
UC Irvine
UC Irvine Previously Published Works

Title
Comparative analysis of discrete and continuous absorption weighting estimators used in 
Monte Carlo simulations of radiative transport in turbid media.

Permalink
https://escholarship.org/uc/item/0rr903hf

Journal
Journal of the Optical Society of America A, 31(2)

ISSN
1084-7529

Authors
Hayakawa, Carole K
Spanier, Jerome
Venugopalan, Vasan

Publication Date
2014-02-01

DOI
10.1364/josaa.31.000301

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0rr903hf
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Comparative analysis of discrete and continuous absorption
weighting estimators used in Monte Carlo simulations of
radiative transport in turbid media

Carole K. Hayakawa1,2,*, Jerome Spanier2, and Vasan Venugopalan1,2

1Department of Chemical Engineering and Materials Science, University of California, Irvine,
California 92697, USA

2Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine,
California 92697, USA

Abstract

We examine the relative error of Monte Carlo simulations of radiative transport that employ two

commonly used estimators that account for absorption differently, either discretely, at interaction

points, or continuously, between interaction points. We provide a rigorous derivation of these

discrete and continuous absorption weighting estimators within a stochastic model that we show to

be equivalent to an analytic model, based on the radiative transport equation (RTE). We establish

that both absorption weighting estimators are unbiased and, therefore, converge to the solution of

the RTE. An analysis of spatially resolved reflectance predictions provided by these two

estimators reveals no advantage to either in cases of highly scattering and highly anisotropic

media. However, for moderate to highly absorbing media or isotropically scattering media, the

discrete estimator provides smaller errors at proximal source locations while the continuous

estimator provides smaller errors at distal locations. The origin of these differing variance

characteristics can be understood through examination of the distribution of exiting photon

weights.

1. INTRODUCTION

Monte Carlo (MC) simulations provide transport-rigorous solutions to the radiative transport

equation (RTE) used to model light propagation in turbid media. MC simulations have

become the de facto “gold standard” technique to provide benchmark RTE solutions, since

the simulations are relatively easy to formulate and run. Moreover, MC simulations can be

readily applied to a variety of geometries, boundary conditions, and optical properties. For

these reasons, many groups have developed MC codes to provide predictions of reflectance,

internal radiance, and transmittance for various systems [1–10]. Nevertheless, MC

simulations represent a stochastic, as opposed to deterministic, solution method and the

solutions obtained have an associated uncertainty based on the variation in the tallied photon

weights obtained for a given number of trials. A key objective in any MC simulation method
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is to devise an approach that provides estimates that are unbiased with the smallest variance

for a given number of trials.

In MC simulations of radiative transport, each trial represents the launch, propagation, and

possible detection of a single photon. In these trials, the simulation must account for optical

absorption associated with the photon propagation. The simplest scheme to accomplish this

is the analog method. In this method, at each interaction location, the photon can be

absorbed and terminated with probability μa/μt, or continue propagating with probability

μs/μt, where μt = (μa + μs) is the total attenuation coefficient and μa and μs are the absorption

and scattering coefficients, respectively. While analog MC simulations are fully consistent

with both the RTE and the “physics” of photon propagation, absorption, and scattering, they

often insufficiently sample the medium and can lead to estimates with very high variance

[11]. As a result, investigators have developed alternate schemes to treat photon absorption

that provide RTE solution estimates with lower variance. One approach to accomplishing

this is the use of “absorption weighting” techniques. In these techniques, the unit photon

weight is reduced during propagation to take values between 0 and 1. Such an approach

requires modification of the random walk process to ensure that the resulting RTE

predictions are unbiased.

The two most common absorption weighting techniques are discrete and continuous

absorption weighting (CAW). In discrete absorption weighting (DAW), a fraction μa/μt of

the existing photon weight is deposited at each interaction location and the photon

propagation continues with a new weight corresponding to the residual fraction μs/μt of the

prior weight. In CAW, photon absorption is modeled by distributing the weight of the

photon continuously along the photon path length l between interaction locations according

to Beer's Law: exp(−μal).

It is often assumed that CAW is more effective than DAW in terms of minimizing variance

because CAW is based on photon path lengths, whereas, DAW is based on collision points.

For example, in optically thin regions, where photons often pass through, but rarely collide

within, CAW can produce smaller variance than DAW because CAW estimates contribute

to the measurement prediction more often. However, each physical system being modeled is

unique and intuition alone cannot be used to guide which estimator to use. In fact, we know

of no pair of estimators for which one always provides better estimates than the other. One

objective of this work is to expose the relative shortcomings of CAW and DAW in terms of

providing accurate spatially resolved reflectance predictions.

