation about the driving forces behind the urban growth. Previous
studies have shown that at the national level factors like natural po-
pulation increase, accessibility, rural-to-urban migration, in-
dustrialization and foreign direct investments have had major impacts
on urbanization (Ablett et al., 2007; Denis & Marius-Gnanou, 2011;
Gupta et al., 2014; Madsen, Saxena, & Ang, 2010; O'Mara & Seto, 2014;
Sankhe et al., 2010). While there are many commonalities among the
factors influencing urbanization throughout the country, it is important
also to identify local or regional drivers to better understand the evo-
lutionary process (Swerts et al., 2014). Land governance in India is a

complex interaction of national and state level political government
and multi-level planning bodies (Nagendra, Sudhira, Katti, &
Schewenius, 2013; Sud, 2014). Policy is one of the crucial instruments
that affects urban growth (Meyfroidt, 2016; Verburg et al., 2015). Ex-
cept for a few national level urban policies, most factors that affect
Indian urbanization are either local or regional. Individual state gov-
ernments play a huge role in attracting new investments and reforming
local policies to foster economic and urban development. As a result,
there are vast disparities in the level of urban development throughout
the country.

For the last two decades urban simulation models have been suc-
cessfully used to understand the processes and patterns of urbanization
(Magliocca et al., 2015; Paegelow, Camacho Olmedo, Mas, & Houet,
2013; Santé, García, Miranda, & Crecente, 2010). Among different
types of simulation models, agent-based models are better for capturing
the complex nature of social and land use systems, but cellular auto-
mata (CA) models have been arguably more popular due to their re-
lative ease of application (Agarwal, Green, Grove, Evans, & Schweik,
2002; Batty & Xie, 1994). The SLEUTH model is one of the most popular
CA- based urban simulation model and has been successfully used in
many cities around the world (Chaudhuri & Clarke, 2013; Clarke,
Hoppen, & Gaydos, 1997). In addition to the advantages of being a CA
model, SLEUTH's open-source environment and ability to produce good
results in a data sparse environment, have made its application popular.
The SLEUTH model simulates and predicts urban growth based on the
trend generated from the input historical data. In addition to the ac-
curacy of the input layers, the model predictions are more reliable if the
input data is from the recent past, predicted images are for the near
future and the region being simulated has a medium to slow rate of
development (Chaudhuri & Clarke, 2014). However, if the region being
simulated has a high growth rate or the predictions are projected too far
into the future then the accuracy decreases (Chaudhuri & Clarke, 2014).
This is a serious challenge if the model is used to simulate cities in fast
growing developing nations.

The objectives of this study were three-fold: (i) to evaluate the re-
lationship between urbanization and its drivers in Kolkata; (ii) to
evaluate the need to integrate urban driver information in the SLEUTH
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urban simulation model; and (iii) to assess different approaches to in-
tegrate this information into the SLEUTH model to better forecast fu-
ture urban growth. To address the first objective, a spatially lagged
regression model was used (Anselin, 2013). To address the second and
the third objectives, the SLEUTH model was run under different sce-
narios within which the standard SLEUTH simulation results were
compared with the results generated from model runs that were mod-
ified by integrating the regression result. The model runs were then
compared to draw conclusions on the performance and success of each
run.

This study focused on the Kolkata Urban Agglomeration (hereafter
called Kolkata UA). The Indian city system is not strongly hierarchical,
but the spatial distribution of urban growth shows the historical dom-
inance of the megalopolises of Delhi, Mumbai and Kolkata. Post-in-
dependence, Delhi and Mumbai continued to flourish and are well es-
tablished as national powerhouses, but Kolkata's urbanization has
lagged behind (Brar et al., 2014). Kolkata UA is the third largest
megalopolis in India with a population of 14 million (Census of India,
2011). Since the late 1970s, state government has focused more on land
reforms and agricultural development rather than industrialization. As
a result, urban and economic development is plagued by inefficient
land governance, defunct industries, highly politicized labor unions,
and an unfriendly political environment for businesses and new in-
vestors (Guin, 2017; Roy, 2009; Sud, 2014). In the last decade, political
changes at the state-level initiated new reforms to attract investment
but their impact is still unknown. Thus, it can be said that urban growth
in this region has been almost an organic process. Therefore, under-
standing the driving factors behind relatively slow but steady urban
growth will provide better insight on the diverse process of urbaniza-
tion in India.

The SLEUTH model simulates urban growth and land use change
accurately but it does not incorporate socio-economic, demographic or
ecological factors affecting the urbanization. In the last two decades,
the modeling community has adapted SLEUTH toward different ap-
proaches to satisfy the respective goals of their studies (Chaudhuri &
Clarke, 2013; Clarke, 2008). The three most common approaches used
to adapt SLEUTH are: (1) coupling SLEUTH's Urban Growth Model
(UGM) with other physical simulation models, regression based socio-
economic models, and with multi-criteria analysis (Jantz, Drzyzga, &
Maret, 2014a; Leao, Bishop, & Evans, 2004; Mahiny & Clarke, 2012;
Rienow & Goetzke, 2015; Srinivasan, Seto, Emerson, & Gorelick, 2013);
(2) using scenarios to evaluate alternate futures (Chaudhuri & Clarke,
2012; Onsted & Clarke, 2012); and (3) changing the model parameters,
such as changing critical slope values, self-modification parameters,
and custom growth parameters instead of using calibrated values to
predict future growth (Clarke, Gazulis, Dietzel, & Goldstein, 2007; Leao
et al., 2004). All these methods were applied in cities in different parts
of the world and were successful in achieving their respective goals.
Although 13 metrics are generated by the model to evaluate how ac-
curately the input data is simulated, other than creating an uncertainty
layer, the model does not provide any independent measure for the
accuracy of the predicted output. A commonly used approach to eval-
uate the accuracy of the predicted maps is by conducting a pixel-by-
pixel comparison between the simulated map and the observed map
(Chaudhuri & Clarke, 2012). This second level of accuracy assessment is
not always applicable for studies that focus on scenario-based mod-
eling, however this is an important step for studies that aim to evaluate
the drivers of growth and that then use the information for future
planning and decision making.

The remaining sections of this paper follow the structure as de-
scribed below. Section 2 provides a context for urbanization in India.
Section 3 describes the study area, the physical location, administrative
structure, socio-political scenario, and historical urban growth of the
region. Section 4 provides a background on the factors influencing ur-
banization. This section is further subdivided into 4.1, that describes
the data and methodology necessary to model drivers of urbanization,

and 4.2 that discusses the results. Section 5 provides background in-
formation about the SLEUTH model, and describes the different ap-
proaches adopted to incorporate local information in the existing lit-
erature. This section is further subdivided into 5.1 that describes data
preparation and experiment set-up for SLEUTH modeling, 5.2 that de-
scribes the calibration, prediction, and validation of results from dif-
ferent approaches, and 5.3 that analyzes the results generated from the
different approaches and the performance of the model. Finally, the
paper concludes with a discussion section.

