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Abstract 

In between-items multidimensional item response models, it is often desirable to compare 

individual latent trait estimates across dimensions. These comparisons are only justified if the 

model dimensions are scaled relative to each other. Traditionally, this scaling is done using 

approaches such as standardization—fixing the latent mean and standard deviation to 0 and 1 for 

all dimensions. However, approaches such as standardization do not guarantee that Rasch model 

properties hold across dimensions. Specifically, for between-items multidimensional Rasch 

family models, the unique ordering of items holds within dimensions, but not across dimensions. 

Previously, Feuerstahler and Wilson (2019) described the concept of scale alignment, which 

aims to enforce the unique ordering of items across dimensions by linearly transforming item 

parameters within dimensions. In this paper, we extend the concept of scale alignment to the 

between-items multidimensional partial credit model and to models fit using incomplete data. 

We illustrate this method in the context of the Kindergarten Individual Development Survey 

(KIDS), a multidimensional survey of kindergarten readiness used in the state of Illinois. We 

also present simulation results that demonstrate the effectiveness of scale alignment in the 

context of polytomous item response models and missing data. 
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Scale Alignment in the Between-Items Multidimensional Partial Credit Model 

Between-items multidimensional item response models are used to simultaneously model 

a small number of related constructs. For example, a four-dimensional model could be specified 

for a test that includes four items representing each algebra, geometry, statistics, and written 

mathematics. In contrast to unidimensional tests for which one latent trait estimate is reported 

per examinee, multidimensional models result in a set of estimates that can be reported for each 

individual. Several empirical studies have found that the resulting estimates are more reliable 

than estimates from consecutive unidimensional models (Adams, Wilson, & Wang, 1997; 

Baghaei, 2012; Briggs & Wilson, 2003; Cheng, Wang, & Ho, 2009; Wang, 1996; Wang, Chen, 

& Cheng, 2004).  

When reporting estimates from multidimensional models, it is often desirable to compare 

an individual’s estimate on one dimension directly to his estimate on another dimension, 

especially if the dimensions are closely related or if there is thought to be a higher-order 

dimension. For example, consider a mathematics test that provides separate scores for algebra, 

geometry, statistics, and written mathematics. If the estimates for a given person equal (1.0, 1.0, 

1.0, 1.0), then one might interpret this to mean that the person has “the same” proficiency on all 

the dimensions, that the person scored equally well on each of these areas of mathematics.  

However, this interpretation is not necessarily appropriate if the scores are based on 

multidimensional models.  For example, a common constraint used to statistically identify such 

models is that the mean of the item difficulties equals 0.0 for every dimension. Consider then a 

case in which the items on one dimension have been designed to be much harder than those on 

the other dimensions.  Then the estimate of 1.0 on that dimension would constitute a higher 
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relative estimate than for the others. Thus, across-dimension comparisons are justified only when 

the dimensions have been scaled with reference to other dimensions.  

One classical approach to this problem is standardization. If the latent variables for each 

dimension are standardized to have mean 0 and variance 1, then direct norm-referenced 

comparisons may be made across dimensions. This is, of course, subject to the assumption that a 

standard deviation on one dimension is the equivalent of a standard deviation on every other 

dimension. Although standardized scaling may be justifiable in the context of non-Rasch item 

response models, Rasch family models imply stronger measurement properties, such as the 

unique ordering of items, that do not necessarily hold across dimensions, regardless of whether 

those dimensions are standardized. Because these traditional scaling methods do not preserve the 

ordering of items across dimensions, the dimensions are not scaled relative to each other in terms 

of the strongest properties of the Rasch model. 

A formal method to scale dimensions relative to each other was first described by 

Feuerstahler and Wilson (2019), although several authors have applied earlier approaches to 

scale alignment (e.g., Morell, Collier, Black, & Wilson, 2017; Osborne, Henderson, 

MacPherson, Szu, Wild, & Yao, 2016; Yao, Wilson, Henderson, & Osborne, 2015). Feuerstahler 

and Wilson’s proposed scale alignment methods aimed to preserve the unique item order across 

dimensions for the between-items multidimensional Rasch model. To do this, they imagined 

projecting the dimensions from the multidimensional model onto a single reference dimension 

