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Abstract: We define the “kink transform” as a one-sided boost of bulk initial data

about the Ryu-Takayanagi surface of a boundary cut. For a flat cut, we conjecture that

the resulting Wheeler-DeWitt patch is the bulk dual to the boundary state obtained

by Connes cocycle (CC) flow across the cut. The bulk patch is glued to a precursor

slice related to the original boundary slice by a one-sided boost. This evades ultravi-

olet divergences and distinguishes our construction from one-sided modular flow. We

verify that the kink transform is consistent with known properties of operator expecta-

tion values and subregion entropies under CC flow. CC flow generates a stress tensor

shock at the cut, controlled by a shape derivative of the entropy; the kink transform

reproduces this shock holographically by creating a bulk Weyl tensor shock. We also

go beyond known properties of CC flow by deriving novel shock components from the

kink transform.
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1 Introduction

The AdS/CFT duality [1–3] has led to tremendous progress in the study of quantum

gravity. However, our understanding of the holographic dictionary remains limited.

In recent years, quantum error correction was found to play an important role in the

emergence of a gravitating (“bulk”) spacetime from the boundary theory [4–6]. The
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study of modular operators led to the result that the boundary relative entropy in a

region A equals the bulk relative entropy in its entanglement wedge EW(A) [7]. The

combination of these insights was used to derive subregion duality: bulk operators in

EW(A) can in principle be reconstructed from operators in the subregion A [8].

The relation between bulk modular flow in EW(A) and boundary modular flow

in A has been used to explicitly reconstruct bulk operators both directly [9, 10], and

indirectly via the Petz recovery map and its variants [11–13]. Thus, modular flow has

shed light on the emergence of the bulk spacetime from entanglement properties of the

boundary theory.

Modular flow has also played an important role in proving various properties of

quantum field theory (QFT), such as the averaged null energy condition (ANEC) and

quantum null energy condition (QNEC) [14, 15]. Tomita-Takesaki theory, the study

of modular flow in algebraic QFT, puts constraints on correlation functions that are

otherwise hard to prove directly [16].

Recently, an alternate proof of the QNEC was found using techniques from Tomita-

Takesaki theory [17]. The key ingredient was Connes cocyle (CC) flow. Given a subre-

gion A and global pure state ψ, Connes cocycle flow acts with a certain combination of

modular operators to generate a sequence of well-defined global states ψs. In the limit

s → ∞, these states saturate Wall’s “ant conjecture” [18] on the minimum amount of

energy in the complementary region A′. This proves the ant conjecture, which, in turn,

implies the QNEC.

CC flow also arises from a fascinating interplay between quantum gravity, quantum

information, and QFT. Recently, the classical black hole coarse-graining construction

of Engelhardt and Wall [19] was conjecturally extended to the semiclassical level [20].

In the non-gravitational limit, this conjecture requires the existence of flat space QFT

states with properties identical to the s → ∞ limit of CC flowed states. This is

somewhat reminiscent of how the QNEC was first discovered as the nongravitational

limit of the quantum focusing conjecture [21]. Clearly, CC flow plays an important role

in the connection between QFT and gravity. Our goal in this paper is to investigate

this connection at a deeper level within the setting of AdS/CFT.

In Sec. 2, we define CC flow and discuss some of its properties. If ∂A lies on a

null plane in Minkowski space, operator expectation values and subregion entropies

within the region A remain the same, whereas those in A′ transform analogously to a

boost [17]. Further, CC flowed states ψs exhibit a characteristic stress tensor shock at

the cut ∂A, controlled by the derivative of the von Neumann entropy of the region A

in the state ψ under shape deformations of ∂A [20].

As is familiar from other examples in holography, bulk duals of complicated bound-

ary objects are often much simpler [22, 23]. Motivated by the known properties of CC
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flow, we define a bulk construction in Sec. 3, which we call the “kink transform.” This

is a one-parameter transformation of the initial data of the bulk spacetime dual to the

original boundary state ψ. We consider a Cauchy surface Σ that contains the Ryu-

Takayanagi surface R of the subregion A. The kink transform acts as the identity

except at R, where an s-dependent shock is added to the extrinsic curvature of Σ. We

show that this is equivalent to a one-sided boost of Σ in the normal bundle to R. We

prove that the new initial data satisfies the gravitational constraint equations, thus

demonstrating that the kink transform defines a valid bulk spacetime Ms. We show

that Ms is independent of the choice of Σ.

We propose that Ms is the holographic dual to the CC-flowed state ψs, if the

boundary cut ∂A is (conformally) a flat plane in Minkowski space.

In Sec. 4, we provide evidence for this proposal. The kink transform separately

preserves the entanglement wedges of A and A′, but it glues them together with a rela-

tive boost by rapidity 2πs. This implies the one-sided expectation values and subregion

entropies of the CC flowed state ψs are correctly reproduced when they are computed

holographically in the bulk spacetime Ms. We then perform a more nontrivial check

of this proposal. By computing the boundary stress tensor holographically in Ms, we

reproduce the stress tensor shock at ∂A in the CC-flowed state ψs.

Having provided evidence for kink transform/CC flow duality, we use the duality

to make a novel prediction for CC flow in Sec. 5. The kink transform fully determines

all independent components of the shock at ∂A in terms of shape derivatives of the

entanglement entropy. Strictly, our results only apply only to the CC flow of a holo-

graphic CFT across a planar cut. However, their universal form suggests that they

will hold for general QFTs under CC flow. Moreover, the shocks we find agree with

properties required to exist in quantum states under the coarse-graining proposal of

Ref. [24]. Thus, our new results may also hold for CC flow across general cuts of a null

plane.

In Sec. 6, we discuss the relation of our construction to earlier work on the role

of modular flow in AdS/CFT [7, 25, 26]. The result of Jafferis et al. (JLMS) [7] has

conventionally been understood as a relation that holds for a small code subspace of

bulk states on a fixed background spacetime. However, results from quantum error cor-

rection suggest that this code subspace could be made much larger to include different

background geometries [5, 27–29]. Our proposal then follows from such an extended

version of the JLMS result which includes non-perturbatively different background ge-

ometries. Equipped with this understanding, we can distinguish our proposal from

the closely related bulk duals of one-sided modular flowed states [25, 26]. We pro-

vide additional evidence for our proposal based on two sided correlation functions of

heavy operators, and we discuss generalizations and applications of the proposed kink
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transform/CC flow duality.

In Appendix A we derive the null limit of the kink transform, and show that it

generates a Weyl shock, which provides intuition for how the kink transform modifies

gravitational observables.

2 Connes Cocycle Flow

In this section, we review Connes cocycle flow and its salient properties; for more details

see [17, 20]. We then reformulate Connes cocycle flow in as a simpler map to a state

defined on a “precursor” slice. This will prove useful in later sections.

2.1 Definition and General Properties

Consider a quantum field theory on Minkowski space R
d−1,1 in standard Cartesian

coordinates (t, x, y1, . . . , yd−2). Consider a Cauchy surface C that is the disjoint union

of the open regions A0, A
′
0 and their shared boundary ∂A0. Let A0,A′

0 denote the

associated algebras of operators. Let |ψ〉 be a cyclic and separating state on C, and

denote by |Ω〉 the global vacuum (the assumption of cyclic and separating could be

relaxed for |ψ〉, at the cost of complicating the discussion below). The Tomita operator

is defined by

Sψ|Ω;A0
α|ψ〉 = α†|Ω〉, ∀α ∈ A0 . (2.1)

The relative modular operator is defined as

∆ψ|Ω ≡ S†
ψ|Ω;A0

Sψ|Ω;A0
, (2.2)

and the vacuum modular operator is

∆Ω ≡ ∆Ω|Ω . (2.3)

Note that we do not include the subscript A0 on ∆; instead, for modular operators, we

indicate whether they were constructed from A0 or A′
0 by writing ∆ or ∆′.

Connes cocycle (CC) flow of |ψ〉 generates a one parameter family of states |ψs〉,

s ∈ R, defined by

|ψs〉 = (∆′
Ω)

is(∆′
Ω|ψ)

−is|ψ〉 . (2.4)

Thus far the definitions have been purely algebraic. In order to elucidate the intuition

behind CC flow, let us write out the modular operators in terms of the left and right
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density operators, ρψA0
= TrA′

0
|ψ〉〈ψ| and ρψA′

0

= TrA0
|ψ〉〈ψ|:1

∆ψ|Ω = ρΩA0
⊗ (ρψA′

0

)−1 . (2.5)

One finds that the CC operator acts only in A′
0:

(∆′
Ω)

is(∆′
Ω|ψ)

−is = (ρΩA′

0
)is(ρψA′

0

)−is ∈ A′
0 . (2.6)

It follows that the reduced state on the right algebra satisfies

ρψs

A0
= ρψA0

. (2.7)

Therefore, expectation values of observables O ∈ A0 remain invariant under CC flow.

These heuristic arguments would be valid only for finite-dimensional Hilbert spaces [30];

but Eq. (2.6) can be derived rigorously [17].

It can also be shown that (∆′
ψ|Ω)

is∆is
Ω|ψ = 1. Hence for operators O′ ∈ A′

0, one

finds that CC flow acts as ∆is
Ω inside of expectation values:

〈ψs|O
′|ψs〉 = TrA′

0

[
ρψA′

0

(∆−is
ψ|Ω∆

is
Ω)O

′(∆−is
Ω ∆is

ψ|Ω)
]
,

= TrA′

0

(
ρψA′

0

(ρΩA′

0
)−isO′(ρΩA′

0
)is
)

(2.8)

= Tr
[
|ψ〉〈ψ|∆is

Ω(1⊗O′)∆−is
Ω

]
, (2.9)

where we have used the cyclicity of the trace.

To summarize, expectation values of one-sided operators transform as follows:

〈ψs|O|ψs〉 = 〈ψ|O|ψ〉 , (2.10)

〈ψs|O
′|ψs〉 = 〈ψ|∆is

ΩO
′∆−is

Ω |ψ〉 . (2.11)

There is no simple description of two-sided correlators in |ψs〉 such as 〈ψs|OO′|ψs〉; we

discuss such objects in Sec. 6.4.