2. Urbanization in India

After 1990, economic reforms led to a rapid increase in India's
formal economy. In 2005, the Indian government launched the
Jawaharlal Nehru National Urban Renewal Mission (JNNURM) under
which local and the national level policies were reformed to promote
growth and development of 63 cities nationwide. A decade later the
mission was deemed unsuccessful (Batra, 2009; IIHS, 2015;
Sivaramakrishnan, 2011) but nevertheless it initiated a paradigm shift
from a long tradition of rural focused development to urban develop-
ment as a pathway to economic and industrial growth (Batra, 2009).
Unlike older western cities that developed over centuries, the newer
city regions in India are developing within a single decade.

Studies have shown that, unlike in China, Indian cities are experi-
encing horizontal growth with little vertical growth (Frolking,
Milliman, Seto, & Friedl, 2013). This increase is happening at the cost of
prime agricultural land, agrarian towns and villages mostly in peri-
urban areas (Chaudhuri & Mishra, 2016; Seto, Fragkias, Guneralp, &
Reilly, 2011; Taubenböck et al., 2012). The fast pace, scale and com-
plexity of urbanization led to unmanaged growth and is likely to con-
tinue to impact negatively both to the local and global-level environ-
ment in the forms of biodiversity loss, energy use and GHG emissions
(Ekholm, Krey, Pachauri, & Riahi, 2010; Gurney et al., 2015;
Marcotullio, Sarzynski, Albrecht, & Schulz, 2012; O'Neill, Ren, Jiang, &
Dalton, 2012). The research literature shows that in cities like Pune,
Delhi, Surat, and Kolkata, rapid urban growth has resulted in a dis-
cernible urban heat island signature (Chakraborty, Kant, & Mitra, 2013;
Chaudhuri & Mishra, 2016; Deosthali, 2000; Sharma & Joshi, 2014) but
regionally it varies based on the type of land cover, distance from a
major urban area, and size of the urban area (Chaudhuri & Mishra,
2016). Especially in tropical countries like India, the high heat chal-
lenges become multiplied in urban areas with overflowing population,
poverty and poor informal infrastructure (Kovats & Akhtar, 2008). This
rapid growth has resulted in uncontrolled and inefficient infrastructural
development that threatens the sustainability of the environment due to
a loss of biodiversity (Nagendra et al., 2013), deforestation and frag-
mentation (Nagendra, Sudhira, Katti, Tengö, & Schewenius, 2012), an
increase in surface temperature and heat fluxes, degradation of the air
quality, an increase in greenhouse gas emissions, variability in rainfall
(Kishtawal, Niyogi, Tewari, Pielke, & Shepherd, 2010; Mitra, Shepherd,
& Jordan, 2012; Niyogi et al., 2007), and water quality (Aggarwal &
Butsch, 2011; Mohan & Kandya, 2015; Nagendra et al., 2013; Rao,
Jaswal, & Kumar, 2004; Sharma, Chakraborty, & Joshi, 2015; Sharma,
Ghosh, & Joshi, 2013; WHO, 2014) and an increase the vulnerability of
the urban area to extreme weather related events (Parikh, Jindal, &
Sandal, 2013; Revi, 2008; Suriya & Mudgal, 2012).

Simulation based modeling has been used in different parts of the
world to evaluate the impacts of urbanization on the environment. If
the important drivers of urbanization can be captured by simulation
modeling, the model forecasts will be able to produce better results.
However, for a region like India where the availability of geospatial
data is limited, it is difficult to best capture the different factors that
affect urban growth. This study used openly available, census-based
socio-demographic and locational factors and evaluated their relation-
ship with urbanization. It is assumed that the selected variables will
serve as a useful proxy for the drivers of urbanization. The present study
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used three scenarios to understand the need to integrate urban driver
information into SLEUTH modeling. In the first scenario, the SLEUTH
model was run using a default dataset which included 4 urban layers, 2
land use and transportation layers, 1 topographic slope, excluded, and
hillshade layers, respectively. The excluded layer in this scenario in-
cluded water bodies and reserved forests. In the second scenario, two
experiments were run to integrate urban driver information, first via a
modified excluded layer, and second via a modified slope layer. It is
hypothesized that the modeling conducted using urban driver in-
formation will be better able to capture the impacts of urbanization,
which will show in more accurate calibrations and more meaningful
future simulations.

3. Study area

The Kolkata UA is located in the eastern part of India and is 25,138
sq.km in area (Fig. 1). The spatial extent of this study captures a bigger

area than the current footprint of the urban agglomeration to better
capture the spatial heterogeneity of urbanization, and to anticipate
future expansion. Situated in the low-lying coastal zone adjacent to the
Bay of Bengal, this region is part of the Ganges-Brahmaputra delta in
India and has one of the highest densities of population in India (Census
of India, 2011; Chaudhuri & Mishra, 2016). Administratively, the
footprint of the study area corresponds to nine districts (administrative
sub-division of a state) in the state of West Bengal. Historically, the core
urban area of Kolkata grew in tandem with its neighboring urban
centers on both banks of the Hooghly River (Mukherjee, 2011). Post-
independence, to restrict unplanned growth, the Kolkata Metropolitan
Development Authority (KMDA) introduced the Basic Development
Plan (BDP) (1966–86) that established a bi-polar growth model with
the urban centers of Kolkata in the south and Kalyani in the north as
two growth poles (Mukherjee, 2011). When Kalyani failed to attract
growth during that time period, KMDA moved to a multiple-nuclei
growth model with a number of urban centers within the region. This

Fig. 1. Location of the study area.
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strategy helped to decentralize urban growth and resulted in land use
changes in the peri-urban areas, primarily by converting prime agri-
cultural lands and rural areas into urban settlements (Chaudhuri &
Mishra, 2016; Pandey et al., 2013). The urbanization pattern in this
region is similar to McGhee's Desakota model (type 3). The region ex-
perienced high population growth, decline in the proportion of popu-
lation engaged in agricultural activities, concurrent growth of small to
medium-sized industries, and slower overall economic growth (Guin,
2017; Mondal, Das, & Dolui, 2015; Mukherjee, 2011; Sud, 2014). Un-
like the Delhi and Mumbai urban agglomerations, the growth of Kolkata
UA does not share the same degree of influence of colonial legacy
(Guin, 2017). However, more than 300 years of urbanization, projected
high economic growth (Brar et al., 2014), and the potential threat of
sea-level rise (Satterthwaite, 2007) provide an opportunity to explore
the local and regional drivers of urbanization and the future patterns of
urban growth.