(see e.g., Ackerman, 1992) which represents a composite of the individual dimensions. On this 

reference dimension, a unique ordering of items is sensible for the same reason that any set of 

items that reflect a single dimension can be ordered.  Scale alignment methods work by linearly 

transforming the multidimensional model such that the unique ordering of items is preserved 
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across dimensions in the original multidimensional model. Feuerstahler and Wilson 

operationalized this idea by defining aligned dimensions as those for which the same observed 

sufficient statistics imply the same parameter estimates, regardless of dimension. It should be 

noted that this definition is an ideal, as it is unlikely to observe the exact same sets of sufficient 

statistics across dimensions. Methods to better achieve aligned dimensions were  proposed by 

Feuerstahler and Wilson. However, their work was limited to binary data sets with no missing 

data. The purpose of this paper is to extend the definition of aligned scales to polytomous item 

responses and incomplete data sets, and to developed generalized alignment methods that 

account for these factors.  

The remainder of the paper is organized as follows. First, we present the between-items 

multidimensional extension of the partial credit model (PCM; Masters, 1982) and describe how 

linear transformations of the latent variable affect item parameter estimates. Then, we extend the 

definition of scale alignment to the between-items multidimensional PCM and describe how 

previously developed scale alignment methods can be modified for use with this model and how 

scale alignment is affected by missing data. Finally, we illustrate scale alignment in terms of a 

large-scale rating scale instrument and provide simulation evidence that each of the scale 

alignment methods can lead to item response models that better meet the definition of aligned 

dimensions. 

Partial Credit Model 

Feuerstahler and Wilson (2019) defined Rasch model dimensions to be aligned if the 

same sufficient statistics imply the same parameter estimates, regardless of dimension. Under the 

Rasch model for binary item responses, the proportion of correct responses for item 𝑖 belonging 

to dimension 𝑑, 𝑝̂!(#), is a sufficient statistic for the item difficulty parameter 𝛿!(#). Feuerstahler 
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and Wilson used the fact that these sufficient statistics are monotonically related to item 

difficulty estimates to develop alignment methods. Scale alignment methods, therefore, linearly 

transform dimensions such that the rank-order correlation between 𝑝̂!(#) and 𝛿&!(#) is maximized 

when these quantities are not separated by dimension.  

To extend scale alignment methods to polytomous data, we consider the between-items 

multidimensional extension of the partial credit model (PCM; Masters, 1982). This is the most 

general Rasch family model for responses that occur in more than two ordered categories. A	

general	form	of	the	between-items	multidimensional	partial	credit	model	for	item	𝑖	with	

response	categories	𝑥 = 0,…𝑚! 	can	be	written	

ln -
𝑃(𝑋 = 𝑥|𝜃)

𝑃(𝑋 = 𝑥 − 1|𝜃)
6 = 7𝛼#

%

&'(

9𝜃# − 𝜉!(#)&;, (1) 

where by definition, 

𝑃(𝑋 = 0|𝜃#) =
1

∑ exp)!
*'( ∑ (*

&'( 𝛼#(𝜃# − 𝜉!(#)&))
, (2) 

exp∑ ((
&'( 𝛼#(𝜃# − 𝜉!(#)&)) = 1, 𝜃# is the latent ability on dimension 𝑑, 𝜉!(#)& is the item step 

parameter for step 𝑘 of item 𝑖 on dimension 𝑑, and 𝛼# is the steepness of the response curve for 

all items on dimension 𝑑. The 𝛼# parameter is traditionally set equal to 1 for all dimensions and 

is often omitted from expressions of the PCM. If the model is specified with all 𝛼# = 1, the latent 

variance for each dimension is estimated. An equivalent choice is to set all latent variances equal 

to 1 and to estimate 𝛼# (cf. the relationship between the Rasch model and the one-parameter 

logistic model, Verhelst & Glas, 1995). We include the 𝛼# term here because it is necessary to 

include this term when linearly transforming the PCM dimensions, as is done in scale alignment.	

An equivalent expression of the PCM may be written as a function of 	𝛿!(#), the average item 
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step parameter, and 𝜏!(#)&, the deviation from the average step parameter for step 𝑘 such that 

∑ 𝜏!(#)&)
&'+ = 0. The two PCM parameterizations are related as follows: 

𝛿!(#) =
1
𝑚!

7𝜉!(#)&

)!

