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Abstract

Predicting how and where proteins, especially transcription factors (TFs), interact with DNA
is an important problem in biology. We present here a systematic study of predictive modeling
approaches to the TF-DNA binding problem, which have been frequently shown to be more ef-
ficient than those methods only based on position-specific weight matrices (PWMs). In these
approaches, a statistical relationship between genomic sequences and gene expression or ChIP-
binding intensities is inferred through a regression framework; and influential sequence features
are identified by variable selection. We examine a few state-of-the-art learning methods including
stepwise linear regression, multivariate adaptive regression splines (MARS), neural networks, sup-
port vector machines, boosting, and Bayesian additive regression trees (BART). These methods
are applied to both simulated datasets and two whole-genome ChIP-chip datasets on the TFs
Oct4 and Sox2, respectively, in human embryonic stem cells. We find that, with proper learning
methods, predictive modeling approaches can significantly improve the predictive power and iden-
tify more biologically interesting features, such as TF-TF interactions, than the PWM approach.
In particular, BART and boosting show the best and the most robust overall performance among
all the methods.

∗Preprint of UCLA Statistics, to appear in Nucleic Acids Research.
†Supplemental materials are available at http://www.stat.ucla.edu/∼zhou/ChIPLearn/.
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Introduction

Transcription factors (TF) regulate the expression of target genes by binding in a sequence-specific
manner to various binding sites located in the promoter regions of these genes. A widely used
model for characterizing the common sequence pattern of a set of TF binding sites (TFBSs),
often referred to as a motif, is the position-specific weight matrix (PWM). It assumes that each
position of a binding site is generated by a multinomial probability distribution independent of
other positions. Since 1980s, many computational approaches have been developed based on the
PWM representation to “discover” motifs and TFBSs from a set of DNA sequences (e.g. [1]-
[6]). See [7, 8] for recent reviews. From a discriminant modeling perspective, a PWM implies
a linear additive model for the TF-DNA interaction. Since non-negligible dependence among
the positions of a binding site can be present [9, 10], methods that simultaneously infer such
dependence and predict novel binding sites have been developed [11]-[13]. Approaches that make
use of information in both positive (binding sites) and negative sequences (non-binding sites)
have also been developed [14]-[16]. In addition, since a TF often cooperates with other TFs to
bind synergistically to a cis-regulatory module (CRM), CRM-based models have been proposed
to enhance the accuracy in predicting TFBSs [17]-[23].

Although predictive accuracies of these PWM-based methods for TFBSs and CRMs are
still not fully satisfactory, statistical models being employed are already quite intricate. It is
extremely difficult to build more complicated generative models that are both scientifically and
statistically sound. First, the data used to estimate model parameters are limited to only several
to several tens of known binding sites. With this little information, it is hardly feasible to fit a
complicated generative model that is useful for prediction. Second, the detailed mechanism of
TF-DNA interaction, which is likely gene-dependent, has not been understood well enough so as
to suggest faithful quantitative models. For example, it is well-known that nucleosome occupancy
and histone modifications play important roles in gene regulation in eukaryotes, but it is not
clear how to incorporate them into a TF-DNA binding model. The predictive modeling approach
described in this article seems to provide a different angle to account for such complications.

Recently, the abundance of ChIP-based TF binding data (ChIP-chip/seq) and gene expression
data has brought up the possibility of building flexible predictive models for capturing sequence
features relevant to TF-DNA interactions. In particular, ChIP-based data not only provide hun-
dreds or even thousands of high resolution TF binding regions, but also give quantitative measures
of the binding activity (ChIP-enrichment) for such regions. Treating gene expression or ChIP-chip
intensity values as response variables and a set of candidate motifs (in the form of PWMs) and/or
other sequence features as potential predictors, predictive modeling approaches use regression-type
statistical learning methods to train a discriminative model for prediction. In contrast to those
PWM-based generative models constructed from biophysics heuristics (e.g., [24]-[26]), predictive
modeling approaches aim to learn from the data a flexible model to approximate the conditional
distribution of the response variable given the potential predictors. In doing so they also pick up
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relevant sequence features.
An attractive feature of the predictive modeling approach is its simple conceptual framework

that connects genes’ “behavior” (i.e., expression) with their (promoter regions’) sequence charac-
teristics, thus effectively using both positive and negative information. In addition, a predictive
model can avoid overfitting and be self-validated via a proper cross-validation procedure in stead
of solely relying on experimental verifications. This is especially useful in studying biological sys-
tems, since specific model assumptions and many rate constants are often difficult to validate due
to the complexity of the problem. Instead of building a conglomerate of many intricate methods
to predict global transcription regulation networks, we focus here on a more humble goal: to
understand the general framework of predictive modeling and to provide some insights on the use
of different machine learning tools.

Although several predictive modeling approaches have been developed in the past few years
[27]-[31], there is still a lack of formal framework for and a systematic comparison of different
yet very much related approaches. In this article, we formalize the predictive modeling approach
for TF-DNA binding and examine a few contemporary statistical learning methods for their
power in expression/ChIP-intensity prediction and in selection of relevant sequence features. The
methods we examine and compare include stepwise linear regression, neural networks, MARS
[32], support vector machines (SVM) [33], boosting [34], and Bayesian additive regression trees
(BART) [35]. A special attention is paid to the Bayesian learning strategy BART, which, to the
best of our knowledge, has never been used to study TF-DNA binding, but shows the best overall
performance.

Materials and Methods

A basic assumption of all predictive modeling approaches is that sequence features in a certain
genomic region influence the target response measurement. This is in principle true for many
biological measurements. For ChIP-chip data, the enrichment value can be viewed as a surrogate
of the binding affinity of the TF to the corresponding DNA segment. Influential sequence features
may include motifs of the target TF and its co-regulators, genomic codes for histone modifica-
tions or chromatin remodeling, and so on. For expression data, TF-DNA binding affinity, which
influences the expression of a target gene, is determined by the genomic sequence surrounding the
binding site.