2.2 CC Flow from Cuts on a Null Plane

Let us now specialize to the case where ∂A0 corresponds to a cut v = V0(y) of the

Rindler horizon u = 0. We have introduced null coordinates u = t − x and v = t + x

and denoted the transverse coordinates collectively by y. It can be shown that the

modular operator ∆is
Ω acts locally on each null generator y of u = 0 as a boost about

1We follow the conventions in [30] where complement operators are written to the right of the

tensor product.
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the cut V0(y) [31]. More explicitly, one can define the full vacuum modular Hamiltonian

K̂V0 by

K̂V0 = − log∆Ω;AV0
. (2.12)

We can write the full modular Hamiltonian as

K̂V0 = KV0 ⊗ 1′ − 1⊗K ′
V0
. (2.13)

Let ∆ denote vacuum subtraction, ∆〈O〉 = 〈O〉ψ − 〈O〉Ω. Then, for arbitrary cuts of

the Rindler horizon, we have [31]

∆〈K ′
V0〉 = −2π

∫
dy

∫ V0

−∞

dv[v − V0(y)]〈Tvv〉ψ , (2.14)

and similarly for KV0. Thus K ′
V0

is simply the boost generator about the cut V0(y) in

the left Rindler wedge. That is, it generates a y-dependent dilation,

v → V0(y) + [v − V0(y)]e
2πs . (2.15)

This allows us to evaluate Eq. (2.11) explicitly for local operators at u = 0. For

example, the CC flow of the stress tensor is

〈ψs|Tvv|ψs〉|v<V0= e−4πs〈ψ|Tvv
(
V0 + e−2πs(v − V0)

)
|ψ〉|v<V0 , (2.16)

and similarly for the other components of Tµν . There is a slight caveat here since ∆is
Ω

only acts as a boost strictly at u = 0. This would be sufficient for free theories, where

Tvv can be defined through null quantization on the Rindler horizon with a smearing

that only needs support on u = 0 [32]. More generally, Tµν must be smeared in an

open neighborhood of u = 0. However, if V0(y) is a perturbation of a flat cut then

one can show that inside correlation functions ∆is
Ω approximately acts as a boost with

subleading errors that vanish as u → 0, to all orders in the perturbation [15, 33].

In the non-perturbative case, evidence comes from the fact that classically the vector

field on the Rindler horizon which generates boosts about V0(y) can be extended to an

approximate Killing vector field in a neighborhood of the horizon [34, 35]. Therefore

we expect Eq. (2.16) to hold on the null surface even after smearing.

Now consider a second cut V (y) of the Rindler horizon which lies entirely below

V0(y), so V < V0 for all y. The cut defines a surface ∂AV that splits a Cauchy surface

CV = A′
V ∪ ∂AV ∪AV ; we take A′

V to be the “left” side (v < V ), with operator algebra

A′
V . The Araki definition of relative entropy is [30]

S ′
rel(ψ|Ω;V ) = −〈ψ| log∆ψ|Ω;A′

V
|ψ〉 . (2.17)
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It has the following transformation properties [17]:

Srel(ψs|Ω;V ) = Srel(ψ|Ω;V0 + e−2πs(V − V0)) , (2.18)

δSrel(ψs|Ω;V )

δV
= e−2πs δSrel(ψ|Ω;V0 + e−2πs(V − V0))

δV
. (2.19)

Moreover, the “left” von Neumann entropy is defined as

S ′(ψ, V ) = −trA′

V
ρψA′

V

log ρψA′

V

. (2.20)

With these definitions in hand, one can decompose the relative entropy as

S ′
rel(ψ|Ω;V ) = ∆〈K ′

V 〉 −∆S ′(V ) . (2.21)

At this point we drop the explicit vacuum subtractions, as we will only be interested

in shape derivatives of the vacuum subtracted quantities, which automatically anni-

hilate the vacuum expectation values. In particular, one can directly compute shape

derivatives of K ′
V :

δ〈K ′
V 〉ψ

δV

∣∣∣
V0

= 2π

∫ V0

−∞

dv 〈Tvv〉ψ . (2.22)

Hence the transformations of both K ′
V and its derivative simply follow from Eq. (2.16).

Combining Eq. (2.18) and Eq. (2.14), as well as Eq. (2.19) and Eq. (2.22), we see

that S ′(ψ, V ) and its derivative transform as

S ′(ψs, V ) = S ′(ψ, V0 + e−2πs(V − V0)) , (2.23)

δS ′

δV

∣∣∣
ψs,V

= e−2πs δS
′

δV

∣∣∣
ψ,V0+e−2πs(V−V0)

. (2.24)

The respective properties of the complement entropy follow from purity.

2.3 Stress Tensor Shock at the Cut

CC flow generates a stress tensor shock at the cut V0, proportional to the jump in the

variation of the one-sided von Neumann entropy under deformations, at the cut [20].

To see this, let us start with the sum rule derived in [17] for null variations of relative

entropy:2

2π(Ps − e−2πsP0) = (e−2πs − 1)
δS ′

rel(ψ|Ω;V )

δV

∣∣∣
V0
, (2.25)

2For type I algebras, one can derive the analogous sum rule from simpler arguments [36].
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where

P ≡

∫ ∞

−∞

dv Tvv (2.26)

is the averaged null energy operator at u = 0, and Ps ≡ 〈ψs|P |ψs〉, so in particular

P0 ≡ 〈ψ|P |ψ〉. (There is one such operator for every generator, i.e., for every y.)

Inserting Eq. (2.21) and Eq. (2.22) into Eq. (2.25), and making use of Eq. (2.16),

we see that there must exist a shock at v = V0(y):

〈ψs|Tvv|ψs〉 = (1− e−2πs)
1

2π

δS ′

δV

∣∣∣
V0
δ(v − V0) + o(δ) . (2.27)

Here o(δ) designates the finite (non-distributional) terms. These are determined by

Eq. (2.16), and by its trivial counterpart in the v > V0 region.

This s-dependent shock is a detailed characteristic of the CC flowed state. As such,

reproducing it through the holographic dictionary will be the key test of our proposal

of the bulk dual of CC flow (see Sec. 4).

2.4 Flat Cuts and the Precursor Slice

For the remainder of the paper we further specialize to flat cuts of the Rindler horizon,

so that ∂A0 corresponds to u = v = 0. We therefore set V0 = 0 in what follows. We

take C to be the Cauchy surface t = 0, so that A0 (t = 0, x > 0) and A′
0 (t = 0, x < 0)

are partial Cauchy surfaces for the right and left Rindler wedges.

In this case ∆is
Ω is a global boost by rapidity s about ∂A0 [37]. Thus, it has a

simple geometric action not only on the null plane u = 0, but everywhere. CC flow

transforms observables in A′
0 by ∆is

Ω and leaves invariant those in A0. For a flat cut,

this action can be represented as a geometric boost in the entire left Rindler wedge.

This allows us to characterize the CC flowed state |ψ(s)〉 on C very simply in terms of

a different state on a different Cauchy surface which we call the “precursor slice”. This

description will motivate the formulation of our bulk construction in Sec. 3.1.

By Eq. (2.11), the CC flowed state on the slice C,

|ψs(C)〉 = (∆′
Ω)

is(∆′
Ω|ψ)

−is |ψ(C)〉 , (2.28)

satisfies

〈ψs(C)| OA |ψs(C)〉 = 〈ψ(C)| OA |ψ(C)〉 , (2.29)

〈ψs(C)|∆
−is
Ω OA′∆is

Ω |ψs(C)〉 = 〈ψ(C)| OA′ |ψ(C)〉 , (2.30)

– 8 –



where OA and OA′ denote an arbitrary collection of local operators that act on spacelike

half-slices A and A′ of C respectively.3 In the second equality above, we used the fact

that ∆is
Ω acts as a global boost to move it to the other side of the equality, compared

to Eq. (2.11).

We work in the Schrödinger picture where the argument C should be interpreted

as the time variable. The fact that ∆is
Ω acts as a boost around ∂A0 motivates us to

consider the time slice

Cs = A′
s ∪ ∂A0 ∪ A0 , (2.31)

where

A′
s = {t = (tanh 2πs)x, x < 0} . (2.32)

By Eqs. (2.29) and (2.30), each side of the CC-flowed state |ψs(Cs)〉 is simply related

to the left and right restrictions of the original state on the original slice:

〈ψs(Cs)| OA |ψs(Cs)〉 = 〈ψ(C)| OA |ψ(C)〉 , (2.33)

〈ψs(Cs)| OA′

s
|ψs(Cs)〉 = 〈ψ(C)| OA′ |ψ(C)〉 . (2.34)

In the second equation, OA′

s
denotes local operators on A′

s which are analogous to OA′

on A′. More precisely, because the intrinsic metric of A′ and A′
s are the same, there

exists a natural map between local operators on A′ and A′
s.

In words, Eqs. (2.33) and (2.34) say that correlation functions in each half of C in

the state |ψ(C)〉 are equal to the analogous correlation functions on each half of Cs in

the state |ψs(Cs)〉. This justifies calling Cs the precursor slice since the CC flowed state

on C arises from it by time evolution.

We find it instructive to repeat this point in the less rigorous language of density

operators. In the density operator form of CC flow,

|ψs(C)〉 = (ρΩA′

0
)is(ρψA′

0

)−is |ψ(C)〉 , (2.35)

it is evident that the action of (ρΩA′

0

)is can be absorbed into a change of time slice

C → Cs:

|ψs(Cs)〉 = (ρψA′

0

)−is |ψ(C)〉 . (2.36)

Tracing out each side of ∂A0 implies

ρψs

A0
= ρψA0

, (2.37)

ρψs

A′

s

= ρψA′

0

. (2.38)

3More precisely, one would have to smear the operator in a codimension 0 neighborhood of points

on the slices.
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The first equality is trivial and was already discussed in Eq. (2.7). The second equality

follows because (ρψA′

0

)is commutes with (ρψA′

0

). This is the density operator version of

Eqs. (2.33) and (2.34).

Eq. (2.36) should be contrasted with the one-sided modular-flowed state |φ(C)〉 =

(ρψA′

0

)−is |ψ(C)〉. The latter state would live on the original slice C, but it is not well-

defined since it would have infinite energy at the entangling surface.

It will be useful to define new coordinates adapted to the precursor slice Cs. Let

ṽ = vΘ(v) + e−2πs v (1−Θ(v)) , (2.39)

ũ = e2πsuΘ(u) + u (1−Θ(u)) , (2.40)

where Θ(.) is the Heaviside step function. Let t̃ = 1
2
(ṽ + ũ) and x̃ = 1

2
(ṽ− ũ). In these

coordinates, the Minkowski metric takes the form

ds2 =
[
Θ(t̃ + x̃) + e2πs(1−Θ(t̃+ x̃))

] [
e−2πsΘ(t̃− x̃) + (1−Θ(t̃− x̃))

]
(−dt̃2 + dx̃2)

+ dd−2y , (2.41)

and the precursor slice corresponds to t̃ = 0.