Other groups have begun to examine and identify the circumstances that lead to the

advantageous use of CAW versus DAW for predictions of reflectance, internal radiance, and

transmittance [12,13]. Wong et al. compare the performance of CAW and DAW methods in

providing reflectance predictions for slabs of various thickness. They perform a numerical

analysis of the statistical error of each method within homogeneous slab systems with

isotropic scattering. Their results show that DAW provides smaller errors than CAW for

slabs with small albedo μs/μt < 0.5, and vice versa, when μs/μt > 0.5. For radially resolved

reflectance, they discuss the improved precision of DAW at proximal source locations and

CAW at distal source locations. They further estimate the cross over source–detector
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separation ρ, where both methods provide equivalent errors to be ρ = 10/τ, where τ is the

optical thickness of the slab. Sassaroli et al. provide the first exposition on the statistical

equivalence of four methods, including DAW and CAW, using probability theory

arguments. They provide numerical results for 1 mm thick slabs with isotropic scattering,

and compare time-resolved reflectance estimates of the methods. In terms of computational

time, they found that, in most of the systems analyzed, CAW is superior to DAW.

Here, we advance the current understanding of these absorption weighting methods by

exposing their formulation within the context of the RTE. This formulation provides a

framework that can be used to verify whether an alternate photon propagation scheme

provides a stochastic model that is consistent with the RTE. Within this context, the goals of

our analysis of DAW and CAW techniques are twofold. First, we establish that MC

simulations that utilize either CAW or DAW techniques provide unbiased, transport-

rigorous solutions to the RTE. Second, we provide a comparative analysis of the variance

provided by CAW and DAW MC predictions for spatially resolved diffuse reflectance. We

use this analysis to provide guidelines, with supporting rationale, for a preference of CAW

over DAW (or vice versa) for specific sets of optical properties and source–detector

separations. Finally, we provide quantitative comparisons in terms of computational

efficiency that consider the computational cost required to perform the simulations.

2. THEORY

In this section, we formulate both analytic and probability models of radiative transport and

establish their equivalence. This equivalence ensures that stochastic estimates obtained from

a MC simulation designed in accordance with the probability model provide solutions fully

consistent with the RTE. This establishes a rigorous framework within which the mean

value and variance of MC-based radiative transport predictions can be evaluated and

assessed in terms of the effects of analog, CAW, or DAW schemes that may be employed

within the MC simulation.

A. Analytic RTE Model

The RTE for the photon radiance is traditionally expressed in terms of an integro-differential

equation. Here, we limit our consideration to the time-independent case at a single

wavelength where it takes the form

(1)

where Φ is the photon radiance as a function of position r and photon propagation direction

ω, f is the single-scattering phase function, Q is the photon source and Γ = D × S2 is the

phase space, where D is a convex, bounded subset of R3, D ⊂ R3, and S2 is the unit sphere.

The radiance Φ is the photon rate impinging at position r propagating in direction ω, per unit

area and solid angle.

To establish equivalence between the analytic RTE and the probabilistic models for photon

transport, it is advantageous to express the RTE solution using terms that specify the photon

source, propagation, interaction probabilities, and possible detection, as these are the
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essential steps that constitute the generation of photon biographies within a MC simulation.

To accomplish this, we use the method of characteristics to reformulate the RTE as an

integral equation [14]:

(2)

where Ψ = μtΦ is the collision density,  is an integral operator

(3)

and S represents the density of first collisions experienced by photons launched from the

source Q(r,ω)

(4)

where

(5)

The kernel K consists of a product of a collision kernel C(r′, ω′ → ω) and a transport kernel

T(r′ → r, ω) . The collision kernel C describes the probability of interaction at r′ and, in the

case of scattering interactions, the change of photon propagation direction. The transport

kernel T describes the change in photon position due to transport between collisions. Thus,

the kernel K can be written as:

(6)

The collision kernel C(r′, ω′ → ω) has the form

(7)

where μs(r′)/μt(r′) describes the probability of scattering at position r′ and f describes the

angular redirection of the photon produced by a scattering interaction. The kernel K can then

be written as

(8)

The integral form of the RTE [Eq. (2)] is useful for two reasons. First, a representation of

the solution Ψ as a convergent infinite series can be shown. Equation (2) can be rewritten as

(9)
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(10)

Convergence of this infinite series, known as the Neumann series, is guaranteed if the

operator  is norm-reducing, i.e.,

(11)

where || · ||1 is the  norm [15–18]. The series written out fully is

(12)

(13)

Examination of the right hand side of Eq. (12) shows that the collision density Ψ(r,ω) is

represented as a sum of contributions from disjoint sets of photons. The first term represents

those photons that arrive at (r, ω) directly from the source. The second term represents those

photons that arrive at (r, ω following a single scattering event at location r1. The third term

represents those photons that arrive at (r, ω) after experiencing only two scattering events at

r1 and r2. Continuation of this series to include contributions from photons undergoing any

number of scattering events provides the complete RTE solution.