4. Drivers of urbanization in Kolkata UA

To understand the impact of urbanization, an evaluation of the in-
fluence of growth factors is important. Better insight on the driving
forces of urbanization will be helpful for effective formulation and
implementation of sustainable land use policies that will promote
economic growth and minimize urbanization's environmental impacts
(Seto & Kaufmann, 2003). In 2012, 54 metropolitan cities and their
hinterlands (65 districts) accounted for 40% of India's GDP (Brar et al.,
2014). These metropolitan regions throughout the country are diverse
in their present and projected future growth rates. Existing literature
shows that the economic and urban growth of these metropolitan re-
gions are determined by geographical location, socio-demographic
factors, historical trends of urbanization, economic status, and state-
level policies that attract growth and infrastructural development (Brar
et al., 2014; Meiyappan et al., 2017; Vishwanath et al., 2013). A 2014
McKinsey report (Brar et al., 2014) on the future of India's economic
geography ranked the state of West Bengal as a ‘Performing’ state with
per capita GDP (2011) between 0.7 and 1.2 times India's average.

Existing scholarship on urban growth uses biophysical factors, social
factors, economic factors, and spatial policies as the drivers of urbani-
zation (Li, Zhou, & Ouyang, 2013; Mondal, Das, & Bhatta, 2017;
Poelmans & Van Rompaey, 2010; Shafizadeh-Moghadam & Helbich,
2015; Verburg, de Nijs, Ritsema van Eck, Visser, & de Jong, 2004).
Both, locational and socio-demographic factors provide a measure of
urban growth suitability and relative accessibility in a region. Based on
the existing literature, this study evaluated selected locational and
socio-demographic factors that have affected urban growth in the
Kolkata UA (Brar et al., 2014; Meiyappan et al., 2017; Mondal et al.,
2015). In regional scale spatial modeling, often the underlying factors
involved in land change and the complexity of the system are not
captured, either due to the lack of quality data or to follow the principle
of Occam's razor (Engström et al., 2016). The lack of any or good
quality spatio-temporal data is the biggest challenge in this region. The
locational and socio-demographic factors used in our study were es-
sentially the proximate factors to underlying causes that can be quan-
titatively mapped using open-source datasets and that represented
spatial variations that attract or inhibit urban growth (Verburg,
Soepboer, Espaldon, & Mastura, 2002).

The locational factors in this study included physical proximity to
the city of Kolkata, Class 1 towns, railway stations, roads with varied
degrees of centrality, and the Hooghly River. Urban growth in this re-
gion occurred mostly along the peri-urban areas of Kolkata and in class
1 towns (Shantipur, Krishnanagar, Ranaghat, Barasat, Bhatpara, Haldia,
Rajpur-Sonarpur, Bongaon, Baidyabati). Over the years, the urban
centers of Kolkata and class 1 towns grew independently and some
merged with each other to become the Kolkata UA. For example, during
the study period (1989–2010), the class 1 towns used in this study
experienced urban growth ranging between 7.18% (Haldia) and

21.88% (Bhatpara) (Chaudhuri & Mishra, 2016). These class 1 towns
also act as local markets and are the destination for rural migrants
(Seto, 2011). Thus, physical proximity to these towns created a higher
potential for urbanization. Historically, this region showed a clear trend
of urban development along the river (Chaudhuri & Mishra, 2016).
Especially, simultaneous growth of Howrah city on the other side of
river, industrial growth and infrastructural development helped to
favor urban growth near the river. Spatial proximity to railway stations,
bridges and roads represent higher accessibility that makes an area
favorable for urban growth. The Indian railway system is considered as
one the key factors behind industrial development. Locations near
railway stations have always attracted large-scale development in the
peri-urban and rural areas in India (Bogart & Chaudhary, 2012;
Vishwanath et al., 2013). In terms of the influence of roads, this study
used the relative level of connectivity of individual roads as a factor
attracting growth. Existing literature showed the centrality index as a
determinant of accessibility, and that roads with higher centrality have
a positive relationship with land use change (Chaudhuri & Clarke,
2015; Levinson, 2012; Levinson & Yerra, 2005).

The socio-economic factors included in this study, such as popula-
tion density, proportion of workers involved in primary activity and the
proportion of illiterate population, were also shown to affect urbani-
zation (Chauvin, Glaeser, Ma, & Tobio, 2017; Denis & Marius-Gnanou,
2011; Gupta et al., 2014; Mondal et al., 2015; Sankhe et al., 2010).
According to the Census of India, places with a municipality, corpora-
tion, cantonment board or notified town area committee, population
density of at least 400 people per sq.km with a minimum population of
5000 and 75% and above male main working population engaged in
non–agricultural pursuits, are designated as ‘urban areas.’ Since there
are no reliable data on the boundaries of the local administrative units,
population density and proportion of main workers in non-agricultural
activities were used. The Census of India defines main workers as
workers who worked for more than 6months (180 days) in the re-
ference period (Goverment of India, 2011). The locations indicating a
higher proportion of non-agricultural workers and more literate popu-
lation also corresponds to the areas with higher tertiary economic ac-
tivities, industrial development, and thus a relatively higher potential
for future urbanization.

Land use policies, migration and investments are three crucial fac-
tors that affect urbanization as well, but they were not included in this
study. A lack of regional urban plans and the informality of existing
restrictions on agricultural land conversion make land use policy an
ineffective tool to rationally plan and manage land in this part of the
world (Roy, 2009; Sud, 2014). For migration, the lack of detailed data
on origin-destination of rural-urban migrants made it difficult and in-
effective to use in this study. For investments, both domestic and for-
eign, the publicly available data are mostly at the national level and are
not ideal for spatial modeling at the regional or urban agglomeration
level.

4.1. Data and methodology for modeling drivers of change

The digital map shapefiles of class 1 towns, railway stations, roads,
rivers, and administrative boundaries were retrieved from the DIVA-GIS
data repository (www.diva-gis.org/Data) and were manually cleaned
after crosschecking with high-resolution satellite imagery. In this study,
the relative level of road connectivity was used to provide a measure of
accessibility. The study area lacks a consistent source of road data from
the Indian government. To develop consistent road data, data from the
DIVA-GIS, Open-street map and high resolution imagery were com-
bined and manually verified. Due to the high level of uncertainty in
secondary and local roads, only the major roads, state highways, and
national highways were used to develop the road dataset. Connectivity
of a road was calculated using degree centrality in a dual graph ap-
proach, which measures the number of other roads connected a road
(Fig. 2) (Porta, Crucitti, & Latora, 2006). Thus, if a road has many other
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roads connected, it has higher degree centrality and vice versa. This
also means, that roads which are long, such as national highways,
connecting one city to another will have higher connectivity and local
roads which are shorter in length have lower degree centrality. It
should be noted that individual roads were defined by the road names
used in the databases and not by their spatial syntax. Dual graphs are
well documented in Porta et al. (2006) and the methodology to calcu-
late degree centrality is explained in Chaudhuri and Clarke (2015). It
was hypothesized that areas close to roads with higher centrality will
have higher influence on urban growth and vice versa. Further, the
centrality values were categorized into three classes to represent high,
medium, and low road centrality (Fig. 2). To some extent, the roads
with high centrality coincided with mostly national highways and some
state highways, roads with medium centrality with the majority of the
state highways, and low centrality were the major roads of each district,
towns and class 1 cities.