In these “tilde” coordinates, the stress tensor shock of Eq. (2.27) takes the form4

〈ψs|Tṽṽ|ψs〉 =
1

2π

(
∂v

∂ṽ

)2

(1− e−2πs)
δS

δV

∣∣∣
V=0

δ(v) + o(δ) . (2.42)

Recall that the entropy variation is evaluated in the state |ψ〉. By Eq. (2.24),

δS

δV

∣∣∣
ψ
=
δS

δṼ

∣∣∣
ψs

, (2.43)

where Ṽ (y) is a cut of the Rindler horizon in the ṽ coordinates. Thus we may instead

evaluate the entropy variation in the state |ψs〉 on the precursor slice. This will be

convenient when matching the bulk and boundary.

The Jacobian in Eq. (2.42) has a step function in it, as will the Jacobian coming

from δ(v). A step function multiplying a delta function is well-defined if one averages

the left and right derivatives:
(
∂v

∂ṽ

)2

δ(v) =
1

2

(
∂v

∂ṽ

∣∣∣
0−

+
∂v

∂ṽ

∣∣∣
0+

)
δ(ṽ) . (2.44)

Thus Eq. (2.42) becomes

〈ψs|Tṽṽ(ṽ)|ψs〉 =
1

2π
sinh(2πs)

δS

δṼ

∣∣∣
ψs,Ṽ=0

δ(ṽ) + o(δ). (2.45)

4We remind the reader that o(δ) refers to any finite (non-distributional) terms.
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Since we are dealing with a flat cut, the symmetry s↔ −s, v ↔ u implies that CC

flow also generates a Tuu shock in the state |ψs〉 at u = v = 0:

〈ψs|Tũũ|ψs〉 =
1

2π
sinh(2πs)

δS

δŨ

∣∣∣
ψs,Ṽ=0

δ(ũ) + o(δ) . (2.46)

(Note that δ/δV goes to −δ/δU .) The linear combination

〈ψs|Tt̃x̃(t̃, x̃)|ψs〉 =
1

2π
sinh(2πs)

δS

δX̃

∣∣∣
ψs,X̃=0

δ(x̃) + 〈ψ|Ttx(t = t̃, x = x̃)|ψ〉 . (2.47)

will be useful in Sec. 4. The last term was obtained from Eqs. (2.37) and (2.38); it

makes the finite piece explicit. Note that these equations are valid in the entire left

and right wedges, not just on Cs.

3 Kink Transform

In this section, we introduce a novel geometric transformation called the kink transform.

The construction is motivated by thinking about what the bulk dual of the boundary

CC flow would be in the context of AdS/CFT. As we discussed in Sec. 2, CC flow

boosts observables in D(A′) and leaves observables in D(A) unchanged. Subregion

duality in AdS/CFT then implies that the bulk dual of the state |ψs〉 has to have the

property that the entanglement wedges of D(A) and D(A′) will be diffeomorphic to

those of the state |ψ〉, but are glued together with a “one-sided boost” at the HRT

surface. In a general geometry, a boost Killing symmetry need not exist. The kink

transform appropriately generalizes the notion of a one-sided boost to any extremal

surface.

In Sec. 3.1, we formulate the kink transform. In Sec. 3.2, we describe a different

but equivalent formulation of the kink transform and show that the kink transform

results in the same new spacetime, regardless of which Cauchy surface containing the

extremal surface is used for the construction. In Sec. 4, we will describe the duality

between the bulk kink transform and the boundary CC flow in AdS/CFT and provide

evidence for it.

3.1 Formulation

Consider a d+1 dimensional spacetime M with metric gµν satisfying the Einstein field

equations. (We will discuss higher curvature gravity in Sec. 6.5.) Let Σ be a Cauchy

surface of M that contains an extremal surface R of codimension 1 in Σ. (That is, the

expansion of both sets of null geodesics orthogonal to R vanishes.)
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Initial data on Σ consist of [38] the intrinsic metric (hΣ)ab and the extrinsic curva-

ture,

(KΣ)ab = P µ
a P

ν
b ∇(µtν) . (3.1)

Here P µ
a is the projector from M onto Σ, and tµ is the unit norm timelike vector field

orthogonal to Σ. Indices a, b, . . . are reserved for directions tangent to Σ. For matter

fields, initial data consist of the fields and normal derivatives, for example φ(wa) and

[tµ∇µφ](w
a), where φ is a scalar field and wa are coordinates on Σ.

By the Einstein equations, the initial data on Σ must satisfy the following con-

straints:

rΣ +K2
Σ − (KΣ)ab(KΣ)

ab = 16πGTµνt
µtν , (3.2)

Da(KΣ)ab −DbKΣ = 8πGTbνt
ν , (3.3)

where Da = P µ
a∇µ is the covariant derivative that Σ inherits from (M, gµν); rΣ is

the Ricci scalar intrinsic to Σ; and KΣ is the trace of the extrinsic curvature: KΣ =

(hΣ)
ab(KΣ)ab.

Let Σ be a Cauchy slice of M containing R and smooth in a neighborhood of R.

The kink transform is then a map of the initial data on Σ to a new initial data set,

parametrized by a real number s analogous to boost rapidity. The transform acts as

the identity on all data except for the extrinsic curvature, which is modified only at

the location of the extremal surface R, as follows:

(KΣ)ab → (KΣs
)ab = (KΣ)ab − sinh (2πs) xaxb δ(R) . (3.4)

Here xa is a unit norm vector field orthogonal to R and tangent to Σ, and we define

δ(R) ≡ δ(x) , (3.5)

where x is the Gaussian normal coordinate to R in Σ (∂x = xa). Thus, the only change

in the initial data is in the component of the extrinsic curvature normal to R. An

equivalent transformation exists for initial choices of Σ that are not smooth around

R though the transformation rule will be more complicated than Eq. (3.4). We will

discuss this later in the section.

Let Σs be a time slice with this new initial data, as in Fig. 1, and let Ms be

the Cauchy development of Σs. That is, Ms is the new spacetime resulting from the

evolution of the kink-transformed initial data. Since the intrinsic metric of Σs and Σ

are the same, they can be identified as d-manifolds with metric; the subscript s merely

reminds us of the different extrinsic data they carry. In particular the surface R can be
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Figure 1. Kink transform. Left: a Cauchy surface Σ of the original bulk M. An extremal

surface R is shown in red. The orthonormal vector fields ta and xa span the normal bundle

to R; xa is tangent to Σ. Right: The kink transformed Cauchy surface Σs. As an initial data

set, Σs differs from Σ only in the extrinsic curvature at R through Eq. (3.4). Equivalently,

the kink transform is a relative boost in the normal bundle to R, Eq. (3.21).

so identified; thus Rs has the same intrinsic metric as R. It also trivially has identical

extrinsic data with respect to Σs. In fact, we will find below that like R in M, Rs is

an extremal surface in Ms. However, the trace-free part of the extrinsic curvature of

Rs in Ms may have discontinuities.

We will now show that the constraint equations hold on Σs; that is, the kink trans-

form generates valid initial data. This need only be verified at R since the transform

acts as the identity elsewhere. Here we will make essential use of the extremality of R

in M, which we express as follows.

The extrinsic curvature of R with respect to M has two independent components.

Often these are chosen to be the two orthogonal null directions, but we find it useful

to consider

(B
(t)
R )ij = P µ

i P
ν
j ∇(µtν) , (3.6)

(B
(x)
R )ij = P µ

i P
ν
j ∇(µxν) . (3.7)

Here i, j represent directions tangent to R, and P µ
i is the projector from M to R.

Extremality of R in M is the statement that the trace of each extrinsic curvature

component vanishes:

B
(t)
R = (γR)

ij(B
(t)
R )ij = 0 , (3.8)

B
(x)
R = (γR)

ij(B
(x)
R )ij = 0 , (3.9)

where (γR)ij = P a
i P

b
j (hΣ)ab is the intrinsic metric on R.

Orthogonality of tµ and xµ implies that P µ
i = P a

i P
µ
a , and hence

(B
(t)
R )ij = P a

i P
b
j (KΣ)ab . (3.10)
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Since xa is the unit norm orthogonal vector field at R, the trace of (KΣ)ab at R can be

written as:

KΣ|R = xaxb(KΣ)ab + (γR)
ij(B

(t)
R )ij = xaxb(KΣ)ab . (3.11)

A little algebra then implies

(KΣs
)2 − (KΣs

)ab(KΣs
)ab = (KΣ)

2 − (KΣ)ab(KΣ)
ab . (3.12)

Moreover, we have rΣ = rΣs
since the two initial data slices have the same intrin-

sic metric. Thus Eq. (3.2) implies that the kink-transformed slice satisfies the scalar

constraint equation:

rΣs
+ (KΣs

)2 − (KΣs
)ab(KΣs

)ab = 16πGTµνt
µtν . (3.13)

To check the vector constraint Eq. (3.3), we separately consider the two cases of

b = x and b = i where i, j represent directions tangent to R:

Da(KΣs
)ax −DxKΣs

= Da(KΣ)
a
x −DxKΣ +B

(x)
R sinh (2πs)δ(x)

= Da(KΣ)
a
x −DxKΣ = 8πGTxνt

ν , (3.14)

Da(KΣs
)ai −DiKΣs

= Da(KΣ)
a
i −DiKΣ = 8πGTiνt

ν , (3.15)

where the second line of the first equation follows from the extremality of R.

We conclude that the kink transform is a valid modification to the initial data. For

both constraints to be satisfied after the kink, it was essential that R is an extremal

surface. Thus the kink transform is only well-defined across an extremal surface. Note

also that Rs ⊂ Σs is an extremal surface in Ms. By Eq. (3.10),

(B
(t)
Rs
)ij = P a

i P
b
j (KΣs

)ab|Rs
= (B

(t)
R )ij =⇒ B

(t)
Rs

= 0 . (3.16)

In the second equality we used Eq. (3.4) as well as the fact that all relevant quantities

are intrinsic to Σs, so Rs can be identified with R. Moreover,

(B
(x)
Rs

)ij = (B
(x)
R )ij =⇒ B

(x)
Rs

= 0 , (3.17)

since this quantity depends only on the intrinsic metrics of Σ and Σs, which are iden-

tical.