The second reason the integral form of the RTE is useful is that existence and uniqueness of

the RTE solution can be demonstrated if the condition given in Eq. (11) is satisfied. This

requirement is mandatory for the formation of the MC probability model, as it ensures that

the photon population will experience enough absorption or loss at boundaries so that there

is zero probability that photon trajectories will experience an infinite number of collisions.

To use this RTE solution to compute a physical measurement I, such as reflectance,

transmittance, fluence or radiance, we integrate the product of a known detector function g

and the collision density Ψ to arrive at

(14)

(15)

where g is a detector function that specifies how the detector tallies photons within the

system. Note that Eq. (15) is the integral of the product of g with the terms of the Neumann

series [Eq. (12)]. Convergence of Eq. (15) is guaranteed by Eq. (11), which ensures 

convergence of the Neumann series [15–18]. For example, reflectance in space–angle bins

Δr × Δω is obtained by a detector function that takes the form [19]
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(16)

where χ is a characteristic function defined by

(17)

B. Probability RTE Model

A probability model for MC simulations of radiative transport requires a representation of

the random walk process, which includes specification of the photon's initial state, transport,

and termination either via absorption or exit. The construction of photon random walks is

determined by a set of functions {p1(P1), p(Pi → Pi+1), p(Pk)}, where p1(P1) is the density

function the first collision state P1, p(Pi → Pi+1) describes transition probability density

from one state Pi to the next Pi+1 prior to termination, and p(Pk) is the probability of

termination in state Pk after k collisions. These functions satisfy

(18)

(19)

(20)

The first two conditions require that the probability density functions that define the first

collision state p1, and p(Pi → Pi+1), to be non-negative. The last equation states that the

probability of terminating at state Pi is equal to 1 minus the sum of all possible scattering

events leaving this state. For example, if the probability of scattering from state Pi is 0, then

the probability of termination at this state is 1. Note also that, in Eq. (18), the probability

density of first collisions must be normalized, such that ∫Γ p1 (P1)dP1 = 1.

We describe each random walk using a collection of states β = (P1, P2..., Pk , where P1 =

(r1, ω1) represents the first photon collision in the medium, P2,..., Pk−1 are subsequent states

that the photon experiences upon transport through the medium, and state Pk represents

photon termination either by absorption or escape from the phase space Γ. Each state is

defined by the photon location, propagation direction, and weight. The sample space 

consists of all random walks depicting photon movement through the medium. The

probability measure ν describes the probability density of the (infinite) set of all random

walks .

To complete the probability model, these probability density functions that specify the

random walk process must be augmented with detector functions that characterize the

measurements of interest. The detector function is an estimator, a random variable that maps
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the random walks to a measurement of interest. The “classical” terminal estimator is defined

on a single random walk β = (P1, P2,..., Pk) by [15]:

(21)

where

(22)

We can interpret Eq. (21) as a product of weight factors the first of which, S(P1)/p1(P1), is

acquired at the first collision point, subsequent weight factors K(Pi → Pi+1)/p(Pi → Pi+1)

that are acquired as the photon propagates through the medium, and a final weight factor

g(Pk)/p(Pk) that is acquired when the random walk β is detected at Pk. Note that, when an

analog simulation is used, all weight factors are 1 and the terminal estimator reduces to a

binomial estimator [20] that tallies 1 upon detection and 0 otherwise. This random variable

provides an unbiased estimator of I = ∫ΓgΨ when it has a finite expected value E[ξ] < ∞

[15].

C. Equivalence of Analytic and Probability Models

To ensure that the probability model produces correct estimates of the desired measurement,

we must demonstrate equivalence between the probability and the analytic RTE models. As

described in the Introduction, DAW and CAW modify the photon weight to take a value

between 0 and 1. To allow this, the random walk process is also modified so that the

resulting predictions are unbiased. For this purpose, the random walk process, based on Eqs.

(18)–(22), is generalized to one that accommodates nonunit weights. This provides a model

that enables the formulation of both DAW and CAW estimators. The more general random

walk process is specified by the functions

(23)

(24)

(25)

and weight factors

(26)

These equations are based on the key assumption that the operator  is norm-reducing [Eq.

(11)].
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For example, to form a DAW estimator, photon termination due to absorption is forbidden,

therefore p(Pk) = 0, and the probability of transitioning from state Pi to Pi+1 becomes

(27)

(28)

where the denominator is determined by integrating Eq. (8). The details of this derivation

are given in Appendix A. The full set of equations that define the DAW random walk

process is then

(29)

(30)

(31)

This derivation assumes a transport kernel that sampled intercollision distances from the

probability density function μt exp(−μtl), based on the total attenuation shown in Eq. (8).

These equations show that, since termination of the photon due to absorption is forbidden,

the photon weight is reduced discretely by μs(Pi)/μt(Pi) at collision points Pi to account for

absorption.