The socio-demographic data on population density (popden), pro-
portion of workers involved in primary activity (prop_pwork) and
proportion of illiterate population (prop_ill) were retrieved from the
2011 tehsil-level (sub-division of a district) population enumeration
dataset from the Census of India (Census of India, 2011) and converted
into spatial format for mapping. The seven locational factors that were
used to develop spatial proximity surfaces based on linear distance from
each feature were: municipal boundary of Kolkata (dkol), class 1 towns
(dclass1), railway stations (drail), the Hooghly river (driv), and roads
with high (d_hird), medium (d_medrd), low (d_lwrd) centrality. All
raster layers were at 100m spatial resolution and were normalized so
that they were comparable with the socio-economic variables. 100m
spatial resolution was used to make it compatible with the input data
used in the SLEUTH model. In this study, the proportion of the urban
area was used as dependent variable and was represented by the

proportion of impervious surface (W_perc_urb) in 2010. This study used
the 2010 Global Man-made Impervious Surface (GMIS) Dataset from
Landsat developed by Brown de Colstoun et al. (2017) as impervious
surface data. The GMIS dataset (30m) was resampled to 100m spatial
resolution to match the other datasets.

To better capture the interaction between urbanization and the
drivers of urbanization, a spatial lag model was used (Anselin, 2013). A
spatial lag model is formed when in a standard linear regression
equation, spatial dependence is incorporated in the form of a spatially
lagged dependent variable (Wy) (Anselin, 2013). In this study, the de-
pendent variable that represented the proportion of impervious surface
was spatially autocorrelated. Thus, a weighted spatial lag model was
used in order to understand the type and strength of interactions be-
tween the dependent variable and the ten locational and socio-demo-
graphic independent variables, using the maximum likelihood estima-
tion. A spatial lag model (also known as mixed regressive or spatial
autoregressive model) can be expressed as:

= + +y ρWy Xβ ε (1)

where y is a vector of observations of a dependent variable, ρ is a spatial
autoregressive coefficient, Wy is the corresponding spatially lagged
dependent variable for weights matrix W, X is a matrix of observations
of the independent variables, β is a vector of regression coefficients, and
ε is a vector of error terms (Anselin & Bera, 1998).

4.2. Results from regression modeling

Table 1 summarizes the results from the regression modeling.
Among the proximity-based independent variables, proximity to a
railway station had a significant higher negative influence than proxi-
mity to class 1 towns and Kolkata. Proximity to the river had insignif-
icant weak positive influence. For roads with three categories of cen-
trality, proximity to roads with low centrality had a significant strong
negative relationship compared to roads with high centrality. Proximity
to roads with medium centrality had a significant positive relationship
and the level of influence was relatively higher than roads with high
centrality and lower than roads with low centrality. Among the socio-
demographic variables, population density, proportion of primary
workers and proportion of illiterate people had significant negative
relationships, but the influence of population density was higher than
the other two (Table 1). The negative relationship of population density
indicated sprawl in the peri-urban areas.

Overall, the higher proportion of urban area was highly influenced
by closeness to railway stations, class 1 towns and Kolkata (in order of
strength of influence). The city of Kolkata grew more organically by
transforming the peri-urban areas and agricultural land around its
edges to accommodate urban development. The class 1 towns also grew
over time, and those adjacent to the Kolkata municipality merged to
form the Kolkata UA. In terms of roads, proximity to roads with low
centrality had a higher influence than roads with high or medium levels

Fig. 2. Map of road centrality.

Table 1
Regression model results.

Variables Coefficient Std. error Z-value Probability

dkol −0.00387600 0.000236448 −16.3926 0.00000
dclass1 −0.00532191 0.000387118 −13.7475 0.00000
drail −0.01003170 0.000680670 −14.7380 0.00000
driv 0.00021016 0.000445525 0.4717 0.63712
d_hird −0.00970842 0.000475560 −20.4147 0.00000
d_medrd 0.01749700 0.000526286 33.2462 0.00000
d_lwrd −0.03126890 0.000723364 −43.2271 0.00000
popden −0.07208720 0.000454248 −158.6960 0.00000
prop_pwork −0.01116070 0.000244633 −45.6222 0.00000
prop_ill −0.01313360 0.000344031 −38.1755 0.00000
CONSTANT 9.32801000 0.042991900 216.9710 0.00000
W_perc_urb 0.77205300 0.000508512 1518.2600 0.00000
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of centrality. For this study area, the roads which show low centrality
were major primary roads within a district or town. The roads with
medium centrality correspond to some major roads and mostly state
highways and roads with high centralities mostly correspond to na-
tional and some state highways. The major primary roads with low
centrality are mostly found in predominantly rural or suburban dis-
tricts, outside the core urban area of Kolkata UA. These roads provide
accessibility to secondary and tertiary roads in their respective areas.
Studies on road centrality and land use at the city level suggested that
high centrality values attract growth (Omer & Goldblatt, 2016; Rui &
Ban, 2014). Our study showed that at the regional level and outside the
Kolkata UA, higher proportions of urban areas were found in proximity
to roads with lower centrality. Most of the national highways outside
the urban agglomeration were built through the agricultural fields
connecting towns and cities throughout the area. Thus, urban devel-
opment is only found along the parts of national highways that are
closer to class 1 towns and Kolkata UA, but not in other areas. India is
not a car-based society yet, so areas close to national highways have
rarely attracted growth. Urban land use in India is highly hetero-
geneous. The majority of the population live close to their workplace.
Within the Kolkata UA, 80% of all trips for commuting are by public
transit (Cervero, 2013). Some proportion of the population that com-
mutes longer distance uses local trains, which is why there is high in-
fluence of proximity to railway station. National highways with higher
centrality are mostly used for commercial purposes and not so much for
daily commutes. However, there is a severe lack of literature that
evaluates the relationship between travel behavior and urban structure
in this region.

Based on the results, a predicted raster surface of the proportion of
impervious surface was generated. The predicted surface from the re-
gression is termed “urban attraction” based on the assumption that the
proportion of predicted imperviousness corresponds to how attractive/
unattractive that location is for urbanization. This layer was used in the
SLEUTH modeling as both the exclusion and slope layers in experiments
1 and 2 respectively, as discussed in the next section. The advantage of
using the predicted layer over the original GMIS dataset in SLEUTH
experimentation is that the predicted layer provides an estimate of the
proportion of impervious surface for both currently partially im-
pervious and non-impervious pixels in the region. These values are
based on the relationship with the independent variables as established
in the model. Thus, the higher proportion of modeled impervious sur-
face translates to a higher potential of urban growth and vice versa.
Although there are no future estimates of data available for the socio-
demographic variables used in this study, it is assumed that the nature
and type of their relationship with urban growth will remain the same
in the future.