&'+

, (3) 

𝜏!(#)& = 𝜉!(#)& − 𝛿!(#), (4) 

and 

𝜉!(#)& = 𝛿!(#) + 𝜏!(#)& . (5) 

The 𝜉!(#)& parameter signifies the 𝜃 value at which the probability of responding in category 𝑘 −

1 equals the probability of responding in category 𝑘. The 𝛿!(#) parameter can be interpreted 

either as the average of 𝛏!(#) = (𝜉!(#)+, 𝜉!(#),, … 𝜉!(#)))- parameters, or as the 𝜃 value at which 

the probability of responding in the lowest category equals the probability of responding in the 

highest category. Importantly, the PCM does not impose any order restrictions on 𝛏!(#). In 

contrast to the formal PCM model parameters, the Thurstone threshold (Masters, 1988), denoted 

𝜆!(#)& for category 𝑘 = 1,… ,𝑚, equals the 𝜃 value at which the probability of responding in 

category 𝑘 or higher equals .5. Thurstone thresholds reflect cumulative response probabilities 

and are necessarily ordered. For this reason, many researchers often prefer to interpret the 

Thurstone thresholds instead of other model parameters. Thurstone thresholds are computable 

from the formal PCM parameters 𝝃!(#) or 𝛿!(#) and 𝝉.(#) = (𝜏!(#)+, 𝜏!(#),, … 𝜏!(#)))- using 

Newton-Raphson iteration or other numerical methods. An illustration of the roles of each 

parameter type is shown in Figure 1. See Wu, Tam, and Jen (2016) for further comparisons of 

these different parameterizations of the PCM.	
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Figure 1 

Roles of Item Parameters in the Partial Credit Model 
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Alignment Methods 

Next, we describe how scale alignment can be applied to item response models for 

responses that are scored polytomously. Under the PCM, the proportions of responses that 

achieve at least each score category 𝑘 = 1,… ,𝑚, 𝑝̂!(#)&, are sufficient statistics for the item 

parameters 𝛏!(#), assuming that 𝛼# is fixed and not estimated (Masters, 1982). Unlike for the 

simple Rasch model, however, the sufficient statistics need not be monotonically related to the 

item parameters 𝜉!(#)& or 𝛿!(#) and 𝜏!(#)&. Therefore, it is not straightforward to define aligned 

scales in terms of a monotonic relationship between sufficient statistics and estimated item 

parameters, as was done previously with binary item response models. One solution is to define 

scale alignment for polytomously scored items in terms of parameters that are monotonically 

related to the sufficient statistics. As such, even though 𝑝̂!(#)& is a sufficient statistic for 𝜉!(#)&, 

there is not a simple monotonic relationship between these two quantities. There is similarly no 

monotonic relationship between the sufficient statistics and 𝜏!(#) or 𝛿!(#)&. Instead, because 

Thurstone thresholds are necessarily ordered, we might expect that there is a monotonic 

relationship between 𝑝̂!(#)& and 𝜆!(#)&. If this relationship is indeed monotonic (or nearly 

monotonic), it may be a useful criterion for scale alignment. Although this choice does not 

directly utilize the sufficiency relationship between 𝑝̂!(#)& and 𝜉!(#)&, it may be the nearest 

analog to the implementation of scale alignment used by Feuerstahler and Wilson (2019), which 

relied heavily on the monotonicity relationship between sufficient statistics and parameter 

estimates.  

To investigate the relationship between sufficient statistics and Thurstone thresholds, we 

simulated data with 𝑁 = 1,000 examinees from the between-items multidimensional PCM with 

two dimensions. Data-generating 𝜃 values were generated from a multivariate normal 
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distribution, with correlation .5 between dimensions, a mean of 0 for both dimensions, and 

dimension standard deviations equaled 1 and 2. The dataset included 40 items wherein 20 were 

generated from the first 𝜃 dimension, 20 were generated from the second 𝜃 dimension, and each 

item had three response categories. These data were then fit to the the between-items 

multidimensional PCM using the TAM package (Robitzsch, Kiefer, & Wu, 2018) for R (R Core 

Team, 2019) and fixing 𝛼+ = 𝛼, = 1. Figure 2 displays a scatter plot of the item sufficient 

statistics and the estimated Thurstone thresholds. In this figure, points corresponding to the first 

dimension are in black, and points corresponding to the second dimension are in gray. Moreover, 

circles represent the thresholds between response categories 0 and 1, and squares represent the 

thresholds between response categories 1 and 2. The best-fitting logistic curve is drawn through 

the points for each dimension. This figure suggests that, within dimensions, there is a strong 

nonlinear correlation between item sufficient statistics and Thurstone thresholds. For the first 

dimension, the absolute value of Kendall’s rank-order correlation (Kendall, 1970) between these 

two quantities equals .974, and for the second dimension, this correlation equals .951. If 

dimension membership is ignored, this correlation drops to .928. Although this relationship is not 

exact, this example clearly shows that the relationship between sufficient statistics and Thurstone 

thresholds within dimensions is stronger than across dimensions. The aim of scale alignment is 

to linearly transform one or both of these dimensions such that all points lie on the same curve. 