3.2 Properties

We will now establish important properties and an equivalent formulation of the kink

transform.
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Figure 2. The kink-transformed spacetime Ms is generated by the Cauchy evolution of the

kinked slice Σs. This reproduces the left and right entanglement wedges D(a) and D(a′) of

the original spacetime M. The future and past of the extremal surface R are in general not

related to the original spacetime.

Let us write Σ as the disjoint union

Σ = a′ ∪R ∪ a . (3.18)

The spacetime M contains D(a) and D(a′) where D(.) denotes the domain of depen-

dence. The kink transformed slice Σs contains regions a and a′ with identical initial

data, so Ms also contains D(a) and D(a′). Because Σs has different extrinsic curvature

at R, the two domains of dependence will be glued to each other differently in Ms, so

the full spacetime will differ from M in the future and past of R. This is depicted in

Fig. 2.

We will now derive an alternative formulation of the kink transform as a one-sided

local Lorentz boost at R. The unit vector field tµΣs
normal to Σs is discontinuous at R

due to the kink. Let

(tµΣs
)R = lim

x→0+
tµΣs

, (3.19)

(tµΣs
)L = lim

x→0−
tµΣs

(3.20)

be the left and right limits to R. The metric of Ms is continuous since it arises from

valid initial data on Σs. Therefore, the normal bundle of 1+1 dimensional normal

spacetimes to points in R is well-defined. The above vector fields (tµΣs
)R and (tµΣs

)L
belong to this normal bundle. Therefore at each point on R, the two vectors can
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Figure 3. Straight slices Σ (red) in a maximally extended Schwarzschild (left) and Rindler

(right) spacetime get mapped to kinked slices Σs (blue) under the kink transform about R.

only differ by a Lorentz boost acting in 1+1 dimensional Minkowski space. The kink

transform, Eq. (3.4), implies:

(tµΣs
)R = (Λ2πs)

µ
ν(t

ν
Σs
)L , (3.21)

where (Λ2πs)
µ
ν is a Lorentz boost of rapidity 2πs. In this sense, the kink transform

resembles a local boost aroundR. Alternatively, we can view Eq. (3.21) as the definition

of the kink transform. This definition can be applied to Cauchy slices that are not

smooth around R, but it reduces to Eq. (3.4) in the smooth case.

This observation applies equally to any other vector field ξµ in the normal bundle

to R, if ξµ has a smooth extension into D(a′) and D(a) in M. The norm of ξµ and its

inner products with (tµΣs
)L and (tµΣs

)R are unchanged by the kink transform. Hence, in

Ms, the left and right limits of ξµ to R will satisfy

ξµR = (Λ2πs)
µ
νξ

ν
L . (3.22)

Now let Ξ ⊃ R be another Cauchy slice of D(Σ). Since Ξ contains R, its timelike

normal vector field ξµ (at R) lies in the normal bundle to R. We have shown that

Eq. (3.21) is equivalent to the kink transform of Σ; that Eq. (3.22) is equivalent to the

kink transform of Ξ; and that Eq. (3.21) is equivalent to Eq. (3.22). Hence the kink

transform of Σ is equivalent to the kink transform of Ξ. In other words, the spacetime

resulting from a kink transform about R does not depend on which Cauchy surface

containing R we apply the kink transform to.

The kink transform (with s 6= 0) always generates physically inequivalent initial

data. However Ms need not differ from M. They will be the same if and only if Σs
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Figure 4. On a fixed background with boost symmetry, the kink transform changes the initial

data of the matter fields. In this example, M is Minkowski space with two balls relatively at

rest (red).The kink transform is still Minkowski space, but the balls collide in the future of

R (blue).

is an initial data set in M. There is an interesting special case where this holds for

all values of s. Namely, suppose M has a Killing vector field that reduces to a boost

in the normal bundle to R. Then Σs ⊂ M (as a full initial data set), for all s. For

example, the kink transform maps straight to kinked slices in the Rindler or maximally

extended Schwarzschild spacetimes (see Fig. 3).

We can also consider the kink transform of matter fields on a fixed background

spacetime with the above symmetry. Geometrically, M = Ms for all s, but the matter

fields will differ in Ms by a one-sided action of the Killing vector field. For example,

let M be Minkowski space, with two balls at rest at x = ±1, y = z = 0 (see Fig. 4);

and let R given by x = t = 0. In the spacetime Ms obtained by a kink transform, the

two balls will approach with velocity tanh 2πs and so will collide. The right and left

Rindler wedge, D(a) and D(a′), are separately preserved; the collision happens in the

past or future of R.

4 Bulk Kink Transform = Boundary CC Flow

In this section, we will argue that the kink transform is the bulk dual of boundary CC

flow. We will show that the kink transform satisfies two nontrivial necessary conditions.

First, in Sec. 4.1, we show that the left and right bulk region are the subregion duals

to the left and right boundary region, respectively. In Sec. 4.2 we show that the bulk
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kink transform leads to precisely the stress tensor shock at the boundary generated by

boundary CC flow, Eq. (2.47). (In Sec. 5 we will show that the kink transform predicts

additional shocks in the CC flowed state, which have not been derived previously purely

from QFT methods.)

4.1 Matching Left and Right Reduced States

The entanglement wedge of a boundary region A in a (pure or mixed) state ρA,

EW(ρA) = D[a(ρA)] (4.1)

is the domain of dependence of a bulk achronal region a satisfying the following prop-

erties [22, 39–41]:

1. The topological boundary of a (in the unphysical spacetime that includes the

conformal boundary of AdS) is given by ∂a = A ∪ R.

2. Sgen(a) is stationary under small deformations of R.

3. Among all regions that satisfy the previous criteria, EW(ρA) is the one with the

smallest Sgen(a).

We neglect end-of-the-world branes in this discussion [42, 43]. The generalized entropy

is given by

Sgen =
Area(R)

4G~
+ S(a) + . . . , (4.2)

where S(a) is the von Neumann entropy of the region a and the dots indicate subleading

geometric terms. The entanglement wedge is also referred to as the Wheeler-DeWitt

patch of A.

There is significant evidence [6, 8] that EW(ρA) represents the entire bulk dual to

the boundary region A. That is, all bulk operators in EW(ρA) have a representation

in the algebra of operators A associated with A; and all simple correlation functions in

A can be computed from the bulk. In other words, the entanglement wedge appears to

be the answer [41] to the question [44–47] of “subregion duality.” A bulk surface R is

called quantum extremal (with respect to A in the state ρ) if it satisfies the first two

criteria, and quantum RT if it satisfies all three. When the von Neumann entropy term

in Eq. (4.2) is neglected, R is called an extremal or RT surface, respectively. This will

be the case everywhere in this paper except in Sec. 6.2.

We now specialize to the setting in which CC flow was considered in Sec. 2. Recall

that the pure boundary state |ψ(C)〉 is given on a boundary slice C corresponding to

t = 0 in standard Minkowski coordinates; and that we regard C as the disjoint union of
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the left region A′
0 (x < 0), with reduced state ρψA0

; the cut ∂A0 (x = 0); and the right

region A0 (x > 0), with reduced state ρψA′

0

. Let a′0 and a0 be arbitrary Cauchy surfaces

of the associated entanglement wedges EW(ρψA′

0

) and EW(ρψA0
).

The entanglement wedges of non-overlapping regions are always disjoint, so

EW(ρψA′

0

) ∩ EW(ρψA0
) = ∅ . (4.3)

For the bipartition of a pure boundary state ψ, entanglement wedge complementarity

holds:

a[|ψ(C)〉] = a′0 ∪R ∪ a0 , (4.4)

where a[|ψ(C)〉] is a Cauchy surface of EW(|ψ(C)〉). In particular, the left and right

entanglement wedge share the same HRT surface R.

Crucially, the classical initial data on a[|ψ(C)〉] is almost completely determined by

the data on a′0 and a0; however the data on R are not contained in a′0 nor in a0. In the

semiclassical regime, the quantum state on a[|ψ(C)〉] also includes global information

(through its entanglement structure) that neither subregion contains on its own. Hence

in general

EW(|ψ(C)〉) = D
[
EW(ρψA′

0

) ∪ R ∪ EW(ρψA0
)
]

(4.5)

is a proper superset of EW(ρψA′

0

) ∪ EW(ρψA0
) that also includes some of the past and

future of R.

Now consider the CC-flowed state on the precursor slice |ψs(Cs)〉. By Eqs. (2.37)

and (2.38), we have

EW(ρψs

A′

s

) = EW(ρψA′

0

) = D(a′0) , (4.6)

EW(ρψs

A0
) = EW(ρψA0

) = D(a0) , (4.7)

Since |ψs〉 is again a pure state, EW[|ψs(Cs)〉] = D (a[|ψs(Cs)〉]) where

a[|ψs(Cs)〉] = a′0 ∪R ∪ a0 . (4.8)

We see that this initial data slice has the same intrinsic geometry as that of the original

bulk dual. Indeed, by the remarks following Eq. (4.4), the full classical initial data for

the bulk dual to |ψs〉 will be identical on a′0 ∪ a0 and can only differ from the initial

data for the original bulk at R.

We pause here to note that a kink transform of a[|ψ(C)〉] centered on R satisfies

this necessary condition and hence becomes a candidate for a[|ψs(Cs)〉]. However, this

does not yet constrain the value of s. In order to go further, we would now like to show
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that a kink transform of a[|ψ(C)〉] with parameter s yields a bulk slice whose boundary

is geometrically the precursor slice Cs.

The bulk metric takes the asymptotic form [48]:5

ds2 =
1

z2
[
dz2 + ηABdx

AdxB +O(zd)
]
, (4.9)

where ηAB is the metric of Minkowski space. Consider a stationary bulk surface R

anchored on the boundary cut u = v = 0. At leading order, R will reside at u = v = 0

in the asymptotic bulk, in the above metric [23]. (The first subleading term, which

appears at order zd, will be crucial in our derivation of the boundary stress tensor

shock in Sec. 4.2.)