A general framework

The input data for fitting a predictive model are a set of n DNA sequences {S1,S2, · · · ,Sn},
each with a corresponding response measurement yi, which may be mRNA expression values,
ChIP-chip fold changes (often in the logarithmic scale), or categorical (e.g., active versus inactive,
in versus out of a gene cluster). We write {(yi,Si), for i = 1, 2, · · · , n}. By feature extraction
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(next section), which is perhaps the most important but often lightly treated step, each sequence
Si is transformed into a multi-dimensional data point xi = [xi1, · · · , xip] including, for example,
the matching strength of a certain motif, the total energy of a certain periodic signal, etc. Then,
a statistical learning method is applied to “learn” the underlying relationship y = f(x) between
x and y and to identify influential features. In comparison to the standard statistical learning
problem, a novel feature of the problem described here is that the covariates are not given a priori,
but need to be “composed” from the observed sequences by the researcher.

When the response Y is the observed log-ChIP-intensity of a transcription factor P to a DNA
sequence S (not restricted to the short binding site), the predictive modeling framework can be
derived from a chemical physics perspective of the biochemical reaction P + S = PS, where PS
is the TF-DNA complex. At temperature T the equilibrium association constant is

Ka(S) =
[PS]
[P ][S]

= exp(−∆G(S)/RT ),

where ∆G(S) is the Gibbs free energy of this reaction for the sequence S. The log-enrichment of
the TF-DNA complex PS can be expressed as

log
[PS]
[S]

= log[P ]−∆G(S)/RT ≡ f(S). (1)

Suppose that f(S) can be written as a function of the extracted sequence features X = [X1, · · · , Xp]
and that the observed ChIP-intensity gives a noisy measure of the enrichment of the TF-DNA
complex with an additive error ε in the logarithmic scale. Then, Eq. (1) becomes

Y = f(X) + ε, (2)

which serves as the basis for our statistical learning framework.
Many learning methods such as MARS, neural networks, SVM, boosting, and BART, to be

reviewed later, are composed of a set of simpler units (such as a set of “weak learners”), which
make them flexible enough to approximate almost any complex relationship between responses
and covariates. However, due to the nature of their basic learning units, these methods differ in
their sensitivity, tolerance on nonlinearity, and ways of coping with overfitting. As shown in later
sections, BART and boosting are particularly attractive for our task due to their use of weak
learners as the basic learning units.

Feature extraction

The goal of this step is to transform the sequence data into vectors of numerical values. This is
often the most critical step that determines whether the method will be ultimately successful for
a real problem. In [27, 28], the extracted features are k-mer occurrences, whereas in [29]-[31], are
motif matching scores (which may differ depending on how one scores a motif match) for both
experimentally and computationally discovered motifs. In [36], features include both motif scores
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and histone modification data; and in [37], a periodicity measure is further added to the feature
list. However, a general framework and a reasonable criterion for comparing different feature
extraction approaches are still lacking.

Here we extract three categories of sequence features from a repeat-masked DNA sequence:
the generic, the background, and the motif features. Generic features include the GC content,
the average conservation score of a sequence, and the sequence length. The average conservation
score is computed based on the phastCon score [38] from UCSC genome center. The length
of a sequence is defined as the number of nucleotides after masking out repetitive elements. It
is included in our model to control potential confounding effect on experimental measurements
of TF-DNA binding (e.g. ChIP-intensity) caused by different sequence length. As shown in
our analysis, such a bias can be statistically significant. For background features, we count the
occurrences of all the k-mers (for k = 2 and 3 in this paper) in a DNA sequence. We scan both
the forward and the backward strands of the sequence, and merge the counts of two k-mers that
form a reverse complement pair. Due to the existence of palindrome words when k is even, the
number of distinct k-mers (background words) after merging reverse compliments is

Ck =

{
4k/2, if k is an odd number;
(4k + 2k)/2, if k is an even number.

(3)

Note that the single nucleotide frequency (k = 1) is equivalent to the GC content.
Motif features of a DNA sequence are derived from a pre-compiled set of TF binding motifs,

each represented by a PWM. The compiled set includes both known motifs from TF databases
and new motifs found from the positive ChIP sequences in the data set of interest using a de
novo motif search tool. We fit a heterogeneous (i.e., segmented) Markov background model
for a sequence to account for the heterogeneous nature of genomic sequences. Intuitively, this
model assumes that the sequence in consideration can be segmented into an unknown number of
pieces and, within each piece, the nucleotides follow a homogeneous first-order Markov chain [39].
Using a Bayesian formulation and an MCMC algorithm, we estimate the background transition
probability of each nucleotide by averaging over all possible segmentations with respect to their
posterior probabilities. Suppose that the current sequence is S = R1R2 · · ·RL, the PWM of
a motif of width w is Θ = Θi(j) (i = 1, · · · , w, j = A,C,G, T ), and the background transition
probability of Rl given Rl−1 is θ0(Rl|Rl−1) (1 ≤ l ≤ L) in the estimated heterogeneous background
model. For each w-mer in S (both strands), say Rl · · ·Rl+w−1, we calculate a probability ratio

rl =
w∏

i=1

Θi(Rl+i−1)
θ0(Rl+i−1|Rl+i−2)

, (4)

and define the motif score for this sequence as log(
∑m

l=1 r(l)/L), where r(l) is the lth ratio in
descending order. In this paper, we take m = 25. This value was chosen according to a pilot
study on the Oct4 ChIP-chip data set (see Results section), for which we observed optimal and
almost identical discriminant power for motif scores defined by m ≥ 20 (data not shown).
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Statistical learning methods

Let Y be the response variable and X = [X1, · · · , Xp] its feature vector. The main goal of
statistical learning is to “learn” the conditional distribution [Y | X] from the training data
{(yi,xi) | i = 1, · · · , n}. We consider the general learning model (2) where Y is a continuous
variable and ε is the observational error (e.g. Gaussian noise). Dependent on the posited functional
form for f(X) and the method to approximate it, different learning methods have been developed.