In theory, aligned dimensions are those for which the same sufficient statistics imply the 

same parameter estimates regardless of dimension. However, for most data sets, every unique 

sufficient statistic will not occur for every dimension. Instead, the degree to which dimensions 

are aligned can be evaluated in terms of the absolute rank-order correlation between sufficient 

statistics and Thurstone thresholds. If this correlation equals 1, then the dimensions can be 



SCALE ALIGNMENT    11	

considered perfectly aligned. Because any linear transformation of Rasch family models are 

admissible, we propose that researchers seek a linear transformation that maximizes the absolute 

rank-order correlation between sufficient statistics and Thurstone thresholds. 

 
Linear Transformations of PCM Model Parameters 

Under the PCM, the 𝜃# metric for each dimension is determined only up to linear 

transformations. These linear transformations affect the scaling of the dimensions but do not 

affect model-data fit. Suppose that we wish to transform trait estimates from the original metric 

𝜃# to another metric 𝜃K# such that 

𝜃K# = 𝑟#𝜃# + 𝑠# , (6) 

Figure 2 

Scatterplot of the Relationship Between Sufficient Statistics and Thurstone Thresholds 

 

Note. Circles correspond to the thresholds between categories 0 and 1, and squares correspond to the 

thresholds between categories 1 and 2. 
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where 𝑟# is a multiplicative scaling constant and 𝑠# is a shift constant. The model that results 

from this transformation follows the form of the PCM with 

𝛼O# =
𝛼#
𝑟#
, (7) 

𝛿Q!(#) = 𝑟#𝛿!(#) + 𝑠# , (8) 

𝜏̃!(#)& = 𝑟#𝜏!(#)& , (9) 

and  

𝜉Q!(#)& = 𝑟#𝜉!(#)& + 𝑠# . (10) 

These transformations are adapted from those that previously have been derived for the 

generalized partial credit model (Haberman, 2009). Therefore, the goal of any scale alignment 

method is to find 𝑟# and 𝑠# that improves alignment. In most cases, this goal may be able to be 

satisfied by a number of distinct linear transformations. We see lack of uniqueness as a feature, 

rather than a shortcoming of the concept of scale alignment. In this respect, it is helpful to 

compare scale alignment to factor rotation. In the same way that many factor rotation methods 

aim to better achieve the ideal of simple structure, scale alignment aims to better achieve the 

ideal relationship between sufficient statistics and item parameter estimates. 

Delta Dimensional Alignment 

Delta dimensional alignment (DDA; Schwartz & Ayers, 2012; Yamada, Draney, Karelitz, 

Moore, & Wilson, 2006) was the first method proposed for scale alignment in between-items 

multidimensional IRT models. This method is based on the concept of a reference dimension 

(Ackerman, 1992), a single dimension that represents the composite of the suite of dimensions. 

In practice, DDA works by fitting both a unidimensional and a multidimensional model. For 

binary responses, this results in two item difficulty estimates for each item—one from the 

multidimensional model and one from the unidimensional model. Note that the estimates from 
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the unidimensional model (which represents the reference dimension) are required to be aligned, 

since all unidimensional models are automatically aligned. However, the estimates from the 

multidimensional model are not necessarily aligned across dimensions. Using these two sets of 

estimates, each dimension is transformed such that the within-dimension mean and variance of 

the item difficulties from the multidimensional model are equal to the within-dimension mean 

and variance of those item difficulties from the unidimensional model. 