Let Σ be a bulk surface that contains R and satisfies t = 0 + O(zd) in the metric

of Eq. (4.9). Since the initial data on each side of R are separately preserved (see

Sec. 3.2), Eq. (3.21) dictates that the kink transform Σs of Σ satisfies t = 0 (x > 0) and

t = x tanh 2πs (x < 0), again up to corrections of order zd. The corrections all vanish

at z = 0, where Σ is bounded by C and Σs is bounded by Cs (see Eq. (2.32)). Recall

also that the kink transform is slice-independent. Thus we have established that the

kink transform of any Cauchy surface a[|ψ(C)〉], by s along R, yields a Cauchy surface

bounded by the precursor slice Cs.

The above arguments establish that

EW[|ψs(Cs)〉] = D (a[|ψs(Cs)〉]) , (4.10)

where a[|ψs(Cs)〉] is given by Eq. (4.8). In words, the bulk dual of the CC-flowed

boundary state is the Cauchy development of the kink-transform of a Cauchy slice

containing the HRT surface R. Note that the classical initial data on this Cauchy

surface is fully determined by the initial data on a′0 and a0 inherited from the bulk

dual of |ψ(C)〉, combined with the distributional geometric initial data consisting of the

extrinsic curvature shock atR. The full spacetime geometry will differ from EW[|ψ(C)〉]

because of the different gluing at R.

4.2 Matching Bulk and Boundary Shocks

In Sec. 3, we gave a prescription for generating bulk geometries in AdS by inserting

a kink on the Cauchy surface, at the HRT surface. With the standard holographic

dictionary, the resulting geometry manifestly yields the correct behavior of one-sided

boundary observables under CC flow. This was shown in the previous subsection.

Another characteristic aspect of the CC flowed state |ψs〉 is the presence of a stress

tensor shock at the cut (Sec. 2.3), proportional to shape derivatives of the von Neumann

5We set ℓAdS = 1.
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entropy; see Eq. (2.47). We will now verify that this shock is reproduced by the kink

transform in the bulk, upon applying the AdS/CFT dictionary. Notably, the shock is

not localized to either wedge. Verifying kink/CC duality for this observable furnishes

an independent, nontrivial check of our proposal.

We will now keep the first subleading term in the Fefferman-Graham expansion of

the asymptotic bulk metric [23, 48]:

ds2 =
1

z2
(
dz2 + gAB(x, z)dx

AdxB
)
, (4.11)

gAB(x, z) = ηAB + zd
16πG

d
〈TAB〉+ o(zd) , (4.12)

where indices A,B, . . . correspond to directions along z = const. surfaces.

The location of the RT surface R in the bulk can be described by a collection of

(d− 1) embedding functions

Xµ(y, z) = (z,XA(y, z)) , (4.13)

where (y, z) are intrinsic coordinates on R. The expansion in z takes the simple form

XA(y, z)) = zdXA
(d) + o(zd) , (4.14)

because the boundary anchor is the flat cut u = v = 0 of the Rindler horizon [23].

Stationarity of R can be shown to imply [23]

XA
(d) = −

4G

d

δS

δXA

∣∣∣∣
R

. (4.15)

We consider a bulk Cauchy slice Σ ⊃ R for which ∂Σ corresponds to the t = 0

slice on the boundary. Since the subleading terms in Eqs. (4.12) and (4.14) start at zd,

we are free to choose Σ so that it is given by

t = zdς(x) + o(zd) , (4.16)

Recall that the vector fields tµ and xµ are defined to be orthogonal to R, and respec-

tively orthogonal and tangent to Σs. In FG coordinates one finds:

tA = z
(
tA(0) + zdtA(d) + o(zd)

)
, (4.17)

xA = z
(
xA(0) + zdxA(d) + o(zd)

)
, (4.18)

tz = z
(
zd−1tz(d−1) + o(zd−1)

)
, (4.19)

xz = z
(
zd−1xz(d−1) + o(zd−1)

)
. . (4.20)
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The overall factor of z is due to normalization. Note that tµ(0) is a coordinate vector

field but in general, tµ is not. Individual coordinate components of vectors and tensors

are defined by contractions with tµ(0) and x
µ
(0) respectively, for example tt ≡ tµt

µ
(0).

We now consider a contraction of the extrinsic curvature tensor on Σ,

(KΣ)abx
b = P µ

a x
ν∇(µtν) . (4.21)

We would like to further project the a index onto the z direction. Deep in the bulk the

z direction does not lie entirely in Σ. However, note that gµzt
µ → 0 in the limit z → 0

due to Eq. (4.19). Therefore, at leading order in z, the z direction does lie entirely in

Σ; moreover, P µ
z → δµz as z → 0. We will only be interested in evaluating Eq. (4.21) at

leading order in z so we may freely set a = z, which yields:6

(KΣ)zνx
ν − xν∂(ztν) = xνtγ Γ

γ
νz (4.22)

= z2Γtxz + zxtΓttz + ztxΓxxz + xztzΓzzz + o(zd−1) (4.23)

=
(d− 2)

2
zd−1 16πG

d
〈Ttx〉 − z−3tzxz − zd−1(tx(d) − xt(d)) + o(zd−1) .

(4.24)

The condition xµt
µ = 0 implies that

zd−1 16πG

d
〈Ttx〉+ z−3xztz + zd−1(tx(d) − xt(d)) + o(zd−1) = 0 . (4.25)

Hence we find

(KΣ)zνx
ν − xν∂(ztν) = zd−1 8πG 〈Ttx〉+ o(zd−1) . (4.26)

We now apply the kink transform to Σ (viewed as an initial data set). This yields

a new initial data set on a slice Σs in a new spacetime Ms. We again expand in

Fefferman-Graham coordinates:

ds2 =
1

z2
(
dz2 + g̃AB(x̃, z)dx̃

Adx̃B
)
, (4.27)

g̃AB(x, z) = η̃AB + zd
16πG

d
〈T̃AB〉+ o(zd) . (4.28)

Here η̃AB is still Minkowski space; any change in the bulk geometry will be encoded in

the subleading term.

The notation η̃AB indicates that we will be using the specific coordinates in which

the metric of d-dimensional Minkowski space takes the nonstandard form given by

6In d > 2 the terms involving xztz will be higher order, by Eqs. (4.19) and (4.20), and need not be

included. Since they cancel out either way, we include them here to avoid an explicit case distinction.
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Eq. (2.41). This has the advantage that the coordinate form of all vectors, tensors, and

embedding equations in D(a′) ∪R ∪D(a) will be unchanged by the kink transform, if

we use standard Cartesian coordinates before the transform and the tilde coordinates

afterwards.

For example, the invariance of the left and right bulk domains of dependence under

the kink transform implies that Σs is given by

t̃ = zdς(x̃) + o(zd) , (4.29)

with the same ς that appeared in Eq. (4.16). (In fact, this extends to at all orders in

z.) As already shown in the previous subsection, ∂Σs lies at t̃ = 0, z = 0.

As another example, the coordinate components of the unit normal vector to Σs in

Ms, t̃
µ, will be the same as the components of the normal vector to Σ in M, tµ, and

therefore

∂(ztν)
∣∣
M

= ∂(z t̃ν)
∣∣
Ms

. (4.30)

Below we will use the convention that any quantity with a tilde is evaluated in Ms, in

the coordinates of Eq. (4.28). Any quantity without a tilde is evaluated in M, in the

coordinates of Eq. (4.12). The only exception is the extrinsic curvature tensor, where

the corresponding distinction is indicated by the subscript Σs or Σ, for consistency with

Sec. 3.

We now consider the extrinsic curvature of Σs. A calculation analogous to the

derivation of Eq. (4.26) implies

(KΣs
)zν x̃

ν − x̃ν∂(z t̃ν) = zd−1 8πG 〈T̃t̃x̃〉+ o(zd−1) . (4.31)

From Eqs. (4.26) and (4.30) we find

zd−1〈T̃t̃x̃〉 = zd−1〈Ttx〉+
1

8πG
[(KΣs

)zν − (KΣ)zν ] x
ν + o(zd−1) , (4.32)

= zd−1〈Ttx〉 −
sinh (2πs)

8πG
δ(R)xz + o(zd−1) . (4.33)

In the first equality, we used the fact that xµ and x̃µ can be identified as vector fields,

and the extrinsic curvature tensors can be compared, in the submanifold Σ = Σs. The

second equality follows from the definition of the kink transform, Eq. (3.4).

By Eq. (4.18), δ(R) = δ(z−1x̃) = zδ(x̃). The condition xµ∂zX
µ = 0 yields

xz = −d zd−2X̃(d) + o(zd−2) , (4.34)

where X̃(d) is the A = x̃ component of XA
(d). Taking z → 0 and using Eq. (4.15), we

thus find

〈T̃t̃x̃〉 = 〈Ttx〉+
1

2π
sinh(2πs)

δS

δX̃

∣∣∣
X̃=0

δ(x̃) , (4.35)
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which agrees precisely with Eq. (2.47).

Note that this derivation applies to any boosted coordinate system (ť, x̌) as well.

Linear combinations of Eq. (4.35) with its boosted version reproduces both the Tũũ
shock of Eq. (2.46) and the Tṽṽ shock of Eq. (2.45) holographically.

5 Predictions

Having found nontrivial evidence for kink transform/CC flow duality, we now change

our viewpoint and assume the duality. In this section, we will derive a novel property

of CC flow from the kink transform: a shock in the 〈Txx〉 component of the stress

tensor in the CC flowed state. We do not yet know of a way to derive this directly in

the quantum field theory, so this result demonstrates the utility of the kink transform

in extracting nontrivial properties of CC flow. We further argue that 〈Txx〉 and 〈Ttx〉

constitute all of the independent, nonzero stress tensor shocks in the CC flowed state.

Our holographic derivation only depends on near boundary behavior, and the value

of the shock takes a universal form similar to Eq. (4.35). Thus, we expect that the

properties we find in holographic CC flow hold in non-holographic QFTs as well.

To derive the 〈Txx〉 shock, we use the Gauss-Codazzi relation [49]

P µ
a P

ν
b P

α
c P

β
d Rµναβ = KacKbd −KbcKad + rabcd , (5.1)

where rabcd is the intrinsic Riemann tensor of Σ. It is important to note that this

relation is purely intrinsic to Σ. Since Σ = Σs as submanifolds, we can not only

evaluate Eq. (5.1) in both M and Ms but also meaningfully subtract the two. We

emphasize that the following calculation is only nontrivial in d > 2 (in d = 2, the

Gauss-Codazzi relation is trivial). We comment on d = 2 at the end.