5. SLEUTH model for urban simulation

Clarke's Urban Growth Model was tightly coupled with the
Deltatron Land Use Change Model to develop the SLEUTH model, both
based on cellular automata. The urban areas inside SLEUTH follow a set
of transition rules that influence the changes of cell states within a set of
nested loops (Clarke et al., 1997; Clarke et al., 2007). The model uses
slope, land use, exclusion, urban extent, transportation and hillshade
layers and sequential brute force calibration using behavioral rules to
calibrate the model based on observed past changes (Silva & Clarke,
2002). The model calibrates with historical data to derive a set of five
control parameters (dispersion coefficient, breed coefficient, spread
coefficient, slope resistance factor and road gravity) that best capture
the past urbanization trends (Chaudhuri & Clarke, 2012). The values of
these coefficients influence the growth rate that determine the degree to
which each of the four growth rules (spontaneous, diffusive, organic,
and road influenced growth) influence urban growth within the system
(Chaudhuri & Clarke, 2012). Additionally, there is a set of meta-level
rules called the ‘self-modification’ rules, which respond to the aggregate

growth rate and change the growth control parameters in each of the
growth cycles accordingly (Silva & Clarke, 2002) during periods of
rapid or slow growth. The final calibration process generates an optimal
metric called OSM (Dietzel & Clarke, 2007) that is used to select the
final set of control parameters that best captures the observed change.
These are then used to forecast future urban growth. Details about the
calibration methods and applications of the model are well documented
(Chaudhuri & Clarke, 2013; Clarke, 2008; Silva & Clarke, 2002). The
SLEUTH urban growth model (Clarke et al., 1997) has been successfully
applied in various parts of the world (Chaudhuri & Clarke, 2013), in-
cluding in India (Chakraborty, Wilson, & Kashem, 2015; Kantakumar,
Sawant, & Kumar, 2011; Srinivasan et al., 2013).

Being a stochastic model, SLEUTH does not need location specific
driving forces to predict future urbanization. The generic nature of the
model makes it globally applicable, but also demands close attention to
the interpretation of its results. In the excluded layer of the SLEUTH
model, the user can control where urban growth may occur in the fu-
ture. The values in the excluded layer vary from 0 to 100, where 0
indicates that the pixel is available for urbanization and 100 where
urbanization is completely excluded. Additionally, the excluded layer
also allows partial or total exclusion of areas where urbanization may
be restricted. A number of studies on model coupling and scenario-
based modeling have successfully used weighted excluded layers for
impact assessment and growth trend comparison under different sce-
narios (Chaudhuri & Clarke, 2012; Jantz, Drzyzga, & Maret, 2014b;
Onsted & Chowdhury, 2014).

Slope is another layer that highly influences urban growth. Slope is
one of the most important parameter for the UGM as part of the
SLEUTH model due to its origin as a wildfire spread model (Clarke,
Brass, & Riggan, 1994). All four types of urban growth captured by the
model (spontaneous growth, new spreading centers, edge growth and
road-influenced growth) are influenced by the slope parameter. Lower
slopes are easier to build on than the steeper slopes, and eventually it is
impossible to build when a critical slope value is reached, often around
25–30% slope. If the local slope (slope (i,j)) is below the critical slope,
the slope coefficient determines the weight of the probability that the
location (pixel) may be built upon (Clarke et al., 1997). Based on local
knowledge, the user can determine a case specific critical slope value or
can use the default value of 21%. The relative pressure to build upon
steeper slopes is dynamic and related to the proportion of flat land
available and the steeper area's proximity to an already established
settlement (Clarke et al., 1997; Silva & Clarke, 2002). A recent suc-
cessful application used a modified slope layer to understand the effect
of uncontrolled urban growth in developing regions on environmental
degradation (Li et al., 2018). The study used habitat quality informa-
tion from the InVEST model to replace slope and assess the impact of
urbanization.

The topographic slope layer is not effective when modeling urban
areas that are located in flat land with no natural physical barriers that
restrict urban growth. The topographic elevation of Kolkata UA varies
from 0 to 10m above mean sea level and therefore slope does not re-
strict urban growth. The study first ran the SLEUTH model with a
standard excluded and topographic slope layer to show the need to
integrate the urban attraction layer to improve simulation results. Then
the study experimented with integrating urban attraction layer, first via
the excluded layer and secondly via the topographic slope layer to as-
sess their effectiveness. In the first experiment (experiment 1), the
urban attraction layer from the regression result was integrated with
the excluded layer (which also contained Sundarban Forest and wa-
terbodies) and the slope layer represented the topographic slope, and in
the second experiment (experiment 2), the urban attraction layer was
used as the slope layer and the excluded layer only consisted of the
Sundarban Forest and waterbodies. In the SLEUTH model, the excluded
layer uses weights from 0 to 100 and forecasts linear urban growth
during the prediction process, but the slope layer has both non-linear
weighting and a critical level above which there is no influence. It is
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hypothesized that the urban growth predicted by using urban attraction
via the slope layer will be more spatially restricted and temporally
delayed than that predicted by using the excluded layer.

5.1. SLEUTH data preparation and experiment set-up

The study area footprint aligns with part of the Landsat satellite
image tiles 138/44 (path/ row) and 138/45 (path/ row) and covers an
area of 25,137.9 sq.km. The present study used land use and land cover
(LULC) maps from 1989, 1999, 2005, and 2010 produced by a previous
study (Chaudhuri & Mishra, 2016) to develop the 2 LULC and the
minimum 4 urban layers required by the SLEUTH model. The 2011 and
2017 urban extent maps were produced for accuracy assessment of the
predicted images. The overall accuracy of the classified land use images
varied from 80%–87%. The LULC classes included urban (high density
built-up area with concrete surface), rural (low density built up area
with either concrete or red-roof surface and intermittent patches of tree
cover), agriculture (cropland, plantation and fallow land), forests
(natural forest, swamps, mangroves, and forest plantations), barren
(includes salt affected land, coastal and riverine sandy areas, and
scrubland), and water (inland wetlands, ox-bow lake, cut off meander,
waterlogged areas, rivers, streams, canals, aquaculture, lakes/ponds,
and reservoir/tanks). The topographic slope and the hillshade layers
required for modeling were developed from SRTM data. Finally, the
road layers of 2004–2005 and 2010 were developed from existing
shapefiles, and onscreen digitization using high-resolution satellite
basemaps in ArcGIS 10.5 desktop. Given the large spatial extent of the
study area and processing power required by the SLEUTH model, all
raster layers were resampled to 100m spatial resolution with an image
size of 1575×2765 (rows and columns). All input data except the
urban attraction layer are shown in Fig. 3.