Linear regression. This classic approach assumes that f(X) is linear in X, i.e.,

f(X) = β0 +
p∑

j=1

βjXj . (5)

The standard estimate of the β’s, which is also the maximum likelihood estimate under the
Gaussian error assumption, is obtained by minimizing the sum of squared errors between the
fitted and the observed Y ’s. When it is suspected that not all the features are needed in (5),
a stepwise approach (called stepwise linear regression) is often used to select features according
to a model comparison criterion, such as the Akaike information criterion (AIC) or the Bayesian
information criterion (BIC). With an initial linear regression model, this approach iteratively adds
or removes a feature according to the model comparison criterion, until no further improvement
can be obtained. Another way to select features is achieved by adding a penalty term, often in the
form of the L1 norm of the fitted coefficients, to the sum of squared errors, and then minimizing
this modified error function [40]. This last approach has become a recent research hotspot in
statistics. In this study, we employ AIC-based stepwise approaches for feature selection in linear
regression methods.

Neural networks. We focus here on the most widely used single hidden layer feed-forward
network, which can be viewed as a two-stage nonlinear regression. The hidden layer contains M
intermediate variables Z = [Z1, · · · , ZM ] (hidden nodes), which are created from linear combina-
tions of the input features. The response Y is modeled as a linear combination of the M hidden
nodes,

Zm = s(αm0 + Xαm), m = 1, · · · ,M,

f(X) = β0 + Zβ,

where αm and β are p-dimensional column vectors and s(v) = 1/(1+e−v) is called the “activation
function.” The unknown parameters θ = ({αm0,αm}M1 , β0,β) are estimated by minimizing the
sum of squared errors, R(θ) =

∑
i(yi − f(xi))2, via the gradient descent method (i.e., moving

along the direction with the steepest descent), also called back-propagation in this setting. In
order to avoid overfitting, a penalty is often added to the loss function: R(θ)+λ‖θ‖2, where ‖θ‖2

is the sum of squares of all the parameters. This modified loss function is what we use in this
work for training neural networks. Here λ is referred to as the weight decay.
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Support vector machine (SVM). Suppose each data point in consideration belongs to
one of the two classes. The SVM aims to find a boundary in the p-dimensional space that not only
separates the two classes of data points but also maximizes its margin of separation. The method
can also be adapted to deal with regression problems, in which case the prediction function is
represented by

f(X) = α0 +
n∑

i=1

αiK(X,xi), (6)

where K is a chosen kernel function (e.g. polynomial or radial kernels). The problem of deciding
the optimal boundary is equivalent to minimizing

n∑
i=1

V (yi − f(xi)) +
C

2

∑
i,j

αiαjK(xi,xj),

where V (·) is an “ε-insensitive” error measure and C is a positive constant that can be viewed as
a penalty to overly complex boundaries [40]. The computation of SVM is carried out by convex
quadratic programming. The training data whose αi 6= 0 in the solution (6) are called support
vectors.

Additive models: MARS, boosting, and BART. Another large class of learning meth-
ods, based on additive models, approximates f(X) by a summation of many non-linear basis
functions, i.e.,

f(X) = β0 +
M∑

m=1

βmgm(X; γm),

where gm(X; γm) is a basis function with parameter γm. Different forms of basis functions with
different ways to select and estimate them give rise to various learning methods, including MARS
[32], boosting [34] and BART [35] among others. In some sense, neural networks and SVM can
also be formulated as additive models. In MARS, the collection of basis functions is

C = {(Xj − t)+, (t−Xj)+ | t ∈ {xij}, i = 1, · · · , n, j = 1, · · · , p},

where “+” means positive part: x+ = x if x > 0 and x+ = 0 otherwise. These basis functions are
called linear splines. The gm(X; γm) in MARS can be a function in C or a product of up to d such
functions. The learning of MARS is performed by forward addition and background deletion of
basis functions to minimize a penalized least square loss which incurs a penalty of λ per additional
degree of freedom of the model. Consequently λ and d determine the model complexity of MARS.

Regression trees are widely used as basis functions for boosting and BART. Let T denote a
regression tree with a set of interior and terminal nodes. Each interior node is associated with
a binary decision rule based on one feature, typically of the form {Xj ≤ a} or {Xj > a} for
1 ≤ j ≤ p. Suppose the number of terminal nodes is B. The tree partitions the feature space into
B disjoint regions, each associated with a parameter µb (b = 1, · · · , B) (Figure 1A). Accordingly,
the tree with its associated parameters represents a piece-wise constant function with B distinct
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pieces (Figure 1B). We denote this function by g(X;T,µ), where µ = [µ1, · · · , µB]. Then, the
additive regression tree model approximates f(X) by the sum of M such regression trees:

f(X) = β0 +
M∑

m=1

g(X;Tm,µm), (7)

in which each tree Tm is associated with a parameter vector µm (m = 1, · · · ,M). The number
of trees M controls the model complexity, and it is usually large (100 to 200), which makes the
model flexible enough to approximate the underlying relationship between Y and X.

Figure 1: A regression tree with two interior and three terminal nodes. (A) The decision rules
partition the feature space into three disjoint regions: {X1 ≤ c,X2 ≤ d}, {X1 ≤ c,X2 > d},
and {X1 > c}. The mean parameters attached to these regions are µ = [µ1, µ2, µ3]. (B) The
piece-wise constant function defined by the regression tree with c = 3, d = 2 and µ = [3, 4, 1].

In the original AdaBoost algorithm [34], an additive model is produced via iteratively re-
weighting the training data according to the training error of the current classifier. Later, a
more general framework was developed to formulate boosting algorithms as a method of function
gradient descent [41], which is what we use in this work. For a gradient boosting machine under
square loss, given a current additive model f (m−1)(X) = β0 +

∑m−1
k=1 g(X;Tk,µk), a regression

tree g(X;Tm,µm) is fitted to the current residuals and then the additive model is updated to

f (m)(X) = f (m−1)(X) + ν · g(X;Tm,µm),

where 0 < ν ≤ 1 is the shrinkage parameter (learning rate). Applying this recursion for M
iterations gives the boosting additive tree model as in (7).