First we evaluate Eq. (5.1) in M. We will only be interested in evaluating it to

leading order in z in the Fefferman-Graham expansion. As argued in Sec. 4.2, when

working at leading order we can freely set a = c = z. We then compute the following

at leading order in z:

Rzxzx = KzzKxx − (Kxz)
2 + rzxzx . (5.2)

We start by computing Kzz. First we note that Γαzztα = 0 identically. Therefore,

Kzz = ∂ztz = 4G(d− 2)zd−3 δS

δT

∣∣∣
R
+ o(zd−3) . (5.3)

We have made use of

tz = 4Gzd−2 δS

δT

∣∣∣
R
+ o(zd−2) , (5.4)
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which follows from tµ∂zX
µ = 0.

Next we compute

Rzxzx = ∂xΓ
x
zz − ∂zΓ

x
xz + ΓxxµΓ

µ
zz − ΓxzµΓ

µ
xz . (5.5)

One finds

∂zΓ
x
xz =

1

2
(d− 2)(d− 1)zd−2 16πG

d
〈Txx〉+ o(zd−2) , (5.6)

ΓxxzΓ
z
zz = −

1

2
(d− 2)zd−2 16πG

d
〈Txx〉+ o(zd−2) , (5.7)

with all other terms either subleading in z or identically vanishing, and hence

Rzxzx = −8πG(d− 2)zd−2〈Txx〉+ o(zd−2) . (5.8)

Putting all this together, we have

−8πG(d− 2)zd−2〈Txx〉 = 4Gzd−3 δS

δT̃

∣∣∣
R
Kxx − (Kxz)

2 + rzxzx + o(zd−2) . (5.9)

The analogous relation evaluated in Ms reads

−8πG(d− 2)zd−2〈T̃x̃x̃〉 = 4Gzd−3 δS

δT̃

∣∣∣
R
K̃x̃x̃ − (K̃x̃z)

2 + r̃zx̃zx̃ + o(zd−2) , (5.10)

where we have made use of Eq. (4.30) to set Kzz = K̃zz. We can now subtract these

two relations. First note that r̃abcd = rabcd since it is purely intrinsic to Σ. Next, recall

from the definition of the kink transform Eq. (3.4) that

K̃x̃x̃ −Kxx = −z sinh(2πs)δ(x̃) . (5.11)

Lastly, it is easy to check that Kxz ∼ o(zd−2) hence its contribution to Eq. (5.9) is

subleading, and similarly for Eq. (5.10). Thus, subtracting Eq. (5.10) from Eq. (5.9)

yields

〈T̃x̃x̃〉 − 〈Txx〉 =
1

2π
sinh(2πs)

δS

δT̃

∣∣∣
X̃=0

δ(x̃) . (5.12)

The above calculation only works in d > 2. In d = 2, since the boundary theory is

a CFT, tracelessness of the boundary stress tensor further implies that 〈Ttx〉 is the only

independent component of the stress tensor shock so there is no need for a calculation

analogous to the one above. We expect that this argument is robust under relevant

deformations of the CFT since the shock is highly localized and should universally

depend only on the UV fixed point.
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Together with the 〈Ttx〉 shock we reproduced in the previous section, and using

Lorentz invariance of the boundary, this result determines the transformation of the

the stress tensor contracted with any pair of linear combinations of t and x, such as

〈Ttt〉. This linear space contains all of the independent nonvanishing components of

the shock. To see this, note that

xν (∇ν ỹµ −∇νyµ) = 0 , (5.13)

yν (∇ν ỹµ −∇νyν) = 0 , (5.14)

yν
(
∇ν t̃µ −∇νtµ

)
= 0 , (5.15)

where yµ = P µ
i y

i for any vector field yi in the tangent bundle of R. Eqs. (5.13) and

(5.14) follow trivially from the fact that the prescription Eq. (3.22) only introduces a

discontinuity in vector fields in the normal bundle of R, while Eq. (5.15) simply follows

from Eq. (3.4). Evaluating the µ = z components in the same way as in Sec. 4.2, we

find,

〈T̃µ̃ỹ〉 − 〈Tµy〉 = 0 . (5.16)

For s→ ∞, the shocks derived in the previous two sections agree with those found

to be required for the existence of certain coarse grained bulk states in Ref. [20]. In

that work, the cut was allowed to be a wiggly or flat cut of a bifurcate horizon such as a

Rindler horizon, and the state could belong to any quantum field theory. Interpolation

of these results suggests that the shocks we have derived here generalize to the case

of CC flow for a wiggly cut of the Rindler horizon, in general QFTs with a conformal

fixed point.

6 Discussion

6.1 Relation to JLMS and One Sided Modular Flow

The bulk dual of one-sided modular flow [25, 26] resembles the kink transform. CC

flow yields a well defined state, however, whereas a one sided modular flowed state

is singular in QFT. Correspondingly, the kink transform defined here yields a smooth

bulk solution whereas the version implicitly defined in Ref. [26] results in a singular

spacetime (see also Ref. [17], footnote 4). We will now explain this in detail.

Consider a boundary region A0 with reduced state ρA0
, dual to a semi-classical state

ρa in the bulk entanglement wedge a associated to A0 as seen in Fig. 5. We denote

by KA = − log ρA and Ka = − log ρa the boundary and bulk modular Hamiltonians,
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Figure 5. A boundary subregion A0 (pink) has a quantum extremal surface denoted R

(brown) and an entanglement wedge denoted a. The complementary region A′
0 (light blue)

has the entanglement wedge a′. CC flow generates valid states, but one-sided modular flow

is only defined with a UV cutoff. For example, one can consider regulated subregions A(ǫ)

(deep blue) and A′(ǫ) (red). In the bulk, this amounts to excising an infrared region (gray)

from the joint entanglement wedge (yellow).

respectively. The JLMS result [7] states that

K̂A0
=
Â[R]

4G
+ K̂a , (6.1)

where Â[R] is the area operator that formally evaluates the area of the quantum ex-

tremal surface R [41].

Suppose now that A0 has a nonempty boundary ∂A0. Then there is an interesting

asymmetry in Eq. (6.1). The one-sided boundary modular operator appearing on the

left hand side is well-defined only with a UV cutoff. On the other hand, at least the

leading (area) term in the bulk modular operator on the right hand side has a well-

defined action. Let us discuss each side in turn.

In Einstein gravity, the area operator Â is the generator of one-sided boosts. To see

this, let us restrict the gravitational phase space to the bulk region D(Σǫ). There exists

a (non-unique) vector field ξa in D(a′)∪R such that ξa generates an infinitesimal one-

sided boost at R [50, 51]. This boost can be quantified by a parameter s in the normal

bundle to R, as described in Sec. 3.2. The area functional A[R]/4G is the Noether

charge at R associated to ξa, given by the expectation value of the area operator in

the semi-classical bulk state:

A[R] = 〈Â[R]〉 . (6.2)
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Each point in the gravitational phase space can be specified by the metric in D(a′),

the metric in D(a), and the boost angle s at R with which the two domains of depen-

dence are glued together [26, 28, 51, 52]. The action of

〈e2πisÂ[R]/4G〉 (6.3)

on points in the gravitational phase space is to simply shift the conjugate variable, i.e.,

the relative boost angle between the left and right domains of dependence, by s. Note

that the metrics in the left and right domains of dependence are unchanged since the

area functional acts purely on the phase space data at R. This is the classical analogue

of the statement that the area operator is in the center of the algebras of the domains

of dependence [5]. Comparing with Sec. 3.2, we see that this action is equivalent to the

kink transform of Σǫ about R by s. We stress that this action is well-defined even if

R extends all the way out to the conformal boundary, i.e., in the far ultra-violet from

the boundary perspective.

We turn to the right hand side of Eq. (6.1), still assuming that A0 has a nonempty

boundary ∂A. Since the algebra of a QFT subregion A0 is a Type-III1 von Neumann

algebra, the Hilbert space does not factorize across ∂A0 [30]. A reduced density matrix

ρA0
, and hence K̂A0

, do not exist. Physically, the action of K̂A0
on a fixed boundary

time slice would break the vacuum entanglement of arbitrarily short wavelength modes

across ∂A0; this would create infinite energy.

Therefore, any discussion of K̂A0
requires introducing a UV regulator. Consider

the regulated subregions A
(ǫ)
0 and A

′(ǫ)
0 shown in Fig. 5. The split property in algebraic

QFT [30, 53] guarantees the existence of a (non-unique) Type-I von Neumann algebra

N nested between the algebras of subregion A
(ǫ)
0 and the complementary algebra of

A
′(ǫ)
0 , i.e.,

A(ǫ)
0 ⊂ N ⊂

(
A′(ǫ)

0

)′

. (6.4)

With this prescription, one can define a regulated version of the reduced density matrix

ρA by using the Type-I factor N [54]. It has been suggested that there exists an N

consistent with the geometric cutoff shown in Fig. 5 [53, 55]: the quantum extremal

surface R in the bulk is regulated by a cutoff brane B demarcating the entanglement

wedge of the subregion A
(ǫ)
0 ∪A′(ǫ)

0 . The regulated area operator Â[R]/4G is well defined

once boundary conditions on B are specified.

Let us now specialize to the case for which we have conjectured kink transform/CC-

flow duality: the boundary slice C = A0 ∪ A′
0 is a Cauchy surface of Minkowski space,

and ∂A0 is the flat cut u = v = 0 of the Rindler horizon. We have just argued that the

kink transformation is generated by the area operator through Eq. (6.3). By Eq. (6.1),
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the boundary dual of this action should be one-sided modular flow, not CC flow. By

Eqs. (2.4) and (2.6), these are manifestly different operations. Indeed, unlike one-sided

modular flow, Connes cocycle flow yields a well-defined boundary state for all s, without

any UV divergence at the cut ∂A0: |ψ(C)〉 → |ψs(C)〉.

In fact there is no contradiction. For both modular flow and CC flow on the

boundary, a bulk-dual Cauchy surface Σs is generated by the kink transform. The

difference is in how Σs is glued back to the boundary.

For modular flow, Σs is glued back to the original slice C. Generically, this would

violate the asymptotically AdS boundary conditions, necessitating a regulator such as

the excision of the grey asymptotic region in Fig. 5 and interpolation by a brane B.