First, SLEUTH was run using a standard dataset. The excluded layer
only included water bodies and Sundarban reserved forest, and the
slope layer included the topographic slope of the study area. This model
run will be henceforth termed the unmodified SLEUTH run. Next, in
experiments 1 and 2, the urban attraction layer was integrated with the
SLEUTH model. The urban attraction layer showed the relative level of

attraction in each pixel. Thus, the lower values mean low-level of at-
traction and vice versa. Both the slope and excluded layer in SLEUTH
takes values of 0–100, where 0 in both layers represents favorable
pixels for urbanization. In experiment 1, the pixels values of predicted
output from the spatial lag model were inverted and then scaled to
create the excluded layer. Eleven classes were used at an increment of
10 units, with the last class of 100 including the forest and water bodies.
Jantz, Goetz, Donato, and Claggett (2010) showed that the values
below 50 in an excluded layer act as growth attractors whereas the
values above 50 act as growth inhibitors. Following the same argument,
the excluded layer in this study was categorized such that any value
above 50 in the excluded layer corresponds to the values zero and
below in the regression output. Thus, the values above 50 in the ex-
cluded layer represent very low or no relationship based on socio-de-
mographic and locational factors. Thus, the areas with lower values in
the excluded layer (0–50) have less resistance and therefore attract
urbanization and vice versa (Fig. 4). In addition to the urban attraction/
prohibition, the water bodies and Sundarban reserve forest were com-
pletely excluded from development in experiment 1. The slope layer in
experiment 1 represented topographic slope, with the default critical
slope value of 21%. In experiment 2, the scaled urban attraction layer
was used to replace the topographic slope layer (Fig. 4). In this case, the
low values represent low resistance to urban development and thus are
more likely to attract development compared to the less attractive areas
with higher resistance, until the simulation reaches the critical attrac-
tion value at which urban growth is impossible. The relative pressure to
build upon a location that is unattractive for development is dynamic
and related to the proportion of attractive locations available and the
unattractive location's proximity to an already established settlement.
The topographic slope of a region is generally unchanged, whereas the
urban attraction layer was developed based on the socio-demographic
and location factors of 2010. The locational factors, except for the road
centrality, did not change much in the region. The socio-demographic
factors of each of the districts did change, such as increase in population
density and decrease in proportion of illiterate people and primary
workers. However, the relative spatial distribution of socio-demo-
graphic factors remained unchanged. It was hypothesized that inclusion

Fig. 3. Input data for the SLEUTH model (other than the urban attraction layer).
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of the urban attraction information in slope layer will be able to capture
the dynamics of socio-demographic and locational factors and that the
future growth will be guided by spatial variability of the degree of at-
tractiveness of each pixel. The excluded layer for experiment 2 included
only water bodies, and Sundarban reserve forest.

5.2. Calibration, prediction, and validation

For all model runs, three-stage brute force calibration was applied,
the top parameter combinations were selected and averaged, and pre-
dictions run for 2011–2030 time period with 100 Monte Carlo itera-
tions. In the unmodified SLEUTH run, the final step of calibration
generated an OSM value (Dietzel & Clarke, 2007) of 0.61, and the
coefficient values used for prediction were: Diffusion= 30; Breed=33;
Spread=90; Slope=14; Road gravity= 25. In experiment 1, the OSM
value for the final calibration was 0.73. The coefficient values used for
prediction were: Diffusion=100; Breed=100; Spread=100;
Slope= 76; Road gravity= 55.

In experiment 2, the slope-related coefficients were replaced by
urban attraction values during calibration (Li et al., 2018). The model's
default value of 0.1 was used for sensitivity to urban attraction. In this
study, the critical urban attraction value was set through a trial and
error process, testing with values ranging from 87 to 100. In the urban
attraction layer, the values 87–100 corresponded to the values of zero
and lower in the predicted output of the regression modeling. Thus, any
value of 87 and above in the urban attraction layer meant very low or
no potential to attract urbanization based on the relationship with
socio-demographic and locational factors. From the trial and error
process, the value 100 generated the best fit model, and was selected as
the critical attraction value. Since the pixel values in the urban

attraction layer ranged from 0 to 100, therefore a critical urban at-
traction value of 100 means that all pixels have a potential to urbanize
within the prediction period, if the conditions are suitable. For the
present study area this means that the attraction to urbanize in an area
will decrease as the values in the urban attraction layer get higher, but
an unattractive location can be urbanized if there are no attractive lo-
cations available through self-modification. The final step of calibration
in experiment 2 generated a lower OSM value of 0.48. The coefficient
values used for prediction were: Diffusion=95; Breed= 95;
Spread= 95; Urban Attractiveness= 1; Road gravity= 19. The first
three values are high, as before, which reflects the rapid rate and
sprawled nature of the growth. The prediction was run twice with
critical attraction values of 100 (same as calibration) and 87 under the
assumption that future urban growth will avoid areas with low/no at-
traction. The methodological workflow for experiment 1 and 2 to in-
tegrate urban attraction layer is shown in Fig. 5.

The predicted urban maps of 2011 and 2017, from all runs, were
then compared with the observed urban maps of 2011 and 2017 using
KSimulation metrics (van Vliet, Bregt, & Hagen-Zanker, 2011). KSimulation

metrics have been used successfully in various land use change simu-
lation studies (Chaudhuri & Clarke, 2014; van Vliet et al., 2011) and
provide a robust measure of accuracy for simulated images. KSimulation is
the coefficient of agreement between the simulated and the actual land
use transitions. KSimulation can be further decomposed into KTransition that
shows the agreement in the quantity of land use transitions and KTransloc

that shows the degree to which the transitions agree in their allocations
(van Vliet et al., 2011). The results for experiment 1 KSimulation metrics
are shown below in Table 2. Accuracy assessment of the 2011 and 2017
predicted urban maps using KSimulation metrics from two prediction runs
showed better accuracy of the images with the critical urban attraction

Fig. 4. Urban Attraction, used as the excluded layer in experiment 1 and slope layer in experiment 2.
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value of 87, which are reported in Table 2.