BART completes Bayesian inference on model (7) with prescribed prior distributions for both
the tree structure and the associated parameters, β0,µm and the variance σ2 of Gaussian noise ε
(2). The prior distribution for the tree structure is specified conservatively so that the size of each
tree is kept small, which forces it to be a weak learner. The priors on µm and σ2 also contribute to
alleviating overfitting. A Markov chain Monte Carlo method (BART MCMC) was developed [35]
for sampling from the posterior distribution P ({(Tm,µm)}Mm=1, β0, σ

2 | {(yi,xi)}ni=1), in which
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both the tree structures and the parameters are updated simultaneously. Given a new feature
vector x∗, BART predicts the response y∗ by the average response of all sampled additive trees
instead of using only the best model. In this sense, BART has the nature of Bayesian model
averaging.

Results

We applied the predictive modeling approach outlined above to recently published ChIP-chip data
sets of the TFs Oct4 and Sox2 in human embryonic stem cells (ESC) [42], with a comparative
study on various mentioned learning methods using ten-fold cross validations. We discovered
consistently a Sox-Oct composite motif from both the Oct4 and the Sox2 ChIP-chip data sets
using a de novo motif search algorithm. This motif is known to be recognized by the protein
complex of Oct4 and Sox2, the target TFs in the ChIP-chip experiments, and thus we included it
in our pre-compiled motif set. In addition, we extracted 223 motifs from TRANSFAC release 9.0
[43] and literature survey to compile a final list of 224 PWMs. Please see Supplementary Text
for the details. The sequence sets, ChIP-enrichment values and feature matrices are available at
http://www.stat.ucla.edu/∼zhou/ChIPLearn/. We also conducted a simulation study to further
verify the performances of the methods.

The Oct4 ChIP-chip data in human ESCs

Boyer et al. [42] reported 603 Oct4-ChIP enriched regions (positives) in human ESCs with DNA
microarrays covering −8 kb to +2 kb of ∼17,000 annotated human genes. We randomly selected
another 603 regions with the same length distribution from the genomic regions targeted by
the DNA microarrays (negatives), i.e. [−8,+2] kb of the annotated genes. The ChIP-intensity
measure defined as the average array-intensity ratio of ChIP samples over control samples was
attached to each of the 1206 ChIP-regions. We treated the logarithm of the ChIP-intensity
measure as the response variable Y and the features extracted from the genomic sequences as the
explanatory variables X. This produced a data set of 1206 observations with 269 features (224
PWMs, 3 genetic features, 10 dimers, 32 trimers: see Eq. 3), called the Oct4 data set henceforth.

Cross-validations (CV). We compared the following statistical learning algorithms via a
ten-fold CV procedure on the Oct4 data set: (1) LR-SO/LR-Full, linear regression using the
Sox-Oct composite motif only or using all the 269 features; (2) Step-SO/Step-Full, stepwise linear
regression starting from LR-SO or starting from LR-Full; (3) NN-SO/NN-Full, neural networks
with the Sox-Oct composite motif feature or all the features as input; (4) Step+NN, neural net-
works with the features selected by Step-SO as input; (5) MARS, multivariate adaptive regression
splines using all the features; (6) SVM, support vector machine for regression with various kernels;
(7) Boost, boosting with regression trees as base learners; (8) BART, Bayesian additive regression
trees with different number of trees.
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The observations were divided randomly into ten subgroups of equal size. Each subgroup
(called “the test sample”) was left out in turn and the remaining nine subgroups (called “the
training sample”) were used to train a model using one of the above methods. Then the observed
responses of the test sample were compared to those predicted by the trained model. We used
the correlation coefficient between the predicted and the observed responses as a measure of the
predictive power of a tested method. This measure is invariant under linear transformation,
and can be understood as the fraction of variation in the response variable attributable to the
explanatory features. We call this measure the CV-correlation (CV-cor) henceforth. Treating the
LR-SO method as the baseline for our comparison, which only involves the single target motif, we
are interested in testing whether other genomic sequence features can significantly influence the
prediction of the ChIP enrichment, which can be viewed as a surrogate of the TF-DNA binding
affinity. The predictive modeling approach employed here facilitates us a coherent framework to
identify useful features, which may lead to testable hypotheses that enhance our understanding
of the protein-DNA interaction.

As reviewed in the Methods section and listed in Table 1, sophisticated learning methods
have their respective tuning parameters. We conducted CVs for a wide range of these tuning
parameters and identified the optimal value in terms of CV-cor. A proper common practice in
the field is to further divide the samples to tune these parameters. But here we chose not to do
so since we were also interested in comparing the robustness of different methods with different
tuning parameters. The detailed description and results of the CVs, including the way we chose
the tuning parameters, are given in the Supplementary Text.

Table 1: Ten-fold CVs of the Oct4 ChIP-chip data

Method Tuning parameters CV-cor S.D.

LR-SO − 0.446 (0%) 0.044
LR-Full − 0.491 (10%) 0.064
Step-SO − 0.535 (20%) 0.045
Step-Full − 0.513 (15%) 0.054
NN-SO # of nodes, weight decay 0.468 (5%) 0.063
Step+NN # of nodes, weight decay 0.463 (4%) 0.067
MARS interaction d, penalty λ 0.580 (30%) 0.043
SVM cost C 0.547 (23%) 0.054
Boost # of trees M 0.581 (30%) 0.048
BART # of trees M 0.600 (35%) 0.044

Note: Reported here are the average CV-cors. The percentage in the parentheses is calculated by
the percent of improvement over the CV-cor of LR-SO. S.D. is the standard deviation across 10
test samples. The detailed definitions of tuning parameters are reviewed in the Methods section
and further discussed in Supplementary Text.
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The overall comparison results are briefly summarized in Table 1. The average CV-cor (over
10 test samples) of LR-SO was 0.446. Among all the linear regression methods, Step-SO achieved
the highest CV-cor of 0.535. NN-SO and Step+NN showed a slight improvement over LR-SO after
tuning weight decay and the number of hidden nodes, while the performance of NN-Full (optimal
CV-cor < 0.38) was unsatisfactory. SVM showed 23% improvement over LR-SO and it was quite
robust with stable CV-cors for C ≥ 1. The optimal results of MARS, boosting, and BART were
all substantially superior to the other methods. However, they had different degrees of robustness
to their respective tuning parameters. The CV-cor of MARS could drop below 0.46 if one did not
choose a good value for its penalty cost λ, while the other two methods were much more robust.
For example, the CV-cors of BART with all the tested numbers of trees (M) ranging from 20 to
200 varied only between 0.592 and 0.6, which uniformly outperformed the optimal tuned results
of all the other methods. This suggests that in practice the users may not need to worry too much
about the tuning parameters in BART and boosting, but apply these methods with the default
settings comfortably to their data sets. This is a significant advantage over some other learning
methods such as NN and MARS. The standard deviations in CV-cor across the 10 test samples
for all the methods were quite comparable (around 0.04 to 0.05) except that the LR-Full and NN
methods showed larger variability.