When dealing with polytomous responses, however, there are several quantities that serve 

the role of the item difficulties in dichotomous models and may be eligible for use in the DDA 

method. For a dimension with 𝑛 items, these candidate parameters include 𝛅#, 𝛏#, and 𝛌#, where 

bold notation indicates all parameters of the given type belonging to the given dimension. Let 𝜼# 

indicate one of these types of parameter vectors (either 𝛅#, 𝛏#, or 𝛌#). Then, the DDA method 

then defines the linear transformation parameters (see Equations (6)—	(10)) as follows: 

𝑟̂# =
sd	(𝜼	[𝒰#)
sd	(𝜼	[ℳ#)

(11) 

and 

𝑠̂# = mn(𝜼	[𝒰#) − 𝑟̂#mn(𝜼	[ℳ#), (12) 

where ℳ indicates parameters from the multidimensional model, and 𝒰 indicates parameters 

from the unidimensional model. If dimension 1 is set as an unchanged reference dimension (𝑟̂+ =

1 and 𝑠̂+ = 0), then 

𝑟̂# =
sd	(𝜼	[𝒰#)sd	(𝜼	[ℳ+)
sd	(𝜼	[ℳ#)sd	(𝜼	[𝒰+)

(13)	

and 

𝑠̂# =
mn(𝜼	[𝒰#) − mn(𝜼	[𝒰+) +

sd	(𝜼	[𝒰+)
sd	(𝜼	[ℳ+)

mn(𝜼	[ℳ+) −
sd	(𝜼	[𝒰#)
sd	(𝜼	[ℳ#)

	mn(𝜼	[ℳ#)

sd	(𝜼	[𝒰+)
sd	(𝜼	[ℳ+)

. (14) 
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The above results leave open the question of which parameters—𝛅#, 𝛏#, or 𝛌#—should 

be used with DDA. The logic of DDA implies that, within dimensions, there should be a strong 

linear relationship between multidimensional parameter estimates and unidimensional parameter 

estimates. To investigate which parameters might be appropriate for DDA, we again consider the 

simulated two-dimensional data set presented in Figure 1. We fit these data to a unidimensional 

model again using the TAM package and compared these estimates to the multidimensional 

parameter estimates obtained earlier. Scatterplots of multidimensional and unidimensional 

estimates of these three parameter types are shown in Figure 3. 

As Figure 3 shows, there exists a strong linear relationship between 𝛅̀ℳ# and 𝛅̀𝒰#, and 

between 𝛌aℳ# and 𝛌a𝒰#. However, there is a weaker relationship between 𝛏aℳ# and 𝛏a𝒰#. Note that 

because the first dimension is the reference dimension, these relationships are perfectly linear. 

Further investigation (not reported here) shows that the strength of the relationship between 𝛏aℳ# 

and 𝛏a𝒰# depends on the correlation between dimensions, whereas the relationships between the 

other sets of parameters are not sensitive to dimension correlations. This suggests that the degree 

of model misspecification when fitting the unidimensional model to multidimensional data 

affects the spacing of the item steps, which are represented by the 𝛏 or 𝛕 parameters. As a result, 

unless the correlation between 𝛏aℳ# and 𝛏a𝒰# is close to 1 (as will happen as the correlation 

between dimensions approaches 1), DDA computed from the 𝛏a# parameters may not align 

dimensions reliably. For this reason, we will only further investigate DDA implemented with 𝛅̀# 

and 𝛌a#. 
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Figure 3 

Scatterplots of Unidimensional and Multidimensional Item Parameter Estimates 

 

Note. Data were generated according to a two-dimensional model and fit to both unidimensional 

and two-dimensional models. 
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Logistic Regression Alignment 

Another viable scale alignment method for polytomous item responses is logistic 

regression alignment (LRA), first described by Feuerstahler and Wilson (2019). For 

dichotomously scored item responses, the LRA methods works by fitting a logistic regression 

curve between the sufficient statistics and the item difficulties for each dimension. When applied 

to the PCM, a logistic regression curve can be fit between the sufficient statistics and the 

Thurstone thresholds for each dimension. Specifically, for each dimension, 

logit(𝑃𝑟9𝑦!* ≥ 𝑘j𝜆!(#)&; = 𝛾l(# + 𝛾l+#𝜆+(#)& , (15) 

where 𝛾l(# and 𝛾l+# are the estimated intercept and slope for the logistic regression curve. After 

the logistic regression is fit to each dimension, one dimension (here, the first dimension) is 

chosen as the fixed reference dimension. The non-fixed dimensions are then transformed such 

that the fitted logistic regression curves are identical for each dimension. Specifically, 

𝑟̂# =
𝛾l+#
𝛾l++

(16) 

and 

𝑠̂# =
𝛾l(# − 𝛾l(+
𝛾l++

. (17) 

Previous comparisons of DDA to LRA for binary response data (Feuerstahler & Wilson, 

2019) demonstrated that both methods are broadly effective for scale alignment and that no one 

method systematically leads to greater alignment (as operationalized by the absolute rank-order 

correlation between sufficient statistics and transformed item difficulties). The LRA method may 

have a slight advantage over DDA in that it is usually more computationally efficient to compute 

a series of logistic regressions than to fit the unidimensional PCM. However, these 
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computational differences are relatively small, and we recommend applying both methods and 

retaining the solution that leads to the highest absolute rank-order correlation. 