5.3. Analysis of SLEUTH modeling results

During the calibration stage, experiment 1 generated higher OSM
values than experiment 2 and the unmodified SLEUTH run. This sug-
gested urban attraction as an excluded layer produced a better model fit
with the input data. On the other hand, KSimulation metrics showed re-
latively better overall accuracy of the predicted images from experi-
ment 2 (Table 2). The predicted images from the unmodified SLEUTH
run had the least accurate images among all the model runs. In the
predicted images, pixels with above 95% probability of urbanization
were considered for analysis. Map comparisons among observed urban
images of 2010, 2011, 2017 and simulated urban images of 2011 and
2017 showed how much the SLEUTH model under-predicted or over-
predicted for years 2011 and 2017 in each run (Fig. 6). For 2011, the
predicted images from experiment 1 and 2 under predicted urban pixels
by around 13% and 6% respectively and the predicted image from the
unmodified SLEUTH run over predicted urban pixels by around 1.5%.
For 2017, the model under-predicted by 7% in experiment 2, and over-

predicted by 22% and 97% in experiment 1 and the unmodified
SLEUTH run, respectively. Accuracy assessment of the 2011 simulated
images showed that images from experiment 2 were more accurate in
overall accuracy and allocation of newly urbanized pixels, except for
the quantity of transition of land use classes (Table 2). For both 2011
and 2017, the KSimulation and KTransLoc values for the predicted images
from the unmodified SLEUTH run were lowest. The unmodified
SLEUTH run generated a more accurate quantity of newly urbanized
pixels compared to all runs in 2011. For 2017 as well, the predicted
images of experiment 2 were more accurate, except for the allocation of
newly urbanized pixels (Table 2). The unmodified SLEUTH run gener-
ated more accurate allocation of newly urbanized pixels compared to all
runs in 2017. Based on the KSimulation values of all runs, it can be said
that the model performed better when information related to urban
drivers was added in the simulation modeling.

The probability of urbanization (Fig. 7) from the unmodified
SLEUTH run and experiment 1 showed that the majority of the study
area will experience 90–95% urbanization by 2030, whereas the image
from experiment 2 shows the southern part of the study area will ex-
perience 90–95% probability of urbanization in a linear pattern and in a
more widespread manner in the central region. The right edge of the
study area borders with Bangladesh. Being a closed border, it is highly
unlikely that the adjacent areas along the border will experience a high
level of urbanization. Bongaon is the only class 1 town that is located
near the border and serves the Petrapol-Benapol land port between
India and Bangladesh, which is the biggest land port in Asia in terms of
volume and value of goods traded (Chaudhuri & Mishra, 2016). The
model predicted urban growth near the border because there was no
restriction added along the border. Ideally, a layer delineating re-
stricted growth along the border would have resulted in better

Fig. 5. Methodological workflow for experiment 1 and 2 to integrate urban attraction information.

Table 2
Accuracy analysis of 2011 and 2017 predicted images using KSimulation metrics.

Metrics 2011 2017

Unmodified Exp. 1 Exp. 2 Unmodified Exp. 1 Exp. 2

KSimulation 0.787 0.822 0.853 0.149 0.214 0.274
KTransition 0.991 0.961 0.913 0.332 0.515 0.749
KTranLoc 0.794 0.855 0.934 0.450 0.415 0.366
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prediction along those areas.
The accuracy analysis of the 2017 images showed that the level of

accuracy is less compared to 2011 for both the experiments (Fig. 6), but
was useful to identify the trends that the model was not able to capture.
It is known that the prediction uncertainty increases as SLEUTH pre-
dicts further into the future (Chaudhuri & Clarke, 2014). The rate of
decrease in overall accuracy varies based on the urbanization trend in
the region and the accuracy of the observed urban images used for input
and validation. All observed urban images in the study were generated
from Landsat imagery. The observed map for 2017 was developed from
Landsat 8 and had higher classification accuracy compared to the input
data, which were developed from Landsat 5TM. This resulted in low
level of accuracy in the 2017 simulated images. If the 2017 observed
urban map was adjusted based on input data, then the accuracy level
will increase to some extent. Map comparison between the observed
urban images of 2010 and 2017, showed that the southern part of the
study area experienced more widespread urban growth by conversion
of rural areas, and whereas in the northern part growth was more
concentrated along the road network and around the existing class 1
towns. The simulated image of 2017 from the unmodified SLEUTH run
showed over-prediction of urban pixels throughout the study area. Map
comparison between the observed urban image of 2017 and the simu-
lated images of 2017 from experiments 1 and 2 showed similar changes,
but edge growth around the small pre-existing urban clusters in the
predominantly agricultural areas contributed to the low KSimulation value
for the 2017 simulated images (Fig. 8).

Fig. 8 shows the predominance of edge growth in images from all
runs. The unmodified SLEUTH run generated the largest number of
pixels under edge growth until 2024 when compared to the two

experiments. However, from 2025 onwards for the last 5 years the
number of pixels is lower than experiment 1 but higher than experiment
2. The quantity of pixels from edge growth was lowest in experiment 2.
The edge growth is a function of the spread and slope coefficients. In
both the experiments, the spread coefficient was higher, but the slope
coefficient was very low in experiment 2, which was one of the reasons
for fewer edge growth pixels in the simulated images from experiment
2. This helped us to conclude that in the input historical data the spread
coefficient showed more influence, but in the future (rather than at
present) the edge growth is only limited to the surroundings of the
major urban centers and is not spatially uniform. This conclusion was
also confirmed by the higher overall accuracy of the 2017 simulated
images from a few test prediction runs with user defined spread coef-
ficients (such as 40, 50, 60). Thus, the higher OSM value in experiment
1 but relatively better KSimulation values of predicted results in experi-
ment 2 showed that the present (and future) trend of urban growth in
this region is different from the past trend. Visual map comparison
between the urban attraction map (Fig. 4) and the probability of ur-
banization maps in experiment 1 (Fig. 7) showed a direct correlation
between relatively low attraction values and the 50–95% probability of
urbanization. For this study, the accuracy analysis is based on urbani-
zation with 95–100% probability of urbanization, so pixels with below
95% probability of urbanization were considered as low probability.
There was no such linear correlation between lower attraction values
and the probability of urbanization in experiment 2, in fact a majority
of the study area showed lower than 50% probability of urbanization by
2030. Fig. 9 shows the growth rate during the prediction years and
number of growth pixels from all runs. Similar to the trend seen in edge
growth, the total number of pixels predicted was highest during the

Fig. 6. Map comparison between observed map and predicted maps of 2011 (6a) and 2017 (6b) respectively.
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unmodified SLEUTH run until 2024. From 2025 onwards, the number
of pixels from experiment 1 is the highest. The total number of growth
pixels in experiments 1 and 2 are consistent throughout the prediction
period but experiment 1 generated almost twice as many growth pixels
as experiment 2. The growth rate for the unmodified SLEUTH run
ranges between 2 and 20%, whereas for experiment 1, it ranges be-
tween 4 and 14% and for experiment 2, 2–6%. During 2020, the growth
rate generated by the unmodified SLEUTH run drops below the growth
rate from experiment 1 and for the last 4 years it is similar to the growth
rate of experiment 1. The model calculates the growth rate during the
calibration stage from the input images. The information is then used
during the prediction stage and with the proportion of available pixels
for urbanization. With each subsequent prediction year the number of
available pixels decreases, which results in a decreasing growth rate in
later periods. The restriction imposed by the excluded layer in experi-
ment 1 and the urban attraction layer in experiment 2, helped to
temporally distribute the number of growth pixels during the prediction
period.