A common method for predicting whether a particular DNA sequence can be bound by a TF
is to score the sequence by the PWM of the TF. This is equivalent to using LR-SO for the binding
prediction. Thus, our study demonstrated that sophisticated statistical learning tools such as
MARS, SVMs, boosting and BART can all significantly improve the basic LR-SO prediction by
including more sequence features.

Sequence features selected by BART. We chose BART with 100 trees to perform a
detailed study on the full data set (with 1206 observations). The posterior mean tree size (of a
base learner) measured by the number of terminal nodes was 2.31. Thus, each tree in the model
was indeed quite simple. We define the posterior inclusion probability Pin of a feature by the
fraction of sampling iterations in which the feature is included in the additive trees. Figure 2
shows the Pin’s for all the 269 features in descending order, and 22 of them are > 0.5 (Table 2).
In addition, the average number of times a feature is used in each posterior sample of the BART
model (a feature can be used a number of times by a BART model since the model is an aggregation
of many regression trees), called the per-sample inclusion (PSI), is also reported in the table as
another measure of the importance of the feature.

The top feature under both the overall and the per-sample inclusion statistics is the Sox-
Oct composite motif, consistent with the existing biological knowledge that Sox2 is one of the
most important co-regulators of Oct4 and they form a protein complex to bind to the composite
sites. Besides, we found eight motifs with Pin > 0.5, among which OCT Q6, OCT1 Q6 and
OCT1 Q5 01 represent all the variants of the Oct4 motif in our compiled list. This implies the
high sensitivity of our method in detecting functional motifs. The remaining five motifs, Hsf1,
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Figure 2: The posterior inclusion probability Pin of all the features in descending order in the
BART model for the Oct4 data set.

Uf1h3b, Nfy Q6, E2F, and E2F1, may be co-regulators of Oct4 or other functional TFs in ESCs.
As reported recently [45], the TF Nfyb regulates ES proliferation in both mouse and human
ESCs by binding specifically to the motif Nfy Q6 in the promoter regions of ES-upregulated
genes. Nfyb were also reported to co-activate genes with E2F via adjacent binding sites [46].
The significant roles of both motifs in our model suggest that their co-activation of genes in
ESCs may be recruited or enhanced by Oct4 binding. The motif Uf1h3b contains the consensus
of the Klf4 motif (CCCCRCCC) [47]. The TF Klf4, together with Oct4, Sox2 and c Myc, can
reprogram highly differentiated somatic cells back to pluripotent ES-like cells [48]. In a reported
Oct4 enhancer [49] there is a highly conserved site that matches the consensus of the Uf1h3b motif
within 40 bps of a known Sox-Oct site. These external data confirmed the biological relevance in
ESCs of at least 6 out of the 9 motifs identified by the BART model (indicated in Table 2). It is
interesting to note that the Hsf1 motif is not highly enriched in the positive ChIP regions (with
small t-statistic), yet it has a very high Pin, indicating that it may interact with other factors in
a non-linear way. The sequence length was selected in the model as well, which served to balance
out the potential bias in ChIP-intensity caused by the length difference of repeat elements in the
original sequences.

A surprising yet interesting finding is the high inclusion probabilities of many non-motif
features, such as “GC”, “CAA”, “CCA”, “AA” and “G/C”. This is also true for the learning
results of other methods, such as stepwise linear regression and boosting, especially among the
features with significant roles in these models (Figure 3). It is possible that some of these words
are directly responsible for the interaction strength between Oct4 and its DNA target region, such
as “CAA” and “AA” which occur in the Oct4 motif consensus (ATGCAAAT). They may also
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Table 2: The top 22 features in the BART model for the Oct4 ChIP-chip data

Feature Pin PSI t Notes/Consensus

SoxOct∗ 1.000 3.50 14.0 CWTTNWTATGYAAAT
GC 1.000 1.56 2.7 background
CAA 0.998 2.18 4.4 background
CCA 0.987 1.45 -5.2 background
Length 0.964 1.37 7.8 sequence length
HSF1 Q6 0.963 1.32 1.2 TTCTRGAAVNTTCTYM
AA 0.945 1.41 2.7 background
G/C 0.870 1.46 0.9 GC content
UF1H3b Q6∗ 0.821 1.14 7.8 GCCCCWCCCCRCC
CA 0.760 1.19 -6.1 background
CGC 0.723 1.04 4.6 background
AAT 0.693 0.96 0.7 background
cs 0.691 0.91 8.0 conservation
OCT Q6∗ 0.649 0.95 10.2 TNATTTGCATN
NFY Q6∗ 0.628 0.84 2.8 TRRCCAATSRN
CGA 0.622 0.87 7.7 background
OCT1 Q6∗ 0.589 0.79 8.8 ATGCAAATNA
OCT1 Q5 01∗ 0.575 0.78 10.2 TNATTTGCATW
GA 0.564 0.78 -0.5 background
E2F Q3 01 0.540 0.75 8.6 TTTSGCGSG
GCA 0.528 0.70 2.5 background
E2F1 Q4 01 0.512 0.68 8.8 TTTSGCGSG

Note: “t” is the t-statistics between the positive and negative ChIP regions. ∗Motifs with reported
functions in ESCs.

contribute to the bending of the DNA sequences and thereby promote the assembly of elaborate
protein-DNA interacting structures [50]. To further verify their effect in predictive modeling,
we excluded non-motif features from the input, and applied BART (with 100 trees), MARS
(d = 1, λ = 6), MARS (d = 2, λ = 20), and Step-SO to the resulting data set to perform ten-
fold CVs. The parameters for MARS were chosen based on the CV results in Table 1 (also see
Supplementary Text). The CV-cors turned out to be 0.510, 0.511, 0.478, and 0.456 for the above
four models, respectively, which decreased substantially (about 12% to 15%) compared to the
CV-cors of the corresponding methods with all the features.