In CAW, photon termination due to absorption is also not allowed and, instead, the photon

weight is reduced continuously along the photon path. In this case, the transport kernel is

modified to select intercollision distances sampled from the probability density function μs

exp(−μsl), based on the scattering coefficient. The probability of transitioning from state Pi

to Pi1 becomes

(32)

(33)

where the denominator is determined by integrating a refactored Eq. (8) with a transport

kernel based on μs. The integral from Pi to Pi+1 accounts for varying μa along that track. The

details of this derivation are given in Appendix B. The complete set of equations that define

the CAW random walk process is
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(34)

(35)

(36)

The fact that the termination probability due to absorption is zero in both DAW and CAW

[p(Pk = 0] precludes the use of a “classical” terminal estimator [Eq. (21)], because the final

factor g(Pk)/p(Pk) would have a zero denominator. Moreover, reflectance measurements

require the placement of a detector on the media boundary ∂Γ rather than within the media,

which requires a mechanism for the capture of photons as they exit Γ. For both of these

reasons, the tally of reflectance requires a “modified” terminal estimator. Using the general

random walk process constructed above, {p1(P1), p(Pi → Pi+1), p(Pk)}, a modified terminal

estimator is defined on a single random β = (P1, P2,..., Pk) by

(37)

where

(38)

In Eq. (37),  is the detector function given by Eq. (16) and  is the pseudo-

collision that occurs at the boundary crossing after the last true collision Pk inside Γ. A

pseudo-collision is a nonphysical collision that is used at points that lie on ∂Γ at the location

where the photon exited Γ. In Appendix C, we show that this modified terminal estimator

provides an unbiased estimate of I.

The DAW estimator for reflectance is then formed by substituting Eqs. (29)–(31) and (16)

into Eq. (37):

(39)

where Sr×ωNA is the space–angle bin that accounts for the area and numerical aperture (NA)

of the detector. This estimator is unbiased, and so E[ξDAW] = ∫ ξDAWdνDAW = I, where

νDAW is the measure defined by the DAW random walk process [Eqs. (29)–(31)]. In

homogeneous media, this estimator reduces to
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(40)

where k is the total number of collisions experienced by the photon in the medium.

The CAW estimator is obtained by substituting Eqs. (4), (34)–(36) and (16) into Eq. (37):

(41)

This estimator is also unbiased, and so E[ξCAW] = ∫ ξCAWdνCAW = I, where νCAW is the

measure defined by the CAW random walk process [Eq. (34)–(36)]. In homogeneous media,

this estimator reduces to

(42)

where  is the total photon path length from source Q to

exiting the medium at pseudo-collision .

Defining the random walk process in terms of K and S of the transport equation thus defines

a probability measure ν on the space  of all random walks that is consistent with the RTE.

This provides the equivalence between the analytic and probability models:

(43)

3. NUMERICAL RESULTS AND ANALYSIS: SPATIALLY RESOLVED

REFLECTANCE USING DAW OR CAW

Using the derived estimators for DAW and CAW, we examine spatially resolved reflectance

in homogeneous, semi-infinite media. The geometry employed considers a narrow

collimated beam incident on the medium surface with refractive index n = 1.4. Fifty million

photons are launched in each simulation. The scattering angle at each interaction point is

sampled from the Henyey–Greenstein phase function [21]. The NA of the detector is fully

open. Russian roulette was not employed. All of these assumptions were invoked within a

single MC code, which modified the track length sampling and associated photon weights

based on whether the simulation employed DAW or CAW.

We analyzed media with ratios of reduced scattering to absorption coefficients ,

10, 1 and anisotropy values of g = 0.9, 0. We held  fixed. Table 1

displays the optical properties we investigated.

To assess the error of each MC reflectance prediction, we evaluate the tallied variance. The

N-sample variance is determined using

Hayakawa et al. Page 10

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(44)

where N is the number of photons launched, E[ξ] is the expected value or mean, and E[ξ2] is

the second moment of estimator. The square root of the variance is the standard deviation

(45)

which defines a 1σ confidence interval for each mean estimate. By the Central Limit

Theorem [22], we expect that, as N goes to infinity, there is a 68% chance that the true result

lies in the range E[ξ] ± 1σ. The relative error is then

(46)

which indicates the quality of each mean estimate and is proportional to . A relative

error <0.05 is a guideline for assessing the quality of the estimated mean prediction to be

“generally reliable” [11].

We examine two metrics to evaluate the relative performance of DAW and CAW. The first

is the relative difference in the mean reflectance values

(47)

We also evaluated 1σ confidence interval about this difference by using the standard

deviations for DAW and CAW [Eq. (45)] [23]. Since the mean reflectance values for DAW

and CAW are statistically equivalent, we expect ΔMean to be smaller than the 1σ confidence

interval 68% of the time.

The second metric is the difference in the relative error

(48)

This metric allows us to evaluate which estimator provides the smallest relative error.

Moreover, comparison of this metric to the intrinsic relative error indicates the significance

of the advantage.