The boundary dual is an appropriately regulated modular flowed state with energy

concentrated near the cut ∂A0. This construction is possible even if ∂A0 is not a flat

plane, but the regulator is ambiguous and cannot be removed.7

For CC flow, Σs is glued to the precursor slice Cs as discussed in Sec. 3. This yields

|ψs(Cs)〉. Time evolution on the boundary yields |ψs(C)〉, the CC-flowed state on the

original slice C.

On the boundary, we can use the one-sided modular operator in two ways. As a

map between states on C [7, 9] it requires a UV regulator. As a map that takes a state

on C to a state on the precursor slice Cs, |ψ(C)〉 → |ψs(Cs)〉, it is equivalent to CC flow

on C by Eqs. (2.35) and (2.36). This is a more natural choice due to its UV-finiteness.

But it is available only if the vacuum modular operator for cut ∂A is geometric, so that

the precursor slice is well-defined.

6.2 Quantum Corrections

It is natural to include semiclassical bulk corrections to all orders in G to our proposal.

The natural guess would be to perform the kink transform operation about the quantum

extremal surface along with a CC flow for the bulk state. In general, it is difficult to

describe this procedure within EFT. In states far from the vacuum, the background

spacetime changes under the kink transform, and it is unclear how to map states from

one spacetime to another. However, we will find some evidence that suggests that the

bulk operation relating the two states is a generalized version of CC flow in curved

spacetime.

7There is evidence that a code subspace can be defined with an appropriate regulator such that

one-sided modular flow keeps the state within the code subspace [27–29].
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To see this, note that the quantum extremal surface R satisfies the equations

B(t)
R + 4G~

δS

δT
= 0 , (6.5)

B(x)
R + 4G~

δS

δX
= 0 , (6.6)

where (B(t)
R ) and (B(x)

R ) denote the trace of the extrinsic curvature (expansion) in the

two normal directions to R, i.e., tµ and xµ respectively. Similarly δS
δT

and δS
δX

are the

entropy variations in the tµ and xµ directions respectively.

The classical kink transform involves an extrinsic curvature shock at the classical

RT surface. As shown in Sec. 3, extremality of the surface ensures that the constraint

equations continue to be satisfied after the kink transform in this case. However, the

quantum extremal surface has non-vanishing expansion, the constraint equations are

not automatically satisfied when an extrinsic curvature shock is added at the quantum

RT surface.

More precisely, the left hand side of the constraint equations on a slice Σ are

modified by the kink transform by

∆
(
rΣ − (KΣ)ab(KΣ)

ab + (KΣ)
2
)
= 8G~ sinh(2πs)

δS

δT
δ(X) , (6.7)

∆ (Da(KΣ)
a
x −DxKΣ) = 4G~ sinh (2πs)

δS

δX
δ(X) , (6.8)

∆ (Da(KΣ)
a
i −DiKΣ) = 0 , (6.9)

where ∆ represents the difference in the constraint equations between the original

spacetime M and the kink transformed spacetime Ms, and we have used Eqs. (6.5)

and (3.4). These are essentially the analogs of Eqs. (3.13) and (3.14), and we have

simplified the notation slightly.

For the constraint equations to be solved, the kink transform would have to generate

the same change on the right hand side of the constraints. It would thus have to induce

an additional stress tensor shock of the form

∆TTT =
1

2π
sinh(2πs)

δS

δT
δ(X) , (6.10)

∆TTX =
1

2π
sinh(2πs)

δS

δX
δ(X) . (6.11)

Formally, these conditions agree precisely with the properties of CC flow discussed in

Sec. 2. Thus, we might expect a generalized bulk CC flow to result in shocks of precisely

this form.
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In fact, the existence of semiclassical states satisfying the above equations was

conjectured in [20]; the fact that CC flow generates such states in the non-gravitational

limit was interpreted as non-trivial evidence in support of the conjecture. Thus, we

expect a kink transform at the quantum extremal surface with a suitable modification

of the state to provide the bulk dual of CC flow to all orders in G.

At a more speculative level, we can also discuss the bulk dual of CC flow in certain

special states called fixed area states, which serve as a natural basis for modular flow

[27–29]. These are approximate eigenstates of the area operator and are therefore unlike

smooth semiclassical states which are analogous to coherent states. The Lorentzian bulk

dual of such states potentially involves superpositions over geometries [56].

However, by construction, the reduced density matrix is maximally mixed at lead-

ing order in G. Thus, the state |ψ〉 is unaffected by one sided modular flow, and the

only effect of CC flow is that we describe the state on a kinematically related slice Cs.

Thus, the dual description must be invariant under CC flow up to a diffeomorphism.

In such states, one could apply the semiclassical prescription using Eq. (6.1). As

discussed above, the action of the area operators results in a diffeomorphism of the

geometric description, if it exists. From Eq. 6.1, the remaining action of the boundary

CC flow is to simply induce a bulk CC flow.

6.3 Beyond Flat Cuts

Kink transform/CC flow duality can be generalized to other choices of boundary sub-

systems, so long as a precursor slice can be defined. The precursor slice is generated by

acting on the original slice with the vacuum modular Hamiltonian; this is well-defined

only if this action is geometric. In Sec. 2.4, we ensured this by taking the boundary

to be Minkowski space and choosing a planar cut. Precursor slices also exist in any

conformally related choice, such as a spherical cut.

But there are other settings where the vacuum modular Hamiltonian acts geo-

metrically. This includes multiple asymptotically AdS boundaries where the boundary

manifold has a time translation symmetry. For example, consider a two-sided black

hole geometry M with a compact RT surface R as seen in Fig. 6. The boundary mani-

fold is of the form C ×R, where the first factor corresponds to the spatial geometry and

the second corresponds to the time direction. The boundary Hilbert spaces factorizes;

each boundary algebra is a Type-I factor. Thus, the version of CC flow defined in

terms of density matrices in Eq. (2.6) becomes rigorous in this situation. A natural

choice of vacuum state is the thermofield double [57, 58]. The reduced state on each

side is thermal, ρA0
∼ exp(−βH). Thus the modular Hamiltonian is proportional to

the ordinary Hamiltonian on each boundary. This generates time translations and so

is geometric.
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Figure 6. An arbitrary spacetime M with two asymptotic boundaries is transformed to a

physically different spacetime Ms by performing a kink transform on the Cauchy slice Σ. A

piecewise geodesic (dashed gray line) in M connecting x and y with boost angle 2πs at R

becomes a geodesic between xs and y in Ms.

Now, in any such geometryM one can pick a Cauchy slice Σ that ends on boundary

time slices on both sides and contains R. In obvious analogy with Sec. 3, we conjecture

that the domain of dependence of the kink transformed slice Σs in a modified geometry

Ms is dual to the boundary state:

|ψs(Cs)〉LR = ρ−isL |ψ(C)〉LR , (6.12)

where we have used the notation of Eq. (2.36).

In such a situation, it is again manifest that the Wheeler-DeWitt patches dual to

either side are preserved by arguments similar to those made in Sec. 4.1. However,

since there is no portion of R that reaches the asymptotic boundary, there is no analog

of the shock matching done in Sec. 4.2. Notably, since ∂A = ∅ in this case, there

is no subtlety regarding boundary conditions for JLMS and thus, one-sided modular

flow makes sense without any regulator. Thus, our construction is simply kinematically

related to the construction in [26].

An interesting situation arises for wiggly cuts of the Rindler horizon, i.e., u = 0

and v = V (y). The modular Hamiltonian acts locally, but only when restricted to the

null plane [31]. Its action becomes non-local when extended to the rest of the domain

of dependence. The properties of CC flow described in Sections 2.1-2.3 all hold for this

choice of cut. This constrains one-sided operator expectation values on the null plane,

subregion entropies for cuts entirely to one side of V (y), and even the Tvv shock at the
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cut. Interestingly, all of them are matched by the kink transform, by the arguments

given in Sec. 3. Even the expected stress tensor shock can still be derived, by taking

a null limit of our derivation as described in Appendix A. One might then guess that

the kink transform is also dual to CC flow for arbitrary wiggly cuts.

Even in the vacuum, however, the kink transform across a wiggly cut results in

a boundary slice that cannot be embedded in Minkowski space, due to the absence

of a boost symmetry that preserves the entangling surface. Thus, the kink transform

would have to be modified to work for wiggly cuts. The transformation of boundary

observables off the null plane is quite complicated for wiggly cut CC flow. Thus, we

also expect that regions of the entanglement wedge probed by such observables should

be drastically modified, unlike the case where the entangling surface is a flat Rindler

cut.

However, the wiggly-cut boundary transformation remains simple for observables

restricted to the null plane. Thus one could try to formulate a version of the kink

transform on Cauchy slices anchored to the null plane on the boundary and the RT

surface in the bulk. Perhaps a non-trivial transformation of the entanglement wedge

arises from the need to ensure that the kink transformed initial data be compatible

with corner conditions at the junction where the slice meets the asymptotic boundary

[59]. We leave this question to future work.

6.4 Other Probes of CC Flow

In Sec. 4, we provided evidence for kink transform/CC flow duality. The preservation of

the left and right entanglement wedges under the kink transform ensures that all one-

sided correlation functions transform as required. It would be interesting to consider

two sided correlation functions. However, these do not change universally and are

difficult to compute in general. In the bulk, this is manifested by the fact that the

future and past wedges do not change simply and need to be solved for.

However, because of the shared role of the kink transform, we can take advantage

of the modular toolkit for one-sided modular flow [26]. Let |ψ̃s〉 = ρ−i sA |ψ〉 be a family

of states generated by one-sided modular flow as discussed in Sec. 6.1. Then certain

two sided correlation functions 〈ψ̃s|O(x)O(y) |ψ̃s〉 can be computed as follows.

Suppose O(x) is an operator dual to a “heavy” bulk field with mass m such that

1/ℓAdS ≪ m ≪ 1/ℓP, 1/ℓs. Correlation functions for such an operator can then be

computed using the geodesic approximation,

〈O(x)O(y)〉 ≈ exp(−mL) , (6.13)
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where L is the length of the bulk geodesic connecting boundary points x and y. Now

consider boundary points x and y such that there is a piecewise bulk geodesic of length

L(x, y) joining them in the spacetime dual to the state |ψ〉.