Using this data set, we also compared the use of heterogeneous and homogeneous Markov
background models for motif feature extraction. The heterogeneous background model is discussed
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Figure 3: The histograms of the non-motif features (dark bars) and all the features (light bars)
selected in (A) Step-SO and (B) boosting with 100 trees on the Oct4 data set. In Step-SO, selected
features are classified into categories by regression p-values. In boosting, they are classified by
their relative influence normalized to sum up to 100%.

in the Feature extraction section and is used for computing motif features in the above analysis.
For the homogeneous background model, we used all the nucleotides in a sequence to build a
first-order Markov chain. With these two different background models, we calculated motif scores
for all the Oct4-family matrices in the 224 PWMs, i.e., the Sox-Oct composite motif, OCT1 Q6,
OCT Q6, and OCT1 Q5 01. We observed that, for all the four matrices, the motif scores under the
heterogeneous background model showed higher correlations with the log-ChIP intensity than the
scores under the homogeneous background model (Supplementary Table 1). We further computed
the t-statistic for each motif score between the positive and negative ChIP-regions. Similarly, using
the heterogeneous background model enhanced the separation between the positive and negative
regions by resulting in larger t-statistics (Supplementary Table 1).

Prediction and validation in mouse data. The trained predictive models are useful
computational tools to predict whether a piece of DNA sequence can be bound by the TF.
They can be utilized to identify novel binding regions outside of the microarray coverage or
not detected (false negatives) by the ChIP-chip experiment, and also to predict binding regions in
other closely related species. As a proof of the concept, we applied the trained Oct4 BART and
boosting models in the above human data to discriminate ∼1,000 Oct4-bound regions in mouse
ESCs [52] from 2,000 random upstream sequences with the identical length distribution. After
extracting the same 269 features, we predicted ChIP-binding intensities of the 3,000 sequences
by the BART and boosting models respectively. As a comparison, we also scanned each sequence
to compute its average matching score to the Sox-Oct composite motif found by de novo search
(called scanning method) for measuring the likelihood to be bound by the TF as suggested by
many other studies (e.g. [29]). By gradually decreasing the threshold value, we obtained both
higher sensitivity and more false positive counts for each method. We focused on the part where
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all the three methods predicted < 500 random sequences as being bound by Oct4. As reported in
Figure 4, both the BART and boosting models significantly reduced the number of false positives
(random sequences) for almost all the sensitivity levels compared to the scanning method, which
corresponded to an average of ∼ 30% decrease in the false positive rate. Note that the Oct4 target
genes identified by the ChIP-based assays are substantially different (with < 10% of overlapping
targets) between human and mouse [52]. Thus, our result here represents an unbiased validation of
the computational predictions. It also suggests that the binding pattern of Oct4 as characterized
by our predictive models is very similar between the two species, even though its target genes
may be quite different.
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Figure 4: Sensitivity and false positive counts for the BART, boosting and Sox-Oct scan methods
in discriminating Oct4-bound sequences in mouse ESCs and random upstream sequences.

The Sox2 ChIP-chip data in human ESCs

We next applied our method to the 1165 Sox2 positive-ChIP regions identified by [42], accom-
panied by the same number of randomly selected regions from [−8,+2] kb of a gene with the
same length distribution. Although known to co-regulate genes in the undifferentiated state, the
target genes of Sox2 and Oct4 identified by ChIP-based experiments are substantially different
[42]. Besides testing our method, we are also interested in comparing the sequence features of the
binding regions of these two regulators.

We extracted the same 269 features as in the previous subsection for each sequence in this
Sox2 data set, and conducted ten-fold CVs to study the performances of the aforementioned sta-
tistical learning methods (more details in Supplementary Text). As shown in Table 3, BART with
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different tree numbers (CV-cors between 0.561 and 0.572) again outperformed all the other meth-
ods with optimal parameters, while boosting and MARS showed slightly worse but comparable
performances. The improvement of these three methods over LR-SO, the baseline performance,
was > 54%. It is important to note that BART again performed very robustly while many
other methods, such as NN, MARS and SVM, showed more variable performances with different
choices of their tuning parameters (Supplementary Text). In addition, the standard deviation in
CV-cor for BART was the smallest among all the methods. We further applied Step-SO, MARS
(d = 1, λ = 10) and BART (M = 100), with only motif features as input, and obtained CV-cors of
0.465, 0.469, and 0.500, respectively. One sees that all of them performed significantly worse than
the corresponding methods using all the features. This confirms our hypothesis that non-motif
features are essential components of the underlying model for TF-DNA binding.

Table 3: Ten-fold CV results of the Sox2 data set

Method CV-cor S.D. Method CV-cor S.D.

LR-SO 0.358 (0%) 0.049 LR-Full 0.494 (38%) 0.044
Step-SO 0.513 (43%) 0.043 Step-Full 0.509 (42%) 0.046
NN-SO 0.364 (2%) 0.053 Step+NN 0.465 (30%) 0.047
MARS 0.553 (54%) 0.050 SVM 0.526 (47%) 0.044
Boost 0.560 (56%) 0.047 BART 0.572 (60%) 0.038

Note: The same notations and definitions of tuning parameters are used as in Table 1.