A. Relative Error Analysis for Anisotropically Scattering Media

We first examine the case of anisotropic scattering with g = 0.9, due to its relevance to

biological tissue and the resulting disparate spatial scales for the single scattering length ls =

1/μs and the isotropic scattering length . Figure 1(a) displays spatially resolved

reflectance predictions E[ξ] provided by DAW and CAW estimators for , and

Fig. 1(b) shows the relative difference of these results ΔMean [Eq. (47)]. In these results, the

source–detector separation ρ is normalized by the transport mean free path l* . The two

estimators provide mean results that agree within 0.36%, which is well below the 1σ error
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bars (maximum value 2%) for the span ρ ∈[0–6]l* . This agreement is consistent with the

fact that both estimators are unbiased and thus, their expected values are identical. Figure

1(c) displays the relative error R [Eq. (46)] using DAW and CAW estimators and Fig. 1(d)

shows the difference of these results ΔR [Eq. (48)]. In Fig. 1(d), positive values represent

cases where CAW provides the smaller error, whereas negative difference values represent

cases where DAW provides the smaller error. The fact that the ΔR plot has no systematic

pattern with respect to ρ and is always much smaller than the relative error values shown in

Fig. 1(c), demonstrates that there is no clear advantage to either CAW or DAW estimators in

this case.

We apply the same analysis to a more highly absorbing system, . Figures 1(e) and

1(f) display the reflectance and ΔMean results, respectively, for the two estimators, and

show that the mean predictions agree to within 0.44%, again well below the 1σ maximum

value of 3%. Figures 1(g) and 1(h) display the relative error and ΔR results, respectively,

and show that DAW provides smaller relative error than CAW for , whereas, for

 CAW provides the smaller relative error and this difference increases for

increasing ρ. The ΔR values are less than 2% of the intrinsic relative error estimates and,

therefore, not significant.

Finally, we examine a system with . Figures 1(i) and 1(j) display the reflectance

and ΔMean results, respectively, and show that the mean predictions agree to within 1.1%,

with 1σ maximum value of 6%. Figures 1(k) and 1(l) display the relative error and ΔR, and

these are qualitatively similar to the  case above in that DAW provides smaller

relative error than CAW for ; then, beyond 1.6l* , CAW provides the smaller

relative error and this advantage increases as ρ increases. However, here the difference in

relative errors between DAW and CAW becomes significant as it is comparable to the

relative error estimates themselves. The relative error provided by DAW proximal to the

source is 4% smaller than CAW, whereas, near ρ/l* = 6 the relative error provided by CAW

is 25% smaller than DAW.

There are some trends to note in this set of results. First, in the relative difference plots of

the reflectance shown in Figs. 1(b), 1(f), and 1(j), the 1σ error bars increase as the source–

detector separation increases. This is because as ρ increases, both the number of photons

exiting the detector decreases and the exiting weight fluctuates more due to a wider variation

of path lengths from source to detector. Note that, as  decreases, the error bars also

increase, which is due to the variation in the path lengths and number of collisions the

photon experiences prior to detection. Second, in the relative error difference plots shown in

Figs. 1(d), 1(h), and 1(l), as  decreases, the results change from a noisy straight line,

which indicates no preference to DAW or CAW to monotonically increasing plots that cross

0 somewhere between ρ = [1–2]l*, and shows the advantage of using DAW for small

source–detector separations  as well as the advantage of using CAW for large

source–detector separations . In addition, the magnitude of the relative error

differences at ρ = 0 and ρ = 6l* grows as  decreases. We will examine this trend

further in Subsection 3.C.
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B. Relative Error Analysis for Isotropically Scattering Media

We next examine the relative performance of DAW and CAW in media with isotropic

scattering. This case is important, as it considers systems in which the single scattering and

isotropic scattering lengths are equal. For the highly scattering system, , Figs.

2(a) and 2(b) display the reflectance predictions and ΔMean results, respectively, and show

that the two estimators provide mean results that agree within 0.33% (with a maximum 1σ

error bar value of 2%), and is similar to the g = 0.9 case. Figures 2(c) and 2(d) display the

relative error and the ΔR results, respectively, for the two estimators, and show that DAW

provides smaller relative error proximal to the source for  , whereas CAW provides

smaller relative error for . This display of a distinct advantage for DAW at proximal

source locations and for CAW at distal locations was not seen in the case of 

with g = 0.9, shown in Fig 1(d). Note also that the relative error differences are about 2×

larger as compared to the g = 0.9 case. However, the differences are small compared to the

intrinsic relative error estimates.