Missing Data 

The above presentation of scale alignment methods assumes complete data sets, which is 

unrealistic for most real testing applications. Complete data is required because the sufficient 

statistics for the Rasch model and the PCM are only truly sufficient insofar as there are no 

missing data. Scale alignment is certainly possible in the context of missing data, but first we 

must consider the relationship between similar quantities and the estimated parameters. In the 

presence of missing data, the relationship between the data and the parameter estimates depends 

on how the estimation algorithm handles missing responses. Multidimensional item response 

models are often fit using the marginal maximum likelihood (MML; Bock & Lieberman, 1970; 

Bock & Aitkin, 1981) algorithm. Within the EM algorithm, rather than maximizing the marginal 

likelihood of the full data, the marginal likelihood is maximized with respect to expected 

response counts. The expected response counts, which are obtained in the “E” step of the EM 

algorithm, take into account that different numbers of respondents are expected to exist at each 

quadrature point. In the full-information maximum likelihood application of the EM algorithm to 

IRT item calibration (Bock, Gibbons, & Muraki, 1988), if some data are missing, the “E” step is 

computed from the complete data part of the likelihood. This solution is valid under ignorable 

missing data mechanisms1. Because in the “E” step, the expected counts of examinees and 

correct responses are computed from the available data, it makes sense to consider modified 

	
1 Under nonignorable missing data mechanisms, treating missing responses as ignorable can lead 
to bias in both the item parameter estimates and the proportion of examinees in each response 
category (Rose, von Davier, & Xu, 2010). Methods that appropriately account for nonignorable 
missing data patterns (see Rose et al.) are beyond the scope of this paper. 
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sufficient statistics (that are no longer truly sufficient statistics) as the corresponding quantity 

computed from the available data. With these considerations in mind, we suggest treating the 

proportion of complete responses to that occur at or below each category 𝑘 = 1,…𝑚! as the 

𝑝!(#)& values to evaluate the success of scale alignment. We believe that this solution is 

appropriate in the context of scale alignment because (a) most estimation algorithms assume that 

data are missing at random such that the proportion of complete responses is a good estimate of 

the “true” proportion if all responses were observed, and (b) the relationship between sufficient 

statistics and Thurstone thresholds is often not perfectly monotonic, even for complete data sets.  

Illustration 

Next, we illustrate scale alignment or the Kindergarten Individual Development Survey 

(KIDS), a multidimensional survey of kindergarten readiness used in the state of Illinois. On this 

instrument, teachers or caregivers rate each child on 38 measures (items) belonging to 5 domains 

(dimensions): Approaches to Learning and Self-Regulation (ATL-REG; 4 measures), Social and 

Emotional Development (SED; 5 measures), Language and Literacy Development (LLD; 10 

measures), Math (COG; 10 measures), and Physical Development and Health (PDH; 9 

measures). This instrument also includes measures of the domains History and Social Science, 

Visual and Performing Arts, and (for children whose first language is not English) English 

Language Development—which will not be considered here. Ratings on the KIDS instrument 

were collected from ratings of 59,429 kindergarten-age children in the state of Illinois in the 

spring of 2015. In this data set, 30% of the possible ratings were missing due to intentional 

omission by the rater (e.g., the rater indicated that they were unable to rate the child on a 

measure), and item-level missingness rates ranged from 21% to 51%. On average, children were 

rated on 26 of the 38 measures, and only 26% of children were rated on all measures. These data 
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were fit to the between-items multidimensional PCM using the EM algorithm as implemented in 

ConQuest (Adams, Wu, & Wilson, 2015) and by fixing person means equal to 0. 

Before alignment, the fitted model resulted in an absolute rank-order correlation of .924 

between the item sufficient statistics and the estimated Thurstone thresholds (ignoring dimension 

membership). The estimated dimension variances equaled 7.90, 13.58, 8.12, 9.49, and 5.89 for 

the ATL-REG, SED, LLD, COG, and PDH domains. We then applied the three scale alignment 

methods (DDA on 𝛅̀, DDA on 𝛌a , and LRA) to the fitted model, setting ATL-REG to be the 

unchanged reference dimension for each. Results of this model fitting are presented in Table 1. 