We re-applied BART with 100 trees to the full Sox2 data set with 2330 observations. There
are 29 features with Pin > 0.5, including three generic features, 10 background frequencies, and
16 motifs (Supplementary Table 2). As indicated in the table, 7 out of the top 9 motifs were
reported to be recognized by functional TFs in ESCs or differentiation. In agreement with the
fact that the target TF is Sox2, the top three features include the Sox-Oct composite and the
Sox2 motifs. Other potential motifs identified by BART that co-occur with Sox2 binding include
Nanog (Pin = 0.71), Nkx2.5 (0.70), Uf1h3b (0.67), P53 (0.64), and Gata binding proteins (0.59).
Among them, Nanog is known as a crucial TF that co-regulates with Sox2 and Oct4, and P53 is
a marker gene in ESCs [44, 51]. Interestingly, the Sox2 motif is overwhelmingly over-represented
(p = 2 × 10−12) in the Nanog-bound regions of up-regulated genes in mouse ESCs [53]. These
analyses strongly support the tight regulatory interaction between Sox2 and Nanog in both human
and mouse embryonic development. Nkx2.5 and Gata4 are known cooperative TFs in endoderm
differentiation[54]. Both of them are suppressed in ESCs but highly expressed once the cells start
to differentiate into early endoderm. These results suggest a hypothesis for further investigation
that genes repressed by Sox2 in ESCs may be activated later for endoderm development once
Gata4 and Nkx2.5 are expressed and bind to their motifs in the Sox2 bound regions (Figure 5).
Such competitive binding of Gata/Nkx2-families could be an efficient mechanism to accelerate
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the termination of Sox2-bound repression when differentiation is initiated.

Figure 5: A hypothesis of competitive binding between Sox2 and Gata4/Nkx2.5. In undifferenti-
ated ES cells, Sox2 binds to a regulatory sequence (bracket region) to repress a target gene, while
Gata4 and Nkx2.5 are not expressed. Later upon differentiation, Gata4 and Nkx2.5, both highly
expressed, out-compete Sox2 to bind to the same region, thus terminating the repression of the
downstream gene.

Furthermore, we compared the BART models inferred from the Oct4 and the Sox2 data
sets, and found that BART identified 22 and 29 features with Pin > 0.5, respectively. Among
them, 10 features are in common, which is much higher than that expected by chance with a
p-value of 1 × 10−5 and a 4.2 fold enrichment. This is consistent with the known co-regulation
of Oct4 and Sox2 in ES cells. A notable common motif feature with high Pin in both models
is the Uf1h3b motif, which contains the consensus of Klf4 whose motif has not been included in
TRANSFAC yet. This result predicted Klf4 as a common co-regulator of Oct4 and Sox2 in ESCs.
The ChIP-chip data of Plath and colleagues (to be published [55]) provided an experimental
validation of this prediction, in which the respective target genes of Oct4, Sox2, Klf4 and other
important ESC regulators were identified. Among the ∼1,400 Klf4 target genes, 500 and 535 of
them were also bound by Oct4 and Sox2, respectively. Furthermore, the actual binding regions
shared at least 650 bps for more than 75% of the common targets. These experimental data
confirmed the co-regulation between Klf4 and the other two master TFs. On the other hand,
sequence features specific to each data set provide a basis to distinguish the binding patterns
of Oct4 and Sox2. For example, Nfy was only identified with high Pin in the Oct4 data set,
whereas Nanog only co-occurred in the Sox2 bound regions. The missing of Nanog in the Oct4
BART model is consistent with an independent observation that the Nanog motif is not enriched
in the Oct4-bound enhancers in mouse ESCs [53], although significant overlaps in target genes of
these two TFs were reported [42, 52]. One possible explanation, which awaits future experimental
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investigations, is that the direct DNA binding of Nanog may depend on its interactive TFs. In
the presence of Oct4, Nanog may not bind to DNA directly but co-regulate genes with Oct4 via
protein-protein interactions [56].

A simulation study

We performed a simulation study as a final test on the effectiveness of the predictive modeling
approach, which allows us to evaluate its accuracy in identifying true sequence features, especially
motifs that determine the observed measurements. We generated 1,000 sequences, each from a
first-order Markov chain, of length uniformly distributed between 800 and 1200. For each of the
first 500 sequences, we inserted one, two, or three Oct4 motif sites with probability 0.25, 0.5, or
0.25, respectively. Furthermore, we inserted one site for each of the three motifs, Sox2, Nanog,
and Nkx2.5, independently with probability 0.5. We calculated the score of an inserted site by Eq.
(4). For each motif, we obtained the sum of the site scores for a sequence, denoted by Z1, · · · , Z4

for Oct4, Sox2, Nanog, and Nkx2.5, respectively. Then we defined the motif score for a sequence
by Xj = log(max(Zj , 1)) for j = 1, · · · , 4. Denote by X5 the GC content of a sequence. We
normalized these five features by their respective standard deviations so that the rescaled features
have a unit variance. Then, the observed ChIP-intensity Y for a sequence was simulated as:

Y = f(X) + ε ≡ X1(1 + 0.5X2 + 0.3X3 + 0.4X4) +
√
X1X3X4 + 2X5 + ε, (8)

where ε ∼ N(0, σ2). This model states that X1 is the primary TF with three interactive factors
(X2, X3, X4) and the GC content (X5) has a positive effect on the ChIP-intensity. The signal-to-
noise-ratio (SNR) of a simulated data set is defined as V ar(f(X))/σ2 ≡ V ar(Y )/σ2−1, which is
the ratio of the variance of the true ChIP-intensity f(X) over the noise variance σ2. We simulated
10 independent sequence sets, and then generated observed ChIP-intensities according to (8) with
SNR = 1/0.6, 1/1, and 1/2, respectively.

We applied the same sequence feature extraction as in the previous sections to the simulated
data sets and compared the performances of stepwise regression, MARS, boosting, and BART in
terms of their response prediction and error rates of sequence feature selection. We calculated
the correlation between a predicted response Ŷ and the true ChIP-intensity f(X), denoted by
R(Ŷ , f(X)). Then the expected correlation between the predicted Ŷ and a future observed
response Y ∗ = f(X) + ε∗, called the expected predictive correlation (EP-cor), was computed by

Cov(Ŷ , f(X) + ε∗)√
V ar(Ŷ )[V ar(f(X)) + σ2]

= R(Ŷ , f(X))
√
SNR/(SNR+ 1),

where ε∗ ∼ N(0, σ2) is independent of Ŷ and f(X). We applied MARS (d = 1, λ = 6), boosting
and BART with 100 trees here given that these were their optimal tuning parameters in the Oct4
data set, which is roughly of the same size as the simulated data. The comparison of the results
of these methods is given in Table 4.
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Table 4: Performance comparison on the simulated data sets