For the more highly absorbing system, , Figs. 2(e) and 2(f) display the reflectance

and the ΔMean results, respectively, for the two estimators and show that the means agree to

within 0.73% (maximum error bar value 3%), almost 2× larger than the g = 0.9 case. Figures

2(g) and 2(h) display the relative error and the ΔR results, respectively, and show that DAW

provides smaller relative error than CAW for , whereas, for , CAW

provides the smaller relative error, and its advantage increases as ρ increases. Comparison of

the relative error differences with the g = 0.9 case reveals a roughly 10× increase in the

relative error difference while the overall trend of a DAW advantage at  and CAW

advantage at  is preserved.

For the highest absorbing system, , Figs. 2(i) and 2(j) display the reflectance

predictions and the ΔMean results, respectively, and show that the means agree to within

0.85% (maximum error bar value 12%). Figures 2(k) and 2(l) display the relative error and

ΔR results, respectively, and show that DAW provides smaller relative error than CAW for

. Then, for , CAW provides the smaller relative error, and its advantage

again increases as ρ increases. Comparison with the g = 0.9 case reveals a 10× increase in

the relative error differences between DAW and CAW for g = 0. However, the overall

advantage of DAW for  and CAW for , is preserved. Here, when

absorption is comparable to scattering, the differences in relative errors between DAW and

CAW are significant. Proximal to the source, the relative error provided by DAW is 24%

smaller than CAW; whereas, at ρ/l* = 6, the relative error provided by CAW is 146%

smaller than DAW.

C. Analysis of Photon Weights

Our results show that for highly scattering systems  with g = 0.9, there is no

significant advantage in applying either DAW or CAW estimator. However, as absorption

increases to , 1 or for isotropically scattering systems, DAW provides smaller

relative error for source– detector separations proximal to the source for , whereas
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CAW provides smaller relative error for . These findings are consistent with those of

Wong and co-workers [12].

To investigate the origin of these differences between DAW and CAW estimates, we

examine the distribution of detected photon weights at proximal and distal detector

locations. Recall that for highly scattering media with  and g = 0.9, the relative

error for both estimators was comparable. Because the relative error is the standard

deviation divided by the mean, a smaller relative error can only be achieved by a smaller

variance, since the mean estimates provided by DAW and CAW are equivalent. Figure 3(a)

shows the photon weight distribution for a detector most proximal to the source ρ ∈ [0–

0.2]l*. One hundred equally spaced weight bins were used to generate these results. The

weight distribution is not normalized by the surface area of the detector bin and, therefore,

displays the raw photon weights modified only by specular reflection and the absorption

method employed. The photon weights span 0–0.9722 where the value A = 0.9722 originates

from a photon weight reduced solely by specular reflection. These results show that the

majority of photons exit the medium with weights very close to this maximum value. These

photons experienced very few collisions and traveled very small distances in the medium.

The silhouette of the distribution of photon weights resulting from DAW and CAW

simulations is similar, indicating little difference between the detected photon weights at this

proximal position. Figure 3(b) shows the photon weight count for a detector positioned

distal from the source ρ ∈ [5.8–6]l* . Again, the silhouettes of the photon weight distribution

produced by the two estimators are similar, indicating little difference between the relative

errors for this distal detector. Both these findings are consistent with the relative error

difference results shown in Fig. 1(d).

This situation changes when absorption is increased to  and scattering is isotropic.

In Fig. 2(h), we observe a crossover of the relative error difference from smaller errors

provided by DAW at  to smaller errors provided by CAW at . Figures 4(a) and

4(b) show the photon weight distributions at proximal ρ ∈ [0–0.2]l* and distal ρ ∈ [5.8–6]l*

locations, respectively. In both of these plots, we now see two important differences in the

weight distributions for DAW and CAW. First, we see that the range of detected weights is

substantially different depending on the absorption weighting method used, and provides an

indication for the variance of the estimator. Second, we see that the weight distribution

provided by DAW is not continuous, but notably quantized, due to the fixed weight

reduction produced by the number of collisions, which assumes only integer values.

Although this was the case also when , the effect is more notable as absorption

increases. As absorption is increased further, and becomes comparable to the reduced

scattering coefficient, the differences become even more stark, as seen in Fig. 5. The

advantage of DAW proximal to the source arises from the smaller bandwidth of the photon

weight distribution as compared with CAW, shown in Fig. 5(a) for  and g = 0. This

is most noticeable at the larger photon weights. Here, we see the CAW results are

characterized by a relatively smooth weight distribution, spanning 0 to a maximum weight

of 0.9722. By contrast, the DAW weight distribution displays prominent discrete spikes with

a maximum weight of 0.4861. The dramatic reduction in the maximum DAW photon weight
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arises because photon detection requires at least one collision and results in a photon weight

reduction due to one collision combined with specular reflection: W = A · (μs/μt) = 0.4861. In

contrast, the maximum CAW photon weight is based on the total path length, which can be

very small. For the data shown here, the photon path lengths were as small as 4.01 × 10−7

mm, which produces a negligible weight reduction. The discrete nature of the DAW

estimator reduces the bandwidth of the photon weight distribution, leading to smaller

variance and relative error compared with CAW, and provides an advantage over the

continuous nature of CAW for these results.