At present, compared to the core Kolkata area, more growth is
visible along the class 1 towns. Diffusion and coalescence of small and
large urban municipalities, class 1 towns, and Kolkata UA is visible
along the transportation network. Urban growth is spreading more to
the north along the national highways, and south-western part near
Haldia. Road based growth has increased with the development and
improvement of the national highways and improvement in con-
nectivity between growth centers within and outside of the study area.
Although the economic and urban development in this region is not at
par with fast-growing areas of India nevertheless it is experiencing
profound economic transition, like the rest of the country. Thus, it is not
surprising that the historical urban growth trend captured from the
input urban map is different from the current urbanization trends.

6. Discussion

The goals of this study were to evaluate the relationship between
urbanization and its driving forces, to evaluate the need to integrate
urban driver information in the SLEUTH urban simulation model and to
assess the most effective approach to integrate this information. Among
the socio-demographic and locational factors included in this study,
proximity to railway stations, roads with low centrality, a higher pro-
portion of non-primary workers and a more literate population have a
significant influence on urbanization. Comparison of model results
between the unmodified SLEUTH run and modified SLEUTH runs (ex-
periments 1 and 2) showed that the model benefited from adding the
drivers of urbanization information. The two experiments set up to
assess the best approach to integrate the drivers of change information
brought forward new insights on the use of the excluded and slope
layers on simulation and forecasting of urban growth in the study area.
The OSM is calculated using 13 metrics generated by the SLEUTH
model that show the parameters that best capture the historical growth.
However, using that information to forecast future growth may not
always produce the most accurate maps of the future. In our study area,
this may be attributed to the change in pace and process of urbaniza-
tion. This suggests that in developing nations with transitional econo-
mies, the basic assumption that the past is the best predictor of the
future, may not work. Such trends have been called ‘non path-depen-
dent’ (Houet et al., 2016) development. More research on the model
application is required in different regions of the world that are going
through similar urban transition. Knowledge gained through more ap-
plications will help to better understand the urban dynamics in tran-
sitional economies and efficient ways to simulate and forecast urban
growth in these regions.

For this study, use of urban attraction as the slope layer generated

Fig. 7. Probability of urbanization in 2030 from unmodified SLEUTH run (left), experiment 1 (center) and 2 (right).
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relatively better predicted maps than using urban attraction as the ex-
cluded layer. The integration approach using the slope layer was only
possible because the study area is situated on a large delta and does not
have any topographic barrier to restrict urban growth. In the excluded
layer, partial exclusion/attraction is sensitive and its performance
varies from one study to another (Jantz et al., 2014b; Onsted &
Chowdhury, 2014). In our study, the spatial variability of urban at-
traction depicted by the partial exclusion of pixels was not able to si-
mulate future growth effectively. When and where these partially ex-
cluded pixels are being urbanized within the predicted period in the
study area needs further testing. This study also compared the results
between a classified excluded layer (experiment 1) with an excluded
layer that used continuous values ranging from 0 to 100 as shown in
Mahiny and Clarke (2012). Both model runs generated similar results.
The influence of urban attraction varies as slope is more dynamic, be-
cause the behavior is reactive. The relative pressure to build upon non-
urban pixels with low urban attraction is related to proximity to an
existing urban cluster and the proportion of attractive locations avail-
able. Therefore, if no attractive pixel is available and there is an existing
urban settlement nearby, then a less attractive location will be urba-
nized. This dynamic behavior worked better for the study area. In order
to urbanize, both exclusion and slope reflect an individual pixel's fa-
vorability, but slope is dynamic and considers the proportion of fa-
vorable land available and a location's proximity to an already estab-
lished settlement. Hence, for this study the use of the slope layer to
integrate information related to drivers of urbanization performed
better for future prediction. This approach will not be applicable for
cities where the topographic slope is a natural barrier to development.
Furthermore, the choice of factors that are assumed as driving forces of
urbanization and the method of evaluation of their relationship to ur-
banization will also affect SLEUTH results. More application of the
same methodology to other cities, especially in highly urbanizing and
fast growing cities in Asian deltas, will be beneficial to test the effi-
ciency of this approach.

Two factors affected this study, data availability and simulation
time. Any urban simulation model is challenged by its capability to
capture implicit and explicit factors involving growth, and by data
availability. Availability of open-source high quality multi-temporal
geospatial data is very limited in this region. Consequently the choice of

independent variables that best represent drivers of urbanization is
biased by data availability. Secondly, a large area (25,137.9 sq.km) was
considered in this project to capture the megalopolis and its sur-
rounding area. With six dedicated CPUs (2.60GHz), it took 30–60 days
to complete all three phases of calibration. Therefore, in the future the
model framework needs to be adjusted to utilize multi-core machines to
simulate large urban areas. Use of multiple cores will heavily reduce the
calibration time and will allow the testing of unique characteristics of
large-scale urbanization, such as comparing the process in urban cor-
ridors between developed and developing nations and the growth of
networks of cities.

Compared to Delhi and Mumbai, Kolkata UA experienced relatively
slower growth in the past, but if the current state-level initiatives to
attract economic development are successful, this region will grow
faster in the future (Brar et al., 2014). At present, the high levels of
haphazard urbanization results in a low quality of life and damaging
environmental consequences. For sustainable urbanization in the fu-
ture, an effective regional plan is necessary for Kolkata UA. Results
generated by this study provide a glimpse of a possible future urbani-
zation pattern based on the current relationship with socio-demo-
graphic and locational factors. Every urban area experiences different
dynamics of growth at different time periods, so it is important to
evaluate the drivers of urbanization in other Indian cities of different
sizes to understand the growth dynamics. These approaches will also
help to understand whether the second or third tier cities in India are
following the same trends as the first tier cities or not, why so, and how
regional economic disparities are affecting urbanization in the country.
In India, phenomena like arbitrary zoning, ineffective policies, and the
unpredictability of decision makers make it difficult to create accurate
predictions (Cheng & Masser, 2003; Triantakonstantis & Mountrakis,
2012). However, simulation modeling can provide scenario-based
possible outcomes, which can be highly effective tools for designing
future plans. Additionally, the lessons learned from understanding the
evolutionary process of present day Indian megacities will be of im-
mense significance to plan for more sustainable megacities of the future
in India.

Fig. 8. Types of growth generated by the no modification SLEUTH run (orange), experiment 1 (grey) and experiment 2 (yellow) from 100 Monte Carlo iterations (the
vertical axis shows the number of pixels in each year). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 9. Growth rate (dashed lines) and number of urban growth pixels (columns) in each predicted year.
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