Method SNR 1/0.6 1/1 1/2

EP-cor 0.579(0.009) 0.497(0.012) 0.368(0.010)
Step-LR NT 3.8(0.42) 3.8(0.42) 3.3(0.67)

NF 4.9(2.64) 8.6(3.63) 7.5(3.54)

EP-cor 0.579(0.011) 0.498(0.013) 0.376(0.018)
MARS NT 3.9(0.32) 3.5(0.53) 3.3(0.48)

NF 4.4(1.78) 4.2(1.81) 4.6(2.80)

EP-cor 0.603(0.007) 0.528(0.010) 0.405(0.011)
Boost NT 3.9(0.32) 3.7(0.48) 3.5(0.53)

NF 0.6(0.70) 2.4(1.58) 5.9(1.85)

EP-cor 0.636(0.009) 0.551(0.007) 0.416(0.006)
BART NT 4.0(0.00) 3.6(0.70) 3.5(0.71)

NF 1.8(1.40) 2.5(1.18) 2.5(1.43)

Note: Reported are the averages (standard deviations in the parentheses) over 10 independent
data sets. NT and NF are the numbers of true and false motifs identified, respectively.

As expected, with the increase of the noise level, the average EP-cor and the accuracy of
motif identification decreased for all the tested methods. Consistent with the other two data sets,
the EP-cors of BART were the highest at all the levels of SNR. When we set the threshold of
Pin to 0.7, BART identified on average more than 85% of the true motifs accompanied by at
most 2.5 false positives. For stepwise linear regression (Step-LR), only features with a regression
p-value < 0.01 were used for computing error rates in motif identification since including all
the covariates selected by the method resulted in an overly large number of false positives. At
comparable sensitivity levels (NT ), BART reported significantly fewer false positives (NF ) for all
the SNR levels than Step-LR and MARS (Table 4). The relative influence of a feature selected by
boosting was measured by the reduction of squared error attributable to the feature. We ranked
all the selected features by their relative influence and set a reasonable threshold to obtain similar
sensitivity levels as those of BART. We noticed that these two methods showed comparable error
rates in motif identification for SNR ≥ 1, but the boosting method seemed to result in a higher
false positive rate at the lowest SNR level (=1/2).

Discussion

We have demonstrated in this article how predictive modeling approaches can reveal subtle se-
quence signals that may influence TF-DNA binding and generate testable hypotheses. Compared
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with some other more systems-based approaches to gene regulation, such as building a large sys-
tem of differential equations or inferring a complete Bayesian network, predictive modeling is
more intuitive, more theoretically solid (as many in-depth statistical learning theories have been
developed), more easily validated (by cross-validations), and can generate more straightforward
testable hypotheses.

Our main goal here is to conduct a comparative study on the effectiveness of several statis-
tical learning tools for combining ChIP-chip/expression and genomic sequence data to tackle the
protein-DNA binding problem. Because of the generality of these tools, we are able to include
sequence features besides TF motifs, such as background words, GC content, and a measure of
cross-species conservation. The finding that these non-motif features can significantly improve
the predictive power of all the tested methods indicates a potentially important yet less under-
stood role these sequence features play in TF-DNA interactions. They may help the localization
of a TF on the DNA for precise recognition of its binding sites, or may have a function with
chromatin associated factors and histone modification activities. It is generally believed that
many other factors in addition to the sequence specificity of short TFBSs contribute to TF-DNA
binding. Along this direction, we have proposed a general framework to explore and characterize
potentially influential factors.

In both ChIP-chip data sets, we not only unambiguously identified all the binding motifs for
the target TFs, Oct4 and Sox2, but also discovered a number of verified cooperative or functional
regulators in ESCs, such as Nanog, Klf4, Nfyb and P53. As a principled way to utilize both
positive (i.e., binding sequences) and negative (non-binding) information, the predictive mod-
eling approach provides a powerful alternative for detecting TF binding motifs to those more
popular generative model-based tools (e.g., [3]-[6]). Noting that the stepwise linear regression
methods (Step-Full, Step-SO, and Step-LR) are equivalent to MotifRegressor [29] and MARS is
equivalent to MARSMotif [30] with all the known and discovered (Sox-Oct) motifs as input, we
have shown that BART and boosting using all three categories of sequence features outperformed
MotifRegressor and MARSMotif significantly in all of our examples.

For a generative modeling approach, separate statistical models are fitted to TF-bound (pos-
itive) and background (negative) sequences, and then discriminant analysis based on posterior
odds ratio or likelihood ratio is applied to construct prediction rules. In contrast, a predictive
modeling approach targets at prediction by modeling directly the condition distribution of TF-
binding given extensively extracted sequence features. As shown in this article by both real and
simulated data sets, modern statistical learning tools such as boosting and BART have made it
possible to estimate this conditional distribution quite accurately for the TF-binding problem.
These two approaches have their own respective advantages. If the underlying data generation
process is unclear or difficult to model, predictive approaches have the advantage to construct
a nonparametric conditional distribution from the training data. On the other hand, generative
models are usually built with more explicit assumptions that help us understand the underlying
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science and can capture key characteristics of a biological or physical system. Typical examples
of generative models in gene regulation problems include, for example, the mixture modeling of
DNA sequence motifs (e.g. [2]) and the graphical model for protein-DNA interaction measured
with ChIP-chip data [57].

Finally, our study suggests that the Bayesian learning method BART is a good tool for analyz-
ing high-dimensional genomic data because of its high predictive power, its explicit quantification
of uncertainty, and its interpretability. First, like boosting, BART is an ensemble learning method,
which approximates an unknown relationship by an aggregation of a large number of simple mod-
els (small trees). Second, the Bayesian formulation of BART leads to not only the “optimal”
model, but also a posterior distribution on the space of all possible models, which can be used
to predict the response of a new observation by weighted averaging predictions from all models.
This model averaging approach tends to improve the model’s predictive power in general. Third,
the variable selection procedure is a coherently built-in feature of BART and performs quite well
in identifying important and relevant sequence features that contribute to TF-DNA interactions
in all the examples. With the rapid accumulation of large-scale genomic data, we believe that
flexible statistical learning methods such as BART and boosting will be very useful for studying
a large class of biological problems including cis-regulatory analysis.
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