Figure 5(b) shows the photon weight distribution for ρ ∈ [5.8–6]l* . Here, the span of photon

weights produced by the DAW simulations is distinctly greater than CAW. Again, the

discrepancy occurs near the maximum weight of the detected photon. For a given detector

location, there is a lower limit of the minimum path length of any photon exiting the

detector, due to the geometry. The maximum CAW weight is governed by the minimum

path length between source and detector, which must be ≥5.8 mm and, for the CAW data

shown here, the minimum path length experienced by a photon is 5.89 mm. Thus, the largest

detected photon weight is W = A · exp(−0.5051 × 5.89) = 0.05, and this limits the variance of

this estimator. However, in DAW, there is a finite probability that a photon can be detected

after just 1 collision. For the DAW data shown here, as few as 2 collisions were experienced

by the detected photons, producing a maximum weight of W = A · (μs/μt)2 = 0.243 and gives

rise to the larger variance of DAW compared with CAW. These results show that at larger ρ,

the path length-based CAW estimator provides an advantage over the collision-based DAW

estimator. Qualitatively similar results are produced for the photon weight histograms of all

other sets of optical properties that exhibit this cross over from smaller relative errors for

DAW near the source to smaller relative errors for CAW far from the source (results not

shown).

D. Computational Efficiency

Our discussion so far has focused on the comparison of relative errors. However, in terms of

practical usage, it is important to consider the relative computational efficiency of these

DAW and CAW MC simulations. The computational efficiency of determining the value of

a random variable ξ is defined as the product

(49)

where R is the relative error of ξ [Eq. (46)] and T is the computer run time [11]. Table 2

displays the computational efficiency and its components for proximal ρ ∈ [0–0.2]l* and

distal ρ ∈ [5.8–6]l* detection. The values with an asterisk (*) indicate the estimator that

provided the larger efficiency.

For the highly scattering media  with g = 0.9, we found no advantage to DAW or

CAW with respect to relative error. This is because there is no significant difference

between the intercollision distances used in DAW (1/μt = 0.1 mm) and CAW (1/μs = 0.1

mm). However, CAW took 3.6% longer than DAW to simulate the same number photons

(Intel Xeon CPU 2.67GHz), because the path length calculation required in CAW is more
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costly. Therefore, in terms of efficiency, DAW provides a slight advantage at both proximal

and distal detectors.

As absorption is increased to , CAW provides a slight advantage for both

proximal and distal detectors, due to a greater reduction in CAW run times. The slight edge

DAW provides over CAW in terms of relative error at the proximal detector does not

compensate for the longer DAW run times. As absorption is increased further to ,

the run times are now 28% smaller for CAW compared to DAW. This is because the

intercollision distances for CAW (1/μs = 1.97 mm) are significantly larger than that for

DAW (1/μt = 0.99 mm). The larger number of collisions in DAW simulations outweighs the

cost of the path length calculations required for CAW. For isotropic scattering g = 0, we see

a similar trend, in which DAW provides an advantage in terms of computational speed over

CAW for highly scattering media, but as absorption is increased, CAW simulations become

more computationally efficient.

Note that our analysis is limited to homogeneous media. For spatially heterogeneous media,

the time required for CAW simulations will dramatically increase, especially if the

characteristic spatial scale of the heterogeneities have dimensions smaller than 1/μs. This is

because the partial path lengths created when intercollision tracks straddle media interfaces

will need to be calculated. In comparison, DAW relies only on the position of collision

points and the time required for DAW simulations will not increase substantially.

4. CONCLUSIONS

In conclusion, we have presented the theoretical formulation for the commonly used DAW

and CAW absorption weighting techniques used in MC simulations. We have proved that

both methods produce equivalent mean values. This theory provides a framework to

evaluate if potential new MC estimators or weighting schemes are fully consistent with the

RTE and provide unbiased results.

We compare the performance of each estimator in predictions of spatially resolved

reflectance in terms of relative error. This shows no strong advantage to either estimator in

highly scattering media with forward-peaked scattering g = 0.9. However, for moderately to

highly absorbing media with g = 0.9, or in all media with isotropic scattering, DAW

provides better predictions at locations proximal to the source  and CAW provides

better predictions at distal locations . This is explained by examination of the detected

photon weight distributions, which give key insight into the variance characteristics of these

methods.

Our comparative analysis of computational efficiency reveals that DAW provides a slight

advantage over CAW for highly scattering media for all source–detector separations.