For this model, LRA and DDA 𝛌a	increased the absolute rank-order correlation to .934 and .937, 

but the greatest increase occurring for the DDA method on 𝛅̀ with an absolute rank-order 

correlation of .971. This would lead us to retain the DDA on 𝛅̀ solution and to transform the 

model parameters using the first set of 𝑟̂ and 𝑠̂ values given in Table 1, following the parameter 

transformations presented in Equations (7) to (9). This solution suggests that the SED, LLD, and 

COG dimensions should have smaller latent variances than ATL-REG, and that PDH should 

have greater latent variance than ATL-REG. 
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To illustrate the effect of scale alignment on an individual trait estimate vector, consider a 

child who receives a “2” on all 38 measures. In the original model, this student’s weighted 

likelihood (WLE; Warm, 1989) latent trait estimates equal -0.69, -1.12, -1.50, -1.02, and -1.11 

for the five domains. On the aligned model, this student’s WLE latent trait estimates equal -0.69, 

-0.93, -1.46, -0.92, and -1.25. These differences in estimates are subtle, and it is not self-evident 

that the estimates from the aligned model are more appropriate comparisons than those from the 

unaligned model. However, these differences do reflect a scaling that more closely aligns the 

item parameter interpretations across dimensions, as indicated by the absolute rank-order 

correlation between Thurstone thresholds and the modified sufficient statistics. 

Simulation 

Finally, we briefly report the results of a small-scale simulation study to evaluate the 

effectiveness of scale alignment for polytomous Rasch family models. For the Rasch model for 

dichotomously scored items, Feuerstahler and Wilson (2019) found that both DDA and LRA 

Table 1 

Results of three scale alignment methods on KIDS rating scale data. 

  ATL-REG SED LLD COG PDH 

DDA  𝜹̀ 𝑟̂ 1.000 0.832 0.973 0.912 1.128 

 𝑠̂ 0.000 -0.005 0.006 0.009 0.008 

DDA 𝝀a 𝑟̂ 1.000 1.097 1.071 1.034 1.148 

 𝑠̂ 0.000 0.092 0.098 0.071 0.103 

LRA 𝑟̂ 1.000 1.095 1.081 1.050 1.170 

 𝑠̂ 0.000 0.072 0.100 0.129 0.164 
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were broadly effective at alignment and found little evidence that one method systematically 

outperforms the other. The goal of these simulations is to determine whether one of the three 

alignment methods consistently outperforms the other methods in the context of the between-

items multidimensional PCM with varying proportions of missing data. 

Previously, Feuerstahler and Wilson (2019) found that differences in the latent trait 

variance across dimensions leads to the largest alignment adjustments (and greatest increase in 

the absolute rank-order correlation between sufficient statistics and item parameters). For this 

reason, we will induce misaligned dimensions by simulating latent trait values from a 

multivariate normal distribution with possibly different variances per dimension. In the current 

set of simulations, all data sets were simulated from a between-items two-dimensional PCM with 

either 5 or 20 items per dimension. All simulated data sets include 𝑁 = 500 subjects whose two-

dimension latent trait values was generated from a multivariate normal distribution with a mean 

vector of 0 and a correlation of .5 between dimensions. For the first dimension, the latent trait 

standard deviation equaled 1, and for the second dimension, the latent trait standard deviation 

equaled .5, 1, or 2. Data-generated PCM item parameters were generated using the catR (Magis 

& Barrada, 2017) packages for R. The genPolyMatrix function in this package generates 𝜉!(#)& 

parameters from independent standard normal distributions. The number of response categories 

per item was set equal to either 3, 5, or 7. Missing data were simulated by deleting responses to 

either 0% or a randomly chosen 25% or 50% of the complete simulated data matrix. Finally, 

each of these conditions (2 tests lengths × 3 dimension two standard deviations × 3 response 

category conditions × 3 missingess conditions) was fully crossed for 54 conditions and 

replicated 100 times for a total of 5400 conditions. Data sets were then fit to the correctly 

specified between-items multidimensional PCM with TAM and by fixing person means equal to 
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0 and aligned using the three alignment methods described earlier. Scale alignment was 

performed using our scaleAlign package for R, which we will make available soon on CRAN. 