This kinked geodesic is required to pass through the RT surface of subregion A

with a specific boost angle 2πs as seen in Fig. 6. (This is a fine-tuned condition on the

set of points x, y.) Since single sided modular flow behaves locally as a boost at the

RT surface, it straightens out the kinked geodesic such that it is now a true geodesic

in the spacetime dual to the state |ψ̃s〉. Thus, we have

〈ψ̃s|O(x)O(y) |ψ̃s〉 ≈ exp(−mL(x, y)) . (6.14)

As discussed in Sec. 2.4, the CC flowed state can equivalently be thought of as the

single sided modular flowed state |ψ̃s〉 on a kinematically transformed slice Cs. Thus,

the above rules can still be used to compute two sided correlation functions in the CC

flowed state |ψs〉 = us |ψ〉 as

〈ψs|O(xs)O(y) |ψs〉 ≈ exp(−mL(x, y)) , (6.15)

where xs is the point related to x by the vacuum modular flow transformation.

We also note that the shock matching performed in Sec. 4 was a near boundary

calculation. However, a bulk shock exists everywhere on the RT surface. One could

solve for the position of the RT surface to further subleading orders and relate the bulk

shock to the boundary stress tensor. This would yield a sequence of relations that the

stress tensor must satisfy in order to be dual to the kink transform. In general these

relations may be highly theory-dependent, but it would be interesting to see if some

follow directly from CC flow or make interesting universal predictions for CC flow in

holographic theories.

6.5 Higher Curvature Corrections

In Sec. 4, we argued that the bulk kink transform in a theory of Einstein gravity satisfies

properties consistent with the boundary CC flow. However, this result is robust to the

addition of higher curvature corrections in the bulk theory. The preservation of the two

entanglement wedges, i.e., Eq. (2.38), is a geometric fact that remains unchanged.8

Further, the matching of the stress tensor shock crucially depended on two ingredi-

ents. Firstly, Eq. (4.12), the holographic dictionary between the boundary stress tensor

and the bulk metric perturbation and secondly, Eq. (4.15), the relation between the

8Here we assume that the initial value formulation of Einstein gravity can be perturbatively adjusted

to include higher curvature corrections despite the fact that a non-perturbative classical analysis of

higher curvature theories is often problematic due to the Ostrogradsky instability [60].
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Figure 7. Holographic proofs. Left: Boundary causality is respected by the red curve that

goes through the bulk in a spacetime M; this is used in proving the ANEC. The RT surfaces

R1 and R2 must be spacelike separated; this is used in proving the QNEC. Right: In the kink

transformed spacetime Ms as s → ∞, the QNEC follows from causality of the red curve,

which only gets contributions from the Weyl shocks (blue) at R1 and R2, and the metric

perturbation in the region between them.

boundary entropy variation and the shape of the RT surface. Both of these relations

are modified once higher curvature corrections are included [61, 62]. However, it follows

generally from dimension counting arguments that

g
(d)
ij = η1

16πG

d
〈Tij〉 , (6.16)

XA
(d) = −η2

4G

d

δS

δXA

∣∣∣∣
R

, (6.17)

where η1 and η2 are constants that depend on the higher curvature couplings. Using

the first law of entanglement, it can be shown that in fact η1 = η2 [61, 62]. Hence,

the boundary stress tensor shock obtained from the kink transform is robust to higher

curvature corrections.

6.6 Holographic proof of QNEC

A recent proof of the QNEC from the ANEC [17] considers CC flow for a subregion A

on the null plane u = 0 with entangling surfaces v = V1(y) and v = V2(y) surrounding

a given point p. From the transformation properties of the stress tensor under CC flow

described in Sec. 2.2, Tvv → 0 as s → ∞. In addition, there are stress tensor shocks
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at ∂A, as described in Sec. 2.3, of weight f(s) δS
δV (y)

∣∣∣
ψ,∂A

. In the limit V1(y) → V2(y),

computing the ANEC in the CC flowed state, one obtains contributions from the stress

tensor Tvv(p) in subregion A, and a contribution proportional to δ2S
δV (y1)δV (y2)

∣∣∣
ψ,p

from

the shocks. Positivity of the averaged null energy in the CC flowed state then implies

the QNEC in the original state.

Prior to the QFT proofs, both the ANEC and QNEC had been proved holographi-

cally [23, 63]. The guiding principle behind both of these proofs was the fact that con-

sistency of the holographic duality requires bulk causality to respect boundary causality

as we demonstrate in Fig. 7. In the case of the ANEC, one considers an infinitely long

curve connecting points on past null infinity to future null infinity through the bulk

and demands that it respect boundary causality [63]. In the proof of the QNEC, one

requires that curves joining the RT surfaces of subregions v < V1(y) and v > V2(y),

denoted R1 and R2, respect boundary causality [15, 23]. There are two contributions

to the lightcone tilt of this bulk curve coming from the metric perturbation hvv in the

near boundary geometry, and the shape of the RT surface Xµ(y, z). By the holographic

dictionary, these contributions can be related to the boundary stress tensor Tvv and

the entropy variations δS
δV

as discussed in Sec. 4.2.

Now performing the kink transform removes the contribution coming from the

shape of the RT surface and puts it into a time advance/delay coming from shocks in the

bulk Weyl tensor that we compute in Appendix A. Considering the extended curve from

past to future null infinity, we see that whether or not it respects boundary causality is

determined entirely by the region between the entangling surfaces R1 and R2 since the

bulk solution approaches the vacuum everywhere else in the limit s → ∞. Requiring

causality of the ANEC curve then results in the QNEC, making the connection to the

boundary proof manifest.
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A Null Limit of the Kink Transform

In this appendix we apply the kink transform to a Cauchy slice Σ that has null segments.

In the null limit we express the kink transform in terms of the null initial value problem.
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We then show that this leads to a shock in the Weyl tensor for d > 2. From this Weyl

shock we extract the boundary stress tensor shock. This serves a two-fold purpose. The

first is that it provides direct intuition for how the kink transform modifies the geometry.

The second is that, as will be evident from the calculation below, the derivation of the

stress tensor shock from the Weyl shock works even for wiggly cuts of the Rindler

horizon on the boundary.9

Let Nk be a null segment of Σ in a neighborhood of R and let ka be the null

generator of Nk. We now allow the boundary anchor of R to be an arbitrary cut V0(y)

of the Rindler horizon, as considered in Sec. 2.2. Lastly, denote by P a
µ and P i

µ the

projectors onto Nk and cross-sections of Nk (including the RT surface R), respectively.

We can compose these to obtain the projector P i
a.

By Eq. (3.4), when Σ is spacelike in a neighborhood of R the kink transform can

be contracted as follows:

xa(KΣ)ab → xa(KΣ)ab − sinh (2πs)xb δ(R) . (A.1)

In the null limit both xa and tµ approach ka. Therefore, the quantity in the LHS of

Eq. (A.1) has the following null limit:

xa(KΣ)ab
null
→ ka∇akb . (A.2)

The transformation of Eq. (A.1) then becomes

κ→ κ− sinh (2πs)δ(λ) , (A.3)

where λ is a null parameter adapted to ka and κ is the inaffinity defined by

kb∇bk
a = κka . (A.4)

We refer to this transformation as the left stretch, as it arises from a one-sided dilatation

along Nk. This transformation was originally described in [20] in the context of black

hole coarse-graining.

We now show that the left stretch generates a Weyl tensor shock at the RT surface.

The shear of a null congruence is defined by

σij = P a
i P

b
j∇(akb) . (A.5)

9The results of this section do not apply when d = 2, as the shear and the Weyl tensor vanish

identically. However in d = 2 there is no distinction between flat and wiggly cuts on the boundary so

we gain neither additional intuition nor generality compared with the analysis in Sec. 4.2.
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It satisfies the evolution equation [49]

Lkσij = κσij + σi
kσkj − P µ

i P
µ
j k

akbCaµbν . (A.6)

Now let λ be a parametrization of Nk adapted to ka, with λ = 0 corresponding to R.

In terms of λ, the evolution equation can be written as

∂λσij = κσij + σi
kσkj − Cλiλj . (A.7)

Consider now the new spacetime Ms generated by the left stretch. As in Sec. 4.2,

we denote quantities in Ms with tildes. We can then write the evolution equation in

Ms,

∂λ̃σ̃ij = κ̃σ̃ij + σ̃i
kσ̃kj − C̃λiλj . (A.8)

Since ka is tangent to Nk, and (Nk)s = Nk as submanifolds, we can identify ka with

k̃a. Thus we can use the same parameter λ in both spacetimes. Since σij is intrinsic to

Nk, we can identify σij and σ̃ij for the same reason. Comparing Eqs. (A.7) and (A.8),

and inserting Eq. (A.3), we find that there is a Weyl shock

C̃λiλj = Cλiλj − sinh(2πs)σijδ(λ) . (A.9)

We now show that the Weyl shock Eq. (A.9) reproduces the near boundary shock

Eq. (2.44), but now for wiggly cuts of the Rindler horizon. To do this, we evaluate

both σij and Cλiλj in Fefferman-Graham coordinates to leading non-trivial order. The

Fefferman-Graham coordinates for M and Ms are defined exactly as in Sec. 4.2, except

we now use null coordinates (u, v) and (ũ, ṽ) on the boundary as defined in Sec. 2.4.

To start with, we note that ka∂zX̄
a = 0 since ∂zX̄

a is tangent to the RT surface.

Evaluating this at leading order yields the relation

kz = −dzd−3U(d) +O(zd−4) . (A.10)

We recall that

U(d) = −
4G

d

δS

δV

∣∣∣
V0
. (A.11)

Moreover, the projector is given by

P µ
i = ∂iX̄

µ . (A.12)

From this definition, one can check that

P z
i = δzi +O(zd−1) , (A.13)

PA
i = O(zd−1) . (A.14)
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Furthermore,

∇zkA, ∇Akz ∼ O(z−1) ,

∇AkB ∼ O(1) ,

∇zkz = −d(d− 2)U(d)z
d−4 +O(zd−5) , (A.15)

where we have used that kA ∼ O(1). Hence to leading order we simply have

σij = −d(d− 2)U(d)z
d−4δzi δ

z
j +O(zd−5) . (A.16)

Finally, a straightforward but tedious calculation of the Weyl tensor yields

C̃ṽiṽj = Cvivj − 8πG(d− 2)
(
〈T̃ṽṽ〉 − 〈Tvv〉

)
zd−4δzi δ

z
j δ(ṽ − V0) +O(zd−5) , (A.17)

where we have used that λ → v, ṽ as z → 0 in M,Ms respectively. Putting this

together yields the desired shock for wiggly cuts of the Rindler horizon.
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