However, when absorption is increased, CAW provides larger computational efficiency over

DAW. These conclusions are shown for both highly anisotropic and isotropic media.
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APPENDIX A: DERIVATION OF THE INTERCOLLISION WEIGHTS FOR DAW

We derive the density function p(Pi → Pi+1), which specifies the photon de-weighting

between two collisions for DAW, shown in Eq. (30). The denominator of the general

equation for p(Pi → Pi+1) [Eq. (24)] can be written as

(A1)

(A2)

Confining our consideration to homogeneous media, the transport kernel Eq. (8) can be

written as

(A3)

For DAW, we rewrite Eq. (A3) as

(A4)

Note that the last factor in square brackets is the “transport” portion T of kernel K. The rest

of the right hand side is the “collision” portion C. Integrating K with respect to drdω means

that T is integrated with respect to dr and C is integrated with respect to dω. Thus,

integration produces

(A5)

(A6)

A7)

and justifies the denominator in Eq. (30).
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APPENDIX B: DERIVATION OF THE INTERCOLLISION WEIGHTS FOR CAW

Here, we derive the density function p(Pi → Pi+1) for CAW, shown in Eq. (35). For CAW,

we rewrite Eq. (A3) as

(B1)

The first portion represents the collision kernel C while the last factor in square brackets is

the transport kernel T. Integrating this produces

(B2)

(B3)

(B4)

and justifies the denominator in Eq. (35).

APPENDIX C: PROOF THAT MODIFIED TERMINAL ESTIMATOR IS

UNBIASED

Here, we prove that the modified terminal estimator, defined by Eq. (37), is an unbiased

estimator for reflectance. Recall that, for reflectance, the random walk includes a pseudo-

collision  at the point of exiting the medium boundary, i.e., the boundary of Γ, after the

final true internal collision Pk. Taking the expectation of the estimator produces:

(C1)

(C2)

(C3)
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(C4)

where the last step uses Eq. (12). This proves that this estimator is unbiased.
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Fig. 1.
Plots of [(a), (e), (i)] spatially resolved reflectance, [(b), (f), (j)] ΔMean with 1σ error bars,

[(c), (g), (k)] relative error, and [(d), (h), (l)] ΔR for increased absorption , 10, 1

and g=0.9.
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Fig. 2.
Plots of [(a), (e), (i)] spatially resolved reflectance, [(b), (f), (j)] ΔMean with 1σ error bars,

[(c), (g), (k)] relative error, and [(d), (h), (l)] ΔR for increased absorption , 10, 1

and g=0.
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Fig 3.
Plots of the photon weight count for (a) ρ ∈ [0–0.2]l* and (b) ρ ∈ [5.8–6]l* for high

scattering media  and g = 0.9.
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Fig. 4.
Plots of the photon weight count for (a) ρ ∈ [0–0.2]l* and (b) ρ ∈ [5.8–6]l* for moderate

absorbing media  and g = 0.
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Fig. 5.
Plots of the photon weight count for (a) ρ ∈ [0–0.2]l* and (b) ρ ∈ [5.8–6]l* for high

absorbing media  and g = 0.
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Table 1

List of Optical Properties Studied

μs
′ ∕ μa

g μa [/mm] μs [/mm] μs
′
 [/mm]

μ s/ μ t

100 0.9 0.01 10.0 1.0 1.0

10 0.9 0.092 9.182 0.9182 0.99

1 0.9 0.5051 5.051 0.5051 0.91

100 0.0 0.01 1.0 1.0 0.99

10 0.0 0.092 0.9182 0.9182 0.91

1 0.0 0.5051 0.5051 0.5051 0.5
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Table 2

Calculated Efficiencies for Reflectance Predictions at Proximal and Distal Source Locationsa

T [h] R Eff[ξ]

μs
′ ∕ μa

g ρ [mm] DAW CAW DAW CAW DAW CAW

100 0.9 [0—0.2] 28 29 0.0098 0.0098 372* 359

100 0.9 [5.8—6] 28 29 0.0148 0.0148 163* 157

10 0.9 [0—0.2] 26.7 26 0.0103 0.0104 353 356*

10 0.9 [5.8—6] 26.7 26 0.0207 0.0204 87 92*

1 0.9 [0—0.2] 19 13.7 0.0143 0.0148 257 333*

1 0.9 [5.8—6] 19 13.7 0.0441 0.0352 27 59*

100 0.0 [0—0.2] 2.8 2.9 0.0061 0.0062 9598* 8971

100 0.0 [5.8—6] 2.8 2.9 0.0153 0.0153 1525* 1473

10 0.0 [0—0.2] 2.9 2.5 0.0062 0.0064 8971 9766*

10 0.0 [5.8—6] 2.9 2.5 0.0240 0.0217 598 849*

1 0.0 [0—0.2] 3.6 1.5 0.0066 0.0087 6377 8808*

1 0.0 [5.8—6] 3.6 1.5 0.1141 0.0463 21 311*

a
Proximal (ρ ε [0—0.2] mm) and distal (ρ ε [5.8—6] mm), where  and g = 0.9, 0. Efficiency values with an asterisk (*)

indicate the larger value when comparing DAW with CAW.
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