The median rank-order correlations between sufficient statistics and Thurstone thresholds 

for each condition are displayed before and after each alignment method in Table 2. This table 

shows that DDA on 𝛌a  and LRA always lead to higher median rank-order correlations than DDA 

on 𝛅̀. In fact, DDA on 𝛅̀ often led to a decrease in rank-order correlations. The improvement in 

rank-order correlations for DDA on 𝛌a  and LRA is most pronounced when the standard deviation 

of 𝜃, does not equal 1. This is to be expected because scale alignment is intended to account for 

differences in latent distributions, and there is no difference in latent distributions when standard 

deviation of 𝜃, equals 1. In cases for which the standard deviation of 𝜃, does not equal 1, the 

median increase in rank-order correlation equals .038 for DDA on 𝛌a  and .040 for LRA.  

Comparing the three scale alignment methods within each replication of each condition, 

the highest absolute rank-order correlation is observed for DDA on 𝛅̀ in 9.6% of simulations, for 

DDA on 𝛌a  in 44.8% of simulations, and for LRA in 45.6% of simulations. The vast majority of 

the conditions for which DDA on 𝛅̀ is selected (i.e., has the highest rank-order correlation for a 

particular replication) are those in which the standard deviation of 𝜃,  equals 1, when scale 

alignment is not theoretically necessary. Effects for the other manipulated factors are relatively 

small, considering effects both within and across replications. DDA on 𝛌a  tends to be selected 

most often and leads to higher median rank-order correlations for models with 3 response 

categories, and LRA tends to be selected most often for models with either 5 or 7 response 

categories for all items. Test length and the proportion of missing data does not appear to affect 

the frequency with which scale alignment method was selected. However, the absolute value of 
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rank-order correlations are generally higher for shorter tests and conditions with lesser 

proportions of missing data, particularly when the standard deviation of 𝜃, does not equal 1. 

These results demonstrate that for a particular replication, each scale alignment method 

sometimes leads to the greatest improvement in dimension alignment, and the most appropriate 

method depends on a number of factors that are typically not known in advance of alignment. 

Fortunately, in practice it is always possible to apply all three alignment methods and to retain 

the solution that leads to the maximum absolute rank-order correlation between sufficient 

statistics and Thurstone thresholds. Therefore, we recommend applying all scale alignment 

methods to real data sets and retaining the best performing solution. 
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Discussion 

In this paper, we describe how the concept of scale alignment for multidimensional Rasch 

models for binary item responses might be extended to polytomous item responses and 

incomplete data sets. In this paper, we define aligned scales as those for which the same item 

sufficient statistics imply the same Thurstone thresholds. To this end, we describe three scale 

alignment methods delta-dimensional alignment (DDA) on the average item step parameters 𝜹, 

DDA on the Thurstone thresholds 𝝀, and logistic regression alignment (LRA). We recommend 

evaluating the success of scale alignment methods by calculating the absolute rank-order 

correlation between sufficient statistics and Thurstone thresholds before and after applying these 

alignment methods. Evidence from analyzing real and simulated data suggest that these three 

alignment methods are generally effective, and that which method is most effective varies across 

data sets. In practice, we recommend applying every scale alignment method and retaining the 

solution that leads to the maximum rank-order correlation between sufficient statistics and 

Thurstone thresholds.  

This paper also discusses how missing data might affect scale alignment. Specifically, we 

recommend computing modified sufficient statistics for the PCM as the proportion of complete 

responses, effectively treating missingness as ignorable. In practice, missing responses are often 

nonignorable. More sophisticated modeling techniques may be used in these situations, but these 

methods are situation-specific, and the corresponding extension to scale alignment methods is a 

topic for future study. The methods described above might also be used to align dimensions for 

which different items have different numbers of observed response categories.  However, 

researchers may want to account for the different numbers of categories by differentially 
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weighting the alignment parameters (e.g., 𝝀 or 𝜹). Further research is needed to determine the 

most appropriate and effective weighting scheme when items have different numbers of response 

categories. 

Scale alignment is premised on the fact that all scalings of different dimensions in 

multidimensional item response models are equally admissible. In this way, we believe that scale 

alignment is conceptually similar to factor rotation in exploratory factor analysis (EFA). In EFA, 

an infinite number of factor rotations are admissible, but some rotations lead to more 

interpretable structures than others. Similarly, we view scale alignment as a way to improve 

across-dimension interpretability of individual trait estimates by ensuring that the ordering of 

items has a consistent meaning across dimensions. Overall, we present scale alignment as a 

concept that we believe is useful for comparing estimates across dimensions more meaningfully 

than if the dimensions are not aligned. 
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